WorldWideScience

Sample records for boiler cleaning operations

  1. Boiler operator's handbook

    CERN Document Server

    Heselton, Ken

    2004-01-01

    Containing key information for operators and managers of large and small plants, this is an indispensable guide for those at advanced and early stages of their careers, as well as for managers interested in reducing operating expenses.

  2. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tice, D.R.; Platts, N.; Raffel, A.S. [Serco Assurance (United Kingdom); Rudge, A. [British Energy Generation Ltd. (United Kingdom)

    2002-07-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid

  3. Continuous boiler cleaning with explosion generators. The alternative to soot blowers; Heizflaechenabreinigung mit Explosionsgeneratoren. Die Alternative zu Russblaesern

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Christian; Rueegg, Hans [Explosion Power GmbH, Lenzburg (Switzerland); Pajarskas, Arno [Explosion Power DE GmbH, Duesseldorf (Germany)

    2011-07-01

    The explosion generator was recently developed by Explosion Power GmbH. With explosion generators, the boiler is cleaned by pressure waves, which are created by controlled gas explosions of natural gas and oxygen. The experience of 22 months of operation in the WtE plant in Lucerne shows that the cleaning efficiency of the explosion generators is much higher than that of soot blowers. Explosion generators are installed Europe-wide in more than 13 different boiler lines. (orig.)

  4. Computer system for monitoring power boiler operation

    Energy Technology Data Exchange (ETDEWEB)

    Taler, J.; Weglowski, B.; Zima, W.; Duda, P.; Gradziel, S.; Sobota, T.; Cebula, A.; Taler, D. [Cracow University of Technology, Krakow (Poland). Inst. for Process & Power Engineering

    2008-02-15

    The computer-based boiler performance monitoring system was developed to perform thermal-hydraulic computations of the boiler working parameters in an on-line mode. Measurements of temperatures, heat flux, pressures, mass flowrates, and gas analysis data were used to perform the heat transfer analysis in the evaporator, furnace, and convection pass. A new construction technique of heat flux tubes for determining heat flux absorbed by membrane water-walls is also presented. The current paper presents the results of heat flux measurement in coal-fired steam boilers. During changes of the boiler load, the necessary natural water circulation cannot be exceeded. A rapid increase of pressure may cause fading of the boiling process in water-wall tubes, whereas a rapid decrease of pressure leads to water boiling in all elements of the boiler's evaporator - water-wall tubes and downcomers. Both cases can cause flow stagnation in the water circulation leading to pipe cracking. Two flowmeters were assembled on central downcomers, and an investigation of natural water circulation in an OP-210 boiler was carried out. On the basis of these measurements, the maximum rates of pressure change in the boiler evaporator were determined. The on-line computation of the conditions in the combustion chamber allows for real-time determination of the heat flowrate transferred to the power boiler evaporator. Furthermore, with a quantitative indication of surface cleanliness, selective sootblowing can be directed at specific problem areas. A boiler monitoring system is also incorporated to provide details of changes in boiler efficiency and operating conditions following sootblowing, so that the effects of a particular sootblowing sequence can be analysed and optimized at a later stage.

  5. Assessment of physical workload in boiler operations.

    Science.gov (United States)

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions.

  6. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  7. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  8. Studying the effectiveness of using pneumoimpulsive technology for cleaning the platen surfaces of the PK-38 boiler at the Nazarovo district power station

    Science.gov (United States)

    Agliulin, S. G.; Nikolaev, S. F.; Zvegintsev, V. I.; Yurkin, I. A.; Shabanov, I. I.; Palkin, V. F.; Sergienko, S. P.; Vlasov, S. M.

    2014-09-01

    A new pneumoimpulsive technology, central to which is an impact effect of air jet on ash deposits, was proposed for carrying out continuous preventive cleaning of the platens installed in the steam superheater primary and secondary paths of the PK-38 boiler at the Nazarovo district power station. The pneumoimpulsive cleaning system was mounted in the PK-38 boiler unit no. 6A, and the cleaning system tests were carried out during field operation of the boiler. Owing to the use of the proposed cleaning system, long-term (for no less than 3 months of observations) slag-free operation of the platen surfaces was achieved in the range of steam loads from 215 to 235 t/h with the average load equal to 225 t/h at furnace gas temperatures upstream of the platens equal to 1220-1250°C.

  9. An evaluation of deeply-cleaned coals as industrial boiler fuels

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Scaroni, A.W.

    1999-07-01

    AMAX Research and Development Center (AMAX) recently conducted a program for the US Department of Energy (DOE) in which processes for preparing ultra-clean coal were developed (Jha et al., 1997). The coal cleaning methods targeted were advanced column flotation and selective agglomeration. The goal was to develop a coal-based fuel, preferably a coal-water slurry fuel (CWSF), that would be a viable alternative to fuel oil or natural gas in industrial and utility boilers, and would also be appropriate for advanced combustion systems that are under development. Additional objectives were to develop near-term applications of the advanced coal cleaning technologies in new or existing coal preparation plants in order to efficiently process minus 28 mesh fines and convert them into marketable products, and to determine the extent of removal of toxic trace elements from coal by the advanced cleaning technologies. AMAX cleaned three coals in an integrated advanced column flotation and selective agglomeration process development unit. The coals were from the Taggart (Virginia), Indiana VII (Indiana) and Hiawatha (Utah) seams. As a complement to the AMAX program, Penn State is evaluating the deeply-cleaned coals as industrial boiler fuels. Specifically, the handling characteristics, combustion performance, and trace element emissions of the coals are being determined. The coals are being tested in demonstration (20 million Btu/h) and research (2 million Btu/h) boilers as part of a Penn State/DOE project characterizing trace element emissions from coal-fired industrial boilers. This paper will discuss the atomization characteristics and combustion performance (in the demonstration boiler) in a 1 ton/h filter cake re-entrainment circuit. In addition, the combustion performance of the ultra-clean CWSFs is compared to that of other CWSFs prepared in Penn State's 1 ton/h single and double-stage grinding circuit.

  10. Modeling operation mode of pellet boilers for residential heating

    Science.gov (United States)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  11. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  12. Operator's Manual, Boiler Room Operations and Maintenance. Supplement A, Air Pollution Training Institute Self-Instructional Course SI-466.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Training Inst.

    This Operator's Manual is a supplement to a self-instructional course prepared for the United States Environmental Protection Agency. This publication is the Boiler Room Handbook for operating and maintaining the boiler and the boiler room. As the student completes this handbook, he is putting together a manual for running his own boiler. The…

  13. Low excess air operations of oil boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y.; Litzke, Wai Lin [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    To quantify the benefits which operation at very low excess air operation may have on heat exchanger fouling BNL has recently started a test project. The test allows simultaneous measurement of fouling rate, flue gas filterable soot, flue gas sulfuric acid content, and flue gas sulfur dioxide.

  14. Boiler Control Systems Theory of Operation Manual.

    Science.gov (United States)

    1983-02-01

    9 lfeduce!s routine mtainltenance N through use of bitilt-in air 4up- *,1 ilternd, ltain eisa e Simplifie.. stockintg of -.pare - parto -illre uuanyv...operation pushbuttons and two-position transfer switch. The vertical meter is a I.5v voltmeter scaled 0-ICO representing percent of the nput M vanal-le. The...by the ratio dial seting. Ie 002 Pr aie Set Satieson, curren output. Vertices ale ndiceerds*o ea tof the Storin pae atF iei signel. 1 T1wred i 22A

  15. A mathematical model for optimized operation and control in a CDQ-Boiler system

    Institute of Scientific and Technical Information of China (English)

    De Wang; Tao Yang; Zhi Wen; Junxiao Feng; Ning Kong; Qin Wang; Weimin Wang

    2005-01-01

    Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for optimized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in tum, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been successfully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.

  16. An optimization model for the operations of steam production in industrial boilers

    OpenAIRE

    Rocco,Cleber Damião; Morabito, Reinaldo

    2012-01-01

    In this study, a mixed integer linear programming model is presented to support some of the key decisions in the steam production system with industrial boilers. The model approaches the fuel management decisions (fuel replenishment and its inventory control), boiler operational decisions (start-up, warm-up, and shutdown operations), and which boiler should produce steam. The model adjustments and its validation were carried out through a case study in a large food industry. In face of the go...

  17. Model prediction of the operating behavior of a circulating fluidized bed boiler

    Institute of Scientific and Technical Information of China (English)

    王勤辉; 骆仲泱; 倪明江; 岑可法

    2002-01-01

    An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.

  18. Model prediction of the operating behavior of a circulating fluidized bed boiler

    Institute of Scientific and Technical Information of China (English)

    王勤辉; 骆仲泱; 倪明江; 岑可法

    2002-01-01

    An improved mathematical model for a circulating fluidized bed (CFB) boiler baaed on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler.The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.

  19. New source performance standards for industrial boilers. Volume 2. Review of industry operating practices

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, R.J.; Weisenberg, I.J.; Wilson, K.

    1980-09-01

    The applicability is evaluated of several possible versions of a revised New Source Performance Standards (NSPS) for industrial boilers to boilers that are operated according to typical industry practices. A survey of operating practices is presented, and it is concluded that an NSPS that includes too high a percent removal requirement for SO/sub 2/ (90%) might be excessively costly and cause operating problems for the industrial operator. More field evaluations of low excess air and low Btu gasification are required to validate these techniques for pollution control under industrial boiler operating conditions. The cost of two small boilers with no SO/sub 2/ controls was less than one large boiler of twice the capacity with SO/sub 2/ controls. The annual cost of operating and maintaining the control system accounted for the difference.

  20. Cleaning of Boiler By EDTA Natural Cycle Method%EDTA自然循环法清洗锅炉

    Institute of Scientific and Technical Information of China (English)

    王立海; 马艳芬

    2000-01-01

    通过EDTA自然循环法清洗锅炉的实践证明,为经济、省时、省力、无设备损害,保证清洗效果,宜采用EDTA自然循环法清洗锅炉。%Presents the cleaning of boiler by EDTA natural cycle method which features low cost, energy and time saving and no damage to equipment.

  1. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Fabienne Chatel-Pelage

    2003-10-01

    This document reviews the work performed during the quarter July--September 2003. Significant progress has been made in Task 1 (Site Preparation), Task 2 (Test performance) and Task 3 (Techno-Economic Study) of the project: the site preparation has been completed, two weeks of tests have been performed and the power generating units to be compared from an economical standpoint have been selected and accurately described. In the experimental part of this effort (task1), the partners in this project demonstrated the feasibility of 100% air replacement with O{sub 2}-enriched flue gas on 1.5MW coal-fired boiler. The air infiltration have been reduced to approximately 5% of the stoichiometry, enabling to reach around 70% of CO{sub 2} in the flue gases. Higher air in-leakage reduction is expected using alternative boiler operating procedure in order to achieve higher CO{sub 2} concentration in flue gas for further sequestration or reuse. The NO{sub x} emissions have been shown considerably lower in O{sub 2}-fired conditions than in air-baseline, the reduction rate averaging 70%. An additional week of tests is scheduled mid October 2003 for combustion parameter optimization, and some more days of operation will be dedicated to mercury emission measurement and heat transfer characterization. Out of the $485k already allocated in this project, $300k has been spent and reported to date, mainly in site preparation ({approx}$215k) and test performance ({approx}$85k). In addition to DOE allocated funds, to date approximately $240k has been cost-shared by the participants, bringing the total project cost up to $540k as on September 30, 2003.

  2. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen-Luntama, J. [VTT Energy, Espoo (Finland). Energy Production Technologies] [and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  3. Are Breast Surgical Operations Clean or Clean Contaminated?

    Science.gov (United States)

    Kataria, Kamal; Bagdia, Amit; Srivastava, Anurag

    2015-12-01

    The breast surgeries are classically taught as clean surgical procedures. The infection rates following breast surgery ranges from 3 to 15 %, which is much higher than infection rates after clean surgery (ranging from 1.5 to 3 %). This high infection rate following breast surgery can be explained by opening of the ductal system to outside world through nipple similar to the gastrointestinal and genitourinary system. We conducted a systematic review of infection following breast surgeries. We searched various randomized controlled trials, meta-analysis, and Cochrane Reviews over PubMed and Medline via the Internet. These evidences were found to support the thesis, "Breast surgeries need to be reclassified as clean-contaminated". We recommend the use of prophylactic antibiotics in breast surgery.

