WorldWideScience

Sample records for boiler tube fouling

  1. Surface chemistry interventions to control boiler tube fouling

    International Nuclear Information System (INIS)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J.

    2000-06-01

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25 o C. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both

  2. Surface chemistry interventions to control boiler tube fouling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J

    2000-06-01

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25{sup o}C. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both.

  3. Fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-05-15

    One of the important challenges for biomass combustion in industrial applications is the fouling tendency and how it affects to the boiler performance. The classical approach for this question is to activate sootblowing cycles with different strategies to clean the boiler (one per shift, one each six hours..). Nevertheless, it has been often reported no effect on boiler fouling or an excessive steam consumption for sootblowing. This paper illustrates the methodology and the application to select the adequate time for activating sootblowing in an industrial biomass boiler. The outcome is a control strategy developed with artificial intelligence (Neural Network and Fuzzy Logic Expert System) for optimizing the biomass boiler cleaning and maximizing heat transfer along the time. Results from an optimize sootblowing schedule show savings up to 12 GWh/year in the case-study biomass boiler. Extra steam generation produces an average increase of turbine power output of 3.5%. (author)

  4. Knowledge based system for fouling assessment of power plant boiler

    International Nuclear Information System (INIS)

    Afgan, N.H.; He, X.; Carvalho, M.G.; Azevedo, J.L.T.

    1999-01-01

    The paper presents the design of an expert system for fouling assessment in power plant boilers. It is an on-line expert system based on selected criteria for the fouling assessment. Using criteria for fouling assessment based on 'clean' and 'not-clean' radiation heat flux measurements, the diagnostic variable are defined for the boiler heat transfer surface. The development of the prototype knowledge-based system for fouling assessment in power plants boiler comprise the integrations of the elements including knowledge base, inference procedure and prototype configuration. Demonstration of the prototype knowledge-based system for fouling assessment was performed on the Sines power plant. It is a 300 MW coal fired power plant. 12 fields are used with 3 on each side of boiler

  5. Slagging and fouling evaluation of PC-fired boilers using AshPro{sup SM}

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhanhua; Iman, Felicia; Lu, Pisi [SmartBurn, LLC, Madison, WI (United States)

    2013-07-01

    SmartBurn {sup registered} applied AshPro{sup SM} model to two 512 MW Tangential-fired (T-fired) boilers firing US western sub- bituminous coals to evaluate the boiler slagging behaviors with different operating conditions and OFA. The boiler convective pass fouling behaviors with three different coals were also evaluated. The slagging evaluation results indicate that the OFA configuration and air flow distribution have dramatically impacts on the ash impaction rates and slagging patterns on the furnace walls. Deposit growth and strength vary at the different regions of the furnace walls. The fouling evaluation reveals that the tube bank configuration, the amount of incoming ash, the profiles of flue gas temperature, velocity, and species all have significant impacts on fouling deposit formation, growth, and strength development. In addition, the varying ash particle sizes and chemical compositions from different coals also play important roles on the fouling deposit strength development and removal. The investigation demonstrated that AshPro{sup SM} model can be used to evaluate localized slagging and fouling problems that are related to specific boiler configuration and operating conditions. It can be used to identify the major causes of ash deposition and can guide changes in boiler operation.

  6. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  7. Hybrid system for fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacin de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Mareda de Luna, 3, Zaragoza 50018, (Spain)

    2006-12-15

    Renewable energy sources are essential paths towards sustainable development and CO{sub 2} emission reduction. For example, the European Union has set the target of achieving 22% of electricity generation from renewable sources by 2010. However, the extensive use of this energy source is being avoided by some technical problems as fouling and slagging in the surfaces of boiler heat exchangers. Although these phenomena were extensively studied in the last decades in order to optimize the behaviour of large coal power boilers, a simple, general and effective method for fouling control has not been developed. For biomass boilers, the feedstock variability and the presence of new components in ash chemistry increase the fouling influence in boiler performance. In particular, heat transfer is widely affected and the boiler capacity becomes dramatically reduced. Unfortunately, the classical approach of regular sootblowing cycles becomes clearly insufficient for them. Artificial Intelligence (AI) provides new means to undertake this problem. This paper illustrates a methodology based on Neural Networks (NNs) and Fuzzy-Logic Expert Systems to select the moment for activating sootblowing in an industrial biomass boiler. The main aim is to minimize the boiler energy and efficiency losses with a proper sootblowing activation. Although the NN type used in this work is well-known and the Hybrid Systems had been extensively used in the last decade, the excellent results obtained in the use of AI in industrial biomass boilers control with regard to previous approaches makes this work a novelty. (Author)

  8. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  9. Using CFD to investigate heater fouling in a utility boiler

    International Nuclear Information System (INIS)

    Pang, L.; Sun, B.; Salcudean, M.

    2004-01-01

    A simulation investigation into the combustion and heat transfer process in a utility boiler is presented. The work is based on the commercial software Fluent 6.1.18. Flow, chemistry, energy, conservation and radiation models are used to simulate the process inside the furnace. Radiation and convection models are considered in the horizontal heater. The temperature and velocity fields are calculated to unveil the process inside and outside the furnace. The result shows that the fouling in reheater is formed because of the temperature and velocity field in the flue gas passage. A limited test is done to validate the simulation. (author)

  10. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  11. Elevated temperature failures in boiler tubes - case studies

    International Nuclear Information System (INIS)

    Gowrisankar, I.; Bandyopadhyay, G.

    1989-01-01

    Metallurgical investigation of boiler tube failures enables identification of failure mechanisms and the underlying cause related to boiler conditions. Some case studies in short term overheating, prolonged overheating and low cycle fatigue failures in boiler tubes are discussed. (author)

  12. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi

    2006-01-01

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  13. Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler

    Energy Technology Data Exchange (ETDEWEB)

    Corkery, Robert; Baefver, Linda; Davidsson, Kent; Feiler, Adam

    2012-02-15

    Here we have described the basics of boilers, fuels, combustion, flue gas composition and mechanisms of deposition. We have reviewed coating technologies for boiler tubes, including their materials compositions, nano structures and performances. The surface forces in boilers, in particular those relevant to formation of unwanted deposits in boilers have also been reviewed, and some comparative calculations have been included to indicate the procedures needed for further study. Finally practical recommendations on the important considerations in minimizing deposition on boiler surfaces are made

  14. Analysis of fouling in refuse waste incinerators

    NARCIS (Netherlands)

    Beek, van M.C.; Rindt, C.C.M.; Wijers, J.G.; Steenhoven, van A.A.

    2001-01-01

    Gas-side fouling of waste-heat-recovery boilers, caused mainly by the deposition of particulate matter, reduces the heat transfer in the boiler. The fouling as observed on the tube bundles in the boiler of a Dutch refuse waste incinerator varied from thin and powdery for the economizer to thick and

  15. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  16. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    Ishiyama, Toru; Kawasaki, Ichio; Miura, Hirohito

    2014-01-01

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  17. CFD investigation of flow through internally riffled boiler tubes

    DEFF Research Database (Denmark)

    Rasmussen, Christian; Houbak, Niels; Sørensen, Jens Nørkær

    1997-01-01

    In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements.......In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements....

  18. CONCENTRIC TUBE-FOULING RIG FOR INVESTIGATION OF FOULING DEPOSIT FORMATION FROM PASTEURISER OF VISCOUS FOOD LIQUID

    Directory of Open Access Journals (Sweden)

    N. I. KHALID

    2013-02-01

    Full Text Available This paper reports the work on developing concentric tube-fouling rig, a new fouling deposit monitoring device. This device can detect and quantify the level of fouling deposit formation. It can also functioning as sampler for fouling deposit study, which can be attached at any food processing equipment. The design is initiated with conceptual design. The rig is designed with inner diameter of 7 cm and with tube length of 37 cm. A spiral insert with 34.5 cm length and with 5.4 cm diameter is fitted inside the tube to ensure the fluid flows around the tube. In this work, the rig is attached to the lab-scale concentric tube-pasteurizer to test its effectiveness and to collect a fouling sample after pasteurization of pink guava puree. Temperature changes are recorded during the pasteurization and the data is used to plot the heat transfer profile. Thickness of the fouling deposit is also measured. The trends for thickness, heat resistance profile and heat transfer profile for concentric tube-fouling rig matched the trends obtained from lab-scale concentric tube-pasteurizer very well. The findings from this work have shown a good potential of this rig however there is a limitation with spiral insert, which is discussed in this paper.

  19. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    Directory of Open Access Journals (Sweden)

    Shi Yuanhao

    2015-01-01

    Full Text Available Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process, artificial neural networks (ANN are used to optimize the boiler soot-blowing model and mean impact values method is utilized to determine a set of key variables. The validity of the models has been illustrated in a real case-study boiler, a 300MW Chinese power station. The results on same real plant data show that both models have good prediction accuracy, while the ANN model II has less input parameters. This work will be the basis of a future development in order to control and optimize the soot-blowing of the coal-fired power plant utility boilers.

  20. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Shah, A.; Baluch, M.M.; Ali, A.

    2010-01-01

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  1. A Comparative Study of Fouling and Bottom Ash from Woody Biomass Combustion in a Fixed-Bed Small-Scale Boiler and Evaluation of the Analytical Techniques Used

    Directory of Open Access Journals (Sweden)

    Lara Febrero

    2015-05-01

    Full Text Available In this work, fouling and bottom ash were collected from a low-power boiler after wood pellet combustion and studied using several analytical techniques to characterize and compare samples from different areas and determine the suitability of the analysis techniques employed. TGA results indicated that the fouling contained a high amount of organic matter (70%. The XRF and SEM-EDS measurements revealed that Ca and K are the main inorganic elements and exhibit clear tendency in the content of Cl that is negligible in the bottom ash and increased as it penetrated into the innermost layers of the fouling. Calcite, magnesia and silica appeared as the major crystalline phases in all the samples. However, the bottom ash was primarily comprised of calcium silicates. The KCl behaved identically to the Cl, preferably appeared in the adhered fouling samples. This salt, which has a low melting point, condenses upon contact with the low temperature tube and played a crucial role in the early stages of fouling formation. XRD was the most useful technique applied, which provided a semi-quantitative determination of the crystalline phases. FTIR was proven to be inadequate for this type of sample. The XRF and SEM-EDS, techniques yield similar results despite being entirely different.

  2. Failure analysis of the boiler water-wall tube

    OpenAIRE

    S.W. Liu; W.Z. Wang; C.J. Liu

    2017-01-01

    Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tu...

  3. Creep analysis of boiler tubes by fem | Taye | Zede Journal

    African Journals Online (AJOL)

    In this paper an analysis is developed for the determination of creep deformation of an axisymmetric boiler tubes subjected to axisymmetric loads. The stresses and the permanent strains at a particular time and at the steady state condition, resulting from loading of the tube under constant internal pressure and elevated ...

  4. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  5. Tube micro-fouling, boiling and steam pressure after chemical cleaning

    International Nuclear Information System (INIS)

    Hu, M.H.

    1998-01-01

    This paper presents steam pressure trends after chemical cleaning of steam generator tubes at four plants. The paper also presents tube fouling factor that serves as an objective parameter to assess tubing boiling conditions for understanding the steam pressure trend. Available water chemistry data helps substantiate the concept of tube micro-fouling, its effect on tubing boiling, and its impact on steam pressure. All four plants experienced a first mode of decreasing steam pressure in the post-cleaning operation. After 3 to 4 months of operation, the decreasing trend stopped for three plants and then restored to a pre-cleaning value or better. The fourth plant is soil in decreasing trend after 12 months of operation. Dissolved chemicals, such as silica, titanium can precipitate on tube surface. The precipitate micro-fouling can deactivate or eliminate boiling nucleation sites. Therefore, the first phase of the post-cleaning operation suffered a decrease in steam pressure or an increase in fouling factor. It appears that micro fouling by magnetite deposit can activate or create more bubble nucleation sites. Therefore, the magnetite deposit micro-fouling results in a decrease in fouling factor, and a recovery in steam pressure. Fully understanding the boiling characteristics of the tubing at brand new, fouled and cleaned conditions requires further study of tubing surface conditions. Such study should include boiling heat transfer tests and scanning electronic microscope examination. (author)

  6. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  7. Simulasi Thermal Stress Pada Tube Superheater Package Boiler

    OpenAIRE

    Hamdani

    2013-01-01

    This project investigates the thermal stress behavior and the mechanisms of superheater tube failure with experimental method and numerical analysis. First of all the procedures for failure analysis were applied to determine the root cause of them. A visual assessment of boiler critical pressure parts was carried out, and then the failed tube is examined by nondestructive evaluation. For the numerical domain, initially the elastic solution for a superheater tube subjected to an internal press...

  8. Hybrid Intelligent Warning System for Boiler tube Leak Trips

    Directory of Open Access Journals (Sweden)

    Singh Deshvin

    2017-01-01

    Full Text Available Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1 represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2 represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers.

  9. CFD modeling of a boiler's tubes rupture

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi [Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah (Iran)

    2006-12-15

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-{epsilon} turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections. (author)

  10. Oxygen pitting failure of a bagasse boiler tube

    CSIR Research Space (South Africa)

    Heyes, AM

    2001-04-01

    Full Text Available Examination of a failed roof tube from a bagasse boiler showed transverse through-cracks and extensive pitting. The pitting was typically oxygen induced pitting and numerous fatigue cracks had started within these pits. It is highly probable...

  11. Reliability of non-heated tube bends of boilers

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Akhremenko, V.L.; Zamotaev, V.S.

    1984-01-01

    Bend failures are described for non-heated boiler tubes of 12Kh1MF and 20 steels. Methods of reliability evaluations are presented which permit revealing and replacing the bends with inadequate resources. Influences of operation conditions on bend durability is shown as well as the factors which are dominating at bend failures

  12. Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube

    Science.gov (United States)

    Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.

    2015-02-01

    Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.

  13. A risk approach to the management of boiler tube thinning

    International Nuclear Information System (INIS)

    Noori, Soudabeh A.; Price, John W.H.

    2006-01-01

    A large set of industrial thickness inspection data covering four boiler units of a power station over a period of five years was made available to the authors. The measurements were made in regions of the boiler where corrosion/erosion was the major cause of failure of the boiler tubes. There were over 40,000 separately measured data points in the data and all were collected with some care and expense. In the development of maintenance strategies for equipment, this type of data is typical of the data that must be collected and assessed. This data thus represents an opportunity to evaluate the ability to generate a useful risk approach to the management of the tubing. An important example of a risk-based approach is the American Petroleum Institute (API) Risk Based Inspection ('RBI'), API 581. A variety of problems were encountered applying this to boiler tubes. The problems include irrelevant API 581 corrosion rate tables, lack of information on how to analyse inspection data, difficulty of dealing with multiple inspection categories and lack of suitable direction for programming inspection intervals

  14. Modelling of a one pass smoke tube boiler

    DEFF Research Database (Denmark)

    Karstensen, Claus M. S.; Sørensen, Kim

    2004-01-01

    A nonlinear state-space model with five states describing a one pass smoke tube boiler has been formulated. By means of mass- and energy-balance the model describes the dynamics of the Furnace, the Convection Zone and the Water/Steam Part and the three sub models are merged into an overall model....... The model is further linearized for use in a linear control design. The simulations have been carried out by means of MATLAB/SIMULINK and the models have been verified with measurements from a full scale boiler plant. Parameters in the model that are difficult to calculate have been estimated and the method...

  15. Thermal design of horizontal tube boilers: numerical and experimental investigation

    International Nuclear Information System (INIS)

    Roser, Robert

    1999-01-01

    This work concerns the thermal design of kettle re-boilers. Current methods are highly inaccurate, regarded to the correlations for external heat transfer coefficient at one tube scale, as well as to two-phase flow modelling at boiler scale. The aim of this work is to improve these thermal design methods. It contains an experimental investigation with typical operating conditions of such equipment: an hydrocarbon (n-pentane) with low mass flux. This investigation has lead to characterize the local flow pattern through void fraction measurements and, from this, to develop correlations for void fraction, pressure drop and heat transfer coefficient. The approach is original, since the developed correlations are based on the liquid velocity at minimum cross section area between tubes, as variable characterizing the hydrodynamic effects on pressure drop and heat transfer coefficient. These correlations are shown to give much better results than those suggested up to now in the literature, which are empirical transpositions from methods developed for inside tube flows. Furthermore, the numerical code MC3D has been applied using the correlations developed in this work, leading to a modelization of the two-phase flow in the boiler, which is a significant progress compared to current simplified methods. (author) [fr

  16. Boiler and HRSG tube failures. Lesson 4: Hydrogen damage

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry; Bursik, Albert

    2010-02-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This fourth lesson is focused on hydrogen damage of water-touched tubes in conventional boilers and in the high-pressure evaporators of heat recovery steam generators. (orig.)

  17. Boiler and HRSG tube failures. Lesson 5. Caustic gouging

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, Barry R.; Bursik, Albert

    2010-03-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This fifth lesson is focused on caustic gouging of water-touched tubes in conventional boilers and in the high-pressure evaporators of heat recovery steam generators. (orig.)

  18. Influence of boiler load on water tubes burnout

    Energy Technology Data Exchange (ETDEWEB)

    Said, S.A.M.; Habib, M.A.; Badr, H.M.; Mansour, R. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    2009-07-01

    The influence of boiler loads on water tube burnout was investigated. The in-service boiler had 2 burners at different levels located in the front of the burner's wall. Homogenous-flow and separated-flow models were designed to simulate the water circulation and combustion processes inside the boiler tubes. Heat flux calculations were derived by solving the conservation of mass, momentum, and energy equations and species concentration as well as by solving turbulence, reaction rate, and radiation model equations. Results of the study showed that heat flux during full loads ranged from close to 0 to 270 kW/m2. The right side screen wall of the burner exhibited higher heat flux values in the middle region of the wall where large areas were subjected to heat flux close to a maximum of 270 kW/m2. Results also included reductions in heat flux values at partial loads. Maximum values were reduced from 270 kW/m2 ato 230 kW/m2 at 75 per cent capacity and 200 kW/m2 at 60 per cent capacity. The rate of steam generation increased from 0.1 kg/s to 0.153 kg/s when the distance from the burner wall increased from 2 meters to 12 meters. 10 refs., 10 figs.

  19. Mineralogical composition of boiler fouling and slagging deposits and their relation to fly ashes: the case of Kardia power plant.

    Science.gov (United States)

    Kostakis, George

    2011-01-30

    Slagging and fouling deposits from a pulverized lignite fired steam generating unit of the Kardia power plant (West Macedonia, Greece) were mineralogically investigated. The structure and cohesion of these deposits varied, usually depending on the level height of the boiler unit where they were formed. Some of the deposits had complex phase composition. The dominant components of the deposits of the burner zone and of the lower and intermediate boiler zones were the amorphous, anhydrite and hematite, while those of the highest levels contained amorphous, and anhydrite. Furthermore, in deposits formed in various other boiler areas gehlenite, anorthite, diopside, quartz, Ca(2)SiO(4), brownmillerite and other crystalline phases were also identified, usually in low amounts or in traces. The major part of the phases constituting the deposits were formed in the boiler, since only a minor part derived from the unreacted minerals present in lignite. Anhydrite was generated from the reaction of SO(2) with CaO formed mainly by the calcination of calcite as well as from dehydration of gypsum contained in lignite, while hematite was produced mainly from the oxidation of pyrite. The calcium-containing silicates formed in the boiler were mainly the products of reactions between CaO and minerals contained in the lignite. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Frattini, P.L.; Fruzzetti, K.

    2002-01-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. Atomic Energy of Canada Limited (AECL) and Electric Power Research Institute (EPRI) have been collaborating in an extensive investigation of the effectiveness of amines at controlling the rate of tube-bundle fouling under SG operating conditions. Tests have been performed using a radiotracing technique in a high-temperature fouling loop facility at Chalk River Laboratories operated by AECL. This investigation has provided new insights into the role played by the amine in determining the rate of tube-bundle fouling in the SG. These insights are being used by AECL and EPRI to develop criteria for the selection of an amine that has optimum properties for both corrosion control and deposit control in the secondary heat transport system. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of

  1. Achieving reduced fouling of cooling water exchangers with stainless steel tubes

    International Nuclear Information System (INIS)

    Iftikhar, A.; Mir, N.

    2010-01-01

    Good performance of cooling water heat exchangers plays a vital role in the over all energy efficiency of a chemical plant. Heavy fouling on carbon steel tubes of the cooling water exchangers was causing poor performance and frequent cleaning requirement. The carbon steel tubes were replaced with stainless steel tubes. Improved performance was achieved and cleaning frequency reduced. The paper covers the details of study and methodology applied for the above changes along with summary of results. (author)

  2. The Thermal Hydraulics of Tube Support Fouling in Nuclear Steam Generators

    International Nuclear Information System (INIS)

    Rummens, Helena E.C.; Rogers, J.T.; Turner, C.W.

    2004-01-01

    It is hypothesized that the thermal-hydraulic environment plays a role in the fouling of tube supports in nuclear steam generators. Experiments were performed to simulate the thermal-hydraulic environment near various designs of supports. Pressure loss, local velocity, turbulence intensity, and local void fraction were measured to characterize the effect of the support. Fouling mechanisms specific to supports were inferred from these experimental data and from actual steam generator inspection results. An analytical model was developed to predict the rate of particulate deposition on the supports, to better understand the complex processes involved.This paper presents the following set of tools for assessing the fouling propensity of a given support design: (1) proposed fouling mechanisms, (2) criteria for support fouling propensity, (3) correlation of fouling with parameters such as mass flux and quality, (4) descriptions of experimental tools such as flow visualization and measurement of pressure-loss profiles, and (5) analytical tools.An important conclusion from this and our previous work is that the fouling propensity is greater with broached support plates, both trefoil and quatrefoil, than with lattice bar supports and formed bar supports, in which significant cross flows occur

  3. Use of genetic algorithm to identify thermophysical properties of deposited fouling in heat exchanger tubes

    International Nuclear Information System (INIS)

    Adili, Ali; Ben Salah, Mohieddine; Kerkeni, Chekib; Ben Nasrallah, Sassi

    2009-01-01

    At high temperature, the circulation of fluid in heat exchangers provides a tendency for fouling accumulation to take place on the internal surface of tubes. This paper shows an experimental process of thermophysical properties estimation of the fouling deposited on internal surface of a heat exchanger tube using genetic algorithms (GAs). The genetic algorithm is used to minimize an objective function containing calculated and measured temperatures. The experimental bench using a photothermal method with a finite width pulse heat excitation is used and the estimated parameters are obtained with high accuracy

  4. Hydrogen attack evaluation of boiler tube using ultrasonic wave

    International Nuclear Information System (INIS)

    Won, Soon Ho; Hyun, Yang Ki; Lee, Jong O; Cho, Kyung Shik; Lee, Jae Do

    2001-01-01

    The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity, attenuation and backscatter techniques for detecting the presence of hydrogen damage in utility boiler tubes. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, recommendations are that both velocity and attenuation be used to detect hydrogen attack in steels.

  5. A study on the leak monitoring of boiler tube in power plants

    International Nuclear Information System (INIS)

    Lee, Sang Guk

    2002-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. But the special equipments monitoring the operation status of these main facilities are still dependent upon foreign technology. Therefore, so as to develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, Acoustic Emission (AE) signal analysis and discrimination etc. As result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power plant facilities

  6. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  7. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, D. [HTFS, Hyprotech, Didcot (United Kingdom)

    2002-07-01

    Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US national Heat Transfer Conference, 20-22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27-31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert-Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18-23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed. (author)

  8. An experimental study on accelerated fouling of aluminum oxide and ferric oxide particles in internally enhanced tubes

    Energy Technology Data Exchange (ETDEWEB)

    Abedin, Mohammad Zoynal; Kim, Nae Hyun [School of Mechanical System Engineering, Incheon National University, Incheon (Korea, Republic of)

    2016-12-15

    This paper describes the results of accelerated particulate fouling tests performed on three enhanced tubes and a plain tube. The tests were performed using ferric oxide and aluminum oxide as foulant materials. Three enhanced tubes included 25 start, 10 start helically ribbed tubes and a ripple tube. Effects of the water velocity (0.9 to 1.8 m/s) and foulant concentration (750 to 2500 ppm) were investigated. At 750 ppm, the enhanced tubes fouled almost the same as the plain tube for the entire velocity range tested (0.9 to 1.8 m/s). The enhanced tube fouled faster than the plain tube for cases of high concentration combined with low velocities. Of the three enhanced tubes, the 25 start helically ribbed tube fouled faster than the ripple and the 10 start helically ribbed tubes. One thing to be noted is that the fouling concentrations used in the tests are significantly higher than would be expected in commercial heat exchangers. Also, the velocity range investigated is lower than would be expected in heat exchanger operation.

  9. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  10. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    Directory of Open Access Journals (Sweden)

    Majid Asnavandi

    2017-01-01

    Full Text Available The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tubes is not uniform which suggests that fire-side corrosion has happened on the tubes. Fire-side corrosion is caused by the reaction of combustion products with oxide layers on the tube surface resulting in metal loss and consequently tubes fracture. However, the tubes corrosion behaviour did not follow the conventional models of the fire-side corrosion. Given that, using the corrosion monitoring techniques for these boiler tubes seems essential. As a result, the thickness of the boiler tubes in different parts of the boiler has been recorded and critical points are selected accordingly. Such critical points are selected for installation of corrosion monitoring probes.

  11. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    International Nuclear Information System (INIS)

    Nicolas, G.; Mateo, M.P.; Yanez, A.

    2007-01-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits

  12. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    Science.gov (United States)

    Nicolas, G.; Mateo, M. P.; Yañez, A.

    2007-12-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits.

  13. Superheater fouling in a BFB boiler firing wood-based fuel blends

    NARCIS (Netherlands)

    Stam, A.F.; Haasnoot, K.; Brem, Gerrit

    2014-01-01

    Four different fuel blends have been fired in a 28 MWel BFB. Wood pellets (test 0) were not problematic for about ten years, contrary to a mixture of demolition wood, wood cuttings, compost overflow, paper sludge and roadside grass (test 1) which caused excessive fouling at a superheater bundle

  14. New insights into controlling tube-bundle fouling using alternative amines

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Fruzzetti, K. [Atomic Energy of Canada Ltd. (Canada); Frattini, P.L. [Electric Power Research Inst. (United States)

    2002-07-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  15. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Fruzzetti, K.; Frattini, P.L.

    2002-01-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  16. Identification of boiler tube leak in PHWR by measuring short lived radioisotope Iodine-134 in boiler water using gamma spectrometric techniques

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    The boiler tube made up of Monel-400 of RAPS-2 has failed on few occasions. Due to the failure of boiler tube, the active heavy water enters into boiler and feed water leading to contamination of radioactivity in secondary water circuit. The identification of boiler tube failure was done by measuring gamma ray activity of Iodine-134 in the boiler water with sample using gamma spectrometry with high purity germanium detector. In order to increase the sensitivity of the method 5 liters of Boiler water sample was passed through a plastic column containing 40 ml of anion resin and 10 ml of activated charcoal to capture the isotopes of Iodine in the anionic form and molecular form. Samples were collected from all 8 Boilers of RAPS-2. The activity of 134 I was shown only by Boiler - 5. No other boilers showed any activity of 134 I. This indicated that Boiler - 5 had leaky tubes. The leaky hairpin of boiler - 5 was identified by measuring Tritium and IP in the riser and down comer of all 10 HXs. On the basis of Tritium and IP result, HX-7 was identified as leaky hairpin. (author)

  17. Life Management Technique of Thermal Fatigue for SMST Boiler Tube at Different Heating Zone Using Smithy Furnace

    OpenAIRE

    Shekhar Pal,; Pradeep Suman

    2014-01-01

    This paper highlights on the evaluation of thermal fatigue failure for SMST (Salzgitter Mannesmann strain less boiler tube) DMV 304 HCu boiler tube using life management technique by using of smithy furnace. Boiler tubes are highly affected by operating conditions like, high temperature and high pressure. So it needs periodic checking for the purpose of safety and health assessment of the plant. So using this technique we can identify the degradation of tubes at microstructure...

  18. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    OpenAIRE

    Asnavandi, Majid; Kahram, Mohaddeseh; Rezaei, Milad; Rezakhani, Davar

    2017-01-01

    The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tu...

  19. Hydrogen embrittlement corrosion failure of water wall tubes in large power station boilers

    International Nuclear Information System (INIS)

    Mathur, P.K.

    1981-01-01

    In the present paper, causes and mechanism of hydrogen embrittlement failure of water wall tubes in high pressure boilers have been discussed. A low pH boiler water environment, produced as a result of condenser leakage or some other type of system contamination and presence of internal metal oxide deposits, which permit boiler water solids to concentrate during the process of steam generation, have been ascribed to accelerate the formation of local corrosion cells conducive for acid attack resulting in hydrogen damage failure of water wall tubes. (author)

  20. Fouling deposition characteristic by variation of coal particle size and deposition temperature in DTF (Drop Tube Furnace)

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Hueon; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research; Xu, Li-hua [IAE, Suwon (Korea, Republic of). Plant Engineering Center

    2013-07-01

    One of the major operation obstacles in gasification process is ash deposition phenomenon. In this investigation, experiment was carried out to examine coal fouling characteristics using a laminar DTF (Drop Tube Furnace) with variation of operating condition such as different coal size, and probe surface temperature. Four different samples of pulverized coal were injected into DTF under various conditions. The ash particles are deposited on probe by impacting and agglomerating action. Fouling grains are made of eutectic compound, which is made by reacting with acid minerals and alkali minerals, in EPMA (Electron Probe Micro-Analysis). And agglomeration area of fouling at top layer is wide more than it of middle and bottom layer. The major mineral factors of fouling phenomenon are Fe, Ca, and Mg. The deposition quantity of fouling increases with increasing particle size, high alkali mineral (Fe, Ca, and Mg) contents, and ash deposition temperature.

  1. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kisoo; Jeong, Kwon Seok [Korea Southern Power Corporation, Gimhae (Korea, Republic of)

    2012-06-15

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

  2. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Jeong, Kwon Seok

    2012-01-01

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated

  3. Leak detection evaluation of boiler tube for power plant using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Nam, Ki Woo

    2001-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.

  4. Fracture analysis of tube boiler for physical explosion accident.

    Science.gov (United States)

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. ANALISA KEHILANGAN ENERGI PADA FIRE TUBE BOILER KAPASITAS 10 TON

    Directory of Open Access Journals (Sweden)

    Aditio Primayudi Aji Nugroho

    2015-06-01

    Full Text Available Tujuan dari penulisan ini adalah menghitung kinerja boiler dengan mengetahui kerugian energi pada saat produksi steam. Analisa teknis pada boiler sangat diperlukan, sebagai upaya peningkatan efisiensi dan mengetahui banyaknya energi yang terbuang sebagai kerugian. Faktorfaktor penyebab kehilangan panas/heat loss terbesar pada boiler antara lain : “kehilangan panas akibat gas buang kering, kandungan steam dalam gas buang, kandungan air dalam bahan bakar, kandungan air dalam suplai udara dan lain-lain”.Kehilangan panas/heat loss atau juga bisa disebut kehilangan energi merupakan salah satu faktor penting yang sangat berpengaruh dalam mengidentifikasi efisiensi pada boiler.Untuk itu dilakukan studi analisa dengan perhitungan kehilangan panas dengan tujuan untuk mengetahui besarnya penurunan performance dan penyebab dari penurunan performance. Berdasarkan data dan analisa metode direct diketahui penurunan sebesar 21% pada kondisi normal (operasi 79% dan dari hasil perhitungan kehilangan panas indirect sebesar 16.68% efisiensi boiler sebesar 83.32% maka dari itu adanya kehilangan panas, perlu adanya perbaikan dalam control pengaturan bahan bakar dan udara yang masuk secara optimum dengan cara menggunakan Oxygen Trim Control yang berfungsi untuk mengukur konsentrasi oksigen pada cerobong dan secara otomatis mengatur oksigen pada udara yang masuk burner sehingga dihasilkan pembakaran dengan efisiensi yang optimal.dan dengan menggunakan economizer pada pemanasan awal suhu air umpan dapat menaikan efisiensi boiler.

  6. EDF steam generators fleet: In-operation monitoring of TSP blockage and tube fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, P.; Gay, N.; Crinon, R. [Electricite De France (France)

    2012-07-01

    EDF operates 58 Pressurized Water Reactors in France. In the mid 2000‟s some of them have been affected by Steam Generators (SG) Tube Support Plates (TSP) blockage and U-tubes external surface fouling with iron oxides deposits due to corrosion of secondary-side components. These issues have been tackled by a global maintenance strategy of chemical cleanings and a method for in-operation monitoring of fouling and TSP blockage has been developed and is implemented since mid 2009. This monitoring is aimed at giving information for SG maintenance planning as regards non destructive examinations and chemical cleaning. This paper will first remind of the physical reasons of fouling and TSP blockage and identify the resulting stakes regarding safety and availability along with the action levers available to control both phenomena. Then details will be given on how in-operation monitoring of fouling and TSP blockage is carried out, using measurements of Wide Range water Level (WRL) and SG steam pressure during thermally stabilized periods. Information will also be given on how those data are analyzed and shared as well at a local as at a corporate level to participate in the planning of SG inspection and maintenance operations. Finally, possible refinements will be discussed, notably regarding the issue of WRL measurements reliability and the possibility to use the analysis of SG dynamic behavior during power transients to assess the TSP blockage ratio. In terms of „issues requiring discussion‟, the following are operational issues currently being investigated by EDF: 1. SG pressure can have quite large variations during one operating cycle (notably after a plant trip) and from one cycle to the other and generally pressure tends to decrease on a long-term basis. How can such variations be explained? What are the solutions to moderate/stop the pressure loss? 2. On some of the SG-models operated by EDF, hard curative Chemical Cleaning of the U-tubes didn't bring

  7. The mechanical design and validation of the helical tube boilers for Hartlepool and Heysham AGR stations

    International Nuclear Information System (INIS)

    Skinner, V.R.

    1983-01-01

    The 32 helically coiled once-through boiler units at Hartlepool and Heysham represent a major advance in the technologies of boiler design, manufacture and site construction. They are particularly complex in that they incorporate integral reheaters; they employ three different tubing materials and five different structural materials, each with operating temperature limitations; and they must fit compactly into pods in the reactor pressure vessel walls. A general description of the boilers is followed by a review of external factors which influenced the mechanical design and validation programme over 15 years. Against this background selected components are discussed in detail in terms of particular loading conditions and stress analysis. (author)

  8. Innovative coupling of cogeneration units with fire tube boilers: thermo-fluid dynamics of the fire tubes

    Science.gov (United States)

    Cioccolanti, L.; Arteconi, A.; Bartolini, C. M.; Polonara, F.

    2017-11-01

    Nowadays the thermal energy demand in the industrial sector is usually satisfied by means of fire tube boilers while electricity is supplied from the grid. Alternatively cogeneration units could be adopted for thermal and electrical energy self-production, whilst installing boilers only as back-up units. However, even when cogeneration is profitable, it is not widespread because industries are usually unwilling to accept cogeneration plants for reliability and high investment costs issues. In this work a system aimed at overcoming the above mentioned market difficulties is proposed. It consists of an innovative coupling of a combined heat and power unit with a modified fire tube boiler. In particular, a CFD analysis was carried out by the authors in order to address the most critical aspects related with the coupling of the two systems. More precisely, the following aspects were evaluated in detail: (i) pressure losses of the exhausts going from the prime mover to the boiler due to the sudden cross-section area variations; (ii) thermal power recoverable from the exhausts in the tubes of the boiler; (iii) dependence of the system on the final users’ specification.

