WorldWideScience

Sample records for boiler tube fouling

  1. Surface chemistry interventions to control boiler tube fouling - Part II

    International Nuclear Information System (INIS)

    This is the third in a series of reports from an investigation co-funded by the Electric Power Research Institute (EPRI) and by Atomic Energy of Canada Limited (AECL) into the effectiveness of alternative amines for controlling the rate of tube-bundle fouling under steam generator (SG) operating conditions. The objectives of this investigation are to determine whether the fouling rate depends on the amine used for pH control, to identify those factors that influence the effectiveness, and use this information to optimize the selection of an amine for chemistry control and deposit control in the steam cycle and steam generator, respectively. Work to date has demonstrated that the rate of particle deposition under steam generator operating conditions is strongly influenced by surface chemistry (Turner et al., 1997; Turner et al., 1999). This dependence upon surface chemistry is illustrated by the difference between the deposition rates measured for hematite and magnetite, and by the dependence of the particle deposition rate on the amine used for pH control. Deposition rates of hematite were found to be more than 10 times greater than those for magnetite under similar test conditions (Turner et al., 1997). At 270oC and pHT 6.2, the surfaces of hematite and magnetite are predicted to be positively charged and negatively charged, respectively (Shoonen, 1994). Measurements of the point of zero charge (PZC) of magnetite at temperatures from 25oC to 290oC by Wesolowski et al. (1999) have confirmed that magnetite is negatively charged at the stated conditions. A PZC of 4.2 was measured for Alloy 600 at 25oC (Balakrishnan and Turner, un-published results), and its surface is expected to remain negatively charged for alkaline chemistry over the temperature range of interest. Therefore, there will be a repulsive force between the surfaces of magnetite particles and Alloy 600 at 270oC and pHT 6.2 that is absent for hematite particles depositing under the same conditions. This

  2. Surface chemistry interventions to control boiler tube fouling

    International Nuclear Information System (INIS)

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25oC. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both

  3. Fuel sulfur and boiler fouling

    Energy Technology Data Exchange (ETDEWEB)

    Litzke, W.; Celebi, Y.; Butcher, T. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Fouling of the heat transfer surfaces of boilers and furnaces by `soot` leads to reduced efficiency and increased service requirements. The average level of annual efficiency reduction as a result of fouling if generally accepted as 2% per year. Improving the efficiency of equipment in the field may be the most important oil heat conservation opportunity at present. Improvements can be realized by reducing fouling rates, promoting lower firing rates in existing equipment, and enabling excess air levels to be set lower without raising concerns about increased service requirements. In spite of the importance of efficiency in the field there is very little data available on efficiency degradation rates with modern equipment, actual field operating conditions (excess air and smoke number settings) and service problems which affect efficiency. During 1993-94 field tests were initiated to obtain such data and to obtain information that would compliment existing and current laboratory work. Experimental work conducted on a bench scale level have included tests with various advanced burners, fuel types, and different operating conditions which have been done at the BNL Rapid Fouling Test Facility. This report will focus on the field study of fouling effects on ten residential heating service problems at each site are summarized. In addition, the technical difficulties involved with conducting such a field study shall also be discussed as the findings should serve to improve future work in this area.

  4. The effect of alternative amines on the rate of boiler tube fouling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Klimas, S.J.; Brideau, M.G

    1997-10-01

    Rates for the deposition of magnetite and hematite particles onto Alloy 600 surfaces, and for magnetite particles depositing onto surfaces prefouled with sintered porous magnetite deposits were measured. The measurements were made in a high-temperature loop, under typical steam generator operating conditions, with pH controlled using morpholine, ethanolamine, ammonia, dimethylamine, or potassium hydroxide. Deposition rates were compared as a function of the nature of the particle, tube surface morphology, and the reagent used for pH control for steam qualities ranging up to 50%. Conclusions drawn from this work are: the particle deposition rate of hematite is about an order of magnitude greater than the rate for magnetite on bare Inconel 600 surfaces; the nature of the amine used for pH control affects the magnetite deposition rate. The lowest deposition rate for magnetite is obtained when dimethylamine is used for pH control; the deposition rate of magnetite increases with increasing concentration of amine (at constant pH); under reducing conditions with no detectable oxygen and with free hydrazine, the deposition rate of hematite decreases towards the value for magnetite; the particle deposition rate can be affected by the tube surface morphology; the deposition rate is significantly higher on surfaces covered with porous deposits; the heat transfer mechanism and steam quality strongly affect the deposition rate. The deposition rate increases abruptly at high steam qualities; and here is no evidence that the volatility of the amine affects the deposition behaviour. (author)

  5. The effect of alternative amines on the rate of boiler tube fouling

    International Nuclear Information System (INIS)

    Rates for the deposition of magnetite and hematite particles onto Alloy 600 surfaces, and for magnetite particles depositing onto surfaces prefouled with sintered porous magnetite deposits were measured. The measurements were made in a high-temperature loop, under typical steam generator operating conditions, with pH controlled using morpholine, ethanolamine, ammonia, dimethylamine, or potassium hydroxide. Deposition rates were compared as a function of the nature of the particle, tube surface morphology, and the reagent used for pH control for steam qualities ranging up to 50%. Conclusions drawn from this work are: the particle deposition rate of hematite is about an order of magnitude greater than the rate for magnetite on bare Inconel 600 surfaces; the nature of the amine used for pH control affects the magnetite deposition rate. The lowest deposition rate for magnetite is obtained when dimethylamine is used for pH control; the deposition rate of magnetite increases with increasing concentration of amine (at constant pH); under reducing conditions with no detectable oxygen and with free hydrazine, the deposition rate of hematite decreases towards the value for magnetite; the particle deposition rate can be affected by the tube surface morphology; the deposition rate is significantly higher on surfaces covered with porous deposits; the heat transfer mechanism and steam quality strongly affect the deposition rate. The deposition rate increases abruptly at high steam qualities; and here is no evidence that the volatility of the amine affects the deposition behaviour. (author)

  6. Predictive modelling of boiler fouling. Final report.

    Energy Technology Data Exchange (ETDEWEB)

    Chatwani, A

    1990-12-31

    A spectral element method embodying Large Eddy Simulation based on Re- Normalization Group theory for simulating Sub Grid Scale viscosity was chosen for this work. This method is embodied in a computer code called NEKTON. NEKTON solves the unsteady, 2D or 3D,incompressible Navier Stokes equations by a spectral element method. The code was later extended to include the variable density and multiple reactive species effects at low Mach numbers, and to compute transport of large particles governed by inertia. Transport of small particles is computed by treating them as trace species. Code computations were performed for a number of test conditions typical of flow past a deep tube bank in a boiler. Results indicate qualitatively correct behavior. Predictions of deposition rates and deposit shape evolution also show correct qualitative behavior. These simulations are the first attempts to compute flow field results at realistic flow Reynolds numbers of the order of 10{sup 4}. Code validation was not done; comparison with experiment also could not be made as many phenomenological model parameters, e.g., sticking or erosion probabilities and their dependence on experimental conditions were not known. The predictions however demonstrate the capability to predict fouling from first principles. Further work is needed: use of large or massively parallel machine; code validation; parametric studies, etc.

  7. Knowledge based system for fouling assessment of power plant boiler

    International Nuclear Information System (INIS)

    The paper presents the design of an expert system for fouling assessment in power plant boilers. It is an on-line expert system based on selected criteria for the fouling assessment. Using criteria for fouling assessment based on 'clean' and 'not-clean' radiation heat flux measurements, the diagnostic variable are defined for the boiler heat transfer surface. The development of the prototype knowledge-based system for fouling assessment in power plants boiler comprise the integrations of the elements including knowledge base, inference procedure and prototype configuration. Demonstration of the prototype knowledge-based system for fouling assessment was performed on the Sines power plant. It is a 300 MW coal fired power plant. 12 fields are used with 3 on each side of boiler

  8. Fouling characteristics of compact heat exchangers and enhanced tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C. B.; Rabas, T. J.

    1999-07-15

    Fouling is a complex phenomenon that (1) encompasses formation and transportation of precursors, and (2) attachment and possible removal of foulants. A basic understanding of fouling mechanisms should guide the development of effective mitigation techniques. The literature on fouling in complex flow passages of compact heat exchangers is limited; however, significant progress has been made with enhanced tubes.

  9. Modeling of fire-tube boilers

    OpenAIRE

    Ortiz, F.J. Gutiérrez

    2011-01-01

    Abstract In fire-tube boilers, the flue gas passes inside boiler tubes, and heat is transferred to water on the shell side. A dynamic model has been developed for the analysis of boiler performance, and Matlab has been applied for integrating it. The mathematical model developed is based on the first principles of mass, energy and momentum conservations. In the model, the two parts of the boiler (fire/gas and water/steam sides), the economizer, the superheater and the heat recovery...

  10. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  11. Removal of External Deposits on Boiler Tubes

    Directory of Open Access Journals (Sweden)

    C. P. De

    1970-07-01

    Full Text Available The superheater tubes in Port and Starboard boilers were found to have completely clogged by heavy deposits, which on analysis mainly vanadium pentoxide and sodium sulphmatter. The cleaning of the deposits was accomplished by alternate spraying with 15-20 per cent hydrogen peroxide and washing with hot water jets. Over the past two years, since the date of cleaning, the IN ship is operating without any trouble in the boilers.

  12. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  13. Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler

    Energy Technology Data Exchange (ETDEWEB)

    Corkery, Robert; Baefver, Linda; Davidsson, Kent; Feiler, Adam

    2012-02-15

    Here we have described the basics of boilers, fuels, combustion, flue gas composition and mechanisms of deposition. We have reviewed coating technologies for boiler tubes, including their materials compositions, nano structures and performances. The surface forces in boilers, in particular those relevant to formation of unwanted deposits in boilers have also been reviewed, and some comparative calculations have been included to indicate the procedures needed for further study. Finally practical recommendations on the important considerations in minimizing deposition on boiler surfaces are made

  14. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    OpenAIRE

    Shi Yuanhao; Wang Jingcheng

    2015-01-01

    Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process...

  15. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  16. Computer simulation of the fire-tube boiler hydrodynamics

    OpenAIRE

    Khaustov Sergei A.; Zavorin Alexander S.; Buvakov Konstantin V.; Sheikin Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  17. Fouling of HVAC fin and tube heat exchangers

    International Nuclear Information System (INIS)

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1-8.6(micro)m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1(micro)m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air

  18. Fouling of HVAC fin and tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  19. CONCENTRIC TUBE-FOULING RIG FOR INVESTIGATION OF FOULING DEPOSIT FORMATION FROM PASTEURISER OF VISCOUS FOOD LIQUID

    Directory of Open Access Journals (Sweden)

    N. I. KHALID

    2013-02-01

    Full Text Available This paper reports the work on developing concentric tube-fouling rig, a new fouling deposit monitoring device. This device can detect and quantify the level of fouling deposit formation. It can also functioning as sampler for fouling deposit study, which can be attached at any food processing equipment. The design is initiated with conceptual design. The rig is designed with inner diameter of 7 cm and with tube length of 37 cm. A spiral insert with 34.5 cm length and with 5.4 cm diameter is fitted inside the tube to ensure the fluid flows around the tube. In this work, the rig is attached to the lab-scale concentric tube-pasteurizer to test its effectiveness and to collect a fouling sample after pasteurization of pink guava puree. Temperature changes are recorded during the pasteurization and the data is used to plot the heat transfer profile. Thickness of the fouling deposit is also measured. The trends for thickness, heat resistance profile and heat transfer profile for concentric tube-fouling rig matched the trends obtained from lab-scale concentric tube-pasteurizer very well. The findings from this work have shown a good potential of this rig however there is a limitation with spiral insert, which is discussed in this paper.

  20. CFD Studies on Multi Lead Rifled [MLR] Boiler Tubes

    OpenAIRE

    Dr T C Mohankumar

    2013-01-01

    This paper reports the merits of multi lead rifled [MLR] tubes in vertical water tube boiler using CFD tool. Heat transfer enhancement of MLR tubes was mainly taken in to consideration. Performance of multi lead rifled tube was studied by varying its influencing geometrical parameter like number of rifling, height of rifling, length of pitch of rifling for a particular length. The heat transfer analysis was done at operating conditions of an actual coal fired water tube boiler situated at Apo...

  1. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  2. CFD investigation of flow through internally riffled boiler tubes

    DEFF Research Database (Denmark)

    Rasmussen, Christian; Houbak, Niels; Sørensen, Jens Nørkær

    1997-01-01

    In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements.......In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements....

  3. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    Directory of Open Access Journals (Sweden)

    Shi Yuanhao

    2015-01-01

    Full Text Available Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process, artificial neural networks (ANN are used to optimize the boiler soot-blowing model and mean impact values method is utilized to determine a set of key variables. The validity of the models has been illustrated in a real case-study boiler, a 300MW Chinese power station. The results on same real plant data show that both models have good prediction accuracy, while the ANN model II has less input parameters. This work will be the basis of a future development in order to control and optimize the soot-blowing of the coal-fired power plant utility boilers.

  4. Tube micro-fouling, boiling and steam pressure after chemical cleaning

    International Nuclear Information System (INIS)

    This paper presents steam pressure trends after chemical cleaning of steam generator tubes at four plants. The paper also presents tube fouling factor that serves as an objective parameter to assess tubing boiling conditions for understanding the steam pressure trend. Available water chemistry data helps substantiate the concept of tube micro-fouling, its effect on tubing boiling, and its impact on steam pressure. All four plants experienced a first mode of decreasing steam pressure in the post-cleaning operation. After 3 to 4 months of operation, the decreasing trend stopped for three plants and then restored to a pre-cleaning value or better. The fourth plant is soil in decreasing trend after 12 months of operation. Dissolved chemicals, such as silica, titanium can precipitate on tube surface. The precipitate micro-fouling can deactivate or eliminate boiling nucleation sites. Therefore, the first phase of the post-cleaning operation suffered a decrease in steam pressure or an increase in fouling factor. It appears that micro fouling by magnetite deposit can activate or create more bubble nucleation sites. Therefore, the magnetite deposit micro-fouling results in a decrease in fouling factor, and a recovery in steam pressure. Fully understanding the boiling characteristics of the tubing at brand new, fouled and cleaned conditions requires further study of tubing surface conditions. Such study should include boiling heat transfer tests and scanning electronic microscope examination. (author)

  5. CFD Studies on Multi Lead Rifled [MLR] Boiler Tubes

    Directory of Open Access Journals (Sweden)

    Dr T C Mohankumar

    2013-09-01

    Full Text Available This paper reports the merits of multi lead rifled [MLR] tubes in vertical water tube boiler using CFD tool. Heat transfer enhancement of MLR tubes was mainly taken in to consideration. Performance of multi lead rifled tube was studied by varying its influencing geometrical parameter like number of rifling, height of rifling, length of pitch of rifling for a particular length. The heat transfer analysis was done at operating conditions of an actual coal fired water tube boiler situated at Apollo Tyres LTD, Chalakudy, India for saturated process steam production. The results showed that the heat transfer increased when compared with existing inner plane wall water tubes.

  6. A Comparative Study of Fouling and Bottom Ash from Woody Biomass Combustion in a Fixed-Bed Small-Scale Boiler and Evaluation of the Analytical Techniques Used

    Directory of Open Access Journals (Sweden)

    Lara Febrero

    2015-05-01

    Full Text Available In this work, fouling and bottom ash were collected from a low-power boiler after wood pellet combustion and studied using several analytical techniques to characterize and compare samples from different areas and determine the suitability of the analysis techniques employed. TGA results indicated that the fouling contained a high amount of organic matter (70%. The XRF and SEM-EDS measurements revealed that Ca and K are the main inorganic elements and exhibit clear tendency in the content of Cl that is negligible in the bottom ash and increased as it penetrated into the innermost layers of the fouling. Calcite, magnesia and silica appeared as the major crystalline phases in all the samples. However, the bottom ash was primarily comprised of calcium silicates. The KCl behaved identically to the Cl, preferably appeared in the adhered fouling samples. This salt, which has a low melting point, condenses upon contact with the low temperature tube and played a crucial role in the early stages of fouling formation. XRD was the most useful technique applied, which provided a semi-quantitative determination of the crystalline phases. FTIR was proven to be inadequate for this type of sample. The XRF and SEM-EDS, techniques yield similar results despite being entirely different.

  7. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    Science.gov (United States)

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. PMID:18422038

  8. Development of the boiler tube wall thickness ultrasonic detector

    International Nuclear Information System (INIS)

    Wall thickness of fossil fuel firing power boiler tubes are measured by ultrasonic test at regular intervals as part of in-service inspections. The measuring tubes are located high up on the boiler and at restricted sites, and many man-hours are required for preparatory of boiler tube wall thickness scale removal. To improve the efficiency and reliability of boiler tube wall thickness measurements, a system was developed for measuring the tube wall thickness by ultrasonic test from inside the tube. The primary features of this system are: 1) polishing on the outersurface of boiler tubes is not necessary because measurements are made from inside. (Reduction of man-hours), 2) measurements in limited places where manual measurement is difficult or impossible is made possible because automatic measurement from inside the tube is made by an ultrasonic probe introduced into the tube from the inspection hole of the header. (Improvement of reliability), and 3) the tube wall thickness is measured by a submerged ultrasonic rotary probe at an accuracy of ±0.1 mm along the full length. (Improvement of reliability)

  9. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  10. Failure of marine boiler tube: A case history

    Directory of Open Access Journals (Sweden)

    V. A. Dere

    1963-01-01

    Full Text Available An interesting case of marine boiler tube failure is described. As a result of local overheating, a ballooning burst occurred in a boiler tube. Evidence showed that a temperature of over 1600/degree/F (87/degree/C had been reached before rupture. The presence of a thin film of copper arising from the auxiliary equipments of the boiler, caused pittings in the metal. failure was thus attributed to local overheating accelerated by an inner deposit of heat insulating scale.

  11. Plugging margin evaluation considering the fouling of shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits increases, number of tube plugging increases, and thermal performance decreases. The fouling and plugging of tubes are known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the plugging margin evaluation method which can reflect the current fouling level developed in this study. To develop the plugging margin evaluation methods for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the plugging margin evaluation methods, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  12. Boiler tube corrosion characterization with a scanning thermal line

    Science.gov (United States)

    Cramer, K. Elliott; Jacobstein, A. Ronald; Reilly, Thomas L.

    2001-03-01

    Wall thinning due to corrosion in utility boiler waterwall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler waterwalls.

  13. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels; Karstensen, C.

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2: a...... zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  14. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    A model for a ue gas boiler covering the ue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been dened for the furnace, the convection zone (split in 2: a zone...... submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic- Equation system (DAE). Subsequently MatLab/Simulink has...... been applied for carrying out the simulations. To be able to verify the simulated results an experiments has been carried out on a full scale boiler plant....

  15. Probe Measures Fouling As In Heat Exchangers

    Science.gov (United States)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  16. Simulasi Thermal Stress Pada Tube Superheater Package Boiler

    OpenAIRE

    Hamdani

    2013-01-01

    This project investigates the thermal stress behavior and the mechanisms of superheater tube failure with experimental method and numerical analysis. First of all the procedures for failure analysis were applied to determine the root cause of them. A visual assessment of boiler critical pressure parts was carried out, and then the failed tube is examined by nondestructive evaluation. For the numerical domain, initially the elastic solution for a superheater tube subjected to an internal press...

  17. Achieving reduced fouling of cooling water exchangers with stainless steel tubes

    International Nuclear Information System (INIS)

    Good performance of cooling water heat exchangers plays a vital role in the over all energy efficiency of a chemical plant. Heavy fouling on carbon steel tubes of the cooling water exchangers was causing poor performance and frequent cleaning requirement. The carbon steel tubes were replaced with stainless steel tubes. Improved performance was achieved and cleaning frequency reduced. The paper covers the details of study and methodology applied for the above changes along with summary of results. (author)

  18. Modelling of a one pass smoke tube boiler

    DEFF Research Database (Denmark)

    Karstensen, Claus M. S.; Sørensen, Kim

    2004-01-01

    A nonlinear state-space model with five states describing a one pass smoke tube boiler has been formulated. By means of mass- and energy-balance the model describes the dynamics of the Furnace, the Convection Zone and the Water/Steam Part and the three sub models are merged into an overall model....

  19. Influence of furnace tube shapeon thermal strain of fire-tube boilers

    Directory of Open Access Journals (Sweden)

    Gaćeša Branka

    2014-01-01

    Full Text Available The aim of this paper is to use numerical analysis and fine element method-FEM to investigate the influence of furnace tube shape on the thermal strain of fire-tube boilers. Thermal stresses in corrugated furnace tubes of different shape, i.e. with different corrugation pitch and depth, were analysed first. It was demonstrated that the thermal stresses in corrugated furnace tube are significantly reduced with the increase of corrugation depth. Than deformations and stresses in the structure of a fire-tube boiler were analysed in a real operating condition, for the cases of installed plain furnace tube and corrugated furnace tubes with different shapes. It was concluded that in this fire-tube boiler, which is of larger steam capacity, the corrugated furnace tube must be installed, as well as that the maximal stress in the construction is reduced by the installation of the furnace tube with greater corrugation depth. The analysis of stresses due to pressure and thermal loads pointed out that thermal stresses are not lower-order stresses in comparison to stresses due to pressure loads, so they must be taken into consideration for boiler strength analysis. [Projekat Ministarstva nauke Republike Srbije, br. TR 35040 i br. TR 35011

  20. Use of genetic algorithm to identify thermophysical properties of deposited fouling in heat exchanger tubes

    International Nuclear Information System (INIS)

    At high temperature, the circulation of fluid in heat exchangers provides a tendency for fouling accumulation to take place on the internal surface of tubes. This paper shows an experimental process of thermophysical properties estimation of the fouling deposited on internal surface of a heat exchanger tube using genetic algorithms (GAs). The genetic algorithm is used to minimize an objective function containing calculated and measured temperatures. The experimental bench using a photothermal method with a finite width pulse heat excitation is used and the estimated parameters are obtained with high accuracy

  1. Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube

    Science.gov (United States)

    Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.

    2015-02-01

    Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.

  2. Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

    1999-09-12

    The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

  3. Corrosion of evaporator tubes in low emission steam boilers

    OpenAIRE

    S. Topolska; J. Łabanowski

    2010-01-01

    Purpose: of this paper is to reveal the mechanisms of corrosion processes of outer surfaces of low-emission steam boiler evaporator tubes. Examinations were performed to find the reasons of different corrosion susceptibility of tubes situated at combustion chamber on various levels.Design/methodology/approach: Examinations were conducted on several segments of Ø 57 x 5.0 mm evaporator tubes made of 16M (16Mo3) steel grade. Segments were taken from level of 10 meters and 18 meters from the cha...

  4. Corrosion of evaporator tubes in low emission steam boilers

    Directory of Open Access Journals (Sweden)

    S. Topolska

    2010-04-01

    Full Text Available Purpose: of this paper is to reveal the mechanisms of corrosion processes of outer surfaces of low-emission steam boiler evaporator tubes. Examinations were performed to find the reasons of different corrosion susceptibility of tubes situated at combustion chamber on various levels.Design/methodology/approach: Examinations were conducted on several segments of Ø 57 x 5.0 mm evaporator tubes made of 16M (16Mo3 steel grade. Segments were taken from level of 10 meters and 18 meters from the chamber bottom of low-emission coal fired steam boiler after two years operation. Microstructure degradation of base material was estimated. Metallographic evaluation of scale morphology, its micro sites chemical composition analysis and distribution of elements on cross sections have been performed.Findings: Eexaminations of evaporator tubes indicated that reduction of wall thickness was considerable at the segments taken from level of 10 m, when at level of 18 m this reduction was small. The morphology of scales consisted of external layer which was porous and weakly connected to the tube surface, and internal layer, which was dense and adherent to the base metal. In these two layers the bands reach in sulfur were detected. The sulfide corrosion seems to be the main degradation mechanism of the tube surface at the level of 10 m.Research limitations/implications: Corrosion of the water wall tubes in low-emission steam boilers is a result of reaction of steel tube surface with the aggressive substoichiometric environment contains sulfur. The chemical composition of flue gases changes along the water wall. The exact compound of flue gases has not been determined in this study.Practical implications: Prevention of water wall tubes corrosion can be achieved by changing in operation conditions or replacement of tube materials. The first mentioned action is limited to accurate burner’s adjustment or introduces a flow of additional air along the walls and create

  5. A risk approach to the management of boiler tube thinning

    International Nuclear Information System (INIS)

    A large set of industrial thickness inspection data covering four boiler units of a power station over a period of five years was made available to the authors. The measurements were made in regions of the boiler where corrosion/erosion was the major cause of failure of the boiler tubes. There were over 40,000 separately measured data points in the data and all were collected with some care and expense. In the development of maintenance strategies for equipment, this type of data is typical of the data that must be collected and assessed. This data thus represents an opportunity to evaluate the ability to generate a useful risk approach to the management of the tubing. An important example of a risk-based approach is the American Petroleum Institute (API) Risk Based Inspection ('RBI'), API 581. A variety of problems were encountered applying this to boiler tubes. The problems include irrelevant API 581 corrosion rate tables, lack of information on how to analyse inspection data, difficulty of dealing with multiple inspection categories and lack of suitable direction for programming inspection intervals

  6. In situ heat exchanger tube fouling thickness measurements using ultrasonics

    Science.gov (United States)

    Hirshman, J.; Munier, R. S. C.

    1980-09-01

    The feasibility of establishing a practical microacoustic technique to measure fouling film thickness in situ on typical ocean thermal energy conversion (OTEC) heat exchanger tasks was studied. Seven techniques were studied for this application, including velocity measurements, acoustic diffraction, acoustic interferometer, Doppler flow velocity, pulse echo, critical angle, and surface (shear) wave effects. Of these, the latter five were laboratory tested using conventional microacoustic system components in various configurations. Only the pulse echo technique yielded promising results. On fouled aluminum plates, thin film layers of 40 microns and greater were measured using focused 30 MHz ceramic transducer operated at 25 MHz; this represents a resolution of about 2/3 wavelength. Measurements made on the inside of fouled 1 inch aluminum pipes yielded film thickness of 75 to 125 microns. The thinnest layer resolved was approximately 1-1/4 wavelength. The resolution of slime layer thickness in the magnitudes of OTEC interest (5 to 30 microns) using pulse echo microacoustics will require transducer development.

  7. Numerical Investigation of Simultaneously Deposition and Re-Entrainment Fouling Processes in Corrugated Tubes by Coupling CFD and DEM

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    to fouling deposit than others, detailed fouling considerations have to be taken into account in the initial design process of new heat exchangers. This study presents initial simulations of particulate fouling in the corrugated tube heat exchanger type. Using a mechanistic Euler-Lagrange approach......The deposition of particulate fouling on flue gas heat exchanger surfaces results in decreased heat transfer. Even though an increasingly amount of work is done on the design of clean heat exchanger surfaces, the effect of fouling remains a challenge. As some heat exchanger designs are more prone...... build up along the heat surfaces....

  8. Fracture in a steam boiler generator tube

    International Nuclear Information System (INIS)

    This study briefly describes the abrupt rupture of a classical heater tube in 15D3 steel (steel rarely used in France). This breakage had occurred after 10 years of service. The authors conclude in a local overheating having provoked an intergranular precipitation, itself triggering a breakage. (Author). 4 refs., 5 figs., 2 tabs

  9. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, D. [HTFS, Hyprotech, Didcot (United Kingdom)

    2002-07-01

    Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US national Heat Transfer Conference, 20-22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27-31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert-Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18-23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed. (author)

  10. Heat exchanger fouling: Prediction, measurement, and mitigation

    Science.gov (United States)

    The US Department of Energy (DOE), Office of Industrial Programs (OIP) sponsors the development of innovative heat exchange systems. Fouling is a major and persistent cost associated with most industrial heat exchangers and nationally wastes an estimated 2.9 Quads per year. To predict and control fouling, three OIP projects are currently exploring heat exchanger fouling in specific industrial applications. A fouling probe has been developed to determine empirically the fouling potential of an industrial gas stream and to derive the fouling thermal resistance. The probe is a hollow metal cylinder capable of measuring the average heat flux along the length of the tube. The local heat flux is also measured by a heat flux meter embedded in the probe wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200 F and a local heat flux up to 41,000 BTU/hr sq ft. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste incinerator are planned. Two other projects study enhanced heat exchanger tubes, specifically the effect of enhanced surface geometries on the tube bundle performance. Both projects include fouling in a liquid heat transfer fluid. Identifying and quantifying the factors affecting fouling in these enhanced heat transfer tubes will lead to techniques to mitigate fouling.

  11. Review of shell-and-tube heat exchanger fouling and corrosion in geothermal power plant service

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II

    1983-12-01

    Heat exchangers for hot geofluid/working substance vaporizers for binary power plants are considered. A brief description of the physical test apparatus and the geofluid chemistry for each of the several heat exchanger tests is presented. The fouling data developed from these tests are summarized, in most cases presenting a mathematical expression for the increase in fouling factor with time. The materials performance data developed from these same tests are explored. The performance of shell-and-tube heat exchangers used as condensers and ancillary coolers in the power plant heat rejection system is considered.

  12. Development of automatic inspection robot for boiler tubes using EMAT

    International Nuclear Information System (INIS)

    In this study, a mobile robotic system using NDT (Non-destructive testing) method is developed for automatic diagnosis of the boiler tubes. The developed mobile robot crawls the surface of the tubes and detects in-pipe defects such as pinholes, cracks and thickness reduction by corrosion and/or erosion using EMAT (Electro-magnetic Acoustic Transducer) sensors. Automation of fault detection by means of mobile robotic systems for large-scale structures helps to prevent significant troubles without danger of human beings under harmful environment. In this study a preliminary result with guided wave inspection for defect detection is shown.

  13. Mineralogical composition of boiler fouling and slagging deposits and their relation to fly ashes: the case of Kardia power plant.

    Science.gov (United States)

    Kostakis, George

    2011-01-30

    Slagging and fouling deposits from a pulverized lignite fired steam generating unit of the Kardia power plant (West Macedonia, Greece) were mineralogically investigated. The structure and cohesion of these deposits varied, usually depending on the level height of the boiler unit where they were formed. Some of the deposits had complex phase composition. The dominant components of the deposits of the burner zone and of the lower and intermediate boiler zones were the amorphous, anhydrite and hematite, while those of the highest levels contained amorphous, and anhydrite. Furthermore, in deposits formed in various other boiler areas gehlenite, anorthite, diopside, quartz, Ca(2)SiO(4), brownmillerite and other crystalline phases were also identified, usually in low amounts or in traces. The major part of the phases constituting the deposits were formed in the boiler, since only a minor part derived from the unreacted minerals present in lignite. Anhydrite was generated from the reaction of SO(2) with CaO formed mainly by the calcination of calcite as well as from dehydration of gypsum contained in lignite, while hematite was produced mainly from the oxidation of pyrite. The calcium-containing silicates formed in the boiler were mainly the products of reactions between CaO and minerals contained in the lignite. PMID:21035255

  14. Analysis of Boiler Operational Variables Prior to Tube Leakage Fault by Artificial Intelligent System

    OpenAIRE

    Al-Kayiem Hussain H.; Al-Naimi Firas B. I.; Amat Wan N. Bt Wan

    2014-01-01

    Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes the rules of the Artificial Intelligent Systems to diagnosis the boiler variables prior to tube leakage occurrence. An Intelligent system based on Artificial Neural Network was designed and coded i...

  15. Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R.L.; Chamra, L.; Jaber, H.

    1992-02-01

    Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

  16. Influence of boiler load on water tubes burnout

    Energy Technology Data Exchange (ETDEWEB)

    Said, S.A.M.; Habib, M.A.; Badr, H.M.; Mansour, R. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    2009-07-01

    The influence of boiler loads on water tube burnout was investigated. The in-service boiler had 2 burners at different levels located in the front of the burner's wall. Homogenous-flow and separated-flow models were designed to simulate the water circulation and combustion processes inside the boiler tubes. Heat flux calculations were derived by solving the conservation of mass, momentum, and energy equations and species concentration as well as by solving turbulence, reaction rate, and radiation model equations. Results of the study showed that heat flux during full loads ranged from close to 0 to 270 kW/m2. The right side screen wall of the burner exhibited higher heat flux values in the middle region of the wall where large areas were subjected to heat flux close to a maximum of 270 kW/m2. Results also included reductions in heat flux values at partial loads. Maximum values were reduced from 270 kW/m2 ato 230 kW/m2 at 75 per cent capacity and 200 kW/m2 at 60 per cent capacity. The rate of steam generation increased from 0.1 kg/s to 0.153 kg/s when the distance from the burner wall increased from 2 meters to 12 meters. 10 refs., 10 figs.

  17. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  18. A study on the development of fouling evaluation method for finned tube heat exchanger

    International Nuclear Information System (INIS)

    Heat exchangers in nuclear power plants are used for various purposes, such as safe shutdown of nuclear reactor, increase of thermal efficiency, maintenance of temperature inside building, final heat sink, reduction of thermal stress by cold water injection, etc. As operating time of these heat exchangers progresses, fouling generated by water-borne deposits increases and thermal performance decreases. Even though thermal performance tests for heat exchangers without phase change in domestic nuclear power plants have performed with a fixed interval, thermal performance tests for finned tube heat exchangers with condensation have not performed to date. This paper describes the development of fouling evaluation method for finned tube heat exchangers and the result of prototype evaluation for the heat exchanger using the mixture of C3 and N-C4 as a refrigerant

  19. Fouling and tube support plates blockage of steam generators: chemical modeling of the phenomena

    International Nuclear Information System (INIS)

    Formation and deposition of corrosion products in the secondary circuit can lead to the steam generators (SG) tubes fouling and consequently to a loss of thermal performance and SG efficiency. Moreover, some French nuclear power plants (NPP) are partially affected by a phenomenon of blockage of steam generators tube support plates (TSP). The objective of our study is to understand the role of chemistry in the fouling and TSP blockage of steam generators. This paper will present the 'modeling part' of this study, i.e. the chemical modeling of the deposits formation by taking into account geometrical, physico-chemical, hydrodynamic and chemical data. The results of this work will provide data to determine if changes in the chemical conditioning (amine choice, pH level, etc) could be useful and necessary. (author)

  20. Hydrogen attack evaluation of boiler tube using ultrasonic wave

    International Nuclear Information System (INIS)

    The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity, attenuation and backscatter techniques for detecting the presence of hydrogen damage in utility boiler tubes. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, recommendations are that both velocity and attenuation be used to detect hydrogen attack in steels.

  1. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  2. Superheater fouling in a BFB boiler firing wood-based fuel blends

    NARCIS (Netherlands)

    Stam, A.F.; Haasnoot, K.; Brem, G.

    2014-01-01

    Four different fuel blends have been fired in a 28 MWel BFB. Wood pellets (test 0) were not problematic for about ten years, contrary to a mixture of demolition wood, wood cuttings, compost overflow, paper sludge and roadside grass (test 1) which caused excessive fouling at a superheater bundle afte

  3. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    OpenAIRE

    Khaustov Sergei; Belousova Yana

    2015-01-01

    Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing ...

  4. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  5. French experience on o.d. IGA/SCC and fouling of SG tubes

    International Nuclear Information System (INIS)

    The secondary side corrosion of steam generator (SG) tubes represents the main degradation of components in operating power plants, strongly impacted by chemistry. Accordingly, Electricite de France (EDF) has made extensive studies of the chemical parameters in its fleet of 57 PWRs to determine which factors might influence corrosion development and has implemented an optimised secondary system chemistry to control corrosion phenomena and mitigate intergranular attack/stress corrosion cracking (IGA/SCC) at low cost. This paper describes the studies carried out on materials, chemistry during operation, and hideout returns during shutdown and maintenance, leading to preventive or remedial actions. Secondary fouling of SG tubes is also becoming a major concern because it leads to a pressure loss on some units. Remedies are studied to eliminate these deposits to recover heat transfer exchange. (author)

  6. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    International Nuclear Information System (INIS)

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits

  7. INVESTIGATION OF FOULING DEPOSIT FORMATION DURING PASTEURIZATION OF CHILI SAUCE BY USING LAB-SCALE CONCENTRIC TUBE-PASTEURIZER

    Directory of Open Access Journals (Sweden)

    NUR ATIKA ALI

    2014-06-01

    Full Text Available This paper investigates the characteristics of fouling deposits obtained from chilli sauce pasteurization. A lab-scale concentric tube-pasteurizer was used to pasteurize the chilli sauce at 0.712 kg/min and 90±5°C. It was operated for 3 hours. Temperature changes were recorded during pasteurization and the data was used to plot the heat transfer profile and the fouling resistance profile. The thickness of the fouling deposit was also measured and the image was taken for every hour. The fouling deposit was collected at every hour to test its stickiness, hardness and flow behaviour. Proximate analysis was also performed and it shows that the fouling deposit from the chilli sauce is categorized as carbohydrate-based fouling deposits. Activation energy of chilli sauce is 7049.4 J.mole-1 which shows a greater effect of temperature on the viscosity. The hardness, stickiness of fouling deposit and the heat resistance increases as the chilli sauce continuously flows inside the heat exchanger.

  8. On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface

    Institute of Scientific and Technical Information of China (English)

    Yang Dong; Wang Zhongyuan

    2005-01-01

    High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.

  9. Formation of corrosion products protecting surfaces of the boiler proper tubes from the combustion chamber

    OpenAIRE

    Pietrzyk, M.; S. Król

    2007-01-01

    Purpose: The aim of this paper is to determine how the oxidation product layer of the steel applied for the radiant tubes should increase if we are going to obtain the lowest possible corrosion losses.Design/methodology/approach: Boiler tubes, made of 13CrMo4-5 steel were subjected to tests. In the boiler BP-1150, the tubes ø 30 x 5 mm are joined by fins and form a membrane shield. According to the maps of tube wall thickness, in the zone of the highest heat load, sectors of the shield were s...

  10. Identification of boiler tube leak in PHWR by measuring short lived radioisotope Iodine-134 in boiler water using gamma spectrometric techniques

    International Nuclear Information System (INIS)

    The boiler tube made up of Monel-400 of RAPS-2 has failed on few occasions. Due to the failure of boiler tube, the active heavy water enters into boiler and feed water leading to contamination of radioactivity in secondary water circuit. The identification of boiler tube failure was done by measuring gamma ray activity of Iodine-134 in the boiler water with sample using gamma spectrometry with high purity germanium detector. In order to increase the sensitivity of the method 5 liters of Boiler water sample was passed through a plastic column containing 40 ml of anion resin and 10 ml of activated charcoal to capture the isotopes of Iodine in the anionic form and molecular form. Samples were collected from all 8 Boilers of RAPS-2. The activity of 134I was shown only by Boiler - 5. No other boilers showed any activity of 134I. This indicated that Boiler - 5 had leaky tubes. The leaky hairpin of boiler - 5 was identified by measuring Tritium and IP in the riser and down comer of all 10 HXs. On the basis of Tritium and IP result, HX-7 was identified as leaky hairpin. (author)

  11. Validation of the method for determination of the thermal resistance of fouling in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Highlights: • Heat recovery in a heat exchanger network (HEN). • A novel method for on-line determination of the thermal resistance of fouling is presented. • Details are developed for shell and tube heat exchangers. • The method was validated and sensibility analysis was carried out. • Developed approach allows long-term monitoring of changes in the HEN efficiency. - Abstract: A novel method for on-line determination of the thermal resistance of fouling in shell and tube heat exchangers is presented. It can be applied under the condition that the data on pressure, temperature, mass flowrate and thermophysical properties of both heat-exchanging media are continuously available. The calculation algorithm for use in the novel method is robust and ensures reliable determination of the thermal resistance of fouling even if the operating parameters fluctuate. The method was validated using measurement data retrieved from the operation records of a heat exchanger network connected with a crude distillation unit rated 800 t/h. Sensibility analysis of the method was carried out and the calculated values of the thermal resistance of fouling were critically reviewed considering the results of qualitative evaluation of fouling layers in the exchangers inspected during plant overhaul

  12. Mechanical Design of Steel Tubing for Use in Black Liquor Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Taljat, B.; Zacharaia, T.; Wang, X.; Kesier, J.; Swindeman, R.; Hubbard, C.

    1999-05-26

    Finite element models were developed for thermal-mechanical analysis of black liquor recovery boiler floor tubes. Residual stresses in boiler floors due to various manufacturing processes were analyzed. The modeling results were verified by X-ray and neutron diffraction measurements at room temperature on as-manufactured tubes as well as tubes after service. The established finite element models were then used to evaluate stress conditions during boiler operation. Using these finite element models, a parametric response surface study was performed to investigate the influence of material properties of the clad layer on stresses in the floor tubes during various boiler operating conditions, which yielded a generalized solution of stresses in the composite tube floors. The results of the study are useful for identifying the mechanisms of cracking experienced by recovery boilers. Based on the results of the response surface study, a recommendation was made for more suitable materials in terms of the analyzed mechanical properties. Alternative materials and manufacturing processes are being considered to improve the resistance to cracking and the in-service life of composite tubes. To avoid numerous FE stress-strain analyses of composite tubes made of different material combinations, a response surface study was performed that considered two essential mechanical properties of the clad material - coefficient of thermal expansion and yield stress - as independent variables. The response surface study provided a generalized solution of stresses in the floor in terms of the two selected parameters.

  13. A study on the development of fouling analysis technique for shell-and-tube heat exchangers

    International Nuclear Information System (INIS)

    Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the fouling analysis technique developed in this study which can analyze the thermal performance for heat exchangers and estimate the future fouling variations. To develop the fouling analysis technique for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the fouling analysis technique, the fouling analyses were performed for four heat exchangers in several nuclear power plants; two residual heat removal heat exchangers of the residual heat removal system and two component cooling water heat exchangers of the component cooling water system

  14. Leak detection evaluation of boiler tube for power plant using acoustic emission

    International Nuclear Information System (INIS)

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.