  4. Investigations of operation problems at a 200 MWe PF boiler

    Directory of Open Access Journals (Sweden)

    Peta Sandile

    2015-09-01

    Full Text Available To minimize oxides of nitrogen (NOx emission, maximize boiler combustion efficiency, achieve safe and reliable burner combustion, it is crucial to master global boiler and at-the-burner control of fuel and air flows. Non-uniform pulverized fuel (PF and air flows to burners reduce flame stability and pose risk to boiler safety by risk of reverse flue gas and fuel flow into burners. This paper presents integrated techniques implemented at pilot ESKOM power plants for the determination of global boiler air/flue gas distribution, wind-box air distribution and measures for making uniform the flow being delivered to burners within a wind-box system. This is achieved by Process Flow Modelling, at-the-burner static pressure measurements and CFD characterization. Global boiler mass and energy balances combined with validated site measurements are used in an integrated approach to calculate the total (stoichiometric + excess air mass flow rate required to burn the coal quality being fired, determine the actual quantity of air that flows through the burners and the furnace ingress air. CFD analysis and use of at-the-burner static, total pressure and temperature measurements are utilized in a 2-pronged approach to determine root-causes for burner fires and to evaluate secondary air distribution between burners.

  5. Removal of External Deposits on Boiler Tubes

    Directory of Open Access Journals (Sweden)

    C. P. De

    1970-07-01

    Full Text Available The superheater tubes in Port and Starboard boilers were found to have completely clogged by heavy deposits, which on analysis mainly vanadium pentoxide and sodium sulphmatter. The cleaning of the deposits was accomplished by alternate spraying with 15-20 per cent hydrogen peroxide and washing with hot water jets. Over the past two years, since the date of cleaning, the IN ship is operating without any trouble in the boilers.

  6. Hydrofluoric acid chemical cleaning for running boiler WU Lierong, SHENG Peng%直流锅炉氢氟酸化学清洗

    Institute of Scientific and Technical Information of China (English)

    吴列荣; 盛鹏

    2012-01-01

    本文介绍了运行直流锅炉采用氢氟酸半闭半循环化学清洗方法的工艺特点、控制方法等,详细叙述了化学清洗过程,通过清洗效果比较,说明了半闭半循环化学清洗方法的优势,炎同类型锅炉进行氢氟酸化学清洗提供了经验借鉴。%This article described the run Boiler process characteristics of hydrofluoric acid semi-closed cycle chemical cleaning method, the control method described in detail the chemical cleaning process, cleaning effect, indicating that the advantages of semi-closed cycle chemical cleaning method, for the HF chemical cleaning of the same type of boiler to provide the experience.

  7. 关于新建炉EDTA低浓度清洗的探讨%Discussions on chemical cleaning of new boiler with low concentration EDTA

    Institute of Scientific and Technical Information of China (English)

    饶勇

    2012-01-01

    This thesis expounds the basic principles of cleaning boiler with EDTA, and technics, methods, controlling main points for the chemical cleaning of new boiler with low concentration EDTA. By comparing the economical efficiency between low concentration EDTA cleaning and coordination EDTA cleaning, it is provided the direction for the low concentration EDTA cleaning.%阐述了EDTA清洗锅炉的基本原理,低浓度清洗新建炉的工艺、方法及控制要点,EDTA低浓度清洗与协调EDTA清洗的经济性比较,为新建炉EDTA低浓度清洗探索了方向。

  8. Flue gas cleaning for co-combustion of waste in biomass boilers 10-25 MW; Roekgasrening vid samfoerbraenning i biobraenslepannor i storleken 10-25 MW

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Larsson, Sara [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2003-11-01

    Incineration of waste fuel in existing biomass boilers in the power range 10-25 MW is not very common in Sweden today. With increasing waste streams it will be interesting to use such fuel also in these types of boilers. This report gives a description of which regulations you have to comply with when you start to burn waste fuel, the increasing costs it will bring, and different types of flue gas cleaning equipment that are available. For existing boilers the EC-directive for incineration of waste will have to be implemented from 2005. Newly built boilers have to implement the directive from the start. The new requirements that have to be met for co-combustion plants are: The flue gas has to have a temperature of 850 deg C or more for at least two seconds in the combustion chamber. Exceptions can be allowed, but then the emission limit for CO for waste combustion must be met. The emission limit will then be 50 mg/Nm{sup 3} at 11 % O{sub 2}. Exceptions can be allowed for fluid-bed combustion if 100 mg/Nm{sup 3} at 11 % O{sub 2} as a hourly average can be met. There has to be a fuel handling system that automatically stops the waste flow if the temperature drops below 850 deg C, or when any of the emission limit values are exceeded. Some operating parameters have to be measured continuously. Emission limit values for dust, TOC, HCl, HF, SO{sub 2}, NO{sub x}, CO, metals, dioxins and furans. Increased documentation, reporting and control. This report has been focusing on how to meet the regulations on emissions to air. Following conclusions have been drawn: To avoid exceeding the limit value for dust emission a bag filter or an electric precipitator will be needed. Multi-cyclones are not enough. If the limit value for dust is met, the limit value of metals will also be met. To avoid exceeding the limit value for chloride a flue gas condenser/scrubbing tower or a dry flue gas cleaning system is needed, if the waste fuel is not very low in chloride. With a low sulphur

  9. Advanced, Low/Zero Emission Boiler Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Babcock/Wilcox; Illinois State Geological; Worley Parsons; Parsons Infrastructure/Technology Group

    2007-06-30

    In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

  10. VERIFICATION TESTING OF EMISSIONS FROM THE COMBUSTION OF A-55 CLEAN FUELS IN A FIRETUBE BOILER

    Science.gov (United States)

    The report gives results of testing three fuels in a small (732 kW) firetube package boiler to determine emissions of carbon monoxide (CO), nitrogen oxide (NO), particulate matter (PM), and total hydrocarbons (THCs). The tests were part of EPA's Environmental Technology Verificat...

  11. Risk Analysis and Safety Protection of Chemical Cleaning of Boiler%锅炉化学清洗的危险性分析及安全防护

    Institute of Scientific and Technical Information of China (English)

    蔡丽霞

    2015-01-01

    本文针对锅炉化学清洗中存在的危险性进行分析,讲述了化学药剂的危害,提出了组织协调与环境控制的重要性,并从锅炉化学清洗前、化学清洗过程及施工环境三个方面说明了锅炉化学清洗的安全防护措施,以有效地预防事故的发生。%This paper analyzes the existent risk in chemical cleaning of boiler, tells the hazards of chemicals, raises the importance of organizational coordination and environmental controls, and describes the safety protection measures of boiler’s chemical cleaning in terms of before the boiler chemical cleaning, chemical cleaning process and the working environment.

  12. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Fabienne Chatel-Pelage

    2004-01-01

    This document reviews the work performed during the quarter October-December 2003. Task 1 (Site Preparation) had been completed in the previous reporting period. In this reporting period, one week of combustion parameters optimization has been performed in Task 2 (experimental test performance) of the project. Under full-oxy conditions (100% air replacement with O{sub 2}-enriched flue gas) in 1.5MW{sub th} coal-fired boiler, the following parameters have been varied and their impact on combustion characteristics measured: the recirculated flue gas flow rate has been varied from 80% to 95% of total flue gas flow, and the total oxygen flow rate into the primary air zone of the boiler has been set to levels ranging from 15% to 25% of the total oxygen consumption in the overall combustion. In current reporting period, significant progress has also been made in Task 3 (Techno-Economic Study) of the project: mass and energy balance calculations and cost assessment have been completed on plant capacity of 533MW{sub e} gross output while applying the methodology described in previous reporting periods. Air-fired PC Boiler and proposed Oxygen-fired PC Boiler have been assessed, both for retrofit application and new unit. The current work schedule is to review in more details the experimental data collected so far as well as the economics results obtained on the 533MWe cases, and to develop a work scope for the remainder of the project. Approximately one week of pilot testing is expected during the first quarter of 2004, including mercury emission measurement and heat transfer characterization. The project was on hold from mid-November through December 2003 due to non-availability of funds. Out of the {approx}$785k allocated DOE funds in this project, $497k have been spent to date ($480 reported so far), mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $330k has been cost-shared by the

  13. Construction robot force control in cleaning operations

    Science.gov (United States)

    Zhou, Y.; Skibniewski, M. J.

    1994-01-01

    Basic surface treatment tasks on construction sites that can be performed by robots include the spraying, cleaning, and finishing of surfaces. In the present paper, a construction robot is proposed for accomplishing a variety of cleaning tasks in construction. Specifically, the force-control problem in cleaning a surface is studied. The paper shows that a force sensor can be used not only to monitor the force acting at the contact points, but also to identify the uncertainties of the unstructured construction environment. A different formulation for the external force is presented. With this formulation, the external force on the end-effector is presented as a function of the contact force, contact torque, and constraint conditions, but not the actuated torque in the joint space. Therefore, the force-control problem is simplified to compensate for the external force and to exert a desired force. One advantage fo this approach is that the original PID position control loop of an industrial robot is retained so that the time-consuming computed torque method is avoided. The proposed control scheme can be applied to numerous cleaning tasks with hard contact regardless of the different nature of the surface.

  14. Capital and operating costs for industrial boilers. Final report Apr-Jun 79

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, L.L.; AbrahaM, J.P.; Noe, N.D.; Forste, D.S.; Kimball, H.T.

    1979-06-01

    The report provides estimates of capital and operating costs for industrial boilers. Costs are related to the type of fuel fired, firing design and rated capacity. Both package and field-erected boilers are evaluated. Fuels considered include coal, residual oil, distillate oil and natural gas. Firing designs for coal include underfeed-stoker, spreader-stoker and pulverized. Rated capacities range from 15(10 to the 6th)Btu/hr for oil and gas to 700(10 to the 6th)Btu/hr for coal. Costs are developed on a study estimate basis. Individual boiler cost estimates were plotted and cost equations developed for total equipment, installation (direct and indirect) and operating costs (variable and fixed).

  15. Thermal analysis of a solar pond power plant operated with a direct contact boiler

    Science.gov (United States)

    Sonn, A.; Letan, R.

    1981-11-01

    A solar pond power plant operated with a direct contact boiler was thermally analyzed. A binary cycle system of concentrated brine, and an organic working fluid were considered. Brine temperature of 80 C, condensation at 30 C, a 75 percent efficient turbine, and 70 percent efficient pumps were specified for the analysis. The current study involved six working fluids: butane, pentane, hexane, and freons R113, R114, R12. Each of these fluids exhibited a maximum efficiency of the system at characteristic operating conditions of the boiler. The system efficiency increased as the boiler pressure approached that of the pond. Net electrical outputs of 7-9 percent of the heat inputs were obtained for the low pressure fluids, such as pentane, hexane, and R113. Gravity flow of brine to boiler increased these values to 8-11 percent. Solute losses in brine by direct contact in boiler were estimated for pentane, as 125 kg per year per sq km of pond, or 63 kg/MWe-year. Similar orders of magnitude are obtained for the other fluids.

  16. Analysis of Boiler Operational Variables Prior to Tube Leakage Fault by Artificial Intelligent System

    Directory of Open Access Journals (Sweden)

    Al-Kayiem Hussain H.

    2014-07-01

    Full Text Available Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes the rules of the Artificial Intelligent Systems to diagnosis the boiler variables prior to tube leakage occurrence. An Intelligent system based on Artificial Neural Network was designed and coded in MATLAB environment. The ANN was trained and validated using real site data acquired from coal fired power plant in Malaysia. Ninety three boiler operational variables were identified for the present investigation based on the plant operator experience. Various neural networks topology combinations were investigated. The results showed that the NN with two hidden layers performed better than one hidden layer using Levenberg-Maquardt training algorithm. Moreover, it was noticed that hyperbolic tangent function for input and output nodes performed better than other activation function types.

  17. Design, construction, operation and evaluation of a prototype anthracite culm combustion boiler unit. Facility test plan: startup and shakedown, parametric studies and long term operation

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This proposed performance study is to be performed in the anthracite culm prototype boiler located at Paxinos, Pennsylvania. The boiler is designed to produce 23,400 lb/hr of steam of 200 psig. Effects of operating variables on combustion efficiency, sulfur retention, erosion and corrosion will be analyzed during the runs. The boiler will be operated to determine its technical, economic and environmental performance and to project the viability of it for commercial operation. After the initial testing, the boiler performance will be evaluated over the long term operation.