  9. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei

    2015-01-01

    Full Text Available Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing of burning stability, local heat stresses and aerodynamic resistances should be solved. To resolve the indicated problems, a modified model of dual-chamber fire-tube boiler furnace is proposed. The performance of suggested flame-tube was simulated using the proven computer-aided engineering software ANSYS Multiphysics. Results display proposed flame tube completely filled with moving medium without stagnant zones. Turbulent vortical combustion is observed even with the straight-through fuel supply. Active flue gas recirculation in suggested dual-chamber furnace reduces emissions of pollutants. Diminution of wall heat fluxes allows boiler operation at lower water treatment costs.

  10. Experimental and numerical investigation of gas side particulate fouling onto heat exchanger tubes

    International Nuclear Information System (INIS)

    Bailer, Frederic

    1998-01-01

    This work deals with gas side particulate fouling onto heat exchanger tubes. An experimental and numerical investigation was carried out. By means of a new testing loop designed for this study, the deposit kinetics were obtained in dust-controlled conditions at the beginning of the fouling process. Experimental results pointed out the existence of various transport regimes: for sub-micronic particles, convective diffusion augmented by thermophoresis in the presence of a temperature gradient governs the particle deposition; inertial impaction controls the super-micronic particles deposition: in the intermediate granulometric range, combined action of particle inertia and thermophoresis must be considered. Moreover, measurements on an other testing loop using a more concentrated aerosol allowed us to point out the modification of the mechanisms with time and the influence of the deposit shape. A numerical model predicting the particle deposition, based on the TRIO software and an Eulerian-Lagrangian approach, was developed and validated against experimental results from the literature and from our study. Numerical approach gave us an accurate understanding of the phenomena by means of local parameters computations. In this way, the different mechanisms which control particulate deposition onto heat exchangers tubes were identified and modelled, especially before the onset of the inertial impaction. (author) [fr

  11. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  12. INVESTIGATION OF FOULING DEPOSIT FORMATION DURING PASTEURIZATION OF CHILI SAUCE BY USING LAB-SCALE CONCENTRIC TUBE-PASTEURIZER

    Directory of Open Access Journals (Sweden)

    NUR ATIKA ALI

    2014-06-01

    Full Text Available This paper investigates the characteristics of fouling deposits obtained from chilli sauce pasteurization. A lab-scale concentric tube-pasteurizer was used to pasteurize the chilli sauce at 0.712 kg/min and 90±5°C. It was operated for 3 hours. Temperature changes were recorded during pasteurization and the data was used to plot the heat transfer profile and the fouling resistance profile. The thickness of the fouling deposit was also measured and the image was taken for every hour. The fouling deposit was collected at every hour to test its stickiness, hardness and flow behaviour. Proximate analysis was also performed and it shows that the fouling deposit from the chilli sauce is categorized as carbohydrate-based fouling deposits. Activation energy of chilli sauce is 7049.4 J.mole-1 which shows a greater effect of temperature on the viscosity. The hardness, stickiness of fouling deposit and the heat resistance increases as the chilli sauce continuously flows inside the heat exchanger.

  13. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    Science.gov (United States)

    Kychakoff, George [Maple Valley, WA; Afromowitz, Martin A [Mercer Island, WA; Hogle, Richard E [Olympia, WA

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  14. Estimation of residual life of boiler tubes using steamside oxide scale thickness

    International Nuclear Information System (INIS)

    Vikrant, K.S.N.; Ramareddy, G.V.; Pavan, A.H.V.; Singh, Kulvir

    2013-01-01

    In thermal power plants, remaining-life-estimation of boiler tubes is required at regular intervals for a safer and a better functionality of boilers. In this paper, a new method is proposed for the residual life estimation of service exposed boiler tubes using Non-Destructive Ultrasonic Oxide scale thickness measurements, average metal temperature and creep master curve. While steady state conduction heat transfer equations are solved to calculate the average metal temperature, creep master curve is generated from short term stress rupture data of rupture life less than 5000 h on a virgin material. In the present study, the residual life of T22 (2.25Cr-1Mo) service exposed Platen Superheater tube is estimated using two master creep curves, i.e. Larson-Miller Parametric (LMP) method of standard ASME T22 creep data and Wilshire approach of short term stress rupture data of T22. As the residual life is calculated from fundamental conduction heat transfer theory and creep rupture data, the proposed method can be applied for different grades of boiler materials. -- Highlights: ► Residual life is calculated from non-destructive oxide scale thickness, creep master curve and average metal temperature. ► A new method is proposed for calculating residual life using above parameters and from conduction heat transfer principles. ► The method can be applied to different boiler grades for estimating residual life and hence the method is generic

  15. Aspects of high temperature corrosion of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.; Bendick, W. [Salzgitter-Mannesmann-Forschung GmbH, Duisburg (Germany)

    2008-07-01

    The development of new boiler steels for power generation has to consider significant creep strength as well as oxidation and corrosion resistance. High temperature corrosion of boiler materials concerns steam oxidation as well as fireside corrosion of parts, in contact with the flue gas. It will be shown that depending on the quality of the fuel, especially chlorine and sulphur are responsible for most of the fireside corrosion problems. Corrosion mechanisms will be presented for flue gas induced corrosion (HCl) and deposit induced corrosion (chlorides and sulfates). Especially for the 700 C technology, deposit induced corrosion issues have to be considered and the mechanisms of corrosion by molten sulfates 'Hot Corrosion' will be explained. Finally, an overview will be given on the selection of suitable materials in order to minimise corrosion relates failures. (orig.)

  16. Study of microstructural changes in boiler tubes and usage of time approach for determining of tube's failure

    International Nuclear Information System (INIS)

    Hemasi Taherabadi, L.; Raeiatpour, M.; Mehdizadeh, M.

    2001-01-01

    Operation condition of boilers such as corrosive media, high temperature and pressure has a pronounced effect on quality and performance of its components. Among these, the effect of temperature in microstructure and degradation of mechanical properties of boiler tubes is of most importance. Change in dimension, morphology, chemical composition and carbide spacing are the most important microstructural changes. Methods of study of such changes (through the investigation of composition, carbide spacing and thermal softening) are pointed in this article. Then, a number of failed super-heater tubes of a power plant were microlithography examined. Remaining life of tubes could be estimated by comparison of the results of metallographic and replication tests with microstructural standards

  17. Overheating failure of superheater suspension tubes of a captive thermal power plant boiler

    International Nuclear Information System (INIS)

    Bhattacharya, Sova; Amir, Q.M.; Kannan, C.; Mahapatra, S.B.

    2000-01-01

    Failure of boiler tubes is the foremost cause of forced boiler outages. One of the predominant failure mechanism of boiler tubes is the stress rupture failure in the form of either short term overheating or long term overheating which are normally encountered in superheater and reheater sections working in the creep range. The strength of the boiler tube depends on the stress level as well on the temperature of exposure in the creep range. An increase in either can reduce the time to rupture. Time at the exposure temperature is an important factor based on which the failures are categorised as either short term or long term. Though there is no established time duration criteria demarcating the short or long term stress rupture failures, depending on the various manifestations on the failed samples, one can categorise the failure. This paper addresses one such stress rupture failure in the superheater section of a captive thermal power plant of a refinery. Multiple failures on the suspension coil of a superheater section was investigated for the cause of failure. Laboratory investigation of the failed sample involved visual inspection, dimensional measurements, chemical analysis of internal deposits and microstructural study. On the basis of these, the failure was attributed to deposition of trisodium phosphate carried over by the feed water into the superheater section resulting in chokage and increase in local operating hoop stresses of the tube. The ultimate failure was thus categorised as long term overheating failure. (author)

  18. The impact of feedwater and condensate return excursions on boiler system component failures

    Energy Technology Data Exchange (ETDEWEB)

    Esmacher, Mel J. [GE Water and Process Technologies, The Woodlands, TX (United States); Rossi, Anthony [GE Water and Process Technologies, Trevose, PA (United States)

    2010-02-15

    During boiler operation, the transport of contaminants in boiler feedwater or condensate return via hardness excursions or transport of metal oxides due to corrosion can cause fouling and subsequent tube failure due to under-deposit corrosion or overheating. Case histories are reviewed and suitable corrective actions discussed. (orig.)

  19. Validation of the method for determination of the thermal resistance of fouling in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Markowski, Mariusz; Trafczynski, Marian; Urbaniec, Krzysztof

    2013-01-01

    Highlights: • Heat recovery in a heat exchanger network (HEN). • A novel method for on-line determination of the thermal resistance of fouling is presented. • Details are developed for shell and tube heat exchangers. • The method was validated and sensibility analysis was carried out. • Developed approach allows long-term monitoring of changes in the HEN efficiency. - Abstract: A novel method for on-line determination of the thermal resistance of fouling in shell and tube heat exchangers is presented. It can be applied under the condition that the data on pressure, temperature, mass flowrate and thermophysical properties of both heat-exchanging media are continuously available. The calculation algorithm for use in the novel method is robust and ensures reliable determination of the thermal resistance of fouling even if the operating parameters fluctuate. The method was validated using measurement data retrieved from the operation records of a heat exchanger network connected with a crude distillation unit rated 800 t/h. Sensibility analysis of the method was carried out and the calculated values of the thermal resistance of fouling were critically reviewed considering the results of qualitative evaluation of fouling layers in the exchangers inspected during plant overhaul

  20. Utilization of coal-water fuels in fire-tube boilers

    International Nuclear Information System (INIS)

    Sommer, T.M.; Melick, T.A.

    1991-01-01

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama and Jim Walter Resources, has been awarded a DOE contract to retrofit an existing fire-tube boiler with a coal-water slurry firing system. Recognizing that combustion efficiency is the principle concern when firing slurry in fire-tube boilers, EER has focused the program on innovative approaches for improving carbon burnout without major modifications to the boiler. This paper reports on the program which consists of five tasks. Task 1 provides for the design and retrofit of the host boiler to fire coal-water slurry. Task 2 is a series of optimization tests that will determine the effects of adjustable parameters on boiler performance. Task 3 will perform about 1000 hours of proof-of-concept system tests. Task 4 will be a comprehensive review of the test data in order to evaluate the economics of slurry conversions. Task 5 will be the decommissioning of the test facility if required

  1. Analysis of Boiler Operational Variables Prior to Tube Leakage Fault by Artificial Intelligent System

    Directory of Open Access Journals (Sweden)

    Al-Kayiem Hussain H.

    2014-07-01

    Full Text Available Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes the rules of the Artificial Intelligent Systems to diagnosis the boiler variables prior to tube leakage occurrence. An Intelligent system based on Artificial Neural Network was designed and coded in MATLAB environment. The ANN was trained and validated using real site data acquired from coal fired power plant in Malaysia. Ninety three boiler operational variables were identified for the present investigation based on the plant operator experience. Various neural networks topology combinations were investigated. The results showed that the NN with two hidden layers performed better than one hidden layer using Levenberg-Maquardt training algorithm. Moreover, it was noticed that hyperbolic tangent function for input and output nodes performed better than other activation function types.

  2. Numerical simulation of a 374 tons/h water-tube steam boiler following a feedwater line break

    International Nuclear Information System (INIS)

    Deghal Cheridi, Amina Lyria; Chaker, Abla; Loubar, Ahcène

    2016-01-01

    Highlights: • We simulate the behavior of a steam boiler during feed-water line break accident. • To perform accident analysis of the steam boiler, Relap5/Mod3.2 system code is used. • A Relap5 model of the boiler is developed and qualified at the steady state level. • A good agreement between Relap5 results and available experimental data. • The Relap5 model predicts well the main transient features of the boiler. - Abstract: To ensure the operational safety of an industrial water-tube steam boiler it is very important to assess various accident scenarios in real plant working conditions. One of the most challenging scenarios is the loss of feedwater to the steam boiler. In this paper, a simulation of the behavior of an industrial water-tube radiant steam boiler during feedwater line break accident is discussed. The simulation is carried out using the RELAP5 system code. The steam boiler is installed in an Algerian natural gas liquefaction complex. The simulation shows the capabilities of RELAP5 system code in predicting the behavior of the steam boiler at both steady state and transient working conditions. From another side, the behavior of the steam boiler following the accident shows how the control system can successfully mitigate the effects and consequences of such accident and how the evaporator tubes can undergo a severe damage due to an uncontrolled increase of the wall temperature in case of failure of this system.

  3. Modelling of thermal behaviour of iron oxide layers on boiler tubes

    Science.gov (United States)

    Angelo, J. D.; Bennecer, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Slender boiler tubes are subject to localised swelling when they are expose to excessive heat. The latter is due to the formation of an oxide layer, which acts as an insulation barrier. This excessive heat can lead to microstructural changes in the material that would reduce the mechanical strength and would eventually lead to critical and catastrophic failure. Detecting such creep damage remains a formidable challenge for boiler operators. It involves a costly process of shutting down the plant, performing electromagnetic and ultrasonic non-destructive inspection, repairing or replacing damaged tubes and finally restarting the plant to resume its service. This research explores through a model developed using a finite element computer simulation platform the thermal behaviour of slender tubes under constant temperature exceeding 723 °K. Our simulation results demonstrate that hematite layers up to 15 μm thickness inside the tubes do not act as insulation. They clearly show the process of long term overheating on the outside of boiler tubes which in turn leads to initiation of flaws.

  4. Fire-tube boiler optimization criteria and efficiency indicators rational values defining

    Science.gov (United States)

    Batrakov, P. A.; Mikhailov, A. G.; Ignatov, V. Yu

    2018-01-01

    Technical and economic calculations problems solving with the aim of identifying the opportunity to recommend the project for industrial implementation are represented in the paper. One of the main determining factors impacting boiler energy efficiency is the exhaust gases temperature, as well as the furnace volume thermal stress. Fire-tube boilers with different types of furnaces are considered in the study. The fullest analysis of the boiler performance thermal and technical indicators for the following engineering problem: Q=idem, M=idem and evaluation according to η, B is presented. The furnace with the finned ellipse profile application results in the fuel consumption decrease due to a more efficient heat exchange surface of the furnace compared to other examined ones.

  5. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  6. Early tube leak detection system for steam boiler at KEV power plant

    Directory of Open Access Journals (Sweden)

    Ismail Firas B.

    2016-01-01

    Full Text Available Tube leakage in boilers has been a major contribution to trips which eventually leads to power plant shut downs. Training of network and developing artificial neural network (ANN models are essential in fault detection in critically large systems. This research focusses on the ANN modelling through training and validation of real data acquired from a sub-critical boiler unit. The artificial neural network (ANN was used to develop a compatible model and to evaluate the working properties and behaviour of boiler. The training and validation of real data has been applied using the feed-forward with back-propagation (BP. The right combination of number of neurons, number of hidden layers, training algorithms and training functions was run to achieve the best ANN model with lowest error. The ANN was trained and validated using real site data acquired from a coal fired power plant in Malaysia. The results showed that the Neural Network (NN with one hidden layers performed better than two hidden layer using feed-forward back-propagation network. The outcome from this study give us the best ANN model which eventually allows for early detection of boiler tube leakages, and forecast of a trip before the real shutdown. This will eventually reduce shutdowns in power plants.

  7. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  8. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  9. Some aspects of metallurgical assessment of boiler tubes-Basic principles and case studies

    International Nuclear Information System (INIS)

    Chaudhuri, Satyabrata

    2006-01-01

    Microstructural changes in boiler tubes during prolong operation at high temperature and pressure decrease load bearing capacity limiting their useful lives. When the load bearing capacity falls below a critical level depending on operating parameters and tube geometry, failure occurs. In order to avoid such failures mainly from the view point of economy and safety, this paper describes some basic principles behind remaining life assessment of service exposed components and also a few case studies related to failure of a reheater tube of 1.25Cr-0.5Mo steel, a carbon steel tube and final superheater tubes of 2.25Cr-1Mo steel and remaining creep life assessment of service exposed but unfailed platen superheater and reheater tubes of 2.25Cr-1Mo steel. Sticking of fly ash particles causing reduction in effective tube wall thickness is responsible for failure of reheater tubes. Decarburised metal containing intergranular cracks at the inner surface of the carbon steel tube exhibiting a brittle window fracture is an indicative of hydrogen embrittlement responsible for this failure. In contrast, final superheater tube showed that the failure took place due to short-term overheating. The influence of prolong service revealed that unfailed reheater tubes exhibit higher tensile properties than that of platen superheater tubes. In contrast both the tubes at 50 MPa meet the minimum creep rupture properties when compared with NRIM data. The remaining creep life of platen superheater tube as estimated at 50 MPa and 570 deg. C (1058 o F) is more than 10 years and that of reheater tube at 50 MPa and 580 deg. C (1076 o F) is 9 years

  10. A study on development of a plugging margin evaluation method taking into account the fouling of shell-and tube heat exchangers

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Kim, Kyung Hoon

    2006-01-01

    As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant

  11. EXPERIMENTAL INVESTIGATION OF NICKEL ALUMINIDE (NI3AL) NANOSTRUCTURED COATED ECONOMISER TUBE IN BOILER

    OpenAIRE

    * Gokulakannan A, Karuppasamy K

    2016-01-01

    Thermal Power Stations all over the world are facing the problem of boiler tube leakage frequently. The consequences of which affects the performance of power plant and huge amount of money loss. Hot corrosion and erosion are recognized as serious problems in coal based power generation plants in India. The maximum number of cause of failure in economizer unit is due to flue gas erosion. The corrosion resistant coatings used conventionally are having some limitations like degradation of the c...

  12. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  13. Investigations of the Failure in Boilers Economizer Tubes Used in Power Plants

    Science.gov (United States)

    Moakhar, Roozbeh Siavash; Mehdipour, Mehrad; Ghorbani, Mohammad; Mohebali, Milad; Koohbor, Behrad

    2013-09-01

    In this study, failure of a high pressure economizer tube of a boiler used in gas-Mazut combined cycle power plants was studied. Failure analysis of the tube was accomplished by taking into account visual inspection, thickness measurement, and hardness testing as well as microstructural observations using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Optical microscopy images indicate that there is no phase transformation during service, and ferrite-pearlite remained. The results of XRD also revealed Iron sulfate (FeSO4) and Iron hydroxide sulfate (FeOH(SO4)) phases formed on the steel surface. A considerable amount of Sulfur was also detected on the outer surface of the tube by EDS analysis. Dew-point corrosion was found to be the principal reason for the failure of the examined tube while it has been left out-of-service.

  14. On-line monitoring system for utility boiler diagnostics

    International Nuclear Information System (INIS)

    Radovanovic, P.M.; Afgan, N.H.; Caralho, M.G.

    1997-01-01

    The paper deals with the new developed modular type Monitoring System for Utility Boiler Diagnostics. Each module is intended to assess the specific process and can be used as a stand alone application. Four modules are developed, namely: LTC - module for the on-line monitoring of parameters related to the life-time consumption of selected boiler components; TRD - module for the tube rupture detection by the position and working fluid Ieakage quantity; FAM - module for the boiler surfaces fouling (slagging) assessment and FLAP - module for visualization of the boiler furnace flame position. All four modules are tested on respective pilot plants built oil the 200 and 300 MWe utility boilers. Monitoring System is commercially available and can be realized in any combination of its modules depending on demands induced by the operational problems of specific boiler. Further development of Monitoring System is performed in accordance with the respective EU project on development of Boiler Expert System. (Author)

  15. An advanced maintenance advisory and surveillance system for boiler tubes - AMASS

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, A.B. [ERA Technology Ltd, Leatherhead (United Kingdom)

    1998-12-31

    In a recently completed European collaborative project, the aim was to address the issue of boiler tube failures and thereby plant availability. The reduction of forced outages due to component failures and the reduction of planned outages for preventative maintenance can both contribute in this respect. It has been possible to assess tube degradation due to erosion, corrosion and overheating through the use of on-line techniques (thin layer activation, corrosion probes and novel temperature sensors) and off-line techniques (cold air velocity measurements, laser shearography and measurements of steam side oxide) which have been developed in the project. These techniques have been demonstrated on an oil fired boiler in Portugal and a coal fired unit in Spain. The output from the monitoring techniques has been integrated in the AMASS maintenance advisory and surveillance system. This is a computerised system comprising a spatial database with add-on tools designed to assess data from individual monitors and to provide the user with information on tube life utilisation rates and the probability of tube failure occurring. A description of the monitoring techniques will be described along with some of the results of demonstrating them in the field. Also an overview of the computerized system and the way in which it works will be given along with examples of how it can be used to assist with preventative maintenance and to help avoid unplanned outages. (orig.) 10 refs.

  16. An advanced maintenance advisory and surveillance system for boiler tubes - AMASS

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, A B [ERA Technology Ltd, Leatherhead (United Kingdom)

    1999-12-31

    In a recently completed European collaborative project, the aim was to address the issue of boiler tube failures and thereby plant availability. The reduction of forced outages due to component failures and the reduction of planned outages for preventative maintenance can both contribute in this respect. It has been possible to assess tube degradation due to erosion, corrosion and overheating through the use of on-line techniques (thin layer activation, corrosion probes and novel temperature sensors) and off-line techniques (cold air velocity measurements, laser shearography and measurements of steam side oxide) which have been developed in the project. These techniques have been demonstrated on an oil fired boiler in Portugal and a coal fired unit in Spain. The output from the monitoring techniques has been integrated in the AMASS maintenance advisory and surveillance system. This is a computerised system comprising a spatial database with add-on tools designed to assess data from individual monitors and to provide the user with information on tube life utilisation rates and the probability of tube failure occurring. A description of the monitoring techniques will be described along with some of the results of demonstrating them in the field. Also an overview of the computerized system and the way in which it works will be given along with examples of how it can be used to assist with preventative maintenance and to help avoid unplanned outages. (orig.) 10 refs.

  17. Automating data analysis during the inspection of boiler tubes using line scanning thermography

    Science.gov (United States)

    Ley, Obdulia; Momeni, Sepand; Ostroff, Jason; Godinez, Valery

    2012-05-01

    Failures in boiler waterwalls can occur when a relatively small amount of corrosion and loss of metal have been experienced. This study presents our efforts towards the application of Line Scanning Thermography (LST) for the analysis of thinning in boiler waterwall tubing. LST utilizes a line heat source to thermally excite the surface to be inspected and an infrared detector to record the transient surface temperature increase observed due to the presence of voids, thinning or other defects. In waterwall boiler tubes the defects that can be detected using LST correspond to corrosion pitting, hydrogen damage and wall thinning produced by inadequate burner heating or problems with the water chemistry. In this paper we discuss how the LST technique is implemented to determine thickness from the surface temperature data, and we describe our efforts towards developing a semiautomatic analysis tool to speed up the time between scanning, reporting and implementing repairs. We compare the density of data produced by the common techniques used to assess wall thickness and the data produced by LST.

  18. SUS 321 HTB boiler tubing with fire grained internal surface resistant to steam-induced oxidation

    International Nuclear Information System (INIS)

    Kanero, Takahiro; Minami, Yuusuke; Kodera, Toshihide

    1981-01-01

    Considerable amount of scale is produced by high temperature steam on the austenitic stainless steel tubes used for the superheaters and reheaters of large boilers for power generation. The scale of outer layer separates off due to the thermal stress at the time of starting-up and stopping, and causes the blocking of pipes and the erosion of turbine blades. Following the increase of nuclear power generation, large boilers are used for medium load, accordingly it is expected that the troubles like these increase. In this paper, the manufacturing method and the properties of SUS 321 HTB with fine grain internal surface are reported, which was developed to reduce the rate of growth of scale and to prevent the separation of scale. In order to prevent the separation of scale from austenitic stainless steel tubes, the reduction of scale thickness, surface treatment such as chrome plating, the use of alloys with excellent oxidation resistance, the formation of chrome-rich film rapidly, the heat treatment of cold-worked tubes and so on were carried out. The nitrification of SUS 321 H steel brought about two-phase structure of the fine grain internal surface with excellent oxidation resistance and the rest of coarse grains with high creep strength. (Kako, I.)

  19. Chemistry and melting characteristics of fireside deposits taken from boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2011-01-01

    Highlights: → We examine tube deposits taken from boilers of municipal solid waste incinerators. → Literature survey is done on the corrosion mechanism of tube steels. → Chemical analyses, X-ray diffraction, DSC, and corrosion test were conducted. → Melting behavior of salt constituents affected the corrosiveness of the deposits. - Abstract: Twenty-three tube deposits taken from seven heat-recovery boilers of municipal solid waste incinerators were examined by chemical analyses and X-ray diffraction. These deposits were measured by Differential Scanning Calorimeter (DSC) in N 2 to investigate their melting characteristics. Sixteen deposits were used to evaluate their corrosiveness to carbon steel by high-temperature corrosion test conducted at 400 o C for 20 h in 1500 ppm HCl - 300 ppm SO 2 - 7.5%O 2 - 7.5%CO 2 - 20%H 2 O - N 2 . Total heat of endothermic reactions of the deposits taking place between 200 and 400 o C can be related to the corrosion rate of carbon steel at 400 o C. Corrosion initiated at temperatures when the deposits started to melt, became severe when fused salt constituents increased, and alleviated when the majority of the deposits became fused. The corrosion can be interpreted as fused salt corrosion caused by chloride and sulfate salts.

  20. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  1. An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests

    International Nuclear Information System (INIS)

    Ahn, Young Chull; Cho, Jae Min; Lee, Jae Keun; Lee, Hyun Uk; Ahn, Seung Phyo; Youn, Deok Hyun; Kang, Tae Wook; Ock, Ju Jo

    2003-01-01

    The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 g/m 3 ), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level

  2. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    Science.gov (United States)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-02-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  3. Modificaciones en las calderas igneotubulares cubanas // Modifications in the Cuban boilers of fire tube

    Directory of Open Access Journals (Sweden)

    I. Pérez Mallea

    1998-01-01

    Full Text Available El objetivo de este trabajo es optimizar y diseñar las calderas igneotubulares nacionales, incluyendo las de inversión de llama yagua caliente. Con este fin se creo un software como soporte científico técnico que permite realizar los diferentes cálculosverificativos a través de los cuales se optimiza._________________________________________________________________________Abstract .The objective of this work is the optimizing and designing of the Cuban boilers of fire tube, including those of inverting offlame and hot water. A software have been developed as technical scientific supper for different calculations and optimizingprocess.

  4. Efficiency assessment of bi-radiated screens and improved convective set of tubes during the modernization of PTVM-100 tower hot-water boiler based on controlled all-mode mathematic models of boilers on Boiler Designer software

    Science.gov (United States)

    Orumbayev, R. K.; Kibarin, A. A.; Khodanova, T. V.; Korobkov, M. S.

    2018-03-01

    This work contains analysis of technical values of tower hot-water boiler PTVM-100 when operating on gas and oil residual. After the test it became clear that due to the construction deficiency during the combustion of oil residual, it is not possible to provide long-term production of heat. There is also given a short review on modernization of PTVM-100 hot-water boilers. With the help of calculations based on controlled all-mode mathematic modules of hot-water boilers in BOILER DESIGNER software, it was shown that boiler modernization by use of bi-radiated screens and new convective set of tubes allows decreasing sufficiently the temperature of combustor output gases and increase reliability of boiler operation. Constructive changes of boiler unit suggested by authors of this work, along with increase of boiler’s operation reliability also allow to improve it’s heat production rates and efficiency rate up to 90,5% when operating on fuel oil and outdoor installation option.

  5. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Steven; Rapp, Robert

    2014-08-31

    coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  6. Oxidation study by Moessbauer and optic microscopy of steels from boiler tubes used in sugar industry

    International Nuclear Information System (INIS)

    Fajardo, M.; Perez Alcazar, G.A.; Aguilar, Y.

    1998-01-01

    Optic microscopy and Moessbauer spectroscopy were used to study the fail and the inner rusted surface of two boiler tubes used in the sugar industry, respectively. The studied tubes, of the type ASTM A 192, were found to have cracks. By optic microscopy it was observed that the failure begins in the inner surface with circumferential cracking. Also, inside and around the surface close to the cracks a rusted layer was detected. Powder from these layers was collected for Moessbauer spectroscopy analysis. By this method the presence of two or three types of Fe oxides such as wuestite, magnetite and hematite, was proved. These results permit to conclude that the failure mechanism was the thermal fatigue due to a hot work in an O 2 -rich vapor atmosphere. The rusted products are stable at high temperatures

  7. The creep life of superheater and reheater tubes under varying pressure conditions in operational boilers

    International Nuclear Information System (INIS)

    Mizen, D.C.; Plastow, B.

    1975-01-01

    The first of each manufacturer's 500 MW boilers supplied to the CEGB (Central Electricity Generating Board) have been subjected to an extensive programme of tests for performance optimization and safe operation. Around 250 thermocouples on superheater and reheater tubes have in each case been monitored as part of the exercise. The readings are corrected and used to compute creep rupture damage based on internationally agreed stress rupture data and a simple cumulative damage concept. Comparison of the design creep rupture life and the cumulative life consumed has in several applications been invaluable in influencing operating procedures and arranging tube modifications or replacements, so that loss of generation by creep rupture failure is minimized. (author)

  8. Chemical preventive remedies for steam generators fouling and tube support plate blockages

    International Nuclear Information System (INIS)

    Alves Vieira, M.; Mayos, M.; Coquio, N.; Fourcroy, H.; Battesti, P.

    2010-01-01

    In 2006, EDF identified on several PWR units broached hole blockage on the upper Steam Generator (SG) Tube Support Plates (TSP). TSP blockage often occurs in association with secondary fouling. The units with copper alloys materials are more affected due the applied low pH 25 o C (9.20) all volatile treatment (AVT). Carbon steels materials are less protected against flow accelerated corrosion (FAC) and therefore more corrosion products enter the SGs through the final feed water (FFW). In parallel of chemical cleanings to remove oxides deposits in SGs, EDF has defined a strategy to improve operating conditions. It mainly relies on the removal of copper alloys materials to implement a high pH AVT (9.60) as a preventive remedy. However for some plants, copper alloys removal is not straightforward due to environmental constraints. EDF must indeed manage the implementation of a biocide treatment needed in closed loop cooling systems (as copper has a bacteriostatic effect on micro-organisms) and more generally must comply with discharge authorisations for chemical conditioning reagents or biocide reagent. An alternative conditioning was tested on the Dampierre 4 unit in 2007/2008 during 6 months to assess if operating at 9.40 was acceptable regarding the impacts on copper alloys materials. The perspective would be to implement it in the units where no biocide treatment can be applied on a short term. In parallel, other chemical conditionings or additives will be implemented or tested. First of all, EDF will carry out a trial test with APA in order to assess its efficiency on the removal of oxides deposits through SG blowdown. On the other hand, AVT with high pH ethanolamine (ETA) will be implemented as an alternative of ammonia and morpholine conditioning on some chosen plants. Ethanolamine is selected as a way to mitigate FAC kinetics in two-phase flow areas (reheaters or moisture heater separator) or to limit liquid releases. This paper provides the lessons of the

  9. IGA/SCC propagation rate measurements on alloy 600 steam generator tubing using a side stream model boiler

    International Nuclear Information System (INIS)

    Takamatsu, H.; Matsueda, K.; Matsunaga, T.; Kitera, T.; Arioka, K.; Tsuruta, T.; Okamoto, S.

    1993-01-01

    IGA/SCC crack propagation rate measurements using various types of IGA/SCC predefected ALloy 600 tubing were tested in model boilers, a side stream model boiler at Ohi Unit 1 and similar model boilers in the laboratory. Types of IGA/SCC predefects introduced from the outside of the tubing were as follows. (1) Actual IGA/SCC predefect introduced by high temperature caustic environments; (2) Longitudinal predefect by electrodischarge machining (EDM) method, and then crack tip fatigue was introduced to serve as the marker on the fractured surface (EDM slit + fatigue). IGA/SCC crack propagation rate was measured after the destructive examination by Cr concentration profile on fracture surface for (1), and observation of intergranular fractured surface propagated from the marked fatigue was employed for (2) and (3) after the model boiler tests. As for the water chemistry conditions, mainly AVT (high N 2 H 4 ) + boric acid (5-10ppm as B in SGs) treatment for both model boilers, and some of the tests for the model boiler in the laboratory employed AVT (high N 2 H 4 ) without boric acid. The results of IGA/SCC crack propagation rate measurements were compared with each other, and the three methods employed showed a good coincidence with the rate of ca. 1 x 10 -5 mm/Hr for AVT (high N 2 H 4 ) + boric acid treatment condition, in the case that crack tip boron intensity (B/O value by IMMA analysis) of more than 1 was observed

  10. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  11. Corrosion/erosion detection of boiler tubes utilizing pulsed infrared imaging

    Science.gov (United States)

    Bales, Maurice J.; Bishop, Chip C.

    1995-05-01

    This paper discusses a new technique for locating and detecting wall thickness reduction in boiler tubes caused by erosion/corrosion. Traditional means for this type of defect detection utilizes ultrasonics (UT) to perform a point by point measurement at given intervals of the tube length, which requires extensive and costly shutdown or `outage' time to complete the inspection, and has led to thin areas going undetected simply because they were located in between the sampling points. Pulsed infrared imaging (PII) can provide nearly 100% inspection of the tubes in a fraction of the time needed for UT. The IR system and heat source used in this study do not require any special access or fixed scaffolding, and can be remotely operated from a distance of up to 100 feet. This technique has been tried experimentally in a laboratory environment and verified in an actual field application. Since PII is a non-contact technique, considerable time and cost savings should be realized as well as the ability to predict failures rather than repairing them once they have occurred.

  12. The effect of water jet lancing on furnace wall tubes of high slagged deposit fuel-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V V; Kovalevitch, I A; Maidanik, M N [All-Union Heat Engineering Institute, Siberian Branch, Krasnoyarsk (USSR)

    1990-01-01

    In this paper the results of investigating the effectiveness of water jet lancing on furnace wall tubes of slagged deposits fuels fired boilers type E-500, P-64, P-67 are given. The boilers of these types are designed to burn Jugoslavian lignites are Beresovo lignites of the Kansk-Achinsk deposits. Recommendations for usage of low retractable, long retractable and long-range water blowers, depending on the design, produced in the USSR, the furnace dimension and stability of deposits are given as well.

  13. A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2008-01-01

    Thermodynamic equilibrium calculation was conducted to understand the effects of tube wall temperature, flue gas temperature, and waste chemistry on the type and amount of vapor-condensed 'corrosive' salts from flue gas on superheater and waterwall tubes in waste incinerators. The amount of vapor-condensed compounds from flue gases at 650-950 deg. C on tube walls at 350-850 deg. C was calculated, upon combustion of 100 g waste with 1.6 stoichiometry (in terms of the air-fuel ratio). Flue gas temperature, rather than tube wall temperature, influenced the deposit chemistry of boiler tubes significantly. Chlorine, sulfur, sodium, potassium, and calcium contents in waste affected it as well

  14. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Bum [RECTUSON, Co., LTD, Masan (Korea, Republic of); Roh, Seon Man [Samcheonpo Division, Korea South-East Power Co., Samcheonpo (Korea, Republic of)

    2016-06-15

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

  15. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    International Nuclear Information System (INIS)

    Lee, Sang Bum; Roh, Seon Man

    2016-01-01

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB

  16. Analisa Efisiensi Water Tube Boiler Berbahan Bakar Fiber, Cangkang Sawit dan Kulit Kayu Menggunakan Metode Langsung

    OpenAIRE

    Gaol, Dosma Putra Lumban

    2016-01-01

    Some of the factors that affect the efficiency of the boiler is a superheater pressure, water feed temperature, steam temperature, the amount of steam produced, the amount of fuel consumption and calorific value fuel combustion. Steamtab chemicallogic use companion software to calculate the value of enthalpy. The aim of this study is to get relations variations in pressure superheater with boiler efficiency, the relationship of variation of temperature feed water to the boiler efficiency, the...