  15. Flue gas dust composition and fouling tendency in recovery boilers; Flygaskans sammansaettning och nedsmutsande tendens i sodapannan

    Energy Technology Data Exchange (ETDEWEB)

    Forssen, Mikael; Backman, Rainer; Wallen, Jonas; Hupa, Mikko [Aabo Akademi (Finland)

    2000-02-01

    In this work eight Swedish black liquors have been characterized for the following properties: Combustability and bed behavior; Dust formation tendency; Fouling tendency of dust; SO{sub 2} formation tendency; and, NO formation tendency. The research was made using; (i) chemical analysis of the samples, (ii) special laboratory scale combustion and pyrolysis tests and (iii) an advanced computer model (Recovery Boiler Chemistry Advisor) for calculating the chemical composition and melting properties of the flue gas dust (fly ash). All tests and analysis were successfully performed and the results were reproducible and reliable. The results were classified for each of the five properties from one to five, and summarised into a table. The liquors showed good or extremely good combustability, also the behavior of the bed was normal or extremely good. None of the liquors had extremely high or low values in their swelling tendency or in their total combustion times. The liquors showed bigger differences in their tendency to form dust. Most of the liquors were 'good' because of the lower than normal tendency to form dust during combustion. Only one of the liquors, liquor B, was rated as 'bad', one of the liquors, liquor E, was rated 'extremely good', in other words liquor B had the highest tendency to form dust whereas liquor E had the lowest tendency to form dust. The advanced computer modelling work gave the composition, and the melting properties for the two dust components, carry-over and the condensed dust. The fouling tendency of the liquors were extremely good (low), the differences were so small that no distinction could be made between the liquors. Compared to earlier studies, the sticky temperature, T{sub 15}, for the eight liquors were extremely high, for both modelling cases when the combustion was assumed to take place either in a 'cold' or in a 'hot' furnace. This is partly explained by the fact that the

  16. Investigation and analysis of short overheat in boiler tube failure in power plant units

    International Nuclear Information System (INIS)

    Boiler tube failure are the main cause of forced outages of power generating units and due to cost, Penalty is very high. Sources and reasons of tube failures are various, but it can be generally categorized by mechanical and corrosion factors with 81% and 19% contributions, respectively. Among the mechanical factors short overheat has the major contribution in water wall and superheater tube, failure. In this paper short overheat mechanism (with appearance and metallurgical features) and its prevention method is over viewed

  17. A study on development of a plugging margin evaluation method taking into account the fouling of shell-and tube heat exchangers

    International Nuclear Information System (INIS)

    As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant

  18. A study on the development of plugging margin evaluation method reflected the fouling of a shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of domestic nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions as a means of heat exchanger management. Except for the fouling level generated in operation of heat exchangers, also, all of the tubes of heat exchangers have been replaced when the number of plugged tubes exceeds the plugging criteria based on design performance sheet. This paper describes the plugging margin evaluation method reflected the fouling of shell-and-tube heat exchangers, which can evaluate the thermal performance for heat exchangers, estimate the further fouling variations, and reflect the current fouling level. To identify the effectiveness of the developed method, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  19. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei

    2015-01-01

    Full Text Available Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing of burning stability, local heat stresses and aerodynamic resistances should be solved. To resolve the indicated problems, a modified model of dual-chamber fire-tube boiler furnace is proposed. The performance of suggested flame-tube was simulated using the proven computer-aided engineering software ANSYS Multiphysics. Results display proposed flame tube completely filled with moving medium without stagnant zones. Turbulent vortical combustion is observed even with the straight-through fuel supply. Active flue gas recirculation in suggested dual-chamber furnace reduces emissions of pollutants. Diminution of wall heat fluxes allows boiler operation at lower water treatment costs.

  20. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  1. Estimation of residual life of boiler tubes using steamside oxide scale thickness

    International Nuclear Information System (INIS)

    In thermal power plants, remaining-life-estimation of boiler tubes is required at regular intervals for a safer and a better functionality of boilers. In this paper, a new method is proposed for the residual life estimation of service exposed boiler tubes using Non-Destructive Ultrasonic Oxide scale thickness measurements, average metal temperature and creep master curve. While steady state conduction heat transfer equations are solved to calculate the average metal temperature, creep master curve is generated from short term stress rupture data of rupture life less than 5000 h on a virgin material. In the present study, the residual life of T22 (2.25Cr-1Mo) service exposed Platen Superheater tube is estimated using two master creep curves, i.e. Larson-Miller Parametric (LMP) method of standard ASME T22 creep data and Wilshire approach of short term stress rupture data of T22. As the residual life is calculated from fundamental conduction heat transfer theory and creep rupture data, the proposed method can be applied for different grades of boiler materials. -- Highlights: ► Residual life is calculated from non-destructive oxide scale thickness, creep master curve and average metal temperature. ► A new method is proposed for calculating residual life using above parameters and from conduction heat transfer principles. ► The method can be applied to different boiler grades for estimating residual life and hence the method is generic

  2. Heat transfer characteristics of 2t/h class modular water tube type boiler

    International Nuclear Information System (INIS)

    A finned tube type evaporator module has been proposed for a 2t/h class water tube type industrial boiler with multiple burners. The geometry of the fins was changed at each module to equalize the evaporation. The modules were designed by considering the energy balance at each row rather than by following a conventional bulk design procedure. The designed module was built into a 2t/h class water tube type boiler, and its performance was tested. A numerical simulation was also conducted to evaluate the two or three dimensional effects of factors such as the inlet conditions. The numerical simulation also included the conjugate heat transfer problem to predict the fin tip temperature. The heat transfer coefficient with fins is lower than that obtained from the empirical correlation of a bare tube. The fin tip temperature from CFD is higher than that from the analytical solution

  3. Heat transfer characteristics of 2t/h class modular water tube type boiler

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon [Kookmin Univ., Seoul (Korea, Republic of); Hwang, Sang Soon [Univ. of Incheon, Incheon (Korea, Republic of)

    2012-11-15

    A finned tube type evaporator module has been proposed for a 2t/h class water tube type industrial boiler with multiple burners. The geometry of the fins was changed at each module to equalize the evaporation. The modules were designed by considering the energy balance at each row rather than by following a conventional bulk design procedure. The designed module was built into a 2t/h class water tube type boiler, and its performance was tested. A numerical simulation was also conducted to evaluate the two or three dimensional effects of factors such as the inlet conditions. The numerical simulation also included the conjugate heat transfer problem to predict the fin tip temperature. The heat transfer coefficient with fins is lower than that obtained from the empirical correlation of a bare tube. The fin tip temperature from CFD is higher than that from the analytical solution.

  4. Dynamic instabilities in radiation-heated boiler tubes for solar central receivers

    Science.gov (United States)

    Wolf, S.; Chan, K. C.; Chen, K.; Yadigaroglu, G.

    1982-11-01

    Density-wave instabilities have been investigated in circumferentially nonuniform radiation-heated boiler tubes, simulating solar heating. Analysis and experimental data are presented. The analysis provides the basis for a computer code, STEAMFREQ-I, for the prediction of density-wave instabilities in boiler tubes with imposed heat flux. The key model features include a drift-flux flow model in the boiling region, spatial variation of heat flux, wall dynamics, and variable steam properties in the superheat region. The experimental data include results from two radiation heated boiler panel tests. The data are applicable to central receivers for solar electric power plants. Data for stable and unstable conditions are compared with predictions from STEAMFREQ-I.

  5. Parameter Tuning via Genetic Algorithm of Fuzzy Controller for Fire Tube Boiler

    Directory of Open Access Journals (Sweden)

    Osama I. Hassanein

    2012-04-01

    Full Text Available The optimal use of fuel energy and water in a fire tube boiler is important in achieving economical system operation, precise control system design required to achieve high speed of response with no overshot. Two artificial intelligence techniques, fuzzy control (FLC and genetic-fuzzy control (GFLC applied to control both of the water/steam temperature and water level control loops of boiler. The parameters of the FLC are optimized to locating the optimal solutions to meet the required performance objectives using a genetic algorithm. The parameters subject to optimization are the width of the membership functions and scaling factors. The performance of the fire tube boiler that fitted with GFLC has reliable dynamic performance as compared with the system fitted with FLC.

  6. Stress and integrity analysis of steam superheater tubes of a high pressure boiler

    OpenAIRE

    Daniel Leite Cypriano Neves; Jansen Renato de Carvalho Seixas; Ediberto Bastos Tinoco; Adriana da Cunha Rocha; Ibrahim de Cerqueira Abud

    2004-01-01

    Sources that can lead to deterioration of steam superheater tubes of a high pressure boiler were studied by a stress analysis, focused on internal pressure and temperature experienced by the material at real operating conditions. Loss of flame control, internal deposits and unexpected peak charge are factors that generate loads above the design limit of tube materials, which can be subjected to strain, buckling, cracks and finally rupture in service. To evaluate integrity and dependability of...

  7. Aspects of high temperature corrosion of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.; Bendick, W. [Salzgitter-Mannesmann-Forschung GmbH, Duisburg (Germany)

    2008-07-01

    The development of new boiler steels for power generation has to consider significant creep strength as well as oxidation and corrosion resistance. High temperature corrosion of boiler materials concerns steam oxidation as well as fireside corrosion of parts, in contact with the flue gas. It will be shown that depending on the quality of the fuel, especially chlorine and sulphur are responsible for most of the fireside corrosion problems. Corrosion mechanisms will be presented for flue gas induced corrosion (HCl) and deposit induced corrosion (chlorides and sulfates). Especially for the 700 C technology, deposit induced corrosion issues have to be considered and the mechanisms of corrosion by molten sulfates 'Hot Corrosion' will be explained. Finally, an overview will be given on the selection of suitable materials in order to minimise corrosion relates failures. (orig.)

  8. Overheating failure of superheater suspension tubes of a captive thermal power plant boiler

    International Nuclear Information System (INIS)

    Failure of boiler tubes is the foremost cause of forced boiler outages. One of the predominant failure mechanism of boiler tubes is the stress rupture failure in the form of either short term overheating or long term overheating which are normally encountered in superheater and reheater sections working in the creep range. The strength of the boiler tube depends on the stress level as well on the temperature of exposure in the creep range. An increase in either can reduce the time to rupture. Time at the exposure temperature is an important factor based on which the failures are categorised as either short term or long term. Though there is no established time duration criteria demarcating the short or long term stress rupture failures, depending on the various manifestations on the failed samples, one can categorise the failure. This paper addresses one such stress rupture failure in the superheater section of a captive thermal power plant of a refinery. Multiple failures on the suspension coil of a superheater section was investigated for the cause of failure. Laboratory investigation of the failed sample involved visual inspection, dimensional measurements, chemical analysis of internal deposits and microstructural study. On the basis of these, the failure was attributed to deposition of trisodium phosphate carried over by the feed water into the superheater section resulting in chokage and increase in local operating hoop stresses of the tube. The ultimate failure was thus categorised as long term overheating failure. (author)

  9. Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application fo a Moving Line Heat Source

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used lor inspection of these tubes. This technique has proved to be very labor intensive and slow. This has resulted in a "spot check" approach to inspections, making thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source, coupled with this analysis technique, represents a significant improvement in the inspection speed for large structures such as boiler waterwalls while still providing high-resolution thickness measurements. A theoretical basis for the technique will be presented thus demonstrating the quantitative nature of the technique. Further, results of laboratory experiments on flat Panel specimens with fabricated material loss regions will be presented.

  10. Nickel-chromium plasma spray coatings: A way to enhance degradation resistance of boiler tube steels in boiler environment

    Science.gov (United States)

    Sidhu, Buta Singh; Prakash, S.

    2006-03-01

    Boiler tube steels, namely low carbon steel ASTM-SA-210-Grades A1 (GrA1), 1Cr-0.5Mo steel ASTM-SA213-T-11 (T11), and 2.25Cr-1 Mo steel ASTM-SA213-T-22(T22), were used as substrate steels. Ni-22Cr-10Al-1Y powder was sprayed as a bond coat 150 μm thick before a 200 μm final coating of Ni-20Cr was applied Coatings were characterized prior to testing in the environment of a coal fire boiler. The uncoated and coated steels were inserted in the platen superheater zone of a coal fired boiler at around 755°C for 10 cycles, each 100 h. Coated steels showed lower degradation (erosion-corrosion) rate than uncoated steels showed. The lowest rate was observed in the case of Ni-20Cr coated T11 steel. Among the uncoated steels, the observed rate of degradation was the lowest for the T22 steel.

  11. An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests

    International Nuclear Information System (INIS)

    The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 g/m3), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level

  12. Analysis of Boiler Operational Variables Prior to Tube Leakage Fault by Artificial Intelligent System

    Directory of Open Access Journals (Sweden)

    Al-Kayiem Hussain H.

    2014-07-01

    Full Text Available Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes the rules of the Artificial Intelligent Systems to diagnosis the boiler variables prior to tube leakage occurrence. An Intelligent system based on Artificial Neural Network was designed and coded in MATLAB environment. The ANN was trained and validated using real site data acquired from coal fired power plant in Malaysia. Ninety three boiler operational variables were identified for the present investigation based on the plant operator experience. Various neural networks topology combinations were investigated. The results showed that the NN with two hidden layers performed better than one hidden layer using Levenberg-Maquardt training algorithm. Moreover, it was noticed that hyperbolic tangent function for input and output nodes performed better than other activation function types.

  13. Modelling of thermal behaviour of iron oxide layers on boiler tubes

    Science.gov (United States)

    Angelo, J. D.; Bennecer, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Slender boiler tubes are subject to localised swelling when they are expose to excessive heat. The latter is due to the formation of an oxide layer, which acts as an insulation barrier. This excessive heat can lead to microstructural changes in the material that would reduce the mechanical strength and would eventually lead to critical and catastrophic failure. Detecting such creep damage remains a formidable challenge for boiler operators. It involves a costly process of shutting down the plant, performing electromagnetic and ultrasonic non-destructive inspection, repairing or replacing damaged tubes and finally restarting the plant to resume its service. This research explores through a model developed using a finite element computer simulation platform the thermal behaviour of slender tubes under constant temperature exceeding 723 °K. Our simulation results demonstrate that hematite layers up to 15 μm thickness inside the tubes do not act as insulation. They clearly show the process of long term overheating on the outside of boiler tubes which in turn leads to initiation of flaws.

  14. Fouling propensity of high-phosphorus solid fuels: Predictive criteria and ash deposits characterisation of sunflower hulls with P/Ca-additives in a drop tube furnace

    OpenAIRE

    De Fusco, Lucio; Boucquey, A.; Blondeau, J.; Jeanmart, Hervé; Contino, F

    2016-01-01

    Fouling from the processing of residual biomass fuels in combustion applications is a major concern. This paper discusses the fouling behaviour of sunflower hulls with a high phosphorus (P) content by means of a broad fuel characterisation strategy including advanced predictive indices, the fuel selective leaching, multiple deposition tests in a Drop Tube Furnace (DTF) and deposits analysis with scanning electron microscopy–energy dispersive X-rays spectroscopy (SEM–EDS). First, we summarise ...

  15. Formation of corrosion products protecting surfaces of the boiler proper tubes from the combustion chamber

    Directory of Open Access Journals (Sweden)

    M. Pietrzyk

    2007-04-01

    Full Text Available Purpose: The aim of this paper is to determine how the oxidation product layer of the steel applied for the radiant tubes should increase if we are going to obtain the lowest possible corrosion losses.Design/methodology/approach: Boiler tubes, made of 13CrMo4-5 steel were subjected to tests. In the boiler BP-1150, the tubes ø 30 x 5 mm are joined by fins and form a membrane shield. According to the maps of tube wall thickness, in the zone of the highest heat load, sectors of the shield were sampled in the places where the tube wall thickness was equal or greater than 4.3 mm, i.e. the minimum calculation thickness, according to the specifications given by the boiler manufacturer. It means that the corrosive loss could be determined as small, in spite of a long operation time (more than 60,000 hours.Findings: The authors have determined structure and chemical and phase compositions of products and deposits forming in the radiant tubes in the regions of low corrosive losses after long-lasting operation (up to 60,000 hours. Then, they discussed a mechanism of formation of a compact layer protecting a steel surface against excessive oxidation under combustion gases.Practical implications: The layer on the tubes with small losses of wall thickness are characterized by the following properties: good compactness, very good adhesion to the metallic base, low amount of sulfur, especially in magnetite, no aggressive components at the phase boundary product – steel, small development of the phase boundary product-steel. Owing to those properties, even presence of sulfur in the products do not reduce their passivation qualities.Originality/value: Determination of the oxidation product layer of the steel applied for the radiant tubes.

  16. Production and testing of tubes for nuclear boiler steam generators

    International Nuclear Information System (INIS)

    Vallourec, second pipe manufacturer in Europe, has developed a workshop for the production of nuclear heat exchanger tubes in its Montbard plant. This workshop, by its special construction, production engineering and handling procedures, has attained nuclear standards and can produce U-bended tubes from diameter 12 to 25 mm with a maximum length of 36 meters. Its annual out-put is 1.500.000 meters. The final dimensions are obtained by a cold rolling procedure, followed by an outside and inside degreasing, a solution annealing in a controlled atmosphere continuous type furnace, a surface grinding and an inside surface conditionning. The non-destructive tests: eddy currents, ultrasonic tests and thickness mesures are recorded on a single tube basis. The curving and packing procedures have been specially developed for this production

  17. Chemical preventive remedies for steam generators fouling and tube support plate blockages

    International Nuclear Information System (INIS)

    In 2006, EDF identified on several PWR units broached hole blockage on the upper Steam Generator (SG) Tube Support Plates (TSP). TSP blockage often occurs in association with secondary fouling. The units with copper alloys materials are more affected due the applied low pH25oC (9.20) all volatile treatment (AVT). Carbon steels materials are less protected against flow accelerated corrosion (FAC) and therefore more corrosion products enter the SGs through the final feed water (FFW). In parallel of chemical cleanings to remove oxides deposits in SGs, EDF has defined a strategy to improve operating conditions. It mainly relies on the removal of copper alloys materials to implement a high pH AVT (9.60) as a preventive remedy. However for some plants, copper alloys removal is not straightforward due to environmental constraints. EDF must indeed manage the implementation of a biocide treatment needed in closed loop cooling systems (as copper has a bacteriostatic effect on micro-organisms) and more generally must comply with discharge authorisations for chemical conditioning reagents or biocide reagent. An alternative conditioning was tested on the Dampierre 4 unit in 2007/2008 during 6 months to assess if operating at 9.40 was acceptable regarding the impacts on copper alloys materials. The perspective would be to implement it in the units where no biocide treatment can be applied on a short term. In parallel, other chemical conditionings or additives will be implemented or tested. First of all, EDF will carry out a trial test with APA in order to assess its efficiency on the removal of oxides deposits through SG blowdown. On the other hand, AVT with high pH ethanolamine (ETA) will be implemented as an alternative of ammonia and morpholine conditioning on some chosen plants. Ethanolamine is selected as a way to mitigate FAC kinetics in two-phase flow areas (reheaters or moisture heater separator) or to limit liquid releases. This paper provides the lessons of the

  18. Some aspects of metallurgical assessment of boiler tubes-Basic principles and case studies

    International Nuclear Information System (INIS)

    Microstructural changes in boiler tubes during prolong operation at high temperature and pressure decrease load bearing capacity limiting their useful lives. When the load bearing capacity falls below a critical level depending on operating parameters and tube geometry, failure occurs. In order to avoid such failures mainly from the view point of economy and safety, this paper describes some basic principles behind remaining life assessment of service exposed components and also a few case studies related to failure of a reheater tube of 1.25Cr-0.5Mo steel, a carbon steel tube and final superheater tubes of 2.25Cr-1Mo steel and remaining creep life assessment of service exposed but unfailed platen superheater and reheater tubes of 2.25Cr-1Mo steel. Sticking of fly ash particles causing reduction in effective tube wall thickness is responsible for failure of reheater tubes. Decarburised metal containing intergranular cracks at the inner surface of the carbon steel tube exhibiting a brittle window fracture is an indicative of hydrogen embrittlement responsible for this failure. In contrast, final superheater tube showed that the failure took place due to short-term overheating. The influence of prolong service revealed that unfailed reheater tubes exhibit higher tensile properties than that of platen superheater tubes. In contrast both the tubes at 50 MPa meet the minimum creep rupture properties when compared with NRIM data. The remaining creep life of platen superheater tube as estimated at 50 MPa and 570 deg. C (1058 oF) is more than 10 years and that of reheater tube at 50 MPa and 580 deg. C (1076 oF) is 9 years

  19. 对某锅炉前后管板裂纹及爆管的事故分析与处理%Accident Analysis and Processing of Front and Back Tube Plate Cracking and Tube Explosion of a Boiler

    Institute of Scientific and Technical Information of China (English)

    藏秀君

    2014-01-01

    为了确保锅炉水处理检验工作质量,防止和减少由于结垢、腐蚀及蒸汽质量恶化而造成的事故,促进锅炉运行的安全、经济、节能、环保,本文对吉林某航空院校锅炉,在使用运行过程中没有建立建全水处理管理、岗位职责、运行操作、维护保养等制度及化验员检验指标不真实的状况进行分析。经笔者监督检测了锅炉给水的硬度YD=6.5mmol/L,溶解固形物5000mg/L,锅水碱度、悬浮物严重超标,及其它指标均不符合标准。该校锅炉化验员没有认真执行GB/T1576-2008《工业锅炉水质》标准要求,造成锅炉严重结垢、腐蚀爆管等事故,经分析,提出解决及处理方案。%In order to ensure the quality of water treatment of boiler inspection, prevent and reduce the accident due to fouling, corrosion and steam quality deterioration, and promote safety, economy, energy saving, environmental protection of boiler operation, this paper analyzes the situation of without building the complete water treatment management, job responsibilities, operation, and maintenance system and unreal lab technician test index in the operation process of the boiler in a Jilin aviation college. The supervision and inspection of the boiler feed water hardness, YD=6.5mmol/L, dissolved solids 5000mg/L, suspended boiler water alkalinity seriously exceeds the standard, and other indicators do not meet the standard. The school boiler technicians do not seriously implement the requirements of standard GB/T1576-2008"quality"of industrial boiler, which causes the accidents of serious scaling and corrosion of boiler tube explosion. After analysis, this paper proposes the solutions and the treatment schemes.

  20. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  1. EXPERIMENTAL INVESTIGATION OF NICKEL ALUMINIDE (NI3AL) NANOSTRUCTURED COATED ECONOMISER TUBE IN BOILER

    OpenAIRE

    * Gokulakannan A, Karuppasamy K

    2016-01-01

    Thermal Power Stations all over the world are facing the problem of boiler tube leakage frequently. The consequences of which affects the performance of power plant and huge amount of money loss. Hot corrosion and erosion are recognized as serious problems in coal based power generation plants in India. The maximum number of cause of failure in economizer unit is due to flue gas erosion. The corrosion resistant coatings used conventionally are having some limitations like degradation of the c...

  2. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  3. Creep properties of electric resistance welded boiler tubes under internal pressure

    International Nuclear Information System (INIS)

    Creep rupture tests on electric resistance welded (ERW) tubular specimens of carbon steel and 1% Cr-0.5% Mo steel and burst tests on thickness-deviated tubular specimens of carbon steel are described. Also, changes of structures and mechanical properties of 1% Cr-0.5% Mo steel tubes after exposure to 5500C for up to 10,000 hours under a tensile hoop stress of 108 MPa are described. The creep rupture properties of ERW boiler tubes were proved to be quite comparable to those of seamless tubes, and the slightest deviation in wall thickness was shown to affect the internal pressure rupture behavior. Changes of structures at welded portion of ERW 1% Cr-0.5% Mo steel tubes were as same as those of base metal

  4. Investigations of the Failure in Boilers Economizer Tubes Used in Power Plants

    Science.gov (United States)

    Moakhar, Roozbeh Siavash; Mehdipour, Mehrad; Ghorbani, Mohammad; Mohebali, Milad; Koohbor, Behrad

    2013-09-01

    In this study, failure of a high pressure economizer tube of a boiler used in gas-Mazut combined cycle power plants was studied. Failure analysis of the tube was accomplished by taking into account visual inspection, thickness measurement, and hardness testing as well as microstructural observations using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Optical microscopy images indicate that there is no phase transformation during service, and ferrite-pearlite remained. The results of XRD also revealed Iron sulfate (FeSO4) and Iron hydroxide sulfate (FeOH(SO4)) phases formed on the steel surface. A considerable amount of Sulfur was also detected on the outer surface of the tube by EDS analysis. Dew-point corrosion was found to be the principal reason for the failure of the examined tube while it has been left out-of-service.

  5. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  6. Design of an ion transport membrane reactor for application in fire tube boilers

    International Nuclear Information System (INIS)

    A design of an ITM (ion transport membranes) reactor is introduced in a two-pass fire tube boiler furnace to produce steam for power generation toward the ZEPP (zero emission power plant) applications. Oxygen separation, combustion and heat exchange occur in the first pass containing the multiple-units ITM reactor. In the second pass, heat exchange between the combustion gases and the surrounding water at 485 K (Psat = 20 bar) occurs mainly by convection. The emphasis is to extract sufficient oxygen for combustion while maintaining the reactor size as compact as possible. Based on a required power in the range of 5–8 MWe, the fuel and gases flow rates were calculated. Accordingly, the channel width was determined to maximize oxygen permeation flux and keep the viscous pressure drop within a safe range for fixed reactor length of 1.8 m. Three-dimensional simulations were conducted for both counter and co-current flow configurations. Counter-current flow configuration proved its suitability in fire tube boilers for steam generation over the co-current flow configuration. The resultant reactor consists of 12,500 ITM units with a height of 5 m, membrane surface area of 2700 m2 and a total volume of 45.45 m3. - Highlights: • A novel two-path fire tube boiler design is presented utilizing ITMs (ion transport membranes). • A new multi-unit ITM reactor design for boiler furnace substitution is presented. • Flow rates have been optimized for maximum oxygen flux and power generation. • Counter-current flow configuration is much more efficient than co-current flow. • Total number of ITM units was calculated to produce power of 5:8 MWe

  7. An advanced maintenance advisory and surveillance system for boiler tubes - AMASS

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, A.B. [ERA Technology Ltd, Leatherhead (United Kingdom)

    1998-12-31

    In a recently completed European collaborative project, the aim was to address the issue of boiler tube failures and thereby plant availability. The reduction of forced outages due to component failures and the reduction of planned outages for preventative maintenance can both contribute in this respect. It has been possible to assess tube degradation due to erosion, corrosion and overheating through the use of on-line techniques (thin layer activation, corrosion probes and novel temperature sensors) and off-line techniques (cold air velocity measurements, laser shearography and measurements of steam side oxide) which have been developed in the project. These techniques have been demonstrated on an oil fired boiler in Portugal and a coal fired unit in Spain. The output from the monitoring techniques has been integrated in the AMASS maintenance advisory and surveillance system. This is a computerised system comprising a spatial database with add-on tools designed to assess data from individual monitors and to provide the user with information on tube life utilisation rates and the probability of tube failure occurring. A description of the monitoring techniques will be described along with some of the results of demonstrating them in the field. Also an overview of the computerized system and the way in which it works will be given along with examples of how it can be used to assist with preventative maintenance and to help avoid unplanned outages. (orig.) 10 refs.

  8. Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, T.; Melick, T.; Morrison, D.

    1994-12-31

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

  9. ANSYS Fluent Modelling of an Underexpanded Supersonic Sootblower Jet Impinging into Recovery Boiler Tube Geometries

    Science.gov (United States)

    Doroudi, Shahed

    Sootblowers generate high pressure supersonic steam jets to control fireside deposition on heat transfer tubes of a kraft recovery boiler. Sootblowing is energy expensive, using 3-12% of the mill's total steam production. This motivates research on the dynamics of sootblower jet interaction with tubes and deposits, to optimize their use. A CFD investigation was performed using ANSYS Fluent 15.0 to model three-dimensional steady-state impingement of a Mach 2.5 mildly underexpanded (PR 1.2) air jet onto arrays of cylindrical tubes with and without fins, at various nozzle-to-tube centerline offsets. A free jet and four impingement cases for each of the economizer and generating bank geometries are compared to experimental visualizations. Pressure distributions on impinging surfaces suggest that the fins in the economizer produce a reduced but uniform sootblowing force. Pressure contours along the tubes (in the vertical direction) show a sharp decline one tube diameter away from the jet mid-plane.

  10. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  11. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, John P [ORNL

    2007-01-01

    Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  12. Temperature prediction method for superheater and reheater and reheater tubes of fossil power plant boiler during operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bum Shin; Song, Gee Wook; Yoo, Seong Yeon [Chungnam Nat' l Univ., Daejeon (Korea, Republic of)

    2012-05-15

    The superheater and reheater tubes of a heavy load fossil power plant boiler can be damaged by overheating, and therefore, the degree of overheating is assessed by measuring the oxide scale thickness inside the tube during outages. The tube temperature prediction from the oxide scale thickness measurement is necessarily accompanied by destructive tube sampling, and the result of tube temperature prediction cannot be expected to be accurate unless the selection of the overheated point is precise and the initial operation tube temperature has been obtained. In contrast, if the tube temperature is to be predicted analytically, considerable effort (to carry out the analysis of combustion, radiation, convection heat transfer, and turbulence fluid dynamics of the gas outside the tube) is required. In addition, in the case of analytical tube temperature prediction, load changes, variations in the fuel composition, and operation mode changes are hardly considered, thus impeding the continuous monitoring of the tube temperature. This paper proposes a method for the short term prediction of tube temperature; the method involves the use of boiler operation information and flow network analysis based tube heat flux. This method can help in high temperature damage monitoring when it is integrated with a practical tube damage assessment method such as the Larson Miller Parameter.

  13. The creep life of superheater and reheater tubes under varying pressure conditions in operational boilers

    International Nuclear Information System (INIS)

    The first of each manufacturer's 500 MW boilers supplied to the CEGB (Central Electricity Generating Board) have been subjected to an extensive programme of tests for performance optimization and safe operation. Around 250 thermocouples on superheater and reheater tubes have in each case been monitored as part of the exercise. The readings are corrected and used to compute creep rupture damage based on internationally agreed stress rupture data and a simple cumulative damage concept. Comparison of the design creep rupture life and the cumulative life consumed has in several applications been invaluable in influencing operating procedures and arranging tube modifications or replacements, so that loss of generation by creep rupture failure is minimized. (author)

  14. Stress and integrity analysis of steam superheater tubes of a high pressure boiler

    Directory of Open Access Journals (Sweden)

    Neves Daniel Leite Cypriano

    2004-01-01

    Full Text Available Sources that can lead to deterioration of steam superheater tubes of a high pressure boiler were studied by a stress analysis, focused on internal pressure and temperature experienced by the material at real operating conditions. Loss of flame control, internal deposits and unexpected peak charge are factors that generate loads above the design limit of tube materials, which can be subjected to strain, buckling, cracks and finally rupture in service. To evaluate integrity and dependability of these components, the microstructure of selected samples along the superheater was studied by optical microscopy. Associated with this analysis, dimensional inspection, nondestructive testing, hardness measurement and deposit examination were made to determine the resultant material condition after twenty three years of operation.

  15. Thermal shocks in solar boiler tubes and mechanical tolerance to heating velocity

    International Nuclear Information System (INIS)

    The boiler circular cross-section tubes are cooled by an internal flow and are subjected to a non uniform heat flux around their outer circumference that changes very rapidly with time. Thus thermal shocks can develop in the thickness of tube walls and may cause brittle fracture or fatigue damage. We solve the corresponding thermoelastic problem. The determination of temperature distribution through the wall thickness requires the solution of one-dimensional transient heat equation obtained by performing a Fourier expansion in the angular variable. For each harmonic, Galerkin's method with respect to the radial coordinate together with a finite difference scheme with respect to time permit to completely discretize the associated equation. (orig.)

  16. Oxidation study by Moessbauer and optic microscopy of steels from boiler tubes used in sugar industry

    International Nuclear Information System (INIS)

    Optic microscopy and Moessbauer spectroscopy were used to study the fail and the inner rusted surface of two boiler tubes used in the sugar industry, respectively. The studied tubes, of the type ASTM A 192, were found to have cracks. By optic microscopy it was observed that the failure begins in the inner surface with circumferential cracking. Also, inside and around the surface close to the cracks a rusted layer was detected. Powder from these layers was collected for Moessbauer spectroscopy analysis. By this method the presence of two or three types of Fe oxides such as wuestite, magnetite and hematite, was proved. These results permit to conclude that the failure mechanism was the thermal fatigue due to a hot work in an O2 -rich vapor atmosphere. The rusted products are stable at high temperatures

  17. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Steven; Rapp, Robert

    2014-08-31

    coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  18. Thermographic imaging of material loss in boiler water-wall tubing by application of scanning line source

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2000-06-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a 'spot check' approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  19. Remaining Life Analysis of Boiler Tubes on Behalf of Hoop Stresses Produced During Operation of Power Plant

    Directory of Open Access Journals (Sweden)

    Mohd. Zeeshan Gauri

    2014-07-01

    Full Text Available Boiler tube material plays an important role in efficient power generation from a fossil fuel power plant. In order to meet out the gap between fluids to increase heat available per unit mass flow of steam. Waste heat utilization phenomenon is a big challenge on fossil fuel power plants as after use of high grade coal in thermal power plants the efficiency of power plants is not at the level of required value. Clean and efficient power generation with economical aspects is the basic need of growing power generation plants to justify the quality of power and clean power generation. Life analysis technique to calculate remaining life of boiler tubes at critical zones of high temperature requires much attention and is an important hypothesis in research field. Generation of repetitive and fluctuating stress during flow of high temperature and pressure fluid require proper attention on the methodology to be used to calculate the efficiency of system and absorption efficiency of tube material. In this paper complete mathematical analysis of boiler tubes is conducted for calculation of remaining life of boiler tubes, Hoop stress values are calculated and used with mathematical tool to calculate the efficiency. Hoop stress based calculation of efficiency is more reliable and may give more accurate and practical aspects based results.

  20. Corrosion/erosion detection of boiler tubes utilizing pulsed infrared imaging

    Science.gov (United States)

    Bales, Maurice J.; Bishop, Chip C.

    1995-05-01

    This paper discusses a new technique for locating and detecting wall thickness reduction in boiler tubes caused by erosion/corrosion. Traditional means for this type of defect detection utilizes ultrasonics (UT) to perform a point by point measurement at given intervals of the tube length, which requires extensive and costly shutdown or `outage' time to complete the inspection, and has led to thin areas going undetected simply because they were located in between the sampling points. Pulsed infrared imaging (PII) can provide nearly 100% inspection of the tubes in a fraction of the time needed for UT. The IR system and heat source used in this study do not require any special access or fixed scaffolding, and can be remotely operated from a distance of up to 100 feet. This technique has been tried experimentally in a laboratory environment and verified in an actual field application. Since PII is a non-contact technique, considerable time and cost savings should be realized as well as the ability to predict failures rather than repairing them once they have occurred.

  1. Study of Microstructure Degradation of Boiler Tubes Due To Creep for Remaining Life Analysis

    Directory of Open Access Journals (Sweden)

    Kavita Sankhala

    2014-07-01

    Full Text Available In the current scenario of power shortage in India, the main objective is to ensure availability of power plant and increasing its reliability. During assessment ,testing and inspection a simple question has to be asked again and again‖ How long the particular power plants can be operated safely and cost-effectively with satisfying increased requirements and operational availability with reduced pollutant emissions, even after their designed life. So to answer this important question regarding the operational capability of the existing plant the remaining life analysis (RLA has to be done. The condition of the plant equipments can be assessed only by way of a RLA methodology. On the basis of RLA proper decision can be made about the plants safety and availability. There are many methods to carry out the RLA of the critical components out of which ―microstructure study‖ is a method. In this paper we have tried to outline the RLA procedures and review the various damage mechanisms based on microstructure study. It is also presents the microstructure changes and properties of 106720 service hour exposed boiler tube in a 120 MW boiler of a thermal power plant.

  2. Microstructural degradation of boiler tube steels under long term exposure to high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, J.; Auerkari, P. [VTT Manufacturing Technology, Espoo (Finland)

    1996-12-31

    Thermal microstructural degradation was investigated by isothermal annealing of samples from boiler tube steels St 35.8, 15 Mo 3, 13 CrMo 44, 10 CrMo 9 10 and X20 CrMoV 12 1 in the temperature range 600-780 deg C for up to 2 000 h. Optical and scanning electron microscopy and hardness testing were used for characterising the micro structural changes and their time-temperature dependence. The results suggest a simple and consistent time-temperature dependence for all investigated materials, expected to apply also to long term service beyond the annealing time range of the present work. This would allow assessment of the in-service thermal exposure from the observed microstructure. A collection of micro graphs has been prepared for this purpose, to aid in classifying and evaluating the observed microstructural state in terms of isothermal exposure to high temperature. (orig.) (6 refs.)

  3. A study on the development of fouling and plugging margin evaluation methods for shell-and-tube heat exchangers

    International Nuclear Information System (INIS)

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits increases and thermal performance decreases. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. The heat exchangers of nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions based on the ASME OM-S/G-Part 2 as a means of heat exchanger management. It is hard to estimate the heat performance trend and to establish the future management plan. This paper describes the fouling evaluation method which can evaluate the thermal performance for heat exchangers and estimate the future fouling variations and the plugging margin evaluation method which can reflect the current fouling level developed in this study. To develop the fouling and plugging margin evaluation methods for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the two evaluation methods, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  4. Application of a new thermoelastic thick shell theory to solar boiler tubes

    International Nuclear Information System (INIS)

    The classical thin shell theory relies on Kirchhoff's hypotheses which notably lead one to neglect normal stresses in the 'thickness direction', shearing stresses on surfaces parallel to the mean surface, warping and extension of fibers normal to the same surface. As is well known, the thermoelastic constitutive equations contradict these assumptions, which are no longer acceptable when the shell is not 'very thin' and when the thermal gradient through the thickness becomes noticeable. The thick shell theory proposed here was initially meant to describe the behavior of solar boiler tubes, but it is also applicable to piping elements encountered in most energy conversion systems, such as fossil-fired power plants, nuclear reactors, etc. For the sake of simplicity, the presentation is restricted to the study of a long tube subjected to an intense heat flux on one side; this tube carries a working fluid and the temperature distribution in the metal is not axisymmetric. By generalizing the asymptotic expansion theory of Reiss to the thermoelastic case, it is shown that higher order theory immediately following the classical thin shell approach should be based upon a displacement field whose radial component is a second order polynomial in the thickness coordinate z, whereas the tangential component is a third order polynomial in the same coordinate; the coefficients of these two polynomials are the generalized displacements of the theory. Then a 'generalized' Kirchhoff hypothesis is used, which consists in requiring the shearing stresses or deformations to vanish on the inner and outer tube surfaces only. This allows one to express two of the generalized displacements in terms of the others. The so-constructed displacement distribution is sufficiently general to account for warping and extension of fibers normal to the mean surface as well as shearing on surfaces z = constant; these effects are usually neglected. (orig.)

  5. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  6. Needs-driven soot blowing in waste boilers; Behovsstyrd sotblaasning i avfallspannor

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Davidsson, Kent

    2009-09-15

    The increased use of alternative and waste fuels has resulted in an increased number of plants having trouble with fouling and corrosion on boiler banks and superheater tubes. Frequent sootblowing will keep the surfaces relatively clean, but on the other hand, it may erode the tube material. An intelligent sootblowing system will initiate sootblowings on individual tube banks only when needed for that specific tube bank. Such a system depends on the detection of the degree of fouling of specific tube banks. In this project, the conditions for an intelligent sootblowing system at the waste fired boilers in Boraas are investigated from measured flows, temperatures and pressure drop. New thermocouples at the water tubes between the banks of the economiser have been installed and connected to the control and monitoring system of the boiler. From measured temperatures and flows, heat transfer coefficients are calculated and used to detect the fouling on the heat exchangers. A pressure transducer has been altered to measure the pressure over the boiler bank. At the superheaters, the measurements show a significant improvement of the heat transfer coefficients immediately following sootblowing. Thereafter, the heat transfer coefficients decline more slowly, almost linearly. The measurements indicate that the fouling rate is almost same for the two superheaters and do not motivate individual sootblowing sequences of the two superheaters. The pressure drop over the boiler bank was found too insensitive a measure to be used as an indicator for an intelligent sootblowing system, at least in this specific boiler. In the economiser, the decline of calculated heat transfer coefficients showed a relative rate of fouling on individual tube banks. The results show that the fouling rate is significantly higher in the top tube banks, which comes first in the direction of the flue gas, compared to downstream banks. Experiments by sootblowing the top tube bank more frequently than the

  7. Remaining Life Analysis of Boiler Tubes on Behalf of Hoop Stresses Produced During Operation of Power Plant

    OpenAIRE

    Mohd. Zeeshan Gauri; Kavita Sankhala

    2014-01-01

    Boiler tube material plays an important role in efficient power generation from a fossil fuel power plant. In order to meet out the gap between fluids to increase heat available per unit mass flow of steam. Waste heat utilization phenomenon is a big challenge on fossil fuel power plants as after use of high grade coal in thermal power plants the efficiency of power plants is not at the level of required value. Clean and efficient power generation with economical aspects is the...

  8. High-Temperature Corrosion of Protective Coatings for Boiler Tubes in Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    XU Lianyong; JING Hongyang; HUO Lixing

    2005-01-01

    High-temperature corrosion is a serious problem for the water-wall tubes of boilers used in thermal power plants. Oxidation, sulfidation and molten salt corrosion are main corrosion ways.Thereinto, the most severe corrosion occurs in molten salt corrosion environment. Materials rich in oxides formers, such as chromium and aluminum, are needed to resist corrosion in high-temperature and corrosive environment, but processability of such bulk alloys is very limited. High velocity electric arc spraying (HVAS) technology is adopted to produce coatings with high corrosion resistance. By comparison, NiCr (Ni-45Cr-4Ti) is recommended as a promising alloy coating for the water-wall tubes, which can even resist molten salt corrosion attack. In the study of corrosion mechanism, the modern material analysis methods, such as scanning electron microscopy (SEM), X-ray diffractometry (XRD) and energy dispersive spectrometry (EDS), are used. It is found that the corrosion resistances of NiCr and FeCrAI coatings are much better than that of 20g steel, that the NiCr coatings have the best anti-corrosion properties, and that the NiCr coatings have slightly lower pores than FeCrAI coatings.It is testified that corrosion resistance of coatings is mainly determined by chromium content, and the microstructure of a coating is as important as the chemical composition of the material. In addition, the fracture mechanisms of coatings in the cycle of heating and cooling are put forward. The difference of the thermal physical properties between coatings and base metals results in the thermal stress inside the coatings. Consequently, the coatings spall from the base metal.