  18. MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging

    Directory of Open Access Journals (Sweden)

    Leland Weiss

    2012-04-01

    Full Text Available Increasing world-wide energy use and growing population growth presents a critical need for enhanced energy efficiency and sustainability. One method to address this issue is via waste heat scavenging. In this approach, thermal energy that is normally expelled to the environment is transferred to a secondary device to produce useful power output. This paper investigates a novel MEMS-based boiler designed to operate as part of a small-scale energy scavenging system. For the first time, fabrication and operation of the boiler is presented. Boiler operation is based on capillary action that drives working fluid from surrounding reservoirs across a heated surface. Pressure is generated as working fluid transitions from liquid to vapor in an integrated steamdome. In a full system application, the steam can be made available to other MEMS-based devices to drive final power output. Capillary channels are formed from silicon substrates with 100 µm widths. Varying depths are studied that range from 57 to 170 µm. Operation of the boiler shows increasing flow-rates with increasing capillary channel depths. Maximum fluid mass transfer rates are 12.26 mg/s from 170 µm channels, an increase of 28% over 57 µm channel devices. Maximum pressures achieved during operation are 229 Pa.

  19. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ovidiu Marin; Fabienne Chatel-Pelage

    2003-07-01

    This document reviews the work performed during the quarter April-June 2003. The main focus of this quarter has been the site preparation (task 1) for the test campaign scheduled in September/October 2003. Task 3 (Techno-economical assessment) has also been initiated while selecting the methodology to be used in the economics analysis and specifying the plants to be compared: In Task 1 (Site Preparation), the process definition and design activities have been completed, the equipment and instruments required have been identified, and the fabrication and installation activities have been initiated, to implement the required modifications on the pilot boiler. As of today, the schedule calls for completion of construction by late-July. System check-down is scheduled for the first two weeks of August. In Task 2 (Combustion and Emissions Performance Optimization), four weeks of testing are planned, two weeks starting second half of August and two weeks starting at the end of September. In Task 3 (Techno-Economic Study), the plants to be evaluated have been specified, including baseline cases (air fired PC boilers with or without CO{sub 2} capture), O{sub 2}-fired cases (with or without flue gas recirculation) and IGCC cases. Power plants ranging from 50 to 500MW have been selected and the methodology to be used has been described, both for performance evaluation and cost assessment. The first calculations will be performed soon and the first trends will be reported in the next quarter. As part of Task 5 (Project Management & Reporting), the subcontract between Babcock&Wilcox and American Air Liquide has been finalized. The subcontract between ISGS and American Air Liquide is in the final stages of completion.

  20. LHC abort gap cleaning studies during luminosity operation

    CERN Document Server

    Bartmann, W; Bracco, C; Bravin, E; Goddard, B; Höfle, W; Jacquet, D; Jeff, A; Kain, V; Meddahi, M; Roncarolo, F; Uythoven, J; Valuch, D; Gianfelice-Wendt, E

    2012-01-01

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  1. Effect of combustion catalyst on the operation efficiency of steam boilers

    Science.gov (United States)

    Kapustyanskii, A. A.

    2014-09-01

    The state of the energy market of the Ukraine is analyzed. The priority of using local, low-grade solid fuel according to its flame combustion in power boilers of thermal power plants and heat and power plants in the short-term perspective is proven. Data of expert tests of boilers of TPP-210A, BKZ-160-100, BKZ-210-140, Ep-670-140, and TGM-84 models with the investigation of the effect of the addition of combustion catalyst into primary air duct on their operation efficiency are represented. Positive results are attained by burning the anthracite culm or its mixture with lean coal in all range of operating loads of boilers investigated. The possibility to eliminate the consumption of "backlighting" high-reactive fuel (natural gas or fuel oil) and to operate at steam loads below the technical minimum in the case of burning nonproject coal is given. Problems of the normalization of liquid slag run-out without closing the boiler taphole are solved.

  2. Innovative Clean Coal Technology (ICCT): 500-MW demonstration of advanced wall-fired cmbustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Field chemical emissions monitoring, Overfire air and overfire air/low NO{sub x} burner operation: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report summarizes data gathered by Radian Corporation at a coal-fired power plant, designated Site 16, for a program sponsored by the United States Department of Energy (DOE), Southern Company Services (SCS), and the Electric Power Research Institute (EPRI). Concentrations of selected inorganic and organic substances were measured in the process and discharge streams of the plant operating under two different types of combustion modifications: overfire air (OFA) and a combination of overfire air with low-NO{sub x} burners (OFA/LNB). Information contained in this report will allow DOE and EPRI to determine the effects of low-NO{sub x} modifications on plant emissions and discharges. Sampling was performed on an opposed wall-fired boiler burning medium-sulfur bituminous coal. Emissions were controlled by electrostatic precipitators (ESPs). The testing was conducted in two distinct sampling periods, with the OFA test performed in March of 1991 and the OFA/LNB test performed in May of 1993. Specific objectives were: to quantify emissions of target substances from the stack; to determine the efficiency of the ESPs for removing the target substances; and to determine the fate of target substances in the various plant discharge streams.

  3. Comparative study of operation of condensing and traditional boilers equipped with the ORC module for electricity generation

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz

    2017-01-01

    Full Text Available Condensing technology applied to boilers is to make full use of thermal energy contained in the fuel. That means that additionaly the heat from condensation of exhaust gases can be used for the purposes of heating the domestic hot water and to cover the demand for central heating. The study analyzed the operation of the “traditional” boiler equipped with the ORC module as the similar arrangement but with the condensing boiler. In the case of a conventional boiler there is noted a greater fuel consumption and the greater power generated than in the case of the unit with the condensing boiler. Postulated is the indicator in the form of a ratio of turbine power to the mass flow rate of fuel, which in turn gives a higher value for the condensing boiler, thus demonstrating that the operation of condensing boiler ORC module will be more economical. Perspective domestic micro CHP with ORC should be installed in boilers with recovery of heat from condensation from the exhaust gases.

  4. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  5. Developments and operational experience with ceramic boiler wall protection systems in fluidised bed boilers; Entwicklungen und Betriebserfahrungen mit keramischen Rohrwandschutzsystemen in der Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Markus [Juenger + Graeter GmbH, Schwetzingen (Germany); Roschek, Dirk; Ipsen, Christoph [Stadtwerke Flensburg GmbH, Flensburg (Germany)

    2013-02-01

    More alternative fuels, such as biomass, refuse derived fuels, sewage sludge, meat and bone meal etc. are being used in conventional CFB power plants originally designed for coal combustion. However, co-combustion of these materials causes problems which are not always advantageous for continuous plant operation, i.e. mostly substantially higher fouling susceptibility of the plants was noticed. In some cases even a far greater tendency to boiler damage was observed as result of corrosion, erosion, and mechanical effects. Based on these constraints, the cooperation between Stadtwerke Flensburg and Juenger+Graeter (J+G) resulted in the development of a ceramic boiler wall protection system which would significantly reduce the susceptibility to boiler damage in the combustion chamber.

  6. 锅炉化学清洗过程监督的意义与要点%Significance and points of the monitoring in boiler chemical cleaning process

    Institute of Scientific and Technical Information of China (English)

    刘绍银; 李善风

    2011-01-01

    From the structural characteristics of the boiler equipment,cleaning results of evaluation methods,technical expertise,cleaning of the market factors,analysied the meaning of supervision of boiler chemical cleaning process;with the technical supervision of the whole process of thinking;and analysied the qualification and capacity,technical program,the temporary system,drug control,cleaning,process monitoring,cleaning outcome assessment,summary report of the technical aspects of monitoring points.%从锅炉设备结构特点、清洗结果评定方法、技术人员专业水平、清洗工作的市场因素等方面,分析了加强锅炉化学清洗的过程监督的意义;用全过程技术监督的思想,分析了资质与能力、技术方案、临时系统、药品控制、清洗过程监控、清洗结果评估、总结报告各环节技术监督的要点。

  7. Clean coal reference plants: Pulverized encoal PDF fired boiler. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. This report describes the plant design.

  8. Steam boilers: process models for improved operation and design

    NARCIS (Netherlands)

    Ahnert, F.

    2007-01-01

    Biomass combustion can be an economic way to contribute to the reduction of CO2 emissions, which are a main suspect of the so-called greenhouse effect. In order to promote a widespread utilization of biomass combustion, operational problems like fuel treatment, slagging, fouling and corrosion have t

  9. Effect of a condensation utilizer on the operation of steam and hot-water gas-fired boilers

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Roslyakov, P. V.; Supranov, V. M.; Zaichenko, M. N.; Luning, B.

    2015-05-01

    Various designs for condensation utilizers of the low-grade heat of furnace gases that are constructed based on an open-type heat exchanger are considered. Computational investigations are carried out for the effect of the condensation utilizer with tempering and moistening of air on the operation of steam and hot-water boilers burning natural gas. The investigations are performed based on the predeveloped adequate calculating models of the steam and hot-water boilers in a Boiler Designer program complex. Investigation results for TGM-96B and PTVM-120 boilers are given. The enhancement of the operation efficiency of the condensation utilizer can be attained using a design with tempering and moistening of air supplied to combustion that results in an insignificant increase in the temperature of waste gases. This has no effect on the total operation efficiency of the boiler and the condenser unit, because additional losses with waste gases are compensated owing to the operation of the last. The tempering and moistening of air provide a substantial decrease in the temperature in the zone of active combustion and shortening the nitrogen oxide emission. The computational investigations show that the premoistening of air supplied to combustion makes the technical and economic efficiency of boilers operating with the Condensation Utilizer no worse.

  10. Remaining Life Analysis of Boiler Tubes on Behalf of Hoop Stresses Produced During Operation of Power Plant

    Directory of Open Access Journals (Sweden)

    Mohd. Zeeshan Gauri

    2014-07-01

    Full Text Available Boiler tube material plays an important role in efficient power generation from a fossil fuel power plant. In order to meet out the gap between fluids to increase heat available per unit mass flow of steam. Waste heat utilization phenomenon is a big challenge on fossil fuel power plants as after use of high grade coal in thermal power plants the efficiency of power plants is not at the level of required value. Clean and efficient power generation with economical aspects is the basic need of growing power generation plants to justify the quality of power and clean power generation. Life analysis technique to calculate remaining life of boiler tubes at critical zones of high temperature requires much attention and is an important hypothesis in research field. Generation of repetitive and fluctuating stress during flow of high temperature and pressure fluid require proper attention on the methodology to be used to calculate the efficiency of system and absorption efficiency of tube material. In this paper complete mathematical analysis of boiler tubes is conducted for calculation of remaining life of boiler tubes, Hoop stress values are calculated and used with mathematical tool to calculate the efficiency. Hoop stress based calculation of efficiency is more reliable and may give more accurate and practical aspects based results.

  11. 33 CFR 157.224 - Dedicated Clean Ballast Tanks Operations Manual.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.224 Dedicated Clean Ballast Tanks Operations Manual. Each Dedicated Clean Ballast Tanks Operations Manual...

  12. 33 CFR 157.225 - Dedicated clean ballast tanks operations: General.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated clean ballast tanks... VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Dedicated Clean Ballast Tanks Operations § 157.225 Dedicated clean ballast tanks operations: General. The master of a tank vessel...

  13. 33 CFR 157.226 - Dedicated Clean Ballast Tanks Operations Manual: Procedures to be followed.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Dedicated Clean Ballast Tanks Operations § 157.226 Dedicated Clean Ballast Tanks Operations...

  14. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  15. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-01

    The main constituents rendering the engine use of gas produced from biomass are the tar content of the gases (condensing hydrocarbons), which cause problems for pipings, nozzles, and control of combustion. Purification methods, based on catalytic cracking of tars are investigated in the research in order to eliminate these problems. The target of the project is to demonstrate the developed gasification/gas purification process with engine test using PDU-scale equipment. Impurities of biomasses and biomass wastes (alkalis, chlorine, heavy metals), and the ash melting properties restrict in many cases the combined utilisation of biomasses and coal in power plant boilers. The second main task of this research is to investigate the removal of the problematic gas and ash components from the product gas. The sufficient degree of purification should be achieved by as simple and as cheap purification methods as possible. The main tasks of the first year of the project were (a) determination of the dimensioning characteristics of ambient pressure PDU scale cell-catalyst reactor (tests with laboratory-scale equipment), designing and construction of the reactor, (b) to investigate the operation of a cell-catalyst in purification of pre-cracked down-draft gasification gas, (c) acquisition of dimensioning data for dolomite-cracker based on fluidized bed principle, and (d) gasification of the Dutch building demolition waste and Danish straw, and the purification tests with the gases

  16. Thermal-hydraulic modeling of the steady-state operating conditions of a fire-tube boiler

    Directory of Open Access Journals (Sweden)

    Rahmani Ahmed

    2009-01-01

    Full Text Available In this work, we are interested to simulate the thermal-hydraulic behavior of three-pass type fire-tube boiler. The plant is designed to produce 4.5 tons per hour of saturated steam at 8 bar destined principally for heating applications. A calculation program is developed in order to simulate the boiler operation under several steady-state operating conditions. This program is based upon heat transfer laws between hot gases and the fire-tube internal walls. In the boiler combustion chamber, the heat transfer has been simulated using the well-stirred furnace model. In the convection section, heat balance has been carried out to estimate the heat exchanges between the hot gases and the tube banks. The obtained results are compared to the steady-state operating data of the considered plant. A comparative analysis shows that the calculation results are in good agreement with the boiler operating data. Furthermore, a sensitivity study has been carried out to assess the effects of input parameters, namely the fuel flow rate, air excess, ambient temperature, and operating pressure, upon the boiler thermal performances.