  17. Diagnosis of Heat Exchanger Tube Failure in Fossil Fuel Boilers Through Estimation of Steady State Operating Conditions

    International Nuclear Information System (INIS)

    Herszage, A.; Toren, M.

    1998-01-01

    Estimation of operating conditions for fossil fuel boiler heat exchangers is often required due to changes in working conditions, design modifications and especially for monitoring performance and failure diagnosis. Regular heat exchangers in fossil fuel boilers are composed of tube banks through which water or steam flow, while hot combustion (flue) gases flow outside the tubes. This work presents a top-down approach to operating conditions estimation based on field measurements. An example for a 350 MW unit superheater is thoroughly discussed. Integral calculations based on measurements for all unit heat exchangers (reheaters, superheaters) were performed first. Based on these calculations a scheme of integral conservation equations (lumped parameter) was then formulated at the single tube level. Steady state temperatures of superheater tube walls were obtained as a main output, and were compared to the maximum allowable operating temperatures of the tubes material. A combined lumped parameter - CFD (Computational Fluid Dynamics, FLUENT code) approach constitutes an efficient tool in certain cases. A brief report of such a case is given for another unit superheater. We conclude that steady state evaluations based on both integral and detailed simulations are a valuable monitoring and diagnosis tool for the power generation industry

  18. Fouling research and cleaning effect by sponge ball on condencer tubes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, S; Sano, A [Kansai Electric Power Co., Inc., Osaka (Japan); Minamoto, K; Mimura, K; Kyohara, S

    1978-07-01

    Systematic research has been performed to investigate the cleaning effect on condensers cooled by sea water. The test has been done for a year using the test condenser at the Kainan Power Station, Kansai Electric Power Company. The main purpose of this research was to see the effect of cleaning inner walls of condenser tubes with sponge balls on the prevention of adhesion of marine creatures such as barnacles and other shellfishes. As the test tubes, the aluminum-brass and titanium tubes with 25.4 mm diameter, 1.245 mm thickness and 170 mm length were used. Frequency of cleaning and flow rate were chosen as the variable parameters. The effect of seasons was also investigated. Major conclusions drawn from this research were as follows. (1) More adhesion of barnacles was observed at slower flow speed and in titanium tubes rather than aluminum brass tubes. (2) At the flow speed of 1 m/sec. cleaning frequency of more than twice a week was necessary to perfectly avoid the adhesion. (3) In summer, the adhesion was most intensive, whereas in winter, it was the least. (4) Barnacles were the most predominant organism. (5) Cleaning with sponge balls was effective.

  19. Fouling research and cleaning effect by sponge ball on condencer tubes

    International Nuclear Information System (INIS)

    Matsumoto, Seizo; Sano, Akira; Minamoto, Kenju; Mimura, Keisuke; Kyohara, Shigeru.

    1978-01-01

    Systematic research has been performed to investigate the cleaning effect on condensers cooled by sea water. The test has been done for a year using the test condenser at the Kainan Power Station, Kansai Electric Power Company. The main purpose of this research was to see the effect of cleaning inner walls of condenser tubes with sponge balls on the prevention of adhesion of marine creatures such as barnacles and other shellfishes. As the test tubes, the aluminum-brass and titanium tubes with 25.4 mm diameter, 1.245 mm thickness and 170 mm length were used. Frequency of cleaning and flow rate were chosen as the variable parameters. The effect of seasons was also investigated. Major conclusions drawn from this research were as follows. (1) More adhesion of barnacles was observed at slower flow speed and in titanium tubes rather than aluminum brass tubes. (2) At the flow speed of 1 m/sec. cleaning frequency of more than twice a week was necessary to perfectly avoid the adhesion. (3) In summer, the adhesion was most intensive, whereas in winter, it was the least. (4) Barnacles were the most predominant organism. (5) Cleaning with sponge balls was effective. (Aoki, K.)

  20. Thermal design of horizontal tube boilers. Numerical and experimental investigation; Modelisation thermique de bouilleurs a tubes horizontaux. Etude numerique et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R.

    1999-11-26

    This work concerns the thermal design of kettle reboilers. Current methods are highly inaccurate, regarded to the correlations for external heat transfer coefficient at one tube scale, as well as to two-phase flow modelling at boiler scale. The aim of this work is to improve these thermal design methods. It contains an experimental investigation with typical operating conditions of such equipment: an hydrocarbon (n-pentane) with low mass flux. This investigation has lead to characterize the local flow pattern through void fraction measurements and, from this, to develop correlations for void fraction, pressure drop and heat transfer coefficient. The approach is original, since the developed correlations are based on the liquid velocity at minimum cross section area between tubes, as variable characterizing the hydrodynamic effects on pressure drop and heat transfer coefficient. These correlations are shown to give much better results than those suggested up to now in the literature, which are empirical transpositions from methods developed for inside tube flows. Furthermore, the numerical code MC3D has been applied using the correlations developed in this work, leading to a modeling of the two-phase flow in the boiler, which is a significant progress compared to current simplified methods. (author)

  1. Effect of Prolong Aging to the Microstructure and Mechanical Properties of Boiler Tube

    International Nuclear Information System (INIS)

    Norasiah Abdul Kasim; Mohd Harun; Muhamad Rawi Mohd Zin; Zaifol Samsu; Mahdi Ezwan Mahmoud; Zaiton Selamat; Shariff Satar

    2013-01-01

    Boiler or steam generator is a device used to create steam by applying heat energy to water. For industrial applications, most boilers are used under extreme conditions, which require them to operating continuously or in a batch. Therefore constant heating and cooling will result into certain material failure, or when the operation itself exhibit a few malfunctions, it will affected the boiler condition and contribute to its failure. Hence the main emphasis on this study is investigating the effect of aging, with the influence of temperature by heating it into a period of time. Focus on understanding the changes occurred during the operating hour of boiler by simulating a short term aging experiment. The boilers structure material, Carbon Steel BS3509 used in this experiment were heated on a furnace with 500 and 550 centigrade for 19, 49, 72 and 191 hours. After the heating process, the metal specimens will be observed its micro structural changes and the oxide layer. The hardness will also be tested and taken accounted for before and after heating. The results and insight from the observation have been analyzed and discussed. (author)

  2. Simulation of Working Processes in the Water-Tube Boiler Furnace with the Purpose of Reducing Emissions of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Redko A.A.

    2017-04-01

    Full Text Available A significant number of domestic and industrial boilers are in operation in Ukraine. Nitrogen oxides are the most dangerous among all combustion products that pollute the atmosphere, therefore, one should take some measures for decreasing the formation of nitrogen oxides during combustion. The studies were carried out at the boilers of low power (100 kW with a tubular radiator and an open end. The studies in the furnaces of industrial steam boilers having a tubular radiator with a closed end have not been done. The numerical study results of the gaseous fuel combustion processes in the furnace of a DE-10/14 steam water-tube boiler are presented. The fuel-air mixture is formed by premixing the 15% part of the air with a primary burner twist factor n=2.4 and a secondary burner twist factor n=1.6, and an air excess factor αв=10. As a result of the studies, the temperature and velocity distributions of gases in the combustion chamber, the density of heat flows on the screen tubular surfaces, and the concentrations of the combustion components were determined. Flue gas recirculation in the volume of 80-100% is provided, and the reversible movement of combustion products towards the combustion front provides a reduction in the concentration of nitrogen oxides up to 123-125 mg/m3 at the furnace outlet. Disadvantages are the following: the formation of stagnant zones near the end of the secondary radiator. The optimum diameter of the tubular radiator equals to two burners diameters and tubular radiator is located at a distance of one meter from the burner cutoff.

  3. Oxidation study by Mössbauer and optic microscopy of steels from boiler tubes used in sugar industry

    Science.gov (United States)

    Fajardo, M.; Pérez Alcázar, G. A.; Aguilar, Y.

    1998-08-01

    Optic microscopy and Mössbauer spectroscopy were used to study the fail and the inner rusted surface of two boiler tubes used in the sugar industry, respectively. The studied tubes, of the type ASTM A 192, were found to have cracks. By optic microscopy it was observed that the failure begins in the inner surface with circumferential cracking. Also, inside and around the surface close to the cracks a rusted layer was detected. Powder from these layers was collected for Mössbauer spectroscopy analysis. By this method the presence of two or three types of Fe oxides such as wüstite, magnetite and hematite, was proved. These results permit to conclude that the failure mechanism was the thermal fatigue due to a hot work in an O2 -rich vapor atmosphere. The rusted products are stable at high temperatures.

  4. Effects of Different Fuel Specifications and Operation Conditions on the Performance of Coated and Uncoated Superheater Tubes in Two Different Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Wu, Duoli; Dahl, Kristian V.; Madsen, Jesper L.

    2018-01-01

    Fireside corrosionis a serious concern in biomass firing powerplants such that the efficiency of boilers is limited by high temperature corrosion. Application of protective coatings on superheater tubes is a possible solution to combat fireside corrosion. The current study investigates the corros......Fireside corrosionis a serious concern in biomass firing powerplants such that the efficiency of boilers is limited by high temperature corrosion. Application of protective coatings on superheater tubes is a possible solution to combat fireside corrosion. The current study investigates...... the corrosion performance of coated tubes compared to uncoated Esshete 1250 and TP347H tubes, which were exposed in two different biomass-fired boilers for one year. Data on the fuel used, temperature of the boilers, and temperature fluctuations are compared for the two boilers, and how these factors influence...... deposit formation, corrosion, and the stability of the coatings is discussed. The coatings (Ni and Ni2Al3) showed protective behavior ina wood-fired plant where the outlet steam temperature was 520 °C. However, at the plant that fired straw with an outlet steam temperature of 540 °C and where severe...

  5. Determining the parameters at which burnout occurs in the waterwall tubes of drum boilers

    Energy Technology Data Exchange (ETDEWEB)

    I.I. Belyakov [Central Boiler-Turbine Institute Research and Production Association (OAO TsKTI), St. Petersburg (Russian Federation)

    2007-09-15

    Parameters at which burnout occurs are presented that were obtained by measuring the temperature and heat fluxes during experiments carried out directly on a boiler. The results of a comparison between the obtained values and the data of investigations on a test facility are given.

  6. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  7. Numerical Investigation of Simultaneously Deposition and Re-Entrainment Fouling Processes in Corrugated Tubes by Coupling CFD and DEM

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    Computational Fluid Dynamics (CFD) software OpenFOAM is coupled to the Discrete Element Method (DEM) software LIGGGHTS using the coupling software CFDEM. A four-way coupling is used to model fluid-particle and particle-particle interactions and thereby allowing for a particle fouling layer to build up along...

  8. A thin-lip rupture of carbon steel superheater boiler tube

    International Nuclear Information System (INIS)

    Khalil, E.O.; Alzoye, K.S.; Elwaer, A.M.

    1993-01-01

    A ruptured A 42 medium carbon steel tube was collected by the engineering department in one of our steam power stations. Inspection of ruptured tube revealed a thin - lip fracture with brownish thin layer of oxide film on inner tube surfaces. There was no evidence of pitting, the outer surfaces of the tube exhibited a general oxidized conditions. A micro section taken near the fracture surface consists of ferrite and martensite, the amount of martensite decreased as we away from the fracture surface. Presence of martensite phase in the microstructure indicates that the tube material has been overheated. An erosion corrosion mechanism in conjunction with overheated. An erosion corrosion mechanism in conjunction with overheating resulted in strength deterioration with consequent premature failure. 4 fig., 1 tab

  9. Pressure tests to assess the significance of defects in boiler and superheater tubing

    International Nuclear Information System (INIS)

    Guest, J.C.; Hutchings, J.A.

    1975-01-01

    Internal pressure tests on 9 per cent Cr-1 per cent Mo steel tubing containing artificial defects demonstrated that the resultant loss of strength was less than a simple calculation based on the reduced tube thickness would suggest. Bursting tests on tubes containing longitudinal defects of varying length, depth and acuity showed notch strengthening at ambient temperature and at 550 0 C. A flow stress concept developed for simple bursting tests was shown to apply to creep conditions at 550 0 C. Results of creep and short-term bursting tests show that the length as well as the depth of the defect is an important factor affecting the life of bursting strength of the tubes. Defects less than 10 per cent of the tube thickness were found to have an insignificant effect. (author)

  10. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  11. Design and implementation of a control system to improve the quality of the combustion gases in the fire-tube boiler of 5 BHP

    Directory of Open Access Journals (Sweden)

    Carlos Alfredo Pérez Albán

    2016-06-01

    Full Text Available The goal of this paper is the design and implementation of a system for controlling the quality of the combustion gases in a fire-tube boiler of 5 BHP. Based on the percentage of O2 present in the combustion gases, measured by a lambda sensor, the percentage of CO2 emitted into the atmosphere is determined. PID proportional control is responsible for the automatic regulation of the entry of air to the boiler by an actuator, according to the percentage of the oxygen concentration in the combustion gases. The control system has an HMI display and a modular PLC. The results achieved ensure pollutant gases emissions within the parameters established by current environmental standards, achieving the required quality of combustion gases and reducing the fuel consumption of the boiler.

  12. Failure analysis of a boiler tube in USC coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, N.H.; Kim, S.; Choe, B.H.; Yoon, K.B.; Kwon, D.I. [Kangnung National University, Kangnung (Republic of Korea)

    2009-10-15

    This paper presents failure analysis of final superheater tube in ultra-supercritical (USC) coal power plant. Visual inspection was performed to find out the characteristics of fracture of the as-received material. And the micro-structural changes such as grain growth and carbide coarsening was examined by scanning electron microscope. Detailed microscopic studies were made to find out the behavior of the scale exfoliation on the waterside of tubes. From those investigations, the creep rupture may be caused by the softened structure induced by carbide coarsening and accelerated by the metal temperature increase by the impediment of heat transfer due to voids.

  13. Numerical Evaluation of Averaging BDFT(bidirectional flow tube) Flow Meter on Applicability in the Fouling Condition

    International Nuclear Information System (INIS)

    Park, J. P.; Jeong, J. H.; Yuna, B. J.; Jerng, D. W.

    2013-01-01

    The results show that the averaging BDFT is a promising flow meter for the accurate measurement of flow rates in the fouling condition of the NPPs. A new instrumentation, an averaging BDFT, was proposed to measure the accurate flow rate under corrosion environment. In this study, to validate the applicability of the averaging BDFT on the fouling conditions, flow analyses using the CFD code were performed. Analyses results show that this averaging BDFT does not lose the measuring performance even under the corrosion environment. Therefore, it is expected that the averaging BDFT can replace the type flow meters for the feedwater pipe of steam generator of NPPs. Most of the NPPs adopt pressure difference type flow meters such as venturi and orifice meters for the measurement of feedwater flow rates to calculate reactor thermal power. However, corrosion products in the feedwater deposits on the flow meter as operating time goes. These effects lead to severe errors in the flow indication and then determination of reactor thermal power. The averaging BDFT has a potentiality to minimize this problem. Therefore, it is expected that the averaging BDFT can replace the type venturi meters for the feedwater pipe of steam generator of NPPs. The present work compares the amplification factor, K, based on CFD calculation against the K obtained from experiments in order to confirm whether a CFD code can be applicable to the evaluation of characteristic for the averaging BDFT. In addition to this, the simulations to take into account of fouling effect are also carried out by rough wall option

  14. Occurrence and prevention of enhanced oxide deposition in boiler flow control orifices

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Thomas, D.M.; Garbett, K.; Bignold, G.J.

    1989-10-01

    Once-through boilers, such as those of the AGRs, incorporate flow control orifices at the boiler inlet to ensure a satisfactory flow distribution and stability in the parallel flow paths of the boiler. Deposition of corrosion products in the flow control orifice leads to changes in the orifice pressure loss characteristics, which could lead to problems of flow maldistribution within the boiler, and any adverse consequences resulting from this, such as tube overheating. To date, AGR boiler inlet orifices have not suffered significant fouling due to corrosion products in the boiler feedwater. However, oxide deposition in orifices has been observed in other plants, and in experimental loops operating under conditions very similar to those at inlet to AGR boilers. The lack of deposition in AGR flow control orifices is therefore somewhat surprising. This Report describes studies carried out to examine the factors controlling oxide deposition in flow control orifices, the intention of the work being to explain why deposition has not occurred in AGR boilers to date, and to provide means of preventing deposition in the future should this prove necessary. (author)

  15. Experimental and numerical investigation of gas side particulate fouling onto heat exchanger tubes; Etude des differents mecanismes de depot conduisant a l'encrassement particulaire en phase gazeuse des tubes d'echangeurs de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Bailer, F.

    1998-11-06

    This works deals with gas side particulate fouling onto heat exchanger tubes. An experimental and numerical investigation was carried out. By means of a new testing loop designed for this study the deposit kinetics were obtained in dust-controlled conditions at the beginning of the fouling process, Experimental results pointed out the existence of various transport regimes: for sub-micron particles, convective diffusion augmented by thermophoresis in the presence of a temperature gradient governs the particle deposition: inertial impaction controls the super-micron particles deposition, in the intermediate granulometric range, combined action of particle inertia and thermophoresis must be considered. Moreover, measurements on an other testing loop using a more concentrated aerosol allowed us to point out the modification of the mechanisms with time and the influence of the deposit shape. A numerical model predicting the particle deposition, based on the TRIO software and an Eulerian-Lagrangian approach, was developed and validated against experimental results from the literature and from our study. Numerical approach gave us an accurate understanding of the phenomena by means of local parameters computations. In this way, the different mechanisms which control particulate deposition onto heat exchangers tubes were identified and modeled, especially before the onset of the inertial impaction. (authors)

  16. Combustion monitoring of a water tube boiler using a discriminant radial basis network.

    Science.gov (United States)

    Sujatha, K; Pappa, N

    2011-01-01

    This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Relaxation and corrosion resistance of alloy 800 used for steam generator tubes of ship borne boilers

    International Nuclear Information System (INIS)

    Corrieu, J.M.; Cortial, F.; Maillard, J.L.; Vernot-Loier, C.; Lebeau, M.

    1994-01-01

    The INCO ''INCOLOY 800'' trademark groups the Fe-Cr-Ni alloys containing 30 to 35% nickel, 19 to 23% chromium, 0,15 to 0,60% aluminium, 0,15 to 0,60% titanium and less than 0,10% carbon contents, used as construction materials for condenser and heat exchanger tubes. In parallel with water chemistry control and studies aimed at reducing the residual stresses resulting from tube expansion, studies have been conducted to a better understanding of this alloy, its metallurgy and its corrosion behaviour under accurately defined fabrication and heat treatment conditions. The purpose of this paper is to present the results of a behaviour study of INDRET alloy 800 concerning isothermal relaxation and effects of the said relaxation heat treatments on alloy microstructure studied with a transmission electron-chemical method to determine the sensitiveness to intergranular corrosion, and by electrochemistry in pressurized hot water. (authors). 4 figs., 5 tabs., 7 refs

  18. A study on the concentration of CO by the length and the variation of the bent tube of the exhaust pipe for a household gas boiler

    International Nuclear Information System (INIS)

    Leem, Sa Hwan; Huh, Yong Jeong; Lee, Jong Rark

    2008-01-01

    Energy and environment become increasingly serious after the industrial revolution. The demand for gas as an ecofriendly energy source is also increasing. With the demand, the installation and the use of gas boilers have also increased, so the damage to human life by the waste gas (CO and CO 2 ) continues increasing every year. Hence, the aim of this study was to investigate the concentration of CO (Carbon Monoxide) by the length and the variation of the bent tube of the exhaust pipe by installing a boiler with the same method as a household boiler and to discover the harm to humans. For the effect of the length, the allowable concentration of CO is 50ppm, and the 3m of the once bent tube starts exceeding the allowable concentration of CO after 5 minutes, and the 4m and 5m starts exceeding after 3 minutes. In addition, the 1m of three times bent tube starts exceeding the allowable concentration of CO after 3 minutes

  19. Generalization of experimental data and development of recommendations for calculating heat transfer of a staggered tube bank with helical and ring extended-surface tubes in a perpendicular gas stream (for new formulation of standard method for boiler heat analyses)

    Energy Technology Data Exchange (ETDEWEB)

    Fomina, V N; Titova, E Ya; Migai, V K; Bystrov, P G; Pis' mennyi, E N [Vsesoyuznyi Teplotekhnicheskii Institut (USSR)

    1991-06-01

    Comparatively evaluates methods for determination of optimum design of extended-surface tubes used in water walls of boilers fired with coal and other fuels in commercial power plants in the USSR. The standard calculation methods introduced in 1973 and other methods developed and tested by individual research institutes of the USSR are described. New and original formulae based on the results of physical and mathematical modeling are evaluated. Heat transfer from flue gases to water walls is analyzed. Arrangement of tube banks, design of extended-surface tubes and other factors that influence heat transfer are considered. Evaluations show that from among the analyzed calculation methods the method developed by the KPI institute is superior to others (it is most accurate and universal). Investigations show that the coefficient of thermal efficiency of the economizers (1st and 2nd stage) of boilers fired with coal amounts to about 0.85. The coefficient considers effects of buildup on the economizer tubes. Use of the method is explained on example of boilers fired with black coal from the Ehkibastuz. 13 refs.

  20. Steam generator chemical cleaning demonstration test No. 1 in a pot boiler

    International Nuclear Information System (INIS)

    Key, G.L.; Helyer, M.H.

    1981-04-01

    The effectiveness of the Electric Power Research Institute (EPRI Mark I) chemical cleaning solvent process was tested utilizing a 12 tube pot boiler that had previously been fouled and dented under 30 days of high chloride fault chemistry operation. Specifically, the intent of this chemical cleaning test was to: (1) dissolve sludge from the tubesheet, (2) remove non-protective magnetite from dented tube/support crevice regions, and (3) quantify the extent of corrosion of steam generator material during the test. Two laboratory cleaning demonstrations of 191 and 142 hours were performed

  1. Inelastic behaviour of solar boiler tubes subjected to cyclic thermal loading

    International Nuclear Information System (INIS)

    Gamby, D.; Pietri, P.; Bourdillon, H.

    1981-01-01

    Relying upon three-dimensional results previously obtained in the elastic range, we propose a simplified theory according to which each fiber of the tube portion undergoes either an uniaxial stress state (taking into account plastic flow with linear isotropic strain-hardening, possibly with creep) or a plane stress state in order to account for the ratchet phenomenon due to the inner fluid pressure. This approach allows to display and individualize the respective roles of strain-hardening, creep, fluid pressure and end-conditions; it also permits to calculate (most often in closed form) the deformations and stresses after a large number of cycles, which is not possible with more refined theories. Its accuracy has been assessed by computing the stresses and strains in the same situations for the first cycle by using an elasto-plastic shell theory (also taking into account creep influence), which revealed that in most cases our approach could give a good understanding of the phenomenon as well as a simple tool for actually calculating the mechanical quantities after a large number of cycles, in order to estimate the structure life-time. (orig./HP)

  2. Thermo-hydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2003-01-01

    In nuclear reactors of the magnox or advanced gas cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accidents using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear electric . The tests were carried out on the thermal hydraulics experimental research assembly (THERA) loop at manchester university. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 k, 50 k, and 100 k was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s

  3. Studies on the Biology of the Tube-Building Amphipod Microdeutopus gryllotalpa. A Model for Marine Fouling Processes.

    Science.gov (United States)

    1984-01-01

    two pairs of chelae to carry the females. But, in addition, males of different genera carry their females in different, but highly stereotyped ways...173 (1980) Shillaker. R. 0. and P. G. Moore: Tube building by the amphipods Lang. K.: The genus Oosaccus Richardson and the brood pouch Lembos...from three genera, has shown that the smaller pair is used. In addition, the use of theme gnathopods is highly stereotyped , and generic-specific

  4. Extensive feedwater quality control and monitoring concept for preventing chemistry-related failures of boiler tubes in a subcritical thermal power plant

    International Nuclear Information System (INIS)

    Vidojkovic, Sonja; Onjia, Antonije; Matovic, Branko; Grahovac, Nebojsa; Maksimovic, Vesna; Nastasovic, Aleksandra

    2013-01-01

    Prevention and minimizing corrosion processes on steam generating equipment is highly important in the thermal power industry. The maintenance of feedwater quality at a level corresponding to the standards of technological designing, followed by timely respond to the fluctuation of measured parameters, has a decisive role in corrosion prevention. In this study, the comprehensive chemical control of feedwater quality in 210 MW Thermal Power Plant (TPP) was carried out in order to evaluate its potentiality to assure reliable function of the boiler and discover possible irregularity that might be responsible for frequent boiler tube failures. Sensitive on-line and off-line analytical instruments were used for measuring key and diagnostic parameters considered to be crucial for boiler safety and performances. Obtained results provided evidences for exceeded levels of oxygen, silica, sodium, chloride, sulfate, copper, and conductivity what distinctly demonstrated necessity of feedwater control improvement. Consequently, more effective feedwater quality monitoring concept was recommended. In this paper, the explanation of presumable root causes of corrosive contaminants was given including basic directions for their maintenance in proscribed limits. -- Highlights: • Feedwater quality monitoring practice in a thermal power plant has been evaluated. • The more efficient feedwater quality control have been applied. • Analysis of feedwater quality parameters has been performed. • Exceeded levels of corrosive contaminants were found. • Recommendations for their maintenance at proscribed values were given

  5. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  6. Improvement of fire-tube boilers calculation methods by the numerical modeling of combustion processes and heat transfer in the combustion chamber

    Science.gov (United States)

    Komarov, I. I.; Rostova, D. M.; Vegera, A. N.

    2017-11-01

    This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.

  7. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yongxiang, Yang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  8. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  9. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  10. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B. [Kongju National University, Kong Ju (Republic of Korea). Dept. for Mechanical Engineering

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

  11. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  12. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Aziz, Abdullah Nur; Nazaruddin, Yul Yunazwin; Siregar, Parsaulian; Bindar, Yazid

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  13. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  14. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1999-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  15. EFFICIENCY IMPROVEMENT IN INDUSTRIAL BOILER BY FLUE GAS DUCT INSULATION

    OpenAIRE

    Sanjay H. Zala

    2017-01-01

    Now a days in industry major losses are find out so here we calculate these losses and find out efficiency of boiler. Boiler efficiency and energy losses from boiler are important parameter for any industry using boiler. In this work a detailed analysis was carried out for boiler at Anish Chemicals Bhavnagar. It is a combined water and fire tube boiler using biomass coal as fuel. Boiler efficiency calculated by direct method is in range of (78.5% to 81.6%). Major losses from boiler are heat ...

  16. Long term properties and microstructural evolution of 18Cr-10Ni-3Cu-Ti-Nb austenitic stainless steel for boiler tube application

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Y.; Fukui, T.; Ono, T. [TenarisNKK Tubes, Kawasaki, Kanagawa (Japan); Caminada, S. [TenarisDalmine, Dalmine, BG (Italy)

    2010-07-01

    The allowable tensile stress of 0.1C-18Cr-10Ni-3Cu-Ti-Nb steel (TEMPALOY AA-1; ASME C.C. 2512) is more than 30% higher compared with that of ASME SA-213 Grade TP347H in the temperature range 600-700 C. This high creep rupture strength is obtained by the precipitation of MC and M{sub 23}C{sub 6} carbides, and Cu-rich phase. Long term creep rupture tests over 10{sup 5}h enabled to verify the superior creep rupture strength of this steel. The investigation of microstructural evolution on the creep ruptured and aged specimens has shown the high structural stability of this material. Hardness and impact properties after high temperature aging reveal similar performance as conventional 18-8 stainless steels. Excellent steam oxidation resistance can be achieved by a shot-blasting method. The scale thickness of shot-blasted tube after 1000h at 750 C is below a few micron meters. These results have revealed that the mechanical properties and environmental resistance of this steel enable the use of TEMPALOY AA-1 in the latest generation of advanced USC boiler. (orig.)

  17. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  18. Fouling of Structured Surfaces during Pool Boiling of Aqueous Solutions

    International Nuclear Information System (INIS)

    Esawy, M.

    2011-01-01

    Bubble characteristics in terms of density, size, frequency and motion are key factors that contribute to the superiority of nucleate pool boiling over the other modes of heat transfer. Nevertheless, if heat transfer occurs in an environment which is prone to fouling, the very same parameters may lead to accelerated deposit formation due to concentration effects beneath the growing bubbles. This has led heat exchanger designers frequently to maintain the surface temperature below the boiling point if fouling occurs, e.g. in thermal seawater desalination plants. The present study investigates the crystallization fouling of various structured surfaces during nucleate pool boiling of CaSO 4 solutions to shed light into their fouling behaviour compared with that of plain surfaces for the same operating conditions. As for the experimental part, a comprehensive set of clean and fouling experiments was performed rigorously. The structured tubes included low finned tubes of different fin densities, heights and materials and re-entrant cavity Turbo-B tube types.The fouling experiments were carried out at atmospheric pressure for different heat fluxes ranging from 100 to 300 k W/m 2 and CaSO 4 concentrations of 1.2 and 1.6 g/L. For the sake of comparison, similar runs were performed on plain stainless steel and copper tubes.Overall for the finned tubes, the experimental results showed a significant reduction of fouling resistances of up to 95% compared to those of the stainless steel and copper plain tubes. In addition, the scale formation that occurred on finned tubes was primarily a scattered and thin crystalline layer which differs significantly from those of plain tubes which suffered from a thick and homogenous layer of deposit with strong adhesion. Higher fin densities and lower fin heights always led to better antifouling performance for all investigated finned tubes. It was also shown that the surface material strongly affects the scale formation of finned tubes i

  19. EDF approach for fouling mitigation

    International Nuclear Information System (INIS)

    Dijoux, M.; Nordmann, F.; Stutzmann, A.

    2001-01-01

    The situation and evolution of fouling of steam generator tubing are described in the 58 French PWR units, and the different studies and actions carried out to try to solve the problem and avoid any power output reduction associated to pressure drop. The remedies include the selection of the best secondary water treatment with amines such as morpholine in order to minimise corrosion product transport as well as mechanical remedies such as sludge lancing or chemical cleaning. Other options like dispersant addition are under evaluation. (R.P.)

  20. HR boiler

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    A number of manufacturers of central heating boilers in the Netherlands have produced high-efficiency boilers, all carrying the GIVEG-HR seal of approval (GIVEG is the manufacturers' association in the Netherlands, and HR stands for 'hoog rendement': high efficiency). Efficiences were considerably improved by reducing flue, idling and radiation losses. Control and safety, discharges of flue gases and condensate need special attention. Whether installation of a GIVEG-HR boiler is profitable in view of the cost/profit ratio, will have to be determined from case to case. N.V. Nederlandse Gasunie felt it was time to present the facts so far in a way specially aimed at the construction industry. This special edition of 'Gas and Architecture' answers a number of questions which the architect or consultant engineer might have in particular before advising on the installation of the new boiler in houses and other buildings in the interests of energy saving. A technical description of the HR boiler covers the backgrounds of its development and considers the role of the Netherlands government as regards to the introduction of the boiler.

  1. Efficient boiler operations sourcebook

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.W. (comp.)

    1985-01-01

    This book emphasizes the practical aspects of industrial and commercial boiler operations. It starts with a comprehensive review of general combustion and boiler fundamentals and then deals with specific efficiency improvement methods, and the cost savings which result. The book has the following chapter headings: boiler combustion fundamentals; boiler efficiency goals; major factors controlling boiler efficiency; boiler efficiency calculations; heat loss; graphical solutions; preparation for boiler testing; boiler test procedures; efficiency-related boiler maintenance procedures; boiler tune-up; boiler operational modifications; effect of water side and gas side scale deposits; load management; auxillary equipment to increase boiler efficiency; air preheaters and economizers; other types of auxillary equipment; combustion control systems and instrumentation; boiler O/sub 2/ trim controls; should you purchase a new boiler.; financial evaluation procedures; case studies. The last chapter includes a case study of a boiler burning pulverized coal and a case study of stoker-fired coal.

  2. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  3. Life cycle assessment for spray coatings applied to the heating tubes of PFBC boiler; Kaatsu ryudoso boiler sonai kan e tekiyosareru yosha coating no life cycle assessment (LCA hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    Sonoya, K; Kihara, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1996-12-25

    LCA (Life cycle assessment) is a systematic process used to calculate and evaluate the environmental impacts of products. Because boiler components are now exposed a more severe erosion/corrosion environment by, improving efficiency of thermal power plant, it is expected that the use of thermal spray coatings will increase. The LCA method was attempted to apply to various thermal spray coatings for PFBC (Pressurized Fluidized Bed Combustion) and evaluate the eco-friendly, coatings. The result was gained that all the alumina coatings have good characteristics. In fact the Al2O3-40%ZrO2 coating by APS has the lowest environmental impact and the best erosion resistance, it may be considered the most effective coating. 4 refs., 12 figs., 1 tab.

  4. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  5. Experimental study of particulate fouling onto heat exchanger elements

    International Nuclear Information System (INIS)

    Chandrasa

    1994-01-01

    An experimental study of particulate fouling onto tubular heat exchanger surfaces was carried out using sodium sulfate particles. An experimental apparatus equipped with an aerosol generator has been used to examine the deposition of small particles under controlled conditions. Two sets of experiments were performed. Firstly, the deposition against time of solid particles onto single heat exchanger tube in cross-flow was studied. The effects of a number variables such as particle size, gas velocity and temperature on the deposition was analysed. Secondly, the deposition for the aerosol particles as they passed through a bank of finned tubes was examined. The deposition patterns on various tubes depended on local conditions (velocity and temperature) within the bank. It was found that the fouling resistance increases as aerosol flow rate decreases. The smaller particles showed higher fouling resistance. (author) [fr

  6. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  7. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G; Hulsizer, P [Welding Services Inc., Norcross, GA (United States); Brooks, R [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1999-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  8. Application of electrochemical impedance spectroscopy to monitor seawater fouling on stainless steels and copper alloys

    International Nuclear Information System (INIS)

    Feron, D.

    1991-01-01

    Electrochemical impedance spectroscopy may be applied to detect and to follow seawater fouling. Experiments have been conducted with natural seawater flowing inside tube-electrodes at temperatures between 30 deg C and 85 deg C. With stainless steel tubes, mineral and organic foulings have been followed; a linear relationship between the dry weight of the organic fouling and its electrical resistance, has been observed. On copper alloy tubes, only mineral deposits have occurred and so have been detected by impedance spectroscopy. (Author). 5 refs., 6 figs

  9. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  10. Impact of fouling on UV effectiveness

    International Nuclear Information System (INIS)

    Dykstra, T.S.; Chauret, C.