  9. Causes and solutions for cracking of coextruded and weld overlay floor tubes in black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Taljat, B.; Wang, X.L. [and others

    1998-09-01

    Cracking of coextruded, black liquor recovery boiler floor tubes is both a safety and an economic issue to mill operators. In an effort to determine the cause of the cracking and to identify a solution, extensive studies, described in this and three accompanying papers, are being conducted. In this paper, results of studies to characterize both the cracking and the chemical and thermal environment are reported. Based on the results described in this series of papers, a possible mechanism is presented and means to lessen the likelihood of cracking or to totally avoid cracking of floor tubes are offered.

  10. Erosion in steam general tubes in boiler and ID fans in coal fired FBC power plant

    International Nuclear Information System (INIS)

    The FBC (Fluidized Bed Combustion) is a technique used to make solid particles behave like fluid and grow very fast for the power generation using low grade coal. Due to its merits, first time this technology has been introduced in Pakistan by installing 3 X 50 MW power plants at Khanote. Fluidized beds have long been used for the combustion of low-quality, difficult fuels and have become a rapidly developing technology for the clean burning of coal. The FBC Power Plant at Khanote has been facing operational and technical problems, resulting frequently shut down of generation units, consequently facing heavy financial losses. This study reveals that due to the presence of high percentage of silica in the lime stone that are further distributed in the bottom ash, fly ash and re-injection material, the generation tubes in the boiler and wings/blades of ID (Induced Draft) fans were eroded. In addition, filter bags were also ruptured; resulting frequent shut down of power plant units. (author)

  11. Erosion in Steam General Tubes in Boiler and ID Fans in Coal Fired FBC Power Plant

    Directory of Open Access Journals (Sweden)

    Shaheen Aziz

    2012-01-01

    Full Text Available The FBC (Fluidized Bed Combustion is a technique used to make solid particles behave like fluid and grow very fast for the power generation using low grade coal. Due to its merits, first time this technology has been introduced in Pakistan by installing 3x50 MW power plants at Khanote. Fluidized beds have long been used for the combustion of low-quality, difficult fuels and have become a rapidly developing technology for the clean burning of coal. The FBC Power Plant at Khanote has been facing operational and technical problems, resulting frequently shut down of generation units, consequently facing heavy financial losses. This study reveals that due to the presence of high percentage of silica in the lime stone that are further distributed in the bottom ash, fly ash and re-injection material, the generation tubes in the boiler and wings/blades of ID (Induced Draft fans were eroded. In addition, filter bags were also ruptured; resulting frequent shut down of power plant units.

  12. The Boiler Tube Wall Thickness Quantitative Evaluation Fusing the Magnetic and Ultrasonic Technique

    Institute of Scientific and Technical Information of China (English)

    SONG Xiaochun; HUANG Songling; ZHAO Daxing

    2006-01-01

    Wall thickness is always a key index for boiler tube inspection in power plant, in order to improve the inspection efficiency and accuracy, a new method fusing the magnetic and ultrasonic technique was proposed. The magnetic technique was used to do full inspection and locate the flaws, and the ultrasonic was employed to implement further quantitative inspection accurately. After comparing the precision of the polynomial, exponential and logarithmic function, the polynomial model was selected to fit the relations between the wall thickness and the peak value of magnetic signals, and the data measured by ultrasonic thickness meter was used to calibrate the model parameters online, the defect depth can be sized quickly. The experimental results demonstrate that the model used in this system has better accuracy than the statistics relation model clearly, and it is also suitable for defect evaluation real-time. Moreover, it is unnecessary to have much more experimental data for the curve fitting technology, so it has better practicability than the other methods.

  13. Diagnosis of Heat Exchanger Tube Failure in Fossil Fuel Boilers Through Estimation of Steady State Operating Conditions

    International Nuclear Information System (INIS)

    Estimation of operating conditions for fossil fuel boiler heat exchangers is often required due to changes in working conditions, design modifications and especially for monitoring performance and failure diagnosis. Regular heat exchangers in fossil fuel boilers are composed of tube banks through which water or steam flow, while hot combustion (flue) gases flow outside the tubes. This work presents a top-down approach to operating conditions estimation based on field measurements. An example for a 350 MW unit superheater is thoroughly discussed. Integral calculations based on measurements for all unit heat exchangers (reheaters, superheaters) were performed first. Based on these calculations a scheme of integral conservation equations (lumped parameter) was then formulated at the single tube level. Steady state temperatures of superheater tube walls were obtained as a main output, and were compared to the maximum allowable operating temperatures of the tubes material. A combined lumped parameter - CFD (Computational Fluid Dynamics, FLUENT code) approach constitutes an efficient tool in certain cases. A brief report of such a case is given for another unit superheater. We conclude that steady state evaluations based on both integral and detailed simulations are a valuable monitoring and diagnosis tool for the power generation industry

  14. Thermal resistance of steam-generator tube deposits under single-phase forced convection and flow-boiling heat transfer

    International Nuclear Information System (INIS)

    Degradation of the thermal performance of steam generators(SGs) is a serious problem in nuclear power stations throughout the world (Lovett and Dow, 1991). In pressurized-heavy-water reactors (PWHRs), the reduced thermal performance of the SGs is manifested by an increase of the primary coolant reactor inlet header temperature (RIHT). In pressurized-light-water reactors(PWRs), which operate with fixed primary coolant temperature, the loss of thermal performance is manifested by a reduction of the steam pressure. Degradation mechanisms that may contribute to the loss of SG thermal performance include: fouling of the boiler tube inner surfaces (primary-side fouling); fouling of the boiler tube outer surfaces (secondary-side fouling); divider and thermal plate leakage that causes the coolant to bypass either the SG or the integral preheater and fouling of the steam separators. The relative contribution of these various degradation mechanisms to the overall loss of thermal performance is still under investigation. Soulard et al. (1990) examined the relative contributions of tube bundle fouling, divider plate leakage, and thermal plate leakage to the increase in RIHT at the Point Lepreau Generating Station, and concluded that tube fouling contributes to a significant fraction of the loss of thermal performance. Corrosion products deposit on both the inner and outer surfaces of the boiler tubes. Thus a complete understanding of the reasons fro the loss of thermal performance and the development of strategies to mitigate this loss requires a knowledge of the thermal resistance of tube deposits under primary and secondary side heat transfer conditions. We present here the results of measurements of the thermal resistance of primary-side and secondary-side boiler tube deposits performed under single-phase forced convection and flow-boiling conditions, respectively. The results are discussed in terms of the physical properties of the deposit and the mode of heat transfer

  15. Weldability of high strength Ni-based alloy USC141 as boiler tube for 700 C USC plant

    Energy Technology Data Exchange (ETDEWEB)

    Bao, G.; Sato, T. [Babcock-Hitachi K.K. Kure-shi, Hiroshima-ken (Japan); Imano, S.; Sato, J. [Hitachi, Ltd. Hitachi-shi, Ibaraki-ken (Japan); Uehara, T.; Toji, A. [Hitachi Metals, Ltd. Yasugi-shi, Shimane-ken (Japan)

    2007-07-01

    Recently the increase of steam temperature and pressure of power plant is required to enhance the thermal efficiency and reduce the CO{sub 2} emission. For the application to advanced USC (Ultra Super Critical) boiler with steam temperature around 700 C, the application of Ni-based alloy such as Alloy617 will be necessary. A new Ni-based alloy USC141 (20Cr-10Mo-2Ti-Al-bal.Ni) with excellent creep rupture strength and low thermal expansion has been developed by Hitachi Ltd. and Hitachi Metals Ltd. as the candidate material for 700 C USC turbine components. In present work, to investigate the possibility for boiler tube application of USC141, its weldability and high temperature strength properties were experimentally examined. The tested material as solution-treated condition shows higher creep rupture strength than that of Alloy617. GTAW (Gas Tungsten Arc Welding) trials of tubular specimen using NIMONIC263 filler wire were conducted successfully and the creep rupture strength of weld joint was as similar as that of parent metal. Therefore it is considered that USC141 has a promising potential as boiler tube candidate for 700 C class USC power plant. (orig.)

  16. Thermal design of horizontal tube boilers. Numerical and experimental investigation; Modelisation thermique de bouilleurs a tubes horizontaux. Etude numerique et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R.

    1999-11-26

    This work concerns the thermal design of kettle reboilers. Current methods are highly inaccurate, regarded to the correlations for external heat transfer coefficient at one tube scale, as well as to two-phase flow modelling at boiler scale. The aim of this work is to improve these thermal design methods. It contains an experimental investigation with typical operating conditions of such equipment: an hydrocarbon (n-pentane) with low mass flux. This investigation has lead to characterize the local flow pattern through void fraction measurements and, from this, to develop correlations for void fraction, pressure drop and heat transfer coefficient. The approach is original, since the developed correlations are based on the liquid velocity at minimum cross section area between tubes, as variable characterizing the hydrodynamic effects on pressure drop and heat transfer coefficient. These correlations are shown to give much better results than those suggested up to now in the literature, which are empirical transpositions from methods developed for inside tube flows. Furthermore, the numerical code MC3D has been applied using the correlations developed in this work, leading to a modeling of the two-phase flow in the boiler, which is a significant progress compared to current simplified methods. (author)

  17. Development of 18Cr-9Ni-W-Nb-V-N Austenitic Stainless Steel Tube for Thermal Power Boilers

    Science.gov (United States)

    Ishitsuka, Tetsuo; Mimura, Hiroyuki

    An 18Cr-9Ni-W-Nb-V-N austenitic stainless steel tube for thermal power boilers has been newly developed. The high temperature mechanical properties and corrosion resistance of the steel were investigated. The creep rupture strength of the developed steel is about 1.5 times as high as that of SUS347HTB, and is almost the same as that of Ka-SUS310J2TB at 650°C. This excellent creep strength of the steel is mainly due to solid solution strengthening by tungsten and nitrogen, and precipitation strengthening by nitrides of niobium and vanadium. The carbon content of the steel is reduced to 0.03% to improve intergranular corrosion resistance. The steam oxidation resistance and the high temperature corrosion resistance of the tube are almost the same as those of SUS347HTB. Weldability of the developed steel is superior to that of SUS304HTB and SUS310TB. Thus the developed steel is suitable for use as a material for superheater and reheater tubes of thermal power boilers.

  18. Use of Radioactive Tracers for Measuring the Density of the Emulsion (Water-Steam) Flowing in the Water-Wall Tubes of Industrial Boilers

    International Nuclear Information System (INIS)

    Introduction of a radioactive nuclide into the water offers a rapid procedure for diagnosing the functioning and properties of industrial boilers without altering the phenomena to be measured. The choice of radionuclide must satisfy strict criteria; after a large number of trials, a mixture of 186Re and 188Re obtained by neutron irradiation of natural rhenium was chosen. The background noise is measured at the time of the trials with the help of a system of three tubes placed in front of the boiler, or of one tube placed in an inspection chamber. The density of the emuision (water- steam) can be measured with an accuracy of between 10% and 15%. Trials were carried out on a boiler with a capacity of 3 tons of water operating under a pressure of 10kg/cm2 at 180°C. The emulsion density in several water-wall tubes was compared for different vapour flows, the density being measured along the whole length of the tube, which gives information on the thermal exchanges between the furnace and this tube. Trials will very soon be carried out on a power boiler belonging to Electricité de France (Creil Power Station). The personnel working around the boiler run no risk of irradiation since the quantities of radionuclide (10 to 25 μCi/litre of water) are small. The complete calculation of the isodose curves, verified by dosimetric measurements, shows that the dose 20 cm outside the boiler is below 90 mrads after 210 h, which is 6 or 7 times lower than the maximum tolerable dose. The dose is even smaller in the case of a large boiler. (author)

  19. Experimental and numerical investigation of gas side particulate fouling onto heat exchanger tubes; Etude des differents mecanismes de depot conduisant a l'encrassement particulaire en phase gazeuse des tubes d'echangeurs de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Bailer, F.

    1998-11-06

    This works deals with gas side particulate fouling onto heat exchanger tubes. An experimental and numerical investigation was carried out. By means of a new testing loop designed for this study the deposit kinetics were obtained in dust-controlled conditions at the beginning of the fouling process, Experimental results pointed out the existence of various transport regimes: for sub-micron particles, convective diffusion augmented by thermophoresis in the presence of a temperature gradient governs the particle deposition: inertial impaction controls the super-micron particles deposition, in the intermediate granulometric range, combined action of particle inertia and thermophoresis must be considered. Moreover, measurements on an other testing loop using a more concentrated aerosol allowed us to point out the modification of the mechanisms with time and the influence of the deposit shape. A numerical model predicting the particle deposition, based on the TRIO software and an Eulerian-Lagrangian approach, was developed and validated against experimental results from the literature and from our study. Numerical approach gave us an accurate understanding of the phenomena by means of local parameters computations. In this way, the different mechanisms which control particulate deposition onto heat exchangers tubes were identified and modeled, especially before the onset of the inertial impaction. (authors)

  20. Determining the parameters at which burnout occurs in the waterwall tubes of drum boilers

    Energy Technology Data Exchange (ETDEWEB)

    I.I. Belyakov [Central Boiler-Turbine Institute Research and Production Association (OAO TsKTI), St. Petersburg (Russian Federation)

    2007-09-15

    Parameters at which burnout occurs are presented that were obtained by measuring the temperature and heat fluxes during experiments carried out directly on a boiler. The results of a comparison between the obtained values and the data of investigations on a test facility are given.

  1. The impact of biomass co-combustion on the erosion of boiler convection surfaces

    International Nuclear Information System (INIS)

    Highlights: • The lower ash content of biomass, the more quickly ash settles on boiler tubes. • The higher share of biomass, the more quickly ash settles on boiler tubes. • Operation of jet blowers involves intense fly ash erosive wear of heating surfaces • Application of acoustic or microblasting technology is advantageous. - Abstract: The erosive wear of boiler tubes caused by fly ash in coal combustion flue gases has been studied for a long time. However, there are practically no data concerning the intensity of the erosion of the heating surfaces of boilers fired with both coal and biomass, and thus it is difficult to design these particular areas appropriately. The essential problem is the tendency of the fly ash from biomass combustion to produce ash deposits on the boiler convection surfaces and to cause slagging on the radiant surfaces. In such cases, both an increase in the deposits and a shortening of the time over which the ash fouling accumulates to the maximum level are observed. Consequently, if the boiler is fitted with steam or air blowers, they are started more frequently; if not, they have to be installed. The research conducted here proves that the situation leads to serious damage to the tubes, which results from the erosion caused by ash particles carried by the blowing agent jet. The authors of this paper attempt to make a quantitative evaluation of the impact of co-firing two types of biomass (coniferous wood chips and willow wood chips) on both types of tube erosion

  2. Industrial mastering the use of tube fining by high-frequency welding for gasproof boilers

    International Nuclear Information System (INIS)

    Results of introduction of 20 and 12Kh1MF steel tube fining by high-frequency welding are presented. Heat treatment effect on properties of joints is studied, mechanical tests, metallographical and electron-microscopic investigations are carried out. It is shown that weld method of fins to tubes with the help of high-frequency currents is characterized by universality that permits to produce fined tubes of practically any diameter with fins of any width, control of smooth tubes before the fins welding to them being provided. Studies of properties of fined tubes has shown high quality of welded joints carried out by high-frequency current heating

  3. Steam generator and preheater tube ID fouling and the impact on reactor inlet header temperature and eddy current inspections

    International Nuclear Information System (INIS)

    Materials selection is an important consideration in new build and refurbishment of Heavy Water Reactors (HWR). This paper will focus on the impacts of the deposit of magnetite on the tube ID of steam generators and preheater. Bruce Power OPEX is being shared to illustrate the importance of materials selection. The deposit of magnetite on the tube ID of steam generators (SG) and preheater (PH) has two significant impacts that will be presented. Firstly, the degradation in SG and PH thermal performance causes a rise in the reactor inlet header temperature (RIHT). This rising trend continues unabated as long as deposits on the tube ID continues. If not managed this may result in loss of production due to the RIHT limits being reached. Mitigating actions such as tube ID cleaning is only a temporary solution as it does not stop the root cause which is feeder flow accelerated corrosion (FAC). Secondly, deposit of magnetite on the tube ID of steam generators (SG) and preheater (PH) has an impact on tube inspections as required by CSA N285.4. There are two impacts on SG and PH inspections. ID deposits reduces the clearance for eddy current probes in the tubes and make it more difficult to acquire inspection data. Additionally, tube ID deposits can reduce the effectiveness to detect and size flaws in the SG and PH tubes. Both issues make eddy current inspection a challenge for the utilities. These impacts affect the operation and inspection and maintenance of CANDU nuclear power plants at Bruce Power. Where possible these issues should be addressed in any future new build or refurbishment of HWR power plants. (author)

  4. Analysis of High-temperature Boiler Tube Failure for T91 &T22

    Institute of Scientific and Technical Information of China (English)

    SHU Guo-gang; DING Hui; ZHAO Yan-fen; XUE Fei; ZHAO Ling-song; ZHANG Lu; LIU Jiang-nan; WANG Zheng-pin

    2004-01-01

    The tube failures took place frequently in the superheater of 2x600MW units in a power plant. According to the condition of tube failures, the mechanical property and microstructure on running and failed tubes were tested and evaluated. The chemical composition and structure phase of inner oxide scale and deposit inside of the tubes were examined.The fractured surfaces of failed tube samples were observed. And the material examination was performed for original tube steels SA213-T91 and SA213-T22. The results show that raw materials of SA213-T91 and SA213-T22 tube in superheater are qualified. Besides, the characteristics of the SA213-T91 and SA213-T22 tube failure are typical short-term overheated rupture. The rupture temperature is located between two phase Ac1 ~ Ac3 of the two steels. It is recognized that putting SA213-T22 tubes in operation under the condition of long-term over heating causes the rupture of SA213-T91 and SA213-T22.

  5. Thermohydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    In nuclear reactors of the Magnox or advanced gas Cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accident conditions using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear Electric. The tests were carried out on the Thermal Hydraulics Experimental Research Assembly (THERA) loop at Manchester University. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 K, 50 K, and 100 K was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. Pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s. (author)

  6. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  7. 锅炉小径管焊缝超声波探伤%Boiler Tube Weld Ultrasonic Inspection Trails

    Institute of Scientific and Technical Information of China (English)

    侯耀民

    2014-01-01

    The main trail for boiler tube weld ultrasonic testing to start discussion outlines the instruments and test blocks used in testing and systematic analysis of the test methods and T91 trails pipe weld ultrasonic inspection process, in order to provide reference for detection work .%主要针对锅炉小径管焊缝超声波探伤展开探讨,简述了探伤所用的仪器和试块,并系统分析了检验方法和 T91小径管焊缝超声探伤过程,以期能为检测工作提供参考和借鉴。

  8. Pressure tests to assess the significance of defects in boiler and superheater tubing

    International Nuclear Information System (INIS)

    Internal pressure tests on 9 per cent Cr-1 per cent Mo steel tubing containing artificial defects demonstrated that the resultant loss of strength was less than a simple calculation based on the reduced tube thickness would suggest. Bursting tests on tubes containing longitudinal defects of varying length, depth and acuity showed notch strengthening at ambient temperature and at 5500C. A flow stress concept developed for simple bursting tests was shown to apply to creep conditions at 5500C. Results of creep and short-term bursting tests show that the length as well as the depth of the defect is an important factor affecting the life of bursting strength of the tubes. Defects less than 10 per cent of the tube thickness were found to have an insignificant effect. (author)

  9. A thin-lip rupture of carbon steel superheater boiler tube

    International Nuclear Information System (INIS)

    A ruptured A 42 medium carbon steel tube was collected by the engineering department in one of our steam power stations. Inspection of ruptured tube revealed a thin - lip fracture with brownish thin layer of oxide film on inner tube surfaces. There was no evidence of pitting, the outer surfaces of the tube exhibited a general oxidized conditions. A micro section taken near the fracture surface consists of ferrite and martensite, the amount of martensite decreased as we away from the fracture surface. Presence of martensite phase in the microstructure indicates that the tube material has been overheated. An erosion corrosion mechanism in conjunction with overheated. An erosion corrosion mechanism in conjunction with overheating resulted in strength deterioration with consequent premature failure. 4 fig., 1 tab

  10. Specific features of flash welding of thin-walled boiler tubes

    International Nuclear Information System (INIS)

    The possibility of flash welding of pipes from Kh18N12T steel with walls less than 4 mm thick was investigated. The structure of welds was studied with the aid of X-ray and electron microscopy methods. The results of the work was the development of a procedure for flash welding boiler pipes 32 mm in diameter and with 2 mm thick walls. There is observed a partial burning out of titanium in the welded joint, the content of other alloying elements remaining unchanged. The contact resistance of the cross section being welded is usable for a programmed control of the welding process

  11. Reproducibility of results of ultrasonic testing of welded joints of boiler heating surface tubes

    International Nuclear Information System (INIS)

    Reproducibility of the results of the ultrasonic inspection of welded joints of the heating surfaces of boilers depends substantially on the extent of differences between the frequency characteristics of selectors of the same type and on the spectrum of a probing signal. To assure the reproducibility and reliability of the results of the ultrasonic testing of the above joints it is necessary to ascertain the probing signal spectrum as the main parameter of the ultrasonic defectoscopy, and to standardize spectral characteristics of the selectors. The checking of the latter is carried out by means of a spectrum analyzer

  12. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  13. Substantiation of causes for damage of water-wall tubes of an external salt compartment of a high-pressure boiler

    Science.gov (United States)

    Fedorov, A. I.

    2014-10-01

    The damageability for water-wall tubes of an external salt compartment of a TPE-208 boiler is analyzed. The general cause for tube damage is the intensive underslime corrosion of the inner surface, which is caused by a local increase in the salt concentration in boiler water. The experiment-calculated method showed that continuous bleeding from an external cyclone being the first in water downstream causes a substantial increase in the concentration of salts (more than by a factor of three) and scale-forming agents within a contour of the loop of a distant cyclone in comparison with the variant of bleeding from a loop being the second in water downstream.

  14. Combustion monitoring of a water tube boiler using a discriminant radial basis network.

    Science.gov (United States)

    Sujatha, K; Pappa, N

    2011-01-01

    This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented. PMID:20864104

  15. A Numerical Model Prediction for Boiling Multi Channel Flow Rate Distribution and Application in 600MW Supercritical Variable-Pressure Once-Through Boiler with Vertical Tube Coils

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Flow rate distribution is important in a multi channel system when the flow is heated non-uniformly,This paper describes a steady state approach for obtaining the flow distribution among various tubes of complex multi channel system,Based on the Present approach,a program has been developed which is directly applied in thermal hydraulic design and investigation of 600MW supercritical variable-pressure once through boiler.

  16. Evaluation of Thermocyclic Oxidation Behavior of HVOF-Sprayed NiCrFeSiB Coatings on Boiler Tube Steels

    Science.gov (United States)

    Ramesh, M. R.; Prakash, S.; Nath, S. K.; Sapra, Pawan Kumar; Krishnamurthy, N.

    2011-09-01

    High velocity oxy-fuel (HVOF) spray process has grown into a well-accepted industrial technology for obtaining coatings resistant to significant surface degradation processes. In the present study, HVOF process was used to deposit Ni-based hardfacing NiCrFeSiB alloy powder on kinds of boiler tube steels designated as SA210 grade-A1, SA213-T11, and SA213-T22. The microstructures and several properties of the as-sprayed coatings have been investigated. Thermocyclic oxidation studies were performed in static air at 900 °C. NiCrFeSiB-coated steels showed slow oxidation kinetics and considerably lower weight gains than that of uncoated steels. The superior performance of NiCrFeSiB coatings can be attributed to continuous and protective thin oxide scale of amorphous SiO2 and Cr2O3 formed on the surface of the oxidized coatings. The combined technique of x-ray diffraction, scanning electron microscopy, energy dispersive x-ray analysis, and electron probe microanalysis are used to characterize reaction products of the oxidized surfaces.

  17. Hot Corrosion Studies of HVOF-Sprayed Coating on T-91 Boiler Tube Steel at Different Operating Temperatures

    Science.gov (United States)

    Bhatia, Rakesh; Singh, Hazoor; Sidhu, Buta Singh

    2013-11-01

    The aim of the present work is to investigate the usefulness of high velocity oxy fuel-sprayed 75% Cr3C2-25% (Ni-20Cr) coating to control hot corrosion of T-91 boiler tube steel at different operating temperatures viz 550, 700, and 850 °C. The deposited coatings on the substrates exhibit nearly uniform, adherent and dense microstructure with porosity less than 2%. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of uncoated and coated samples. The corrosion products of the coating on the substrate are analyzed by using XRD, SEM, and FE-SEM/EDAX to reveal their microstructural and compositional features for the corrosion mechanisms. It is found that the coated specimens have shown minimum weight gain at all the operating temperatures when compared with uncoated T-91 samples. Hence, coating is effective in decreasing the corrosion rate in the given molten salt environment. Oxides and spinels of nickel-chromium may be the reason for successful resistance against hot corrosion.

  18. Steam generator chemical cleaning demonstration test No. 1 in a pot boiler

    International Nuclear Information System (INIS)

    The effectiveness of the Electric Power Research Institute (EPRI Mark I) chemical cleaning solvent process was tested utilizing a 12 tube pot boiler that had previously been fouled and dented under 30 days of high chloride fault chemistry operation. Specifically, the intent of this chemical cleaning test was to: (1) dissolve sludge from the tubesheet, (2) remove non-protective magnetite from dented tube/support crevice regions, and (3) quantify the extent of corrosion of steam generator material during the test. Two laboratory cleaning demonstrations of 191 and 142 hours were performed

  19. Inelastic behaviour of solar boiler tubes subjected to cyclic thermal loading

    International Nuclear Information System (INIS)

    Relying upon three-dimensional results previously obtained in the elastic range, we propose a simplified theory according to which each fiber of the tube portion undergoes either an uniaxial stress state (taking into account plastic flow with linear isotropic strain-hardening, possibly with creep) or a plane stress state in order to account for the ratchet phenomenon due to the inner fluid pressure. This approach allows to display and individualize the respective roles of strain-hardening, creep, fluid pressure and end-conditions; it also permits to calculate (most often in closed form) the deformations and stresses after a large number of cycles, which is not possible with more refined theories. Its accuracy has been assessed by computing the stresses and strains in the same situations for the first cycle by using an elasto-plastic shell theory (also taking into account creep influence), which revealed that in most cases our approach could give a good understanding of the phenomenon as well as a simple tool for actually calculating the mechanical quantities after a large number of cycles, in order to estimate the structure life-time. (orig./HP)

  20. Fouling and corrosion problems of raw water circuits of FBTR and RAPS

    International Nuclear Information System (INIS)

    Fouling and corrosion are two major operational problems in the heat exchangers of power plant cooling system. Nuclear power plants are more susceptible to fouling induced corrosion than their thermal counterparts due to their inherent design characteristics like long gestation period, multiple standby systems etc. Problems such as flow blockage of pipes, pipe punctures and relatively high corrosion rates were experienced in the service water system of the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Similarly about 1100 condenser tubes in Rajasthan Atomic Power Station (RAPS) II have failed during two years of operation resulting in leakage (80-2100 l/h) of condenser cooling water into the boiler feed water. As a result of this total dissolved solids (TDS), chloride, total hardness and silica content in the boiler water remained above the specified limit for a good amount of time. In view of the possible linkage between water quality and microbial activity resulting in material degradation, experiments on water quality (Palar subsoil, open reservoir, RAPS intake and out fall), corrosion rate measurements, microbiological counts and experiment on chlorination vs bacterial mortality were carried out with a view to study the effectiveness of existing treatment programme in FBTR cooling system and also to look for possible linkage between water quality and condenser tubes failures of RAPS. 10 refs., 2 tabs., 1 fig

  1. Thermo-hydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    In nuclear reactors of the magnox or advanced gas cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accidents using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear electric . The tests were carried out on the thermal hydraulics experimental research assembly (THERA) loop at manchester university. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 k, 50 k, and 100 k was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s

  2. Development of high strength and high corrosion resistance 23Cr-18Ni-3Cu-1.5W steel tubes for boilers; Boiler yo kokyodo kotaishoku 23Cr-18Ni-3Cu-1.5W kokan no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Senba, H.; Sawaragi, Y.; Yamadera, Y.; Igarashi, M. [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1998-06-15

    An austenitic steel 23Cr-18Ni-3Cu-1.5W-0.4Nb-0.2N tube (SAVE25) is developed, high in strength and corrosion resistance, intended for use singly under the ultimate steam conditions (650degC and 350atm) for ultra supercritical power plants. This steel exhibits a high creep rupture strength, thanks to precipitation strengthened by a Cu-rich phase and carbon nitrides and to solid solution strengthened by texture-stabilizing W and N, and exhibits an estimated rupture strength of 91MPa after 10{sup 5}h at 700degC, equivalent to that of the high-Ni, high-W alloy HR6W (23Cr-43Ni-6W-Ti, Nb). Furthermore, its steam oxidation resistance and high-temperature corrosion resistance are so high as to be comparable to those of the HR3C (25Cr-20Ni-0.4Nb-0.25N). As for weldability, the SAVE25 is equal or superior to the TP347H which is widely used for boilers. New welding consumables are also under development, using the same alloy as the parent alloy, which produce welded joints which are equal to the parent alloy in terms of strength and corrosion resistance. This steel tube is already installed on service boilers for performance evaluation, and it is believed that the new steel tube will greatly contribute to the embodiment of ultra supercritical power plants. 11 refs., 19 figs., 2 tabs.

  3. Extensive feedwater quality control and monitoring concept for preventing chemistry-related failures of boiler tubes in a subcritical thermal power plant

    International Nuclear Information System (INIS)

    Prevention and minimizing corrosion processes on steam generating equipment is highly important in the thermal power industry. The maintenance of feedwater quality at a level corresponding to the standards of technological designing, followed by timely respond to the fluctuation of measured parameters, has a decisive role in corrosion prevention. In this study, the comprehensive chemical control of feedwater quality in 210 MW Thermal Power Plant (TPP) was carried out in order to evaluate its potentiality to assure reliable function of the boiler and discover possible irregularity that might be responsible for frequent boiler tube failures. Sensitive on-line and off-line analytical instruments were used for measuring key and diagnostic parameters considered to be crucial for boiler safety and performances. Obtained results provided evidences for exceeded levels of oxygen, silica, sodium, chloride, sulfate, copper, and conductivity what distinctly demonstrated necessity of feedwater control improvement. Consequently, more effective feedwater quality monitoring concept was recommended. In this paper, the explanation of presumable root causes of corrosive contaminants was given including basic directions for their maintenance in proscribed limits. -- Highlights: • Feedwater quality monitoring practice in a thermal power plant has been evaluated. • The more efficient feedwater quality control have been applied. • Analysis of feedwater quality parameters has been performed. • Exceeded levels of corrosive contaminants were found. • Recommendations for their maintenance at proscribed values were given

  4. A Study of the Effect of Kaolin as a Fuel Oil Additive on the Corrosion Inhibition of Fireside Superheater Boiler Tubes

    Directory of Open Access Journals (Sweden)

    Alaa' Mshjel Ali

    2010-01-01

    Full Text Available The objective of the present study is to determine the effect of Kaolin as a fuel oil additive to minimize the fireside corrosion of superheater boiler tubes of ASTM designation (A213-T22 by increasing the melting point of the formed slag on the outside tubes surface, through the formation of new compounds with protective properties to the metal surface. The study included measuring corrosion rates at different temperatures with and without additive use with various periods of time, through crucible test method and weight loss technique.A mathematical model represents the relation between corrosion rate and the studied variables, is obtained using statistical regression analysis. Using this model, the best additive to ash weight ratio was specified. Then scanning electron microscopic images taken to the two treated and untreated samples with additive to study the difference in nature of slag formed on the metal surface to the two cases.

  5. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  6. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    to operate a boiler plant dynamically means that the boiler designs must be able to absorb any fluctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as......This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...

  7. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... to operate a boiler plant dynamically means that the boiler designs must be able to absorb any fluctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as...

  8. Modelling, simulating and optimizing Boilers

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verication as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and re tube boilers. A detailed dynamic model...... of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic- Equation system. Being able...... to operate a boiler plant dynamically means that the boiler designs must be able to absorb any uctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible...

  9. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  10. [Fouling: terminology and definitions].

    Science.gov (United States)

    Khalaman, V V

    2009-01-01

    Current classification of principal ecological groups of hydrobionts is an eclectic one as it confuses two fundamentals, one dealing with organismic ecomorphology and another with water body's topology. This leads to difficulties in determination of interrelations between benthos and fouling communities. The littoral fouling communities cannot be considered as an independent ecological group of the same rank as plankton or benthos because it lacks a unique species composition. The fouling is always a derivate of the benthos, so it could be defined as a community formed by benthic organisms during succession on a solid substrate more or less remote from the water body's bottom. All peculiarities of the fouling communities distinguishing them from similar benthic communities are determined by topology and other properties of the substrate, by relatively short period of the latter's exposition and by hydrological conditions under which the fouling is developing. There is continual transitions between benthic and fouling communities both in space (along gradients of abiotic environmental factors) and in time (along successional series). Such a continuum becomes most frequently broken due to both significant remoteness of the substrate, on which a fouling develops, from the bottom and permanent extreme factors disturbing or retarding fouling communities development. Thus, littoral foulings are just benthos being formed under specific conditions. At the same time, oceanic foulings are connected both evolutionary and ecologically with littoral foulings and benthos. PMID:20063771

  11. Fouling of Structured Surfaces during Pool Boiling of Aqueous Solutions

    International Nuclear Information System (INIS)

    Bubble characteristics in terms of density, size, frequency and motion are key factors that contribute to the superiority of nucleate pool boiling over the other modes of heat transfer. Nevertheless, if heat transfer occurs in an environment which is prone to fouling, the very same parameters may lead to accelerated deposit formation due to concentration effects beneath the growing bubbles. This has led heat exchanger designers frequently to maintain the surface temperature below the boiling point if fouling occurs, e.g. in thermal seawater desalination plants. The present study investigates the crystallization fouling of various structured surfaces during nucleate pool boiling of CaSO4 solutions to shed light into their fouling behaviour compared with that of plain surfaces for the same operating conditions. As for the experimental part, a comprehensive set of clean and fouling experiments was performed rigorously. The structured tubes included low finned tubes of different fin densities, heights and materials and re-entrant cavity Turbo-B tube types.The fouling experiments were carried out at atmospheric pressure for different heat fluxes ranging from 100 to 300 k W/m2 and CaSO4 concentrations of 1.2 and 1.6 g/L. For the sake of comparison, similar runs were performed on plain stainless steel and copper tubes.Overall for the finned tubes, the experimental results showed a significant reduction of fouling resistances of up to 95% compared to those of the stainless steel and copper plain tubes. In addition, the scale formation that occurred on finned tubes was primarily a scattered and thin crystalline layer which differs significantly from those of plain tubes which suffered from a thick and homogenous layer of deposit with strong adhesion. Higher fin densities and lower fin heights always led to better antifouling performance for all investigated finned tubes. It was also shown that the surface material strongly affects the scale formation of finned tubes i

  12. Failure Analysis of Platen Superheater Tube of Fuel-oil Boiler%炼厂燃油锅炉屏式过热器管失效分析

    Institute of Scientific and Technical Information of China (English)

    莫烨强; 罗建成; 孙亮; 侯艳宏

    2014-01-01

    采用宏观观察、金相观察、扫描电子显微分析、成分分析等分析方法,对燃油锅炉屏式过热器发生开裂失效原因进行了分析研究。结果表明:该管长期在高温下运行产生了蠕变现象;珠光体组织出现严重的球化现象,大量碳化物呈链状沿晶界析出;过热器管道内壁存在约371.55μm厚度的氧化层。因此,管束长期局部过热服役,致使金相组织发生改变,大大降低了材料的力学性能,从而发生蠕变开裂现象。%The failure reasons of a platen superheater tube of a fuel-oil boiler were studied by macroscopic observation, metallographic analysis, scanning electron microscopy ( SEM ) and energy dispersive spectroscopy ( EDS ) . The result of macroscopic observation shows that creep cracking happened to the tube after working for a long time at high temperature. The result of metallographic analysis shows that the carbide precipitated at grain boundaries. The result of scanning electron microscopy( SEM) and energy dispersive spectroscopy( EDS) show that a oxidation layer formed on the inside of the tube. The thickness of the oxidation layer was 371. 55μm. It can be concluded that long-term local overheating occurred to the tube during working, leading to microstructure change and reducing the mechanical properties of the material.

  13. EDF approach for fouling mitigation

    International Nuclear Information System (INIS)

    The situation and evolution of fouling of steam generator tubing are described in the 58 French PWR units, and the different studies and actions carried out to try to solve the problem and avoid any power output reduction associated to pressure drop. The remedies include the selection of the best secondary water treatment with amines such as morpholine in order to minimise corrosion product transport as well as mechanical remedies such as sludge lancing or chemical cleaning. Other options like dispersant addition are under evaluation. (R.P.)

  14. Discussion and Analysis of the Causes of Accident of Steam Boiler Tube Rupture and the Processing Methods%蒸汽锅炉爆管事故原因及处理方法探讨分析

    Institute of Scientific and Technical Information of China (English)

    李伟忠; 安文广; 张丽波

    2012-01-01

    蒸汽锅炉在运行过程中,一旦发生爆管事故,会损坏邻近的管壁,冲塌炉墙,并且在很短的时间造成锅炉严重缺水,使事故扩大,因此须保证安全可靠,确保安全生产运行.本文主要探讨蒸汽锅炉运行中锅炉爆管事故原因及处理方法.%Once the accident of tube rupture for steam boiler during operation happened, it can damage the nearby tube wall, and collapse furnace wall, resulting in serious water shortages for boiler in a very short period of time, expanding the accident, therefore, we must ensure the safety and reliability, safe production and operation. This paper mainly discusses the causes and treatment methods of accident of boiler tube rupture in the operation of steam boiler.

  15. Degradation behavior of Ni{sub 3}Al plasma-sprayed boiler tube steels in an energy generation system

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, B.S.; Prakash, S. [GZS, Bathinda (India). College of Engineering

    2005-06-01

    Boiler steels, namely, low-C steel, ASTM-SA210-Grade A1 (GrA1), 1Cr-0.5Mo steel, ASTM-SA213-T-11 (T11) and 2.25Cr-1Mo steel, ASTM-SA213-T-22 (T22) were plasma sprayed with Ni3Al. The alloy powder was prepared by mixing Ni and Al in the stoichiometric ratio of 3 to 1. The Ni-22Cr-10Al-1Y alloy powder was used as a bond coat, with a 150{mu} m thick layer sprayed onto the surface before applying the 200{mu}m coating of Ni{sub 3}Al. Exposure studies have been performed in the platen superheater zone of a coal-fired boiler at around 755{sup o}C for 10 cycles, each of 100 h duration. The protection to the base steel was minimal for the three steels. Scale spallation and the formation of a porous and nonadherent NiO scale were probably the main reasons for the lack of protection. In the case of T22-coated steel, cracks in the coatings have been observed after the first 100 h exposure cycle.

  16. Degradation behavior of Ni3Al plasma-sprayed boiler tube steels in an energy generation system

    Science.gov (United States)

    Sidhu, Buta Singh; Prakash, S.

    2005-06-01

    Boiler steels, namely, low-C steel, ASTM-SA210-Grade A1 (GrA1), 1Cr-0.5Mo steel, ASTM-SA213-T-11 (T11) and 2.25Cr-1Mo steel, ASTM-SA213-T-22 (T22) were plasma sprayed with Ni3Al. The alloy powder was prepared by mixing Ni and Al in the stoichiometric ratio of 3 to 1. The Ni-22Cr-10Al-1Y alloy powder was used as a bond coat, with a 150 µm thick layer sprayed onto the surface before applying the 200 µm coating of Ni3Al. Exposure studies have been performed in the platen superheater zone of a coal-fired boiler at around 755 °C for 10 cycles, each of 100 h duration. The protection to the base steel was minimal for the three steels. Scale spallation and the formation of a porous and nonadherent NiO scale were probably the main reasons for the lack of protection. In the case of T22-coated steel, cracks in the coatings have been observed after the first 100 h exposure cycle.

  17. Conduction cooled tube supports

    Science.gov (United States)

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  18. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  19. Hot Corrosion Behaviour of Type 316 Stainless Steel Tubes used in Reheaters and Superheaters of Oil-Fired Boilers

    International Nuclear Information System (INIS)

    High temperature corrosion behaviour of commercial type 316 stainless steel tubes has been studied in the presence of Na2 SO4 and NaCl at temperature ranged from 500 to 800 degree C. Tubes of different diameters ranging from 8 to 25 mm and thickness ranging from 1.9 to 4.3 mm were used in the study. The aggressive environment was 1 N Na2 SO4 + 1 N NaCl and vanadium compound was added as ammonium meta vanadate in some tests. corrosion kinetics based on weight change vs. Time measurements and microstructural analysis were used to determine the mode of corrosion attack and nature of the formed scales. As a result of the study it was found that the spilling increases as the temperature increases and led to weight loss, also the addition of vanadium to the solution caused a sharp increase in weight i.e. high corrosion rate, for all diameters. 11 Figs

  20. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  1. Boiler Retrofit for the Utilization of Biodiesel

    OpenAIRE

    Leily Nurul Komariah; Marwani Marwani

    2016-01-01

    Fuel oil used in the boiler is able to substitute with biodiesel. In lower blends, there are no engine modification needed, but some researchers recommended some technical adjustments in order to maintain the boiler's performance and equipment durability. This study consists of the comparison between the performance of boiler before and after retrofitting on the use of biodiesel. The diesel oil was introduced in biodiesel blends of 10% (B10), 20% (B20) and 25% (B25). A fire tube boiler was us...