  17. 33 CFR 157.212 - Dedicated Clean Ballast Tanks Operations Manual: Not approved.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.212 Dedicated Clean Ballast Tanks Operations Manual: Not approved. If the Dedicated Clean...

  18. Measure Guideline: Condensing Boilers-Optimizing Efficiency and Response Time During Setback Operation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2014-02-01

    Conventional wisdom surrounding space heating has consistently stated two things: size the mechanical systems to the heating loads, and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. The implication of this is that, for setback to be successfully implemented, the heating system must be oversized. This issue is exacerbated further when an outdoor reset control is used with a condensing boiler, because not only is the system matched to the load at design, the outdoor reset control matches the output to the load under varying outdoor temperatures. Under these circumstances, the home may never recover from setback. Special controls to bypass the outdoor reset sensor are then needed. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. The first step is to determine the appropriateness of setback for a particular project. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step-by-step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

  19. Measure Guideline: Condensing Boilers - Optimizing Efficiency and Response Time During Setback Operation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.

    2014-02-01

    Conventional wisdom surrounding space heating has told us a couple of things consistently for several years now: size the mechanical systems to the heating loads and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. The implication of this is that, for setback to be successfully implemented, the heating system must be oversized. This issue is exacerbated further when an outdoor reset control is used with a condensing boiler, because not only is the system matched to the load at design, the outdoor reset control matches the output to the load under varying outdoor temperatures. Under these circumstances, the home may never recover from setback. Special controls to bypass the outdoor reset sensor are then needed. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step by step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

  20. 30 CFR 77.413 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  1. Performance of a domestic pellet boiler as a function of operational loads: Part-2

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V.K.; De Ruyck, J. [Department Mechanical Engineering, Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Bram, S. [Department Mechanical Engineering, Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Department of Industrial Sciences and Technology, Erasmushogeschool Brussel, Nijverheidskaai 170, 1070 Brussel (Belgium); Gauthier, G. [Unite de Thermodynamique et Turbomachines (TERM), Universite Catholique de Louvain (U.C.L.), 1348 Louvain-la-Neuve (Belgium)

    2011-01-15

    Emissions and efficiency of a pellet boiler (40 kW) at nominal load were compared with emissions and efficiency at reduced load, while fired with six biomass pellets. The pellets include reed canary grass (Phalaris arundinacea), pectin waste from citrus shells (Citrus reticulata), sunflower husk (Helianthus annuus), peat, wheat straw (Triticum aestivum) and wood pellets. The measurements of emissions comprised of carbon monoxide (CO), nitrogen oxides (NO{sub x}), sulphur oxides (SO{sub x}) and flue dust mass concentrations (using DINplus and isokinetic sampling techniques). Emissions varied as a function of operational loads, for each type of pellets. The CO emissions were insignificant with reed canary grass (RCG), citrus pectin waste (CPW) and straw pellets at nominal load, however, at reduced load same pellets emitted 1.9, 4.0 and 7.4 times higher CO than wood pellets, respectively. Peat pellets emitted maximum CO at nominal load (4221.1 mgNm{sup -3}, 12.6 times higher than wood pellets) however; at reduced load CO emission was insignificant. The highest NO{sub x} emissions were reported with CPW, which were 3.4 and 4.6 times higher than wood pellets at nominal load and reduced load, respectively. Dust emissions were highest with sunflower husk and lowest with RCG pellets, at both operational modes. The best performance was reported with wood pellets, followed by RCG and pectin pellets, however, wood pellets combustion emitted 1.7 and 2.0 times higher dust{sub DINplus} than RCG at nominal and reduced loads, respectively. Not only fuel specific combustion optimization but also operational load specific optimization is essential for efficient use of agro-pellets in this type of boilers. (author)

  2. Dynamic Exergy Method for Evaluating the Control and Operation of Oxy-Combustion Boiler Island Systems.

    Science.gov (United States)

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu

    2017-01-03

    Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.

  3. 700-MW coal fired sliding pressure operation boiler with improving operational characteristics. ; Chubu Electric Power Co. Inc. Hekinan thermal power station

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, J.; Kiyama, K. (Babcock-Hitachi K.K., Tokyo (Japan))

    1993-02-01

    In response to requirements of improvements of efficiency and operability to provide demand control and environmental preservation in coal fired boilers, Babcock-Hitachi has endeavored to develop a large capacity coal fired boiler. As a result, Babcock-Hitachi has installed a 700MW supercritical sliding pressure operation coal fired once through boiler at the Hekinan Thermal Power Station Unit No.2 of Chubu Electric Power Co. For this coal fired boiler, spiral water wall construction was adopted to stabilize the furnace outlet water temperature via uniform heat absorption at the furnace. A three-stage spray-type attemperator was also applied to the main steam temperature control to improve load controllability and to correspond to a fluctuation of heat absorption at the furnace and the convection pass zone. Moreover, gas recirculation system, parallel gas damper, and intermediate spray attemperator were used to control the reheat steam temperature. The present article describes design summary and results of trial operation of this large capacity coal fired boiler. 11 figs., 3 tabs.

  4. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits

  5. Study of connected system of automatic control of load and operation efficiency of a steam boiler with extremal controller on a simulation model

    Science.gov (United States)

    Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.

    2017-02-01

    The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.

  6. 33 CFR 157.210 - Approved Dedicated Clean Ballast Tanks Operations Manual.

    Science.gov (United States)

    2010-07-01

    ... RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.210 Approved Dedicated Clean Ballast Tanks Operations Manual. If the manuals submitted under § 157.206... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Approved Dedicated Clean...

  7. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  8. 76 FR 36917 - Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for...

    Science.gov (United States)

    2011-06-23

    ... AGENCY Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for TransAlta Centralia Generation, LLC--Coal- Fired Power Plant AGENCY: Environmental Protection Agency (EPA... to a citizen petition asking EPA to object to an operating permit issued by the Southwest Clean...

  9. 锅炉安全运行技术与管理措施%Technology and Management Countermeasures for The Safe Operation of Boilers

    Institute of Scientific and Technical Information of China (English)

    申先锐

    2015-01-01

    锅炉运行由于管理不善而引发的事故时有发生.因此,加强锅炉运行管理,提升锅炉维护保养水平,能够从根本上减小锅炉事故的发生情况,同时也是有效提升锅炉效率的重要措施.%The accidents resulted from poor management on operation of boiler happens occasionally.Therefore ,to strengthen the management on the operation of boiler and improve the maintenance level of the boiler ,can radically reduce boiler related accidents and are also the key to enhancing the efficiency of the boiler .

  10. Flow pattern and cleaning performance of a stationary liquid jet operating at conditions relevant for industrial tank cleaning

    DEFF Research Database (Denmark)

    Feldung Damkjær, N.; Adler-Nissen, Jens; Jensen, B. B. B.

    2017-01-01

    Cleaning of processing tanks by impinging liquid jets is common practice in the food and biotechnology sectors. However, satisfactory prediction of the cleaning performance of such jets has so far only been achieved in small scale experiments. In the present work, cleaning with a horizontal water...... jet was studied using a 19m3 tank and settings applicable to industrial operations; nozzle internal diameters, dN, of 2–5.5mm, cleaning distances, L, of 80–2490mm, and flow rates, Q, of 0.05–3.0m3h−1. Experimental data and model predictions of the behaviour of the jet when striking an unsoiled surface...... showed reasonable agreement for a nozzle with dN=2mm at small cleaning distances (L 80 and 200mm). At greater dN and cleaning distances there was poorer agreement, which was attributed to jet break-up and splatter.Similar observations were made when cleaning a surface soiled with white petroleum jelly...

  11. The Article Deals with the Improvement of Professional Activity Efficiency of Operational Personnel for Boiler-Turbine Department of Power Stations

    Directory of Open Access Journals (Sweden)

    P. Dmitriev

    2012-01-01

    Full Text Available Human factor is one of the main determining factors in providing stability and reliability of power systems operation. In this context it is significant to estimate the level of professional activity efficiency of operational staff for boiler-turbine department of power stations.The article presents developed by the author algorithm of carrying out such research as well as the results of experimental research, carried out in one of the power stations of the state industrial unity “Belenergo” in order to show up the levels of professional activity efficiency of operational personnel (operator of central heat control panel of boilers, senior operator of boiler equipment of turbo-boiler room.

  12. 锅炉效率视角下运行参数的分析与探讨%Analysis and Discussion on Boiler Operating Parameters under Efficiency Perspective

    Institute of Scientific and Technical Information of China (English)

    王庆勇; 陈孟婷; 陈潇阳

    2014-01-01

    锅炉在现代工业中有广泛的应用,研究锅炉运行机制,提高锅炉效率显得尤为重要。在研究锅炉运行参数对锅炉效率的影响中,影响锅炉效率因素主要有排烟温度、灰渣可燃物、送风温度、给水温度、蒸汽压力等。通过查阅文献并结合锅炉的实际情况,构建了每种参数对锅炉效率影响的模型。以NOx与锅炉效率为核心建立多目标优化模型,讨论了NOx对锅炉效率的影响,可指导运行人员优化燃烧流程,进而提高锅炉效率。%The boiler is widely used in modern industry, to study the operation mechanism of boiler and improve boiler efficiency are particularly important. In the research of the impact of boiler operating parameters on boiler efficiency, the main factors affecting the efficiency are mainly exhaust gas temperature, ash fuel, air temperature, water temperature, steam pressure and so on. Through literature and the actual situation of the boiler, the model was constructed for each parameter influence on boiler efficiency. The multi-objective optimization model as the core of NOx and boiler efficiency was built, the effects of NOx on boiler efficiency was discussed, which can guide operators to optimize the combustion process, thus improving the boiler efficiency.

  13. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, LNB, and LNB plus AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with fly ash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing in the LNB+AOFA configuration indicate that at full-load, NO{sub x} emissions and fly ash LOI are near 0.40 lb/MBtu and 8 percent, respectively. However, it is believed that a substantial portion of the incremental change in NO{sub x} emissions between the LNB and LNB+AOFA configurations is the result of additional burner tuning and other operational adjustments and is not the result of the AOFA system. During this quarter, LNB+AOFA testing was concluded. Testing performed during this quarter included long-term and verification testing in the LNB+AOFA configuration.

  14. 33 CFR Appendix D to Part 157 - Example of a Procedure for Dedicated Clean Ballast Tanks Operations

    Science.gov (United States)

    2010-07-01

    ... Dedicated Clean Ballast Tanks Operations D Appendix D to Part 157 Navigation and Navigable Waters COAST... Procedure for Dedicated Clean Ballast Tanks Operations 1. Source. The example procedure for dedicated clean... Protocol. 2. Example Procedure. Dedicated clean ballast tanks operational procedure: (a) Before arrival...

  15. Boiler Chemical Cleaning Corrosion Control Study Of Fe3+%锅炉化学清洗中Fe3+的腐蚀控制研究

    Institute of Scientific and Technical Information of China (English)

    李先国

    2016-01-01

    为了研究SA-213此类材料受到不同Fe3+质量浓度的影响而造成的腐蚀程度,并进一步研究Fe3+受到清洗工作影响的实际情况,就需要在静态的环境下制定试验溶液—甲酸+羟基乙酸(复合有机酸)锅炉清洗液。但需要注意的是,此溶液的配置必须是在使用腐蚀失重法和电化学法的基础上。笔者根据多方面的研究调查得出,金属材质的锅炉或受到Fe3+的严重腐蚀,并且腐蚀的面积会随着金属含量的增加而不断扩散;为了控制不断增长的Fe3+速率,按照相关要求将一定比例的还原剂放入了试验中,并采取了系统隔绝空气的措施,使得剩余酸的浓度得以保持在标准范围,对Fe2+的转换起到了控制作用。%The extent of corrosion in order to investigate sa-213 such materials affected differently Fe3+ concentration is caused, and further study of Fe3+ by cleaning the impact was the actual situation,we need to develop a test solution in a static environment-formic acid and glycolic acid(organic compound)boiler cleaning fluid,but it should be noted that the configuration of this solution must be based on the use of corrosion weight loss and electrochemical measurements on.According to the author of many research surveys,boiler or metal Fe3+ by severe corrosion,corrosion and area with increasing metal content and has continued to spread;in order to control the increasing rate of Fe3+,we will be in accordance with the relevant requirements of certain the concentration ratio of the reducing agent into the test,and to take measures to isolate the air system,the remaining acid is maintained in the standard range, the effective conversion of Fe2+ has played a controlling role.