    2002-01-01

    In recent years ultraviolet light has gained in popularity as an attractive disinfection alternative due to its ability to inactivate bacteria and viruses. UV light has the potential to inactivate Cryptosporidium parvum and Giardia lamblia with a very low potential for the formation of harmful disinfection by-products. Previous studies have reported that particulate material present in the water can act to reduce the exposure of UV light to the receiving waters and that the interference of organic particles can serve to protect bacteria and viruses from intended disinfection. Disinfection capacity can also be reduced by organics in the source water that can accumulate on the surface of quartz sleeves. The purpose of this study was to determine the ability of a medium pressure UV light, at drinking water treatment levels, to inactivate MS 2 bacteriophage after a quartz tube has been fouled with organic rich source water for a 12- week period. To this end the inactivation of MS 2 was determined under clean and fouled conditions, in the presence and absence of humic rich water. The effect of lamp age on inactivation was also investigated. The results suggest that organic fouling of a quartz tube has a significant impact on the disinfection capacity of a medium pressure UV lamp. The presence of organics in the source water also plays a significant role in reducing the capacity of UV for bacterial and viral disinfection. Lamp age also seems to have some effect on the efficiency of UV disinfection. (author)

  11. Titanium condenser tubes--problems and their solutions for wider application to large surface condensers

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, Y; Nagata, K; Namba, K; Shimono, M

    1978-01-01

    To meet the demand for high reliability condensers for thermal and nuclear power plants, especially for PWR plants, the condensers installed entirely with titanium tubes have been investigated and used. Some difficulties from conventional copper alloy tubes exist. Further investigations are necessary on three items: (1) tube vibration; (2) joining tubes to tube plate; (3) fouling (bio-fouling) control. Literature survey on the tube vibration suggests that the probability of tube vibration due to decreased stiffness of titanium tubes in comparison with conventional copper alloy tubes can be decreased by designing the proper span length between supports. Experiments on seal welding of tubes to a tube plate have successfully proved that pulsed TIG arc welding is applicable to get reliable and strong joints, even on site, by suitable countermeasures. Experiments on the fouling (bio-fouling) of titanium tubes in marine application reveal that the increased fouling of titanium tubes could be controlled by proper application of sponge ball cleaning.

  12. A novel design for a cheap high temperature solar collector: The rotating solar boiler

    NARCIS (Netherlands)

    Luijtelaer, van J.P.H.; Kroon, M.C.

    2009-01-01

    In this work a novel type of high temperature solar collector is designed: the rotating solar boiler. This rotating solar boiler consists of two concentric tubes. The inner tube, called absorber, absorbs sunlight and boils water. The outer transparent tube, called cover, is filled with air. The

  13. Modeling of crude oil fouling in preheat exchangers of refinery distillation units

    Energy Technology Data Exchange (ETDEWEB)

    Jafari Nasr, Mohammad Reza; Majidi Givi, Mehdi [National Petrochemical Research and Technology Company (NPC-RT), P.O. Box 14385, Tehran (Iran)

    2006-10-15

    The aim of this paper is to propose a new model for crude oil fouling in preheat exchangers of crude distillation units. The experimental results of Australian light crude oil with the tube side surface temperature between 200 and 260{sup o}C and fluid velocity ranged 0.25-0.4m/s were used [Z. Saleh, R. Sheikholeslami, A.P. Watkinson, Heat exchanger fouling by a light australian crude oil, in: Heat Exchanger Fouling and Cleaning Fundamentals and Applications, Santa Fe, 2003]. The amount of activation energy depends on the surface temperature has been calculated. A new model including a term for fouling formation and a term for fouling removal due to chemical and tube wall shear stress was proposed, respectively. The main superiority of the model are independent to Pr number, thermal fouling removal and determination of {beta} based on experimental tests. Finally using the proposed model the fouling rate of Australian light crude oil has been calculated and the threshold curves to identify fouling and no fouling formation zones have been drawn. (author)

  14. Ultrasonic boiler inspection and economic analysis guidelines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Boiler tube failures cause approximately 6% availability loss of large fossil-fired power generating plants. This loss can be reduced by systematic approaches using ultrasonic examination and root cause failure analysis methods. Two projects sponsored by EPRI have provided utility engineers with guidelines for performing ultrasonic examinations and with details on 22 types of tube failure mechanisms. A manual has been published that provides descriptions of typical locations, superficial appearances, damage mechanisms, metallurgy, microstructural changes, likely root causes, and potential corrective actions. Application of the principles in the manual is being demonstrated in an EPRI-funded project at 10 electric utilities over the next two years. Guidelines have been published that prescribe the activities necessary for ultrasonic examinations of boiler tubes. Eight essential elements of a boiler examination should be performed to assure that possible economic benefits are obtained. Work was supported by EPRI under RP 1890 and RP 1865. A software package has been developed for effectively planning inspections for wall thinning in fossil-fired boiler tubing. The software assists in minimizing costs associated with maintenance, such as inspection and repair, while the life of the boiler is maximized

  15. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, William (Sandy) [SharpConsultant

    2011-12-01

    the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the

  16. On-line fouling monitor for heat exchangers

    International Nuclear Information System (INIS)

    Tsou, J.L.

    1995-01-01

    Biological and/or chemical fouling in utility service water system heat exchangers adversely affects operation and maintenance costs, and reduced heat transfer capability can force a power deaerating or even a plant shut down. In addition, service water heat exchanger performance is a safety issue for nuclear power plants, and the issue was highlighted by NRC in Generic Letter 89-13. Heat transfer losses due to fouling are difficult to measure and, usually, quantitative assessment of the impact of fouling is impossible. Plant operators typically measure inlet and outlet water temperatures and flow rates and then perform complex calculations for heat exchanger fouling resistance or ''cleanliness''. These direct estimates are often imprecise due to inadequate instrumentation. Electric Power Research Institute developed and patented an on-line condenser fouling monitor. This monitor may be installed in any location within the condenser; does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods; and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. This instrument can be modified to perform on-line monitoring of service water heat exchangers. This paper discusses the design, construction of the new monitor, and algorithm used to calculate service water heat exchanger fouling

  17. A rule-based industrial boiler selection system

    NARCIS (Netherlands)

    Tan, C.F.; Khalil, S.N.; Karjanto, J.; Tee, B.T.; Wahidin, L.S.; Chen, W.; Rauterberg, G.W.M.; Sivarao, S.; Lim, T.L.

    2015-01-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes,

  18. Increasing the thermal efficiency of boiler plant

    Directory of Open Access Journals (Sweden)

    Uyanchinov Evgeniy

    2017-01-01

    Full Text Available The thermal efficiency increase of boiler plant is actual task of scientific and technical researches. The optimization of boiler operating conditions is task complex, which determine by most probable average load of boiler, operating time and characteristics of the auxiliary equipment. The work purpose – the determination of thermodynamic efficiency increase ways for boiler plant with a gas-tube boiler. The tasks, solved at the research are the calculation of heat and fuel demand, the exergetic analysis of boilerhouse and heat network equipment, the determination of hydraulic losses and exergy losses due to restriction. The calculation was shown that the exergy destruction can be reduced by 2.39% due to excess air reducing to 10%; in addition the oxygen enrichment of air can be used that leads to reducing of the exergy destruction rate. The processes of carbon deposition from the side of flame and processes of scale formation on the water side leads to about 4.58% losses of fuel energy at gas-tube boiler. It was shown that the exergy losses may be reduced by 2.31% due to stack gases temperature reducing to 148 °C.

  19. Water side corrosion prevention in boilers

    International Nuclear Information System (INIS)

    Zeid, A.

    1993-01-01

    Corrosion may be defined as a naturally occurring physical and chemical deterioration of a material due to reaction with the environment or surrounding atmosphere. In boilers the material is subjected on both sides to two different media which may cause severe corrosion. At the water side the content of O 2 considered one of the principal factors which determine the extent of corrosion in the boiler tubes. This paper deals with certain conditions that result in the increase of O 2 in the boiler water and hence increase the corrosion rate, to minimize the effect of these conditions a chemical treatment was carried out the results obtained indicated the success of the treatment procedure in corrosion prevention and boiler material protection. The treatment is traditional. But the study indicates how a simple mean could be applied to solve a serious problem. 4 tab

  20. Active brickworks - phase I[For application in biofuel boilers]; Aktiva murverk - etapp I

    Energy Technology Data Exchange (ETDEWEB)

    Wrangensten, Lars; Schuster, Robert; Ingman, Rolf; Sendelius, Mikael; Ehleskog, Rickard [AaF-Energikonsult AB, Stockholm (Sweden)

    2003-10-01

    This report is the first step of the R and D project 'Active brickworks' within the program 'Possibilities to improve the operation conditions in industrial bark boilers by optimised combustion control'. Good high temperature resistance is one of the major characteristics of ceramics. They are based on quartz and aluminium oxide, an attachment component (acid or cement) and also different types of additives which, together with the heating treatment, gives the ceramic materials their features. The brickwork in a boiler has several assignments. First of all resistance to corrosion, erosion and protection against fouling of the water tube walls, but also to significant affect the combustion process by energy saving features and heating radiation. This project has been focused on the last named features, namely to be able to make a more active choice of brickwork in order to utilise the ceramic features and hereby making it possible to lower the combustion process emissions. The material samples received from the manufactures have been tested in a small-scale laboratory rig. Features investigated are emissivity/reflection, heat conductivity and heat capacity. Mathematic simulations have also been performed with a representative type boiler model in order to make conclusions concerning how the results can be transformed to and applied in a real full-scale boiler. The most important designing case for ceramics in bark boilers is when boiler load rapidly increases or during a fast fuel moisture change from dry to wet fuel. It has been concluded in the study that that the ceramic walls in a boiler should be divided into different layers. The outer layer in the ceiling and sidewalls of the drying zone must consist of highly insulating material in order to get a high temperature of heating surfaces close to the furnace. To store heat during load transients the heating surfaces must have high emissivity factor and good heating capacity. From this point of

  1. The impact of fouling on performance evaluation of evaporative coolers and condensers

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, B.A.; Zubair, S.M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia). Mechanical Engineering Dept.

    2005-11-15

    Fouling of evaporative cooler and condenser tubes is one of the most important factors affecting their thermal performance, which reduces effectiveness and heat transfer capability with time. In this paper, the experimental data on fouling reported in the literature are used to develop a fouling model for this class of heat exchangers. The model predicts the decrease in heat transfer rate with the growth of fouling. A detailed model of evaporative coolers and condensers, in conjunction with the fouling model, is used to study the effect of fouling on the thermal performance of these heat exchangers at different air inlet wet bulb temperatures. The results demonstrate that fouling of tubes reduces gains in performance resulting from decreasing values of air inlet wet bulb temperature. It is found that the maximum decrease in effectiveness due to fouling is about 55 and 78% for the evaporative coolers and condensers, respectively, investigated in this study. For the evaporative cooler, the value of process fluid outlet temperature T{sub p,out} varies by 0.66% only at the clean condition for the ambient wet bulb temperatures considered. (author)

  2. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and

  3. Milk fouling in heat exchangers

    NARCIS (Netherlands)

    Jeurnink, T.J.M.

    1996-01-01


    The mechanisms of fouling of heat exchangers by milk were studied. Two major fouling mechanisms were indentified during the heat treatment of milk: (i) the formation and the subsequent deposition of activated serum protein molecules as a result of the heat denaturation; (ii) the

  4. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analys...

  5. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    OpenAIRE

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of F...

  6. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  7. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; McVey, E.G.

    1977-09-01

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  8. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  9. Feasibility of recovery boiler in paper and pulp industry

    International Nuclear Information System (INIS)

    Rashid, H.

    2010-01-01

    in this paper feasibility of recovery boiler in terms of economics and environmental impacts in studied. Recovery boilers are employed in the pulp and paper industry where the cooking agent is recovered by burning black liquor. Cooking agent is exhausted due to the absorption of lignin (a burnable component) in cooking agent in the process of straw cooking. The process of recovery boiler is to remove lignin by combustion from black liquor, and heat is produced during the combustion of lignin which is used to produce steam. Recovery boiler is economical as it is recovering valuable chemicals and steam is produced as a byproduct. Steam from recovery boiler is also used for concentrating weak black liquor to concentrated black liquor recovering 50% of the utility water being used at the plant. The regenerated water in the form of foul condensate is reused in the process. The recovery of hazardous chemicals also reduces load of environmental pollution. Which otherwise can pollute the water reservoirs, and regeneration of water makes it environmentally friendly plant. Construction and challenges in operation of recovery boiler such as smelt-water explosion are also discussed in this paper. (author)

  10. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  11. Thermo hydraulics of a steam boiler forced circulation

    International Nuclear Information System (INIS)

    Tucakovic, Dragan; Zivanovic, Titoslav; Stevanovic, Vladimir

    2006-01-01

    In order to minimize the dryout at the steam boiler furnace in the Thermal Power Plant Kolubara B, designed are inner rifled wall tubes. This type of tubes, with many spiral grooves cut into the bore, prevents film boiling and enables the nucleate boiling be still maintained under the condition of vapour quality being app. 1. To verify the choice of the rifled tubes instead of the cheaper, smooth tubes type being justified, analyzed is the change of the actual and critical vapour quality with the furnace height, under uniform and non-uniform heat flu through evaporator walls. Furthermore, made are hydraulic calculations for various steam boiler loads, in case of both rifled and smooth tubes types, with the purpose to check the rifles influence to pressure drop increase in comparison with the smooth tubes. Also, checked is the selection of the circulation pump. Key words: evaporator, forced circulation, rifled tubes, critical vapour quality, pressure drop

  12. Boiler water regime

    Science.gov (United States)

    Khavanov, Pavel; Chulenyov, Anatoly

    2017-10-01

    Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.

  13. Regression analysis of a chemical reaction fouling model

    International Nuclear Information System (INIS)

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  14. Chemical cleaning of AGR boilers

    International Nuclear Information System (INIS)

    Moore, S.V.; Moore, W.; Rantell, A.

    1978-01-01

    AGR boilers are likely to require post service chemical cleaning to remove accumulated oxides at intervals of 15 - 35 kh. The need to clean will be based on an assessment of such factors as the development of flow imbalances through parallel tubes induced by the formation of rough oxide surfaces, an increasing risk of localised corrosion as the growth of porous oxides proceeds and the risk of tube blockage caused by the exfoliation of steam-grown oxides. The study has shown what heterogeneous multilayer oxides possessing a range of physical and chemical properties form on the alloy steels. They include porous and compact magnetites, chromium spinels and sesquioxide. Ammoniated citric acid has been shown to remove deposited and water-grown magnetites from the carbon and alloy steels but will not necessarily remove the substituted spinels grown on the alloy steels or the potentially spalling steam-grown magnetite on the A1SI 316 superheater. Citric acid supplemented with the reducing agent glyoxal completely removes all oxides from the boiler except the protective inner spinel formed on the 316. Removal of the spinels and compact magnetites occurs more by undercutting and physical detachment than by the dissolution. (author)

  15. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  16. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  17. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    International Nuclear Information System (INIS)

    Kreider, M.A.; White, G.A.; Varrin, R.D.

    1998-01-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator performance. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. Uncertainty analyses were performed to determine whether the calculated fouling factor for each plant represented significant fouling or whether uncertainty in key variables (e.g., steam pressure or feedwater flow rate) could be responsible for calculated fouling. The methodology was validated using two methods: by predicting the SG pressure following chemical cleaning at San Onofre 2 and also by performing a sensitivity study with the industry-standard thermal-hydraulics code ATHOS to investigate the effects of spatially varying tube scale distributions. This study indicated that the average scale thickness has a greater impact on fouling than the spatial distribution, showing that the assumption of uniform resistance inherent to the global fouling factor is reasonable. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure loss evaluations demonstrated two key points: 1) that the available thermal margin against fouling, which can

  18. Condensing boiler applications in the process industry

    International Nuclear Information System (INIS)

    Chen, Qun; Finney, Karen; Li, Hanning; Zhang, Xiaohui; Zhou, Jue; Sharifi, Vida; Swithenbank, Jim

    2012-01-01

    Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a 'case study' single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m 2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m 2 . Net Present Value (NPV) calculations showed that the choice of a carbon

  19. CANDU steam generator tubing material service experience and allied development

    International Nuclear Information System (INIS)

    Hart, A.E.; Lesurf, J.E.

    1976-01-01

    This paper covers the following aspects for the tube materials in CANDU-PHW steam generators: inservice performance with respect to tube leaks and coolant activity attributable to boiler tube corrosion, selection of tube materials for use with non-boiling and boiling primary coolants, supporting development on corrosion, vibration, fretting wear, tube inspection, leak detection and plugging of defective tubes. (author)

  20. Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry

    Directory of Open Access Journals (Sweden)

    J. O. ODIGURE

    2005-06-01

    Full Text Available This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

  1. Optimisation of Marine Boilers using Model-based Multivariable Control

    DEFF Research Database (Denmark)

    Solberg, Brian

    Traditionally, marine boilers have been controlled using classical single loop controllers. To optimise marine boiler performance, reduce new installation time and minimise the physical dimensions of these large steel constructions, a more comprehensive and coherent control strategy is needed....... This research deals with the application of advanced control to a specific class of marine boilers combining well-known design methods for multivariable systems. This thesis presents contributions for modelling and control of the one-pass smoke tube marine boilers as well as for hybrid systems control. Much...... of the focus has been directed towards water level control which is complicated by the nature of the disturbances acting on the system as well as by low frequency sensor noise. This focus was motivated by an estimated large potential to minimise the boiler geometry by reducing water level fluctuations...

  2. High gradient magnetic filters for boiler water treatment

    International Nuclear Information System (INIS)

    Harland, J.R.; Nichols, R.M.

    1977-01-01

    Heavy metal oxide suspended solids in those steam condensates recycled to the boilers produce buildup within the boiler tubes which can lead to unequal and reduced heat transfer efficiency, and indirectly, to boiler tube failures. Recommended reductions in such suspended solids in feedwater to the economizers of modern high pressure boilers to levels of under 10 ppb have been published. The industrially-available SALA-HGMF magnetic filter has achieved these desired suspended solids levels in treating steam condensates. The high gradient magnetic filter has been shown in pilot tests to achieve and even exceed the recommended low level suspended solids in a practical and efficient industrial system. Such electromagnetic filters, when combined with good system chemistry, have achieved low single number parts per billion levels of several heavy metals with very high single-pass efficiencies

  3. Fire-side corrosion in power-station boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, A J.B.; Flatley, T; Hay, K A

    1978-10-01

    The steel tubing of a modern power-station boiler operates at up to 650/sup 0/C (a dull red heat) in the very corrosive environment produced by the combustion gases and ash particles. Within the tubes, whose walls are around 5mm thick, 2000 tons of steam are generated per hour at temperatures up to 565/sup 0/C and pressures up to 170 bar. Several forms of metal corrosion may occur on the fireside surface of these tubes and on other boiler components. The designed 20-year operating life of the stainless-steel superheater and reheater tubes can be much reduced at temperatures above 600/sup 0/C by attack from molten salts formed beneath the deposited ash on the upstream tube surfaces. Mild steel evaporator tubes lining the furnace wall may suffer similarly if flame impingement allows the local release of volatile chlorine compounds from coal particles on the tube surface. Uncooled metal components supporting and aligning the boiler tubes may reach 1000/sup 0/C and are particularly susceptible to corrosion. CEGB research effort has been applied to quantify the rate of corrosion and to obtain an understanding of the complex corrosion mechanisms, so that ways of minimizing or preventing their occurrence may be found. These include the optimization of the combustion chemistry, design modifications such as shielding certain vulnerable tubes, and the selection of improved alloys and the use of ''co-extruded'' tubing.

  4. Tube to tube excursive instability - sensitivities and transients

    International Nuclear Information System (INIS)

    Brown, M.; Layland, M.W.

    1980-01-01

    A simple basic analysis of excursive instability in a boiler tube shows how it depends upon operating conditions and physical properties. A detailed mathematical model of an AGR boiler is used to conduct a steady state parameter sensitivity survey. It is possible from this basis to anticipate the effects of changes in operating conditions and changes in design parameters upon tube to tube stability. Dynamic responses of tubes operating near the stability threshold are examined using a mathematical model. Simulated excursions are triggered by imparting small abrupt pressure changes on the boiler inlet pressure. The influences of the magnitude of the pressure change, waterside friction factor and gas side coupling between tubes are examined. (author)

  5. Electric utility CFB boilers

    International Nuclear Information System (INIS)

    Fairbanks, D.A.

    1991-01-01

    This paper reports on Circulating Fluidized Bed (CFB) boiler technology which caught the attention of boiler users: first for its technical advantages of reduced air emissions and low grade fuel tolerance, then later for its problems in becoming a reliable process. Refractory longevity and fuel feed reliability plagued a number of new installations. The efficacy of CFB technology is now more assured with the recent success of Texas-New Mexico Power Company's 160 MWe CFB based units, the world's largest operating CFB boilers. Most of the more notable CFB development problems have been successfully addressed by these units. The TNP units have demonstrated that CFB's can reliable produce high capacity factors at low emission rates using a fuel that has traditionally hampered the operation of pulverized coal (PC) boilers and without the attendant problems associated with sulfur scrubbers required by PC boilers

  6. Solved and unsolved problems in boiler systems. Learning from accidents

    International Nuclear Information System (INIS)

    Ozawa, Mamoru

    2000-01-01

    This paper begins with a brief review on the similarity law of conventional fossil-fuel-fired boilers. The concept is based on the fact that the heat release due to combustion in the furnace is restricted by the furnace volume but the heat absorption is restricted by the heat transfer surface area. This means that a small-capacity boiler has relatively high specific furnace heat release rate, about 10 MW/m 3 , and on the contrary a large-capacity boiler has lower value. The surface-heat-flux limit is mainly dominated by the CHF inside the water-wall tubes of the boiler furnace, about 350 kW/m 2 . This heat-flux limit is almost the same order independently on the capacity of boilers. For the safety of water-walls, it is essential to retain suitable water circulation, i.e. circulation ratio and velocity of water. This principle is a common knowledge of boiler designer, but actual situation is not the case. Newly designed boilers often suffer from similar accidents, especially burnout due to circulation problems. This paper demonstrates recent accidents encountered in practical boilers, and raises problems of rather classical but important two-phase flow and heat transfer. (author)

  7. 49 CFR 214.323 - Foul time.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foul time. 214.323 Section 214.323 Transportation... TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.323 Foul time. Working limits established on controlled track through the use of foul time procedures shall comply with the following...

  8. DYMEL code for prediction of dynamic stability limits in boilers

    International Nuclear Information System (INIS)

    Deam, R.T.

    1980-01-01

    Theoretical and experimental studies of Hydrodynamic Instability in boilers were undertaken to resolve the uncertainties of the existing predictive methods at the time the first Advanced Gas Cooled Reactor (AGR) plant was commissioned. The experiments were conducted on a full scale electrical simulation of an AGR boiler and revealed inadequacies in existing methods. As a result a new computer code called DYMEL was developed based on linearisation and Fourier/Laplace Transformation of the one-dimensional boiler equations in both time and space. Beside giving good agreement with local experimental data, the DYMEL code has since shown agreement with stability data from the plant, sodium heated helical tubes, a gas heated helical tube and an electrically heated U-tube. The code is now used widely within the U.K. (author)

  9. CECIL lances Bruce's boilers

    International Nuclear Information System (INIS)

    Malaugh, J.; Monaghan, D.

    1994-01-01

    Over the past few years Ontario Hydro has become increasingly concerned about accumulations of sludge in its nuclear plant boilers, so a comprehensive sludge management programme has been instituted to combat build-up. This included developing the tele-operated robot CECIL (Consolidated Edison Combined Inspection and Lancing) equipment, originally designed for work in PWRs, for CANDU boilers. This required a significantly reconfigured robotic system as well as modifications to the boilers themselves. Work on the Bruce A reactor is described. (4 figures). (author)

  10. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  11. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  12. Contribution to the investigation concerning the fouling and washing of steam generators

    International Nuclear Information System (INIS)

    Dijoux, M.; Vito, S. de; Millet, L.

    2002-01-01

    Steam generator secondary side tube deposits affect optimal operation of the nuclear power plants. Stress corrosion cracking (ODSCC) occurs under deposits located in confined areas, in particular the tube - tube support plates crevices for 600-MA tubes. Fouling on free span of the bundle leads to thermal transfer inhibition for all type of tube alloys. Flow accelerated corrosion (FAC) and general corrosion of the feed water train components, depending on the chemical treatment applied, are the mainly responsible for the secondary fouling. An appropriate maintenance requires a good knowledge of deposits. In this context, a study program on deposits has been started covering the following points: - Spatial distribution and mass determination by Eddy Current Testing (ECT); - Composition by chemical analysis; - Characterization by micrographic analysis; - Modelling of deposition by computer code; and - Effects on thermal transfer and fouling factor calculation. These examinations bring a best understanding of fouling mechanisms and allow to act on influential parameters: chemical secondary treatment, selection of materials in the feed water train, and pollution ingress reduction. They permit to evaluate the interest to schedule cleaning operations such as lancing or chemical cleaning. (authors)

  13. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.

    2017-11-01

    One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and

  14. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  15. Charting the boiler market

    International Nuclear Information System (INIS)

    2003-01-01

    The ''boiler market'' of electricity, sometimes called unsecured transmission, is electric power consumption that in public statistics is restricted by the obligation of the customers to cut their consumption at short notice and therefore are granted some discount on the network lease. The present document is part of a project that aims to provide a better understanding of the flexibility in the Norwegian power market, limited by the power-intensive industry and the boiler market. It discusses the boiler market. It begins with a discusses of the available statistics, where different sources show very dissimilar consumption figures. Then it examines how the consumption in the boiler market developed during the winter 2002/2003. Finally, there is a description of the regulations of unsecured transmission and how the various network owners adapt to the regulations.

  16. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...

  17. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    International Nuclear Information System (INIS)

    Tice, D.R.; Platts, N.; Raffel, A.S.; Rudge, A.

    2002-01-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid reagent being

  18. Millwright Apprenticeship. Related Training Modules. 7.1-7.9 Boilers.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains nine modules covering boilers. The modules provide information on the following topics: fire and water tube types of boilers, construction, fittings, operation, cleaning, heat recovery systems, instruments and controls, and…

  19. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  20. Asphaltene Aggregation and Fouling Behavior

    Science.gov (United States)

    Derakhshesh, Marzie

    This thesis explored the properties of asphaltene nano-aggregates in crude oil and toluene based solutions and fouling at process furnace temperatures, and the links between these two phenomena. The link between stability of asphaltenes at ambient conditions and fouling at the conditions of a delayed coker furnace, at over 450 °C, was examined by blending crude oil with an aliphatic diluent in different ratios. The stability of the blends were measured using a S-value analyzer, then fouling rates were measured on electrically heated stainless steel 316 wires in an autoclave reactor. The less stable the blend, the greater the rate and extent of fouling. The most severe fouling occurred with the unstable asphaltenes. SEM imaging of the foulant illustrates very different textures, with the structure becoming more porous with lower stability. Under cross-polarized light, the coke shows the presence of mesophase in the foulant layer. These data suggest a correlation between the fouling rate at high temperature furnace conditions and the stability index of the crude oil. Three organic polysulfides were introduced to the crude oil to examine their effect on fouling. The polysulfides are able to reduce coking and carbon monoxide generation in steam crackers. The fouling results demonstrated that polysulfide with more sulfur content increased the amount of corrosion-fouling of the wire. Various additives, solvents, ultrasound, and heat were employed to attempt to completely disaggregate the asphaltene nano-aggregates in solution at room temperature. The primary analytical technique used to monitor the nano-aggregation state of the asphaltenes in solution was the UV-visible spectroscopy. The results indicate that stronger solvents, such as pyridine and quinoline, combined with ionic liquids yield a slight reduction in the apparent absorbance at longer wavelengths, indicative of a decrease in the nano-aggregate size although the magnitude of the decrease is not significant

  1. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  2. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  3. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  4. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  5. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    International Nuclear Information System (INIS)

    Kreider, M.A.; White, G.A.; Varrin, R.D. Jr.

    1998-06-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation

  6. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  7. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  8. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Sung, Sun Kyung; Suh, Sang Ho; Rho, Hyung Woon; Cho, Young Il

    2003-01-01

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  9. Application of the decree 2910 for coal fired boilers; Application de l`arrete 2910 aux chaudieres a charbon

    Energy Technology Data Exchange (ETDEWEB)

    Hing, K. [CDF Energie, Charbonnages de France, 92 - Rueil-Malmaison (France)

    1997-12-31

    The impacts of the new French decree 2910 concerning the classification of all combustion equipment with regards to their energy sources, energy efficiency and pollution control, on 2 to 20 MW coal-fired boilers, are discussed, with emphasis on their pollutant emissions (SO{sub 2}, NO{sub x} and ashes). The compositions of several coals is presented and the various types of coal-fired boilers adapted to the new decree are presented: automatic boilers, dense fluidized bed boilers, vibrating and chain grids with fume tubes and water tubes

  10. Modeling and field studies of fouling in once-through steam generators

    International Nuclear Information System (INIS)

    Thompson, R.; Gaudreau, T.

    1995-01-01

    Efforts of the past 10 years to minimize fouling of the Crystal River-3 once-through steam generators are reviewed. The major focus has been on improving at-temperature pH control in the secondary cycle. Various concentrations of different pH control agents were tested in the field for hundreds of days to determine their effect on steam generator fouling. High concentrations of morpholine (50--100 ppm) in the feedwater were found to apparently produce de-fouling of the steam generators without an associated decrease in feedwater iron concentration as compared to that at lower levels of morpholine. Computer modeling of the pH(t) within the OTSG for the various chemistries tested indicates that the pH can change significantly with elevation within the steam generator by varying the pH control agent or its concentration. It is postulated that these variations in pH may change the surface charge of the tubes, tube support plates, and/or corrosion product particles in solution, to favor either deposition or repulsion of the particles, and thereby producing conditions that either favor fouling or de-fouling of the OTSG. Crystal River-3 experience indicates that corrosion product deposition and release processes inside the steam generator can be chemically manipulated to favor release, and thereby maximize plant performance, and delay or avoid costly hydraulic or chemical cleanings

  11. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...... and to verify whether nonlinear control is needed. Finally a controller based on single loop theory is used to analyse if input constraints become active when rejecting transient behaviour from the disturbance steam flow. The model analysis shows large variations in system gains at steady state as function...

  12. Fouling in pressure retarded osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Willy

    2008-07-01

    A salinity power field laboratory was established at Sunndalsoera during the fall of 2002 in order to investigate the fouling potential in PRO in conditions prevailing in a typical sea water and a typically Norwegian surface water. The laboratory contained four identical units for long term testing of small samples of flat sheet membranes. The water flux, the differential pressures across the flow channels as well as the temperature in the membrane cell were logged to a computer. The logging data could be monitored from any remote location with access to the internet. Each unit was equipped with an automatically controlled system for membrane cleaning. Several series of osmotic flux experiments of three to eight months duration were executed while investigating the effect of various routines for membrane treatment, including disinfection, backflushing and chemical cleaning. Further, the potential of NOM fouling and CaCO{sub 3} scaling were investigated in more detail during a large number of laboratory experiments performed under controlled conditions at SINTEF Petroleum Research in Trondheim and Lappeenranta University of Technology in Lappeenranta, Finland. The cellulose acetate membrane used for most of the fouling experiments was characterized in order to determine the intrinsic transport parameters of the membrane. Further, the saturation index at the membrane skin with respect to CaCO{sub 3} was modelled both for real cases with typically Norwegian surface waters as well as for the scaling experiments performed with synthetic waters in the laboratory. Several of the membrane samples which were exposed to fouling conditions during the osmotic experiments were subjected to characterization by scanning electron microscopy (SEM), wave length dispersive spectroscopy (WDS), optical microscopy and fluorescence microscopy in order to identify and quantify the foulants that were deposited on the membranes during the experiments. Further, procedures for the estimation

  13. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V

    1998-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  14. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    Science.gov (United States)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  15. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  16. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert [Edgewood, NM; Pickard, Paul S [Albuquerque, NM; Parma, Jr., Edward J.; Vernon, Milton E [Albuquerque, NM; Gelbard, Fred [Albuquerque, NM; Lenard, Roger X [Edgewood, NM

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  17. Wylfa nuclear boiler repair. How a major problem was solved

    International Nuclear Information System (INIS)

    1977-09-01

    The CEGB has published a booklet, with coloured illustrations, that describes in detail the story of an unusually difficult boiler repair on a Magnox reactor at Wylfa nuclear power station. Boiler leaks affected the operation of No. 2 reactor in 1972, and persisted during 1973. A special procedure was developed for plugging the leaks using a remote welding machine but with the incidence of leaks continuing attempts were made to obtain a specimen of leaking tube by cutting through the boiler support tank to gain access. Eventually the fault was then traced to excessive relative motion between the tubes and support clips. Remedial work took seven months and was completed in December 1975. The start of the problem and the method of plugging the leaks is described. Details are given of the investigation leading to the obtaining and examination of a sample of leaking tube and the determination of the fault. Establishment of the cause as an unusual form of resonant vibration causing wear and fretting in clip-to-tube positions in the economiser region of the boiler is described in detail. The difficulties and accomplishments of the repair work are detailed. Finally the operation is looked at in retrospect and the experiences gained are summarised. (UK)

  18. Water-pirotube boiler: influence of its design in fabrication cost. Calderas de vapor pirotubulares: influencia del diseo en el coste de fabricacion

    Energy Technology Data Exchange (ETDEWEB)

    Latre Durso, F.

    1993-01-01

    Design of water-tube boiler and its cost is analyzed. Adequated combination of gases velocity, size of tubes, gases temperature, geometric configuration, etc will give a best product with quality prize relation. (Author)

  19. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.

  20. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, David W. [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Shingledecker, John P. [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2011-05-11

    Coal-fired power plants are a significant part of the nation's power generating capacity, currently accounting for more than 55% of the country's total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760°C (1400°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  1. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  2. EVALUASI KINERJA HEAT EXCHANGER DENGAN METODE FOULING F

    Directory of Open Access Journals (Sweden)

    Bambang Setyoko

    2012-02-01

    Full Text Available The performance of heat exchangers usually deteriorates with time as a result of accumulation of depositson heat transfer surfaces. The layer of deposits represents additional resistance to heat transfer and causesthe rate of heat transfer in a heat exchanger to decrease. The net effect of these accumulations on heattransfer is represented by a fouling factor Rf , which is a measure of the thermal resistance introduced byfouling.In this case, the type of fouling is the precipitation of solid deposits in a fluid on the heat transfer surface.The mineral deposits forming on the inner and the outer surfaces of fine tubes in the heat exchanger. Thefouling factor is increases with time as the solid deposits build up on the heat exchanger surface. Foulingincreases with increasing temperature and decreasing velocity.In this research, we obtain the coefisien clean overal 5,93 BTU/h.ft2.oF, Dirt factor 0,004 BTU/h.ft2 0F,Pressure drope in tube 2,84 . 10-3 Psi and pressure drope in shell 4,93 . 10-4 Psi.This result are less thanthe standard of parameter. Its means this Heat exchanger still clean relativity and can operate continousslywithout cleaning.