  2. 超超临界电站锅炉小径管焊缝超声波探伤%Ultrasonic Testing of the Welds of Small Caliber Tube in the Ultra Supercritical Power Station Boiler

    Institute of Scientific and Technical Information of China (English)

    朱健

    2011-01-01

    对T91材质的电站锅炉小径管焊缝进行了超声波检测,使用常规探头以及试块来调节扫描声速.%The ultrasonic testing was done to the welds of small caliber tube of T91 material in the power station boiler, and the scan speed was adapted by normal probe.

  3. High temperature properties of the seam weld portion in 1% Cr-0.5% Mo ERW boiler tubing after long-term aging

    International Nuclear Information System (INIS)

    This study is aimed at the evaluation of reliability of the seam weld portion of 1% Cr-0.5% Mo ERW (Electric Resistance Welding) boiler tubings for high temperature use. High temperature properties of materials aged in the temperature between 500 and 6000C for 5000 h were evaluated by a slow extension rate test (SERT) and a low cycle fatigue test at high temperatures. Microscopic observation was also made with a scanning electron microscope and a transmission electron microscope. Proof stress and tensile strength obtained by SERT tend to decrease with an increase in aging temperature. It is confirmed that the strength of the seam weld portion is higher than that of the base metal. The fatigue crack propagation rates studied by test pieces with a side-notch either at the base metal or at the seam weld portion were found to be lower at the seam weld portion compared with that at the base metal. Dislocations of high density and fine precipitates of carbides were observed with electron microscopy in the seam weld portion. It is also found that the size of dislocation cells formed during fatigue is smaller in the seam weld portion than in the base metal. It is concluded that higher strength of the seam weld portion is closely related to the above mentioned microstructure originated in the dissolution of carbides during ERW process. 10 figures, 3 tables

  4. Fouling in Nanofiltration

    OpenAIRE

    Schaefer, Andrea; Andritsos, N; Karabelas, A.J.; Hoek, E.M.V.; Schneider, R.; Nyström, M

    2004-01-01

    According to Koros et al. [1] fouling is “the process resulting in loss of performance of a membrane due to deposition of suspended or dissolved substances on its external surfaces, at its pore openings, or within its pores”. Fouling is also decribed as flux decline which is irreversible and can only be removed by, for example, chemical cleaning [2]. This is different to flux decline due to solution chemistry effects or concentration polarisation which is described in more detail ...

  5. Efficiency and effect of different soot blowing methods on boilers using different types of fuels; Sotningsmetodernas effektivitet och konsekvenser paa foerbraenningsanlaeggningar foer olika typer av braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders; Rodin, Aasa

    2004-09-01

    major problem. Firing of recovered fuel types resulted in large amounts of fouling. Boilers originally designed for wood fuels are now more and more firing recovered fuel types. However, their soot blowing equipment and their heat absorbing banks are not designed for these large amounts of deposits. Therefore, fouling is a major problem for these boilers. The heat absorbing banks, mainly the superheater and the economizer, can be designed differently regarding to fouling. In general, straight pipes are used in the superheater but with large amount of fouling, the banks are preferably either hanging or standing. In the economizer it is also common to use flanged piping. Hanging straight tubes, horizontal straight tubes are preferably with large amount of fouling and horizontal flanged tubes are used when little amount of fouling is present. The evaluated soot blowing methods have different properties and are used differently. These methods are: Soot blowing with water is mainly used against hard, ceramic-type of deposits formed at high temperatures mainly before the superheater. Soot blowing with steam is commonly used and can be used both in the superheater and the economizer. At higher temperatures and harder deposits, retractable lances with few nozzles are used, while in the economizer with softer types of deposits, fixed and rotational lances with several nozzles is often used. Hammering is mainly used by waste fired boilers with hanging or standing banks and is a successful practise against hard but brittle deposits. Shot cleaning is mainly used in the economizer when the fouling consists of thick, sintered and dry deposits. Acoustic cleaning can be performed with both audible and infra sound. The method is commonly used against softer deposits at lower temperatures or used as a complement to i.e. steam cleaning. Acoustic cleaning is performed much more often than i.e. steam cleaning, and, therefore, it prohibits the formation of a deposit at an early stage

  6. Rupture Causes Analysis and Countermeasures on Rear Platen Superheater Tube of 300 MW Power Station Boiler%300MW电站锅炉后屏过热器爆管原因分析和对策

    Institute of Scientific and Technical Information of China (English)

    黎小秋; 赵康文; 唐囡; 何可龙

    2012-01-01

    Based on the experimental data, an failure analysis about the causes of the dissimilar steel weld joints rupture in the rear platen superheater tube of a large power plant boiler has been done. The results demonstrated that the enriched carbon layers around the melting line, residual stress and stress concentration leads to a premature failure of the dissimilar steel weld joints, and the retrofitting measures are introduced to ensure the safe operation of the power station boiler. At the same time, it can also supply references to the failure analysis of the similar structure boiler heating tubes.%在试验的基础上,对某大型电站锅炉后屏过热器管异种钢焊缝破裂的原因进行了失效分析,结果表明熔合线增碳层,残余应力和应力集中导致了异种钢焊缝的早期失效,并提出了相应的改进措施以确保电站锅炉安全运行,同时,也可为同类型结构锅炉受热面管的失效分析提供参考.

  7. 85 T/H 锅炉低温过热器爆管原因分析与总结%ANALYSIS AND SUMMARY ON TUBE RUPTURE IN THE LOW TEMPERATURE SUPERHEATER OF 85 T/H BOILER

    Institute of Scientific and Technical Information of China (English)

    任燕军

    2014-01-01

    This paper analyzes the cause of tube rupture in the low temperature superheater of 85t/h boiler in the company , tries to find out the reasons and point out the settlement method in order to provide reference for boiler maintenance work in the future .%文章对广州钢铁控股有限公司85t/h锅炉一级过热器管爆管的原因进行了分析,找出原因,并提出了相应的解决措施,以求对今后的锅炉检修维护工作有所借鉴。

  8. Foule et public

    OpenAIRE

    Plasseraud, Emmanuel

    2012-01-01

    La conception de la réception filmique de la théorie française, lors de la période muette, repose sur la notion de foule. Apparue au cours du xixe siècle, cette notion a donné lieu à de nombreuses appréciations, que l’on retrouve dans les textes sur le cinéma. Reprenant la conception dominante, héritée de la psychologie des foules vulgarisée par Gustave Le Bon, les cinéphobes considèrent le cinéma comme un lieu où les foules réunies soulagent ou excitent leurs bas-instincts. Les cinéphiles, e...

  9. An assessment of gas-side fouling in cement plants

    Science.gov (United States)

    Marner, W. J.

    1982-01-01

    The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the total product cost. An assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications is provided. In the present context, fouling is defined as the buildup of scale on a heat-transfer surface which retards the transfer of heat and includes the related problems of erosion and corrosion. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 100 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 micrometers in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. At the present time, the trend in this country is toward suspension preheater systems, in which the raw feed is heated by direct contact with the hot kiln exit gases, and away from waste heat boilers as the principal method of heat recovery. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling.

  10. A study on the formation of fouling in a heat exchanging system for river water

    International Nuclear Information System (INIS)

    When the water flowing inside of the heat transfer equipment such as heat exchangers, condensers, and boilers is heated, calcium, magnesium sulfate, and other minerals in the water are deposited and built up for scales on the heat transfer surfaces. When those scales accumulate on the heat transfer surfaces, their performance of the heat transfer become progressively reduced due to the increase of the heat transfer resistance. The mechanism of this reduced heat transfer is called fouling. This study investigated the formation of the fouling in a heat exchanger with river and tap water flowed inside of it as a coolant. In order to visualize the formation of the fouling and to measure the fouling coefficients, a lab-scale heat exchanging system was used. Based on the experimental results, it was found that the formation of fouling for river water was quite different with the formation for tap water

  11. Biomass boilers

    OpenAIRE

    Nahodil, Jiří

    2011-01-01

    Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

  12. A study of autoxidation reaction fouling in heat exchangers

    International Nuclear Information System (INIS)

    The mechanism of autoxidation reaction fouling in single phase liquid heat transfer under turbulent flow conditions was studied using model solutions of indene in tube oil recirculated through a tubular fouling probe which permitted both thermal and mass deposition measurements. The fouling rate was initially constant, and then accelerated as polyperoxide gums reached their solubility limit. Deposit composition and morphology in the tubular device are compared with results obtained in an annular probe with a short heated length. The initial fouling data collected over surface temperatures of 180-255 deg C and flow velocities of 0.5-2.6 m/s (Re = 3000 -16000) gave reasonable agreement with a boundary layer reaction model. (author). 21 refs., 1 tab., 13 figs

  13. Impact of fouling on UV effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, T.S. [Dalhouse Univ., Dept. of Civil Engineering, Halifax, Nova Scotia (Canada); Chauret, C. [Indiana Univ. Kokomo, Kokomo, Biological and Physical Sciences, Indiana (United States)

    2002-06-15

    In recent years ultraviolet light has gained in popularity as an attractive disinfection alternative due to its ability to inactivate bacteria and viruses. UV light has the potential to inactivate Cryptosporidium parvum and Giardia lamblia with a very low potential for the formation of harmful disinfection by-products. Previous studies have reported that particulate material present in the water can act to reduce the exposure of UV light to the receiving waters and that the interference of organic particles can serve to protect bacteria and viruses from intended disinfection. Disinfection capacity can also be reduced by organics in the source water that can accumulate on the surface of quartz sleeves. The purpose of this study was to determine the ability of a medium pressure UV light, at drinking water treatment levels, to inactivate MS 2 bacteriophage after a quartz tube has been fouled with organic rich source water for a 12- week period. To this end the inactivation of MS 2 was determined under clean and fouled conditions, in the presence and absence of humic rich water. The effect of lamp age on inactivation was also investigated. The results suggest that organic fouling of a quartz tube has a significant impact on the disinfection capacity of a medium pressure UV lamp. The presence of organics in the source water also plays a significant role in reducing the capacity of UV for bacterial and viral disinfection. Lamp age also seems to have some effect on the efficiency of UV disinfection. (author)

  14. Impact of fouling on UV effectiveness

    International Nuclear Information System (INIS)

    In recent years ultraviolet light has gained in popularity as an attractive disinfection alternative due to its ability to inactivate bacteria and viruses. UV light has the potential to inactivate Cryptosporidium parvum and Giardia lamblia with a very low potential for the formation of harmful disinfection by-products. Previous studies have reported that particulate material present in the water can act to reduce the exposure of UV light to the receiving waters and that the interference of organic particles can serve to protect bacteria and viruses from intended disinfection. Disinfection capacity can also be reduced by organics in the source water that can accumulate on the surface of quartz sleeves. The purpose of this study was to determine the ability of a medium pressure UV light, at drinking water treatment levels, to inactivate MS 2 bacteriophage after a quartz tube has been fouled with organic rich source water for a 12- week period. To this end the inactivation of MS 2 was determined under clean and fouled conditions, in the presence and absence of humic rich water. The effect of lamp age on inactivation was also investigated. The results suggest that organic fouling of a quartz tube has a significant impact on the disinfection capacity of a medium pressure UV lamp. The presence of organics in the source water also plays a significant role in reducing the capacity of UV for bacterial and viral disinfection. Lamp age also seems to have some effect on the efficiency of UV disinfection. (author)

  15. 生物质燃料锅炉20G钢低温过热器管爆裂失效分析%Burst failure analysis on 20G steel low temperature superheater tube of biomass-fired boiler

    Institute of Scientific and Technical Information of China (English)

    卿辉; 任耀剑; 孙智

    2014-01-01

    Reason for the failure of low temperature superheater tube of biomass-fired boiler during working was analyzed .The results show that the tube burst is related to the ash of biomass fuel and many short-terms over-high temperature .The alkali chloride and sulfide of the ash of biomass fuel accelerated corrosion and oxides generated , and the tube undergone short-term over-temperature repeatedly .Over-temperature caused pearlitic spheroidization and decreased strength of the material in the meantime .The tube cracking was due to the tube wall thinned by oxide abscission , and could not resist the boiler pressure .%某生物质燃料锅炉低温过热器管在运行中爆裂,对其失效原因进行了分析。结果表明,爆管的原因与生物质燃料灰分和多次短时超温有关。燃料灰分中的碱金属氯化物、硫化物使腐蚀加速,形成氧化物的速度加快,并使管道经历多次短时超温。超温造成组织中珠光体球化,使材料强度下降。氧化物脱落后,管壁的实际壁厚减薄,不足以承受管中的压力导致爆裂。

  16. Titanium condenser tubes

    International Nuclear Information System (INIS)

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack an copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection were observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling. (Kako, I.)

  17. Heat exchanger fouling and corrosion

    International Nuclear Information System (INIS)

    Fouling of heat transfer surfaces introduces perhaps the major uncertainty into the design and operation of heat exchange equipment. After a brief description of the various types of fouling the chapter goes on to review the current theories of fouling including the turbulent burst theory. Fouling in equipment involving boiling and evaporation is often more severe than in single phase heat exchangers and moreover, in aqueous systems, is frequently associated with corrosion. The reasons for this are identified and illustrated by reference to corrosion in nuclear power plant steam generators. Finally the modification of heat transfer and pressure drop characteristics by fouling layers is briefly reviewed

  18. Power for the industrial age: a brief history of boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.E.

    1996-02-01

    Boilers were first designed in Greece during the Hellenistic period by Hero, but they were regarded purely as a novelty and no industrial application was found for these toys until the seventeenth century when mining engineers used them for steam-powered pumps. By the end of the 17th century the early shell boilers were replaced by tube boilers, the direct ancestors of the modern boiler. Among the best known of the early boiler manufacturers was Babcock and Wilcox, and they supplied boilers to one of the first electric power plants. In the early 20th century superheaters, economizers, stokers and pulverizers were added to the design of the utility boiler. Fusion-welded boiler drums added to safety. More recently environmental concerns have initiated a new generation of boilers, such as the pressurised fluidised bed combustion boilers and their advanced versions. 5 refs., 3 figs.

  19. 油田热电厂注汽锅炉炉管腐蚀因素分析与控制措施%Corrosion Factors Analysis and Control Measures of Boiler Tubes in Steam In?jection Boiler in the Oilfield

    Institute of Scientific and Technical Information of China (English)

    周登印

    2016-01-01

    The steam injection boiler furnace tube of Daqing oilfield thermal power plant is in high temperature, high pressure and other harsh environmental conditions. The corrosion types are mainly alkali corrosion,dissolved oxygen corrosion,cavitation erosion,steam wa-ter corrosion and stop furnace corrosion. The corrosion factors produced by the medium mainly include temperature, flow rate and water treatment quality. The dissolved oxygen in the oxygen, and the boiler water in the steam injection boiler furnace, that have accelerated the corrosion rate of the furnace tubes. On the basis of corrosion factors targeted research, from the control of boiler feed water quality, reduce boiler oxygen exposure probability and improve the furnace pipe anti-corrosion properties of the essence, four aspects:the use of science and technology,and puts forward the corresponding control measures,aiming to de-lay and reduce the corrosion of all aspects, to prevent corrosion of the probability of more than 99.9%. By controlling the water quality of boiler and reducing the chance of contact with oxygen,the corrosion of boiler tubes is reduced.%大庆油田热电厂注汽锅炉炉管处于高温、高压的恶劣环境工况,腐蚀严重,其腐蚀类型主要为碱腐蚀、溶解氧腐蚀、气蚀、汽水腐蚀和停炉腐蚀.由介质产生的腐蚀因素主要有温度、流速及水处理质量;注汽锅炉炉管中存在的氧气以及锅炉水中溶解的氧加速了炉管腐蚀速率.为延缓腐蚀并减小腐蚀程度,提出以下对应的控制措施:严把水质源头管控,杜绝出现不达标水质进入锅炉;完善运行参数,防止超温、超压环境出现;将多种除氧方法结合使用,以达到最佳除氧效果.停炉后采用TH901法在炉管表面形成保护膜以隔离氧气,该保护法加药量少,成本低,阻止腐蚀的概率达到99.9%以上.通过控制锅炉给水水质,减少锅炉接触氧几率等措施,减缓了注汽锅炉炉管的腐蚀.

  20. Mixed salt crystallisation fouling

    CERN Document Server

    Helalizadeh, A

    2002-01-01

    The main purpose of this investigation was to study the mechanisms of mixed salt crystallisation fouling on heat transfer surfaces during convective heat transfer and sub-cooled flow boiling conditions. To-date no investigations on the effects of operating parameters on the deposition of mixtures of calcium sulphate and calcium carbonate, which are the most common constituents of scales formed on heat transfer surfaces, have been reported. As part of this research project, a substantial number of experiments were performed to determine the mechanisms controlling deposition. Fluid velocity, heat flux, surface and bulk temperatures, concentration of the solution, ionic strength, pressure and heat transfer surface material were varied systematically. After clarification of the effect of these parameters on the deposition process, the results of these experiments were used to develop a mechanistic model for prediction of fouling resistances, caused by crystallisation of mixed salts, under convective heat transfer...

  1. Novel Fouling Measurement Device

    OpenAIRE

    Sinčić, D.; Ribić, B.; Caharija, A.

    2015-01-01

    The novel device for measuring characteristics of the process that takes place when hydrocarbon liquids are subjected to elevated temperatures is described. The measuring cell has the form of a loop in which circulation is induced by a turbine stirrer. The stirrer contains magnets built into its blades, enabling mixing by a magnetic mixer positioned below the cell. No moving part protrudes from the cell. The fouling process takes place at the hot-wire probe positioned at the centre of the liq...

  2. On-line fouling monitor for heat exchangers

    International Nuclear Information System (INIS)

    Biological and/or chemical fouling in utility service water system heat exchangers adversely affects operation and maintenance costs, and reduced heat transfer capability can force a power deaerating or even a plant shut down. In addition, service water heat exchanger performance is a safety issue for nuclear power plants, and the issue was highlighted by NRC in Generic Letter 89-13. Heat transfer losses due to fouling are difficult to measure and, usually, quantitative assessment of the impact of fouling is impossible. Plant operators typically measure inlet and outlet water temperatures and flow rates and then perform complex calculations for heat exchanger fouling resistance or ''cleanliness''. These direct estimates are often imprecise due to inadequate instrumentation. Electric Power Research Institute developed and patented an on-line condenser fouling monitor. This monitor may be installed in any location within the condenser; does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods; and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. This instrument can be modified to perform on-line monitoring of service water heat exchangers. This paper discusses the design, construction of the new monitor, and algorithm used to calculate service water heat exchanger fouling

  3. 超超临界机组锅炉末级过热器爆管原因分析%Cause Analysis on Bursting of Final Superheater Tubes of a Ultra Supercritical Boiler

    Institute of Scientific and Technical Information of China (English)

    肖国华; 李益民; 王理博

    2011-01-01

    The bursting and leakage reason of final superheater T91 steel tubes of a ultra super critical boiler was analyzed through chemical compositions analysis, microstructure analysis and mechanical properties test. The results show that the failure of the final superheater tubes was due to overheat which deteriorated the microstructure and mechanical properties of the tubes material. It was believable that the overheat of the bursting tubes was caused by blockage, according to the analysis results on the spot.%通过化学成分分析、金相检验、力学性能测试等手段对某电厂超超临界锅炉末级过热器T91钢管爆裂原因进行了分析.结果表明:爆管系超温运行所致,过热导致钢管材料显微组织老化、力学性能显著下降;并根据现场情况对爆裂管的超温原因进行了分析,认为异物堵塞造成超温的可能性较大.

  4. Slagging and Fouling Characteristics of HRSG for Ferrosilicon Electric Furnaces

    Directory of Open Access Journals (Sweden)

    Yungang Wang

    2015-02-01

    Full Text Available The slagging and fouling characteristics of the heat recovery steam generator (HRSG for ferrosilicon electric furnaces are discussed in this paper. Three ash samples were taken from the HRSG of a ferrosilicon furnace in Ningxia Province, China, which suffered from serious slagging and fouling. X-ray fluorescence (XRF, X-ray powder diffraction (XRD and scanning electron microscope (SEM were used to analyze the ash samples. The results show that low melting point salt Na2SO4 and composite salts Na (AlSi3O8 and 3K2SO4·CaSO4 deposit on the superheater tube walls in aerosol form and solidify to form the initial slag layer. With the continuous deposition of the low melting point compounds, more and more ash particles in the flue gas adhere to the slag surface to form a thicker slag. Low melting point composite salt NaO·Al2O3·SiO2 is absorbed on the evaporator tube walls in aerosol form. With the deposition of NaO·Al2O3·SiO2, more and more ash particles are absorbed to form the fouling. Since there is less space between pin-finned tubes, the large iron-rich slag particles are easily deposited on tube walls and fin surfaces, which is advantageous to the fouling process. There are large quantities of superfine ash particles in the flue gas that easily adhere to other particles or tube walls, which facilitates the slagging and fouling process.

  5. Optimal scheduling of sootblowers in power plant boilers

    Science.gov (United States)

    Vasquez-Urbano, Pedro Manuel

    1997-11-01

    Burning coal or other fossil fuels in a utility boiler fouls the surfaces of its heat exchangers with ash and soot residues. These deposits affect the performance of the power plant since they reduce heat transfer from the combustion gases to the water or steam. Fouling can be removed during the operation of the plant with the use of lances, called sootblowers, that direct high-pressure air or steam onto the fouled surfaces. Sootblowing operations are key to plant efficiency and boiler maintenance, but they also incur operating costs. A utility boiler may have a hundred or so sootblowers placed in fixed locations. Deciding which of these should be used at any moment is complicated by the lack of instrumentation that can monitor fouling levels. This dissertation studies the optimization problem of scheduling sootblowing activities at a utility plant. The objective is to develop an optimization approach to determine which sootblowers should be activated at any moment in order to maximize plant efficiency. To accomplish this, three issues are addressed. First, models are developed that can estimate fouling conditions indirectly during plant operation using commonly available data. The approach used relies on a sequential application of linear regression fits. Secondly, autoregressive exogenous (ARX) models are used to describe the dynamics of the fouling process and to estimate the consequences of fouling on plant efficiency. All the foregoing empirical models are developed using data from a power plant. Finally, using the empirical models, an optimization model is formulated for the sootblowing scheduling problem and different optimization approaches that combine nonlinear programming with heuristics methods are investigated for its solution. The applicability of dynamic programming to this optimization problem is also explored.

  6. 锅炉水冷壁管氢腐蚀爆管原因分析%Cause Analysis of Hydrogen Corrosion Induced Bursting of Waterwall Tubes in a Boiler

    Institute of Scientific and Technical Information of China (English)

    张亚明; 夏邦杰; 董爱华

    2012-01-01

    某热电厂5号锅炉水冷壁发生爆管.对取样水冷壁管进行了宏观观察、化学分析、金相分析、扫描电镜与电子能谱分析及x射线衍射分析等.结果表明,爆管原因是水冷壁管向火侧内壁局部区域发生氢腐蚀所致.提出了预防此类事故发生的措施.%Bursting failure occurred on waterwall tubes of No.5 boiler in a power plant. Macroscop- ic inspection, chemical analysis, metallurgraphy, scanning electron microscopy (SEM), energy dis-persive spectroscopy (EDS) and X-ray diffraction (XRD) were adopted to examine the failed tube. The results indicated that the tube rupture was resulted from localized hydrogen corrosion of the part facing fire. Preventive measures of such failures are put forward.

  7. Study of Artificial Roughness in Condenser Tube used in Household Refrigerator: A Review

    Directory of Open Access Journals (Sweden)

    Sunaina Sailani*

    2014-10-01

    Full Text Available Enhancement techniques based on artificial roughness are used in numerous applications of condenser such as: the flow regime (Reynolds number, the fluid properties (Prandtl number, with and without fouling, the allowable pressure drop and the existence or absence of natural convection. The use of an enhancement technique may be conditioned by the specific application: for example, wire coils are not applicable in the food industry due to hygiene problems but corrugated and dimpled tubes are being used. In the petrochemical industry, the use of mechanically deformed tubes is not allowed for safety reasons. However, the use of wire coils does not present any problem. In boilers and heat recovery systems, wire coils are frequently used because of their easy removal for cleaning operations.

  8. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  9. Pulse shear stress for anaerobic membrane bioreactor fouling control.

    Science.gov (United States)

    Yang, Jixiang; Spanjers, Henri; van Lier, Jules B

    2011-01-01

    Increase of shear stress at membrane surfaces is a generally applied strategy to minimize membrane fouling. It has been reported that a two-phase flow, better known as slug flow, is an effective way to increase shear stress. Hence, slug flow was introduced into an anaerobic membrane bioreactor for membrane fouling control. Anaerobic suspended sludge was cultured in an anaerobic membrane bioreactor (AMBR) operated with a side stream inside-out tubular membrane unit applying sustainable flux flow regimes. The averaged particle diameter decreased from 20 to 5 microm during operation of the AMBR. However, the COD removal efficiency did not show any significant deterioration, whereas the specific methanogenic activity (SMA) increased from 0.16 to 0.41 gCOD/g VSS/day. Nevertheless, the imposed gas slug appeared to be insufficient for adequate fouling control, resulting in rapidly increasing trans membrane pressures (TMP) operating at a flux exceeding 16 L/m2/h. Addition of powdered activated carbon (PAC) enhanced the effect of slug flow on membrane fouling. However, the combined effect was still considered as not being significant. The tubular membrane was subsequently equipped with inert inserts for creating a locally increased shear stress for enhanced fouling control. Results show an increase in the membrane flux from 16 L/m2/h to 34 L/m2/h after the inserts were mounted in the membrane tube. PMID:22097007

  10. Analog-experiment analysis of ash-deposition monitoring model of boiler economizers in power plants

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei-liang; XIA Guo-dong; XU Shou-chen

    2005-01-01

    Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash,and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3 level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α = 0. 001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.

  11. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  12. Computer system for monitoring power boiler operation

    Energy Technology Data Exchange (ETDEWEB)

    Taler, J.; Weglowski, B.; Zima, W.; Duda, P.; Gradziel, S.; Sobota, T.; Cebula, A.; Taler, D. [Cracow University of Technology, Krakow (Poland). Inst. for Process & Power Engineering

    2008-02-15

    The computer-based boiler performance monitoring system was developed to perform thermal-hydraulic computations of the boiler working parameters in an on-line mode. Measurements of temperatures, heat flux, pressures, mass flowrates, and gas analysis data were used to perform the heat transfer analysis in the evaporator, furnace, and convection pass. A new construction technique of heat flux tubes for determining heat flux absorbed by membrane water-walls is also presented. The current paper presents the results of heat flux measurement in coal-fired steam boilers. During changes of the boiler load, the necessary natural water circulation cannot be exceeded. A rapid increase of pressure may cause fading of the boiling process in water-wall tubes, whereas a rapid decrease of pressure leads to water boiling in all elements of the boiler's evaporator - water-wall tubes and downcomers. Both cases can cause flow stagnation in the water circulation leading to pipe cracking. Two flowmeters were assembled on central downcomers, and an investigation of natural water circulation in an OP-210 boiler was carried out. On the basis of these measurements, the maximum rates of pressure change in the boiler evaporator were determined. The on-line computation of the conditions in the combustion chamber allows for real-time determination of the heat flowrate transferred to the power boiler evaporator. Furthermore, with a quantitative indication of surface cleanliness, selective sootblowing can be directed at specific problem areas. A boiler monitoring system is also incorporated to provide details of changes in boiler efficiency and operating conditions following sootblowing, so that the effects of a particular sootblowing sequence can be analysed and optimized at a later stage.

  13. Investigations on the fouling behaviour of Rhenish brown coals in lignite-fired power plants

    International Nuclear Information System (INIS)

    In lignite-fired power plants high fouling in heat exchangers can be observed while firing Rhenish brown coals rich in sodium and poor in silicon content. These sulphatic and oxidic deposits reduce the heat transfer and can cause plant damage. It is assumed that fouling is caused by ash softening and partial melting of alkaline phases. The objective of this dissertation is to provide a better understanding of the fouling processes in lignite-fired boilers through experimental analysis using the ashes of different Rhenish brown coals and synthetic ash mixtures. In order to estimate the agglomeration potential of the brown coal ashes and synthetic ash mixtures, measurements of shear properties and impedance spectroscopy were performed. Furthermore, exposure tests in air and flue gas were conducted in the temperature range between 600 to 1,200 C to evaluate the influence of different parameters on the crystalline phase compounds and microstructures of the brown coal ashes and synthetic ash mixtures. The exposed samples were compared among each other and with corresponding ash deposits produced in a micro combustion chamber. Another aim of this dissertation is to verify the occurrence of NaOH melt in fouling processes. For this purpose impedance spectroscopy with a special probe was performed in the pilot power plant Niederaussem while firing sodium enriched fouling coal. This research indicates the importance of non-silicate bonded sodium and calcium in fouling processes. The higher their contents are, the higher is the fouling potential of the brown coal. Although the occurrence of NaOH in the boiler can not be directly proven by impedance spectroscopy, the experimental results indicate that it plays an important role in fouling. However, this research shows that silicates reduce the fouling potential of the ashes. Shear property measurements, impedance spectroscopy and the calculation of Na/Si and Ca/Si ratios of 450 C-ashes are applicable methods to predict the

  14. Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry

    OpenAIRE

    J. O. ODIGURE; A. S. ABDULKAREEM; E. T. ASUQUO

    2005-01-01

    This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demi...

  15. Industry SG heat-transfer fouling trends and probabilistic fouling predictions

    International Nuclear Information System (INIS)

    Up to the early 1970s, recirculating PWR steam generator (SG) designs incorporated large margins to accommodate loss of thermal efficiency due to thermally resistive tube scale layers and tube repairs. Such margins were typically 200-300 μh-ft2-oF/Btu (1 μh-ft2-oF/Btu = 1.76E 04 m2-K/kW). In the last 25 years, however, these values have been reduced by at least 50%. Further, many units operate with margins below the design value for several reasons: Thermal power uprates; Decreases in primary temperature; and, Reductions in feedwater iron concentrations, which have lowered heat-transfer fouling rates such that short-term changes are nearly imperceptible. As a result, the accumulated effect of heat-transfer fouling is a less important part of long-term utility planning. Accordingly, units often operate with SG heat-transfer margins of 40-80 μh-ft2-oF/Btu. Such margins, though usually adequate for several cycles, can be eroded over longer time periods as a result of: a) transient fouling increases that follow plant outages and are not always fully recovered, b) unintentional small primary temperature decreases within the control band that occur without setpoint changes, and c) gradual heat-transfer losses, due to tube scale buildup, that can be appreciable after several years. Against the above background, this paper provides an industry update on trends in the following areas that have been observed through DEI's analysis of several dozen units in the US and other countries: SG heat-transfer efficiency as a function of operating time and other variables such as average tube deposit thickness, feedwater iron concentration, and deposit properties; Clean SG heat-transfer efficiency trends after initial SG startup or full-bundle chemical cleaning. For example, such startups are typically accompanied by increases in fouling factor of 0-60 μh-ft2-oF/Btu that develop over a period of several months; and, Transient changes in heat-transfer fouling following plant

  16. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  17. Experimental Study on Under-deposit Corrosion of Water Wall Tube in a 420t Utility Boiler%一台420t电站锅炉水冷壁管垢下腐蚀试验研究

    Institute of Scientific and Technical Information of China (English)

    李勇; 赵彦杰; 欧俊

    2015-01-01

    在对某电厂一台420t电站锅炉检验过程中,发现该锅炉水冷壁管存在结垢现象,水冷壁管垢下腐蚀会对锅炉的安全、经济运行造成影响。通过均匀腐蚀失效试验、氢脆腐蚀失效试验确定其腐蚀原理,并对其腐蚀速率进行了研究。%There were two under-deposit corrosion forming causes, uniform corrosion and hydrogen corrosion. In the inspection of a 420t/h utility boiler, scaling was found in its water wall tube leading to the temperature difference between different sides of water wall tube. The safety and economy will be affected. Through theory and experiment, corrosion mechanism and prevention measures were presented in this paper.

  18. Influence of Heat Flux and Friction Coefficient on Thermal Stresses in Risers of Drum Boilers under Dynamic Conditions of Steam Demand

    OpenAIRE

    M.A. Habib; Alzaharnah, I.; El-Shafei, M.; Merah, N.; Al-Anizi, S.; M. Y. Al-Awwad; Hajji, M

    2013-01-01

    Boiler swing rate, which is the rate at which the boiler load is changed, has significant influence on the parameters of the boiler operating conditions such as drum water pressure and level, steam quality in the riser tubes, wall temperatures of riser tubes, and the associated thermal stresses. In this paper, the thermal stresses developed in boiler tubes due to elevated rates of heat transfer and friction are presented versus thermal stresses developed in tubes operated under normal conditi...

  19. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, William (Sandy) [SharpConsultant

    2011-12-01

    the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the

  20. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    International Nuclear Information System (INIS)

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator performance. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. Uncertainty analyses were performed to determine whether the calculated fouling factor for each plant represented significant fouling or whether uncertainty in key variables (e.g., steam pressure or feedwater flow rate) could be responsible for calculated fouling. The methodology was validated using two methods: by predicting the SG pressure following chemical cleaning at San Onofre 2 and also by performing a sensitivity study with the industry-standard thermal-hydraulics code ATHOS to investigate the effects of spatially varying tube scale distributions. This study indicated that the average scale thickness has a greater impact on fouling than the spatial distribution, showing that the assumption of uniform resistance inherent to the global fouling factor is reasonable. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure loss evaluations demonstrated two key points: 1) that the available thermal margin against fouling, which can

  1. Fouling and corrosion of freshwater heat exchangers

    International Nuclear Information System (INIS)

    Fouling in freshwater heat exchangers (HX) costs the Canadian nuclear power industry millions of dollars annually in replacement energy and capital equipment. The main reasons are loss of heat transfer and corrosion. Underdeposit pitting is the predominant corrosion mechanism. Erosion corrosion has also been observed. Failure analyses, field studies, and laboratory research have provided us with information to help explain the reasons for reduced performance. Newly installed HX tubing immediately becomes colonized with a complex community of bacteria in a slimey organic matrix. The biofilm itself produces corrosive species and in addition it promotes the attachment of sediment particles and the deposition of calcareous material. The result is a thick, adherent deposit which creates crevices, concentrates aggressive species and alters the system's hydrodynamics

  2. 超临界锅炉末级过热器爆管原因的分析%Burst Cause Analysis of Final-stage Superheater Tubes for a Supercritic al Boiler

    Institute of Scientific and Technical Information of China (English)

    赵慧传; 贾建民; 陈吉刚; 梁军; 杨红权; 尹成武

    2011-01-01

    为研究超临界锅炉末级过热器爆管的原因,对1台600MW超临界锅炉末级过热器爆管上游管和相关管样的内壁氧化物的宏观形态、微观结构,脱落氧化皮的微观结构、物相、各区域的微观形态和成分等进行了分析.结果表明:堵塞末级过热器下弯头造成过热器爆管的脱落氧化皮来自于T23/T91钢管的T23管段内壁,而非T91管段内壁;T23钢管内壁氧化皮为二层结构,外层为粗大柱状晶的纯磁铁矿(Fe3O4),内层为等轴细晶的含W和Cr的尖晶石;原生氧化皮内层存在一条或多条沿圆周方向排列的孔洞链,氧化皮容易沿孔洞链分离,从而造成氧化皮脱落.%In order to find the causes of tube burst failures encountered by the final-stage superheater of a 600 MW supercritical boiler, an analysis was carried out to both macrostructure and microstructure of the oxide scales taken from inner surface of relevant tube samples, and to the microstructure, phase, micromorphology and composition of fall-off scales. Results show that the failure has been caused by oxide scales split off from inner surface at T23 side of the T23/T91 joint, which blocked the lower elbow of the superheater and finally led to the tube burst. The scale on inner surface of T23 tube has a two-layer structure, of which the outer layer is the coarse columnar grain Fe3 O4 while the inner layer fine equiaxed spinel,containing W and Cr element. One or more hole-chains on inner surface of primitive oxide skin formed along the circumference direction are easy to break and cause the oxide skin to fall off.

  3. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and

  4. Fouling of heat exchanger surfaces: General principles

    Science.gov (United States)

    1986-12-01

    This Data Item ESDU 86038 is an addition to the Heat Transfer Sub-series. The importance of various parameters that affect fouling are discussed. Appropriate methods for dealing with fouling in all stages from design through to operation of heat exchanger equipment are indicated. Methods of suppressing fouling by additives, or of cleaning equipment chemically or mechanically, are considered. A brief outline of the physical process of fouling including some mathematical models is given.

  5. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2002-07-01

    The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers.

  6. Failure Analysis of Low Temperature Superheater Tube of Utility Boiler%电站锅炉低温过热器管失效分析

    Institute of Scientific and Technical Information of China (English)

    周经伟; 周荣稳

    2013-01-01

      Through making the failure analysis on low temperature superheater tube by employing the related technological means, the paper determines the cause of failure and puts preventive measures to avoid and prevent similar incidents from happening again.%  通过对低温过热器爆管,采用相关的技术手段进行失效情况分析,确定失效的原因,提出预防措施,避免和防止同类事故的再次发生。

  7. Ultrasonic Phased Array Testing for Small Diameter Tube Weld of Ultra-supercritical Boiler%超超临界锅炉小径管焊缝的超声相控阵检测工艺

    Institute of Scientific and Technical Information of China (English)

    王维东; 王亦民; 孟倩倩; 曹云峰; 张振华

    2015-01-01

    根据锅炉小径管焊缝的缺陷分布范围,研制出系列超声相控阵检测的对比试块,并进行了模拟与自然缺陷的检测试验。测试采用ϕ1 mm横孔制作距离-波幅曲线,对不同外径与壁厚的内外壁缺陷进行定量与指示长度测定,修正了传统检测的误区,建立了超声相控阵小径管焊缝的检测工艺方法。%A series of ultrasonic phased array inspection contrast test blocks were developed according to the distribution range of the boiler pipe weld defect,and at the same time tests were conducted on the simulation and natural defects,respectively.By making distance amplitude curve for 1 mm diameter horizontal hole,we quantified and measured indicating length of defects both inside and outside of the tube with different diameter and thickness, and thus corrected the errors of the traditional detection and established the testing method of ultrasonic phased array for small pipe weld.

  8. 49 CFR 214.323 - Foul time.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foul time. 214.323 Section 214.323 Transportation... TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.323 Foul time. Working limits established on controlled track through the use of foul time procedures shall comply with the...

  9. Observation on fouling organisms collected from Indian naval ships at Bombay

    Directory of Open Access Journals (Sweden)

    V. Gopalakrishnan

    1959-01-01

    Full Text Available Fouling organisms collected from Indian Naval Ships dry-docked at Bombay during a period of two years (July 1956-June 1958 were studied in detail. Forty six of the forms collected have been identified. The most important groups of ship-fouling Organisms in Bombay waters are Barnacles, Hydroids, Polyzoans and Tube-worms. Eleven different Fouling Communities have been found to dominate the settlements on the hulls at different occasions. Definite zonations that could be observed were restriction of green algae to the boot-top area and mussels and oysters to the pipes and gratings. An attempt has been made to find the sequence of settlement of the different major fouling groups. Some general remarks on the observations have also been included.

  10. Biodegradable non-fouling nanofibers

    Czech Academy of Sciences Publication Activity Database

    Kostina, Nina Yu.; Pop-Georgievski, Ognen; Bachmann, M.; Michálek, Jiří; Bastmeyer, M.; Rodriguez-Emmenegger, Cesar

    Chiang Mai : IUPAC, 2014. 192 /BTEC-20/. [MACRO 2014 - 2014 IUPAC World Polymer Congress. 06.07.2014-11.07.2014, Chiang Mai] R&D Projects: GA ČR(CZ) GA13-00939S Institutional support: RVO:61389013 Keywords : tissue engineering * fouling * cell adhesion Subject RIV: FH - Neurology

  11. Fouling and corrosion in steam power plant condensers

    International Nuclear Information System (INIS)

    Condensers of modern steam power plants are huge tubular condensers with a slight temperature difference and a very high flow rate of cooling water. Location of plants along rivers, estuaries or at sea coast is due to this cooling duty. When water supply or legal requirements do not allow a once through cooling, recycling of water on atmospheric cooling tower is required. By evaporation, salt content of circuit water is climbing and water has to be treated. Tube fouling may be from various origins: namely, physical, chemical, biological or resulting from mixed causes. Materials damage may occur as resulting from various processes: erosion, erosion-corrosion, pitting corrosion, stress cracking corrosion. To control fouling and its effects, many prevention and curing techniques have been developed: a choice has to be made among them and has to be specific for the case concerned

  12. Fouling analyses of heat exchangers for PSR

    International Nuclear Information System (INIS)

    Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper focuses on fouling analyses for six heat exchangers of two primary systems in two nuclear power plants; the regenerative heat exchangers of the chemical and volume control system and the component cooling water heat exchangers of the component cooling water system. To analyze the fouling for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. Based on the results of the fouling analyses, the present thermal performances and fouling levels for the six heat exchangers were predicted

  13. PERFORMANCE EVALUATION OF BOILERS (80 AND 40 TPH) AND 21MW STEAM TURBINE OF COGEN PLANT

    OpenAIRE

    D.P.TAWARE; P.E.CHAUDHARI; U.M.SHIRSAT

    2014-01-01

    The proposed study is conducted at The Malegaon Sugar Mills, Baramati, and District Pune. Data is collected for a high pressure 80 TPH & 40TPH bagasse fired boiler. The boilers are natural circulation and bi-drum water tube type. The both boilers are equipped with super heater, air heater and economizer in order to utilize maximum available heat of flue gases. Boiler efficiency is calculated by indirect method. Also plant has 21 MW cogeneration capacity, with two turbines are installed with c...