  16. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... size. The model has been formulated with a specied building-up of the pressure during the start-up of the plant, i.e. the steam production during start-up of the boiler is output from the model. The steam outputs together with requirements with respect to steam space load have been utilized to dene...... of the boiler is (with an acceptable accuracy) proportional with the volume of the boiler. For the dynamic operation capability a cost function penalizing limited dynamic operation capability and vise-versa has been dened. The main idea is that it by mean of the parameters in this function is possible to t its...

  17. Simulation of the Cuttings Cleaning During the Drilling Operation

    Directory of Open Access Journals (Sweden)

    Hussain H. Al-Kayiem

    2010-01-01

    Full Text Available Problem statement: Oil well cleaning is the ability of a drilling fluid to suspend and transport drilled cuttings from the down hole (bit face to the surface. The cleaning performance was affected by many factors such as fluid viscosity, annular flow velocity, angle of inclination and drill cuttings size and shape and. Approach: Navier-Stoke equations, the continuity equation and the power law of non-Newtonian viscosity model were adopted to establish the mathematical model of the cutting transport process in the annulus of the well. The constants of the power law model were evaluated experimentally for three different mud types. The CFD simulation to solve the governing equations was carried out by using FLUENT commercial code. The specifications of the particles, the pumping head and feeding conditions were obtained from a drilling site in Sudan. Results: Simulation of the mud flow in the annulus had shown that in spite of the laminar nature of the flow, the velocity profile was flattening over wide area of the annulus. Such condition was referred to as fog flow and was preferable to produce uniform drag distribution to lift the particles without rotation during the transportation process. The analysis had been conducted for various mud charging rates ranging from 600-900 GPM, in 30° diverted orientation well. The investigation of cuttings size was conducted for 2.54, 4.45 and 7 mm. Also, the effect of the cuttings shape with 1, 0.9 and 0.85 was investigated and it was found that higher sphereicity have better cleaning efficiency. Conclusion: The analyses revealed that for 30° diverted orientation; the effective cleaning performance was achieved when the drilling mud charging was higher than 800 GPM for all types of tested cuttings. The simulation results revealed that there was a significant effect of the cuttings size on the cuttings transport. Fine particles are the easiest to clean out.

  18. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...

  19. 75 FR 18500 - Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean...

    Science.gov (United States)

    2010-04-12

    ... AGENCY Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean..., titled Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean Water Act... environmental review of Appalachian surface coal mining operations under the Clean Water Act,...

  20. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  1. 火电厂锅炉运行故障诊断分析%Fault Diagnosis Analysis of Boiler Operation in Thermal Power Plant

    Institute of Scientific and Technical Information of China (English)

    解文强; 王侠

    2015-01-01

    锅炉系统在火电厂中,较容易出现故障,影响火电厂的运行性能.火电厂为了提高锅炉运行的质量水平,全面落实故障诊断措施的应用,改善锅炉运行的状态,进而满足火电厂的需求.因此,本文重点分析火电厂锅炉运行中的故障诊断.%In the operation of thermal power plant, the most important boiler structure provides sufficient power for thermal power plant. In the thermal power plant, the boiler system is prone to failure, which affects the operation per-formance of the thermal power plant. In order to improve the quality level of boiler operation, the thermal power plant fully implements the application of fault diagnosis measures, and improves the state of boiler operation, and thus meets the needs of the thermal power plant. Therefore, this paper focuses on the analysis of the fault diagnosis of boil-er operation in power plant.

  2. Providing Boiler Inspections at US Army Installations: How to Perform Internal/Operational, Efficiency, and Emissions Testing

    Science.gov (United States)

    2013-08-01

    following manner: 1. To secure the boiler , the steam header valve is closed. At this time, the boiler is allowed time to cool down to prevent injury to...Fuel Train and the Burner, and that the steam and water lines are directly connected to the unit. 2. Perform an external inspection of the boiler ...including visual inspec- tion of the fuel train, vent piping, safety relief valves and discharge pip- ing, steam and water piping and the boiler

  3. Human Error Assessmentin Minefield Cleaning Operation Using Human Event Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Hajiakbari

    2015-12-01

    Full Text Available Background & objective: Human error is one of the main causes of accidents. Due to the unreliability of the human element and the high-risk nature of demining operations, this study aimed to assess and manage human errors likely to occur in such operations. Methods: This study was performed at a demining site in war zones located in the West of Iran. After acquiring an initial familiarity with the operations, methods, and tools of clearing minefields, job task related to clearing landmines were specified. Next, these tasks were studied using HTA and related possible errors were assessed using ATHEANA. Results: de-mining task was composed of four main operations, including primary detection, technical identification, investigation, and neutralization. There were found four main reasons for accidents occurring in such operations; walking on the mines, leaving mines with no action, error in neutralizing operation and environmental explosion. The possibility of human error in mine clearance operations was calculated as 0.010. Conclusion: The main causes of human error in de-mining operations can be attributed to various factors such as poor weather and operating conditions like outdoor work, inappropriate personal protective equipment, personality characteristics, insufficient accuracy in the work, and insufficient time available. To reduce the probability of human error in de-mining operations, the aforementioned factors should be managed properly.

  4. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  5. Additive for reducing operational problems in waste fired grate boilers; Additiv foer att minska driftproblem vid rostfoerbraenning av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Davidsson, Kent; Hermansson, Sven; Liske, Jesper; Larsson, Erik; Jonsson, Torbjoern; Zhao, Dongmei

    2013-09-01

    The combustion of waste implies a risk for deposits and corrosion in different parts of the combustion facility. In recent years, research and tests have been performed in order to find ways to mitigate these problems in waste-fired plants. Most waste-fired plants in Sweden are grates whereas most of the research has been carried out in fluidized bed plants. The purpose of this project is to examine whether co-firing of sewage sludge and waste can reduce deposition and corrosion also in grate-fired boilers as has been shown in fludised beds. The objective is to determine the deposit growth and its composition as well as describing the initial corrosion attack. Representing sulphur-rich waste, elementary sulphur is also added to the waste and thereby compared with sludge as an additive. The target groups for this project are plant owners, researchers, consultants and authorities. Tests were performed in a 15 MWth waste-fired boiler with moving grate at Gaerstadverket, Tekniska Verken (Linkoeping). The boiler produces saturated steam of 17 bars and 207 deg C, and the normal fuel mixture contains of household and industry waste. The results show that co-firing with as heigh as 20 weight-% SLF (25 energy-%) was possible from an operational point of view, but the deposit rate increased especially at the two warmest positions. Generally the deposit rate was highest in the position closest to the boiler and decreased further downstream. During the tests a lot higher amount of SLF than normal was used (recommended mix is 5-10 % of SLF) this to be able to see effects of the different measures. Up to 23 weight-% of the rather moist sewage sludge was possible to fire when co-firing waste and SLF, without addition of oil. By adding sludge the deposit rate decreased but the increase upon adding SLF to ordinary waste was not totally eliminated. In the tests 'Avfall and SLF' the deposits were rich in chlorine. High concentrations of metal chlorides were found in the

  6. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  7. Sootblowing optimization for improved boiler performance

    Science.gov (United States)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  8. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... to operate a boiler plant dynamically means that the boiler designs must be able to absorb any fluctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...

  9. Modelling, simulating and optimizing Boilers

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verication as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and re tube boilers. A detailed dynamic model...... of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic- Equation system. Being able to operate...... a boiler plant dynamically means that the boiler designs must be able to absorb any uctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...

  10. Oxy-fired boiler unit and method of operating the same

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Xinsheng; Zhang, Jundong; Joshi, Abhinaya; McCombe, James A.; Levasseur, Armand A.

    2016-12-06

    An oxy-combustion boiler unit is disclosed which includes a furnace for combusting fuel and for emitting flue gas resulting from combustion. The furnace has first, second and third combustion zones, and an air separation unit for separating oxygen gas from air and providing a first portion of the separated oxygen to a first oxidant flow, a second portion to a second oxidant flow, and a third portion of the separated oxygen gas to the first, second, and third zones of the furnace. A controller can cause the separated oxygen gas to be distributed so that the first and second oxygen flows have a desired oxygen content, and so that the first, second, and third zones of the furnace receive a desired amount of oxygen based on a combustion zone stoichiometry control.

  11. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    The properties of the ash from co-firing of coal and straw have a large influence on boiler operation, flue gas cleaning equipment and appropriate utilization of the fly ash. A study on the fuel composition and local conditions influence on fly ash properties has been done by making entrained flo...

  12. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  13. Super Boiler 2nd Generation Technology for Watertube Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  14. Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit. Quarterly technical progress report, October 1-December 21, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis, Phase II - Prototype Plant Construction and Phase III - Start-Up and Operation during the period October 1, 1981 through December 31, 1981. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. Seven shakedown tests were run. Start-up and shakedown testing was completed. Four parametric tests were run. Performance data are presented with the exception of boiler efficiency which will be reported once chemical analyses are completed. Total boiler operation time through the end of this quarter - 1225 h, 50 min; operating time on culm and culm/limestone - 682 h, 43 min. Inspection revealed no problems with boiler tube wear. Sulfur capture greater than 94% was demonstrated (design is 88%). A turndown of better than 4 to 1 was shown (design is 2.5 to 1). Computer control of most of the loops has been successful and manual control was also demonstrated.

  15. Optimization of Load Assignment to Boilers in Industrial Boiler Plants

    Institute of Scientific and Technical Information of China (English)

    CAO Jia-cong; QIU Guang; CAO Shuang-hua; LIU Feng-qiang

    2004-01-01

    Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.

  16. Boilers a practical reference

    CERN Document Server

    Rayaprolu, Kumar

    2012-01-01

    AAbrasion and Abrasion Index (see Wear)Absolute or Dynamic Viscosity (æ) (see Viscosity in Fluid Characteristics)Acid Cleaning (see Commissioning)Acid Rain (also see Air Pollution Emissions and Controls and Gas Cleaning)Acid Sludge (see Refuse Fuels from Refinery in Liquid Fuels)Acid Smuts (see Oil Ash)Acoustic Soot Blowers (see Sonic Horns)Acoustic Enclosure (see Noise Control)Acoustic Leak Detection SystemAdiabatic Flame Temperature (see Combustion)Aeroderivative (see Types of GTs in Turbines, Gas)Ageing of Boiler ComponentsAgro-Fuels and FiringAir Ducts (see Draught Plant)Air Flow Measureme

  17. The investigation of the impact of basic operational parameters on the dynamics of water jacket in a biomass boiler using numerical and experimental methods

    Directory of Open Access Journals (Sweden)

    Szubel Mateusz

    2015-01-01

    Full Text Available Biomass boiler application, despite its many advantages, is dependent upon many technical aspects, which require tests and optimization. Because of practical constraints, one of the most problematic areas of research is the analysis of phenomena occurring inside the water jacket of the boiler during the combustion process. The issue referred to above is significant due to its direct impact on the heating up of the operating medium for current power of the device and the total efficiency. The paper presents the analytical possibilities of the operating medium in a biomass boiler water jacket. The experimental works conducted as a part of the study were performed using an actual device – EKOPAL RM 40 straw boiler. They were aimed at defining the values of significant boundary conditions. Resistance thermometers and K-type thermocouples connected to a data acquisition system were placed in selected points of the water jacket and the combustion chambers to allow the monitoring of the conditions of the water heating process during biomass combustion. A measurement of inlet water mass flow rate was performed. To develop a numerical model of heat transfer into the water jacket, ANSYS CFX software was applied. The results of the experiments and simulations were compared and discussed. The paper describes the methodology and instruments used to perform the experimental studies, as well as some optimization solutions developed based on the results of the numeric alanalysis.

  18. Estimation of Scale Deposition in the Water Walls of an Operating Indian Coal Fired Boiler: Predictive Modeling Approach Using Artificial Neural Networks

    Science.gov (United States)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-04-01

    Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.

  19. The Article Deals with the Improvement of Professional Activity Efficiency of Operational Personnel for Boiler-Turbine Department of Power Stations

    OpenAIRE

    Dmitriev, P.

    2012-01-01

    Human factor is one of the main determining factors in providing stability and reliability of power systems operation. In this context it is significant to estimate the level of professional activity efficiency of operational staff for boiler-turbine department of power stations.The article presents developed by the author algorithm of carrying out such research as well as the results of experimental research, carried out in one of the power stations of the state industrial unity “Belenergo” ...