  3. Heat Exchange and Fouling Analysis on a Set of Hydrogen Sulphide Gas Coolers

    Directory of Open Access Journals (Sweden)

    Andrés Adrian Sánchez-Escalona

    2017-07-01

    Full Text Available The sulphide acid coolers are tube and shell jacketed heat exchangers designed to cool down the produced gas from 416,15 K to 310,15 K in addition to separate the sulphur carried over by the outlet gas from the reactor tower. The investigation was carried out by applying the passive experimentation process in an online cooler set in order to determine the heat transfer rates and fouling based on heat resistance. It was corroborated that the operation of this equipment outside design parameters increases outlet gas temperature and liquid sulphur carryovers. Efficiency loss is caused by fouling elements in the fluid, which results in changes in the overall heat transfer rate. The linear tendency of the fouling heat resistance based on time for three gas flowrates.

  4. Installations of SNCR on bark-fired boilers

    International Nuclear Information System (INIS)

    Hjalmarsson, A.K.; Hedin, K.; Andersson, Lars

    1997-01-01

    Experience has been collected from the twelve bark-fired boilers in Sweden with selective non catalytic reduction (SNCR) installations to reduce emissions of nitrogen oxides. Most of the boilers have slope grates, but there are also two boilers with cyclone ovens and two fluidized bed boilers. In addition to oil there are also possibilities to burn other fuel types in most boilers, such as sludge from different parts of the pulp and paper mills, saw dust and wood chips. The SNCR installations seems in general to be of simple design. In most installations the injection nozzles are located in existing holes in the boiler walls. The availability is reported to be good from several of the SNCR installations. There has been tube leakage in several boilers. The urea system has resulted in corrosion and in clogging of one oil burner. This incident has resulted in a decision not to use SNCR system with the present design of the system. The fuel has also caused operational problems with the SNCR system in several of the installations due to variations in the moisture content and often high moisture content in bark and sludge, causing temperature variations. The availability is presented to be high for the SNCR system at several of the plants, in two of them about 90 %. The results in NO x reduction vary between the installations depending on boiler, fuel and operation. The emissions are between 45 and 100 mg NO 2 /MJ fuel input and the NO x reduction rates are in most installations between 30 and 40 %, the lowest 20 and the highest 70 %. 13 figs, 3 tabs

  5. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  6. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  7. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Science.gov (United States)

    Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł

    2017-12-01

    Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

  8. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Żymełka Piotr

    2017-12-01

    Full Text Available Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS data.

  9. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do

  10. Fouling distribution in forward osmosis membrane process.

    Science.gov (United States)

    Lee, Junseok; Kim, Bongchul; Hong, Seungkwan

    2014-06-01

    Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter-current flow operation of FO membrane process. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Current research and development of controlling membrane fouling ...

    African Journals Online (AJOL)

    Fouling is a major problem influencing the operational performance, stability and cost of a membrane bioreactor (MBR). The composition of wastewater and biomass grown in the MBR are directly related to fouling. Many factors including operational parameters can affect the fouling process. The extent of fouling can be ...

  12. Mod increases AGR boiler output

    International Nuclear Information System (INIS)

    Jones, W.K.C.; Rider, G.; Taylor, D.E.

    1986-01-01

    During the commissioning runs of the first reactor units at Heysham I and Hartlepool Advanced Gas-cooled Reactors (AGRs), non-uniform temperature distributions were observed across individual boiler units which were more severe than those predicted from the design analysis. This article describes the re-orificing (referruling) of the boilers to overcome this problem. The referruling has reduced boiler sensitivity and resulted in an increase of load of 7 or 8%. (U.K.)

  13. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  14. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    Science.gov (United States)

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  15. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Directory of Open Access Journals (Sweden)

    Atcharawadi Thong-On

    2016-11-01

    Full Text Available Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  16. Workshop proceedings: U-bend tube cracking in steam generators

    Science.gov (United States)

    Shoemaker, C. E.

    1981-06-01

    A design to reduce the rate of tube failure in high pressure feedwater heaters, a number of failed drawn and stress relieved Monel 400 U-bend tubes removed from three high pressure feedwater heaters was examined. Steam extracted from the turbine is used to preheat the boiler feedwater in fossil fuel fired steam plants to improve thermal efficiency. This is accomplished in a series of heaters between the condenser hot well and the boiler. The heaters closest to the boiler handle water at high pressure and temperature. Because of the severe service conditions, high pressure feedwater heaters are frequently tubed with drawn and stress relieved Monel 400.

  17. An experimental study on the thermal and fouling characteristics in a washable shell and helically coiled heat exchanger by the Wilson plot method

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kyoung Min; Ahn, Young Chull [Pusan National University, Busan (Korea, Republic of); Hwang, Jun Hyeon; Hur, Hyun; Na, Byung Chul; Hwang, Yoon Jae; Kim, Byung Soon [LG Electronics, Changwon (Korea, Republic of); Lee, Jae Keun [EcoEnergy Research Institute, Busan (Korea, Republic of)

    2016-06-15

    Brazed plate heat exchangers (BPHEX) are broadly used in water source heat pump systems for their large heat transfer capacity. Despite their high heat transfer rate, their high-performance rate tends to decrease sharply, due to fouling and they cannot be cleaned. So the thermal and fouling resistances of washable Shell and helically coiled tube heat exchangers (SCHEX) are designed and experimentally investigated in this study. Heat exchangers with two different tube types are studied and compared with a brazed plate heat exchanger. The overall thermal resistance coefficient of the heat exchangers as determined by using Wilson plots is 38% lower than that of the brazed plate heat exchanger at a Reynolds number of 2460. Fouling test results revealed that regular maintenance and physical cleaning can be used to maintain the thermal resistance of fouling of the washable heat exchanger at a level equal to or less than that of the brazed plate heat exchanger.

  18. A Flue Gas Tube for Thermoelectric Generator

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a flue gas tube (FGT) (1) for generation of thermoelectric power having thermoelectric elements (8) that are integrated in the tube. The FTG may be used in combined heat and power (CHP) system (13) to produce directly electricity from waste heat from, e.g. a biomass boiler...

  19. Application of composite tubes in power plants

    International Nuclear Information System (INIS)

    Toernblom, H.; Egnell, L.; Gullberg, R.

    1975-01-01

    Composite tubes with metallurgical bond are now being used on an industrial scale in recovery boilers. Service trials in power plants are viewed and the possibilities to solve fireside corrosion problems in the boiler and superheater sections are discussed. The present and potential future application in nuclear power plants is summarized. A brief presentation of the manufacture and fabrication of composite tubes is made and specific material properties are discussed. Composite tubes are concluded to be an established product and a useful means of meeting conflicting material requirements under severe service conditions. (author)

  20. Reliability Based Management of Marine Fouling

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Hansen, Peter Friis

    1999-01-01

    The present paper describes the results of a recent study on the application of methods from structural reliability to optimise management of marine fouling on jacket type structures.In particular the study addresses effects on the structural response by assessment and quantification of uncertain......The present paper describes the results of a recent study on the application of methods from structural reliability to optimise management of marine fouling on jacket type structures.In particular the study addresses effects on the structural response by assessment and quantification...... of uncertainties of a set of parameters. These are the seasonal variation of marine fouling parameters, the wave loading (taking into account the seasonal variation in sea-state statistics), and the effects of spatial variations and seasonal effects of marine fouling parameters. Comparison of design values...

  1. FOULING ORGANISMS OF BUOYS WITHIN MAKHACHKALA SEAPORT

    Directory of Open Access Journals (Sweden)

    C. N. Imachova

    2011-01-01

    Full Text Available It is investigated biofouling buoys within Makhachkala seaport. Seasonal dynamics of development of community, structure species and trophic structure is revealed. It is established vertical zonality in distribution of fouling.

  2. Characterization of fouling of membrane contactors

    DEFF Research Database (Denmark)

    Ciurkot, Kaludia; Zarebska, Agata; Christensen, Knud Villy

    2013-01-01

    of ammonia and membrane fouling tendency. The surface morphology of both clean and fouled membranes by model manure solution and undigested pig manure has been studied by: Optical and Atomic Force Microscopy and contact angle measurements. Based on the experimental results, it is concluded that real manure...... achieved higher ammonia removal than the synthetic model manure solution. This might be due to the larger particle size of the milled straw in the model solution compared to the size of suspended solids present in real manure. From the fouling autopsy, it was found that PTFE membranes are more prone...... to fouling than PP membranes. In both membranes the hydrophobicity decreased after running the process for 30 h, especially when undigested pig manure was used....

  3. Successful experience with limestone and other sorbents for combustion of biomass in fluid bed power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Coe, D.R. [LG& E Power Systems, Inc., Irvine, CA (United States)

    1993-12-31

    This paper presents the theoretical and practical advantages of utilizing limestone and other sorbents during the combustion of various biomass fuels for the reduction of corrosion and erosion of boiler fireside tubing and refractory. Successful experiences using a small amount of limestone, dolomite, kaolin, or custom blends of aluminum and magnesium compounds in fluid bed boilers fired with biomass fuels will be discussed. Electric power boiler firing experience includes bubbling bed boilers as well as circulating fluid bed boilers in commercial service on biomass fuels. Forest sources of biomass fuels fired include wood chips, brush chips, sawmill waste wood, bark, and hog fuel. Agricultural sources of biomass fuels fired include grape vine prunings, bean straw, almond tree chips, walnut tree chips, and a variety of other agricultural waste fuels. Additionally, some urban sources of wood fuels have been commercially burned with the addition of limestone. Data presented includes qualitative and quantitative analyses of fuel, sorbent, and ash.

  4. Improved nuclear boiler

    International Nuclear Information System (INIS)

    Pierart, Robert.

    1980-01-01

    The improved nuclear boiler concerned in this invention is of the kind comprising, inter alia, a nuclear reactor supported by a metallic structure and of which the vessel is at least enclosed in part by a casing acting as a protective containment integrated in this structure. It is essentially characterized in that this casing is fitted into and maintained in position in the metallic structure by removable locking devices which enable the casing to be withdrawn from the remainder of the structure. Hence, after the casing has been withdrawn or removed from the metallic structure, access to the reactor vessel is readily obtained for inspection and/or testing from without [fr

  5. Firetube boiler with high efficiency for producing saturated or superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    Carosso, V J; Carosso, J Y

    1976-10-07

    This boiler for producing saturated or super-heated steam is to be manufactured in one piece or in units which can be assembled at site without skilled workers, at the factory. It is to have a high efficiency and dimensions which permit the transport of the completely assembled boiler by road transport. The relatively small water-steam vessel lies across the longitudinal axis of the boiler in the rear boiler space over a battery of preheater tubes. By these measures and by a very detailed and appropriately described rational arrangement of other parts, such as convection bundles, primary and secondary superheater, evaporation tubes, which form an 'evaporation shield', upper and lower longitudinal chambers with vertical connecting pipes of different crossections, the above mentioned condition for space requirement is fulfilled and a high efficiency should be achieved, but with considerable expense.

  6. System for measuring the effect of fouling and corrosion on heat transfer under simulated OTEC conditions. [HTAU and LABTTF codes

    Energy Technology Data Exchange (ETDEWEB)

    Fetkovich, J.G.

    1976-12-01

    A complete system designed to measure, with high precision, changes in heat transfer rates due to fouling and corrosion of simulated heat exchanger tubes, at sea and under OTEC conditions is described. All aspects of the system are described in detail, including theory, mechanical design, electronics design, assembly procedures, test and calibration, operating procedures, laboratory results, field results, and data analysis programs.

  7. Numerical simulation of a small-scale biomass boiler

    International Nuclear Information System (INIS)

    Collazo, J.; Porteiro, J.; Míguez, J.L.; Granada, E.; Gómez, M.A.

    2012-01-01

    Highlights: ► Simplified model for biomass combustion was developed. ► Porous zone conditions are used in the bed. ► Model is fully integrated in a commercial CFD code to simulate a small scale pellet boiler. ► Pollutant emissions are well predicted. ► Simulation provides extensive information about the behaviour of the boiler. - Abstract: This paper presents a computational fluid dynamic simulation of a domestic pellet boiler. Combustion of the solid fuel in the burner is an important issue when discussing the simulation of this type of system. A simplified method based on a thermal balance was developed in this work to introduce the effects provoked by pellet combustion in the boiler simulation. The model predictions were compared with the experimental measurements, and a good agreement was found. The results of the boiler analysis show that the position of the water tubes, the distribution of the air inlets and the air infiltrations are the key factors leading to the high emission levels present in this type of system.

  8. A review on biomass as a fuel for boilers

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Abelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering

    2011-06-15

    Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40-50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO{sub 2} and NO emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

  9. Fouling of heat exchanger surfaces by dust particles from flue gases of glass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mutsaers, P.L.M.; Beerkens, R.G.C.; Waal, H. de (Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Delft. Inst. of Applied Physics)

    1989-08-01

    Fouling by dust particles generally leads to a reduction of the heat transfer and causes corrosion of secondary heat exchangers. A deposition model, including thermodynamic equilibrium calculations, has been derived and applied to describe the deposition (i.e. fouling) process and the nature of the deposition products in a secondary heat exchanger. The deposition model has been verified by means of laboratory experiments, for the case of flue gases from soda-lime glass furnaces. Corrosion of iron-containing metallic materials, caused by the deposition products, has been briefly investigated with the same equipment. There is a close similarity between the experimental results and model calculations. The largest deposition rates from flue gases on cylindrical tubes in cross-flow configuration, are predicted and measured at the upstream stagnation point. The lowest deposition rates are determined at downstream stagnation point locations. At tube surface temperatures of approximately 520 to 550 K, the fouling rate on the tube reaches a maximum. In this temperature region NaHSO{sub 4} is the most important deposition product. This component is mainly formed at temperatures from 470 up to 540 K. The compound Na{sub 3}H(SO{sub 4}){sub 2} seems to be stable up to 570 K, for even higher temperatures Na{sub 2}SO{sub 4} has been found. These deposition products react with iron, SO{sub 3}, oxygen and water vapour forming the complex corrosion product Na{sub 3}Fe(SO{sub 4}){sub 3}. NaHSO{sub 4}, which is formed at tube surface temperatures below 540 K, causes more severe corrosion of iron-containing materials than Na{sub 2}SO{sub 4}. Maintaining temperatures of the heat exchanger surfaces above 550 to 600 K reduces the fouling tendency and corrosion in case of flue gases from oil-fired soda-lime glass furnaces. (orig.).

  10. The recovery boiler advisor. Combination of practical experience and advanced thermodynamic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R. [Aabo Akademi, Turku (Finland); Eriksson, G. [LTH/RWTH (Germany); Sundstroem, K. [Tampella Power Oy, Tampere (Finland)

    1996-12-31

    The Aabo Advisor is a computer based program intended to provide information about the high temperature ash and fluegas chemistry in pulping spent black liquor recovery boilers of kraft pulp mills. The program can be used for predictions of a variety of furnace and flue gas phenomena, such as fireside fouling of the heat exchanger surfaces caused by the flue gas particulate matter, emissions of SO{sub 2}(g), HCl(g) and NO{sub x}(g) with the flue gas etc. The program determines the composition of the fluegas as well as the amount and composition of the two typical fly ash fractions found in recovery boiler fluegases, the condensed fly ash particles and the carry over particles. These data are used for calculating the melting behavior of the fly ash present at different locations in the boiler and this characteristic behavior is used for the fireside fouling predictions. The program may also be used for studying how different mill processes affecting the black liquor composition affects on the fireside chemistry of the recovery boiler. As input data for the calculations only a few boiler operation parameters and the composition of the black liquor is required. The calculations are based on a one-dimensional, multi-stage chemistry model where both thermodynamic equilibrium calculations and stoichiometric material balances are used. The model calculates at first the chemistry in the lower furnace and smelt after which it moves to the upper furnace and the radiative parts of the fluegas channel. As the last block the program calculates the chemistry in the convective part, the electrostatic precipitator cath and stack. The results from each block are presented in tables, key numbers and melt curves representing the fluegas or fly ash fraction present at each location

  11. The recovery boiler advisor. Combination of practical experience and advanced thermodynamic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R [Aabo Akademi, Turku (Finland); Eriksson, G [LTH/RWTH (Germany); Sundstroem, K [Tampella Power Oy, Tampere (Finland)

    1997-12-31

    The Aabo Advisor is a computer based program intended to provide information about the high temperature ash and fluegas chemistry in pulping spent black liquor recovery boilers of kraft pulp mills. The program can be used for predictions of a variety of furnace and flue gas phenomena, such as fireside fouling of the heat exchanger surfaces caused by the flue gas particulate matter, emissions of SO{sub 2}(g), HCl(g) and NO{sub x}(g) with the flue gas etc. The program determines the composition of the fluegas as well as the amount and composition of the two typical fly ash fractions found in recovery boiler fluegases, the condensed fly ash particles and the carry over particles. These data are used for calculating the melting behavior of the fly ash present at different locations in the boiler and this characteristic behavior is used for the fireside fouling predictions. The program may also be used for studying how different mill processes affecting the black liquor composition affects on the fireside chemistry of the recovery boiler. As input data for the calculations only a few boiler operation parameters and the composition of the black liquor is required. The calculations are based on a one-dimensional, multi-stage chemistry model where both thermodynamic equilibrium calculations and stoichiometric material balances are used. The model calculates at first the chemistry in the lower furnace and smelt after which it moves to the upper furnace and the radiative parts of the fluegas channel. As the last block the program calculates the chemistry in the convective part, the electrostatic precipitator cath and stack. The results from each block are presented in tables, key numbers and melt curves representing the fluegas or fly ash fraction present at each location

  12. A study by simulation of dynamic instability in boilers using the NUMEL/DYMEL suite of programmes

    International Nuclear Information System (INIS)

    Jeffries, T.O.

    1985-01-01

    Tube-to-tube instability in a once through sodium heated boiler has been studied using the finite difference model developed by the CEGB and embodied in the NUMEL and DYMEL compute codes. The method used was to simulate the boiler and then carry out frequency response tests, as one would on a real boiler. The advantages of using the simulation model compared with using the real system are the ease with which experiments may be performed and the ease of access to a wide range of parameters which could only be obtained approximately, if at all, from a real boiler. The advantage is that validation of the model is only approximate though in the case of sodium heated boilers, conditions are similar to those in electrically heated rigs used for validation. The study led to an understanding of how such a boiler should be operated to avoid tube-to-tube instability and with the detailed temperature profiles available from NUMEL it was possible to develop existing theory to predict boiler transfer functions similar to those observed in the frequency response tests. (author)

  13. B and W model boiler tests: effect of temperature on IGA rate. Initial and post-1878 operating conditions of the model boilers

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Babcock and Wilcox (B and W) model boiler operated with 10 ppm weekly injections of NaOH for 41,900 hours (4.8 years). The model boiler operating conditions are given. Tube No. 24 failed by caustic intergranular attack/stress corrosion cracking (IGA/SCC) at the steam-water zone. IGA defect depths on tube 24 is compared at different locations, which also have different temperature conditions. The specific locations are: steam/water zone, drilled baffle plate, and lower tube sheet crevice. In all locations caustic will concentrate (although to different concentration levels). Nevertheless, an effect of temperature on IGA rate can be estimated. The degree of attack relative to the location and environment is shown. SEM fractographs illustrate the completely intergranular failure of Tube 24. A summary of the estimated results is presented. These results show the estimated IGA rate as a function of primary/secondary temperature and estimated caustic concentration. Details of the failure analysis of the model boiler can be found in the final report Destructive Examination of Babcock and Wilcox's Model Boiler for Intergranular Attack (IGA) on Tubes, EPRI S302-6, J.L.; Barna and L.W. Sarver

  14. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  15. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  16. CCD camera eases the control of a soda recovery boiler; CCD-kamera helpottaa soodakattilan valvontaa

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L.

    2001-07-01

    Fortum Technology has developed a CCD firebox camera, based on semiconductor technology, enduring hard conditions of soda recovery boiler longer than traditional cameras. The firebox camera air- cooled and the same air is pressed over the main lens so it remains clean despite of the alkaline liquor splashing around in the boiler. The image of the boiler is transferred through the main lens, image transfer lens and a special filter, mounted inside the camera tube, into the CCD camera. The first CCD camera system has been in use since 1999 in Sunila pulp mill in Kotka, owned by Myllykoski Oy and Enso Oyj. The mill has two medium-sized soda recovery boilers. The amount of black liquor, formed daily, is about 2000 tons DS, which is more than enough for the heat generation. Even electric power generation exceeds sometimes the demand, so the surplus power can be sold out. Black liquor is sprayed inside the soda recovery boiler with high pressure. The liquor form droplets in the boiler, the temperature of which is over 1000 deg C. A full-hot pile is formed at the bottom of the boiler after burning. The size and shape of the pile effect on the efficiency and the emissions of the boiler. The camera has operated well.

  17. Drag of Clean and Fouled Net Panels--Measurements and Parameterization of Fouling.

    Directory of Open Access Journals (Sweden)

    Lars Christian Gansel

    Full Text Available Biofouling is a serious problem in marine aquaculture and it has a number of negative impacts including increased forces on aquaculture structures and reduced water exchange across nets. This in turn affects the behavior of fish cages in waves and currents and has an impact on the water volume and quality inside net pens. Even though these negative effects are acknowledged by the research community and governmental institutions, there is limited knowledge about fouling related effects on the flow past nets, and more detailed investigations distinguishing between different fouling types have been called for. This study evaluates the effect of hydroids, an important fouling organism in Norwegian aquaculture, on the forces acting on net panels. Drag forces on clean and fouled nets were measured in a flume tank, and net solidity including effect of fouling were determined using image analysis. The relationship between net solidity and drag was assessed, and it was found that a solidity increase due to hydroids caused less additional drag than a similar increase caused by change in clean net parameters. For solidities tested in this study, the difference in drag force increase could be as high as 43% between fouled and clean nets with same solidity. The relationship between solidity and drag force is well described by exponential functions for clean as well as for fouled nets. A method is proposed to parameterize the effect of fouling in terms of an increase in net solidity. This allows existing numerical methods developed for clean nets to be used to model the effects of biofouling on nets. Measurements with other types of fouling can be added to build a database on effects of the accumulation of different fouling organisms on aquaculture nets.

  18. A study on the boiler efficiency influenced by the boiler operation parameter in fossil power plant

    International Nuclear Information System (INIS)

    Kwon, Y. S.; Suh, J. S.

    2002-01-01

    The main reason to analyze the boiler operation parameter in fossil power plant is to increase boiler high efficiency and energy saving movement in the government. This study intends to have trend and analyze the boiler efficiency influenced by the boiler parameter in sub-critical and super-critical type boiler

  19. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known, shall...

  20. 30 CFR 77.413 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with automatic...

  1. 30 CFR 56.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 56.13030 Section 56.13030 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13030 Boilers. (a) Fired pressure vessels (boilers) shall be equipped with water level gauges, pressure gauges...

  2. 30 CFR 57.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 57.13030 Section 57.13030 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13030 Boilers. (a) Fired pressure vessels (boilers) shall be equipped with water level gauges, pressure...

  3. Two phase flow problems in power station boilers

    International Nuclear Information System (INIS)

    Firman, E.C.

    1974-01-01

    The paper outlines some of the waterside thermal and hydrodynamic phenomena relating to design and operation of large boilers in central power stations. The associated programme of work is described with an outline of some results already obtained. By way of introduction, the principal features of conventional and nuclear drum boilers and once-through nuclear heat exchangers are described in so far as they pertain to this area of work. This is followed by discussion of the relevant physical phenomena and problems which arise. For example, the problem of steam entrainment from the drum into the tubes connecting it to the furnace wall tubes is related to its effects on circulation and possible mechanisms of tube failure. Other problems concern the transient associated with start-up or low load operation of plant. The requirement for improved mathematical representation of steady and dynamic performance is mentioned together with the corresponding need for data on heat transfer, pressure loss, hydrodynamic stability, consequences of deposits, etc. The paper concludes with reference to the work being carried out within the C.E.G.B. in relation to the above problems. The facilities employed and the specific studies being made on them are described: these range from field trials on operational boilers to small scale laboratory investigations of underlying two phase flow mechanisms and include high pressure water rigs and a freon rig for simulation studies

  4. Biofouling and its prevention in condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, K; Minamoto, K; Kyohara, S [Kobe Steel Ltd. (Japan). Central Research and Development Lab.

    1979-04-01

    In this paper, biofouling in condenser tubes and methods of prevention are described. Biofouling has a tendency to occur in tubes under lower velocity of sea water, and fouling organisms, if allowed to build up, cannot be removed by ordinary nylon brush cleaning. As the results of our investigation, it was concluded that sponge ball cleaning should be employed when the condenser is operated under lower velocity of sea water in the bacteria breeding season.

  5. CFB boilers in multifuel application

    International Nuclear Information System (INIS)

    Goral, D.; Krzton, B.

    2007-01-01

    Fuel flexibility characteristic for CFB boilers plays an important rule in industrial and utility size applications. Possibility to use wider range of fuels that has been long time considered as by-products or wastes and possibility to design boilers able to operate with alternative fuels is an important factor that improves fuel delivery security and plant economy. Presented article is based on similar publications that present Foster Wheeler's experience in design and delivery of the CFB boilers for wide range of coals and cofiring by- products of crude oil refining and coal processing. Aspects of biomass cofiring will be also presented. (author)

  6. 46 CFR 61.05-10 - Boilers in service.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boilers in service. 61.05-10 Section 61.05-10 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-10 Boilers in service. (a) Each boiler, including superheater, reheater, economizer, auxiliary boiler, low-pressure heating boiler, and unfired steam boiler...

  7. Cernavoda NPP - Boiler and steam cycle chemistry control

    International Nuclear Information System (INIS)

    Zotica, D.

    2001-01-01

    Steam generators protection against corrosion and fouling is an ongoing issue for nuclear power plants. The true effectiveness of the secondary chemistry control program is best judged by the absence of secondary side corrosion related tube degradation particularly that leads to tube plugging or sleeving or tube support degradation. To continue striving for excellence in chemical control, the following issues should be considered: Continuous evaluation of the effectiveness of the chemistry control program in mitigating SG damage; Evaluation of plant compliance with the program; Laboratory quality assurance program to assure that laboratory analyses are accurate and reproductibile; Quality assurance program for on-line monitoring equipment to assure that results from this equipment are accurate. (R.P.)

  8. In-line quantification and characterization of membrane fouling

    KAUST Repository

    Bucs, Szilard; Hekkert, Sacco Te Lintel; Staal, Marc Jaap; Vrouwenvelder, Johannes S.

    2016-01-01

    Methods of detecting, quantifying and/or characterizing the fouling of a device from a combination of pressure and spectroscopic data are provided. The device can be any device containing components susceptible to fouling. Components can include

  9. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  10. Hybrid model of steam boiler

    International Nuclear Information System (INIS)

    Rusinowski, Henryk; Stanek, Wojciech

    2010-01-01

    In the case of big energy boilers energy efficiency is usually determined with the application of the indirect method. Flue gas losses and unburnt combustible losses have a significant influence on the boiler's efficiency. To estimate these losses the knowledge of the operating parameters influence on the flue gases temperature and the content of combustible particles in the solid combustion products is necessary. A hybrid model of a boiler developed with the application of both analytical modelling and artificial intelligence is described. The analytical part of the model includes the balance equations. The empirical models express the dependence of the flue gas temperature and the mass fraction of the unburnt combustibles in solid combustion products on the operating parameters of a boiler. The empirical models have been worked out by means of neural and regression modelling.

  11. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  12. Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared...... on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, deposit composition, sintering duration, and steel type...... on the adhesion strength....

  13. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis

    OpenAIRE

    Maswadeh, Laith A.; Warsinger, David Elan Martin; Tow, Emily W.; Connors, Grace B.; Swaminathan, Jaichander; Lienhard, John H

    2018-01-01

    Enhanced fouling resistance has been observed in recent variants of reverse osmosis (RO) desalination which use time-varying batch or semi-batch processes, such as closed-circuit RO (CCRO) and pulse flow RO (PFRO). However, the mechanisms of batch processes' fouling resistance are not well-understood, and models have not been developed for prediction of their fouling performance. Here, a framework for predicting reverse osmosis fouling is developed by comparing the fluid residence time in bat...

  14. 77 FR 32508 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Notice of Preliminary Results of...

    Science.gov (United States)

    2012-06-01

    ... pipe, oil country tubular goods, boiler tubing, cold- drawn or cold-rolled mechanical tubing, pipe and... in the marketing process and selling functions along the chain of distribution between the producer...

  15. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  16. Bibliography on Fouling, Biodeterioration and their Control.

    Science.gov (United States)

    1981-06-01

    34 In: Proceedings of the 4th International Congress on Marine Corrosion and Fouling. pp 271- 277. Antibes, 1976 294. Jones, G. D. and R. G. Asperger ...J. "Antifouling Measures on Ships - A General Survey" Report NTIS AD-B032-858 (October, 1978) 335. Lustigman, B. and I. R. Isquith, "The Enhanced ...Fouling Organisms. In: Proceedings of the Protection of Materials in the Sea" pp 327-329. Bombay, 1977. 437. Ray, L. L. "Citric Acid Enhancement of Copper

  17. Fouling mechanisms of dairy streams during membrane distillation

    NARCIS (Netherlands)

    Hausmann, A.; Sanciolo, P.; Vasiljevic, T.; Weeks, M.; Schroën, C.G.P.H.; Gray, S.; Duke, M.

    2013-01-01

    This study reports on fouling mechanisms of skim milk and whey during membrane distillation (MD) using polytetrafluoroethylene (PTFE) membranes. Structural and elemental changes along the fouling layer from the anchorpoint at the membrane to the topsurface of the fouling layer have been investigated

  18. Erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D.; Bhagat, R. [Shaheed Bhagat Singh College of Engineering & Technology, Ferozepur (India)

    2009-04-15

    The super-heater and re-heater tubes of the boilers used in thermal power plants are subjected to unacceptable levels of surface degradation by the combined effect of erosion-corrosion mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the service life of the boilers, especially for the new generation ultra-supercritical boilers. The aim of the present investigation is to evaluate the erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the coal-fired boiler of a thermal power plant. The cyclic experimental study was performed for 1000 h in the platen superheater zone of the coal-fired boiler where the temperature was around 900{sup o}C. The corrosion products have been characterized with respect to surface morphology, phase composition and element concentration using the combined techniques of X-ray diffractometry (XRD), scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro analyser (EPMA). The Superni-75 performed well in the coal-fired boiler environment, which has been attributed mainly to the formation of a thick band of chromium in scale due to selective oxidation of the chromium.

  19. Thermal–hydraulic calculation and analysis of a 600 MW supercritical circulating fluidized bed boiler with annular furnace

    International Nuclear Information System (INIS)

    Wang, Long; Yang, Dong; Shen, Zhi; Mao, Kaiyuan; Long, Jun

    2016-01-01

    Highlights: • Non-linear model of supercritical CFB boiler with annular furnace is developed. • Many empirical correlations are used to solve the model. • The thermal–hydraulic characteristics of boiler are analyzed. • The results show that the design of the annular furnace is reasonable. - Abstract: The development of supercritical Circulating Fluidized Bed (CFB) boiler has great economic and environmental value. An entirely new annular furnace structure with outer and inner ring sidewalls for supercritical CFB boiler has been put forward by Institute of Engineering Thermophysics (IET), Chinese Academy of Sciences and Dongfang Boiler Group Co., Ltd. (DBC). Its outer and inner ring furnace structure makes more water walls arranged and reduces furnace height availably. In addition, compared with other additional evaporating heating surface structures such as mid-partition and water-cooled panels, the integrative structure can effectively avoid the bed-inventory overturn and improve the penetrability of secondary air. The conditions of the 600 MW supercritical CFB boiler including capability, pressure and mass flux are harsh. In order to insure the safety of boiler operation, it is very necessary to analyze the thermal–hydraulic characteristics of water-wall system. The water-wall system with complicated pipe arrangement is regarded as a network consisting of series-parallel circuits, pressure nodes and linking circuits, which represent vertical water-wall tubes, different headers and linking tubes, respectively. Based on the mass, momentum and energy conservation, a mathematical model is built, which consists of some simultaneous nonlinear equations. The mass flux in circuits, pressure drop between headers, outer vapor temperature of water-wall system and metal temperature data of tubes at the boiler maximum continuous rating (BMCR), 75% BMCR and 30% BMCR loads are obtained by solving the mathematical model. The results show that the vertical water

  20. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley [Univ. of Utah, Salt Lake City, UT (United States); Davis, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shim [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Eddings, Eric [Univ. of Utah, Salt Lake City, UT (United States); Paschedag, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, William [Brigham Young Univ., Provo, UT (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2013-09-30

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4

  1. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  2. High-Temperature Graphitization Failure of Primary Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  3. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-05-15

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  4. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    International Nuclear Information System (INIS)

    Kim, Seongil; Choi, Sangmin

    2017-01-01

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  5. SDI: Is it a reliable fouling index?

    NARCIS (Netherlands)

    Al-Hadidi, A.M.M.; Kemperman, Antonius J.B.; Schippers, J.C.; Wessling, Matthias; van der Meer, Walterus Gijsbertus Joseph

    2012-01-01

    The ASTM considers the silt density index (SDI) test as a standard test for fouling potential of RO and NF feed waters. Up to date, the SDI is used at many full- and pilot-scale installations. The design and choice of the applied RO pretreatment is to a large extent based on the SDI test on the raw

  6. Amphiphilic copolymers for fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    of the coatings [9,10,11]. This work shows the effect of an amphiphilic copolymer that induces hydrophilicity on the surface of the silicone-based fouling release coatings. The behaviour of these copolymers within the coating upon immersion and the interaction of these surface-active additives with other...

  7. Fouling in organic-cooled systems

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1963-04-01

    Studies of organic coolants in the out-reactor 250-0-1 loop and in the in-reactor X-7 loop have shown that fouling films are deposited on heat-transfer surfaces by two mechanisms, one involving soluble impurities and the other insoluble impurities in the coolant. The simultaneous action of two mechanisms of deposition can lead to a wide variety of compositions and structures of the deposited film. The concentration of impurities is the most important factor controlling the deposition rate. Coolant velocity and surface temperature also have major effects on the fouling rate. At low chlorine levels continuous coolant cleanup through Attapulgus clay has been shown to reduce deposition rates under representative reactor conditions from 100 μg/cm 2 hr to 1 μg/cm 2 hr. Chlorine, which is a strong promoter of fouling, is not removed by Attapulgus clay. Further studies of its important effect on fouling and its removal will be the subjects of separate reports. An acceptable deposition rate of 0.3 μg/cm 2 hr should be achieved by intensive purification, coupled with the exclusion of impurities such as chlorine. (author)

  8. CROSS-FLOW ULTRAFILTRATION OF SECONDARY EFFLUENTS. MEMBRANE FOULING ANALYSIS

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The application of cross-flow ultrafiltration to regenerate secondary effluents is limited by membrane fouling. This work analyzes the influence of the main operational parameters (transmembrane pressure and cross-flow velocity about the selectivity and fouling observed in an ultrafiltration tubular ceramic membrane. The experimental results have shown a significant retention of the microcolloidal and soluble organic matter (52 – 54% in the membrane. The fouling analysis has defined the critical operational conditions where the fouling resistance is minimized. Such conditions can be described in terms of a dimensionless number known as shear stress number and its relationship with other dimensionless parameter, the fouling number.

  9. Chemical and hydrothermal studies on once through boilers using a full scale replica

    International Nuclear Information System (INIS)

    Penfold, D.; Gill, G.M.; Greene, J.C.; Harrison, G.S.; Walker, M.A.