  14. Asphaltene Aggregation and Fouling Behavior

    Science.gov (United States)

    Derakhshesh, Marzie

    This thesis explored the properties of asphaltene nano-aggregates in crude oil and toluene based solutions and fouling at process furnace temperatures, and the links between these two phenomena. The link between stability of asphaltenes at ambient conditions and fouling at the conditions of a delayed coker furnace, at over 450 °C, was examined by blending crude oil with an aliphatic diluent in different ratios. The stability of the blends were measured using a S-value analyzer, then fouling rates were measured on electrically heated stainless steel 316 wires in an autoclave reactor. The less stable the blend, the greater the rate and extent of fouling. The most severe fouling occurred with the unstable asphaltenes. SEM imaging of the foulant illustrates very different textures, with the structure becoming more porous with lower stability. Under cross-polarized light, the coke shows the presence of mesophase in the foulant layer. These data suggest a correlation between the fouling rate at high temperature furnace conditions and the stability index of the crude oil. Three organic polysulfides were introduced to the crude oil to examine their effect on fouling. The polysulfides are able to reduce coking and carbon monoxide generation in steam crackers. The fouling results demonstrated that polysulfide with more sulfur content increased the amount of corrosion-fouling of the wire. Various additives, solvents, ultrasound, and heat were employed to attempt to completely disaggregate the asphaltene nano-aggregates in solution at room temperature. The primary analytical technique used to monitor the nano-aggregation state of the asphaltenes in solution was the UV-visible spectroscopy. The results indicate that stronger solvents, such as pyridine and quinoline, combined with ionic liquids yield a slight reduction in the apparent absorbance at longer wavelengths, indicative of a decrease in the nano-aggregate size although the magnitude of the decrease is not significant

  15. Thermal Analysis of Superheater Platen Tubesin Boilers

    Directory of Open Access Journals (Sweden)

    Shahram Falahatkar

    2014-01-01

    Full Text Available Superheaters are among the most important components of boilers and have major importance due to this operation in high temperatures and pressures. Turbines are sensitive to the fluctuation of superheaterstemperature;therefore even the slightest fluctuation in the outlet vapor temperature from the superheaters does damage the turbine axis and fins. Examining the potential damages of combustion in the boilers and components such as the superheaters can have a vital contribution to the progression of the productivity of boiler, turbine and the power plant altogether it solutions are to be fund to improve such systems. In this study, the focus is on the nearest tube set of superheaters to the combustion chamber.These types of tubes are exposed to a wide range ofcombustion flames such that the most heat transfer to them is radiation type.Here, the 320 MW boiler of Isfahan power plant (Iran, the combustion chamber, 16 burners and the platensuperheater tubes were remodeled by CFD technique. The fluid motion, the heat transfer and combustion processes are analyzed. The two-equation turbulence model of k-εis adopted to measure the eddy viscosity. The eddy dissipation model is used to calculate the combustion as well as the P-1 radiation model to quantify the radiation. The overheated zones of superheater tubes and the combustion chamber are identified in order toimprove this problem by applying the radiation thermal shields and knees with porous crust which are introduced as the new techniques.

  16. Boiler Retrofit for the Utilization of Biodiesel

    Directory of Open Access Journals (Sweden)

    Leily Nurul Komariah

    2016-02-01

    Full Text Available Fuel oil used in the boiler is able to substitute with biodiesel. In lower blends, there are no engine modification needed, but some researchers recommended some technical adjustments in order to maintain the boiler's performance and equipment durability. This study consists of the comparison between the performance of boiler before and after retrofitting on the use of biodiesel. The diesel oil was introduced in biodiesel blends of 10% (B10, 20% (B20 and 25% (B25. A fire tube boiler was used for the test with pressure of 3 bar and heat input capacity of 60,000 kcal. The boiler retrofit is conducted by fine tuning the fan damper scale (FDS and adding a heating feature on fuel system. It was specifically intended to maintain the quality of combustion and boiler efficiency as well as to avoid an increase in fuel consumption. The combustion behaviour was monitored by exhaust emissions of CO, NOx, and SO2. The fan damper scale (FDS and fuel temperature is adjusted by the increasing portion of biodiesel used. The fuel heating apparatus was set at temperature of 40oC for the use of B10, and 60oC for B20 and B25. The FDS adjustment was successfully resulted a reduction in rate of combustion air by average of 9.2%. The boiler retrofitting for the utilization of B10, B20 and B25 showed an increase in boiler efficiency by 0.64%, 0.42% and 2.6% respectively. The boiler retrofitting is surprisingly reduced the fuel consumption by average of 11.2%.

  17. A Rule-Based Industrial Boiler Selection System

    Science.gov (United States)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  18. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  19. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    International Nuclear Information System (INIS)

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation

  20. Central heating: package boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.

    1977-05-01

    Performance and cost data for electrical and fossil-fired package boilers currently available from manufacturers are provided. Performance characteristics investigated include: unit efficiency, rated capacity, and average expected lifetime of units. Costs are tabulated for equipment and installation of various package boilers. The information supplied in this report will simplify the process of selecting package boilers required for industrial, commercial, and residential applications.

  1. Fouling analyses for heat exchangers of NPP

    International Nuclear Information System (INIS)

    Fouling of heat exchanges is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. In order to analyze the fouling for heat exchangers of nuclear power plant, the fouling factor is introduced based on the ASME O and M codes and TEMA standards. This paper focuses on the fouling analyses for the heat exchangers of several primary systems; the RHR heat exchanger of the residual heat removal system, the letdown heat exchanger of the chemical and volume control system, and the CCW heat exchanger of the component cooling water system, Based on the results of the fouling levels for the three heat exchangers are assumed

  2. Feasibility of recovery boiler in paper and pulp industry

    International Nuclear Information System (INIS)

    in this paper feasibility of recovery boiler in terms of economics and environmental impacts in studied. Recovery boilers are employed in the pulp and paper industry where the cooking agent is recovered by burning black liquor. Cooking agent is exhausted due to the absorption of lignin (a burnable component) in cooking agent in the process of straw cooking. The process of recovery boiler is to remove lignin by combustion from black liquor, and heat is produced during the combustion of lignin which is used to produce steam. Recovery boiler is economical as it is recovering valuable chemicals and steam is produced as a byproduct. Steam from recovery boiler is also used for concentrating weak black liquor to concentrated black liquor recovering 50% of the utility water being used at the plant. The regenerated water in the form of foul condensate is reused in the process. The recovery of hazardous chemicals also reduces load of environmental pollution. Which otherwise can pollute the water reservoirs, and regeneration of water makes it environmentally friendly plant. Construction and challenges in operation of recovery boiler such as smelt-water explosion are also discussed in this paper. (author)

  3. Thermo hydraulics of a steam boiler forced circulation

    International Nuclear Information System (INIS)

    In order to minimize the dryout at the steam boiler furnace in the Thermal Power Plant Kolubara B, designed are inner rifled wall tubes. This type of tubes, with many spiral grooves cut into the bore, prevents film boiling and enables the nucleate boiling be still maintained under the condition of vapour quality being app. 1. To verify the choice of the rifled tubes instead of the cheaper, smooth tubes type being justified, analyzed is the change of the actual and critical vapour quality with the furnace height, under uniform and non-uniform heat flu through evaporator walls. Furthermore, made are hydraulic calculations for various steam boiler loads, in case of both rifled and smooth tubes types, with the purpose to check the rifles influence to pressure drop increase in comparison with the smooth tubes. Also, checked is the selection of the circulation pump. Key words: evaporator, forced circulation, rifled tubes, critical vapour quality, pressure drop

  4. Burner tilting angle effect on velocity profile in 700 MW Utility Boiler

    Science.gov (United States)

    Munisamy, K. M.; Yusoff, M. Z.; Thangaraju, S. K.; Hassan, H.; Ahmad, A.

    2015-09-01

    700 MW of utility boiler is investigated with manipulation of inlet burner angle. Manipulation of burner titling angle is an operational methodology in controlling rear pass temperature in utility boilers. The rear pass temperature unbalance between right and left side is a problem caused by fouling and slagging of the ash from the coal fired boilers. This paper presents the CFD investigation on the 0° and -30° of the burner angle of the utility boiler. The results focusing on the velocity profile. The design condition of 0° burner firing angle is compared with the off-design burner angle -30° which would be the burner angle to reduce the rear pass temperature un-balance by boiler operators. It can be concluded that the -30° burner angle reduce the turbulence is fire ball mixing inside the furnace. It also shift the fire ball position in the furnace to reduce the rear pass temperature.

  5. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  6. The Modified Fouling Index Ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems

    NARCIS (Netherlands)

    Salinas-Rodriguez, S.G.; Amy, G.L.; Schippers, J.C.; Kennedy, M.D.

    2015-01-01

    Reliable methods for measuring and predicting the fouling potential of reverse osmosis (RO) feed water are important in preventing and diagnosing fouling at the design stage, and for monitoring pre-treatment performance during plant operation. The Modified Fouling Index Ultrafiltration (MFI-UF) cons

  7. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  8. Analysis of Causes for Corrosion of Tube Bundle Welded Joint of Waste Heat Boiler in Ammonia Synthesis System and Improvement%氨合成系统废热锅炉管束焊接接头腐蚀原因分析及改进

    Institute of Scientific and Technical Information of China (English)

    张英杰; 韩荣芹; 左卫锋

    2013-01-01

    氨合成系统废热锅炉投运8个月后,其管束的气体进口端联箱管与换热管间的焊接接头出现连续点状腐蚀坑样缺陷,而管束的气体出口端相应位置没有出现此类缺陷,设备其他部位未见异常.通过对氨合成系统废热锅炉管束焊接接头腐蚀部位的宏观形貌、低倍形态、化学组分、扩展方向及金相组织等特征进行分析,判定腐蚀形态为电偶腐蚀.针对腐蚀形态,采取了相应的改进措施,取得了明显的效果.%8 months after putting into operation of the waste heat boiler in ammonia synthesis system,defects of continuous dotted etch pit appeared at welded joints between gas inlet connecting tube and heat exchange tube of tube bundle,while no such kind of defect found at relevant position of gas outlet of tube bundle,and there are no troubles seen in other parts of the equipment.Through analyzing features of micro profile,macroscopic appearance,chemical composition,extension direction and metallographic structure,etc.of corroded parts of the tube bundle welded joints of the waste heat boiler in ammonia synthesis system,it is determined that the corrosion form is galvanic corrosion.In connection with the corrosion form,relevant improvement measures are taken and significant effect is obtained.

  9. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  10. Slagging and fouling characteristics of seam 32/33, Panian coalfield, Semirara Island, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Stella Marris Limos-Martinez; Koichiro Watanabe [Kyushu University, Fukuoka (Japan). Department of Earth Resources Engineering, Graduate School of Engineering

    2006-02-01

    Twenty samples of seam 32/33, the main seam of Panian coalfield in Semirara Island, Antique Province, Philippines, were collected from a borehole drilled at the northeastern edge of the coalfield. The samples were analyzed to characterize the coal geochemistry of the seam and understand why the coals of Semirara Island exhibit a high tendency for slagging and fouling despite its low average ash content. Analysis of the slagging and fouling characteristics of this seam is important because it supplies five electric power utilities and several cement plants in the Philippines. Proximate analyses and vitrinite reflectance measurements designate the rank of the seam as sub-bituminous C, based on ASTM coal classification. H/C versus O/C ratios indicate that the seam is made up largely of huminite, denoting early stages of coalification. Chemical analysis of the ash reveals high contents of Na, Mg, Fe, Ca, Ba and Sr. The strongly negative correlation of these elements with the ash content indicates an organic affinity of the chemical elements of the seam. Owing to enrichment in alkali and alkali-earth elements, slagging and fouling indices indicate that the seam has medium to high propensity for slagging and a severe tendency for fouling. The detrimental characteristics of coal feedstock from Panian mine is mitigated by modifications to the boiler design and operational conditions and by blending with coals imported from Indonesia, China and Australia. 31 refs., 6 figs., 3 tabs.

  11. Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry

    Directory of Open Access Journals (Sweden)

    J. O. ODIGURE

    2005-06-01

    Full Text Available This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

  12. Reliability Based Management of Marine Fouling

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Hansen, Peter Friis

    1999-01-01

    The present paper describes the results of a recent study on the application of methods from structural reliability to optimise management of marine fouling on jacket type structures.In particular the study addresses effects on the structural response by assessment and quantification of...... more representative marine fouling profiles for design of new structures and finally an approach is outlined on how to include inspections of marine fouling into a risk based inspection philosophy....... uncertainties of a set of parameters. These are the seasonal variation of marine fouling parameters, the wave loading (taking into account the seasonal variation in sea-state statistics), and the effects of spatial variations and seasonal effects of marine fouling parameters. Comparison of design values...

  13. EVALUASI KINERJA HEAT EXCHANGER DENGAN METODE FOULING F

    Directory of Open Access Journals (Sweden)

    Bambang Setyoko

    2012-02-01

    Full Text Available The performance of heat exchangers usually deteriorates with time as a result of accumulation of depositson heat transfer surfaces. The layer of deposits represents additional resistance to heat transfer and causesthe rate of heat transfer in a heat exchanger to decrease. The net effect of these accumulations on heattransfer is represented by a fouling factor Rf , which is a measure of the thermal resistance introduced byfouling.In this case, the type of fouling is the precipitation of solid deposits in a fluid on the heat transfer surface.The mineral deposits forming on the inner and the outer surfaces of fine tubes in the heat exchanger. Thefouling factor is increases with time as the solid deposits build up on the heat exchanger surface. Foulingincreases with increasing temperature and decreasing velocity.In this research, we obtain the coefisien clean overal 5,93 BTU/h.ft2.oF, Dirt factor 0,004 BTU/h.ft2 0F,Pressure drope in tube 2,84 . 10-3 Psi and pressure drope in shell 4,93 . 10-4 Psi.This result are less thanthe standard of parameter. Its means this Heat exchanger still clean relativity and can operate continousslywithout cleaning.

  14. [Analysis of cracking gas compressor fouling by pyrolysis gas chromatography-mass spectrometry].

    Science.gov (United States)

    Hu, Yunfeng; Fang, Fei; Wei, Tao; Liu, Shuqing; Jiang, Guangshen; Cai, Jun

    2013-06-01

    The fouling from the different sections of the cracked gas compressor in Daqing Petrochemical Corporation was analyzed by pyrolysis gas chromatography-mass spectrometry (Py/GC-MS). All the samples were cracked in RJ-1 tube furnace cracker at the cracking temperature of 500 degrees C, and separated with a 60 m DB-1 capillary column. An electron impact ionization (EI) source was used with the ionizing voltage of 70 eV. The results showed the formation of fouling was closely related with cyclopentadiene which accounted for about 50% of the cracking products. Other components detected were 1-butylene, propylene, methane and n-butane. This Py/GC-MS method can be used as an effective approach to analyze the causes of fouling in the petrochemical plants. PMID:24063202

  15. Steam boiler for fytomass

    OpenAIRE

    Baláš, Jiří

    2008-01-01

    The purpose of this Diploma Thesis was the construction design of the steam boiler for fytomass. For the specified parameters of biomass have been gradually implemented stoichiometric calculations of which are further based calculation of enthalpies of combustion gas. In the next part have been dealt with heat balance of the boiler, the efficiency of the boiler, recirculation of exhaust gases and the temperature of the combustion gases in outlet from fire. Thereinafter, the proposal of partic...

  16. Numerical simulation of the fouling process

    Energy Technology Data Exchange (ETDEWEB)

    Brahim, Fahmi; Augustin, Wolfgang; Bohnet, Matthias [Institut fuer Chemische und Termische Verfahrenstechnik, Technische Universitaet Braunschweig, Langer Kamp 7, 38106, Braunschweig (Germany)

    2003-03-01

    Fouling of heat transfer surfaces causes serious technical and economic problems in industry. The goal of this work is to simulate the aforementioned fouling process using the CFD code FLUENT. The obtained numerical results assist in designing and running heat exchangers.Based on models for the calculation of deposition and removal mass rates [S. Krause, Internat. Chem. Engrg. 33 (1993)], the crystallization fouling of calcium sulfate on flat heat transfer surfaces was simulated. The induction period, which occurs with almost all fouling processes, was therefore not considered.The simulation of real crystal growth requires a continuous variation of the geometric flow model and therefore considerable computational effort. For that reason fictitious crystal growth was simulated instead. This numerical simplification enabled an unsteady simulation to be obtained, of the fouling process and a realistic description of the temporal modification of both the flow and temperature field due to the continuous crystal growth.Based on experimental results of Hirsch [M. Bohnet et al., in: T.R. Bott et al. (Eds.), Understanding Heat Exchanger Fouling and its Mitigation, United Engineering Foundation and Begell House, New York, 1997, pp. 201-208], a model was developed which enables the calculation of the density of the fouling layer not only as a function of the local position within the fouling layer, but also as a function of the time-dependent total thickness of the fouling layer. In addition a model was developed, that enables a realistic distribution of the heat flux along the heat transfer surface during the simulation. Both models provide a more exact description of the complicated fouling process.Results of the numerical simulation are the prediction of the fouling resistance as a function of time and the calculation of the temperature distribution within the fouling layer. In view of the complexity of the fouling process during the incrustation of heat transfer surfaces

  17. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  18. Evaluation of surrogate boilers for steam generators

    International Nuclear Information System (INIS)

    Steam generator damage in pressurized water reactors is a continuing problem which results from a combination of factors including mechanical design, thermal hydraulics, materials selection, fabrication techniques, water chemistry, and system design and operation. A wide variety of steam generator damage mechanisms has been identified in operating PWRs including intergranular attack, thinning, stress corrosion cracking, erosion, denting, fatigue cracking, pitting, and fretting. Model boilers operated in parallel to the steam generators, i.e., surrogate boilers, may provide a useful tool in the study of these damage mechanisms, their causative factors, and the effects of corrosion actions. To evaluate the applicability of surrogate boilers to such studies, Steam Generator Owners Group I project S111-2 was established. Evaluation of numerous surrogate boiler design alternates led to identification of several possible acceptable approaches. The appropriate surrogate feedwater was identified as plant feedwater. Capability to operate with a tube-side temperature similar to the hot-leg temperature was considered necessary as was the ability to provide mechanical, thermal, and chemical corrosion acceleration. Practical and economically feasible surrogate boiler designs were developed in response to these design requirements

  19. Biomass fuel leaching for the control of fouling, slagging, and agglomeration in biomass power generation

    Science.gov (United States)

    Bakker, Robert Reurd

    The use of straws and other herbaceous biomass as boiler fuel is limited because of rapid formation of boiler deposits (i.e. fouling and slagging), which results in high boiler operating costs. The removal of troublesome elements in biomass that lead to slagging and fouling was tested by washing (leaching) biomass fuels in water. Potassium, sodium, and chlorine are easily removed from rice straw and other biomass in both tap and distilled water. Simple water leaching leads to considerable changes in combustion properties and ash transformation in biomass. In general, leaching elevates the sintering and melting temperatures, improves ash fusibility, and reduces the volatilization of inorganic species. Leaching leads to a notable decline in the alkali index, a broad indicator of the fouling potential of a biomass fuel. Bench-scale combustion tests at 800-1000°C furnace gas temperatures confirm that leaching dramatically changes the combustion behavior of rice straw. Full-scale combustion tests indicate that leached rice straw is technically suitable under normal boiler operating conditions. Two potential strategies to accomplish leaching of rice straw include leaching under controlled circumstances, and leaching by natural precipitation. Under controlled conditions, substantial amounts of K and Cl can be leached from rice straw with water at ambient temperatures, and without extensive particle size reduction. Leaching straw in a full-scale process is estimated to add approximately $15 to 18 Mg-1 to the fuel costs of a combustion facility. Leaving rice straw in the field and exposed to rainy weather leads to similar improvements in combustion behavior as observed with biomass that is leached under controlled circumstances. Collection of naturally leached rice straw in the Sacramento Valley through delayed harvesting is technically feasible, however its commercial implementation is dependent on harvest practices, rainfall distribution, and field-specific factors. The

  20. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently

  1. 超声波检测技术在锅炉受热面管氧化皮检测中的应用%Application of Ultrasonic Technique in Measuring Oxide-layer Thickness in Boiler Heat-absorbing Tube Inspection

    Institute of Scientific and Technical Information of China (English)

    张凤安; 朱邦同

    2014-01-01

    Measuring the thickness of oxide-layer in heat-absorbing tubes is always an important means to prevent heat-absorbing tubes from leaking.This paper mainly introduced the application of ultrasonic technique in measuring oxide-layer thickness in boiler finishing superheater of some power plant.By comparing the test results by microscope and endoscopy with the field data,it further validates the accuracy and reliability of this technology.At the same time,comparing this tech-nology with traditional RT technology and the measurement of oxide-layer in stainless steel tube bend was done and the measurement of oxide-layer by cutting tube was also done,and its advantages and prospect were pointed out.It has the cer-tain instruction function to guide the boiler inspection and guarantee the safe and economic operation of boilers.%锅炉受热面管氧化皮检测历来都是预防锅炉爆管的重要手段,主要介绍了超声波检测技术在某电厂锅炉末级过热器管内壁氧化皮检测中的实际应用,通过将超声波检测结果与内窥镜检查以及显微镜下的测量结果进行比较,进一步验证了该技术的准确性和可靠性。同时,将该技术与传统的射线拍片技术、不锈钢氧化皮堆积测量技术和割管取样测量等方法做了比较,指出超声波检测技术的优势及应用前景,对指导锅炉检修及保障锅炉安全经济运行具有一定的指导作用。

  2. Tube Wall Temperature Calculation and Oxide Film Effects Analysis on High-temperature Confection Heating Surface of Utility Boiler%电站锅炉高温对流受热面壁温计算及氧化膜影响分析

    Institute of Scientific and Technical Information of China (English)

    吴恺; 王甲安; 吕伟为; 徐鸿

    2015-01-01

    火电厂锅炉爆管事故是电厂事故中最常见的情形之一,爆管事故的发生对电厂的安全性经济性影响巨大。而此类问题的发生和锅炉管壁温度超温密不可分,因此若能全面准确可靠的监测受热面管壁温度将对电厂意义重大。但是电厂锅炉由于炉内壁温测点安装较困难,另外由于炉内温度高,即使安装了测点,测点通常寿命不长。通常安装在炉外大包内的壁温测点只能在一定程度上反应管道内部介质的温度,而对于最危险处的壁温却无法直接得到。本文针对此问题,对壁温计算模型进行了分析,利用Fluent数值模拟软件进行了燃烧模拟计算,使用Delphi语言对该计算模型编制了相应的程序,结合某电厂2028t/h锅炉实例进行计算,并假设氧化膜存在对结果的影响进行了再次计算和分析。能对电厂锅炉的安全运行提供正确的指导,也可为电厂锅炉管道的及时检修提出指导,具有重要的工程实用价值。%Power plant boiler pipe rupture accident is one of the most common situations in power plant. Tube-burst accident has had a huge impact on the safety and economy in Power plant. The occurrence of such problems are inextricably linked with the boiler tube wall over-temperature, so it is great significance to comprehensively accurately and reliably mon-itor the tube wall temperature of heat exchangers in power plants. But due to the power plant boiler furnace wall temperature measuring point is difficult to install. Even if installed, the high temperature in the furnace usually makes it not long life. For the most dangerous place, the wall temperature cannot directly obtain.Aimed at this problem, this author analyze the wall temperature calculation model, combined with power plant example of 2028 t/h boiler, use Delphi language to compile the corresponding program for the calculation model, use numerical simulation software Fluent to

  3. Microbial Relevant Fouling in Membrane Bioreactors: Influencing Factors, Characterization, and Fouling Control

    OpenAIRE

    Anthony G. Fane; Bing Wu

    2012-01-01

    Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that inf...

  4. Solved and unsolved problems in boiler systems. Learning from accidents

    International Nuclear Information System (INIS)

    This paper begins with a brief review on the similarity law of conventional fossil-fuel-fired boilers. The concept is based on the fact that the heat release due to combustion in the furnace is restricted by the furnace volume but the heat absorption is restricted by the heat transfer surface area. This means that a small-capacity boiler has relatively high specific furnace heat release rate, about 10 MW/m3, and on the contrary a large-capacity boiler has lower value. The surface-heat-flux limit is mainly dominated by the CHF inside the water-wall tubes of the boiler furnace, about 350 kW/m2. This heat-flux limit is almost the same order independently on the capacity of boilers. For the safety of water-walls, it is essential to retain suitable water circulation, i.e. circulation ratio and velocity of water. This principle is a common knowledge of boiler designer, but actual situation is not the case. Newly designed boilers often suffer from similar accidents, especially burnout due to circulation problems. This paper demonstrates recent accidents encountered in practical boilers, and raises problems of rather classical but important two-phase flow and heat transfer. (author)

  5. Fouling and Antifouling of Depetanizer in Ethylene Units

    Institute of Scientific and Technical Information of China (English)

    Dong Zhongjie; Li Yunlong; Fan Xuezhi; Hong Qingyao

    2002-01-01

    Factors affecting fouling of depentanizer in ethylene units wereexplored through study of thecomposition of pyrolysis gasoline, C5 distillate and fouling deposits from the depentanizer while takinginto consideration the processing parameters. A variety of antifouling measures, in particular the injec-tion of a special anti-fouling agent into the Cs gas phase pipeline and the C5 distillate reflux pipelinewere introduced. Commercial evaluation test of a multifunctional anti-fouling agent, the RIPP-1404anti-fouling agent, was also described.

  6. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    OpenAIRE

    Prateep Pattanapunt; Kanokorn Hussaro; Tika Bunnakand; Sombat Teekasap

    2013-01-01

    Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation p...

  7. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  8. Investigation of a twisted-tube type shell-and-tube heat exchanger

    OpenAIRE

    Danielsen, Sven Olaf

    2009-01-01

    This master thesis investigates twisted tube type shell-and-tube heat exchangers with emphasis on thermal-hydraulic characteristics, fouling and vibration properties. An extensive literature study has been carried out in order to map all published research reports written on the topic. The mapping of performed research shows that the available information is limited.Mathematical correlations for twisted tube thermal-hydraulic characteristics are extracted from the research reports found in th...

  9. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  10. System for measuring the effect of fouling and corrosion on heat transfer under simulated OTEC conditions. [HTAU and LABTTF codes

    Energy Technology Data Exchange (ETDEWEB)

    Fetkovich, J.G.

    1976-12-01

    A complete system designed to measure, with high precision, changes in heat transfer rates due to fouling and corrosion of simulated heat exchanger tubes, at sea and under OTEC conditions is described. All aspects of the system are described in detail, including theory, mechanical design, electronics design, assembly procedures, test and calibration, operating procedures, laboratory results, field results, and data analysis programs.

  11. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  12. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tice, D.R.; Platts, N.; Raffel, A.S. [Serco Assurance (United Kingdom); Rudge, A. [British Energy Generation Ltd. (United Kingdom)

    2002-07-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid

  13. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    International Nuclear Information System (INIS)

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid reagent being

  14. Increased algal fouling on mussels with barnacle epibionts: a fouling cascade

    Science.gov (United States)

    Gutiérrez, Jorge L.; Palomo, M. Gabriela

    2016-06-01

    If the external surfaces of epibionts are more suitable to other fouling species than those of their basibionts, a 'fouling cascade' might occur where epibionts facilitate secondary colonization by other epibionts. Here we evaluate whether the presence of epibiotic barnalces (Balanus glandula) influences the probability of mussel (Brachidontes rodriguezii) fouling by ephemeral red algae (Porphyra sp.) in a Southwestern Atlantic rocky shore. Mussels with barnacle epibionts showed a higher prevalence of Porphyra sp. fouling (32-40% depending on sampling date) than mussels without them (3-7%). Two lines of evidence indicate that barnacles facilitate Porphyra sp. fouling. First, most Porphyra sp. thalli in mussels with barnacle epibionts were attached to barnacle shells (75-92% of cases). Secondly, Porphyra sp. associated with mussels with barnacle epibionts in a proportion that significantly exceeded that expected under random co-occurrence. These results suggest the occurrence of a fouling cascade where barnacle epibiosis on mussels facilitates subsequent algal fouling. Recognizing the occurrence of such fouling cascades is important because they might explain the non-random aggregation of multiple epibiotic species onto a proportionally few individuals of the host species.

  15. Microbial Relevant Fouling in Membrane Bioreactors: Influencing Factors, Characterization, and Fouling Control

    Directory of Open Access Journals (Sweden)

    Anthony G. Fane

    2012-08-01

    Full Text Available Microorganisms in membrane bioreactors (MBRs play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that influence microbial behaviors (community compositions, physical properties, and microbial products. The state-of-the-art techniques to characterize biofoulants in MBRs were reported. The strategies for controlling microbial relevant fouling were discussed and the future studies on membrane fouling mechanisms in MBRs were proposed.

  16. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  17. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  18. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  19. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  20. Charting the boiler market

    International Nuclear Information System (INIS)

    The ''boiler market'' of electricity, sometimes called unsecured transmission, is electric power consumption that in public statistics is restricted by the obligation of the customers to cut their consumption at short notice and therefore are granted some discount on the network lease. The present document is part of a project that aims to provide a better understanding of the flexibility in the Norwegian power market, limited by the power-intensive industry and the boiler market. It discusses the boiler market. It begins with a discusses of the available statistics, where different sources show very dissimilar consumption figures. Then it examines how the consumption in the boiler market developed during the winter 2002/2003. Finally, there is a description of the regulations of unsecured transmission and how the various network owners adapt to the regulations.

  1. Drag of Clean and Fouled Net Panels--Measurements and Parameterization of Fouling.

    Directory of Open Access Journals (Sweden)

    Lars Christian Gansel

    Full Text Available Biofouling is a serious problem in marine aquaculture and it has a number of negative impacts including increased forces on aquaculture structures and reduced water exchange across nets. This in turn affects the behavior of fish cages in waves and currents and has an impact on the water volume and quality inside net pens. Even though these negative effects are acknowledged by the research community and governmental institutions, there is limited knowledge about fouling related effects on the flow past nets, and more detailed investigations distinguishing between different fouling types have been called for. This study evaluates the effect of hydroids, an important fouling organism in Norwegian aquaculture, on the forces acting on net panels. Drag forces on clean and fouled nets were measured in a flume tank, and net solidity including effect of fouling were determined using image analysis. The relationship between net solidity and drag was assessed, and it was found that a solidity increase due to hydroids caused less additional drag than a similar increase caused by change in clean net parameters. For solidities tested in this study, the difference in drag force increase could be as high as 43% between fouled and clean nets with same solidity. The relationship between solidity and drag force is well described by exponential functions for clean as well as for fouled nets. A method is proposed to parameterize the effect of fouling in terms of an increase in net solidity. This allows existing numerical methods developed for clean nets to be used to model the effects of biofouling on nets. Measurements with other types of fouling can be added to build a database on effects of the accumulation of different fouling organisms on aquaculture nets.

  2. Studies Concerning Water-Surface Deposits in Recovery Boilers

    International Nuclear Information System (INIS)

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  3. Cause Analysis and Preventive Measures on Bursting of High Temperature Superheater Tubes of 680 t/h Power Station Boiler%680t/h电站锅炉高温过热器爆管原因分析及预防措施

    Institute of Scientific and Technical Information of China (English)

    王小聪; 黎华; 马括; 卢忠铭

    2012-01-01

    Bursting of high temperature superheater tubes of 680 t/h power station boiler coccured twice reeently, and macroscopic examination, chemical compositions analysis and metallographic examination were investigated to find the casuse, the results showed that the failure was due to overheat which led to primary creep, then some effective prevention measures were taken.%某台680t/h电站锅炉高温过热器最近发生两起爆管事故,通过对爆管样管进行宏观检验、化学成分分析和金相检验判断爆管的根本原因。结果表明:由于长时间超温运行导致管子早期蠕变引起爆管,并采取了有效的预防措施。

  4. Application of the decree 2910 for coal fired boilers; Application de l`arrete 2910 aux chaudieres a charbon

    Energy Technology Data Exchange (ETDEWEB)

    Hing, K. [CDF Energie, Charbonnages de France, 92 - Rueil-Malmaison (France)

    1997-12-31

    The impacts of the new French decree 2910 concerning the classification of all combustion equipment with regards to their energy sources, energy efficiency and pollution control, on 2 to 20 MW coal-fired boilers, are discussed, with emphasis on their pollutant emissions (SO{sub 2}, NO{sub x} and ashes). The compositions of several coals is presented and the various types of coal-fired boilers adapted to the new decree are presented: automatic boilers, dense fluidized bed boilers, vibrating and chain grids with fume tubes and water tubes

  5. Developments and operational experience with ceramic boiler wall protection systems in fluidised bed boilers; Entwicklungen und Betriebserfahrungen mit keramischen Rohrwandschutzsystemen in der Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Markus [Juenger + Graeter GmbH, Schwetzingen (Germany); Roschek, Dirk; Ipsen, Christoph [Stadtwerke Flensburg GmbH, Flensburg (Germany)

    2013-02-01

    More alternative fuels, such as biomass, refuse derived fuels, sewage sludge, meat and bone meal etc. are being used in conventional CFB power plants originally designed for coal combustion. However, co-combustion of these materials causes problems which are not always advantageous for continuous plant operation, i.e. mostly substantially higher fouling susceptibility of the plants was noticed. In some cases even a far greater tendency to boiler damage was observed as result of corrosion, erosion, and mechanical effects. Based on these constraints, the cooperation between Stadtwerke Flensburg and Juenger+Graeter (J+G) resulted in the development of a ceramic boiler wall protection system which would significantly reduce the susceptibility to boiler damage in the combustion chamber.

  6. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2003-07-01

    This book is the published version of the e-book with the same name. The interactive lecture slides, which accompany most chapters, exist only in the online version and on the attached CD-Rom. The Steam Boiler Technology e-book is the main course book for the course on steam boiler technology provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers. The chapters of the second edition have been corrected based on reader and reviewer comments, and four new chapters have been added. The user interface of the electronic version has also been updated. The password for the online book will be changed once a year. If you have problems accessing the online book, or need a new password, please contact sebastian.teir@hut.fi.

  7. A Flue Gas Tube for Thermoelectric Generator

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a flue gas tube (FGT) (1) for generation of thermoelectric power having thermoelectric elements (8) that are integrated in the tube. The FTG may be used in combined heat and power (CHP) system (13) to produce directly electricity from waste heat from, e.g. a biomass boiler...

  8. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating...... the boiler performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with...

  9. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V.

    1997-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  10. 49 CFR 236.58 - Turnout, fouling section.

    Science.gov (United States)

    2010-10-01

    ..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Track Circuits § 236.58 Turnout, fouling section. Rail joints within the fouling...

  11. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  12. Characterization of fouling of membrane contactors

    DEFF Research Database (Denmark)

    Ciurkot, Kaludia; Zarebska, Agata; Christensen, Knud Villy

    2013-01-01

    In this study liquid-liquid membrane contactors have been tested for ammonia removal from model manure solution and undigested pig manure. The aim of this work is to compare the efficiency of ammonia removal by different hydrophobic membranes including the material’s influence on mass transfer of...... ammonia and membrane fouling tendency. The surface morphology of both clean and fouled membranes by model manure solution and undigested pig manure has been studied by: Optical and Atomic Force Microscopy and contact angle measurements. Based on the experimental results, it is concluded that real manure...... achieved higher ammonia removal than the synthetic model manure solution. This might be due to the larger particle size of the milled straw in the model solution compared to the size of suspended solids present in real manure. From the fouling autopsy, it was found that PTFE membranes are more prone to...

  13. Investigation of organic fouling of microfiltration membrane

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; CUI Chong-wei; MA Jun

    2005-01-01

    Because the natural organic matters (NOMs) and proteins are the principal foulants of microfiltration membranes in drinking water, the primary aim of this paper is to obtain a better understanding of the interactions between those foulants and the microfiltration membrane from a novel view of coagulation. Based on reviewed literature and our own analysis, the authors consider that the behaviors of NOMs in the fouling of microfiltration membrane are like a form of crystal growth, and we recognize that the extent of the membrane hydrophobicity plays an essential role in NOMs fouling. However, proteins' fouling is more affected by intermolecular interaction. Additionally, the effect of membrane surface chemistry is not as essential as it is in the situation of NOMs.

  14. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...... and to verify whether nonlinear control is needed. Finally a controller based on single loop theory is used to analyse if input constraints become active when rejecting transient behaviour from the disturbance steam flow. The model analysis shows large variations in system gains at steady state as...

  15. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  16. The New Performance Calculation Method of Fouled Axial Flow Compressor

    OpenAIRE

    Huadong Yang; Hong Xu

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section in...

  17. Hydrodynamic approaches to reducing membrane fouling

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-01

    Membranes are gaining increasing use in a wide variety of liquid and gas separations. A pervasive problem is membrane fouling due to material depositing on the membrane surface and within the membrane pore structure. Professor Georges Belfort has made significant contributions to reducing membrane fouling by hydrodynamic approaches for ultrafiltration and microfiltration. I will review some of his work, as well as related work by myself and others, in this area. Topics which will be discussed include particle migration during crossflow filtration, curved channels which promote centrifugal instabilities, and rapid backpulsing.

  18. PERFORMANCE EVALUATION OF BOILERS (80 AND 40 TPH AND 21MW STEAM TURBINE OF COGEN PLANT

    Directory of Open Access Journals (Sweden)

    D.P.TAWARE

    2014-06-01

    Full Text Available The proposed study is conducted at The Malegaon Sugar Mills, Baramati, and District Pune. Data is collected for a high pressure 80 TPH & 40TPH bagasse fired boiler. The boilers are natural circulation and bi-drum water tube type. The both boilers are equipped with super heater, air heater and economizer in order to utilize maximum available heat of flue gases. Boiler efficiency is calculated by indirect method. Also plant has 21 MW cogeneration capacity, with two turbines are installed with capacity 14MW (Back Pressure Type & 7MW (Extraction Cum Condensing Type. From the heat input given to turbines per unit of electricity generated, the turbine heat rate is calculated. Different instruments and devices are used to record the different parameters of both boilers & turbines. Steam produced per ton of bagasse is being found out for both boilers.

  19. In search of an alternative high-pressure boiler water treatment program

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Peter [Sitech Manufacturing Services, Geleen (Netherlands); Savelkoul, Jo

    2012-07-15

    In the early eighties, traditional inorganic chemistry treated high-pressure (HP) industry boilers, in the Netherlands and elsewhere, suffered from boiler tube failures (BTFs). Benchmarking and root cause analyses showed BTFs to be indisputably connected to a combination of high heat transfer rates and magnetite deposits. From 1980 to 1995, research was carried out on boiler water problems and on treatment of chemicals both in HP autoclaves at the DSM Water Laboratory and in real DSM plant boiler systems. Moreover, thorough desk studies were carried out. Polyamine treatment came out as the most promising option to mitigate BTFs. It has been in use in Dutch industrial high-pressure boilers since 1996. This paper presents results from our research and from boiler and turbine experience and inspections totaling 15 years of polyamine treatment. (orig.)

  20. 49 CFR 236.104 - Shunt fouling circuit.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunt fouling circuit. 236.104 Section 236.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.104 Shunt fouling circuit. Shunt fouling...

  1. 76 FR 76896 - International Anti-Fouling System Certificate

    Science.gov (United States)

    2011-12-09

    ... Security FR Federal Register IAFS International Anti-fouling System NAICS North American Industry... SECURITY Coast Guard 46 CFR Part 8 RIN 1625-AB79 International Anti-Fouling System Certificate AGENCY... Anti-fouling System Certificate'' in the Federal Register (76 FR 54419). We did not receive...

  2. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  3. Investigation and Treatment of Defects in T23 Steel Welding Joint for water-wall tubes in Ultra-supercritical Tower-type Boiler%超超临界机组塔式炉T23水冷壁缺陷成因分析及治理研究

    Institute of Scientific and Technical Information of China (English)

    宫广正

    2014-01-01

    T23管焊接接头失效已成为超超临界机组安全运行的重大隐患。以某电厂百万超超临界塔式锅炉为例,对锅炉水冷壁T23管开裂原因进行分析,发现焊接接头韧性不足和残余应力水平较高是导致失效的主要因素,据此提出了T23钢管焊接接头缺陷的治理措施。%The failure of T23 Steel tube welded joints has become an important hidden danger to safety operation of ultra-su-percritical units. This paper investigated the cracking reasons of T23 Steel water-wall tube in a 1,000 MW ultra-supercritical tower-type boiler and found the major causes are lacking of the toughness and high level of the residual stress in welding joints. According to the result, a treatment measure of the T23 Steel welded joints was suggested.

  4. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, David W. [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Shingledecker, John P. [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2011-05-11

    Coal-fired power plants are a significant part of the nation's power generating capacity, currently accounting for more than 55% of the country's total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760°C (1400°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  5. Fouling corrosion in aluminum heat exchangers

    Directory of Open Access Journals (Sweden)

    Su Jingxin

    2015-06-01

    Full Text Available Fouling deposits on aluminum heat exchanger reduce the heat transfer efficiency and cause corrosion to the apparatus. This study focuses on the corrosive behavior of aluminum coupons covered with a layer of artificial fouling in a humid atmosphere by their weight loss, Tafel plots, electrochemical impedance spectroscopy (EIS, and scanning electron microscope (SEM observations. The results reveal that chloride is one of the major elements found in the fouling which damages the passive film and initiates corrosion. The galvanic corrosion between the metal and the adjacent carbon particles accelerates the corrosive process. Furthermore, the black carbon favors the moisture uptake, and gives the dissolved oxygen greater chance to migrate through the fouling layer and form a continuous diffusive path. The corrosion rate decreasing over time is conformed to electrochemistry measurements and can be verified by Faraday’s law. The EIS results indicate that the mechanism of corrosion can be interpreted by the pitting corrosion evolution mechanism, and that pitting was observed on the coupons by SEM after corrosive exposure.

  6. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...

  7. Fouling and Antifouling of Depetanizer in Ethylene Units

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Factors affecting fouling of depentanizer in ethylene units were explored through study of thecomposition of pyrolysis gasoline, C5 distillate and fouling deposits from the depentanizer while takinginto consideration the processing parameters. A variety of antifouling measures, in particular the injec-tion of a special anti-fouling agent into the Cs gas phase pipeline and the C5 distillate reflux pipelinewere introduced. Commercial evaluation test of a multifunctional anti-fouling agent, the RIPP-1404anti-fouling agent, was also described.