  20. Long-term operational experiences in the preparation of river Elbe water to boiler feedwater with membrane processes; Langzeitbetriebserfahrungen bei der Aufbereitung von Elbewasser zu Kesselspeisewasser mit Membranverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Juergen [OSMO Membrane Systems GmbH, Korntal-Muenchingen (Germany); Batram, Juergen; Portner, Ronny [Aurubis AG, Hamburg (Germany)

    2013-09-01

    In Hamburg/Germany, the Aurubis AG (formerly Norddeutsche Affinerie) operates an industrial power plant to generate electricity and steam. For the past ten years, the annual demand of boiler feedwater (350,000 m{sup 3}) has been obtained with an economical water treatment plant based on membrane processes directly from the river Elbe. The water treatment plant called NAqua built uses roughly pre-filtered river water. The produced water quality corresponds to the requirements of the current VGB-Standard 450 'Feedwater, Boiler Water and Steam Quality for Power Plants/Industrial Plants'. Since August 2002, the water treatment plant has been successfully in operation, and based on the described technique it belongs to the least recently operating plants in Germany. (orig.)

  1. Hot Corrosion Studies of HVOF-Sprayed Coating on T-91 Boiler Tube Steel at Different Operating Temperatures

    Science.gov (United States)

    Bhatia, Rakesh; Singh, Hazoor; Sidhu, Buta Singh

    2013-11-01

    The aim of the present work is to investigate the usefulness of high velocity oxy fuel-sprayed 75% Cr3C2-25% (Ni-20Cr) coating to control hot corrosion of T-91 boiler tube steel at different operating temperatures viz 550, 700, and 850 °C. The deposited coatings on the substrates exhibit nearly uniform, adherent and dense microstructure with porosity less than 2%. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of uncoated and coated samples. The corrosion products of the coating on the substrate are analyzed by using XRD, SEM, and FE-SEM/EDAX to reveal their microstructural and compositional features for the corrosion mechanisms. It is found that the coated specimens have shown minimum weight gain at all the operating temperatures when compared with uncoated T-91 samples. Hence, coating is effective in decreasing the corrosion rate in the given molten salt environment. Oxides and spinels of nickel-chromium may be the reason for successful resistance against hot corrosion.

  2. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  3. Design, construction, operation and evaluation of a prototype culm combustion boiler/heater unit. Final design of prototype unit

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    A final design of a prototype anthracite culm combustion boiler has been accomplished under Phase I of DOE Contract ET-78-C-01-3269. The prototype boiler has been designed to generate 20,000 pounds per hour of 150 psig saturated steam using low Btu (4000 Btu per pound) anthracite culm as a fuel. This boiler will be located at the industrial park of the Shamokin Area Industrial Corporation (SAIC). This program is directed at demonstrating the commercial viability of anthracite culm fueled FBC steam generation systems.

  4. Operating costs and plant options analysis for the Shamokin fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Klett, M.G.; Dowdy, T.E.; Litman, R.

    1984-03-01

    This report presents the results of a study that examined the operating costs and options to improve the Shamokin Atmospheric Fluidized Bed Combustion Demonstration Plant located near Shamokin, Pennsylvania. The purpose of this study was to perform an operating cost analysis and compare the results with projected operating costs. An analysis was also made to identify possible cost savings options. Two base case scenarios were developed for this study: the first scenario assumed that the plant operated in a manner similar to operations during the extended test program; and the second scenario was concerned with two options. One option assumed upgrading the plant to achieve continuous full load operation, restarting, and used revised costs and revenues. The second assumed reconfiguring the plant for cogeneration.

  5. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  6. ECUT energy data reference series: boilers

    Energy Technology Data Exchange (ETDEWEB)

    Chockie, A.D.; Johnson, D.R.

    1984-09-01

    Information on the population and fuel consumption of water-tube, fire-tube and cast iron boilers is summarized. The use of each boiler type in the industrial and commercial sector is examined. Specific information on each boiler type includes (for both 1980 and 2000) the average efficiency of the boiler, the capital stock, the amount of fuel consumed, and the activity level as measured by operational load factor.

  7. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Abdullah Nur Aziz; Yul Yunazwin Nazaruddin; Parsaulian Siregar; Yazid Bindar

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  8. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-25

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  9. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-25

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  10. Clean heating with wood. An electrostatic separator reduces particulate matter emissions from biomass boilers; Sauber heizen mit Holz. Ein elektrostatischer Abscheider senkt die Feinstaub-Emissionen von Biomassekesseln

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Franz

    2016-08-01

    Despite considerable advances in firing technology, harmful particulate matter is produced when wood is combusted. Electrostatic precipitators, however, filter up to 90 per cent of particulate emissions from biomass boilers. These therefore enable wood burners to use a wider range of fuel and still meet the tightened requirements of Germany's 1st Ordinance on the Implementation of the Federal Immission Control Act. The major advantage: Both new and old heating plants can benefit from the new system.

  11. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  12. Bio boiler - Control conditions. Part 1: Model development and analysis of operating conditions; Biokedel - Reguleringsmaessige forhold. Del 1: Modeludvikling og analyse af dynamiske driftsforhold

    Energy Technology Data Exchange (ETDEWEB)

    Boecher Poulsen, K.; Christensen, Torkild; Mortensen, Jan; Runge Kristoffersen, J.; Kristmundsson, E. [Tech-wise A/S (Denmark); Moekbak, T.; Mortensen, Hans Peter [Elsam A/S (Denmark)

    2002-12-15

    This report focuses on the model-building part of the PSO project, 'Control Conditions Bio-boiler'. In the project, which treats dynamic simulation of biomass fired power plants via the MMS software, a certain number of straw/wood chip modules have been built, together with a combustion module which, when connected to the existing MMS modules, can be used for dynamic simulation. Furthermore, a certain number of continuous and discrete components have been built which, together with the remaining MMS modules will create a complete model of the active part of the control structure under the most common operation conditions. By means of the developed straw, combustion and control modules, a model of Enstedvaerket's bio-boiler is built (without wood chip super-heater), including practically all auxiliary control mechanisms. In the report the primary problems caused by the development of the model are discussed, typically numerical problems. First of all it is discussed how a steady state condition can be reached from a nonphysical condition at the start-up of the simulation. After reaching a steady state condition at full load, the boiler load is reduced by adjusting the desired live steam flow setpoint value and the load gradient (as it would be done from the control room). While reducing to part load, one straw line is closed down, as it would be done in 'real life'. From part load, the boiler load is once again in the same way increased to full. (BA) The simulation results are then compared to measurements made on the same boiler during load reduction and load increase.

  13. Suction drain tip culture in orthopaedic surgery: a prospective study of 214 clean operations

    OpenAIRE

    Sankar, B.; P Ray; Rai, J.

    2004-01-01

    We conducted a prospective cohort study in order to determine whether suction drain specimen cultures from orthopaedic surgery predicted an early wound infection. We included 218 consecutive clean orthopaedic operations requiring drains in one unit over a period of 1 year. The suction drain tip, drain fluid and wound discharge specimens were cultured, and the surgical wound was followed up for 3 months. There were six deep and two superficial wound infections. Wound infection was significantl...

  14. Welded repair joints of boiler steels following operation in creep conditions exceeding the design time of operation

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, J.; Paszkowska, H.; Zielinski, A. [Institute for Ferrous Metallurgy, Gliwice (Poland)

    2010-07-01

    The assessment of suitability for further operation for materials and welded repair joints of thick-walled main steam pipeline components, made of steel 14MoV63, as well as steam superheater outlet headers made of steel X20CrMoV121 following operation in creep conditions in time periods considerably longer than the specified calculated time of operation. Strength properties, impact strength and transition temperature into brittle condition, as well as structure condition have been evaluated. On the basis of shortened creep tests, the residual life and disposable residual life of materials and welded joints have been determined. Material properties following operation and those of fabricated circumferential welded repair joints have been compared. The condition of examined components and suitability of the fabricated welded repair joints for further operation have been assessed. (orig.)

  15. 40 CFR 63.5734 - What standards must I meet for resin and gel coat application equipment cleaning operations?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What standards must I meet for resin... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5734 What standards must I meet for resin and gel coat application equipment cleaning...

  16. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  17. Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

  18. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Science.gov (United States)

    2010-07-01

    ... minimum pressure drop and liquid flow-rate at or above the operating levels established during the... applicable emission limits for mercury and/or total selected metals. 2. Fabric filter control a. Install and operate a bag leak detection system according to § 63.7525 and operate the fabric filter such that the...

  19. Research of Boiler Combustion Regulation for Reducing Nox Emission and its Effect on Boiler Efficiency

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-dong; LUAN Tao; CHENG Lin; XIAO Kun

    2007-01-01

    The effect of boiler combustion regulation on Nox emission of two 1025t/h boilers has been studied. The researches show that Nox emission is influenced by coal species, operation conditions, etc, and can be reduced by regulating the combustion conditions. The effect of combustion regulation on boiler efficiency has also been checked.

  20. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... unit toincrease the overall energy conversion efficiency.The dynamic model of the plant is coupled with a one-dimensional model of the once-through boilerfed by the exhaust thermal power of the gas turbine. The heat exchanger model uses a distributedcross-flow physical topology and local correlations...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  1. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo;

    2015-01-01

    for single- and two-phase heat transfer coefficients.The results indicate that severe load changes (0.4–1.0 MWs-1) can lead to exceedance of thetemperature limit of fluid decomposition for a period of 10 min. Ramp rates lower than 0.3MWs-1 areacceptable considering the stability of the electric grid......This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  2. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  3. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  4. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, October 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal.

  5. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  6. Optimization of cascade hydropower system operation by genetic algorithm to maximize clean energy output

    Directory of Open Access Journals (Sweden)

    Aida Tayebiyan

    2016-06-01

    Full Text Available Background: Several reservoir systems have been constructed for hydropower generation around the world. Hydropower offers an economical source of electricity with reduce carbon emissions. Therefore, it is such a clean and renewable source of energy. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue. Yet, reservoir systems are inefficiently operated and manage according to policies determined at the construction time. It is worth noting that with little enhancement in operation of reservoir system, there could be an increase in efficiency of the scheme for many consumers. Methods: This research develops simulation-optimization models that reflect discrete hedging policy (DHP to manage and operate hydropower reservoir system and analyse it in both single and multireservoir system. Accordingly, three operational models (2 single reservoir systems and 1 multi-reservoir system were constructed and optimized by genetic algorithm (GA. Maximizing the total power generation in horizontal time is chosen as an objective function in order to improve the functional efficiency in hydropower production with consideration to operational and physical limitations. The constructed models, which is a cascade hydropower reservoirs system have been tested and evaluated in the Cameron Highland and Batang Padang in Malaysia. Results: According to the given results, usage of DHP for hydropower reservoir system operation could increase the power generation output to nearly 13% in the studied reservoir system compared to present operating policy (TNB operation. This substantial increase in power production will enhance economic development. Moreover, the given results of single and multi-reservoir systems affirmed that hedging policy could manage the single system much better than operation of the multi-reservoir system. Conclusion: It can be summarized that DHP is an efficient and feasible policy, which could be used

  7. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  8. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3] and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  9. Investigation of a P-96 heat-recovery boiler used as part of the PGU-450T power unit at the Kaliningrad TETs-2 cogeneration station in the course of perfecting the starting and shutdown operations and during running with base loads

    Science.gov (United States)

    Lepaev, P. A.; Shtan', T. P.; Glusker, B. N.; Pashnin, L. V.; Konovalov, P. S.

    2007-09-01

    Results from operational tests carried out on the pilot P-96 heat-recovery boiler of the PGU-450T power unit at the Kaliningrad TETs-2 cogeneration station are presented. Technologies of starting and shutting down the boiler from different thermal states and peculiarities of its operating conditions in the load controlled range are considered. Specific features pertinent to the operation of a horizontal heat-recovery boiler with natural circulation of working medium in the evaporation heating surfaces are established.