    1987-01-01

    The paper describes the scope of research work carried out on once through boilers on the test rig at Wythenshawe, United Kingdom. The latter rig was designed and built to replicate the chemical, metallurgical and hydrothermal conditions on single tube test sections of Heysham 1 (AGR) and Wylfa (Magnox) boilers. A description is given of the rig, along with the facilities for obtaining the research data. Research studies on the once through boilers include: Heysham 1 boiler inlet, oxygen stress corrosion risk in post trip operation, Wylfa two phase erosion-corrosion risk in post trip operation, Wylfa two phase erosion-corrosion, dryout phenomena in a helical coil, and heat transfer co-efficients. (UK)

  10. The Modified Fouling Index Ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems

    KAUST Repository

    Salinas-Rodriguez, Sergio G.

    2015-02-18

    Reliable methods for measuring and predicting the fouling potential of reverse osmosis (RO) feed water are important in preventing and diagnosing fouling at the design stage, and for monitoring pre-treatment performance during plant operation. The Modified Fouling Index Ultrafiltration (MFI-UF) constant flux is a significant development with respect to assessing the fouling potential of RO feed water. This research investigates (1) the variables influencing the MFI-UF test at constant flux filtration (membrane pore size, membrane material, flux rate); and (2) the application of MFI-UF into pre-treatment assessment and RO fouling estimation. The dependency of MFI on flux, means that to assess accurately particulate fouling in RO systems, the MFI should be measured at a flux similar to a RO system (close to 20 L/m2/h) or extrapolated from higher fluxes. The two studied membrane materials showed reproducible results; 10% for PES membranes and 6.3% for RC membranes. Deposition factors (amount of particles that remain on the surface of membrane) were measured in a full-scale plant ranging between 0.2 and 0.5. The concept of “safe MFI” is presented as a guideline for assessing pre-treatment for RO systems.

  11. Mitigation of Syngas Cooler Plugging and Fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bockelie, Michael J. [Reaction Engineering International, Salt Lake City, UT (United States)

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  12. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  13. Black liquor combustion validated recovery boiler modeling, five-year report

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  14. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  15. The early operation of the helical once-through boilers at Heysham 1 and Hartlepool

    International Nuclear Information System (INIS)

    Mathews, A.J.

    1988-01-01

    The Heysham 1 and Hartlepool AGR Reactors are equipped with 'pod' boilers set into the walls of the Pre-stressed Concrete Pressure Vessel. Each Reactor unit has eight pod boilers, which are of a somewhat unique single pressure, once through, helically wound type incorporating a reheater. The pods are provided with a limited amount of strain gauge and thermocouple instrumentation concentrated mainly in two specially instrumented boilers at each site. During Commissioning prior to power raising, extensive noise and vibration tests utilising the special attain gauge instrumented boilers, gave encouraging results. This has led to an increase in coolant gas mass flow of 5% above the design level. Following power raising in 1983 and 1984, detailed boiler performance testing, mainly using the special thermocouple instrumented boilers, showed that the actual behaviour differed from the computer design predictions. A major temperature tilt existed across the boiler tubes resulting in higher than predicted temperatures in the outer radius rows of tubes and the reverse situation in the inner tubes. The effect differed in magnitude between Hartlepool Reactor 1 and the other three Reactors probably due to construction differences. As a result output was initially limited to approximately 58% of design (380 MW (Generated)). A major programme of altering the flow control ferrules was carried out during the first statutory overhauls in 1985 and 1986. The initial results from Heysham 1 were not very encouraging (a gain of 70 MW(e)) but further computer model correlations led to revised patterns in Heysham and Hartlepool Reactor 2 which have since yielded improvements in output potential of up to 200 MW(e). The paper discusses the commissioning test results described above and describes the details of the extensive work carried out to achieve higher output. (author)

  16. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  17. Heat transfer performance of condenser tubes in an MSF desalination system

    International Nuclear Information System (INIS)

    Galal, T.; Kalendar, A.; Al Saftawi, A.; Zedan, M.

    2010-01-01

    The present research examines the amount of condensed fresh water off the outer-side surface of heat exchangers in an MSF system. The quantitative modeling of condensed water on the outer surface of comparable tubes, enhanced and plain, in a simulated MSF technique is investigated. An adapted simulation design on a test-rig facility, accounting for the condenser tubing in actual industrial desalination plate-form, is used with corrugated and smooth aluminum-brass material tubes 1100mm long and 23mm bore. A single phase flow of authentic brine water that typifies real fouling is utilized to simulate the actual environmental life of a multi-stage flashing desalination system, with coolant flow velocity 0.1 m/s in the two delineated types of condenser tubing. It is demonstrated that the condensate water amount from the specified enhanced tube is about 1.22 times the condensate water amount from the smooth tube, adaptive for 140 running hours under deliberated constrains. The topic covers a comparative analysis of thermal performance. Comparing results with fresh water confirm the effect of fouling on significantly lowering the value of the overall heat transfer coefficient versus time. Fouling resistance R f is reported with the critical coolant flow speed of 0.1 m/s. Comparison between the fouling resistance for both smooth and corrugated tubes versus time is performed. The fouling thermal resistance of the corrugated tube is 0.56 of the fouling thermal resistance of the smooth tube after140 running hours of the experiment are concluded. Overall, in the case of real brine, results prove that heat performance for the corrugated tube is superior to the plain tube over the studied time period (140 hrs) for the chosen range of flow speeds

  18. The application of TIG-welding to the manufacture of modern boiler units. Chapter 3

    International Nuclear Information System (INIS)

    Dick, N.T.

    1978-01-01

    Stringent weld acceptance standards are necessary in nuclear installations. Mechanised TIG-welding is being used exclusively in the manufacture of the boiler pods for the Hartlepool and Heysham nuclear generating stations. The choice of a TIG welding process is discussed. Reliability, access, welding position, tube dimensions and weld profile were important as was the desirability of having ferrite control because in the austenitic stainless steel used, the acceptance standard does not permit microfissuring. Development of the technique and production equipment and conditions are given for tube butt welding, tube-to-tubeplate bore welding and tube-to-tubeplate face welding in AGR applications. (U.K.)

  19. Application of newly developed heat resistant materials for USC boilers

    International Nuclear Information System (INIS)

    Sato, T.; Tamura, K.; Fukuda, Y.; Matsuda, J.

    2004-01-01

    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  20. Novel graphical approach as fouling pinch for increasing fouling formation period in heat exchanger network (HEN) state of the art

    International Nuclear Information System (INIS)

    Azad, Abazar Vahdat; Ghaebi, Hadi; Amidpour, Majid

    2011-01-01

    In this paper a new graphical tool is proposed for investigation of fouling formation period in heat exchanger networks (HEN). The objective of this paper is increasing the time that HEN can perform its desirable heat transfer operation without required cleaning process. In a typical heat exchanger network, fouling formation rate of some streams is more than other ones. The method obtained in this work is based on given more opportunity for fouling formation for streams with high fouling formation rate. In fact high fouling formation rate streams are replaced with low fouling formation rate streams between different heat exchangers so that more fouling formation opportunity may be given for HEN. Therefore the HEN cleaning time decreases in fixed time period and the high fouling formation streams should pass from the path that the low fouling formation rate stream previously has passed, and inversely. As a result, secondly stream with high fouling formation rate mixes with residues of primary stream (low fouling formation rate stream). Therefore we should consider to adoption and conformability of streams structures (for prevention of streams destruction) and thermal considerations (for desirable heat transfer). Outlet temperatures of hot and cold streams should state in predefined temperatures. For satisfying thermal consideration after streams replacement this approach can be used in plants that cleanliness and its operational costs are most important problem.

  1. Multi-unit shutdown due to boiler feedwater chemical excursion

    International Nuclear Information System (INIS)

    Diebel, M.E.

    1991-01-01

    Ontario Hydro's Bruce Nuclear Generating Station 'B' consists of four 935 W CANDU units located on the east shore of Lake Huron in the province of Ontario, Canada. On July 25 and 26, 1989 three of the four operating units were shutdown due to boiler feedwater chemical excursions initiated by a process upset in the Water Treatment Plant that provides demineralized make-up water to all four units. The chemicals that escaped from an ion exchange vessel during a routine regeneration very quickly spread through the condensate make-up system and into the boiler feedwater systems. This resulted in boiler sulfate levels exceeding shutdown limits. A total of 260 GWH of electrical generation was unexpectedly made unavailable to the grid at a time of peak seasonal demand. This event exposed several unforeseen deficiencies and vulnerabilities in the automatic demineralized water make-up quality protection scheme, system designs, operating procedures and the ability of operating personnel to recognize and appropriately respond to such an event. The combination of these factors contributed towards turning a minor system upset into a major multi-unit shutdown. This paper provides the details of the actual event initiation in the Water Treatment Plant and describes the sequence of events that led to the eventual shutdown of three units and near shutdown of the fourth. The design inadequacies, procedural deficiencies and operating personnel responses and difficulties are described. The process of recovering from this event, the flushing out of system piping, boilers and the feedwater train is covered as well as our experiences with setting up supplemental demineralized water supplies including trucking in water and the use of rental trailer mounted demineralizing systems. System design, procedural and operational changes that have been made and that are still being worked on in response to this event are described. The latest evidence of the effect of this event on boiler tube

  2. FY 1999 achievement report on the development of high performance boilers. R and D on high performance industrial furnaces, etc.; 1999 nendo koseino boiler no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project started in FY 1993 to survey the actual state of industrial use boilers. Based on the results of the survey, in fiscal 1995, 1996 and 1997, no improvement of the present technology which has limits, but the development was made of the oxygen combustion and element technology which are factors for heightening boiler performance with a new idea first in the world. In fiscal 1998, a target for the overall thermal efficiency of 105% was settled by testing a pilot plant where the element technology was integrated into the small once-through boiler, flue/smoke tube boiler, water tube boiler, etc. In fiscal 1999, the target of the overall thermal efficiency of boiler was reached by a pilot plant test to clarify combustion characteristics, heat transfer characteristics, environmental characteristics, etc. Further, effects of energy saving were increased by the adoption method of oxygen supply equipment. Concretely, an overall boiler efficiency of 105.73% exceeding the targeted value of 105% was achieved at a pilot plant of actual scale, by concentrating the results of each of the element technologies such as 'oxygen combustion,' 'condensation type flue gas heat exchanger,' 'high performance combustion control device,' and 'rapid rotating auxiliary machine.' (NEDO)

  3. Sootblowing optimization for improved boiler performance

    Science.gov (United States)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  4. Optimizing the Integrated Design of Boilers - Simulation

    DEFF Research Database (Denmark)

    Sørensen, K.; Karstensen, C.; Condra, T.

    2004-01-01

    Boilers can be considered as consisting of three main components: (i) the pressure part, (ii) the burner and (iii) the control system. To be able to develop the boilers of the future (i.e. the boilers with the lowest emissions, the highest efciency, the best dynamic performance etc.) it is import...

  5. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  6. MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY

    OpenAIRE

    Chayalakshmi C.L

    2018-01-01

    MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...

  7. Life extension of MAPS-2 by replacement of boiler hairpin type heat exchangers

    International Nuclear Information System (INIS)

    Tripathi, J.C.; Rastogi, S.K.; Rastogi, A.K.

    2006-01-01

    The steam generating equipment in MAPS-1 and 2 are Hairpin type comprises of eight boiler assemblies arranged in two banks of four boilers each. Each hairpin type heat exchangers consist of 195 Monel-400 tubes of 12.7 mm OD x 1.24 mm WT. One boiler assembly consists of eleven inverted U type heat exchangers (called hairpin type heat exchangers) mounted in parallel on inlet and outlet heavy water manifolds and connected to steam drum through individual short riser. Heavy water flows through these tubes where as feed water enters the shell at the bottom of one leg called pre-heat leg. After commissioning of MAPS-2 in 1985, five hairpins of MAPS-2 developed leak during the course of operation by the year 1999. Absence of physical access for health assessment of steam generator tube and lack of provision for tube sheet cleaning to remove the deposits on feed water side had caused pile and resulted in tube failures by under deposit pitting corrosion. All the 88 hairpins of MAPS-2 were replaced to extend the plant life when MAPS-2 was taken out of grid for En-masse Coolant Channel Replacement job (EMCCR) in the year 2001 - 03. The long shutdown of MAPS units for EMCCR was considered to be cost effective since unscheduled plant shut downs on account of tube leaks could be avoided. (author)

  8. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  9. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    Energy Technology Data Exchange (ETDEWEB)

    Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)

    2016-06-03

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.

  10. Tube leak detector

    International Nuclear Information System (INIS)

    Morita, Bunji; Takamura, Koichi; Matsuda, Shigehiro; Kiyosawa, Shun-ichi; Asami, Toru; Yamada, Hiroshi; Naruse, Shin-ichi.

    1995-01-01

    The device of the present invention detects occurrence of leakage in a steam generator, a steam heating tube, or a heat exchanger of a nuclear power plant. Namely, an vibration sensor is disposed at the rear end of a rod-like supersonic resonance member. A node portion for the vibrations of the resonance member is held by a holding member and attached to a wall surface of a can such as a boiler. With such a constitution, the resonance member is resonated by supersonic waves generated upon leakage of the tube. The vibrations are measured by the vibration sensor at the rear end. Presence of leakage is detected by utilizing one or more of resonance frequencies. Since the device adopts a resonance phenomenon, a conduction efficiency of the vibrations is high, thereby enabling to detect leakage at high sensitivity. In addition, the supersonic wave resonance member has its top end directly protruded into a pressure vessel such as a boiler by using a metal or a ceramic which is excellent in heat and pressure resistance. Accordingly, the sound of leak can be detected efficiently. (I.S.)

  11. A Guide to the Principal Marine Fouling Organisms, with Particular Reference to Cockburn Sound, W.A.,

    Science.gov (United States)

    1982-07-01

    and crowned with long, feathery tentacles ( branchial filaments) which are used to draw food and oxygen from the water. The end of one filament is... branchial filaments. Tubes can reach 50 mm long and 0.5 mm diameter. Filograna can reproduce asexually with new individuals budded off parent worms and...the branchial crown of feeding tentacles seen in serpulids. Bivalves are the most significant of the fouling molluscs. The animal is laterally

  12. Coke fouling monitoring by electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Bombardelli, Clovis; Mari, Livia Assis; Kalinowski, Hypolito Jose [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)

    2008-07-01

    An experimental method to simulate the growth of the coke fouling that occurs in the oil processing is proposed relating the thickness of the encrusted coke to its electrical resistivity. The authors suggest the use of the fouling electrical resistivity as a transducer element for determining its thickness. The sensor is basically two electrodes in an electrically isolated device where the inlay can happen in order to compose a purely resistive transducer. Such devices can be easily constructed in a simple and robust form with features capable to face the high temperatures and pressures found in relevant industrial processes. For validation, however, it is needed a relationship between the electrical resistivity and the fouling thickness, information not yet found in the literature. The present work experimentally simulates the growth of a layer of coke on an electrically insulating surface, equipped with electrodes at two extremities to measure the electrical resistivity during thermal cracking essays. The method is realized with a series of consecutive runs. The results correlate the mass of coke deposited and its electrical resistivity, and it can be used to validate the coke depositions monitoring employing the resistivity as a control parameter. (author)

  13. Titanium condenser tubes. Problems and their solution for wider application to large surface condensers. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, S; Nagata, K; Nanba, K; Shimono, M [Sumitomo Light Metal Industries Ltd., Tokyo (Japan)

    1977-06-01

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack on copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection was observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling.

  14. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

  15. A comprehensive review of milk fouling on heated surfaces.

    Science.gov (United States)

    Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A

    2015-01-01

    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.

  16. Design of a small scale boiler package for testing high moisture content biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, Andrew

    2005-07-01

    This report presents the results of a project to design a prototype, small-scale boiler (0.88 MWth output) to enable clean and efficient combustion of high moisture content (>30%) biomass fuels. The boiler was based on an open bottom smoke tube design, modified to incorporate water tubes in the combustion chamber running from front to back. These were added to support refractory bricks to create an extra pass in the boiler combustion chamber such that the reflected heat from the refractory increased the rate of evaporation of moisture from the fuel. A chain grate stoker was employed. The combustion tests involved three biofuels: wood pellets with a low moisture content (8-10%) (to provide combustion rates for a commercially proven biofuel); wood chips from forestry waste with a 30-40% moisture content; and spent mushroom compost with 70-75% moisture. The tests on the wood chips required a number of modifications to the fuel feeding system and to the boiler in order to achieve limited success and the tests with the mushroom compost were unsuccessful due to the combination of the high moisture content and the fuel's low calorific value. Experience gained with the wood chips suggested a number of improvements for a future boiler design. As well as describing the experimental work and test results, the report offers an economic analysis (capital costs, fuel costs, running costs) of the scheme.

  17. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2016-08-01

    Full Text Available As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson–Champoux–Allard in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

  18. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  19. Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant

    International Nuclear Information System (INIS)

    Liu, Xingrang; Bansal, R.C.

    2014-01-01

    Highlights: • A coal fired power plant boiler combustion process model based on real data. • We propose multi-objective optimization with CFD to optimize boiler combustion. • The proposed method uses software CORBA C++ and ANSYS Fluent 14.5 with AI. • It optimizes heat flux transfers and maintains temperature to avoid ash melt. - Abstract: The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the

  20. Biomass boiler still best choice

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    Full text: The City of Mount Gambier upgraded its boiler in September after analysis showed that biomass was still the optimal energy option. The Mount Gambier Aquatic Centre was built by the local city council in the 1980s as an outdoor pool facility for the public. The complex has three pools — an Olympic-sized, toddler and a learner pool — for a total volume of 1.38ML (including balance tanks). The large pool is heated to 27-28°C, the smaller one 30-32°C. From the very beginning, the pool water was heated by a biomass boiler, and via two heat exchangers whose combined capacity is 520 kW. The original biomass boiler ran on fresh sawdust from a local timber mill. After thirty years of dedicated service the original boiler had become unreliable and difficult to operate. Replacement options were investigated and included a straight gas boiler, a combined solar hot water and gas option, and biomass boilers. The boiler only produces heat, not electricity. All options were subjected to a triple bottom line assessment, which included potential capital costs, operating costs, community and environmental benefits and costs. The project was also assessed using a tool developed by Mount Gambier City Council that considers the holistic benefits — the CHAT Tool, which stands for Comprehensive Holistic Assessment Tool. “Basically it is a survey that covers environmental, social, economic and governance factors,” the council's environmental sustainability officer, Aaron Izzard told WME. In relation to environmental considerations, the kinds of questions explored by the CHAT Tool included: Sustainable use of resources — objective is to reduce council's dependence on non-renewable resources; Greenhouse emissions — objective is to reduce council's contribution of GHG into the atmosphere; Air quality — objective is to improve local air quality. The conclusion of these analyses was that while a biomass boiler would have a higher capital cost than a straight gas

  1. Installations of SNCR on bark-fired boilers; Uppfoeljning av SNCR-installationer paa barkpannor

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarsson, A.K.; Hedin, K. [AaF-Energikonsult, Stockholm (Sweden); Andersson, Lars [AaF-IPK (Sweden)

    1997-01-01

    Experience has been collected from the twelve bark-fired boilers in Sweden with selective non catalytic reduction (SNCR) installations to reduce emissions of nitrogen oxides. Most of the boilers have slope grates, but there are also two boilers with cyclone ovens and two fluidized bed boilers. In addition to oil there are also possibilities to burn other fuel types in most boilers, such as sludge from different parts of the pulp and paper mills, saw dust and wood chips. The SNCR installations seems in general to be of simple design. In most installations the injection nozzles are located in existing holes in the boiler walls. The availability is reported to be good from several of the SNCR installations. There has been tube leakage in several boilers. The urea system has resulted in corrosion and in clogging of one oil burner. This incident has resulted in a decision not to use SNCR system with the present design of the system. The fuel has also caused operational problems with the SNCR system in several of the installations due to variations in the moisture content and often high moisture content in bark and sludge, causing temperature variations. The availability is presented to be high for the SNCR system at several of the plants, in two of them about 90 %. The results in NO{sub x} reduction vary between the installations depending on boiler, fuel and operation. The emissions are between 45 and 100 mg NO{sub 2}/MJ fuel input and the NO{sub x} reduction rates are in most installations between 30 and 40 %, the lowest 20 and the highest 70 %. 13 figs, 3 tabs

  2. A numerical study on thermal behavior of a D-type water-cooled steam boiler

    International Nuclear Information System (INIS)

    Moghari, M.; Hosseini, S.; Shokouhmand, H.; Sharifi, H.; Izadpanah, S.

    2012-01-01

    To achieve a precise assessment on thermal performance of a D-type water-cooled natural gas-fired boiler the present paper was aimed at determining temperature distribution of water and flue gas flows in its different heat exchange equipment. Using the zonal method to predict thermal radiation treatment in the boiler furnace and a numerical iterative approach, in which heat and fluid flow relations associated with different heat surfaces in the boiler convective zone were employed to estimate heat transfer characteristics, enabled this numerical study to obtain results in good agreement with experimental data measured in the utility site during steady state operation. A constant flow rate for a natural gas fuel of specified chemical composition was assumed to be mixed with a given excess ratio of air flow at a full boiler load. Significant results attributed to distribution of heat flux on different furnace walls and that of flue gas and water/steam temperature in different convective stages including superheater, evaporating risers and downcomers modules, and economizer were obtained. Besides the rate of heat absorption in every stage and other essential parameters in the boiler design too, inherent thermal characteristics like radiative and convective heat transfer coefficients as well as overall heat transfer conductance and effectiveness of convective stages considered as cross-flow heat exchangers were eventually presented for the given operating condition. - Highlights: ► Detailed distribution of heat flux on all of the boiler furnace walls was obtained. ► Flue gas and water thermal behaviors in different heating sections were evaluated. ► A good agreement was made between numerical results and experimental data. ► Contribution of the boiler furnace to the total thermal absorption was 39%. ► Contribution of the boiler tube banks to the total thermal absorption was 61%.

  3. Sedimentation and fouling of optical surfaces at the ANTARES site

    Science.gov (United States)

    ANTARES Collaboration; CAU CEFREM Collaboration; Amram, P.; Anghinolfi, M.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Bellotti, R.; Beltramelli, J.; Benhammou, Y.; Berthier, R.; Bertin, V.; Billault, M.; Blaes, R.; Bland, R. W.; Blondeau, F.; de Botton, N.; Boulesteix, J.; Brooks, C. B.; Brunner, J.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carmona, E.; Carr, J.; Cartwright, S. L.; Cecchini, S.; Ciacio, F.; Circella, M.; Compère, C.; Cooper, S.; Coyle, P.; Cuneo, S.; Danilov, M.; van Dantzig, R.; de Marzo, C.; Destelle, J.-J.; de Vita, R.; Dispau, G.; Druillole, F.; Engelen, J.; Feinstein, F.; Ferdi, C.; Festy, D.; Fopma, J.; Gallone, J.-M.; Giacomelli, G.; Goret, P.; Gournay, J.-F.; Hallewell, G.; Heijboer, A.; Hernández-Rey, J. J.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Karolak, M.; Keller, P.; Kooijman, P.; Kouchner, A.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Laugier, J.-P.; Leilde, B.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Migneco, E.; Millot, C.; Mols, P.; Montanet, F.; Montaruli, T.; Moscoso, L.; Musumeci, M.; Nezri, E.; Nooren, G. J.; Oberski, J. E. J.; Olivetto, C.; Oppelt-Pohl, A.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Perrin, P.; Petruccetti, M.; Petta, C.; Piattelli, P.; Poinsignon, J.; Potheau, R.; Queinec, Y.; Racca, C.; Raia, G.; Randazzo, N.; Rethore, F.; Riccobene, G.; Ricol, J.-S.; Ripani, M.; Roca-Blay, V.; Romeyer, A.; Rostovstev, A.; Russo, G. V.; Sacquin, Y.; Salusti, E.; Schuller, J.-P.; Schuster, W.; Soirat, J.-P.; Souvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Tao, C.; Thompson, L. F.; Tilav, S.; Triay, R.; Usik, A.; Valdy, P.; Valente, V.; Varlamov, I.; Vaudaine, G.; Vernin, P.; Vladimirsky, E.; Vorobiev, M.; de Witt Huberts, P.; de Wolf, E.; Zakharov, V.; Zavatarelli, S.; Zornoza, Juan de Dios; Zún~Iga, J.; Aloïsi, J.-C.; Kerhervé, Ph.; Monaco, A.

    2003-05-01

    ANTARES is a project leading towards the construction and deployment of a neutrino telescope in the deep Mediterranean Sea. The telescope will use an array of photomultiplier tubes to detect the Cherenkov light emitted by muons resulting from the interaction with matter of high energy neutrinos. In the vicinity of the deployment site the ANTARES Collaboration has performed a series of in situ measurements to study the change in light transmission through glass surfaces during immersions of several months. The average loss of light transmission is estimated to be only ~2% at the equator of a glass sphere one year after deployment. It decreases with increasing zenith angle, and tends to saturate with time. The transmission loss, therefore, is expected to remain small for the several year lifetime of the ANTARES detector whose optical modules are oriented downwards. The measurements were complemented by the analysis of the 210Pb activity profile in sediment cores and the study of biofouling on glass plates. Despite a significant sedimentation rate at the site, in the 0.02-0.05 cmyr-1 range, the sediments adhere loosely to the glass surfaces and can be washed off by water currents. Further, fouling by deposits of light-absorbing particulates is only significant for surfaces facing upwards.

  4. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  5. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran; Vuong, Francois; Hu, Jingyi; Li, Sheng; Kemperman, Antoine J.B.; Nijmeijer, Kitty; Cornelissen, Emile R.; Heijman, Sebastiaan G.J.; Rietveld, Luuk C.

    2015-01-01

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  6. Probabilistic approach to determining the optimum replacement of a superheater stage in 680 MW coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Robert; Star, Ruud van der [Nuon Power Generation, Amsterdam (Netherlands)

    2009-07-01

    The boiler of the NUON power plant HW08 that went into operation in 1993 is designed as Benson boiler and mainly fired with hard coal. A creep-related tube failure occurred in the tertiary superheater that had been due to increased wall temperature caused by steam side formation of oxide layers. The theoretical lifetime of the components was calculated with the aid of the results of steam side oxide measurements and condition evaluation of the tertiary superheater with the aid of tube samples. The objective is to establish an operation and maintenance schedule for the desired operating lifetime of 300,000 hours. (orig.)

  7. Foul or dive? Motor contributions to judging ambiguous foul situations in football

    NARCIS (Netherlands)

    Renden, P.G.; Kerstens, S.; Oudejans, R.R.D.; Canal Bruland, R.

    2014-01-01

    Football (soccer) referees frequently face situations in which they have to distinguish dives and fouls. Yet, little is known about the contributing factors that characterise the ability to judge these ambiguous situations correctly. To this end, in the current article we tested the hypothesis that

  8. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  9. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000 Btu/hr...

  10. Fluidized bed boiler feed system

    Science.gov (United States)

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  11. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  12. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  13. Criteria selection for the assessment of Serbian lignites tendency to form deposits on power boilers heat transfer surfaces

    Directory of Open Access Journals (Sweden)

    Mladenović Milica

    2009-01-01

    Full Text Available Based on investigations of ash deposit formation, semi-empirical indicators for slagging and fouling, based on ash chemical composition and its fusion temperature, have been determined. These criteria-indicators, in suggested limits, describe the coals on which they are based (North-American and British well. However, the experience in the thermal power production sector of Serbia shows that their literal application to domestic coals does not produce satisfactory results. This contribution provides an analysis of applicability and the choice of criteria that are suitable for Serbian coals. The focus of the contribution is on coal slagging indicators, since slagging has much heavier consequences on heat transfer inside the steam boiler, and on boiler operation as a whole. The basis for the analysis of chosen criteria comprises of the results of investigations of four coal fields - Kostolac, Kolubara, Kosovo (Serbia, and Ugljevik (Bosnia and Herzegovina.

  14. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh; Leiknes, TorOve

    2017-01-01

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti

  15. Fouling detection in heat exchangers by Takagi-Sugeno observers

    International Nuclear Information System (INIS)

    Delrot, Sabrina

    2012-01-01

    The phenomenon of fouling in heat exchangers is currently an important topic. Indeed, the fouling is a costly issue that increases the energy loss (directly or indirectly through an over-sizing of the equipment), and therefore increases the water consumption. As a side effect, fouling increases CO 2 consumption that leads to environmental consequences. Fouling can be detected either on local scale, using expensive and specific sensors or on global scale. Global estimation of fouling can be done by measuring the variation of the mass of the exchanger, or by estimating the efficiency of the exchanger through the transfer coefficient. These two methods require very restricting conditions: a powered exchanger to measure mass variation and a steady state exchanger to estimate the efficiency. The work introduced in this thesis deals with the development of non-linear observers that detect fouling early enough to start an efficient cleaning process. As a beginning, a finite element model of a counter current tubular exchanger was proposed. Then three approaches, based on non-linear Takagi-Sugeno observers, were suggested to detect early fouling in heat exchangers. First approach consisted in a set of observers that estimated the parameters of fouling effect through an interpolation method. The second approach proposed a polynomial Takagi-Sugeno observer, using the theory of sums of squares. Finally, a observer of Takagi-Sugeno type with unknown inputs was developed. As a conclusion, a comparison between those different methods was done. (author)

  16. Membrane fouling mechanism transition in relation to feed water composition

    KAUST Repository

    Myat, Darli Theint; Mergen, Max R D; Zhao, Oliver; Stewart, Matthew B.; Orbell, John D.; Merle, Tony; Croue, Jean-Philippe; Gray, Stephen R.

    2014-01-01

    on hydrophobic PP membrane occurred during the first 24h of filtration and contributed to fouling for both raw wastewater and pre-treated wastewaters. However, after the first 24h of filtration the contribution of humic substances to fouling diminished

  17. Polymeric dispersants for control of steam generator fouling

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Klimas, S.J.; Lepine, L.; Turner, C.W.

    1999-05-01

    Fouling of steam generators by corrosion products from the feedtrain leads to loss of heat-transfer efficiency, disturbances in thermalhydraulics, and potential corrosion problems resulting from the development of sites for localized accumulation of aggressive chemicals. This report summarizes studies of the use of polymeric dispersants for the control of fouling, which were conducted at the Chalk River Laboratories. High-temperature settling studies on magnetite suspensions were performed to screen available generic dispersants, and the dispersants were ranked in terms of their dispersion efficiency; polyacrylic acid (PAA) and the phosphonate, HEDP, were ranked as the most efficient. Polyacrylic acid was considered more suitable than HEDP for nuclear steam generators, and more emphasis was given to the former in these studies. The dispersants had no effect on the particle deposition rates under single-phase forced-convective flow, but did reduce the deposition rates under flow-boiling conditions. The extent to which the deposition rates were reduced increased in proportion to the dispersant concentration. Preliminary corrosion tests indicated that pitting or general corrosion of steam generator tube materials in the presence of PAA was negligible. Corrosion of carbon steel, although higher in a magnetite-packed crevice under heat flux than in bulk water, was lower in the presence of PAA than in its absence. Some impurities (e.g., sulphate, sodium) were observed in commercially available PAA products at small, though significant concentrations, making these products unacceptable for use in nuclear plants. However, the PAA could be purified by ion exchange. Preliminary experiments, to assess the thermal stability of PAA at steam generator operating temperature, showed the polymer to break down in deaerated solutions and under argon cover to give hydrogen and carbon dioxide as the two major products in the gas phase and variable concentrations of acetate and formate

  18. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  19. Boiler plants completed in record time

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Bubbling fluidised bed (BFB) combustion has steadily increased its share of the boiler market in recent years, particularly in the Nordic region, where it is particularly well-suited to handling the high moisture content biofuels produced and used by the forest products industry. Foster Wheeler is the world's leading supplier of fluidised bed combustion technology. Over 200 of the more than 300 fluidised bed boilers supplied by the company are circulating fluidised bed (CFB) designs, a market in which Foster Wheeler has more than a 40% share. Foster Wheeler Energia Oy supplied the Myllykoski project at Anjalankoski with a fluidised bed boiler, auxiliary steam boilers, and flue gas scrubber systems

  20. Filtration Behaviour and Fouling Mechanisms of Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sondus Jamal

    2014-07-01

    Full Text Available This study investigated filtration behaviors of polysaccharides solutions, both alone and in mixture with proteins, in the short-time constant flux filtration with the focus on factors affecting the transmembrane pressure (TMP increase rate, the irreversible filtration resistance, and the membrane rejection behavior. The results showed that the TMP increase rates in the short-time constant flux filtration of alginate solutions were significantly affected by the calcium addition, alginate concentration, and flux. Although the addition of calcium resulted in a decrease in the TMP increase rate, it was found that the irreversible fouling developed during the filtration increased with the calcium addition, implying that the double-sided effect of calcium on membrane filtration and that the TMP increase rate observed in the filtration does not always reflect the irreversible membrane fouling development. It was also found that for the filtration of solutions containing mixed alginate and BSA, alginate exerted a dominant effect on the TMP increase rate and the membrane exhibited a reduced rejection to both alginate and BSA molecules compared to that in the filtration of the pure alginate or BSA.

  1. The Technology Introduction of Chain Boiler Energy Conservation Transformation

    Science.gov (United States)

    Li, Henan; Liu, Xiwen; Yuan, Hong; Lin, Jiadai; Zhang, Yu

    2017-12-01

    Introduced the present status of chain boiler efficiency is low, the system analysis of the chain boiler optimization and upgrading of technology, for the whole progress of chain boiler to provide some ideas and reference.

  2. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    International Nuclear Information System (INIS)

    Srikanth, S.; Das, S.K.; Ravikumar, B.; Rao, D.S.; Nandakumar, K.; Vijayan, P.

    2004-01-01

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition

  3. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Rao, D.S. [National Metallurgical Laboratory Madras Centre, Chennai (India); Swapan, S.K.; Das, K.; Ravikumar, B. [National Metallurgical Laboratory, Jamshedpur (India). Materials Characterization Division; Nandakumar, K.; Vijayan, P. [Bharat Heavy Electricals Limited, Tiruchirappalli (India). Research and Development Section

    2004-10-01

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition. (author)

  4. CFD analysis of temperature imbalance in superheater/reheater region of tangentially coal-fired boiler

    Science.gov (United States)

    Zainudin, A. F.; Hasini, H.; Fadhil, S. S. A.

    2017-10-01

    This paper presents a CFD analysis of the flow, velocity and temperature distribution in a 700 MW tangentially coal-fired boiler operating in Malaysia. The main objective of the analysis is to gain insights on the occurrences in the boiler so as to understand the inherent steam temperature imbalance problem. The results show that the root cause of the problem comes from the residual swirl in the horizontal pass. The deflection of the residual swirl due to the sudden reduction and expansion of the flow cross-sectional area causes velocity deviation between the left and right side of the boiler. This consequently results in flue gas temperature imbalance which has often caused tube leaks in the superheater/reheater region. Therefore, eliminating the residual swirl or restraining it from being diverted might help to alleviate the problem.