  8. The Modified Fouling Index Ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems

    KAUST Repository

    Salinas-Rodriguez, Sergio G.

    2015-02-18

    Reliable methods for measuring and predicting the fouling potential of reverse osmosis (RO) feed water are important in preventing and diagnosing fouling at the design stage, and for monitoring pre-treatment performance during plant operation. The Modified Fouling Index Ultrafiltration (MFI-UF) constant flux is a significant development with respect to assessing the fouling potential of RO feed water. This research investigates (1) the variables influencing the MFI-UF test at constant flux filtration (membrane pore size, membrane material, flux rate); and (2) the application of MFI-UF into pre-treatment assessment and RO fouling estimation. The dependency of MFI on flux, means that to assess accurately particulate fouling in RO systems, the MFI should be measured at a flux similar to a RO system (close to 20 L/m2/h) or extrapolated from higher fluxes. The two studied membrane materials showed reproducible results; 10% for PES membranes and 6.3% for RC membranes. Deposition factors (amount of particles that remain on the surface of membrane) were measured in a full-scale plant ranging between 0.2 and 0.5. The concept of “safe MFI” is presented as a guideline for assessing pre-treatment for RO systems.

  9. Mitigation of Syngas Cooler Plugging and Fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bockelie, Michael J. [Reaction Engineering International, Salt Lake City, UT (United States)

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  10. Control Properties of Bottom Fired Marine Boilers

    OpenAIRE

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of t...

  11. Hot-state experiment on double-pipe heat exchanger under coupled effect of fouling and acid%积灰与酸耦合作用下套管换热器传热特性热态实验

    Institute of Scientific and Technical Information of China (English)

    李飞; 孙奉仲; 史月涛

    2014-01-01

    Flue gas dew point is the key indicator of low temperature corrosion, and restricts deep utilization of boiler flue gas heat. Fouling of heat exchanger surface is a major factor in deterioration of heat transfer. When fluid flows across heat exchange tubes, fouling and acid condensation influence heat transfer of heat exchanger. In the flue gas environment with dust and acid, a hot-state test was conducted to analyze heat transfer characteristics at different outer wall temperatures, and the dew point of flue gas for engineering application was obtained with a higher use value. The influence of the tubes’ heat transfer characteristics with varying fouling and acid condensation was determined. Ash deposition with different amounts of acid condensation was investigated through analyzing the ash samples at different outer wall temperatures. The value of applied dew point for engineering was given as 72℃, which was at least 35℃ lower than the acid dew point in thermodynamics.%烟气露点是低温腐蚀的关键指标,制约着锅炉尾部排烟余热的深度利用。换热器表面积灰是传热特性恶化的主要原因,电站锅炉尾部烟气环境中,积灰与酸凝结共同作用影响换热器的传热特性。在含尘、含酸的烟气环境下对换热器传热特性进行热态实验研究,以套管换热器为基础,得到具有更高使用价值的烟气工程应用露点,结合传热特性随外壁温的变化情况,得到换热管传热特性随积灰及酸耦合的变化规律;并通过对不同外壁温下灰样的分析,得到不同酸凝结状况下积灰规律,得到实验环境下的工程应用酸露点温度为72℃,较传统热力学酸露点低35℃以上。

  12. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  13. Geometrical Optimization for Outlet Tubes at Header of Top Roof Superheater in a Utility Boiler of a Power Plant%某电厂汽包锅炉过热器顶棚管联箱结构优化研究

    Institute of Scientific and Technical Information of China (English)

    吕玉贤; 庞力平; 李文学

    2014-01-01

    针对某电厂锅炉顶棚过热器频繁爆管现象,建立了与现场实际相同的几何模型,采用计算流体动力学方法对联箱内部流动情况进行数值研究。研究发现联箱三通附近由于静压分布异常,导致引入管周边的分支管静压较低,流量分配相对减少,发生传热恶化,进而发生爆管。该文提出优化的几何结构,通过对特定分支管引出方向进行调整,显著提升了并联分支管流量分配的均匀性,为电站锅炉分配联箱设计和结构优化提供一定的参考。%Numerical simulation was performed on the internal flow of header using the method of computational fluid dynamics with geometry model builded the same as practical field for the frequent rupture of roof superheater in a power station. The results indicate that due to the abnormal static pressure distribution in the area of Tee-junction of header, the static pressure of the branch pipes around inlet tube is so low, and the mass flow rate decreases relatively, then the heat transferation of tubes deteriorates,finally the tubes rupture. This paper proposes an improved geometric construction. By changing the leading direction of specific branch pipes, the uniformity of mass flow distribution in branch pipes promotes significient. It will offer a great reference for further design and optimization of distribution header in power station boilers.

  14. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  15. Novel graphical approach as fouling pinch for increasing fouling formation period in heat exchanger network (HEN) state of the art

    International Nuclear Information System (INIS)

    In this paper a new graphical tool is proposed for investigation of fouling formation period in heat exchanger networks (HEN). The objective of this paper is increasing the time that HEN can perform its desirable heat transfer operation without required cleaning process. In a typical heat exchanger network, fouling formation rate of some streams is more than other ones. The method obtained in this work is based on given more opportunity for fouling formation for streams with high fouling formation rate. In fact high fouling formation rate streams are replaced with low fouling formation rate streams between different heat exchangers so that more fouling formation opportunity may be given for HEN. Therefore the HEN cleaning time decreases in fixed time period and the high fouling formation streams should pass from the path that the low fouling formation rate stream previously has passed, and inversely. As a result, secondly stream with high fouling formation rate mixes with residues of primary stream (low fouling formation rate stream). Therefore we should consider to adoption and conformability of streams structures (for prevention of streams destruction) and thermal considerations (for desirable heat transfer). Outlet temperatures of hot and cold streams should state in predefined temperatures. For satisfying thermal consideration after streams replacement this approach can be used in plants that cleanliness and its operational costs are most important problem.

  16. The economics of repeated tube thickness surveys

    International Nuclear Information System (INIS)

    The use of tube thickness surveys in boilers is an example of a commonly applied condition monitoring (CM) technique for maintenance and it leads to condition-based maintenance (CBM) of the boiler tubes. There are, however, limits to the economics of this type of strategy which are frequently overlooked in discussion of CBM strategies. This paper considers several models of maintenance strategies. Conditions in which breakdown maintenance (BM), routine total replacement (routine maintenance, RM) and condition-based replacement (which for simplicity is referred to as CM) are considered. Some general rules about the economical range of each strategy are developed. The case study examines the use of ultrasonic testing of boiler tubes in power stations in some detail

  17. Installations of SNCR on bark-fired boilers

    International Nuclear Information System (INIS)

    Experience has been collected from the twelve bark-fired boilers in Sweden with selective non catalytic reduction (SNCR) installations to reduce emissions of nitrogen oxides. Most of the boilers have slope grates, but there are also two boilers with cyclone ovens and two fluidized bed boilers. In addition to oil there are also possibilities to burn other fuel types in most boilers, such as sludge from different parts of the pulp and paper mills, saw dust and wood chips. The SNCR installations seems in general to be of simple design. In most installations the injection nozzles are located in existing holes in the boiler walls. The availability is reported to be good from several of the SNCR installations. There has been tube leakage in several boilers. The urea system has resulted in corrosion and in clogging of one oil burner. This incident has resulted in a decision not to use SNCR system with the present design of the system. The fuel has also caused operational problems with the SNCR system in several of the installations due to variations in the moisture content and often high moisture content in bark and sludge, causing temperature variations. The availability is presented to be high for the SNCR system at several of the plants, in two of them about 90 %. The results in NOx reduction vary between the installations depending on boiler, fuel and operation. The emissions are between 45 and 100 mg NO2/MJ fuel input and the NOx reduction rates are in most installations between 30 and 40 %, the lowest 20 and the highest 70 %. 13 figs, 3 tabs

  18. Gas mixing processes in nuclear AGR boilers

    International Nuclear Information System (INIS)

    To ensure the safe operation and control of Nuclear (A.G.R.) boilers, 2-D computational models are currently under development. The aim of these models is to predict the flow and temperature distribution of the gas and water side under different operational conditions. These models are based on numerical solutions of the 2-D flow and heat transfer equations for turbulent flow in boilers. Measurements on a closely pitched tube bank with water cooling have demonstrated considerable discrepancies between experimental results and computer predictions. This investigation is therefore being carried out to study theoretically and experimentally the flow and heat transfer process under such a boiler condition. A two dimensional computer model has been developed which incorporates the effects of gas mixing and the interactions between the gas and water side. To cover the complete heat exchanger the governing equations are written in the lumped parameter form. The governing equations have been solved by a computer code written in FORTRAN-77. To test the validity of this model, the computer predictions have been compared with experimental results. Results to date indicate reasonable agreement with experiment and a further refinement of the computer model is indicated. (author)

  19. Heat transfer performance of condenser tubes in an MSF desalination system

    International Nuclear Information System (INIS)

    The present research examines the amount of condensed fresh water off the outer-side surface of heat exchangers in an MSF system. The quantitative modeling of condensed water on the outer surface of comparable tubes, enhanced and plain, in a simulated MSF technique is investigated. An adapted simulation design on a test-rig facility, accounting for the condenser tubing in actual industrial desalination plate-form, is used with corrugated and smooth aluminum-brass material tubes 1100mm long and 23mm bore. A single phase flow of authentic brine water that typifies real fouling is utilized to simulate the actual environmental life of a multi-stage flashing desalination system, with coolant flow velocity 0.1 m/s in the two delineated types of condenser tubing. It is demonstrated that the condensate water amount from the specified enhanced tube is about 1.22 times the condensate water amount from the smooth tube, adaptive for 140 running hours under deliberated constrains. The topic covers a comparative analysis of thermal performance. Comparing results with fresh water confirm the effect of fouling on significantly lowering the value of the overall heat transfer coefficient versus time. Fouling resistance Rf is reported with the critical coolant flow speed of 0.1 m/s. Comparison between the fouling resistance for both smooth and corrugated tubes versus time is performed. The fouling thermal resistance of the corrugated tube is 0.56 of the fouling thermal resistance of the smooth tube after140 running hours of the experiment are concluded. Overall, in the case of real brine, results prove that heat performance for the corrugated tube is superior to the plain tube over the studied time period (140 hrs) for the chosen range of flow speeds

  20. Optimization of Load Assignment to Boilers in Industrial Boiler Plants

    Institute of Scientific and Technical Information of China (English)

    CAO Jia-cong; QIU Guang; CAO Shuang-hua; LIU Feng-qiang

    2004-01-01

    Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.

  1. Investigation into fouling factor in compact heat exchanger

    Directory of Open Access Journals (Sweden)

    Masoud Asadi

    2013-03-01

    Full Text Available Fouling problems cannot be avoided in many heat exchanger operations, and it is necessary to introduce defensive measures to minimize fouling and the cost of cleaning. The fouling control measures used during either design or operation must be subjected to a thorough economic analysis, taking into consideration all the costs of the fouling control measures and their projected benefits in reducing costs due to fouling. Under some conditions, nearly asymptotic fouling resistances can be obtained, and this suggests a somewhat different approach to the economics. Fouling is a generic term for the deposition of foreign matter on a heat transfer surface. Deposits accumulating in the small channels of a compact heat exchanger affect both heat transfer and fluid flow. Fouling deposits constricting passages in a compact heat exchanger are likely to increase the pressure drop and therefore reduce the flow rate. Reduced flow rate may be a process constraint; it reduces efficiency and increases the associated energy use and running costs. Maintenance costs will also increase. Fouling remains the area of greatest concern for those considering the installation of compact heat exchangers. The widespread installation of compact heat exchangers has been hindered by the perception that the small passages are more strongly affected by the formation of deposits. In this paper different types of fouling and treatment are presented.

  2. Superheater corrosion in kraft recovery boilers; Korrosion hos oeverhettare i sodapannor. En oeversikt och diskussion

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, F. [AaF-IPK, Stockholm (Sweden)

    1997-02-01

    Corrosion seems to be the most essential factor limiting the life and the availability of kraft recovery boilers. The steam temperature from the kraft recovery boiler has, seen from the view of electricity production and steam turbine operation, traditionally been kept moderate, especially in comparison with steam data from normal utility power plants. So the corrosion of the superheaters has been more a limitation for the temperature of the steam produced by the boiler than a life length limitation. Both the pressure and the temperature of the steam are limited by corrosion. The temperature of the boiling water, and hence the pressure, is limited by the corrosion in the lower furnace. The temperature of the steam is limited by the corrosion in the superheater. Kraft boiler superheater corrosion is here governed not only by the boiler design, but more by the mill chemistry and boiler operation practice. This report discusses the formation and the properties of the deposits and their relation to boiler operation and the corrosion of the superheater tube material. We have tried to understand the corrosion in the kraft boiler superheaters better by comparing with the experience from the utility boilers. 86 refs, 79 figs

  3. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  4. Resistance welding of tubes at low regidual pressure jn tube cavity

    International Nuclear Information System (INIS)

    The procedure of butt resistance welding of boilers in diameter of 32 mm at low residual pressure in tube cavities has been studied. It is shown that the creation of low residual pressure in tube cavity makes it possible to produce qualitative joints of tubes of the 20, 12Kh1MF, 12Kh18N12T steels. The maximum relative deformation in the butt zone should be in the range of 0.5...0.6

  5. Fouling polyzoans of Bombay offshore waters

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; DeSouza, A.P.; Wagh, A.B.

    ; 1831 Nitsche, 1869 Allman, 1856 Busk,1852 Busk,1859 Johnston, 1847 . Lamx.,1812 Crisia elongata Milne Edwards, 1838 . DesCription: Zoarium erect, bushy, well branched. Branches elongate with jet black chitinous joints. Zooids tubular, alternate....N. Ganapati, 1978. Ecology of fouling bryozoans at Visakhapatnarn Harbour. Proceedings of Indian Academy of Sciences (Animal Sciences), 87 :63 -75. Rao, K.S. and r.N. Ganapati, 1980. Epizoic fauna of Thalamoporella vaT. indica and Pherusclla tubulosa (Bryozoa...

  6. Numerical simulation based cold tests for a tangentially fired boiler

    Institute of Scientific and Technical Information of China (English)

    XIANG Yuhua; ZHANG Jiayuan; ZHANG Xiaohui

    2012-01-01

    Such problems as flameout and serious slagging frequently occurred in a 170 t/h tangentially fired boiler burning inferior coals and with low load.Thus,cold tests were carried out to comprehensively investigate the performance of each air tube and the size and position of the tangential circle.Therefore,the cause and area of slagging in furnace can be determined.Thus,by numerical simulation on combustion,the optimal operation parameters for the boiler burning different coals under various loads conditions can be provided.The actual application showed that,the boiler fed with present coal can be long-term operated stably at 60% load,and its heat efficiency was up to 91%.Moreover,the abnormal flameout no longer occurred,and the slagging was alleviated a lot.

  7. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    Science.gov (United States)

    Biyanto, Totok R.

    2016-06-01

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.

  8. New technique of the local heat flux measurement in combustion chambers of steam boilers

    Science.gov (United States)

    Taler, Jan; Taler, Dawid; Sobota, Tomasz; Dzierwa, Piotr

    2011-12-01

    A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.

  9. [A novel approach of using fouling index to evaluate NOM fouling behavior during low pressure ultrafiltration process].

    Science.gov (United States)

    Xiao, Ping; Xiao, Feng; Zhao, Jing-Hui; Qin, Tong; Wang, Dong-Sheng; Feng, Jin-Rong; Xu, Guang

    2012-12-01

    In this study, fouling index (FI) was introduced as a novel approach to investigate NOM fouling behavior during low pressure membrane ultrafiltration process. Three kinds of typical NOMs, humic acid (HA), bovine serum albumin (BSA) and sodium alginate (NaAlg), were used in the experiments. The results indicated that the fouling caused by NOM can be considered as two steps with different FI values. One is the fast fouling phase, and the other is the slow phase. Apparently, the total fouling index of the fast phase (TFI(F)) was much greater than that of the slow phase (TFI(S)), which means the initial interaction between NOM and membrane would play a significant role in the whole fouling process. A higher TFI(F) could lead to a faster fouling and the flux would decline more rapidly. After hydraulic washing, the flux was recovered and the resistance was reduced, indicating that physical cleaning could remove a part of foulants. Additionally, the results also represented that the sequences of NOM causing irreversible fouling and chemical clean irreversible fouling were BSA > HA > NaAlg and NaAlg > BSA > HA, respectively. Humic acid and protein tended to cause irreversible fouling and were easily removed by alkaline cleaning, while irreversible fouling caused by polysaccharide was difficult to remove by alkaline. The main cause of membrane fouling may be the interaction between foulants and membrane, which needs further research. Generally speaking, FI with a simple expression would play a significant role to describe the membrane fouling. PMID:23379159

  10. Fouling of nuclear steam generators: fundamental studies, operating experience and remedial measures using chemical additives

    International Nuclear Information System (INIS)

    Fouling remains a potentially serious issue that if left unchecked can lead to degradation of the safety and performance of nuclear steam generators (SGs). It has been demonstrated that the majority of the corrosion product transported with the feed water to the SGs accumulates in the SG on the tube-bundle. By increasing the risk of tube failure and acting as a barrier to heat transfer, deposit on the tube bundle has the potential to impair the ability of the SG to perform its two safety-critical roles: provision of a barrier to the release of radioactivity from the reactor coolant and removal of heat from the primary coolant during power operation and under certain post accident scenarios. Thus, it is imperative to develop improved ways to mitigate SG fouling for the long-term safe, reliable and economic performance of nuclear power plants (NPPs). This paper provides an overview of our current understanding of the mechanisms by which deposit accumulates on the secondary side of the SG, how this accumulation affects SG performance and how accumulation of deposit can be mitigated using chemical additives to the secondary heat-transport system. The paper concludes with some key questions that remain to be addressed to further advance our knowledge of deposit accumulation and how it can be controlled to maintain safe, economic performance of nuclear SGs. (author)

  11. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings. PMID:19192603

  12. High-Temperature Graphitization Failure of Primary Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  13. Characteristics of cooling water fouling in a heat exchange system

    International Nuclear Information System (INIS)

    This study investigated the efficiency of the physical water treatment method in preventing and controlling fouling accumulation on heat transfer surfaces in a laboratory heat exchange system with tap and artificial water. To investigate the fouling characteristics, an experimental test facility with a plate type heat exchange system was newly built, where cooling and hot water moved in opposite directions forming a counter-flow heat exchanger. The obtained fouling resistances were used to analyze the effects of the physical water treatment on fouling mitigation. Furthermore, the surface tension and pH values of water were also measured. This study compared the fouling characteristics of cooling water in the heat exchange system with and without the mitigation methods for various inlet velocities. In the presence of the electrode devices with a velocity of 0.5m/s, the fouling resistance was reduced by 79% compared to that in the absence of electrode devices

  14. A comprehensive review of milk fouling on heated surfaces.

    Science.gov (United States)

    Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A

    2015-01-01

    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task. PMID:24731003

  15. Analysis of fouling mechanisms in anaerobic membrane bioreactors

    OpenAIRE

    Charfi, Amine; Ben Amar, Nihel; Harmand, Jérôme

    2012-01-01

    In this paper, we investigate the fouling mechanisms responsible for MF and UF membrane flux decline in Anaerobic Membrane Bioreactors (AnMBR). We have used the fouling mechanism models proposed by Hermia (1982), namely pore constriction, cake formation, complete blocking and intermediate blocking. Based on an optimization approach and using experimental data extracted from the literature, we propose a systematic procedure for identifying the most likely fouling mechanism in play. Short-term ...

  16. Effect of Surface Fouling on the Economic Operation of Heat Exchangers

    International Nuclear Information System (INIS)

    In this work we have obtained two mathematical expressions for calculating the optimum operating time period, in terms of the maintenance time period, which produce maxims for the average heat transfer rate across heat exchanger tubes. One of this expression is based on an overall heat transfer coefficient in which the fouling and scale build up increases linearly with time, while for the second expression an empirical overall coefficient-which varies inversely with the square root of time-is used. Based on the results and discussion it is recommended to use those optimum times since at these conditions the heat exchanger is operating in an economic manner. 2 fig., 1 tab

  17. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2016-08-01

    Full Text Available As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson–Champoux–Allard in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

  18. The recovery boiler advisor. Combination of practical experience and advanced thermodynamic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R. [Aabo Akademi, Turku (Finland); Eriksson, G. [LTH/RWTH (Germany); Sundstroem, K. [Tampella Power Oy, Tampere (Finland)

    1996-12-31

    The Aabo Advisor is a computer based program intended to provide information about the high temperature ash and fluegas chemistry in pulping spent black liquor recovery boilers of kraft pulp mills. The program can be used for predictions of a variety of furnace and flue gas phenomena, such as fireside fouling of the heat exchanger surfaces caused by the flue gas particulate matter, emissions of SO{sub 2}(g), HCl(g) and NO{sub x}(g) with the flue gas etc. The program determines the composition of the fluegas as well as the amount and composition of the two typical fly ash fractions found in recovery boiler fluegases, the condensed fly ash particles and the carry over particles. These data are used for calculating the melting behavior of the fly ash present at different locations in the boiler and this characteristic behavior is used for the fireside fouling predictions. The program may also be used for studying how different mill processes affecting the black liquor composition affects on the fireside chemistry of the recovery boiler. As input data for the calculations only a few boiler operation parameters and the composition of the black liquor is required. The calculations are based on a one-dimensional, multi-stage chemistry model where both thermodynamic equilibrium calculations and stoichiometric material balances are used. The model calculates at first the chemistry in the lower furnace and smelt after which it moves to the upper furnace and the radiative parts of the fluegas channel. As the last block the program calculates the chemistry in the convective part, the electrostatic precipitator cath and stack. The results from each block are presented in tables, key numbers and melt curves representing the fluegas or fly ash fraction present at each location

  19. Safety and Inspection for Preventing Fouling in Oil Exchangers

    Directory of Open Access Journals (Sweden)

    Mehrdad Setoudeh

    2012-10-01

    Full Text Available One of the most costly problems in the maintenance of heat exchangers is de-fouling, which results in a waste of time and money. The present study includes two parts: the first section addresses fouling factor, its disadvantages, and circumstance of formation, fouling types, and general models of the fouling. In the second part, the problem of fouling in oil exchanger and particular type of fouling, namely, wax fouling in the oil mixtures has been studied. This paper reviews the fouling which is the most important parameter in designing heat exchanger and states the losses of the oil industry and other industries related to ignoring this issue. Failing to estimate this factor correctly, can result into problems in exchanger and as a result fluids of the process fail to reach the desired temperature. This paper tries to present solutions to deal with the problem of fouling in the oil industry and assesses the financial loss that comes from deposits in the industry.

  20. Super Boiler 2nd Generation Technology for Watertube Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  1. Cernavoda NPP - Boiler and steam cycle chemistry control

    International Nuclear Information System (INIS)

    Steam generators protection against corrosion and fouling is an ongoing issue for nuclear power plants. The true effectiveness of the secondary chemistry control program is best judged by the absence of secondary side corrosion related tube degradation particularly that leads to tube plugging or sleeving or tube support degradation. To continue striving for excellence in chemical control, the following issues should be considered: Continuous evaluation of the effectiveness of the chemistry control program in mitigating SG damage; Evaluation of plant compliance with the program; Laboratory quality assurance program to assure that laboratory analyses are accurate and reproductibile; Quality assurance program for on-line monitoring equipment to assure that results from this equipment are accurate. (R.P.)

  2. Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter

    OpenAIRE

    Li Sun; Junyi Dong; Donghai Li; Yuqiong Zhang

    2014-01-01

    Fluidized bed combustion (FBC) boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient d...

  3. The effect of water quality on reliability of boiler plants performance

    OpenAIRE

    Gajić Anto S.; Tomić Milorad V.; Pavlović Ljubica J.; Pavlović Miomir G.

    2010-01-01

    This paper presents sources and types of corrosion processes of boiler tube system of the Thermal Power Plant "Ugljevik". The main goal in the electric power production is to achieve lower prices, which can only be done by providing low maintenance costs. While it is not possible to completely stop corrosion, it could be slowed down and it's effects could be reduced. In order to reduce corrosion to a minimum on thermal power plants' vital equipment, particularly boilers, it is necessary to de...

  4. Analysis on Bust Problem of 12Cr1MoV High Temperature Superheater Tubes of Boiler%锅炉用12Cr1MoV 高温段过热管爆裂分析

    Institute of Scientific and Technical Information of China (English)

    刘长春; 沈玉力

    2014-01-01

    The burst reason of 12Cr1MoV steel tube of high temperature superheater tubes of a power plant was analyzed through macroscopic and metallographic examination .The results showed that local corrosion in high temperature led to mul-tiple cross crack sources , and propagation of the cracks caused vertical cracks to the same radial direction in two places . Local corrosion in high temperature and fully nodular pearlite were the root cause of the failure .%某电厂的12Cr1MoV(φ42×5mm)高温段过热器管发生爆裂。采用宏观和微观分析方法,分析了爆裂原因。结果表明,该爆裂模式为局部高温腐蚀引发多处横裂源进一步导致2处同一径向的纵裂。局部高温腐蚀及珠光体完全球化是这起事故的根本原因。

  5. Numerical simulation of a small-scale biomass boiler

    International Nuclear Information System (INIS)

    Highlights: ► Simplified model for biomass combustion was developed. ► Porous zone conditions are used in the bed. ► Model is fully integrated in a commercial CFD code to simulate a small scale pellet boiler. ► Pollutant emissions are well predicted. ► Simulation provides extensive information about the behaviour of the boiler. - Abstract: This paper presents a computational fluid dynamic simulation of a domestic pellet boiler. Combustion of the solid fuel in the burner is an important issue when discussing the simulation of this type of system. A simplified method based on a thermal balance was developed in this work to introduce the effects provoked by pellet combustion in the boiler simulation. The model predictions were compared with the experimental measurements, and a good agreement was found. The results of the boiler analysis show that the position of the water tubes, the distribution of the air inlets and the air infiltrations are the key factors leading to the high emission levels present in this type of system.

  6. DOWNSCALE APPLICATION OF BOILER THERMAL CALCULATION APPROACH

    OpenAIRE

    Zelený, Zbynĕk; Hrdlička, Jan

    2016-01-01

    Commonly used thermal calculation methods are intended primarily for large scale boilers. Hot water small scale boilers, which are commonly used for home heating have many specifics, that distinguish them from large scale boilers especially steam boilers. This paper is focused on application of thermal calculation procedure that is designed for large scale boilers, on a small scale boiler for biomass combustion of load capacity 25 kW. Special issue solved here is influence of formation of dep...

  7. A triple fouling layers perspective on evaluation of membrane fouling under different scenarios of membrane bioreactor operation

    OpenAIRE

    Pourabdollah, Mehdi; Torkian, Ayoob; Hashemian, Seyed Jamalodin; Bakhshi, Bita

    2014-01-01

    One of the main factors affecting membrane fouling in MBRs is operational conditions. In this study the influence of aeration rate, filtration mode, and SRT on hollow fiber membrane fouling was investigated using a triple fouling layers perspective. The sludge microbial population distribution was also determined by PCR method. Through various applied operational scenarios the optimal conditions were: aeration rate of 15 LPM; relaxation mode with 40s duration and 8 min. interval; and SRT of 3...

  8. Development of advanced monitoring methods to improve boiler availability and performance

    Energy Technology Data Exchange (ETDEWEB)

    Leino, T.; Kaerki, J.; Vainikka, P. (and others) [VTT, Jyvaskyla (Finland)

    2008-07-01

    Development of on-line monitoring tools is a key activity in the supervision, diagnosis and control of the impact of ash fouling on the efficiency and operation of large co-fired boilers. These monitoring tools have to be based both on the design of new measurement practices an don the mathematical modelling of the physical processes, aiming at the accurate determination of the deposition rates. The ADMONI-project aim was to develop on-line calculation methods for plant performance monitoring. The project focused on the design of a new pilot and power plant scale deposition probes, the execution of co-firing tests in experimental rigs and on the power plants and the development of monitoring tools to detect fouling rates both under pilot and full-scale perspectives. 43 refs., 142 figs., 13 tabs.

  9. Economic evaluation of losses to electric power utilities caused by ash fouling. Final technical report, November 1, 1979-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, F.R.; Persnger, M.M.

    1980-01-01

    Problems with convection ash fouling and wall slagging were considerable during our study. The Dakota lignites posed the greatest problems, particularly with fouling. The subbituminous coals had considerable problems, related mostly with wall slagging. The Texas lignites had few problems, and those were only associated with wall slagging. The generation losses were as follows: The Dakota lignite burning stations averaged an overall availability of 87.13%. Convection fouling outages were responsible for 57.75% of this outage time for a decrease in availability of 7.43%. Fouling was responsible for curtailment losses of 317,649 Mwh or 8.25% of the remaining available generation. Slagging was responsible for losses of 2732 megawatt hours or .07% of the remaining available generation. Total ash related losses amounted to 16.08% of the total available generation. The subbituminous burning stations averaged an overall availability of 78.36%. Total ash related losses amounted to 1.54% of the total available generation. The Texas lignite burning stations averaged an overall availability of 80.63%. No ash related outage losses occurred. Slagging curtailments accounted 0.08% of the total available generation. Costs due to ash fouling and slagging related curtailments are a tremendous sum. Seven power stations were studied for a six month period to assess costs. The total cost directly attributable to ash slagging and fouling condition was $20,638,113. Recommendations for reducing the problems involve soot blowers, control of furnace gas exit temperature, water blowers and more conservative boiler design.

  10. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  11. Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater.

    Science.gov (United States)

    Ishizaki, So; Fukushima, Toshikazu; Ishii, Satoshi; Okabe, Satoshi

    2016-09-01

    Membrane fouling remains a major challenge for wider application of membrane bioreactors (MBRs) to wastewater treatment. Membrane fouling is mainly caused by microorganisms and their excreted microbial products. For development of more effective control strategies, it is important to identify and characterize the microorganisms that are responsible for membrane fouling. In this study, 41 bacterial strains were isolated from fouled microfiltration membranes in a pilot-scale MBR treating real municipal wastewater, and their membrane fouling potentials were directly measured using bench-scale cross-flow membrane filtration systems (CFMFSs) and related to their cellular properties. It was found that the fouling potential was highly strain dependent, suggesting that bacterial identification at the strain level is essential to identify key fouling-causing bacteria (FCB). The FCB showed some common cellular properties. The most prominent feature of FCB was that they formed convex colonies having swollen podgy shape and smooth lustrous surfaces with high water, hydrophilic organic matter and carbohydrate content. However, general and rigid biofilm formation potential as determined by microtiter plates and cell surface properties (i.e., hydrophobicity and surface charge) did not correlate with the fouling potential in this study. These results suggest that the fouling potential should be directly evaluated under filtration conditions, and the colony water content could be a useful indicator to identify the FCB. PMID:27232989

  12. 我国700℃超超临界锅炉过热器管用高温合金选材探讨%Selection of Superalloys for Superheater Tubes of Domestic 700 ℃ A-USC Boilers

    Institute of Scientific and Technical Information of China (English)

    林富生; 谢锡善; 赵双群; 董建新

    2011-01-01

    简要介绍和比较了国内外700℃超超临界电站过热器和再热器管候选材料GH2984、Haynes 230、CCA 617、Nimonic 263、Inconel 740及其改型合金Inconel 740H的组织、持久强度和耐腐蚀性能等研究结果,对几种材料的强度、耐腐蚀性能、工艺性能和使用经济性进行了分析,并阐述了中国在发展700℃超超临界燃煤电站时锅炉用高温合金的选择.结果表明:Inconel 740H合金具有的持久强度最高、耐蚀性能最好,工艺性能和使用经济性良好,比Inconel 740合金具有更好的长期组织稳定性,它应是中国700℃超超临界锅炉过热器和再热器首选的管材;针对700℃超超临界机组用关键材料,提出了尽早开展自主研制,实现关键材料国产化的建议.%Research achievements on major candidate materials for superheater/reheater tubes of plants at home and abroad are reviewed and compared,such as the GH2984,Haynes 230,CCA 617,Nimonic 263,Inconel 740 and Inconel 740H,while their microstructure,stress rupture strength and corrosion resistance as well as their workability and economy were analyzed.A discussion is moreover carried out to the selection of superalloys for superheater/reheater tubes of domestic 700 ℃ A-USC power plants.Results show that superalloy Inconel 740H exhibits the highest stress rupture strength,strongest corrosion resistance,better workability and economy among above six alloys;its microstructure is more stable than that of Inconel 740 during long term aging,which is therefore at present believed to be most preferable for superheater/reheater tubes of domestic 700 ℃ A-USC power plants.For localization of key materials for relevant power plants,it is suggested that RD on these materials should be performed as early as possible.

  13. Small boiler uses waste coal

    Energy Technology Data Exchange (ETDEWEB)

    Virr, M.J. [Spinheat Ltd. (United States)

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  14. Steady and unsteady heat transfer in membrane water-wall of power plant boilers

    International Nuclear Information System (INIS)

    In this paper steady and unsteady conductive heat transfer in membrane walls of the boilers have been investigated. The furnace walls of the utility and large industrial boilers are constructed from membrane walls. The membrane walls consisting of parallel tubes connected longitudinally by fins have been considered. These types of the wall insulated outside and exposed to the furnace on the other, constitute an effective means of transferring heat from furnace to the water circulating inside the tubes. Analysis of heat transfer in membrane walls assemblies is an important step in design and sizing of the utility boiler's furnace. Because of geometric complexity and discontinuous properties of the fin-tube assembly, a numerical method is used, and for a simplified case of steady-state and no welding angle an analytical approach has been performed. The effect of the welding angle as well as fin width and thickness upon temperature distribution in the membrane walls have been considered. To obtain heat flux on the furnace sector of the tubes, the view factors between the flame considered as a paral led plane and the membrane walls has been evaluated. Also for the Start upof the boiler the distribution of temperature in membrane water-wall is obtained by finite element method and the effect of the tube thickness, fin thickness and width have been studied. It is also shown that the fin effectiveness as well as the insulated sector of the tube are closely related

  15. A parametric study of CaCO3 scaling in AISI 316 stainless steel tubes

    Science.gov (United States)

    Khan, M. Sultan; Budair, M. O.; Zubair, S. M.

    The formation of undesirable layer of deposits on the heat-transfer surface is defined as fouling. These deposits present a major problem in the operation and maintenance of heat exchangers, particularly in cooling-water systems. It has been generally observed that the deposits in such systems consist mainly of calcium carbonate (CaCO3), which has inverse solubility characteristics. An experimental study was carried out to determine the effect of tube surface temperature, Reynolds number, tube diameter and salt concentration on the growth of CaCO3 scale. In this paper, effects of some of these parameters on fouling growth are discussed. The effect of CaCO3 concentration on the scale growth is compared with the ionic diffusion model presented by Hasson. The variation of the fouling thickness along the length of the heat exchanger is also illustrated. Furthermore, dimensionless parameters are introduced to present the fouling resistance data collected during the experimental study.

  16. COMBINED BOILER WITH TPV

    OpenAIRE

    Björk, Magnus

    2013-01-01

    A TPV-system consists of a hot surface emitting heat radiation on a solar cell with a narrow bandgap.  A unit consisting of a boiler and a TPV-system has been constructed for testing of the performance of TPV cells. The emitter is heated by a fuel consisting of RME-oil. The radiation is collected and concentrated through two reflecting cones formed like a Faberge-egg, with an edge-type optical filter between the cones. The Faberge-egg is treated with electro-polishing in order to obtain a hig...

  17. Boilers a practical reference

    CERN Document Server

    Rayaprolu, Kumar

    2012-01-01

    AAbrasion and Abrasion Index (see Wear)Absolute or Dynamic Viscosity (æ) (see Viscosity in Fluid Characteristics)Acid Cleaning (see Commissioning)Acid Rain (also see Air Pollution Emissions and Controls and Gas Cleaning)Acid Sludge (see Refuse Fuels from Refinery in Liquid Fuels)Acid Smuts (see Oil Ash)Acoustic Soot Blowers (see Sonic Horns)Acoustic Enclosure (see Noise Control)Acoustic Leak Detection SystemAdiabatic Flame Temperature (see Combustion)Aeroderivative (see Types of GTs in Turbines, Gas)Ageing of Boiler ComponentsAgro-Fuels and FiringAir Ducts (see Draught Plant)Air Flow Measureme

  18. Boiler for ships; Hakuyo boira

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, F. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1999-07-20

    In this paper, production and technology trend of boiler for ships in 1998 are described. The actual results of main boiler are as follows. As the main boiler for LNG ships, 4 boilers produced by Mitsui Engineering and Shipbuilding for Qatar Project, 8 produced by Kawasaki Heavy Industries for South Korea and 10 produced by Mitsubishi Heavy Industries for domestic use and South Korea. 1998 was an active year for the main boiler for ships. The auxiliary boiler of steam pressure of 16k to 25k equipping for tanker ships was 115 (4,441t/h of steam quantity in total), it greatly increased in comparison with 88 (3,172t/h) produced in the proceeding year. Donkey boilers of steam pressure of 6k to 10k equipping for container ships and bulk cargo was 147 (672t/h), and it substantially decreased in comparison with 274 (693t/h) of the proceeding year, but capacity per boiler increased. The gas exhaust economizer for turbo power generation plants was 6 produced for VLCC. (NEDO)

  19. The effect of the removal of steam generator tube ID deposits on heat transfer

    International Nuclear Information System (INIS)

    The thermal resistance of boiler primary-side tube deposits from the Gentilly-2 NGS (Hydro-Quebec) was evaluated by an experimental comparison of the heat transfer rates between fouled samples and identical, factory-new, 'clean' tubing. The deposits were subsequently removed using either a chemical decontamination process (CAN-DEREM Plus) or a mechanical cleaning process (Siemens SIVABLAST) in two stages. After each removal, the thermal resistance of the remaining deposit was re-measured. The 90- to 150-μm-thick deposits on the inside diameter of steam generator cold-leg tubes were found to pose significant resistance to heat transfer (0.05 to 0.06 m2·K/kW at 210 degrees C). However, the 10- to 30-μm-thick dense layers remaining on the tubes after the decontamination were found to have no measurable effect on the heat transfer. The thin, 2-μm, tube deposit on the steam generator hot leg slightly enhanced heat transfer. The measured thermal resistance results in a calculated thermal conductivity of 1.5 W/m·K for the 90-μm-thick deposit. The 150-μm-thick deposits were found to consist of two layers: an outer surface layer having an average porosity of 50% and a conductivity of 2.3 W/m·K, and an inner layer with an average porosity of 5% and a conductivity of more than 3.0 W/m·K. The previous best estimate of the thermal conductivity was 1.4 W/m·K for the porous magnetite deposits that had formed on the primary side of nuclear steam generators with thickness <90 μm. This work confirms this number but also demonstrates that it is applicable only for porous, unconsolidated deposits. The conductivity increases for thicker deposits because of increasing deposit consolidation, particularly at the most inner layer adjacent to the tube metal. (author)

  20. Fouling detection in heat exchangers by Takagi-Sugeno observers

    International Nuclear Information System (INIS)

    The phenomenon of fouling in heat exchangers is currently an important topic. Indeed, the fouling is a costly issue that increases the energy loss (directly or indirectly through an over-sizing of the equipment), and therefore increases the water consumption. As a side effect, fouling increases CO2 consumption that leads to environmental consequences. Fouling can be detected either on local scale, using expensive and specific sensors or on global scale. Global estimation of fouling can be done by measuring the variation of the mass of the exchanger, or by estimating the efficiency of the exchanger through the transfer coefficient. These two methods require very restricting conditions: a powered exchanger to measure mass variation and a steady state exchanger to estimate the efficiency. The work introduced in this thesis deals with the development of non-linear observers that detect fouling early enough to start an efficient cleaning process. As a beginning, a finite element model of a counter current tubular exchanger was proposed. Then three approaches, based on non-linear Takagi-Sugeno observers, were suggested to detect early fouling in heat exchangers. First approach consisted in a set of observers that estimated the parameters of fouling effect through an interpolation method. The second approach proposed a polynomial Takagi-Sugeno observer, using the theory of sums of squares. Finally, a observer of Takagi-Sugeno type with unknown inputs was developed. As a conclusion, a comparison between those different methods was done. (author)

  1. Analysis of fouling mechanisms in anaerobic membrane bioreactors.

    Science.gov (United States)

    Charfi, Amine; Ben Amar, Nihel; Harmand, Jérôme

    2012-05-15

    In this paper, we investigate the fouling mechanisms responsible for MF and UF membrane flux decline in Anaerobic Membrane Bioreactors (AnMBR). We have used the fouling mechanism models proposed by Hermia (1982), namely pore constriction, cake formation, complete blocking and intermediate blocking. Based on an optimization approach and using experimental data extracted from the literature, we propose a systematic procedure for identifying the most likely fouling mechanism in play. Short-term as well as long-term experiments are considered and discussed. It was found that short-term experiments are usually characterized by two fouling phases during which the same fouling mechanism or two different mechanisms affect the process. In contrast, in long-term experiments involving cleaning cycles, membrane fouling appears to be better ascribed to one phase only. The impact of abiotic parameters on membrane fouling mechanisms is reviewed and discussed in the light of these results. Finally, it is shown that the mechanism most responsible for membrane fouling in an AnMBR is cake formation. This main result will be useful for the future development of simple integrated models for optimization and control. PMID:22397816

  2. Polymeric dispersants for control of steam generator fouling

    International Nuclear Information System (INIS)

    Fouling of steam generators by corrosion products from the feedtrain leads to loss of heat-transfer efficiency, disturbances in thermalhydraulics, and potential corrosion problems resulting from the development of sites for localized accumulation of aggressive chemicals. This report summarizes studies of the use of polymeric dispersants for the control of fouling, which were conducted at the Chalk River Laboratories. High-temperature settling studies on magnetite suspensions were performed to screen available generic dispersants, and the dispersants were ranked in terms of their dispersion efficiency; polyacrylic acid (PAA) and the phosphonate, HEDP, were ranked as the most efficient. Polyacrylic acid was considered more suitable than HEDP for nuclear steam generators, and more emphasis was given to the former in these studies. The dispersants had no effect on the particle deposition rates under single-phase forced-convective flow, but did reduce the deposition rates under flow-boiling conditions. The extent to which the deposition rates were reduced increased in proportion to the dispersant concentration. Preliminary corrosion tests indicated that pitting or general corrosion of steam generator tube materials in the presence of PAA was negligible. Corrosion of carbon steel, although higher in a magnetite-packed crevice under heat flux than in bulk water, was lower in the presence of PAA than in its absence. Some impurities (e.g., sulphate, sodium) were observed in commercially available PAA products at small, though significant concentrations, making these products unacceptable for use in nuclear plants. However, the PAA could be purified by ion exchange. Preliminary experiments, to assess the thermal stability of PAA at steam generator operating temperature, showed the polymer to break down in deaerated solutions and under argon cover to give hydrogen and carbon dioxide as the two major products in the gas phase and variable concentrations of acetate and formate

  3. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  4. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  5. Interaction of ions in water system containing copper-zinc alloy for boiler energy saving

    Institute of Scientific and Technical Information of China (English)

    MING Xing; LIANG Jinsheng; OU Xiuqin; TANG Qingguo; DING Yan

    2006-01-01

    Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally. The fouling was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray detector (EDX). The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction. Some calcium ions of calcium carbonate crystal are replaced by zinc ions, the growth of aragonite crystal nucleus is retarded, and the transition of calcium carbonate from aragonite to calcite is hampered.