  10. Numerical study on the impact of varying operation conditions on NOx emissions of large-scale pulverized coal-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue-yun [Jiangsu Institute of Economic and Trade Technology, Nanjing (China); Gao, Xiao-tao [Jiangsu Electric Power Test and Research CO., LTD, Nanjing (China); Zhang, Ming-yao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    For complying with the increasingly strengthened regulation on NOx emission from coal fired power plant, newly built large-scale pulverized coal-fired utility boilers are all installed with low-NOx combustion systems to low NOx emissions. Understanding the characteristics of the system is essential for fully utilizing the system without affecting the combustion performance. In the present work, computational fluid dynamics (CFD) approach was applied to simulate the combustion and NOx formation processes in the furnace of 1,000 MW ultra- supercritical boiler equipped with an advanced low-NOx combustion system so as to study the impacts of varying the operation conditions on its NOx emission as well as combustion characteristics. The combustion system is the Mitsubishi Advanced Combustion Technology system consisting of six levels corner-fired pollution minimum (PM) coal burners and additional air to achieve air staging combustion. With the help of CFD simulation, the distributions of the combustion temperature and CO, O{sub 2} and NO concentrations were calculated and analyzed. The main influential operation parameters studied include coal type, additional air flow rate, excess air level and mill groups in service. The CFD simulations indicated that the main reasons of the low NOx emission from this boiler are on two aspects: rationally organizing the combustion process to achieve relatively uniform temperature distribution and reducing combustion environment in the main combustion zone, and combining the utilizations of the large amount of additional air to achieve deep air stage and the low excess air level as well as PM burners. It was also found that varying the operational parameters had considerable effects on the performance of the combustion system.

  11. Boiler Operator Training.

    Science.gov (United States)

    Miller, Stanton S.

    1978-01-01

    This program, developed by the Nalco Chemical Company, helps with energy conservation in industrial plants. The program takes four to six weeks to complete. The training sessions last for about two hours. (BB)

  12. Green boilers; La chaudiere verte

    Energy Technology Data Exchange (ETDEWEB)

    Scrive, L.; Lebois, P.; Schlienger, M.; Moser, D. [Gaz de France (GDF), 75 - Paris (France)

    1997-12-31

    The ``green`` boiler was designed and developed by the Gaz de France and GEC Alsthom Stein Fasel partnership. It is a new make of steam boiler with smoke tubes from 4 to 15 MW. This range meets tow of the requirements guaranteed by the engineer: a NOx emission level lower than 100 mg/m{sup 3} (n) with 3% of oxygen and an combustion output of no less than 95 + 2% on n.v.c. A pilot operation was carried out by CNI Technologies in France. This 8.6 MW boiler was installed in June 1995 and performances checks were carried out by Apave Normandie in September 1995. This environmentally friendly boiler as well as the results obtained during the pilot operation are addressed in this article. (authors)

  13. More efficient cleaning concepts for stepping up availability of lignite-fired power plants (Ligpower)

    Energy Technology Data Exchange (ETDEWEB)

    G. Wiechers; B. Wessel; S. Goudanis; F. Kluger; G. Riley [RWE Power AG, Koeln (Germany)

    2009-07-01

    The quality of lignite extracted in various deposits differs considerably in part. The impact of changed major coal quality parameters on steam generator operation became evident in the form of increased deposit formation on the boiler's heating surfaces. Successful countermeasures were launched, but the bottleneck of the problem continues to be the cleaning of the first convection heating surfaces downstream of the furnace. As the cleaning facilities available so far (soot blowers) have not proved sufficient for these areas of application despite all optimisation efforts made, new processes have to be developed. In contrast to the methods applied so far, these processes do not use the common cleaning medium steam but work on the basis of alternative cleaning media. Within the scope of the Ligpower project, such alternative cleaning methods were selected and subjected to extensive testing on commercial utility boilers. Since a more intensive cleaning of superheater tubes involves increased stress of the tube material, we developed new, more resistant, superheater designs and installed these in a 600 MW unit. The transferability of the findings made was ensured by a comparison of the lignites used. To permit the cleaning device to be controlled as needed, we developed a programme that analyses the degree of fouling of the boiler and generates suggestions for its cleaning. In addition, a tube-fin superheater design was calculated and optimised in terms of fluid dynamics. The extensive tests showed which cleaning methods have suitable approaches to cleaning. By testing them over several years, we gained important information about equipment design. The superheater design could be tested only to a limited degree. Thus, we obtained additional findings in tests using a test heating surface that was mounted on a 300 MW boiler. 77 figs., 5 tabs., 3 apps.

  14. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  15. Monitoring the clean-up operation of agricultural fields flooded with red mud in Hungary.

    Science.gov (United States)

    Uzinger, Nikolett; Rékási, Márk; Anton, Áron D; Koós, Sándor; László, Péter; Anton, Attila

    2016-12-01

    In the course of the clean-up operation after the red mud inundation in 2010, red mud was removed from the soil surface in places where the layer was more than 5 cm deep. Before its removal, the red mud seeped into the soil. In 2012, soil samples were taken from depths of 0 to 20 and 20 to 40 cm on some of the affected areas. The parameters investigated were pH, organic matter, salt%, and the total and mobile fractions of various elements. The values recorded in 2012 were compared with those measured immediately after the removal of the red mud in 2010 and with the background and clean-up target concentrations. The pH values remained below the designated limit, while the salt content only exhibited values in the weakly salty range on areas at the greatest distance from the dam. In the central part of the inundated area, total Na contents above the 900 mg/kg target value were observed, but the Na content in the 0-20-cm layer generally exhibited a decrease due to leaching. The pH and As concentration also showed a decline on several areas compared with the values recorded in 2010. Total As and Co contents in excess of the target values were recorded on the lowest-lying part of the flooded area, probably because the finest red mud particles were deposited the furthest from the dam, where they seeped into the soil. Nevertheless, the mobility and plant availability of both elements remained moderate. The total contents of both Co and Mo, however, exhibited a significant rise compared with both the background value and the 2010 data. The monitoring of the cleaned-up areas showed that after a 2-year period element concentrations that exceeded the target values and could be attributed to the red mud pollution were only detectable on the lowest-lying areas.

  16. Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    Utilization of biomass on large suspension-fired boilers is a potentially efficient method to reduce net CO2 emissions and reduce the consumption of fossil fuels. However, ash deposit formation on heat transfer surfaces may cuase operational problems and in severe cases lead to boiler stop...... and manual cleaning. Most studies on ash deposition and removal has been done on biomass grate boilers, while only limited data is available from biomass suspension-firing. The aim of this study was to investigate deposit mass uptake, heat uptake reduction, deposit characteristics, and deposit removal...... scale experimental studies conducted by CHEC indicated that there was not a big difference regarding final deposit mass uptake during straw suspension-firing and combustion on grate. The shedding (deposit removal) events were investigated when the nearby plant sootblower was shutdown. It was identified...

  17. Measures to reduce carbon content of fly ash in CFB boilers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.; Liu, D.C.; Zhang, S.H.; Chen, H.P. [HuaZhong Univ. of Science and Technology, National Laboratory of Coal Combustion (China); Huang, Y.P.; Liu, C.M. [Da Ye Power Plant, Hu-Bei (China); Winter, F. [Vienna Technical Univ., Vienna (Austria)

    2002-07-01

    There is a significant need to develop clean coal combustion technology in China, given that the major energy source is coal, accounting for 75 per cent of primary energy. Circulating fluidized bed (CFB) combustion offers high combustion intensity with low pollutant emissions. It also has good combustion stability and excellent fuel flexibility. However, the high carbon content of the fly ash and the low boiler heat efficiency are two problems that must be addressed, particularly for middle and small sized CFB boilers. This study examined several reasons for high carbon content of fly ash in CFB boilers, including the distribution of particle size, the heating value of the coal and the fractional return of cold material to the combustion chamber. Operating conditions of the fly ash circulating combustion system were also examined. Proven effective measures to reduce carbon content were then suggested. 4 refs., 2 tabs., 2 figs.

  18. CTEPP STANDARD OPERATING PROCEDURE FOR PRE-CLEANING FILTERS AND XAD-2 (SOP-5.10)

    Science.gov (United States)

    This SOP summarizes the method for pre-cleaning XAD-2 resin and quartz fiber filters. The procedure provides a cleaning method to help reduce potential background contamination in the resin and filters.

  19. 78 FR 7428 - Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for...

    Science.gov (United States)

    2013-02-01

    ... Control Technology Standard for Noranda's Industrial Boilers. On December 14, 2012, the Administrator...; certain stack tests show the NO X emissions exceed PSD thresholds, yet the Title V Permit fails to include applicable PSD requirements for NO X emissions; LDEQ failed to support its conclusion that emissions from...

  20. Abort Gap Cleaning tests performed on 13 October 2011 during luminosity operation

    CERN Document Server

    Boccardi, A; Jeff, A; Roncarolo, F; Höfle, W; Valuch, D; Kain, V; Goddard, B; Meddahi, M; Uythoven, J; Gianfelice-Wendt, E

    2012-01-01

    Following the abort gap cleaning tests performed on 7 October 2011 [1] additional tests were carried out on 13 October 2011 to further investigate the effects of the cleaning on the luminosity production. The abort gap cleaning parameters (strength and duration of the beam excitation kick) were varied and the cleaning effectiveness measured together with the change in luminosity. The outcome is summarised in this note.

  1. Final technical report: SRC burn test in 700-hp oil-designed boiler. Annex Volume D. Electrostatic precipitator mass train and operating data

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    Solvent Refined Coal (SRC) is one of the viable replacement fuels for No. 6 fuel oil in industrial and utility boilers. The Department of Energy funded the International Coal Refining Company (ICRC) to develop and to demonstrate the use of SRC as a practical fuel. Phase II of the project was to burn the SRC fuels in a 700 hp package boiler and to collect emission data from which air pollution control devices could be specified. Wheelabrator-Frye, Inc., APC Division was contracted by ICRC to supply and operate a pilot electrostatic precipitator (ESP). Mass emission testing was performed by WFI Sciences. Particle size tests, particle resistivity, SO/sub x/ measurements, and particulate counting tests were conducted by Southern Research Institute (SoRI). This report is a source document covering the ESP operating data and mass emission data. The data obtained by SoRI is used by SoRI in their computer model to specify full scale design criteria. The testing was performed with four fuel types; No. 6 fuel oil, SRC fuel, SRC residual fuel oil, and SRC-water slurry. All fuels were precipitated quite easily resulting in emission rates below the NSPS standards.

  2. 刍议水垢对锅炉节能与安全运行的影响%The Influence of Scale on the Boiler Energy-saving and Safe Operation

    Institute of Scientific and Technical Information of China (English)

    李晨顺

    2013-01-01

    The forming process of scale in the operation pro-cess of boiler is very complex. There is great harm of scale in boiler heating surface, has a direct influence on the safe oper-ation of boiler. If handled improperly, it wil cause the scale a-ppear off, causing safety accidents like water wall tubes burned and drum beat.%  锅炉运行过程中水垢的形成过程非常复杂。锅炉受热面中的水垢存在很大的危害性,对锅炉的安全运行有着直接性的影响。如果处理不当,就会导致水垢出现脱落,进而引发水冷壁管过烧与锅筒鼓包等安全事故。

  3. Evaluating The Operation Of Three Air Cleaners Working Individually In A Clean Room

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian;

    2011-01-01

    , photochemical air purifier and corona discharge ionizer. The concentrations of ultrafine particles, ozone and total volatile organic compounds were measured both in a duct and in a clean room. It was found that the studied air cleaning technologies increased the ozone level in the clean room and the duct......The use of portable air cleaners is becoming increasingly popular in many countries including Denmark. Portable air cleaners are known for not only removing but also generating particles and gases. To clarify this, three air cleaning technologies were evaluated. They were nonthermal plasma...... that air cleaners should be evaluated in a clean room about generation of ozone to get more reliable evaluation....

  4. Analysis of the Boiler Oxygen Control Strategy and Economic Operation after Denitriifcation%脱硝后锅炉氧量控制策略与经济运行分析

    Institute of Scientific and Technical Information of China (English)

    李虎

    2016-01-01

    After increasing the selective catalytic reduction(SCR) denitration equipment , due to the change of boiler strcture, the former combustion adjustment methods and boiler oxygen content control strategy is not suitable and the boiler is not safely and economicly operated.This paper analyzes the problems of Suzhou #1 boiler afer denitration ,such as combustion instability, boiler’s metal wall over-temperature, oxygen content control ineffective, the fans’ currents are large and fluctuating and so on. After a series of combustion adjustment, the boiler combustion becomes stable and the safety of the boiler combustion is improved. By adjusting the oxygen function and oxygen control strategy, the fans’energy consumption reduces, the boiler exhausted gas heat loss reduces and the economic operation improves.%锅炉增加选择性催化还原(SCR)脱硝装置后,由于结构发生了变化,原来的燃烧调整方法和锅炉氧量控制策略已经不适用,不能安全经济地运行。本文分析了宿州电厂#1炉脱硝后出现燃烧不稳定、锅炉金属管壁超温、氧量控制效果不好、锅炉风机电流大而且波动等问题,经过一系列的燃烧调整,锅炉燃烧变得稳定,提高了锅炉燃烧安全性,通过调整氧量函数及氧量控制策略,降低了风机能耗,减少了锅炉排烟热损失,提高了锅炉经济性运行。

  5. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  6. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  7. Strengthening management of cleaning personnel in clean operating room%加强洁净手术室保洁人员管理的调查研究

    Institute of Scientific and Technical Information of China (English)

    银彩霞; 董薪

    2011-01-01

    OBJECTIVE To strengthen the management of cleaning workers, so as to effectively prevent cross infection. METHODS A series of scientific measures for cleaning workers were taken to establish and amplify the necessary rules and regulations and strengthen the training of new employee and the personal protection, and the supervision, quality assessment and reward and punishments for the cleaning task were regularly conducted.RESULTS Through all the measures being carried out, the communication, understanding and respect between the medical care personnel and cleaning staff were strengthened, the positivity was improved. The incidence of cross infection in operating room was effectively improved. CONCLUSION The supervision to the management system and the implementation of countermeasures should be strengthened to prevent and control nosocomial infection.%目的 加强手术室物业保洁人员管理,预防医院交叉感染. 方法 针对保洁人员存在的问题,实施管理对策,完善各项规章制度,强化培训;感染监测小组定期与不定期对保洁工作进行督查、质量考评和奖惩. 结果 通过对保洁人员进行全面的管理与培训,加强了医护与保洁人员之间相互沟通、理解、尊重,提高积极性,有效改善医院手术科室交叉感染的发生率. 结论 应强化各种管理制度监督对策实施,有效预防和控制医院感染的发生.