  5. Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2010-01-01

    Utilization of biomass as wood or straw in large suspension­fired boilers is an efficient method to reduce the use of fossil fuels consumption and to reduce the net CO2 formation. However, the presence of chlorine and alkali metals in biomass (straw) generate ash with a low melting point and induce...... large problems of ash deposit formation on the superheater tubes. Full scale studies on biomass ash deposition and removal had been done on biomass grate boilers, while only limited data is available from biomass suspension­firing. The aim of this study was to investigate deposit mass uptake, heat...... uptake reduction, fly ash and deposit characteristics, and deposit removal by using an advanced online deposit probe in a suspension­fired boiler using wood and straw pellets as fuel. The influence of fuel type and probe exposure time on the ash deposition rate, the heat uptake, the fly ash and deposit...

  6. Advanced technique for computing fuel combustion properties in pulverized-fuel fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (Russian Federation))

    1992-03-01

    Reviews foreign technical reports on advanced techniques for computing fuel combustion properties in pulverized-fuel fired boilers and analyzes a technique developed by Combustion Engineering, Inc. (USA). Characteristics of 25 fuel types, including 19 grades of coal, are listed along with a diagram of an installation with a drop tube furnace. Characteristics include burn-out intensity curves obtained using thermogravimetric analysis for high-volatile bituminous, semi-bituminous and coking coal. The patented LFP-SKM mathematical model is used to model combustion of a particular fuel under given conditions. The model allows for fuel particle size, air surplus, load, flame height, and portion of air supplied as tertiary blast. Good agreement between computational and experimental data was observed. The method is employed in designing new boilers as well as converting operating boilers to alternative types of fuel. 3 refs.

  7. Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2017-01-01

    Ash deposition on boiler surfaces is a major problem encountered in biomass combustion. Timely removal of ash deposits is essentialfor optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the adhesion strength of biomass ash from...... off by an electrically controlled arm, and the corresponding adhesion strength was measured. The effect of sintering temperature, sintering time, deposit composition, thermal shocks on the deposit, and steel type was investigated. The results reveal that the adhesion strength of ash deposits...... is dependent on two factors: ash melt fraction, and corrosion occurring at the deposit–tube interface. Adhesion strength increases with increasing sintering temperature, sharply increasing at the ash deformation temperature. However, sintering time, as well as the type of steel used, does not have...

  8. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    Science.gov (United States)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  9. Optimal design of tests for heat exchanger fouling identification

    International Nuclear Information System (INIS)

    Palmer, Kyle A.; Hale, William T.; Such, Kyle D.; Shea, Brian R.; Bollas, George M.

    2016-01-01

    Highlights: • Built-in test design that optimizes the information extractable from the said test. • Method minimizes the covariance of a fault with system uncertainty. • Method applied for the identification and quantification of heat exchanger fouling. • Heat exchanger fouling is identifiable despite the uncertainty in inputs and states. - Graphical Abstract: - Abstract: Particulate fouling in plate fin heat exchangers of aircraft environmental control systems is a recurring issue in environments rich in foreign object debris. Heat exchanger fouling detection, in terms of quantification of its severity, is critical for aircraft maintenance scheduling and safe operation. In this work, we focus on methods for offline fouling detection during aircraft ground handling, where the allowable variability range of admissible inputs is wider. We explore methods of optimal experimental design to estimate heat exchanger inputs and input trajectories that maximize the identifiability of fouling. In particular, we present a methodology in which D-optimality is used as a criterion for statistically significant inference of heat exchanger fouling in uncertain environments. The optimal tests are designed on the basis of a heat exchanger model of the inherent mass, energy and momentum balances, validated against literature data. The model is then used to infer sensitivities of the heat exchanger outputs with respect to fouling metrics and maximize them by manipulating input trajectories; thus enhancing the accuracy in quantifying the fouling extent. The proposed methodology is evaluated with statistical indices of the confidence in estimating thermal fouling resistance at uncertain operating conditions, explored in a series of case studies.

  10. A two-parameter preliminary optimization study for a fluidized-bed boiler through a comprehensive mathematical simulator

    Energy Technology Data Exchange (ETDEWEB)

    Rabi, Jose A.; Souza-Santos, Marcio L. de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: jrabi@fem.unicamp.br; dss@fem.unicamp.br

    2000-07-01

    Modeling and simulation of fluidized-bed equipment have demonstrated their importance as a tool for design and optimization of industrial equipment. Accordingly, this work carries on an optimization study of a fluidized-bed boiler with the aid of a comprehensive mathematical simulator. The configuration data of the boiler are based on a particular Babcock and Wilcox Co. (USA) test unit. Due to their importance, the number of tubes in the bed section and the air excess are chosen as the parameters upon which the optimization study is based. On their turn, the fixed-carbon conversion factor and the boiler efficiency are chosen as two distinct optimization objectives. The results from both preliminary searches are compared. The present work is intended to be just a study on possible routes for future optimization of larger boilers. Nonetheless, the present discussion might give some insight on the equipment behavior. (author)

  11. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  12. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  13. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers; TOPICAL

    International Nuclear Information System (INIS)

    Keiser, J.R.

    2001-01-01

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining

  14. Deposition of magnetite particles onto alloy-800 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H. [Univ. of New Brunswick, Dept. of Chemical Engineering, Fredericton, NB (Canada)

    1998-07-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m{sup 2} . A concentration of suspended magnetite of 5.0E-03kg/m{sup 3} was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1{mu}m) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was

  15. Deposition of magnetite particles onto alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H.

    1998-01-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m 2 . A concentration of suspended magnetite of 5.0E-03kg/m 3 was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1μm) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was considered

  16. Particulate emission factor: A case study of a palm oil mill boiler

    International Nuclear Information System (INIS)

    Chong, W.C.; Rashid, M.; Ramli, M.; Zainura, Z.N.; NorRuwaida, J.

    2010-01-01

    A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm 3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm 3 (at 7 % O 2 ) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm 3 , the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

  17. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    , and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...

  18. Wood fuelled boiler operating costs

    International Nuclear Information System (INIS)

    Sandars, D.L.

    1995-01-01

    This report is a management study into the operating costs of wood-fired boilers. Data obtained from existing wood-fired plant has been analysed and interpreted using the principles of machinery management and the science that underlies the key differences between this fuel and any other. A set of budgeting principles has been developed for the key areas of labour requirement, insurance, maintenance and repair and electricity consumption. Other lesser cost centres such as the provision of shelter and the effects of neglect and accidents have also been considered, and a model constructed. (author)

  19. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    Science.gov (United States)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  20. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  1. Seasonal variations in fouling diatom communities on the Yantai coast

    Science.gov (United States)

    Yang, Cuiyun; Wang, Jianhua; Yu, Yang; Liu, Sujing; Xia, Chuanhai

    2015-03-01

    Fouling diatoms are a main component of biofilm, and play an important role in marine biofouling formation. We investigated seasonal variations in fouling diatom communities that developed on glass slides immersed in seawater, on the Yantai coast, northern Yellow Sea, China, using microscopy and molecular techniques. Studies were conducted during 2012 and 2013 over 3, 7, 14, and 21 days in each season. The abundance of attached diatoms and extracellular polymeric substances increased with exposure time of the slides to seawater. The lowest diatom density appeared in winter and the highest species richness and diversity were found in summer and autumn. Seasonal variation was observed in the structure of fouling diatom communities. Pennate diatoms Cylindrotheca, Nitzschia, Navicula, Amphora, Gomphonema, and Licmophora were the main fouling groups. Cylindrotheca sp. dominated in the spring. Under laboratory culture conditions, we found that Cylindrotheca grew very fast, which might account for the highest density of this diatom in spring. The lower densities in summer and autumn might result from the emergence of fouling animals and environmental factors. The Cylindrotheca sp. was identified as Cylindrotheca closterium using18S rDNA sequencing. The colonization process of fouling diatoms and significant seasonal variation in this study depended on environmental and biological factors. Understanding the basis of fouling diatoms is essential and important for developing new antifouling techniques.

  2. Economic evaluation of a coal fired boiler

    International Nuclear Information System (INIS)

    Briem, J.J.

    1983-01-01

    This paper provides basic information on boiler economics which will assist steam users in analyzing the feasibility of using coal to generate steam - in either new or existing facilities. The information presented covers boilers ranging in size from 10,000 to 100,000 pounds per hour steaming capacity

  3. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...

  4. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's boilers. 1915.162 Section 1915.162 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.162 Ship's boilers. (a) Before...

  5. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  6. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    - consisting of pressure part, burner and control system. The Technical University of Denmark, MEK - Energy Engineering Section [12] has participated in the modelling process. The project has included static and dynamic modelling of the boiler concept. For optimization of operation, verication of performance......With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit......, emissions and to obtain long time operation experiences with the boiler concept, a full scale prototype has been built and these tests have been accomplished on the prototype. By applying this integrated unit approach to the boiler concept development it has been possible to optimize the different building...

  7. Fouling-resistant polymer brush coatings

    KAUST Repository

    Thérien-Aubin, Héloïse

    2011-11-01

    A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail. © 2011 Elsevier Ltd. All rights reserved.

  8. Microbial fouling control in heat exchangers

    International Nuclear Information System (INIS)

    McCoy, W.F.

    1991-01-01

    Biofilm formation in turbulent flow has been studied a great deal during the last 15 years. Such studies have provided the basis for further experiments designed to test the efficacy of industrial antimicrobials against biofilms in laboratory models and in actual real-world industrial water-treatment programs. Biofilm microbiology is relevant from the industrial perspective because adherent populations of microorganisms often cause an economic impact on industrial processes. For example, it is the adherent population of microorganisms in cooling-water systems that can eventually contribute to significant heat transfer and fluid frictional resistances. The microbiology of biofilms in heat exchangers can be related to the performance of industrial antimicrobials. The development of fouling biofilms and methods to quantitatively observe the effect of biofouling control agents are discussed in this paper

  9. Fouling-resistant polymer brush coatings

    KAUST Repository

    Thé rien-Aubin, Hé loï se; Chen, Lin; Ober, Christopher K.

    2011-01-01

    A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail. © 2011 Elsevier Ltd. All rights reserved.

  10. Apparatus for the in situ inspection of tubes while submerged in a liquid

    International Nuclear Information System (INIS)

    Abell, G.E.; Plavsity, L.; Sattler, F.J.

    1979-01-01

    Apparatus is described for the in situ inspection of tubes which are submerged in a liquid such as the primary coolant of a nuclear reactor. A sensor is withdrawn from a tube by a cable. Means are provided for removing the liquid from and drying the cable. The liquid is returned to the tubes preventing the spread of deleterious liquids to otherwise benign environments and fouling of the drive mechanism used to control cable movements

  11. Effect of surface fouling on the output of PV panels

    Science.gov (United States)

    Zhang, Zele

    2018-04-01

    Surface fouling on the photovoltaic system caused by the output of a certain impact, therefore, it is very important to explore the effect of fouling on its contribution. Through the use of photovoltaic panels to collect Baoding area under different weather output data, and the collected data for comparative analysis, obtained under different environments on the impact of its contribution. It is concluded that the output of the photovoltaic cells will decrease, and the power drop rate will stabilize after three or four days. The effect of fouling on the fog haze and low temperature is more obvious.

  12. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  13. Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave

    Science.gov (United States)

    Anbazhagan, P.; Lijun, Su; Buddhima, Indraratna; Cholachat, Rujikiatkamjorn

    2011-08-01

    Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling.

  14. Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment

    Science.gov (United States)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.

    2012-01-01

    High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.

  15. Fouling and slagging problems at recovered wood fuel combustion; Orsaker till askrelaterade driftproblem vid eldning av returtraeflis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Hoegberg, Jan [Vattenfall Utveckling AB, Stockholm (Sweden)

    2001-03-01

    CHP-plants that use a large portion of sorted wood waste fuel can face ash-related problems. By analysing the circumstances about these problems, the goal is to find causes for the problems and measures that can be taken. This knowledge can then be utilised in plants where it is desired to increase the portion of sorted wood waste fuel. For the measurements, a deposit probe is a good tool to use since the result is independent of many boiler-specific factors. Compared with forest residues, sorted wood waste causes a more problematic ash. The risk of troublesome fouling and corrosion seems to increase with increased admixture of sorted wood waste fuel. Plugging of the grate is associated with melts that are formed from metallic contamination in the fuel. These melts obstruct the air holes. The melts that have been seen during the project have had a content of aluminium, brass and zinc. In order to solve these problems, the construction and cooling of the grate and quality assurance of the fuel are important aspects. One problem that was found in all of the studied boilers (grates as well as fluidized beds) is growth of fouling on surfaces for heat transfer. Measurements with deposit probe show that the initial growth rate on superheaters are approximately 3 - 5 times higher when sorted wood waste is used than if forest residues is used. Even if this growth rate can not be extrapolated to a complete operating season, the relative difference between the fuels remains. The extent of the problem depends on the dimensioning of the boiler. The fouling tends to have a light outer layer that can be disadvantageous for the absorption of heat radiation. Haendeloe P11 needs for example to be stopped for cleaning with an interval of 2 - 3 months because of lost heat absorption in the furnace and the convection path. The most obvious ash related problem that was found in Haendeloe P11 when 100 % sorted wood waste fuel was used was corrosion on the walls of the lower parts of the

  16. 78 FR 286 - Circular Welded Carbon Steel Pipes and Tubes From Turkey; Amended Final Results of Antidumping...

    Science.gov (United States)

    2013-01-03

    ... the scope of this order, except for line pipe, oil country tubular goods, boiler tubing, cold-drawn or... order (``APO'') of their responsibility concerning the disposition of proprietary information disclosed...

  17. Research on the Superheater Material Properties for USC Boiler with 700°C Steam Parameter

    Science.gov (United States)

    Chongbin, Wang; Xueyuan, Xu; Yufeng, Zhu; Yongqiang, Jin; Hui, Tong; Yu, Wang; Xiaoli, Lu

    This paper discusses the materials' properties of superheater for 700°C USC boiler, including Sanicro25, HR6W, 617mod and 740H, and analyzes the range of applicable temperature of superheater made of different tubes, such as T91, T92, Super304H, TP310HCbN, Sanicro25, HR6W, 617Mod and 740H. In addition, some suggestions on the material selection have been proposed.

  18. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    Science.gov (United States)

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Abundance of bacterial and diatom fouling on various surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi

    Abundance of bacterial and diatom fouling on aluminium, fibreglass and stainless steel were studied from Dona Paula waters of the Zuari Estuary. Both these forms were reversibly attached in large numbers to surfaces during the initial 24 hr...

  20. Fouling in small hydro projects; Verschmutzung von Kleinwasserkraftwerken - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Abgottspon, A.; Staubli, T.

    2010-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at fouling problems encountered in small hydro installations. The report is based on ten interviews made with operators of small hydro power stations in Switzerland. A parallel project carried out in Germany is mentioned. A large variation in the degree of fouling in the various hydro power stations is noted. Sources such as leaves in autumn and algae are discussed, as are the various rinsing procedures used to clear the turbines of fouling. Power losses are discussed and measures that can be taken to prevent fouling are described. Measurements made at an installation in Freienstein, Switzerland, are presented and discussed. The report is completed with an appendix containing calculations, details on the Freienstein power plant and the results of interviews made with the ten hydro power installations examined.

  1. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    Membrane filtration technologies have emerged as cost competitive and viable techniques in drinking and industrial water production. Despite advancements in membrane manufacturing and technology, membrane scaling and fouling remain major problems and may limit future growth in the industry. Scaling

  2. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  3. Fouling Kinetics and Associated Dynamics of Structural Modifications

    DEFF Research Database (Denmark)

    Jacob, Jerome; Prádanos, Pedro; Calvo, J. I.

    1998-01-01

    It is shown that the fouling behaviour of microfiltration membranes does not agree within all the time ranges of any of the commonly used membrane blocking models (i.e. complete, standard, intermediate or cake blocking). The resulting experimental kinetics of flux decline do not fit to only one...... of these models, but according to a successive or simultaneous coexistence of two or more of them. This is studied by analysing the structural modifications associated with the fouling kinetics. To achieve this goal, here we analyse the dynamical changes on the structure of four microporous membranes made...... by Sartorius (ST02 and ST045, neutral) and Spectrum (SP02 and SP045, positively charged) when fouled by permeating a protein aqueous solution (bovine serum albumin (BSA) at 1 g l(-1)) under 10 kPa in a dead-end device. The structure after different fouling times is obtained by using an extended bubble point...

  4. Regression analysis of pulsed eddy current signals for inspection of steam generator tube support structures

    International Nuclear Information System (INIS)

    Buck, J.; Underhill, P.R.; Mokros, S.G.; Morelli, J.; Krause, T.W.; Babbar, V.K.; Lepine, B.

    2015-01-01

    Nuclear steam generator (SG) support structure degradation and fouling can result in damage to SG tubes and loss of SG efficiency. Conventional eddy current technology is extensively used to detect cracks, frets at supports and other flaws, but has limited capabilities in the presence of multiple degradation modes or fouling. Pulsed eddy current (PEC) combined with principal components analysis (PCA) and multiple linear regression models was examined for the inspection of support structure degradation and SG tube off-centering with the goal of extending results to include additional degradation modes. (author)

  5. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires to...

  6. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a) Construction...

  7. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  8. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  9. Development of a test platform for anti-fouling coatings

    OpenAIRE

    Meskens, R.; Willemen, R.; Potters, G.; De Baere, K.; Lenaerts, S.

    2017-01-01

    Marine fouling, or the growth of marine organisms on fully or partly submerged structures, is an unwanted phenomenon in the marine industry. Bio fouling will increase the hydrodynamic drag of ships, causing an increased fuel consumption, promote the corrosion of the metallic structures and trigger undesired transport of invasive species (IMO and the environment 2009, 2009).The impact is economic as well as environmental. More fuel consumption is synonym for more CO2 and other detrimental emis...

  10. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  11. Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer of Tandem Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2015-10-15

    The heat exchanging tubes are in vertical alignment. For the cases, the upper tube is affected by the lower tube. Since heat transfer is closely related to the conditions of tube surface, bundle geometry, and liquid, lots of studies have been carried out for the several decades to investigate the combined effects of those factors on pool boiling heat transfer. One of the most important parameters in the analysis of a tube array is the pitch ( P ) between tubes. Many researchers have been investigated its effect on heat transfer enhancement for the tube bundles and the tandem tubes. The effect of a tube array on heat transfer enhancement was also studied for application to the flooded evaporators. Cornwell and Schuller studied the sliding bubbles by high speed photography to account the enhancement of heat transfer observed at the upper tubes of a bundle. The study by Memory et al. shows the effects of the enhanced surface and oil adds to the heat transfer of tube bundles. They identified that, for the structured and porous bundles, oil addition leads to a steady decrease in performance. The flow boiling of n-pentane across a horizontal tube bundle was investigated experimentally by Roser et al. They identified that convective evaporation played a significant part of the total heat transfer. The fouling of the tube bundle under pool boiling was also studied by Malayeri et al. They identified that the mechanisms of fouling on the middle and top heater substantially differ from those at the bottom heater.

  12. Dynamic model of a natural water circulation boiler suitable for on-line monitoring of fossil/alternative fuel plants

    International Nuclear Information System (INIS)

    Sedić, Almir; Katulić, Stjepko; Pavković, Danijel

    2014-01-01

    Highlights: • Derivation of dynamic model of a natural water circulation boiler is presented. • Model is derived by employing basic laws of conservation of mass, energy and momentum. • Thus obtained boiler model does not include empirical relationships. • Model is validated against experimental data related to an external disturbance event. • The final model is used for simulation analysis/assessment of key boiler quantities. - Abstract: The environmental protection policies and legal obligations motivate process industries to implement new low-emission and high-efficiency technologies. For the purpose of production process optimization and related control system design it is worthwhile to first build an appropriate process model. Apart from favorable execution speed, accuracy, and reliability features, the model also needs to be straightforward and only include the physical and design characteristics of the overall plant and its individual components, instead of relying on empirical relationships. To this end, this paper presents a nonlinear dynamic model of the single-drum natural-circulation steam boiler evaporator circuit, based exclusively on the fundamental physical laws of conservation of mass, energy and momentum, wherein the reliance upon empirical relationships has been entirely avoided. The presented boiler system modeling approach is based on the analysis of the physical phenomena within the boiler drum, as well as within downcomer and furnace tubes, and it also takes into account the boiler system design-specific features such as cyclone steam separators, thus facilitating the derivation of a fully-physical process model. Due to the straightforwardness of the derived process model, it should also be useful for the analysis of similar steam boiler facilities, requiring only adjustments of key operational and design parameters such as operating pressure, temperature, steam capacity and characteristics of ancillary equipment such as pumps. To

  13. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  14. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  15. Desulphurization in peat-fired circulating and bubbling fluidized bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kouvo, P. [Imatran Voima Oy, Vantaa (Finland); Salmenoja, K. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-12-31

    The new emission limit values for large combustion plants are under consideration both at the EU level and in Finland. Peat and wood are the only indigenous fuels of Finland. In 1995 appr. 8 % of electricity was produced with peat. The lower heating value of peat is around 10 MJ/kg. The moisture content varies between 35-55 % and sulphur content in dry solids between 0.15-0.35 %. The total peat power capacity of Finland in 1995 was 1400 MW. Because there was not enough information available about the desulphurization of the flue gases from peat-fired fluidized bed boilers, a group of Finnish companies and Ministry of Trade and Industry decided to carry out the full-scale desulphurisation study. In the project the desulphurization with limestone injection into the furnace of two types of peat-fired boilers were studied. The goal of the project was to investigate: what the technically and economically feasible emission level is by limestone injection in the fluidized bed combustion; how the limestone injection affects the other flue gas emissions and the fouling of the boiler and, what the economy of desulphurisation is. The tests were carried out at Kokkola and Kemi power plants in Finland. At Kokkola (108 MW{sub f}) circulating fluidized bed boiler, the emission limit of 200 mg/m{sup 3}n was leached at a Ca/S-molar ratio of appr. 10, with limestone containing 92 % of calcium carbonate, CaCO{sub 3}. At Kemi (267 MW{sub f}) bubbling fluidized bed boiler, the emission limit of 280 mg/m{sup 3}n with limestone containing appr. 95 % of CaCO{sub 3} was reached at a Ca/S-molar ratio of appr. 7.0. Emissions of NO{sub x}, N{sub 2}O, NH{sub 3} and dust after the ESP were not elevated due to the limestone feed. At the Kokkola power plant the NO{sub x} emissions varied from 300 to 400 mg/m{sup 3}n, and, at the Kemi power station the NO{sub x} emissions were around 200 mg/m{sup 3}n. The fouling of the Kemi boiler was found to be significant in the scheduled outage after the test

  16. High Concentration Protein Ultrafiltration: a Comparative Fouling Assessment

    Science.gov (United States)

    Lim, Y. P.; Mohammad, A. W.

    2018-05-01

    In this paper, the predominant fouling mechanism via pH manipulation in gelatin ultrafiltration (UF) at constant operating pressure was studied. Two 30 kDa molecular weight cut off (MWCO) UF membranes with different hydrophilic/hydrophobic properties were tested at solution pH near gelatin isoelectric point (IEP), pH below and above gelatin’s IEP. The resistance-in-series model was used to determine quantitatively the contribution of each filtration resistance occurred during gelatin UF. The governing fouling mechanisms were investigated using classical blocking laws. The results demonstrated that concentration polarization remain as dominant fouling resistance in gelatin UF, but exceptional case was observed at pH away from gelatin’s IEP, showing that combined reversible and irreversible fouling resistances contributed around 57% and 37%, respectively to the overall fouling resistances. Under all experimental condition tested, permeate flux decline was accurately predicted by all the models studied. Fouling profile was fitted well with “Standard Blocking”, “Intermediate Blocking” and “Cake Filtration” model for regenerated cellulose acetate (RCA) membrane and “Cake Filtration” model for polyethersulphone (PES) membrane.

  17. Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-02-01

    In this study, the effect of particle characteristics on the ultrasonic control of membrane fouling was investigated. Ultrasound at 20 kHz was applied to a cross-flow filtration system with gamma-alumina membranes in the presence of colloidal silica particles. Experimental results indicated that particle concentration affected the ability of ultrasound to control membrane fouling, with less effective control of fouling at higher particle concentrations. Measurements of sound wave intensity and images of the cavitation region indicated that particles induced additional cavitation bubbles near the ultrasonic source, which resulted in less turbulence reaching the membrane surface and subsequently less effective control of fouling. When silica particles were modified to be hydrophobic, greater inducement of cavitation bubbles near the ultrasonic source occurred for a fixed concentration, also resulting in less effective control of fouling. Particle size influenced the cleaning ability of ultrasound, with better permeate recovery observed with larger particles. Particle size did not affect sound wave intensity, suggesting that the more effective control of fouling by large particles was due to greater lift and cross-flow drag forces on larger particles compared to smaller particles.

  18. Kinetic study of seawater reverse osmosis membrane fouling

    KAUST Repository

    Khan, Muhammad

    2013-10-01

    Reverse osmosis (RO) membrane fouling is not a static state but a dynamic phenomenon. The investigation of fouling kinetics and dynamics of change in the composition of the foulant mass is essential to elucidate the mechanism of fouling and foulant-foulant interactions. The aim of this work was to study at a lab scale the fouling process with an emphasis on the changes in the relative composition of foulant material as a function of operating time. Fouled membrane samples were collected at 8 h, and 1, 2, and 4 weeks on a lab-scale RO unit operated in recirculation mode. Foulant characterization was performed by CLSM, AFM, ATR-FTIR, pyrolysis GC-MS, and ICP-MS techniques. Moreover, measurement of active biomass and analysis of microbial diversity were performed by ATP analysis and DNA extraction, followed by pyro-sequencing, respectively. A progressive increase in the abundance of almost all the foulant species was observed, but their relative proportion changed over the age of the fouling layer. Microbial population in all the membrane samples was dominated by specific groups/species belonging to Proteobacteria and Actinobacteria phyla; however, similar to abiotic foulant, their relative abundance also changed with the biofilm age. © 2013 American Chemical Society.

  19. Short Review on Predicting Fouling in RO Desalination

    Directory of Open Access Journals (Sweden)

    Alejandro Ruiz-García

    2017-10-01

    Full Text Available Reverse Osmosis (RO membrane fouling is one of the main challenges that membrane manufactures, the scientific community and industry professionals have to deal with. The consequences of this inevitable phenomenon have a negative effect on the performance of the desalination system. Predicting fouling in RO systems is key to evaluating the long-term operating conditions and costs. Much research has been done on fouling indices, methods, techniques and prediction models to estimate the influence of fouling on the performance of RO systems. This paper offers a short review evaluating the state of industry knowledge in the development of fouling indices and models in membrane systems for desalination in terms of use and applicability. Despite major efforts in this field, there are gaps in terms of effective methods and models for the estimation of fouling in full-scale RO desalination plants. In existing models applied to full-scale RO desalination plants, neither the spacer geometry of membranes, nor the efficiency and frequency of chemical cleanings are considered.

  20. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, S.; Clary, W.; Tice, D.R.

    2002-01-01

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  1. Techniques for measurement of heat flux in furnace waterwalls of boilers and prediction of heat flux – A review

    International Nuclear Information System (INIS)

    Sankar, G.; Chandrasekhara Rao, A.; Seshadri, P.S.; Balasubramanian, K.R.

    2016-01-01

    Highlights: • Heat flux measurement techniques applicable to boiler water wall are elaborated. • Applications involving heat flux measurement in boiler water wall are discussed. • Appropriate technique for usage in high ash Indian coal fired boilers is required. • Usage of chordal thermocouple is suggested for large scale heat flux measurements. - Abstract: Computation of metal temperatures in a furnace waterwall of a boiler is necessary for the proper selection of tube material and thickness. An adequate knowledge of the heat flux distribution in the furnace walls is a prerequisite for the computation of metal temperatures. Hence, the measurement of heat flux in a boiler waterwall is necessary to arrive at an optimum furnace design, especially for high ash Indian coal fired boilers. Also, a thoroughly validated furnace model will result in a considerable reduction of the quantum of experimentation to be carried out. In view of the above mentioned scenario, this paper reviews the research work carried out by various researchers by experimentation and numerical simulation in the below mentioned areas: (i) furnace modeling and heat flux prediction, (ii) heat flux measurement techniques and (iii) applications of heat flux measurements.

  2. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  3. Study of immersed heat exchange surface for high efficiency heat recovery from wire rim tires in a fluidized bed boiler; Hai tire nado kara no kokoritsu netsukaishuyo ryudosho boiler no sonai dennetsukan no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Oshita, T; Nagato, S; Miyoshi, N; Hosoda, S [Ebara Corp., Tokyo (Japan)

    1996-07-10

    In an ICFB boiler, the fluidized bed is separated by a partition into the main combustion and the heat recovery chambers. The flows in these chambers are generated by using silica sand as the fluidizing medium. To determine the overall heat transfer coefficient (HTC) of the boiler`s panel type immersed heat transfer tulles, combustion tests were performed with wire rim tires. The overall HTC of a panel tube array was lower than that of a zigzag tube arrangement. In practice, the heat absorbed by the fins makes the coefficients of either type of tube array almost identical. The air flow rate in the circulating bed at the loot Tom of the heat recovery chamber can be changed to control the overall HTC to a value virtually identical with that of a zigzag tube array. The combustion of wire rim tires leads to a buildup of wires in the zigzag array hampering the transfer of heat. Yet, the panel type array showed no buildup so that it was possible to maintain steady operation with this type of tube arrangement. 8 refs., 10 figs., 2 tabs.

  4. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  5. Treatment of Berkeley boilers in Studsvik. Project description and experiences - Berkeley Boilers Project

    International Nuclear Information System (INIS)

    Saul, Dave; Davidson, Gavin; Wirendal, Bo

    2014-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. In November 2012 Studsvik was awarded a further contract for the remaining ten Berkeley Boilers with the requirement to remove all boilers from the Berkeley site by 31 March 2013. Again this was successfully achieved ahead of programme with all boilers in Sweden by 1 April 2013. A total of nine boilers have now been processed and all remaining boilers will be completed by end of September 2014. The projects have had many challenges including a very tight timescale and both have been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the boilers to date. (authors)

  6. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms

    KAUST Repository

    Tiraferri, Alberto

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.

  7. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    Science.gov (United States)

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes.

  8. Experimental study of composition and influence factors on fouling of stainless steel and copper in seawater

    International Nuclear Information System (INIS)

    Yang, Dazhang; Liu, Jianhua; E, Xiaoxue; Jiang, Linlin

    2016-01-01

    Highlights: • An increase of seawater temperature deteriorates the fouling and corrosion. • The main compositions of crystals are Mg(OH) 2 , Al(OH) 3 and their complex compounds. • The images of the seawater fouling on stainless steel and copper were shown in the paper. • A higher heat flux and A higher Reynolds number are prone to crystallization fouling accumulation in seawater. - Abstract: Metals and alloys are easily fouled in marine environment. It is a big problem for heat exchangers using cooling seawater in power plants or ships. In the paper, a seawater-fouling dynamic test device was built to investigate the composition and influence factors on fouling of stainless steel and copper in the cooling seawater system. Moreover, the static trials were performed to study the fouling and corrosion of stainless steel and copper in marine environment. The experimental results show that the seawater fouling of stainless steel is crystallization fouling, and the main elements of fouling are magnesium and aluminum. In addition, the results show that the seawater fouling of copper is corrosion fouling. In the dynamic experiments, the effects of heat flux and Reynolds number on stainless steel fouling were studied. The results show that higher heat flux and higher Reynolds number of seawater lead to the accumulation of seawater fouling.

  9. Multi-pressure boiler thermodynamics analysis code

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs

  10. New thinking for the boiler room.

    Science.gov (United States)

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  11. Pirotubular boilers design. Diseno de calderas pirotubulares

    Energy Technology Data Exchange (ETDEWEB)

    Latre Durso, F. (Geval S.A. (Spain))

    1994-01-01

    This article describes the conceptual design of Pirotubular boilers from the valuable thermal point of view, to the dimensional. This topic is a very tool valuable for professionals of design and for maintenance and operation equipment.

  12. Chemical, radiochemical and structural properties of corrosion products on CANDU monel-400 boiler surfaces

    International Nuclear Information System (INIS)

    Rummery, T.E.; Scott, G.A.; Owen, D.G.; Tremaine, R.

    1980-09-01

    The surface of the primary-coolant side of a complete Monel-400 boiler tube removed from Douglas Point Nuclear Generating Station was subjected to a detailed analysis by scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction and chemical analysis. The tube had been in operation for 420 effective full-power days. The major deposits found were metallic Cu and Ni with significant amounts of NiO, and the mixed cation spinel Ni sub(x) Fe sub(3-x) O 4 . The phase compostion, 60 Co activity, and distribution of deposits in the tube are consistent with changes in the degree of supersaturation due to the temperature gradient along the tube and with the thermodynamic stability of observed phases. The morphology of the deposit is controlled by hydrodynamic effects. (auth)

  13. KARAKTERISTIK INTERAKSI MEMBRAN-FOULANT DAN FOULANT-FOULANT SEBAGAI DASAR PENGENDALIAN FOULING

    Directory of Open Access Journals (Sweden)

    Heru Susanto

    2012-05-01

    Full Text Available THE CHARACTERISTICS OF MEMBRANE-FOULANT AND FOULANT-FOULANT INTERACTIONS AS THE BASIS FOR CONTROL OF FOULING. Industrial membrane applications for solid liquid and liquid-liquid filtration are limited by fouling and concentration polarization. Because fouling significantly reduces the membrane performance and often changes the membrane selectivity, efforts to overcome the fouling problem are very important from practical applications point of view. This paper presents the basic knowledge required to control fouling and recent development in fouling control including the method developed by the author. Control of fouling can be done by (i commercial membrane modification (post modification by photo-graft polymerization, (ii modification by polymer blending during membrane manufacturing and (iii integration of a pretreatment into membrane processes. The results showed that all the developed methods can significantly reduce the resulting fouling; however, none of the method could totally remove the occurring fouling. The understanding of the membrane-foulant and foulant-foulant interactions is the key to success in control of fouling.Aplikasi teknologi membran untuk pemisahan padat cair di  berbagai industri dibatasi oleh peristiwa fouling yang menyebabkan penurunan laju produk dan perubahan selektifitas membran. Oleh karena itu, pengendalian fouling merupakan upaya yang mutlak harus dilakukan. Makalah ini mempresentasikan pengetahuan dasar yang diperlukan untuk pengendalian fouling dan perkembangan terkini dalam pengendalian fouling termasuk hasil-hasil yang telah dikembangkan oleh penulis. Pengendalian fouling dilakukan dengan (i modifikasi membran komersial (post modification menggunakan metode photo-grafting, (ii modifikasi dengan pencampuran polimer selama proses pembuatan (polymer blend dan (iii integrasi unit perlakuan awal (pre-treatment dengan proses membran. Hasil penelitian menunjukkan bahwa kesemua metode yang dikembangkan dapat

  14. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  15. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  16. Ecological boiler modernization, feasible energy solutions

    International Nuclear Information System (INIS)

    Krcek, F.; Matev, M.; Sykora, J.; Chladek, J.

    2005-01-01

    Alstom Power, s.r.o., ALSTOM GROUP in Brno, Czech Republic is a successor of PBS (First Brno Machine Works). PBS was a well-known company in Bulgaria - mainly as Heating Power Plant (HPP) and Industrial Plant supplier of boilers, industrial steam turbines, milling systems, heat exchangers Btc. PBS has been privatised in two stages starting at1993 year. Alstom recently deals with boiler and heat exchanger products. Industrial turbine but has been sold to Siemens in 2004

  17. Gas fired boilers and atmospheric pollution

    International Nuclear Information System (INIS)

    Chiaranello, J.M.