  6. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4

  7. The modelling of particle build up in shell-and-tube heat exchangers due to process cooling water / Christiaan Jacob Ghyoot

    OpenAIRE

    Ghyoot, Christiaan Jacob

    2013-01-01

    Sasol Limited experiences extremely high particulate fouling rates inside shell-and-tube heat exchangers that utilize process cooling water. The water and foulants are obtained from various natural and process sources and have irregular fluid properties. The fouling eventually obstructs flow on the shell side of the heat exchanger to such an extent that the tube bundles have to be replaced every nine months. Sasol requested that certain aspects of this issue be addressed. To...

  8. Erosion–corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the boiler

    Indian Academy of Sciences (India)

    T S Sidhu; S Prakash; R D Agrawal; Ramesh Bhagat

    2009-04-01

    The super-heater and re-heater tubes of the boilers used in thermal power plants are subjected to unacceptable levels of surface degradation by the combined effect of erosion–corrosion mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the service life of the boilers, especially for the new generation tra-supercritical boilers. The aim of the present investigation is to evaluate the erosion–corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the coal-fired boiler of a thermal power plant. The cyclic experimental study was performed for 1000 h in the platen superheater zone of the coal-fired boiler where the temperature was around 900°C. The corrosion products have been characterized with respect to surface morphology, phase composition and element concentration using the combined techniques of X-ray diffractometry (XRD), scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro analyser (EPMA). The Superni-75 performed well in the coal-fired boiler environment, which has been attributed mainly to the formation of a thick band of chromium in scale due to selective oxidation of the chromium.

  9. Fouling mechanisms in a laboratory-scale UV disinfection system.

    Science.gov (United States)

    Nessim, Yoel; Gehr, Ronald

    2006-11-01

    The fouling of quartz sleeves surrounding UV disinfection lamps is a perennial problem affecting both drinking water and wastewater applications. The mechanisms of fouling are not fully understood, but factors promoting fouling are believed to include heat, high hardness and/or high iron concentrations, and hydrodynamic forces. The role of UV radiation itself is unclear. The goal of this paper is to attempt to isolate the fouling mechanisms and to provide key information about those induced by UV radiation, using a unique laboratory-scale continuous-flow UV reactor. Its design allowed for irradiated and nonirradiated zones and control of both temperature and UV intensity at the fouling surface. Synthetic wastewater samples were tested with two levels of calcium, iron, phosphorus, and biochemical oxygen demand (as beef broth), and constant levels of magnesium and nitrogen to assess the effects of the four key variables. Average UV fluence before fouling exceeded 35 mJ/cm2, based on collimated beam tests. Foulant accumulation was monitored by UV intensity measurements and by mass and composition of foulant collected after an average of 56 hours of continuous operation. Tests showed that relative UV intensity dropped by as much as 100% when iron was present. Detailed results were assessed and yielded support for the following three UV-induced fouling mechanisms: (a) precipitation of ferric hydroxide [Fe(OH)3], (b) release of calcium from calcium-organics complexes followed by precipitation of iron-organics complexes, and (c) calcium carbonate precipitation. Other fouling mechanisms, such as sedimentation of preformed particles and sorption of calcium onto preformed colloids of Fe(OH)3, occurred outside the zone of UV radiation. Hence, these could be confused with concurrent UV-induced mechanisms in full-scale reactors. Iron and/or calcium undoubtedly created the most favorable conditions for fouling to occur; in the absence of both, fouling would be unlikely. The

  10. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analysis...... of the potential benefit from using a multivariable control strategy in favor of the current strategy based on single loop theory is carried out and proves that the interactions in the system are not negligible and a subsequent controller design should take this into account. A design using dynamical...... decoupling showed substantial improvement compared to a decentralized scheme based on sequential loop closing. Similar or better result is expected to be obtainable using a full Multiple input Multiple output scheme. Furthermore closed loop simulations, applying a linear controller to the nonlinear plant...

  11. Alternate tube plugging criteria for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cueto-Felgueroso, C.; Aparicio, C.B. [Tecnatom, S.A., Madrid (Spain)

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned the Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.

  12. CFB boilers in multifuel application

    International Nuclear Information System (INIS)

    Fuel flexibility characteristic for CFB boilers plays an important rule in industrial and utility size applications. Possibility to use wider range of fuels that has been long time considered as by-products or wastes and possibility to design boilers able to operate with alternative fuels is an important factor that improves fuel delivery security and plant economy. Presented article is based on similar publications that present Foster Wheeler's experience in design and delivery of the CFB boilers for wide range of coals and cofiring by- products of crude oil refining and coal processing. Aspects of biomass cofiring will be also presented. (author)

  13. The fouling in the tubular heat exchanger of Algiers refinery

    Science.gov (United States)

    Harche, Rima; Mouheb, Abdelkader; Absi, Rafik

    2016-05-01

    Crude oil fouling in refinery preheat exchangers is a chronic operational problem that compromises energy recovery in these systems. Progress is hindered by the lack of quantitative knowledge of the dynamic effects of fouling on heat exchanger transfer and pressure drops. In subject of this work is an experimental determination of the thermal fouling resistance in the tubular heat exchanger of the crude oil preheats trains installed in an Algiers refinery. By measuring the inlet and outlet temperatures and mass flows of the two fluids, the overall heat transfer coefficient has been determined. Determining the overall heat transfer coefficient for the heat exchanger with clean and fouled surfaces, the fouling resistance was calculated. The results obtained from the two cells of exchangers studies, showed that the fouling resistance increased with time presented an exponential evolution in agreement with the model suggested by Kern and Seaton, with the existence of fluctuation caused by the instability of the flow rate and the impact between the particles. The bad cleaning of the heat exchangers involved the absence of the induction period and caused consequently, high values of the fouling resistance in a relatively short period of time.

  14. Microbial fouling control in heat exchangers

    International Nuclear Information System (INIS)

    Biofilm formation in turbulent flow has been studied a great deal during the last 15 years. Such studies have provided the basis for further experiments designed to test the efficacy of industrial antimicrobials against biofilms in laboratory models and in actual real-world industrial water-treatment programs. Biofilm microbiology is relevant from the industrial perspective because adherent populations of microorganisms often cause an economic impact on industrial processes. For example, it is the adherent population of microorganisms in cooling-water systems that can eventually contribute to significant heat transfer and fluid frictional resistances. The microbiology of biofilms in heat exchangers can be related to the performance of industrial antimicrobials. The development of fouling biofilms and methods to quantitatively observe the effect of biofouling control agents are discussed in this paper

  15. Fouling-resistant polymer brush coatings

    KAUST Repository

    Thérien-Aubin, Héloïse

    2011-11-01

    A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail. © 2011 Elsevier Ltd. All rights reserved.

  16. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  17. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO2 and NOx emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  18. Hybrid model of steam boiler

    International Nuclear Information System (INIS)

    In the case of big energy boilers energy efficiency is usually determined with the application of the indirect method. Flue gas losses and unburnt combustible losses have a significant influence on the boiler's efficiency. To estimate these losses the knowledge of the operating parameters influence on the flue gases temperature and the content of combustible particles in the solid combustion products is necessary. A hybrid model of a boiler developed with the application of both analytical modelling and artificial intelligence is described. The analytical part of the model includes the balance equations. The empirical models express the dependence of the flue gas temperature and the mass fraction of the unburnt combustibles in solid combustion products on the operating parameters of a boiler. The empirical models have been worked out by means of neural and regression modelling.

  19. Characterization of oxides on Bruce A NGS liner tubes and steam generator tubes

    International Nuclear Information System (INIS)

    Oxide deposits on end-fitting liner tubes and steam generator tubes from the Bruce A Nuclear Generating Station (NGS) were characterized in advance of the decontamination of the heat transport system (HTS) of Bruce Unit 2. Oxide loadings, and Co-60 surface activities and specific activities were determined for the oxides on inlet and outlet end-fitting liner tubes from Bruce Unit l, Bruce Unit 2 and Bruce Unit 4. Oxides on the inner surfaces of steam generator tubes from Bruce NGS Units 1 and 2 were also characterized. The consistency in the deposit characteristics on the inlet liner tubes and steam generator tubes from Bruce A, along with the absence of magnetite on the outlet liner tubes has led to the development of a model for iron transport in the HTS of pressurized heavy water reactors (PHWRs). The activity transport/fouling mechanism involves flow-accelerated corrosion of the outlet feeder pipes, followed by deposition of iron in the steam generators, along the inlet feeder pipes, on the inlet end fittings, on the inlet fuel bundles and on the inlet region of the pressure tube. The results of loop experiments using decontamination solutions indicated that the oxide was rapidly removed from inlet liner tubes. However, removal of the Cr-rich oxide from the outlet liner tubes was less efficient, requiring the Alkaline Permangante (AP) oxidizing pre-treatment that is typically used in light water reactors (LWRs). The steam generator tubes were effectively decontaminated

  20. Black liquor combustion validated recovery boiler modeling, five-year report

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  1. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  2. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  3. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  4. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    Science.gov (United States)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  5. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  6. A New Concept of Ultrafiltration Fouling Control: Backwashing with Low Ionic Strength Water

    OpenAIRE

    Li, S.

    2011-01-01

    Ultrafiltration (UF) is a proven technology in water treatment nowadays. However, fouling remains a major challenge in the operation of UF, especially in regard to colloidal NOM fouling. In general, a number of colloidal NOM fouling mechanisms may occur, such as adsorption, gel formation. Colloidal NOM fouling is influenced by multivalent cations, ionic strength and pH. In order to control membrane fouling, different pretreatments such as powder activated carbon adsorption, lime softening, io...

  7. The early operation of the helical once-through boilers at Heysham 1 and Hartlepool

    International Nuclear Information System (INIS)

    The Heysham 1 and Hartlepool AGR Reactors are equipped with 'pod' boilers set into the walls of the Pre-stressed Concrete Pressure Vessel. Each Reactor unit has eight pod boilers, which are of a somewhat unique single pressure, once through, helically wound type incorporating a reheater. The pods are provided with a limited amount of strain gauge and thermocouple instrumentation concentrated mainly in two specially instrumented boilers at each site. During Commissioning prior to power raising, extensive noise and vibration tests utilising the special attain gauge instrumented boilers, gave encouraging results. This has led to an increase in coolant gas mass flow of 5% above the design level. Following power raising in 1983 and 1984, detailed boiler performance testing, mainly using the special thermocouple instrumented boilers, showed that the actual behaviour differed from the computer design predictions. A major temperature tilt existed across the boiler tubes resulting in higher than predicted temperatures in the outer radius rows of tubes and the reverse situation in the inner tubes. The effect differed in magnitude between Hartlepool Reactor 1 and the other three Reactors probably due to construction differences. As a result output was initially limited to approximately 58% of design (380 MW (Generated)). A major programme of altering the flow control ferrules was carried out during the first statutory overhauls in 1985 and 1986. The initial results from Heysham 1 were not very encouraging (a gain of 70 MW(e)) but further computer model correlations led to revised patterns in Heysham and Hartlepool Reactor 2 which have since yielded improvements in output potential of up to 200 MW(e). The paper discusses the commissioning test results described above and describes the details of the extensive work carried out to achieve higher output. (author)

  8. Heat transfer characteristics of evaporator modules for a 2 t/h class multi burner boiler

    International Nuclear Information System (INIS)

    A finned tube type evaporator module has been applied to a water tube type industrial boiler adopting multiple burners. Fins change their geometry along the streamwise direction to maximize the performance, which makes it difficult to apply conventional bulk design procedure. A numerical simulation has been performed to evaluate the 2 or 3 dimensional effects such as inlet conditions. The numerical simulation also includes the conjugate heat transfer problem to predict the fin tip temperature.

  9. Model performance of a biomass-fueled power station with variable furnace exit gas temperature to control fouling deposition

    Science.gov (United States)

    Yomogida, David Edwin

    A major problem associated with the utilization of any biomass fuel in direct-combustion energy production is fouling (ash deposition on boiler surfaces) and the related issue of slagging, resulting from transformations among the inorganic constituents of the fuel. These deposits reduce heat transfer from the fire- to water-side, reducing power plant efficiency and necessitating the design of more tolerant heat exchange equipment. Wood: currently serves as the major source of fuel in biomass conversion to energy because of its more general availability, and it suffers less from fouling and slagging than many other biomass fuels such as rice straw. To reduce fouling severity, furnace exit gas temperature (FEGT) may be decreased to solidify ash ahead of superheaters and other heat exchanger equipment. Thermal and economic computer models of a direct-combustion Rankine cycle power plant were developed to predict the impact of variable FEGT and overall heat transfer coefficient on power plant efficiency and economy. No attempt was made to model the fire-side processes leading to the formation of fouling deposits. A base case: operational and economic profile of a biomass power plant was established, and models, were executed using these parameters, approximating a power plant efficiency of 19.9% and a cost of electricity (COE) of 0.0636 kWh-1 (including capital costs). If no capital, costs are included, then COE is 0.0205 kWh-1. Sensitivity analyses were performed on power plant efficiency and COE. Changes in FEGT through variable excess air resulted in substantial sensitivity in power plant efficiency (plant efficiency of 21.4% for FEGT of 1030°C (5% excess air) and 18.7% for 924°C (55% excess air)). Plant efficiency was determined to be moderately sensitive to changes in overall heat transfer coefficient on the secondary superheater (18.7% for no heat transfer through secondary superheater and 19.9% for base case heat transfer). Fouling scenarios showed that FEGT

  10. Fouling in small hydro projects; Verschmutzung von Kleinwasserkraftwerken - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Abgottspon, A.; Staubli, T.

    2010-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at fouling problems encountered in small hydro installations. The report is based on ten interviews made with operators of small hydro power stations in Switzerland. A parallel project carried out in Germany is mentioned. A large variation in the degree of fouling in the various hydro power stations is noted. Sources such as leaves in autumn and algae are discussed, as are the various rinsing procedures used to clear the turbines of fouling. Power losses are discussed and measures that can be taken to prevent fouling are described. Measurements made at an installation in Freienstein, Switzerland, are presented and discussed. The report is completed with an appendix containing calculations, details on the Freienstein power plant and the results of interviews made with the ten hydro power installations examined.

  11. A Sinister Bias for Calling Fouls in Soccer

    Science.gov (United States)

    Kranjec, Alexander; Lehet, Matthew; Bromberger, Bianca; Chatterjee, Anjan

    2010-01-01

    Distinguishing between a fair and unfair tackle in soccer can be difficult. For referees, choosing to call a foul often requires a decision despite some level of ambiguity. We were interested in whether a well documented perceptual-motor bias associated with reading direction influenced foul judgments. Prior studies have shown that readers of left-to-right languages tend to think of prototypical events as unfolding concordantly, from left-to-right in space. It follows that events moving from right-to-left should be perceived as atypical and relatively debased. In an experiment using a go/no-go task and photographs taken from real games, participants made more foul calls for pictures depicting left-moving events compared to pictures depicting right-moving events. These data suggest that two referees watching the same play from distinct vantage points may be differentially predisposed to call a foul. PMID:20628648

  12. A sinister bias for calling fouls in soccer.

    Science.gov (United States)

    Kranjec, Alexander; Lehet, Matthew; Bromberger, Bianca; Chatterjee, Anjan

    2010-01-01

    Distinguishing between a fair and unfair tackle in soccer can be difficult. For referees, choosing to call a foul often requires a decision despite some level of ambiguity. We were interested in whether a well documented perceptual-motor bias associated with reading direction influenced foul judgments. Prior studies have shown that readers of left-to-right languages tend to think of prototypical events as unfolding concordantly, from left-to-right in space. It follows that events moving from right-to-left should be perceived as atypical and relatively debased. In an experiment using a go/no-go task and photographs taken from real games, participants made more foul calls for pictures depicting left-moving events compared to pictures depicting right-moving events. These data suggest that two referees watching the same play from distinct vantage points may be differentially predisposed to call a foul. PMID:20628648

  13. A sinister bias for calling fouls in soccer.

    Directory of Open Access Journals (Sweden)

    Alexander Kranjec

    Full Text Available Distinguishing between a fair and unfair tackle in soccer can be difficult. For referees, choosing to call a foul often requires a decision despite some level of ambiguity. We were interested in whether a well documented perceptual-motor bias associated with reading direction influenced foul judgments. Prior studies have shown that readers of left-to-right languages tend to think of prototypical events as unfolding concordantly, from left-to-right in space. It follows that events moving from right-to-left should be perceived as atypical and relatively debased. In an experiment using a go/no-go task and photographs taken from real games, participants made more foul calls for pictures depicting left-moving events compared to pictures depicting right-moving events. These data suggest that two referees watching the same play from distinct vantage points may be differentially predisposed to call a foul.

  14. Fouling Characteristics and Prevention Techniques for Membrane Bioreactor

    Institute of Scientific and Technical Information of China (English)

    LU Hua; WANG Zhi-qiang; YANG Jin-ying

    2005-01-01

    Membrane fouling is the main problem of membrane bioreactors (MBR), which seriously influences its wastewater treatment effect and running. The characteristics of microbiology and hydrodynamics concerning membrane fouling were investigated and the measure was put forward for optimum operation of MBR. The measure is that 1) the parameters of activated sludge concentration (X) and membrane flux should be lower than the critical values of X and membrane flux respectively, and 2) the activated sludge should be discharged periodically. The experimental results show that the combination backwashing of gas and permeated effluent is better than single gas backwashing or single permeated effluent backwashing. This technique can remove the cake layer deposited on the membrane surface, decrease the membrane fouling, and recover the membrane flux effectively. So it is effective for prevention of membrane fouling.

  15. Heat transfer characteristics of air cross-flow for in-line arrangement of spirally corrugated tube and smooth tube bundles

    Institute of Scientific and Technical Information of China (English)

    LU Guo-dong; ZHOU Qiang-tai; TIAN Mao-cheng; CHENG Lin; YU Xiao-li

    2005-01-01

    An experimental study on heat transfer and resistance coefficients of linearly arranged smooth and spirally corrugated tube bundles in cross-flow was performed. The heat transfer and resistance coefficients are presented in this paper with transverse and longitudinal tube-pitch and tube geometries taken into account. The experiment's results can provide technical guidelines for application to horizontal air preheater with arranged in-line spirally corrugated tube bundles, especially to the air preheater for CFBCBs (Circulating Fluidized Bed Combustion Boilers).

  16. A Sinister Bias for Calling Fouls in Soccer

    OpenAIRE

    Alexander Kranjec; Matthew Lehet; Bianca Bromberger; Anjan Chatterjee

    2010-01-01

    Distinguishing between a fair and unfair tackle in soccer can be difficult. For referees, choosing to call a foul often requires a decision despite some level of ambiguity. We were interested in whether a well documented perceptual-motor bias associated with reading direction influenced foul judgments. Prior studies have shown that readers of left-to-right languages tend to think of prototypical events as unfolding concordantly, from left-to-right in space. It follows that events moving from ...

  17. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  18. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  19. Reason Analysis on Bursting Tube of High Temperature Boiler Tube of T92 Steel in Ultra Supercritical Unit%超超临界机组T92钢高温受热面管爆管原因分析

    Institute of Scientific and Technical Information of China (English)

    赵彦芬; 张路; 刘艳; 许万军

    2012-01-01

    The platen superheater tube failures of T92 steel has bursted in a ultra supercritical power plants. The bursting reason was analyzed by means of macroscopical inspection, chemical composition analysis, hardness testing, tensile strength testing, metallographie examination and so on. Results showed that the microstructure of the tube which didn't maintenance the typical lath martensite, the phase transformation at Ac~ ~Aca after short- term overheated. The strength decreased rapid distinctly, therefore the strength was not enough to endure the stress, finally the tube bursted. On the other hand, the relationship between the different microstructure and mechanical property was achieved by test in order to supervise for metal in thermal power plants for long term operation.%某电厂的后屏过热器T92钢管段发生爆管。通过宏观检验、化学成分分析、硬度检验、拉伸性能测试、金相检验以及相关计算分析了爆管的原因。结果表明:管段发生短时过热后,其显微组织为Acl-Ac3相变产物,失去了原典型的回火板条马氏体组织特征,材料强度大幅度降低,从而使得强度不足以抵抗管子的使用应力而发生爆管。另外,通过检验获得了不同状态下的组织与性能的对应关系,有利于长期运行中的金属监督检验。

  20. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  1. Application of newly developed heat resistant materials for USC boilers

    International Nuclear Information System (INIS)

    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  2. Performance analysis of extended surfaces subjected to fouling

    Science.gov (United States)

    Aparajith, H. S.; Balaji, C.; Raghavan, V. R.

    The time dependent performance of extended surfaces subjected to fouling is addressed in this work. Where fins are used for augmenting boiling heat transfer, the interaction of local values of temperature excess, fouling resistance and surface characteristics of the deposit can be quite complex. Taking typical asymptotic fouling growth parameters from literature for reverse solubility salts, three kinds of fin geometry are analysed - rectangular, triangular and annular. For various values of the fin parameter mL, the temperature distribution and variation of fouling resistance are obtained as a function of time. To interpret the performance of a fouled fin, a new term `cleanliness efficiency' is introduced. The necessity of choosing an optimal value of mL for the fin is also highlighted here. It is shown that for all three fin configurations, cleanliness efficiency differs little, thus simplifying the geometry dependence. The approach set out in this work will help in the design of finned heat exchangers subjected to fouling and thereby minimise their overdesign.

  3. Kinetic study of seawater reverse osmosis membrane fouling

    KAUST Repository

    Khan, Muhammad

    2013-10-01

    Reverse osmosis (RO) membrane fouling is not a static state but a dynamic phenomenon. The investigation of fouling kinetics and dynamics of change in the composition of the foulant mass is essential to elucidate the mechanism of fouling and foulant-foulant interactions. The aim of this work was to study at a lab scale the fouling process with an emphasis on the changes in the relative composition of foulant material as a function of operating time. Fouled membrane samples were collected at 8 h, and 1, 2, and 4 weeks on a lab-scale RO unit operated in recirculation mode. Foulant characterization was performed by CLSM, AFM, ATR-FTIR, pyrolysis GC-MS, and ICP-MS techniques. Moreover, measurement of active biomass and analysis of microbial diversity were performed by ATP analysis and DNA extraction, followed by pyro-sequencing, respectively. A progressive increase in the abundance of almost all the foulant species was observed, but their relative proportion changed over the age of the fouling layer. Microbial population in all the membrane samples was dominated by specific groups/species belonging to Proteobacteria and Actinobacteria phyla; however, similar to abiotic foulant, their relative abundance also changed with the biofilm age. © 2013 American Chemical Society.

  4. Release of Corrosive Species above the Grate in a Waste Boiler and the Implication for Improved Electrical Efficiency

    DEFF Research Database (Denmark)

    Bøjer, Martin; Jensen, Peter Arendt; Dam-Johansen, Kim;

    2010-01-01

    A relatively low electrical efficiency of 20−25% is obtained in typical west European waste boilers. Ash species released from the grate combustion zone form boiler deposits with high concentrations of Cl, Na, K, Zn, Pb, and S that cause corrosion of superheater tubes at high temperature. The...... superheater steam temperature has to be limited to around 425 °C, and thereby, the electrical efficiency remains low compared to wood or coal-fired boilers. If a separate part of the flue gas from the grate has a low content of corrosive species, it may be used to superheat steam to a higher temperature, and...

  5. Multi-unit shutdown due to boiler feedwater chemical excursion

    International Nuclear Information System (INIS)

    Ontario Hydro's Bruce Nuclear Generating Station 'B' consists of four 935 W CANDU units located on the east shore of Lake Huron in the province of Ontario, Canada. On July 25 and 26, 1989 three of the four operating units were shutdown due to boiler feedwater chemical excursions initiated by a process upset in the Water Treatment Plant that provides demineralized make-up water to all four units. The chemicals that escaped from an ion exchange vessel during a routine regeneration very quickly spread through the condensate make-up system and into the boiler feedwater systems. This resulted in boiler sulfate levels exceeding shutdown limits. A total of 260 GWH of electrical generation was unexpectedly made unavailable to the grid at a time of peak seasonal demand. This event exposed several unforeseen deficiencies and vulnerabilities in the automatic demineralized water make-up quality protection scheme, system designs, operating procedures and the ability of operating personnel to recognize and appropriately respond to such an event. The combination of these factors contributed towards turning a minor system upset into a major multi-unit shutdown. This paper provides the details of the actual event initiation in the Water Treatment Plant and describes the sequence of events that led to the eventual shutdown of three units and near shutdown of the fourth. The design inadequacies, procedural deficiencies and operating personnel responses and difficulties are described. The process of recovering from this event, the flushing out of system piping, boilers and the feedwater train is covered as well as our experiences with setting up supplemental demineralized water supplies including trucking in water and the use of rental trailer mounted demineralizing systems. System design, procedural and operational changes that have been made and that are still being worked on in response to this event are described. The latest evidence of the effect of this event on boiler tube

  6. Failures modes in model feedwater heater tubing

    International Nuclear Information System (INIS)

    Steam extracted from the turbine is used to preheat the boiler feedwater in fossil-fuel-fired steam plants in order to improve thermal efficiency. This is accomplished in a series of heaters between the condenser hot well and the boiler. The heaters usually consist of a shell containing a bundle of U-bend tubes through which the feedwater is circulated. The heaters closest to the boiler handle water at high pressure and temperature. Because of the severe service conditions, high-pressure feedwater heaters are frequently tubed with drawn-and-stress relieved Monel 400, a nickel-base alloy containing 35 percent copper. As part of a study designed to reduce the rate of tube failure in high-pressure feedwater heaters, a number of failed drawn-and-stress-relieved Monel 400 U-bend tubes removed from three high-pressure feedwater heaters were examined at Battelle to determine the causes of failure. The results of this examination are described

  7. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  8. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... pressure boiler means a packaged boiler that is: (1) A steam boiler designed to operate at a steam pressure... steam boiler designed to operate at or below a steam pressure of 15 psig; or (2) A hot water boiler... efficiency for a commercial packaged boiler is determined using test procedures prescribed under § 431.86...

  9. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms

    KAUST Repository

    Tiraferri, Alberto

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.

  10. Fouling of a spiral-wound reverse osmosis membrane processing swine wastewater: effect of cleaning procedure on fouling resistance.

    Science.gov (United States)

    Camilleri-Rumbau, M S; Masse, L; Dubreuil, J; Mondor, M; Christensen, K V; Norddahl, B

    2016-07-01

    Swine manure is a valuable source of nitrogen, phosphorus and potassium. After solid-liquid separation, the resulting swine wastewater can be concentrated by reverse osmosis (RO) to produce a nitrogen-potassium rich fertilizer. However, swine wastewater has a high fouling potential and an efficient cleaning strategy is required. In this study, a semi-commercial farm scale RO spiral-wound membrane unit was fouled while processing larger volumes of swine wastewater during realistic cyclic operations over a 9-week period. Membrane cleaning was performed daily. Three different cleaning solutions, containing SDS, SDS+EDTA and NaOH were compared. About 99% of the fouling resistance could be removed by rinsing the membrane with water. Flux recoveries (FRs) above 98% were achieved for all the three cleaning solutions after cleaning. No significant differences in FR were found between the cleaning solutions. The NaOH solution thus is a good economical option for cleaning RO spiral-wound membranes fouled with swine wastewater. Soaking the membrane for 3 days in permeate water at the end of each week further improved the FR. Furthermore, a fouling resistance model for predicting the fouling rate, permeate flux decay and cleaning cycle periods based on processing time and swine wastewater conductivity was developed. PMID:26698296

  11. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    Science.gov (United States)

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. PMID:23002900

  12. Low excess air operations of oil boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y.; Litzke, Wai Lin [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    To quantify the benefits which operation at very low excess air operation may have on heat exchanger fouling BNL has recently started a test project. The test allows simultaneous measurement of fouling rate, flue gas filterable soot, flue gas sulfuric acid content, and flue gas sulfur dioxide.

  13. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  14. KARAKTERISTIK INTERAKSI MEMBRAN-FOULANT DAN FOULANT-FOULANT SEBAGAI DASAR PENGENDALIAN FOULING

    Directory of Open Access Journals (Sweden)

    Heru Susanto

    2012-05-01

    Full Text Available THE CHARACTERISTICS OF MEMBRANE-FOULANT AND FOULANT-FOULANT INTERACTIONS AS THE BASIS FOR CONTROL OF FOULING. Industrial membrane applications for solid liquid and liquid-liquid filtration are limited by fouling and concentration polarization. Because fouling significantly reduces the membrane performance and often changes the membrane selectivity, efforts to overcome the fouling problem are very important from practical applications point of view. This paper presents the basic knowledge required to control fouling and recent development in fouling control including the method developed by the author. Control of fouling can be done by (i commercial membrane modification (post modification by photo-graft polymerization, (ii modification by polymer blending during membrane manufacturing and (iii integration of a pretreatment into membrane processes. The results showed that all the developed methods can significantly reduce the resulting fouling; however, none of the method could totally remove the occurring fouling. The understanding of the membrane-foulant and foulant-foulant interactions is the key to success in control of fouling.Aplikasi teknologi membran untuk pemisahan padat cair di  berbagai industri dibatasi oleh peristiwa fouling yang menyebabkan penurunan laju produk dan perubahan selektifitas membran. Oleh karena itu, pengendalian fouling merupakan upaya yang mutlak harus dilakukan. Makalah ini mempresentasikan pengetahuan dasar yang diperlukan untuk pengendalian fouling dan perkembangan terkini dalam pengendalian fouling termasuk hasil-hasil yang telah dikembangkan oleh penulis. Pengendalian fouling dilakukan dengan (i modifikasi membran komersial (post modification menggunakan metode photo-grafting, (ii modifikasi dengan pencampuran polimer selama proses pembuatan (polymer blend dan (iii integrasi unit perlakuan awal (pre-treatment dengan proses membran. Hasil penelitian menunjukkan bahwa kesemua metode yang dikembangkan dapat

  15. Fouling and slagging problems at recovered wood fuel combustion; Orsaker till askrelaterade driftproblem vid eldning av returtraeflis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Hoegberg, Jan [Vattenfall Utveckling AB, Stockholm (Sweden)

    2001-03-01

    CHP-plants that use a large portion of sorted wood waste fuel can face ash-related problems. By analysing the circumstances about these problems, the goal is to find causes for the problems and measures that can be taken. This knowledge can then be utilised in plants where it is desired to increase the portion of sorted wood waste fuel. For the measurements, a deposit probe is a good tool to use since the result is independent of many boiler-specific factors. Compared with forest residues, sorted wood waste causes a more problematic ash. The risk of troublesome fouling and corrosion seems to increase with increased admixture of sorted wood waste fuel. Plugging of the grate is associated with melts that are formed from metallic contamination in the fuel. These melts obstruct the air holes. The melts that have been seen during the project have had a content of aluminium, brass and zinc. In order to solve these problems, the construction and cooling of the grate and quality assurance of the fuel are important aspects. One problem that was found in all of the studied boilers (grates as well as fluidized beds) is growth of fouling on surfaces for heat transfer. Measurements with deposit probe show that the initial growth rate on superheaters are approximately 3 - 5 times higher when sorted wood waste is used than if forest residues is used. Even if this growth rate can not be extrapolated to a complete operating season, the relative difference between the fuels remains. The extent of the problem depends on the dimensioning of the boiler. The fouling tends to have a light outer layer that can be disadvantageous for the absorption of heat radiation. Haendeloe P11 needs for example to be stopped for cleaning with an interval of 2 - 3 months because of lost heat absorption in the furnace and the convection path. The most obvious ash related problem that was found in Haendeloe P11 when 100 % sorted wood waste fuel was used was corrosion on the walls of the lower parts of the

  16. PREDICTION OF OXIDE SCALE EXFOLIATION IN STEAM TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Wright, Ian G [ORNL

    2010-01-01

    Numerical simulation results are presented for the prediction of the likelihood of oxide scale exfoliation from superheater tubes. The scenarios considered involved alloys T22, TP347H, and TP347HFG subjected to a simplified operating cycle in a power plant generating supercritical steam. The states of stress and strain of the oxides grown in steam were based solely on modeling the various phenomena experienced by superheater tubes during boiler operation, current understanding of the oxidation behavior of each alloy in steam, and consideration of operating parameters such as heat flux, tube dimensions, and boiler duty cycle. Interpretation of the evolution of strain in these scales, and the approach to conditions where scale failure (hence exfoliation) is expected, makes use of the type of Exfoliation Diagrams that incorporate various cracking and exfoliation criteria appropriate for the system considered. In these diagrams, the strain accumulation with time in an oxide is represented by a strain trajectory derived from the net strain resulting from oxide growth, differences in coefficients of thermal expansion among the components, and relaxation due to creep. It was found that an oxide growing on a tube subjected to routine boiler load cycling conditions attained relatively low values of net strain, indicating that oxide failure would not be expected to occur during normal boiler operation. However, during a boiler shut-down event, strains sufficient to exceed the scale failure criteria were developed after times reasonably in accord with plant experience, with the scales on the ferritic steel failing in tension, and those on the austenitic steels in compression. The results presented illustrate that using this approach to track the state of strain in the oxide scale through all phases of boiler operation, including transitions from full-to-low load and shut-down events, offers the possibility of identifying the phase(s) of boiler operation during which oxide

  17. Natural organic matter fouling behaviors on superwetting nanofiltration membranes.

    Science.gov (United States)

    Shan, Linglong; Fan, Hongwei; Guo, Hongxia; Ji, Shulan; Zhang, Guojun

    2016-04-15

    Nanofiltration has been widely recognized as a promising technology for the removal of micro-molecular organic components from natural water. Natural organic matter (NOM), a very important precursor of disinfection by-products, is currently considered as the major cause of membrane fouling. It is necessary to develop a membrane with both high NOM rejection and anti-NOM fouling properties. In this study, both superhydrophilic and superhydrophobic nanofiltration membranes for NOM removal have been fabricated. The fouling behavior of NOM on superwetting nanofiltration membranes has been extensively investigated by using humic acid (HA) as the model foulant. The extended Derjaguin-Landau-Verwey-Overbeek approach and nanoindentor scratch tests suggested that the superhydrophilic membrane had the strongest repulsion force to HA due to the highest positive total interaction energy (ΔG(TOT)) value and the lowest critical load. Excitation emission matrix analyses of natural water also indicated that the superhydrophilic membrane showed resistance to fouling by hydrophobic substances and therefore high removal thereof. Conversely, the superhydrophobic membrane showed resistance to fouling by hydrophilic substances and therefore high removal capacity. Long-term operation suggested that the superhydrophilic membrane had high stability due to its anti-NOM fouling capacity. Based on the different anti-fouling properties of the studied superwetting membranes, a combination of superhydrophilic and superhydrophobic membranes was examined to further improve the removal of both hydrophobic and hydrophilic pollutants. With a combination of superhydrophilic and superhydrophobic membranes, the NOM rejection (RUV254) and DOC removal rates (RDOC) could be increased to 83.6% and 73.3%, respectively. PMID:26900973

  18. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47... Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known, shall be stamped on the steam dome or manhole flange. If the builder's number cannot be obtained,...

  19. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... dead boiler with the live system or systems shall be secured, blanked, and tagged indicating...

  20. Sootblowing optimization for improved boiler performance

    Science.gov (United States)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  1. Sootblowing optimization for improved boiler performance

    Energy Technology Data Exchange (ETDEWEB)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  2. Superheater materials for waste incinerator boilers. Trials at the Hoegdalen plant

    International Nuclear Information System (INIS)

    In order to obtain an acceptable length of life for the superheaters in waste incinerated boilers a considerably lower steam temperature is used than when incinerating conventional fuel. In spite of this the life of the superheaters is unsatisfactory, with the occurrence of damage in some type of incinerator boilers after only a few years operation. The use of high alloyed material instead of conventional pressure vessel steels can increase the length of life and improve operational efficiency in existing incinerator boilers. Such tubes permit higher steam data for new plants. Cooled materials testing probes have been mounted in the flue gas duct close to the superheater in two boilers in the Hoegdalen plant, Stockholm. The materials temperatures have been maintained in the range 400-500 degrees C. Low metal losses have been obtained, in particular with Alloy 625, but also with Alloy 825 and Sandvik Sanicro 28. The attack on the tubes is corrosion, caused by the aggressive dust which is trapped in the superheaters. In these trials it has been shown that correct boiler design is very important, in conjunction with the choice of materials

  3. Dynamic simulation model for ultra supercritical 1 000 MW unit boilers%Dynamic simulation model for ultra supercritical 1000 MW unit boilers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; XU Ershu

    2013-01-01

    On the basis of heat transfer characteristics of working fluid at different pressures inside the water wall tube and structure of the ultra supercritical 1 000 MW unit once through boiler in Jianbi Power Plant,the varying phase transformation point method was adopted to establish the moving-boundary dynamic simulation model of water wall in ultra supercritical once through boilers,especially the length variation of hot water section,evaporation section and superheat section against the load changing.On this basis,the real-time dynamic simulation model for ultra-supercritical 1 000 MW unit boiler in Jianbi Power Plant was built on the STAR-90 simulation platform.The dynamic and static characteristics test showed that,this model can simulate the unit's startup/shutdown process and some typical fault conditions accurately,and had good dynamic and static performance.

  4. High-Temperature Behavior of a NiCr-Coated T91 Boiler Steel in the Platen Superheater of Coal-Fired Boiler

    Science.gov (United States)

    Chatha, Sukhpal Singh; Sidhu, Hazoor S.; Sidhu, Buta S.

    2013-06-01

    Ni-20Cr coating was deposited on T91 boiler tube steel by high-velocity oxy-fuel (HVOF) process to enhance high-temperature oxidation resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under in the platen superheater zone of coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles, each of 100-h duration followed by 1-h cooling at ambient temperature. The extent of degradation of the specimens was assessed by the thickness loss and depth of internal corrosion attack. Ni-20Cr-coated steel performed better than the uncoated steel in actual boiler environment. The improved degradation resistance of Ni-20Cr coating can be attributed to the presence of Cr2O3 in the top oxide scale and dense microstructure.

  5. Hydrodynamic analysis and calculation of metal temperature distribution in spiral water wall of ultra supercritical tower boiler

    Science.gov (United States)

    Shen, Chengwu; Yang, Dong; Yao, Danhua; Zhu, Yufeng; Xu, Xueyuan

    2013-07-01

    In this paper, the spiral water wall system of a 1000MW ultra supercritical tower boiler is simplified as a network system, consisting of circuits, pressure grids and connecting tubes. The establishment of the mathematical model for calculating the mass flux distribution and metal temperature in water wall is based on the mass, momentum and energy conservation equations. The water wall flow distribution and temperature profile of the boiler were computed. The result shows that the differences of outlet temperature and mass flux are small in spiral tube water wall at BMCR, 75%BMCR load and 40%BMCR load. The metal temperatures are all in the allowable ranger.

  6. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  7. In-line quantification and characterization of membrane fouling

    KAUST Repository

    Bucs, Szilard

    2016-06-16

    Methods of detecting, quantifying and/or characterizing the fouling of a device from a combination of pressure and spectroscopic data are provided. The device can be any device containing components susceptible to fouling. Components can include membranes, pipes, or reactors. Suitable devices include membrane devices, heat exchangers, and chemical or bio-reactors. Membrane devices can include, for example, microfiltration devices, ultrafiltration devices, nanofiltration devices, reverse osmosis, forward osmosis, osmosis, reverse electrodialysis, electro- deionisation or membrane distillation devices. The methods can be applied to any type of membrane, including tubular, spiral, hollow fiber, flat sheet, and capillary membranes. The spectroscopic characterization can include measuring one or more of the absorption, fluorescence, or raman spectroscopic data of one or more foulants. The methods can allow for the early detection and/or characterization of fouling. The characterization can include determining the specific foulant(s) or type of foulant(s) present. The characterization of fouling can allow for the selection of an appropriate de-fouling method and timing.

  8. The new performance calculation method of fouled axial flow compressor.

    Science.gov (United States)

    Yang, Huadong; Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail. PMID:25197717

  9. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Huadong Yang

    2014-01-01

    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  10. Rejection of Organic Micropollutants by Clean and Fouled Nanofiltration Membranes

    Directory of Open Access Journals (Sweden)

    Lifang Zhu

    2015-01-01

    Full Text Available The rejection of organic micropollutants, including three polycyclic aromatic hydrocarbons (PAHs and three phthalic acid esters (PAEs, by clean and fouled nanofiltration membranes was investigated in the present study. The rejection of organic micropollutants by clean NF90 membranes varied from 87.9 to more than 99.9%, while that of NF270 membranes ranged from 32.1 to 92.3%. Clear time-dependence was observed for the rejection of hydrophobic micropollutants, which was attributed to the adsorption of micropollutants on the membrane. Fouling with humic acid had a negligible influence on the rejection of organic micropollutants by NF90 membranes, while considerable effects were observed with NF270 membranes, which are significantly looser than NF90 membranes. The observed enhancement in the rejection of organic micropollutants by fouled NF270 membranes was attributed to pore blocking, which was a dominating fouling mechanism for loose NF membranes. Changes in the ionic strength (from 10 to 20 mM reduced micropollutant rejection by both fouled NF membranes, especially for the rejection of dimethyl phthalate and diethyl phthalate by NF270 membranes (from 65.8 to 25.0% for dimethyl phthalate and 75.6 to 33.3% for diethyl phthalate.