    1991-01-01

    A general analysis concerning atmospheric pollution is presented: chemical composition and vertical distribution of atmosphere and pollutants, chemical reactions, ozone destruction and production cycles, COx, NOx and SOx pollutions. The gas fired boiler number and repartition in France are presented and the associated pollution is analyzed (CO2, CO, NOx) and quantified. Various pollution control technics concerning gas fired boiler pollutants are described and a pollution criterion for clean gas fired generators is proposed

  18. Assessment of physical workload in boiler operations.

    Science.gov (United States)

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions.

  19. Boiler referruling on the Hartlepool and Heysham 1 advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Newell, J.E.

    1988-01-01

    The Hartlepool and Heysham I reactors each use eight cylindrical boilers having nineteen rows of helical tubes. The advantages of this design are partially offset by the relatively poor radial gas mixing. Some rows of tubing may have an imbalance between heat input from the gas and the flow of feedwater. causing a temperature profile at the upper transition joints. The thermal/hydraulic behaviour meant that the metallurgical constraints limited output. Analysis of the behaviour of these boilers required a new two-dimensional mathematical model, known as PODMIX. This describes the thermal hydraulics in each of the rows of tubing and also in the gas between the rows. Not all of the parameters for the model can be determined from first principles. However, two out of the thirty two pods have thermocouples at some of the upper transition joints and these made back calculation possible. In order to translate this model to other boiler pods, a novel thermocouple rake system was designed for sampling superheated steam temperatures in selected tubes. A result of this analysis was to show that different, individual ferrule patterns were needed for each pod. The characteristics could, in general, best be met using twin orifice ferrules. Unfortunately, the installed system did not permit the replacement of orifices, so that a completely new system had to be developed. In the course of designing this, the opportunity was taken to over come susceptibilities to erosion/corrosion and crevice corrosion. Removal of the old ferrules and replacement with the new ones necessitated the development of high precision, programmable machines to operate under difficult site conditions. These carried out drilling, boring, grinding and polishing operations as well as making face welds and tube bore welds. Modifications have already achieved substantial improvements in performance and output, but an extended, iterative programme still lies ahead. (author)

  20. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    Energy Technology Data Exchange (ETDEWEB)

    Pschirer, James [Alstom Power Inc., Windsor, CT (United States); Burgess, Joshua [Alstom Power Inc., Windsor, CT (United States); Schrecengost, Robert [Alstom Power Inc., Windsor, CT (United States)

    2017-08-16

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the project “Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube

  1. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S; Toyoda, S [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  2. Combustion of mediterranean agro-forest biomasses in small and medium scale pellet boilers: strategies for minimizing ash fusion and slagging

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Nieva, Daniel J.; Dopazo, Raquel; Ortiz, Luis [Forest Engineering Univ. School. Univ. of Vigo, Pontevedra (Spain)], e-mail: DanielJVN@gmail.com

    2012-11-01

    The slagging and fouling risk remain as important barriers that are currently limiting the use of various agricultural residues and potential energy crops feedstocks (e.g. [1-3]), which remain largely unutilized, particularly in Mediterranean countries. In this oral communication, the main results from the VI Framework European Project Domoheat on the combustion of mediterranean biomasses and its mixtures on small and medium size domestic pellet boilers, are presented, together with the goals of the ongoing VII Framework European Project AshMelT focusing on the definition of objective criteria and tests for ash slagging in domestic pellet boilers. The utilization of ash slagging indices based on ash composition and the definition of biomass mixtures based on such ash indices are presented as potentially useful tools for minimizing the occurrence of ash fusion and slagging during combustion.

  3. Initial study of a method for IR measurements in boilers; Inledande studie av metod foer IR-maetning i aangpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Martin; Joensson, Magnus; Lundin, Leif [Swedish National Testing and Research Inst., Boraas (Sweden)

    1999-10-01

    The tubes in steam boilers are required to be regularly inspected, in order to find water-side deposits, thinning of walls or material defects. This is for safety, problem-free operation and high availability. No non-destructive method of inspection is available today for finding deposits on the insides of boiler tubes. Nor is there any method that can not only detect deposits on the insides of the tubes but also monitor the tubes' wall thicknesses. A suitable method - reliable, safe, easy to use and cost-efficient - is therefore needed. One such method is to measure the surface temperature of a larger area of the diaphragm wall, using a non-contact method, and from the resulting information to assess the material thickness and possible water-side or steam-side deposits. An IR camera is used for non-contact measurement of the radiated energy from several adjacent surface elements, and thus also of their temperature. The temperature is displayed on the camera's screen to produce a picture of the temperature distribution. This is a well-established method today, and is used in applications such as the steel industry, the electricity industry, electronics and health care. The surface temperatures of the tube walls can be measured by inserting an IR camera on an arm into the combustion chamber, without anyone having to get inside the boiler. The combustion chamber is the part of the boiler that is of main interest for inspection, as it is the easiest to reach. Measurements are facilitated by higher temperatures and thus higher heat fluxes through the tube walls. Diaphragm wall temperatures can be measured quickly and rationally over large areas. Points of interest in inspections include determining where there are water-side deposits in the tubes, where tubes are thin, where flow is obstructed and where there might be material defects. With the exception of material defects, all of these mechanisms result in changes in the surface temperature, which in many

  4. Pelly Crossing wood chip boiler

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-11

    The Pelly wood chip project has demonstrated that wood chips are a successful fuel for space and domestic water heating in a northern climate. Pelly Crossing was chosen as a demonstration site for the following reasons: its extreme temperatures, an abundant local supply of resource material, the high cost of fuel oil heating and a lack of local employment. The major obstacle to the smooth operation of the boiler system was the poor quality of the chip supply. The production of poor quality chips has been caused by inadequate operation and maintenance of the chipper. Dull knives and faulty anvil adjustments produced chips and splinters far in excess of the one centimetre size specified for the system's design. Unanticipated complications have caused costs of the system to be higher than expected by approximately $15,000. The actual cost of the project was approximately $165,000. The first year of the system's operation was expected to accrue $11,600 in heating cost savings. This estimate was impossible to confirm given the system's irregular operation and incremental costs. Consistent operation of the system for a period of at least one year plus the installation of monitoring devices will allow the cost effectiveness to be calculated. The wood chip system's impact on the environment was estimated to be minimal. Wood chip burning was considered cleaner and safer than cordwood burning. 9 refs., 6 figs., 6 tabs.

  5. In-line quantification and characterization of membrane fouling

    KAUST Repository

    Bucs, Szilard

    2016-06-16

    Methods of detecting, quantifying and/or characterizing the fouling of a device from a combination of pressure and spectroscopic data are provided. The device can be any device containing components susceptible to fouling. Components can include membranes, pipes, or reactors. Suitable devices include membrane devices, heat exchangers, and chemical or bio-reactors. Membrane devices can include, for example, microfiltration devices, ultrafiltration devices, nanofiltration devices, reverse osmosis, forward osmosis, osmosis, reverse electrodialysis, electro- deionisation or membrane distillation devices. The methods can be applied to any type of membrane, including tubular, spiral, hollow fiber, flat sheet, and capillary membranes. The spectroscopic characterization can include measuring one or more of the absorption, fluorescence, or raman spectroscopic data of one or more foulants. The methods can allow for the early detection and/or characterization of fouling. The characterization can include determining the specific foulant(s) or type of foulant(s) present. The characterization of fouling can allow for the selection of an appropriate de-fouling method and timing.

  6. Forward osmosis membrane fouling and cleaning for wastewater reuse

    Directory of Open Access Journals (Sweden)

    Youngbeom Yu

    2017-06-01

    Full Text Available Membrane fouling properties and different physical cleaning methods for forward osmosis (FO and reverse osmosis (RO laboratory-scale filtration systems were investigated. The membrane fouling, with respect to flux reduction, was lower in FO than in RO when testing an activated sludge effluent. Cross-flow velocity, air-scouring, osmotic backwashing and effect of a spacer were compared to determine the most effective cleaning method for FO. After a long period of fouling with activated sludge, the flux was fully recovered in a short period of osmotic backwashing compared with cleaning by changing cross-flow velocity and air-scouring. In this study, the osmotic backwashing was found to be the most efficient way to clean the FO membrane. The amount of RNA recovered from FO membranes was about twice that for RO membranes; biofouling could be more significant in FO than in RO. However, the membrane fouling in FO was lower than that in RO. The spacer increased the flux in FO with activated sludge liquor suspended solids of 2,500 mg/L, and there were effects of spacer on performance of FO–MBR membrane fouling. However, further studies are required to determine how the spacer geometry influences on the performance of the FO membrane.

  7. Rejection of Organic Micropollutants by Clean and Fouled Nanofiltration Membranes

    Directory of Open Access Journals (Sweden)

    Lifang Zhu

    2015-01-01

    Full Text Available The rejection of organic micropollutants, including three polycyclic aromatic hydrocarbons (PAHs and three phthalic acid esters (PAEs, by clean and fouled nanofiltration membranes was investigated in the present study. The rejection of organic micropollutants by clean NF90 membranes varied from 87.9 to more than 99.9%, while that of NF270 membranes ranged from 32.1 to 92.3%. Clear time-dependence was observed for the rejection of hydrophobic micropollutants, which was attributed to the adsorption of micropollutants on the membrane. Fouling with humic acid had a negligible influence on the rejection of organic micropollutants by NF90 membranes, while considerable effects were observed with NF270 membranes, which are significantly looser than NF90 membranes. The observed enhancement in the rejection of organic micropollutants by fouled NF270 membranes was attributed to pore blocking, which was a dominating fouling mechanism for loose NF membranes. Changes in the ionic strength (from 10 to 20 mM reduced micropollutant rejection by both fouled NF membranes, especially for the rejection of dimethyl phthalate and diethyl phthalate by NF270 membranes (from 65.8 to 25.0% for dimethyl phthalate and 75.6 to 33.3% for diethyl phthalate.

  8. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Huadong Yang

    2014-01-01

    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  9. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  10. Zeta-potential of fouled thin film composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Hachisuka, H.; Nakamura, T. [Nitto denko Corp., Ibaraki, (Japan); Kimura, S. [Kogakuin University, Tokyo (Japan). Dept. of Environ. Chemical Engineering; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering

    1999-10-01

    The surface zeta-potential of a cross-linked polyamide thin film composite reverse osmosis membrane was measured using an electrophoresis method. It was confirmed that this method could be effectively applied to analyze the fouling of such membranes. It is known that the water flux of membranes drastically decreases as a result of fouling by surfactants. Although the surfactants adsorbed on reverse osmosis membranes could not be detected by conventional methods such as SEM, EDX and FT-IR, their presence could be clarified by the profile measurements of the surface zeta-potential. The profiles of the membrane surface zeta-potentials changed to more positive values in the measured pH range as a result of fouling by cationic or amphoteric surfactants. This measuring method of surface zeta-potentials allowed us to analyze a very small amount of fouling of a thin film composite reverse osmosis membrane. This method could be used to analyze the fouled surface of the thin film composite reverse osmosis membrane which is used for production of ultrapure water and shows a remarkable decrease in flux. It also became clear that this method is easy and effective for the reverse osmosis membrane surface analysis of adsorbed materials such as surfactants. (author)

  11. The effect of water quality on reliability of boiler plants performance

    Directory of Open Access Journals (Sweden)

    Gajić Anto S.

    2010-01-01

    Full Text Available This paper presents sources and types of corrosion processes of boiler tube system of the Thermal Power Plant "Ugljevik". The main goal in the electric power production is to achieve lower prices, which can only be done by providing low maintenance costs. While it is not possible to completely stop corrosion, it could be slowed down and it's effects could be reduced. In order to reduce corrosion to a minimum on thermal power plants' vital equipment, particularly boilers, it is necessary to determine in each particular case the acting mechanism of corrosion and agents that cause it. Damages and failures on thermal power plants are largely caused by the development of various types of corrosion processes. Special attention is given to the preparation of water, considering its importance to the occurrence of corrosion. The following types of corrosion were detected on the screen tube boiler by visual examination on the side of water and steam: erosive, pitting and impact corrosion. The inner surface of screen pipes, from which the scale layer was removed, indicates that the erosive corrosion with the thinning of pipe walls occurs. Perforation of the welded screen pipes shows that stress corrosion occurred on the screen pipe with formation of cracks and that pipe exploded. Pits on the inner surface of the screen pipes, visible after the removal of scale and corrosion products, are proof that pitting corrosion occurred. The causes of corrosion were discovered and proposed measures for their elimination were given.

  12. A survey of gas-side fouling in industrial heat-transfer equipment

    Science.gov (United States)

    Marner, W. J.; Suitor, J. W.

    1983-11-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  13. Species interactions within a fouling diatom community: Roles of nutrients, initial inoculum and competitive strategies

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Anil, A

    Diatoms constitute an important component of the fouling community. Although a lot of work has dealt with the fouling diatom community structure, work on the species interactions within the community is still meager. In this regard, a study...

  14. In-situ non-invasive device for early detection of fouling in aquatic systems

    KAUST Repository

    Fortunato, Luca; Leiknes, TorOve

    2017-01-01

    depth profile of the fouling. Data concerning the depth profile can be extracted and used to assess the fouling on the surface, in one or more aspects, the method can include providing an optical tomography spectrometer; optically positioning the optical

  15. Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling.

    Science.gov (United States)

    Liu, Guicai; Yu, Shuili; Yang, Haijun; Hu, Jun; Zhang, Yi; He, Bo; Li, Lei; Liu, Zhiyuan

    2016-02-02

    Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.

  16. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  17. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    Mendler, O.J.; Takeuchi, K.; Young, M.Y.

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  18. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh

    2017-01-19

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti-fouling layer can include a stimuli responsive layer and a dynamic protective layer applied over the stimuli responsive layer that can be a coating on a surface of the membrane. The stimuli responsive polymer layer can act as an adhesive prior to coating with the dynamic protective layer to aid in adhering the dynamic protective layer to the membrane surface. The dynamic protective layer can be formed by suitable nanoparticles that can prevent adhesion of foulants directly to the membrane surface. The stimuli responsive layer can be responsive to physio- chemical stimuli to cause a release of the stimuli responsive layer and the dynamic protective layer including foulants from the membrane.

  19. A Short Review of Membrane Fouling in Forward Osmosis Processes

    Science.gov (United States)

    Chun, Youngpil; Mulcahy, Dennis; Zou, Linda; Kim, In S.

    2017-01-01

    Interest in forward osmosis (FO) research has rapidly increased in the last decade due to problems of water and energy scarcity. FO processes have been used in many applications, including wastewater reclamation, desalination, energy production, fertigation, and food and pharmaceutical processing. However, the inherent disadvantages of FO, such as lower permeate water flux compared to pressure driven membrane processes, concentration polarisation (CP), reverse salt diffusion, the energy consumption of draw solution recovery and issues of membrane fouling have restricted its industrial applications. This paper focuses on the fouling phenomena of FO processes in different areas, including organic, inorganic and biological categories, for better understanding of this long-standing issue in membrane processes. Furthermore, membrane fouling monitoring and mitigation strategies are reviewed. PMID:28604649

  20. Fouling in a MBR system with rotating membrane discs

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Bentzen, Thomas Ruby; Christensen, Morten Lykkegaard

    concentrations and a clear effluent with no bacteria present in the permeate [1]. However, the process performance is limited by membrane fouling, which results in a lower productivity and higher energy demand and hence places demands for limitation of fouling and/or cleaning of the membranes. One way to do...... uses rotating ceramic membrane discs for creation of shear, which can be changed by controlling the membrane rotation speed of the membrane. Furthermore, the influence of shear on fouling is studied at different radii from the center of rotation, by dividing membranes into different concentric rings......Membrane bioreactors (MBR) are an attractive alternative solution for municipal and industrial wastewater treatment. The MBR, which is a combination of a bioreactor for sludge degradation and a membrane for separation, has the advantages of a low footprint, ability to handle high sludge...

  1. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  2. Feedwater heater tube-to-tubesheet connections

    International Nuclear Information System (INIS)

    Yokell, S.

    1993-01-01

    This paper discusses some practical aspects of expanded, welded, and welded-and-expanded feedwater heater tube-to-tubesheet joints. It outlines elastic-plastic tube expanding theory. It examines uniform-pressure-expanded tube joint strength and correlating roller-expanded joint strength with wall reduction and rolling torque. For materials subject to stress-corrosion cracking (SCC), it recommends heat treating tube ends before expanding. For materials subject to fatigue and tube-end cracking, it advocates two-stage expanding: (1) expanding enough to create firm tube-hole contact over the full tubesheet thickness; and (2) re-expanding at full pressure or torque. The paper emphasizes the desirability of segregating heats of tubing, mapping the tube-heat locations and making the heat map a permanent part of the heater maintenance file. It recommends when to provide TEMA/HEI Power Plant Standard annular grooves for roller-expanding and provides an equation for determining optimum groove width for uniform-pressure expanding. The paper also reviews welding requirements for welds of tubes to tubesheets. The review covers front-face welding before and after expanding and the reasons for welding first. It outlines current thinking about definitions of strength- and seal-welds of front-face welded joint in terms of their functions and load-carrying abilities. It presents a proposal for determining the required size of strength welds for use in Section VIII of the ASME Boiler and Pressure Vessel Code (the Code). It shows why welded-and-expanded feedwater heater tube-to-tubesheet joints should be full-strength and full-depth expanded. It makes recommendations for pressure- and leak-testing. This work also proposes the industry consider butt welding the tubes to the steam-side face of the tubesheet as a regular method of tube joining. The results of a survey of manufacturers practices are appended. 30 refs., 14 figs

  3. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  4. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  5. The load structure of electro boilers

    International Nuclear Information System (INIS)

    Feilberg, N.; Livik, K.

    1995-01-01

    Load measurements have been performed on 24 electro boilers with a time resolution of one hour throughout a period of one year. The boilers are used for space heating and heating of tap water in office buildings, shopping centres and apartment buildings. All boilers have tariffs with disconnection agreements. This report presents load analyses of the measurements from each boiler, and typical load profiles are calculated and presented. It also analyses how boilers are used in relation to the outdoor temperature and the power price on the spot market. All the measurements are performed in Bergen, Norway, in the period August 1993 - August 1994. Typical load profiles are shown, both annual and daily, as well as specific load parameters in addition to key figures used in calculating the total power load on the distribution network. The climate impact on energy and power load is evaluated. The report also shows examples of how the results may be applied in various special fields. 8 figs., 9 tabs

  6. Increasing the efficiency of the condensing boiler

    Science.gov (United States)

    Zaytsev, ON; Lapina, EA

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  7. Online fouling detection in electrical circulation heaters using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Valenciennes (France). LME; Lecoeuche, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Lille (France). Laboratoire 13D

    2003-06-01

    Here is presented a method that is able to detect fouling during the service of a circulation electrical heater. The neural based technique is divided in two major steps: identification and classification. Each step uses a neural network, the connection weights of the first one being the inputs of the second network. Each step is detailed and the main characteristics and abilities of the two neural networks are given. It is shown that the method is able to discriminate fouling from viscosity modification that would lead to the same type of effect on the total heat transfer coefficient. (author)

  8. Cleaning protocol for a FO membrane fouled in wastewater reuse

    KAUST Repository

    Valladares Linares, Rodrigo

    2013-05-30

    Forward osmosis (FO) is an emerging technology which can be applied in water reuse applications. Osmosis is a natural process that involves less energy consumption than reverse osmosis (RO), and therefore can be applied as a dilution process before low-pressure RO; it is expected to compete favourably against current advanced water reuse technologies that use microfiltration/ultrafiltration and RO. The focus of this research was to assess the efficiency of different cleaning procedures to remove fouling from the surface of a FO membrane during the operation of a submerged system working in FO-mode (active layer (AL) facing feed solution) intended for secondary wastewater effluent (SWWE) recovery, using seawater as draw solution (DS), which will be diluted and can further be fed to a low-pressure RO unit to produce fresh water. Natural organic matter (NOM) fouling was expected to affect the AL, while for the support layer (SL), transparent exopolymer particles (TEP) were used as indicators of fouling due to their stickiness and propensity to enhance the attachment of other foulants in seawater on the membrane surface. The composition of the NOM fouling layer was determined after proper characterisation with a liquid chromatograph coupled with organic carbon detection (LC-OCD), showing biopolymers and protein-like substances as the main constituents. NOM fouling showed high hydraulic reversibility after a 25% flux decline was observed, up to 89.5% when in situ air scouring for 15 min was used as a cleaning technique. Chemical cleaning with a mixture of Alconox, an industrial detergent containing phosphates, and sodium EDTA showed to increase the reversibility (93.6%). Osmotic backwash using a 4% NaCl solution and DI water proved to be ineffective to recover flux due to the salt diffusion phenomena occurring at the AL. Part of the flux that could not be recovered is attributable to TEP fouling on the SL, which forms clusters clearly identifiable with an optical

  9. Cleaning protocol for a FO membrane fouled in wastewater reuse

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Zhenyu; Yangali-Quintanilla, Victor; Li, Qingyu; Amy, Gary L.

    2013-01-01

    Forward osmosis (FO) is an emerging technology which can be applied in water reuse applications. Osmosis is a natural process that involves less energy consumption than reverse osmosis (RO), and therefore can be applied as a dilution process before low-pressure RO; it is expected to compete favourably against current advanced water reuse technologies that use microfiltration/ultrafiltration and RO. The focus of this research was to assess the efficiency of different cleaning procedures to remove fouling from the surface of a FO membrane during the operation of a submerged system working in FO-mode (active layer (AL) facing feed solution) intended for secondary wastewater effluent (SWWE) recovery, using seawater as draw solution (DS), which will be diluted and can further be fed to a low-pressure RO unit to produce fresh water. Natural organic matter (NOM) fouling was expected to affect the AL, while for the support layer (SL), transparent exopolymer particles (TEP) were used as indicators of fouling due to their stickiness and propensity to enhance the attachment of other foulants in seawater on the membrane surface. The composition of the NOM fouling layer was determined after proper characterisation with a liquid chromatograph coupled with organic carbon detection (LC-OCD), showing biopolymers and protein-like substances as the main constituents. NOM fouling showed high hydraulic reversibility after a 25% flux decline was observed, up to 89.5% when in situ air scouring for 15 min was used as a cleaning technique. Chemical cleaning with a mixture of Alconox, an industrial detergent containing phosphates, and sodium EDTA showed to increase the reversibility (93.6%). Osmotic backwash using a 4% NaCl solution and DI water proved to be ineffective to recover flux due to the salt diffusion phenomena occurring at the AL. Part of the flux that could not be recovered is attributable to TEP fouling on the SL, which forms clusters clearly identifiable with an optical

  10. Sodium reflux pool-boiler solar receiver on-sun test results

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  11. Thermal load non-uniformity estimation for superheater tube bundle damage evaluation

    Directory of Open Access Journals (Sweden)

    Naď Martin

    2018-01-01

    Full Text Available Industrial boiler damage is a common phenomenon encountered in boiler operation which usually lasts several decades. Since boiler shutdown may be required because of localized failures, it is crucial to predict the most vulnerable parts. If damage occurs, it is necessary to perform root cause analysis and devise corrective measures (repairs, design modifications, etc.. Boiler tube bundles, such as those in superheaters, preheaters and reheaters, are the most exposed and often the most damaged boiler parts. Both short-term and long-term overheating are common causes of tube failures. In these cases, the design temperatures are exceeded, which often results in decrease of remaining creep life. Advanced models for damage evaluation require temperature history, which is available only in rare cases when it has been measured and recorded for the whole service life. However, in most cases it is necessary to estimate the temperature history from available operation history data (inlet and outlet pressures and temperatures etc.. The task may be very challenging because of the combination of complex flow behaviour in the flue gas domain and heat transfer phenomena. This paper focuses on estimating thermal load non-uniformity on superheater tubes via Computational Fluid Dynamics (CFD simulation of flue gas flow including heat transfer within the domain consisting of a furnace and a part of the first stage of the boiler.

  12. Safety issues arising from the corrosion-fatigue of waterwall tubes

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J. M.; Jarvis, P. (Stress Engineering Services (Europe) Limited, Chichester (United Kingdom)); Scully, S. (Electricity Supply Board, Dublin (Ireland))

    2010-05-15

    An incidence of waterwall tube failures, one leading to a significant steam release external to the boiler, has highlighted the need for rigorous risk assessment of such events. Initial review of the utility's experience revealed one of their boiler designs as having had a greater incidence of corrosion-fatigue issues in waterwall tubing than the others. These units were treated as a priority. To address failure likelihood, fracture mechanics calculations were performed. These studies defined the necessary inspection coverage and sensitivity required to underwrite safe operation at various potential loads. Personnel safety was considered the most important consequence of failure. Accordingly, potential steam releases were modelled to define safe exclusion zones within the boiler house. Standard calculations were found to be nonconservative; more exact formulae were needed to give realistic results. Using the results of these studies, the utility was able to draw up a realistic inspection plan. Safe operating pressures and appropriate exclusion zones were defined for each boiler, and for a range of operational scenarios. These tactics have allowed the utility to inspect the boilers in turn and to repair all significant defects in the waterwall tubes, whilst maintaining a good overall power output. In parallel, a root-cause investigation was performed to identify the factors contributing to the failures. Where possible, causative influences were reduced or mitigated so as to reduce the likelihood of failure whilst allowing increased flexibility of boiler operation. (orig.)

  13. A New Concept of Ultrafiltration Fouling Control : Backwashing with Low Ionic Strength Water

    NARCIS (Netherlands)

    Li, S.

    2011-01-01

    Ultrafiltration (UF) is a proven technology in water treatment nowadays. However, fouling remains a major challenge in the operation of UF, especially in regard to colloidal NOM fouling. In general, a number of colloidal NOM fouling mechanisms may occur, such as adsorption, gel formation. Colloidal

  14. How do stocking density and straw provision affect fouling in conventionally housed slaughter pigs?

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Bertelsen, Maja; Pedersen, Lene Juul

    2017-01-01

    with excreta and/or urine. Only the first event of fouling for each pen was included, and thus results represent whether a pen had a fouling event or not and when it happened. Data was analysed by using a Cox regression assuming proportional hazard and with right censoring of pens that never developed fouling...

  15. ENVIRONMENTAL ASPECTS OF MODERNIZATION OF HIGH POWER WATER-HEATING BOILERS

    Directory of Open Access Journals (Sweden)

    P. M. Glamazdin

    2016-01-01

    Full Text Available Boilers of KVGM and PTVM series are characterized by high values of NOx and CO content in the combustion products. Reduction of NOx and CO content can be achieved by two ways: by installing the condensing heat recovery unit at the boiler outlet and by improving the heat and mass transfer processes in boiler furnaces. Application of the condensing heat recovery units causes pollution of resulting condensate by low-concentration acids. The authors conducted a study in order to determine the effectiveness of the previously applied methods of suppressing the emission of nitrogen oxides in the boilers of these types. Equalization of the temperature field and, consequently, enhancement of heat transfer in the furnace by substitution the used burners by the more advanced ones, the design of which facilitates reduction the emission of nitrogen oxides, were applied to all the upgraded facilities. The studies fulfilled demonstrate that a reduction of NOx emissions in water-heating high power boilers is fairly possible by means of modernization of the latter. The authors have developed the project of the PTVM-30 boiler modernization, which was implemented at a large boiler plant in the city of Vinnitsa (Ukraine. The project included a number of technical solutions. Six burners were replaced by the two ones that were located in the hearth; also the hearth screen was dismantled. At the same time, reducing the total surface area of the heating caused by the exclusion of hearth screen was compensated by filling the locations of the six embrasures of staff burners on the side screens with straightened furnace tubes. Installing the burners separate from the screen made it possible to eliminate the transfer of vibration to the furnace tubes, and – via them – to the boilers setting. Automation provided “associated regulations”. Draught machines were equipped with frequency regulators. During commissioning of the boiler the studies were carried out that

  16. 46 CFR 52.25-5 - Miniature boilers (modifies PMB-1 through PMB-21).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Miniature boilers (modifies PMB-1 through PMB-21). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-5 Miniature boilers (modifies PMB-1 through PMB-21). Miniature boilers must meet the applicable provisions in this part for the boiler type involved and the...

  17. Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Li Sun

    2014-01-01

    Full Text Available Fluidized bed combustion (FBC boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient dually from the noisy measurable outputs. The estimated parameter is compared with the normal value. Then the modified Bayesian algorithm is adopted for fault detection and diagnosis (FDD. The simulation results demonstrate that the approach is feasible and effective.

  18. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    Science.gov (United States)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  19. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Ye, Yun; Chen, Vicki; Vigneswaran, Saravanamuthu; Leiknes, TorOve; Liu, Zongwen

    2016-01-01

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  20. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun

    2016-11-04

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  1. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  2. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  3. Improvement of efficiency by proportional and integral control for compact boiler; Shoyoryo boiler no renzoku seigyo (P.I seigyo) ni yoru seino kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, T. [Kawasaki Thermal Engineering Co. Ltd., Shiga (Japan)

    1998-10-01

    Efficiency of a compact boiler is improved by the introduction of a continuous P.I. control. It is controlled by the following procedure. The proportional control, which controls magnitude of combustion in proportion to a load requirement, is combined with an integral control function which keeps steam pressure at a given level, in order to stabilize steam pressure at a level comparable to that of a large, water-tube type boiler. A stable steam pressure is realized by including control of make-up water supply, to minimize the effects of water supply on steam pressure. The effects of characteristics of the combustion valve on control are relaxed by programming. In addition to the above, rotational speed of the motor for the forced draft fan is controlled for each load level, to reduce power consumption. These bring improved quality of steam, i.e., stabilized steam pressure, improved follow-up characteristics of the steam and secured dryness of the steam. Energy-saving is also achieved, i.e., reduction of noise and power consumption at a low combustion load are achieved by improved real boiler efficiency and inverter-aided control of the forced draft fan. Low-NOx burners are adopted, to abate NOx content to 60ppm or less at any load. 16 figs.

  4. Treatment of hazardous and toxic liquids using Rochem Disc Tube technology

    International Nuclear Information System (INIS)

    LaMonica, D.

    1992-01-01

    Rochem Separation Systems, established in 1990 as a subsidiary of the international Rochem Group, has advanced the treatment of hazardous and toxic liquids with its unique, patented Disc Tube technology. Developed in 1987 at Rochem's design and production facilities in Hamburg, Germany, the Disc Tube technology is a series of membrane modules that greatly reduce the problems that hamper the effectiveness of other treatment technologies (i.e. fouling, scaling, cost, etc.). Applications of the Disc Tube technology include reverse osmosis and ultrafiltration. Rochem was recently accepted into the EPA Superfund Site program as a result of its Disc Tube technology. 1 fig., 1 tab

  5. 46 CFR 61.05-20 - Boiler safety valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler safety valves. 61.05-20 Section 61.05-20 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-20 Boiler safety valves. Each safety valve for a drum, superheater, or reheater of a boiler shall be tested at the interval specified by table 61.05-10. [CGD 95-028...

  6. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  7. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  8. Developing trends with boiler operation and management

    Energy Technology Data Exchange (ETDEWEB)

    Stark, J.M. [Occupational Safety and Health Service, Wellington (New Zealand). Dept. of Labour, Engineering Safety Branch

    1993-12-31

    Over recent years there have been many improvements in boiler control and safety management systems. Technology has made major advances and is now regarded as being well proven in Australia, Europe and the United Kingdom and these changes have been examined by a project committee, convened for the purpose, to establish whether they are equally applicable in New Zealand. The result of the committee`s findings and experience is contained in the `Draft Code of Practice`. This paper explains the development of the `Code of Practice`, the reasoning behind some of the decisions taken and the implications of these changes to boiler owners.

  9. Optimal load allocation of multiple fuel boilers.

    Science.gov (United States)

    Dunn, Alex C; Du, Yan Yi

    2009-04-01

    This paper presents a new methodology for optimally allocating a set of multiple industrial boilers that each simultaneously consumes multiple fuel types. Unlike recent similar approaches in the utility industry that use soft computing techniques, this approach is based on a second-order gradient search method that is easy to implement without any specialized optimization software. The algorithm converges rapidly and the application yields significant savings benefits, up to 3% of the overall operating cost of industrial boiler systems in the examples given and potentially higher in other cases, depending on the plant circumstances. Given today's energy prices, this can yield significant savings benefits to manufacturers that raise steam for plant operations.

  10. Firewood boiler operators and heat exposure

    Directory of Open Access Journals (Sweden)

    Vilson Bernardo Stollmeier

    2017-12-01

    Full Text Available This article presents an analysis of heat exposure work in boiler industry wood from a company in the industrial sector, focusing on the analysis of the environmental burden of the activity. Therefore, the methodological procedures consisted of document analysis, interviews, filming, evaluation problems of the effects of the hot environment and its prevention. The results show that the fuel to the boiler operators are exposed to heat and need guidance on their daily activities with prevention of diseases affected by excessive heat. Are also suggested training in technical and health to improve working conditions and the operator's health.

  11. Boiler inspection manipulator for Torness Power Station

    International Nuclear Information System (INIS)

    Carrey, R.T.A.; Yule, I.Y.; Sibson, S.; Playle, M.J.

    1996-01-01

    The Advanced Gas-cooled Reactors at Torness and Heysham 2 are provided with dedicated access for remote inspection equipment. These in-service inspection (ISI) accesses comprise 12 penetrations above the core for inspection of the above core area and boilers, 12 below core penetrations for inspection of the lower boiler area and access through any of the 8 gas circulator penetrations for inspection of the sub-diagrid area. This paper describes a manipulator which will access the reactor from above the core via any of the 8 peripheral penetrations. (UK)

  12. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  13. Experience gained from shifting a PK-19 boiler to operate with increased superheating and with a load higher than its rated value

    Science.gov (United States)

    Kholshchev, V. V.

    2011-08-01

    Failures of steam superheater tubes occurred after the boiler was shifted to operate with a steam temperature of 540°C. The operation of the steam superheater became more reliable after it had been subjected to retrofitting. The modernization scheme is described. An estimate is given to the temperature operating conditions of tubes taking into account the thermal-hydraulic nonuniformity of their heating.

  14. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted with...

  15. Biomass boiler conversion potential in the eastern United States

    Science.gov (United States)

    Charles D. Ray; Li Ma; Thomas Wilson; Daniel Wilson; Lew McCreery; Janice K. Wiedenbeck

    2013-01-01

    The U.S. is the world's leading consumer of primary energy. A large fraction of this energy is used in boiler installations to generate steam and hot water for heating applications. It is estimated there are total 163,000 industrial and commercial boilers in use in the United States of all sizes. This paper characterizes the commercial and industrial boilers in...

  16. New materials for boilers in USC power plants

    International Nuclear Information System (INIS)

    Hong, Sung Ho; Hong, Seok Joo

    2003-01-01

    The efficiency of boiler in fossil power plants is a strong function of steam temperature and pressure. Thus, the main technology of increasing boiler efficiency is the development of stronger high temperature materials, capable of operating under high stresses at ever increasing temperature. This paper will presents the new material relating to boiler of USC power plant

  17. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter F...

  18. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter. [CGD 85-080, 61...

  19. 46 CFR 109.205 - Inspection of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall inspect...

  20. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...