  11. Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant

    International Nuclear Information System (INIS)

    Highlights: • A coal fired power plant boiler combustion process model based on real data. • We propose multi-objective optimization with CFD to optimize boiler combustion. • The proposed method uses software CORBA C++ and ANSYS Fluent 14.5 with AI. • It optimizes heat flux transfers and maintains temperature to avoid ash melt. - Abstract: The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the

  12. Adaptive controlling of power boiler

    OpenAIRE

    Wojcik, W.; Kalita, M; Smolarz, A.

    2004-01-01

    This paper presents research on adaptive control (AC) of combastion process in in¬dustry. Results were obtained from research conducted in laboratory combustion chamber with usage of Fiber Optical Measurement System (FOMS) with electronic block. Simulation proved that implementing AC and FOMS to burning process improves flue gasses parameters -direct measure of power boiler ecologic and economical quality of work.

  13. Test results from a full-scale sodium reflux pool-boiler solar receiver

    Science.gov (United States)

    Moreno, J. B.; Andraka, C. E.; Diver, R. B.; Ginn, W. C.; Dudley, V.; Rawlinson, K. S.

    1990-01-01

    A sodium reflux pool-boiler solar receiver has been tested on a nominal 75 kW sub t parabolic-dish concentrator. The purpose was to demonstrate the feasibility of reflux-receiver technology for application to Stirling-engine dish-electric systems. In this application, pool boilers (and more generally liquid-metal reflux receivers) have a number of advantages over directly-illuminated tube receivers. The advantages, to be discussed, include more uniform temperature, which results in longer lifetime and higher temperature available to the engine.

  14. Study and design of platen superheater of 300 MW CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Man; Lv, Qinggang; Sun, Yunkai [Chinese Academy of Sciences, Beijing (China). Inst. of Engineering Thermophysics; Jiang, Xiaoguo [Harbin Boiler Company Limited, Harbin (China)

    2013-07-01

    In order to avoid overtemperature tube explosion of the platen superheater, the measurements of metal temperatures and the heat transfer coefficients of the platen superheater in a commercial 300 MW Circulating Fluidized Bed (CFB) boiler are conducted in this work. The measured data is analyzed and the theoretical calculation is made. On the basis, the reasonable steam flow path and the value range of heat transfer coefficient of the middle temperature platen superheater are applied for design. Furthermore, based on operation experience from several 300 MW CFB boilers, a design principle of the mass velocity and the arrangement of the platen superheater in the furnace is given.

  15. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit......, emissions and to obtain long time operation experiences with the boiler concept, a full scale prototype has been built and these tests have been accomplished on the prototype. By applying this integrated unit approach to the boiler concept development it has been possible to optimize the different building...... bricks in the boiler concept to each other and hereby obtain signicant reductions in the boiler concepts weight and foot-print . The actual development project has focused on an heavy fuel oil-red boiler for the marine market with a capacity in the range 1-10 t/h saturated steam. The development project...

  16. A survey of gas-side fouling in industrial heat-transfer equipment

    Science.gov (United States)

    Marner, W. J.; Suitor, J. W.

    1983-01-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  17. The measurement of thermal surface fouling using ultrasonics

    International Nuclear Information System (INIS)

    The aim of this project was to devise an extensively universally applicable, automatic, continually operating ultrasonic measuring technique, based on an ultrasonic detector developed by ROLLINS. This should allow continual measurements to be conducted of the mass transfer which occurs during the fouling of heat exchanger surfaces. The experiments concerning calcium sulphate scaling served to investigate whether the ultrasonic transit time or ultrasonic extinction is suited to the continuous measurement of the scale thickness, the mass, or the most important scale structure parameter, the respective degree of porosity. The manner in which the scale structure and the various scaling conditions influence the measurable ultrasonic variables was examined, whilst simultaneously conducting heat transfer measurements during the incrustation. The simultaneous, independent and continual measurement of the heat and mass transfer during the incrustation delivers data which allows a capacious expansion of the insight into the fouling process, and hence contribute to an improvement of the fouling precalculations. (orig./RB)

  18. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release.

    Science.gov (United States)

    Wan, Fei; Pei, Xiaowei; Yu, Bo; Ye, Qian; Zhou, Feng; Xue, Qunji

    2012-09-26

    Sylgard-184 silicone elastomer negative replica and resorcinol-formaldehyde (RF) positive replica were made by biomimicking the patterns of natural Trifolium and three other kinds of leaves using the micromolding lithography. An effective antifouling (AF) polymer, poly(3-sulfopropyl methacrylate) (PSPMA), was then grafted on these replica surfaces via the surface-initiated atom transfer radical polymerization (SI-ATRP). The AF property of the modified biomimetic surfaces was tested via the settlement assay with two microalgae in different sizes, and their fouling-release (FR) property was evaluated by the removal assay. The results indicate that the structure of microspines on Trifolium leaf can inhibit settlement of microalgae and facilitate the cell release. The AF property was improved by modification with PSPMA brushes. PMID:22931043

  19. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    David W. Gandy; John P. Shingledecker

    2011-04-11

    Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on

  20. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  1. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s−1 to 8 m·s−1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  2. A Study on CaSO4 Fouling Deposit

    Institute of Scientific and Technical Information of China (English)

    RenXiaoguang; LiCuiqing; LiuChanghou

    2002-01-01

    This paper reports the influences of heat transfer surface properties on the formation of CaSO4 fouling deposition during flow boiling heat transfer.The surfaces of several test heaters have been treated by surface modification techniques.such as dynamic mixing ion beam implantation and dynamic mixing magnetron sputtering to reduce surface energy.Fouling runs with these heaters were carried out at different heat fluxes,flow velocities and salt concentrations.The results show that heat transfer surfaces with low surface energy experienced significantly a reduced formation of CaSO4 deposit.

  3. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil;

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode) and...... the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in...... membrane support improved the enzyme reusability (especially for ADH), and reduced the product inhibition (especially for GDH). © 2013 Elsevier Ltd....

  4. Cleaning protocol for a FO membrane fouled in wastewater reuse

    KAUST Repository

    Valladares Linares, Rodrigo

    2013-05-30

    Forward osmosis (FO) is an emerging technology which can be applied in water reuse applications. Osmosis is a natural process that involves less energy consumption than reverse osmosis (RO), and therefore can be applied as a dilution process before low-pressure RO; it is expected to compete favourably against current advanced water reuse technologies that use microfiltration/ultrafiltration and RO. The focus of this research was to assess the efficiency of different cleaning procedures to remove fouling from the surface of a FO membrane during the operation of a submerged system working in FO-mode (active layer (AL) facing feed solution) intended for secondary wastewater effluent (SWWE) recovery, using seawater as draw solution (DS), which will be diluted and can further be fed to a low-pressure RO unit to produce fresh water. Natural organic matter (NOM) fouling was expected to affect the AL, while for the support layer (SL), transparent exopolymer particles (TEP) were used as indicators of fouling due to their stickiness and propensity to enhance the attachment of other foulants in seawater on the membrane surface. The composition of the NOM fouling layer was determined after proper characterisation with a liquid chromatograph coupled with organic carbon detection (LC-OCD), showing biopolymers and protein-like substances as the main constituents. NOM fouling showed high hydraulic reversibility after a 25% flux decline was observed, up to 89.5% when in situ air scouring for 15 min was used as a cleaning technique. Chemical cleaning with a mixture of Alconox, an industrial detergent containing phosphates, and sodium EDTA showed to increase the reversibility (93.6%). Osmotic backwash using a 4% NaCl solution and DI water proved to be ineffective to recover flux due to the salt diffusion phenomena occurring at the AL. Part of the flux that could not be recovered is attributable to TEP fouling on the SL, which forms clusters clearly identifiable with an optical

  5. Measurement Methodology for Monitoring Fouling Resistance in Condenser of Chiller

    Institute of Scientific and Technical Information of China (English)

    YU Dan; GAN Li-si; CAO Yong

    2009-01-01

    This paper established an on-line monitoring model for fouling resistance of cooling water based on heat transfer theory,which was mainly applied to the fouling resistance test for condenser of chiller in operation,and the test requirements were presented.It proves that the load ratio of chiller has big influence on the test re-sult,and the best load ratio for test is the range of 80%~100%.A case has been executed to validate the mod-el's feasibility.

  6. A New Concept of Ultrafiltration Fouling Control: Backwashing with Low Ionic Strength Water

    NARCIS (Netherlands)

    Li, S.

    2011-01-01

    Ultrafiltration (UF) is a proven technology in water treatment nowadays. However, fouling remains a major challenge in the operation of UF, especially in regard to colloidal NOM fouling. In general, a number of colloidal NOM fouling mechanisms may occur, such as adsorption, gel formation. Colloidal

  7. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 2 (Appendices I, section 5 and II, section 1)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 2 contains the last section of Appendix I, Radiative heat transfer in kraft recovery boilers, and the first section of Appendix II, The effect of temperature and residence time on the distribution of carbon, sulfur, and nitrogen between gaseous and condensed phase products from low temperature pyrolysis of kraft black liquor.

  8. Experimental Study on Heat Transfer Characteristics of Shell and Tube Heat Exchanger Using Hitran Wire Matrix Turbulators As Tube Inserts.

    OpenAIRE

    Manoj; A.M.Mulla

    2014-01-01

    Shell and tube heat exchangers are extensively used in boilers, oil coolers, pre-heaters, condensers etc. They are also having special importance in process application as well as refrigeration and air conditioning industries. The present paper emphasizes on heat transfer characteristics of shell and tube heat exchangers with the aid of hiTRAN wire matrix inserts is been studied. Investigations were made on effect of mass flow rate of water on heat transfer characteristics in ...

  9. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Science.gov (United States)

    2010-10-01

    ..., tubes and headers shall be as required by PW-41 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1) except as noted otherwise in this section. (b) (Modifies PW-41.1) Circumferential welded joints in pipes, tubes, and headers of pipe material must be nondestructively examined...

  10. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  11. Development of Erosion-Corrosion-Resistant Cold-Spray Nanostructured Ni-20Cr Coating for Coal-Fired Boiler Applications

    Science.gov (United States)

    Kumar, M.; Singh, H.; Singh, N.; Chavan, N. M.; Kumar, S.; Joshi, S. V.

    2015-12-01

    The erosion-corrosion (E-C) behavior of a cold-spray nanostructured Ni-20Cr coating was studied under cyclic conditions in a coal-fired boiler. This study was done for 15 cycles (1500 h), in which each cycle comprised 100 h of heating in the boiler environment, followed by 1 h of cooling under ambient air conditions. The E-C extent was evaluated in terms of thickness loss data of the samples. The eroded-corroded samples were characterized using XRD, SEM/EDS, and x-ray mapping analyses. The nanostructured coating offered excellent E-C protection to boiler tube material (SA 516 steel) under harsh live conditions of the boiler. This E-C resistance offered by investigated coating may be attributed to the presence of protective NiO and Cr2O3 phases in its oxide scale and its superior as-sprayed microhardness.

  12. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    Science.gov (United States)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  13. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    International Nuclear Information System (INIS)

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition

  14. Apparatus for the in situ inspection of the integrity of a tube

    International Nuclear Information System (INIS)

    An apparatus is described for the in situ inspection of tubes which are submerged in a liquid such as the tubes in a steam generator while submerged in the primary coolant from a nuclear reactor. A sensor is withdrawn from a tube by a cable, including a means for removing the liquid from and drying the cable and returning the liquid to the tubes thus preventing the spread of deleterious liquids to otherwise benign environments and the fouling of the drive mechanism used to control cable movements. (Auth.)

  15. Treatment of hazardous and toxic liquids using Rochem Disc Tube technology

    International Nuclear Information System (INIS)

    Rochem Separation Systems, established in 1990 as a subsidiary of the international Rochem Group, has advanced the treatment of hazardous and toxic liquids with its unique, patented Disc Tube technology. Developed in 1987 at Rochem's design and production facilities in Hamburg, Germany, the Disc Tube technology is a series of membrane modules that greatly reduce the problems that hamper the effectiveness of other treatment technologies (i.e. fouling, scaling, cost, etc.). Applications of the Disc Tube technology include reverse osmosis and ultrafiltration. Rochem was recently accepted into the EPA Superfund Site program as a result of its Disc Tube technology. 1 fig., 1 tab

  16. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers; TOPICAL

    International Nuclear Information System (INIS)

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining

  17. Evaluation of tube shielding; Utvaerdering av tubskyddsmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Hjoernhede, Anders; Westberg, Stig-Bjoern; Henderson, Pamela; Wetterstroem, Jonas; Jonasson, Anna

    2007-12-15

    Problems with soot-blowing have increased recently because of the poor fuel quality. Studies show that removing all the deposit by soot-blowing increases the metal loss of the superheaters, which drastically shortens component lifetimes. A simple, effective and common way of increasing the lifetime is to use tube shielding. Austenitic stainless steels seem to be the type of material most commonly used for tube shielding. It is thought that they give better protection against material removal than ferritic steels, but the cost of austenitics is several times greater than ferritic steels. It is clear that there is a significant economic advantage in choosing the right material for tube shielding, even though it might be expected that the cheaper materials do not perform as well as the more expensive ones. The reason for the study reported here is that very little material data exists in the literature. Few, if any tests have been performed to study the choice of material for tube shielding. The goal was to compare and evaluate a number of materials in a boiler to see if it is possible to replace the shielding material presently used with cheaper alternatives. About a dozen different shielding materials were installed and exposed for 4000 hours on primary- and secondary superheaters in a waste-fired boiler in Norrkoeping (Haendeloe Boiler 14.75MW). In total, 130 m of test material were installed and measured in several positions: a least 150 thickness measurements, before and after, were made on every tube shield. The results showed that the greatest attack was found on the secondary superheater shielding, where both the gas- and steam temperatures were higher. When considering cost and lifetime Sicromal 10 and 12 (however not Sicromal 8) and 15Mo3 are recommended as being better than 253 MA. The results should be of interest to most plants firing biomass or waste

  18. CFD Simulation On CFBC Boiler

    OpenAIRE

    Amol S. Kinkar; G. M. Dhote; R.R. Chokkar

    2015-01-01

    Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays...

  19. Scandinavian baffle boiler design revisited

    OpenAIRE

    Stepanov Borivoj Lj.; Pešenjanski Ivan K.; Spasojević Momčilo Đ.

    2015-01-01

    The aim of this paper is to examine whether the use of baffles in a combustion chamber, one of the well-known low-cost methods for the boiler performance improvement, can be enhanced. Modern day tools like computational fluid dynamics were not present at the time when these measures were invented, developed and successfully applied. The objective of this study is to determine the influence of location and length of a baffle in a furnace, for different mass ...

  20. Biomimetic non-fouling surfaces: extending the concepts

    Czech Academy of Sciences Publication Activity Database

    Pop-Georgievski, Ognen; Rodriguez-Emmenegger, Cesar; de los Santos Pereira, Andres; Proks, Vladimír; Brynda, Eduard; Rypáček, František

    2013-01-01

    Roč. 1, č. 22 (2013), s. 2859-2867. ISSN 2050-750X R&D Projects: GA ČR GAP205/12/1702; GA MŠk(CZ) LH13178; GA ČR GAP108/11/1857 Institutional support: RVO:61389013 Keywords : non-fouling * polymer brushes * polydopamine Subject RIV: CD - Macromolecular Chemistry

  1. Researchers examine problems of foul tastes when undergoing chemotherapy

    OpenAIRE

    Nystrom, Lynn A.

    2006-01-01

    About two million cancer patients currently receiving certain drug therapies and chemotherapy will consume foods and beverages and find the taste to have a foul metallic flavor, according to a medical study. In general, more than 40 percent of hospitalized patients suffer from malnutrition due to taste and smell dysfunction.

  2. EFFECT OF CHLORAMINATION AND SEASONAL WATER CHANGES ON NANOFILTRATION FOULING

    Science.gov (United States)

    Nanofiltraton membrane studies conducted with Little Miami Aquifer water from the Indian Hill Water Works (OH) showed tht flux loss was highly seasonal in nature with the greatest fouling occurring during the highest water temperatures during drought conditions. The reason for th...

  3. Ion exchange resin fouling of molybdenum in recovery uranium processess

    International Nuclear Information System (INIS)

    The relationship between anion exchange resin fouling and molybdic acid polymerization was studied. By using potentiometer titration and laser-Raman spectroscopy the relationship of molybdic acid polymerization and the pH value of solution or the molybdenum concentration was determined. It was shown that as the concentration of initial molybdenum in solution decreases from 0.2 mol/L to 0.5 mmol/L, the pH value of starting polymerization decreased from 6.5 to 4.5. The experimental results show that the fouling of 201 x 7 resin in the acidic solution is mainly caused by the adsorbing of Mo3O264- ion and occupying the exchange radical site of the resin. Under the leaching conditions the molybdenum and phosphate existing in the leaching liquor can form 12-molybdo-phosphate ion. It also leads to resin fouling. The molybdenum on the fouled resin can synergically be desorbed by mixed desorbents containing ammonium hydroxide and ammonium sulfate. The desorbed resin can be used for uranium adsorption and the desorbed molybdenum can be recovered by ion exchange method

  4. Reduced fouling of ultrafiltration membranes via surface fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Sedath, R.H.; Yates, S.F.; Li, N.N.

    1993-03-01

    Surface fluorination can affect significantly the performance of an ultrafiltration membrane used to concentrate a food-related stream. Membranes fluorinated and tested as flat sheets exhibit higher initial fluxes, and do not foul as rapidly as untreated membranes. This improvement is linked to increased surface hydrophilicity, as shown in decreased contact angle with water. This increased hydrophilicity, in turn, is linked to the addition of fluorine and oxygen to the surface. The pilot plant study did-not show the difference in membrane flux and fouling observed in the flat sheet study. Instead, fluorinated and unfluorinated modules behaved similarly. Fouling by potato waste feed was severe and resulted in formation of an extensive gel layer within the module on the membrane surface. XPS, SEM and FTIR indicate that buildup of organic material occurred on both fluorinated and unfluorinated membranes, but SEM indicates that a fibrous mat of material was observed only on the nonfluorinated membrane. We conclude that in the pilot study, membrane fouling and gel formation were so extensive that the surface interaction effect was overwhelmed.

  5. Two-dimensional stochastic modeling of membrane fouling

    NARCIS (Netherlands)

    Wessling, M.

    2001-01-01

    The phenomenon of fouling of microfiltration membranes by much smaller particles such as proteins is described by a new developed simulation algorithm based on diffusion limited aggregation simulation techniques. The model specifies the membrane morphology explicitly and allows to (a) characterize t

  6. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  7. Experimental study of micro-particle fouling under forced convective heat transfer

    Directory of Open Access Journals (Sweden)

    S. M. Peyghambarzadeh

    2012-12-01

    Full Text Available Particulate fouling studies of a hydrocarbon based suspension containing 2 µm alumina particles were performed in an annular heat exchanger having a hydraulic diameter of 14.7 mm. During fouling experiments, the classical asymptotical behavior was observed. It is shown that particle concentration, fluid velocity, and wall temperature have strong influences on the fouling curve and the asymptotic fouling resistance. Furthermore, a mathematical model is developed to formulate the asymptotic fouling resistance in terms of the mass transfer coefficient, thermophoresis velocity, and fluid shear rate. The results demonstrate that the prediction of the new model is in good agreement with the experimental observations.

  8. Effect of Fouling Mitigation for Ceramic Ball in Cooling Water System of Heat Exchanger

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the effects of fouling mitigation for ceramic ball in cooling water system experimentally. The devices filled with ceramic balls were connected to the bypass line of the heat exchanging system. Cooling water in the heat exchanging system was artificial water. To visualize the formation of fouling on the heat transfer surface a number of images were obtained using a CCD camera with real-time microscopy. Fouling resistances and overall heat transfer coefficients were measured in order to analyze fouling mitigation effects. We found that the ceramic ball devices for artificial water reduced the formation of fouling compared to the no-mitigation devices

  9. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure

    DEFF Research Database (Denmark)

    Zarebska, Agata; Amor, Angel Cid; Ciurkot, Klaudia;

    2015-01-01

    study investigates preliminary fouling of polypropylene (PP) and polytetrafluoroethylene (PTFE) membranes. A model manure solution was used as feed. In addition cleaning efficiencies with deionized water, NaOH/citric acid, and Novadan agents were studied. Further microfiltration and ultrafiltration were...... examined as manure pretreatment to diminish fouling. To this end polyvinylidene fluoride membranes (PVDF 0.2 µm and 150 kDa respectively) were used. Organic fouling was shown to be dominant. For the model manure solution the fouling comprised lipids, carbohydrates and proteins. For pig slurry the fouling...

  10. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    Science.gov (United States)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  11. Membrane fouling mechanism transition in relation to feed water composition

    KAUST Repository

    Myat, Darli Theint

    2014-12-01

    The impact of secondary effluent wastewater from the Eastern Treatment Plant (ETP), Melbourne, Australia, before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, on hydrophobic polypropylene (PP) and hydrophilic polyvinylidene fluoride (PVDF) membrane fouling was studied. Laboratory fouling tests were operated over 3-5 days with regular, intermittent backwash. During the filtration with PP membranes, organic rejection data indicated that humic adsorption on hydrophobic PP membrane occurred during the first 24h of filtration and contributed to fouling for both raw wastewater and pre-treated wastewaters. However, after the first 24h of filtration the contribution of humic substances to fouling diminished and biopolymers that contribute to cake layer development became more prominent in their contribution to the fouling rate. For PVDF membranes, the per cent removal of humic substances from both raw wastewater and pre-treated wastewaters was very small as indicated by no change in UV254 from the feed to the permeate over the filtration period, even during the early stages of filtration. This suggested that the hydrophobic PP membrane adsorbed humic substances while the hydrophilic PVDF membrane did not. The highest mass of biopolymer removal by each PVDF membrane was from ETP water followed by PACl and IX treated water respectively. This was possibly due to differences in the backwashing efficiency linked to the filter cake contributed by biopolymers. Hydraulic backwashing was more effective during the later stages of filtration for the ETP water compared to IX and PACl treated waters, indicating that the filter cake contributed by ETP biopolymers was more extensively removed by hydraulic backwashing. It was proposed that humic substances may act to stabilise biopolymers in solution and that removing humics substances by coagulation or IX results in greater adhesive forces between the biopolymers and membrane/filter cake

  12. Business opportunities in boiler control systems

    Energy Technology Data Exchange (ETDEWEB)

    McHale, A.P.

    1988-03-01

    Each year some Pound 4.5 billion is spent on fuel to fire the UK non-domestic boiler stock. The average age of the 500 000 population of boilers is more than 10 years and in that time great advances have been made in the capacity and capability of microprocessor controls. There is undoubtedly an enormous potential to retrofit existing boilers with the latest controls both to improve efficiency of production and utilisation.

  13. Rejection of micropollutants by clean and fouled forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2011-12-01

    As forward osmosis (FO) gains attention as an efficient technology to improve wastewater reclamation processes, it is fundamental to determine the influence of fouling in the rejection of emerging contaminants (micropollutants). This study focuses on the rejection of 13 selected micropollutants, spiked in a secondary wastewater effluent, by a FO membrane, using Red Sea water as draw solution (DS), differentiating the effects on the rejection caused by a clean and fouled membrane. The resulting effluent was then desalinated at low pressure with a reverse osmosis (RO) membrane, to produce a high quality permeate and determine the rejection with a coupled forward osmosis - low pressure reverse osmosis (FO-LPRO) system. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% and 95.2%, 48.7%-91.5% and 96.9%-98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the presence of a fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity of hydrophilic compounds and reduced mass transport capacity, membrane swelling, and the higher negative charge of the membrane surface, related to the foulants composition, mainly NOM acids (carboxylic radicals) and polysaccharides or polysaccharide-like substances. However, when coupled with RO, the rejections in both cases increased above 96%. The coupled FO-LPRO system was an effective double barrier against the selected micropollutants. © 2011 Elsevier Ltd.

  14. Rejection of micropollutants by clean and fouled forward osmosis membrane.

    Science.gov (United States)

    Valladares Linares, Rodrigo; Yangali-Quintanilla, Victor; Li, Zhenyu; Amy, Gary

    2011-12-15

    As forward osmosis (FO) gains attention as an efficient technology to improve wastewater reclamation processes, it is fundamental to determine the influence of fouling in the rejection of emerging contaminants (micropollutants). This study focuses on the rejection of 13 selected micropollutants, spiked in a secondary wastewater effluent, by a FO membrane, using Red Sea water as draw solution (DS), differentiating the effects on the rejection caused by a clean and fouled membrane. The resulting effluent was then desalinated at low pressure with a reverse osmosis (RO) membrane, to produce a high quality permeate and determine the rejection with a coupled forward osmosis - low pressure reverse osmosis (FO-LPRO) system. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% and 95.2%, 48.7%-91.5% and 96.9%-98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the presence of a fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity of hydrophilic compounds and reduced mass transport capacity, membrane swelling, and the higher negative charge of the membrane surface, related to the foulants composition, mainly NOM acids (carboxylic radicals) and polysaccharides or polysaccharide-like substances. However, when coupled with RO, the rejections in both cases increased above 96%. The coupled FO-LPRO system was an effective double barrier against the selected micropollutants. PMID:22055122

  15. Boiler plants completed in record time

    International Nuclear Information System (INIS)

    Bubbling fluidised bed (BFB) combustion has steadily increased its share of the boiler market in recent years, particularly in the Nordic region, where it is particularly well-suited to handling the high moisture content biofuels produced and used by the forest products industry. Foster Wheeler is the world's leading supplier of fluidised bed combustion technology. Over 200 of the more than 300 fluidised bed boilers supplied by the company are circulating fluidised bed (CFB) designs, a market in which Foster Wheeler has more than a 40% share. Foster Wheeler Energia Oy supplied the Myllykoski project at Anjalankoski with a fluidised bed boiler, auxiliary steam boilers, and flue gas scrubber systems

  16. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... endoscope (a thin, flexible tube with a tiny camera and light at the tip) inserted through the ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  17. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  18. Nanoparticle fouling and its combination with organic fouling during forward osmosis process for silver nanoparticles removal from simulated wastewater

    Science.gov (United States)

    Zhao, Yanxiao; Wang, Xinhua; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-01-01

    The increasing and wide application of silver nanoparticles (Ag NPs) has resulted in their appearance in wastewater. In consideration of their potential toxicity and environmental impacts, it is necessary to find effective technology for their removal from wastewater. Here, forward osmosis (FO) membrane was applied for Ag NPs removal from wastewater, and single and combined fouling of nanoparticles and organic macromolecules were further investigated during the FO process. The findings demonstrated that FO membrane can effectively remove Ag NPs from wastewater due to its high rejection performance. Fouling tests indicated that water flux declined appreciably even at the beginning of the single Ag NPs fouling test, and more remarkable flux decline and larger amounts of deposited Ag NPs were observed with an increase of Ag NPs concentration. However, the addition of bovine serum albumin (BSA) could effectively alleviate the FO membrane fouling induced by Ag NPs. The interaction between Ag NPs and BSA was responsible for this phenomenon. BSA can easily form a nanoparticle-protein corona surrounded nanoparticles, which prevented nanoparticles from aggregation due to the steric stabilization mechanism. Furthermore, the interaction between BSA and Ag NPs occurred not only in wastewater but also on FO membrane surface. PMID:27160045

  19. Nanoparticle fouling and its combination with organic fouling during forward osmosis process for silver nanoparticles removal from simulated wastewater

    Science.gov (United States)

    Zhao, Yanxiao; Wang, Xinhua; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-05-01

    The increasing and wide application of silver nanoparticles (Ag NPs) has resulted in their appearance in wastewater. In consideration of their potential toxicity and environmental impacts, it is necessary to find effective technology for their removal from wastewater. Here, forward osmosis (FO) membrane was applied for Ag NPs removal from wastewater, and single and combined fouling of nanoparticles and organic macromolecules were further investigated during the FO process. The findings demonstrated that FO membrane can effectively remove Ag NPs from wastewater due to its high rejection performance. Fouling tests indicated that water flux declined appreciably even at the beginning of the single Ag NPs fouling test, and more remarkable flux decline and larger amounts of deposited Ag NPs were observed with an increase of Ag NPs concentration. However, the addition of bovine serum albumin (BSA) could effectively alleviate the FO membrane fouling induced by Ag NPs. The interaction between Ag NPs and BSA was responsible for this phenomenon. BSA can easily form a nanoparticle-protein corona surrounded nanoparticles, which prevented nanoparticles from aggregation due to the steric stabilization mechanism. Furthermore, the interaction between BSA and Ag NPs occurred not only in wastewater but also on FO membrane surface.

  20. Particulate emission factor: A case study of a palm oil mill boiler

    International Nuclear Information System (INIS)

    A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm3 (at 7 % O2) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm3, the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

  1. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

  2. Ear tube insertion

    Science.gov (United States)

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  3. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Prateep Pattanapunt

    2013-01-01

    Full Text Available Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation performs a thermodynamics analysis. An energy-based approach is performed for optimizing the effective working condition for waste-heat recovery with exhaust gas to air shell and tube heat exchanger. The variations of parameters, which affect the system performance such as, exhaust gas and air temperature, velocity and mass flow rate and moisture content is examined respectively. From this study, it was found that heat exchanger could be reduced temperature of exhaust gases and emission to atmosphere and the time payback is the fastest. The payback period was determined about 6 months for investigated ANSYS. The air is circulated in four passes from the top to the bottom of the test section, in overall counter-flow with exhaust gas. The front area is 1720×1720 mm, the flow length 7500 mm, the inner and outer diameter of exhaust gas is 800 mm, the tube assembly consist of 196 tubes, the tube diameter is 76.2 mm, the tube thickness is 2.6 mm, the tube length is 4500 mm, the tube length of air inner and outer is 500 mm. The result show that, the boiler for superheated type there are exhaust gas temperature is 190°C, 24% the moisture content of fuel and there are palm kernel shell 70 tons day-1 which there are the high temperature after the heat exchanger, 150°C. It was occurred acid rain. The hot air from heat exchanger process can be reduced the moisture of palm kernel shell fuel to 15%.The fuel consumption is reduced by about 2.05% (322.72 kJ kg-1

  4. Foul Play in Sport as a Phenomenon Inconsistent with the Rules, yet Acceptable and Desirable: Ethical Conditions

    Directory of Open Access Journals (Sweden)

    Kosiewicz Jerzy

    2014-06-01

    Full Text Available The article has strictly a theoretical and non-empirical character. The author presents examples resulting from various observations. The aim of the paper is to present the causes, functions, and results of fouls, fouling, and foul play. Although fouls do not comply with the rules of games, the paper demonstrates that fouls are often used; they enjoy a quiet acceptance of the sporting world; they are tolerated and accepted; even more, they are often - more or less explicitly - desirable.

  5. Coiled tubing

    International Nuclear Information System (INIS)

    Oil and gas wells that flow on initial completion eventually reach a condition of liquid loading that kills the wells. This results form declining reservoir pressure, decreased gas volume (velocity), increased water production and other factors that cause liquids to accumulate at the bottom of the well and exert back pressure on the formation. This restricts or in some cases prevents fluid entry into the wellbore form the formation. Flowing production can be restored or increased by reducing surface backpressure, well bore stimulation, pressure maintenance or by installing a string of smaller diameter tubing. This paper reports on installation (hanging off) of a concentric string of coiled tubing inside existing production tubing which is an economically viable, safe, convenient and effective alterative for returning some of these liquid loaded )logged-up) wells to flowing status

  6. Distributed parameter modeling and thermal analysis of a spiral water wall in a supercritical boiler

    OpenAIRE

    Zheng Shu; Luo Zixue; Zhou Huaichun

    2013-01-01

    In this paper, a distributed parameter model for the evaporation system of a supercritical spiral water wall boiler is developed based on a 3-D temperature field. The mathematical method is formulated for predicting the heat flux and the metal-surface temperature. The results show that the influence of the heat flux distribution is more obvious than that of the heat transfer coefficient distribution in the spiral water wall tube, and the peak of the heat tr...

  7. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  8. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  9. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  10. Seeking for total efficiency on boiler operation

    International Nuclear Information System (INIS)

    In this paper, as for the boiler in the private power generation plant which has been in operation since July, 1974 based on the production increase project of the factory, the measures for energy conservation considered from the planning and design stage, the countermeasures to the low loading of the boiler by the epoch-making effect of the energy conservation in the production system since the oil crisis in 1973, and the cost management of the boiler are described. The outline of the private power generation plant is shown. The boiler facilities are the boiler for power generation of 81 kg/cm2, 433degC, 65 t/h, the saturation boiler of 30 kg/cm2, 211degC, 47 t/h, and the waste heat boiler of 22 kg/cm2, 211 degC, 4.2 t/h. As the measures for energy conservation, tangential corner firing-two stage combustion process was adopted, and the total heat of recovered drain has been utilized. The remodeling and the effect of improvement of the boiler and the turbine as the countermeasures to low loading are reported. The examples of other energy conservation in the waste tire incinerator, air compressor, exhaust desulfurizer and air preheater are described. (K.I.)

  11. Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment

    Science.gov (United States)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.

    2012-01-01

    High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.

  12. Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment.

    Science.gov (United States)

    Ayache, C; Pidou, M; Croué, J P; Labanowski, J; Poussade, Y; Tazi-Pain, A; Keller, J; Gernjak, W

    2013-05-15

    This study aims at comparing low-pressure membrane fouling obtained with two different secondary effluents at bench and pilot-scale based on the determination of two fouling indices: the total fouling index (TFI) and the hydraulically irreversible fouling index (HIFI). The main objective was to investigate if simpler and less costly bench-scale experimentation can substitute for pilot-scale trials when assessing the fouling potential of secondary effluent in large scale membrane filtration plants producing recycled water. Absolute values for specific flux and total fouling index for the bench-scale system were higher than those determined from pilot-scale, nevertheless a statistically significant correlation (r(2) = 0.63, α = 0.1) was obtained for the total fouling index at both scales. On the contrary no such correlation was found for the hydraulically irreversible fouling index. Advanced water characterization tools such as excitation-emission matrix fluorescence spectroscopy (EEM) and liquid chromatography with organic carbon detection (LC-OCD) were used for the characterization of foulants. On the basis of statistical analysis, biopolymers and humic substances were found to be the major contribution to total fouling (r(2) = 0.95 and r(2) = 0.88, respectively). Adsorption of the low molecular weight neutral compounds to the membrane was attributed to hydraulically irreversible fouling (r(2) = 0.67). PMID:23541121

  13. Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment

    KAUST Repository

    Ayache, C.

    2013-05-01

    This study aims at comparing low-pressure membrane fouling obtained with two different secondary effluents at bench and pilot-scale based on the determination of two fouling indices: the total fouling index (TFI) and the hydraulically irreversible fouling index (HIFI). The main objective was to investigate if simpler and less costly bench-scale experimentation can substitute for pilot-scale trials when assessing the fouling potential of secondary effluent in large scale membrane filtration plants producing recycled water. Absolute values for specific flux and total fouling index for the bench-scale system were higher than those determined from pilot-scale, nevertheless a statistically significant correlation (r2 = 0.63, α = 0.1) was obtained for the total fouling index at both scales. On the contrary no such correlation was found for the hydraulically irreversible fouling index. Advanced water characterization tools such as excitation-emission matrix fluorescence spectroscopy (EEM) and liquid chromatography with organic carbon detection (LC-OCD) were used for the characterization of foulants. On the basis of statistical analysis, biopolymers and humic substances were found to be the major contribution to total fouling (r2 = 0.95 and r2 = 0.88, respectively). Adsorption of the low molecular weight neutral compounds to the membrane was attributed to hydraulically irreversible fouling (r2 = 0.67). © 2013 Elsevier Ltd.

  14. Robust Design Optimization Method for Centrifugal Impellers under Surface Roughness Uncertainties Due to Blade Fouling

    Institute of Scientific and Technical Information of China (English)

    JU Yaping; ZHANG Chuhua

    2016-01-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  15. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    Science.gov (United States)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  16. Performance evaluation of a once-through multi-stage flash distillation system: Impact of brine heater fouling

    International Nuclear Information System (INIS)

    Multi-stage flash distillation (MSF) system modeling involves a number of process variables. An estimation of all these process variables requires both analytical solutions and experimental/field analysis. However, the accurate estimate of variables related to the brine heater operation in a MSF system is very important for a reliable operation of the system. For example, steam operating conditions as well as the brine properties including fouling of the brine heater tubes have a significant effect on the heat transfer characteristics of the brine heater, which in turn influence the distillate output from the system. In this study, the effect of various design as well as operating conditions on the performance ratio (PR), brine temperature and salinity as it leaves the last flash stage are investigated in a once-through system. Increasing the number of stages from 24 to 32 has a significant effect on the PR, it ranges between 79% (for ΔT = 1.5) and 327% (for ΔT = 2.3) for a top-brine temperature of 106 oC. This value increase as the top-brine temperature increases. Increasing the stage-to-stage temperature difference increases the water salinity as it leaves the final stage and reduces its temperature that would imply better energy utilization within the plant. Results show that brine side heat exchanger fouling has a significant effect in decreasing the overall heat transfer coefficient, which reduces the production rate as the fouling increases with time. A sensitivity analysis to identify the key parameters, which can have a significant influence on the desalination plant performance, is carried out in an attempt to contribute a better understanding and operation of MSF desalination processes.

  17. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions

    KAUST Repository

    Zheng, Xing

    2014-11-01

    EfOM has been regarded as a major organic foulant resulting in UF membrane fouling in wastewater reclamation. To investigate fouling potential of different EfOM fractions, the present study isolated EfOM into hydrophobic neutrals (HPO-N), colloids, hydrophobic acids (HPO-A), transphilic neutrals and acids (TPI), and hydrophilics (HPI), and tested their fouling effect in both salt solution and pure water during ultrafiltration (UF). Major functional groups and chemical structure of the isolates were identified using Fourier transform infrared spectroscopy (FT-IR) and solid-state carbon nuclear magnetic resonance (13C NMR) analysis. The influence of the isolation process on the properties of EfOM fractions was minor because the raw and reconstituted secondary effluents were found similar with respect to UV absorbance, molecular size distribution, and fluorescence character. In membrane filtration tests, unified membrane fouling index (UMFI) and hydraulic resistance were used to quantify irreversible fouling potential of different water samples. Results show that under similar DOC level in feed water, colloids present much more irreversible fouling than other fractions. The fouling effect of the isolates is related to their size, chemical properties, and solution chemistry. Further investigations have identified that the interaction between colloids and other fractions also influences the performance of colloids in fouling phenomena. © 2014 Elsevier Ltd.

  18. The use of titanium for condenser tube bundles

    International Nuclear Information System (INIS)

    In a power plant, the condenser is a strategic heat exchanger with regards to the efficiency of the steam turbine and its reliability guarantees the performance and continuous operation of the plant. Until the early 1980's, copper alloys were routinely used in condenser tubes, thanks to their high heat transfer rates. Yet numerous problems arose from the use of this material, such as stress cracking corrosion, ammoniacal corrosion, fouling, erosion, dezincification, abrasion, erosion-corrosion,... and lately the problem of inadequateness of copper with nuclear steam generators (in nuclear power plant the abrasion problem of the copper alloy tubes created a deposit problem in the steam generator conducting to the replacement of all the condensers). The trend was then to consider new tube materials, such stainless steel and titanium, firstly for particular operating conditions and now for most of the projects, with several objectives, such as: 1) improve the reliability (titanium in particular can bring major improvements such as higher water velocities promoting better heat coefficients, excellent resistance to abrasion, erosion and corrosion thereby improving resistance to fouling; 2) find more cost-effective solutions. The first investment is higher but money is saved on maintenance costs and on time reliability of the material. Titanium tube manufacturing has greatly evolved for the last 20 years. Tubes are mostly welded tubes from ASTM SB 338 grade 1 made on a continuous manufacturing line. All manufacturing operations (welding, annealing, non-destructive testing) are fully automated to produce high quality tubes in large quantities. The most common way to attach tubes to a tubesheet is to roller expand them. (A.C.)

  19. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  20. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues

    International Nuclear Information System (INIS)

    This paper describes the potential applications of renewable energy sources to replace fossil fuel combustion as the prime energy sources in various countries, and discusses problems associated with biomass combustion in boiler power systems. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal, industrial and animal waste material. Brief summaries of the basic concepts involved in the combustion of biomass fuels are presented. Renewable energy sources (RES) supply 14% of the total world energy demand. RES are biomass, hydropower, geothermal, solar, wind and marine energies. The renewables are the primary, domestic and clean or inexhaustible energy resources. The percentage share of biomass was 62.1% of total renewable energy sources in 1995. Experimental results for a large variety of biomass fuels and conditions are presented. Numerical studies are also discussed. Biomass is an attractive renewable fuel in utility boilers. The compositions of biomass among fuel types are variable. Ash composition for the biomass is fundamentally different from ash composition for the coal. Especially inorganic constituents cause to critical problems of toxic emissions, fouling and slagging. Metals in ash, in combination with other fuel elements such as silica and sulfur, and facilitated by the presence of chlorine, are responsible for many undesirable reactions in combustion furnaces and power boilers. Elements including K, Na, S, Cl, P, Ca, Mg, Fe, Si are involved in reactions leading to ash fouling and slagging in biomass combustors. Chlorine in the biomass may affect operation by corrosion. Ash deposits reduce heat transfer and may also result in severe corrosion at high temperatures. Other influences of biomass composition are observed for the rates of combustion and pollutant emissions. Biomass combustion systems are non-polluting and offer significant protection of the environment. The reduction of greenhouse gases