  8. The NOXSO clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  9. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT)

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.

  10. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT). Quarterly report No. 7, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.

  11. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Xinliang Chen; Jiangang Qu; Minqi Shi [Shanghai Nuclear Engineering Research and Design Institute (China)] [and others

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  12. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit...... - consisting of pressure part, burner and control system. The Technical University of Denmark, MEK - Energy Engineering Section [12] has participated in the modelling process. The project has included static and dynamic modelling of the boiler concept. For optimization of operation, verication of performance......, emissions and to obtain long time operation experiences with the boiler concept, a full scale prototype has been built and these tests have been accomplished on the prototype. By applying this integrated unit approach to the boiler concept development it has been possible to optimize the different building...

  13. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  14. 国内储罐清洗作业及对策%Domestic Storage Tank Cleaning Operations and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    宋生奎; 张永国; 王杰辉; 徐克明; 王文娟

    2014-01-01

    Storage tank cleaning was a regular work activity in the petrochemical industry and manual cleaning operation forms were still used for cleaning many domestic tanks.Manual cleaning methods and the main problems existing in the cleaning process were analyzed and the necessity of using automatic mechanical cleaning system and the advantages of its overall efficiency and no environmental pollution were pointed out.To narrow the gap with foreign countries , it recommended that a mobile , vehicle-mounted and integrated tank cleaning system should be developed to clean all kinds of medium and small tanks , which had broad market prospects and good social and economic benefits.%储罐清洗是石化行业一项经常性的作业活动,国内许多储罐依然采用人工清洗的作业形式,分析了人工清洗方式及其清洗过程中存在的主要问题,指出储罐采用自动机械清洗系统的必要性及其综合效益显著、无环境污染等优点;为缩小与国外的差距,建议开发研制机动性、车载式、集成化的油罐清洗系统以清洗各种中、小型的储油罐,其市场前景广阔并有良好的社会效益与经济效益。

  15. 46 CFR 109.205 - Inspection of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  16. Operation Characteristics of Fluidized Bed Heat Exchanger of Large-scale Circulating Fluidized Bed Boiler%大型循环流化床锅炉外置换热器运行特性分析

    Institute of Scientific and Technical Information of China (English)

    张缦; 吴海波; 孙运凯; 吕清刚

    2012-01-01

    为掌握大型循环流化床(circulating fluidized bed,CFB)锅炉外置换热器(fluidized bed heat exchanger,FBHE)的运行特性,在2台实际运行的300MW CFB锅炉上进行了运行特性测试研究,包括FBHE对CFB锅炉床温、汽温的调节及其传热特性的研究。结果表明:带FBHE的CFB锅炉炉膛温度沿炉膛高度分布比较均匀,且在60%锅炉最大连续蒸发量(boiler maximum continue rate,BMCR)以上运行时床温无明显变化,而无FBHE的CFB锅炉床温随负荷变化明显,炉膛温度沿炉膛高度差别较大,且随着锅炉负荷的降低,差别更明显;锥型阀的开度随锅炉负荷的增加而增大;在负荷不变的情况下,过热器的喷水量和再热器的吸热量随床温的升高递减,但减少幅度较小;不同负荷下FBHE内不同受热面的传热系数不同,其值均随负荷的增加单调增大。%In order to investigate the operation characteristics of fluidized bed heat exchanger(FBHE) of large-scale circulating fluidized bed(CFB) boiler,experiments were conducted on two 300 MW CFB boilers which have been put into commercial operation,including the effect of FBHE on the adjustment characteristics of furnace temperature and steam temperature of CFB boiler and heat transfer characteristics of FBHE.The results indicate that the furnace temperature of CFB boiler with FBHE is quite even along the height direction,and there is almost no change in temperature when the boiler operates at above 60% boiler maximum continue rate(BMCR),whereas the furnace temperature of CFB boiler without FBHE is quite different,such difference becomes more obvious with the boiler load decreasing.The opening of cone valve increases monotonously along with the boiler load increasing.In the condition of constant load,when the bed temperature rises superheater water spray and reheater heat absorption decreases but at a relatively low degree.At different boiler loads,the heat transfer coefficients of

  17. 75 FR 75463 - Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Luke Paper...

    Science.gov (United States)

    2010-12-03

    ... AGENCY Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Luke Paper... permit issued by the Maryland Department of the Environment (MDE) on January 22, 2009 to Luke Paper... to the issuance of the proposed title V permit for Luke Paper Company because of, (1)...

  18. Numerical method for determining the allowable medium temperature during transient operation of a thick-walled boiler element in power plant

    Science.gov (United States)

    Rząsa, Dariusz; Duda, Piotr

    2011-12-01

    Secure and cost-effective power generation has become very important nowdays. Care must be taken while designing and operating modern steam power plants. There are regulations such as German boiler regulations (Technische Regeln für Dampfkessel 301) or European Standards that guide the user how to operate the steam power plants. However, those regulations are based on the quasi-steady state assumption and one dimensional temperature distribution in the entire element. This simplifications may not guarantee that the heating and cooling operations are conducted in the most efficient way. Thus, it was important to find an improved method that can allow to establish optimum parameters for heating and cooling operations. The optimum parameters should guarantee that the maximum total stresses in the construction element are in the allowable limits and the entire process is conducted in the shortest time. This paper summarizes mathematical descriptions how to optimize shut down process of power block devices. The optimization formulation is based on the assumption that the maximum total stresses in the whole construction element should be kept within allowable limits during cooling operation. Additionally, the operation should be processed in the shortest time possible.

  19. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  20. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  1. Boiler corrosion. Corrosion of boilers at low boiler water temperatures. Heizkessel-Korrosion. Korrosion von Heizkesseln bei tiefen Kesselwassertemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-02-01

    Thermostatic cast iron and steel 35.8 specimens were inserted between the fire tubes of a test boiler and exposed to flue gases for a period of three weeks. The corrosion rates at material temperatures between 20 and 60deg C as well as the effects of continuous and intermittent boiler operation were determined. Details are given on the specimens alloying constituents, the testing and test conditions (schematic representation of the experimental set-up). Diagrams and tables facilitate access to test results informing about corrosion rates and corrosion product structure analyses for continuous burner operation. While low boiler water temperatures (below 60deg C in the case of extra light heating oils) are found to necessarily involve higher risks and shorter boiler service lives, low flue gas temperatures alone are considered not to be increasing the risk of boiler corrosion. (HWJ).

  2. 浅析电厂锅炉运行效率的影响因素及对策%On the Power Plant Boiler Operating Efficiency Factors and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    王军丰

    2014-01-01

    In the power plant operation, the boiler is one of the most important equipment, it safe and stable operation of the whole plant has a close relationship, therefore, improve the efficiency of the power plant boiler is an effective way to ensure long-term development of the plant. Analysis of the factors affecting the efficiency of the power plant boiler operation is proposed to improve the operational efficiency of the power plant boiler countermeasures to be able to promote the continuous improvement of the economic benefits of the plant.%在电厂运行中,锅炉是最重要的设备之一,它与整个电厂的安全、稳定运行有着密切的关系,因此,提高电厂锅炉的运行效率是保证电厂长远发展的有效途径。分析了影响电厂锅炉运行效率的因素,提出了提高电厂锅炉运行效率的对策,以期能够促进电厂经济效益的不断提高。

  3. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  4. Application of towel mechanical cleaning method in floor cleaning and disinfection of operation room%地巾机械清洗方法在手术室地面清洁工作中的应用

    Institute of Scientific and Technical Information of China (English)

    陈锐; 李静; 徐少珍

    2014-01-01

    目的:探讨地巾机械清洗方法在手术室地表清洁工作中的作用。方法采用拖把手工清洗方法和地巾机械清洗方法对50间手术间进行术后清洁,并对地面、拖把、地巾进行微生物监测。结果机械地巾组清洁的手术间地面合格率(96浇.0%)高于手工拖把组合格率(82.0%)。地巾清洗合格率明显高于拖把。结论采用地巾机械清洗方法对手术间地面进行清洁,减少了手术室内细菌扩散,是防止手术感染的重要环节。%Objective To explore the effects of towel mechanical cleaning method in floor cleaning and disinfection of operation rooms .Methods Mop manual cleaning method and towel mechanical cleaning method were used to clean floor of 50 operation rooms .Floors in operation rooms ,mops ,towels were checked by microbial monitoring .Results Disinfection qualified rate of operation room floors by towel mechanical cleaning method was higher than that by mop manual cleaning method (96 -.0% vs 82 .0% ) . Cleaning qualified rate of towel was significantly higher than that of mop .Conclusion Floor cleaning and disinfection by towel mechanical cleaning method can reduce bacteria diffusion in operation rooms ,and it is an important link to prevent operation infection .

  5. Application of GPRS and GIS in Boiler Remote Monitoring System

    Directory of Open Access Journals (Sweden)

    Hongchao Wang

    2012-12-01

    Full Text Available Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the system has convenience to use, high reliability, which play an active role to improve the operating efficiency, to prevent the boiler accident, and to decrease the energy consumption.

  6. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1993-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  7. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Science.gov (United States)

    2010-10-01

    ... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... steam locomotive boiler, the steam locomotive owner and/or operator shall file with the FRA Regional... the boiler. Whenever welded or riveted repairs are performed on stayed portions of a steam...

  8. 40 CFR 62.15395 - Does this subpart require me to obtain an operating permit under title V of the Clean Air Act?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Does this subpart require me to obtain an operating permit under title V of the Clean Air Act? 62.15395 Section 62.15395 Protection of... require me to obtain an operating permit under title V of the Clean Air Act? Yes. If you are subject...

  9. On the economic operation of boiler in power plant%浅谈火力发电厂锅炉经济运行

    Institute of Scientific and Technical Information of China (English)

    张俊音

    2013-01-01

    电厂节能是一项艰巨而复杂的任务,随着国家可持续发展政策的深化和确定经济体制的改革,火力发电厂建成投入生产运营后越来越重视经济运行,节能降耗技术经济指标得到了广泛的关注。在信息管理技术、计算机技术、测量技术高速发展的今天,分析研究火力发电厂锅炉经济运行,对于电厂节能降耗来说具有重要的意义。%Power saving is an arduous and complicated task,with the deepening of national sustainable development policies and refor-mation of the economic system,after the construction and put into operation of power plants,they emphasizes on the economic opera-tion increasingly,and pays widely attetion to the economic criterion of energy conservationtechnology. It is of great importance to study the economic operation of boiler in power plant in E era.

  10. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Science.gov (United States)

    2010-07-01

    ... pressure drop and liquid flow-rate at or above the operating levels established during the performance test... emission limit for particulate matter. 2. Fabric filter control a. Install and operate a bag leak detection system according to § 63.7525 and operate the fabric filter such that the bag leak detection system...

  11. 超滤装置运行工况探索研究%Exploration of Ultrafiltration Device Operation Condition in Boiler Feedwater System

    Institute of Scientific and Technical Information of China (English)

    马知敬; 刘秀娟; 宋英豪

    2015-01-01

    As the important equipment in boiler feedwater system, ultrafiltration device can effectively remove the organic matters in water, bacteria, viruses and colloidal substances, and effectively prevent the following reverse osmosis membrane pollutions. When the water source is resurgent water, the ultrafiltration membrane is usually contamination and block up because of the complex of water quality. It will affect the normal operation of the system. Through exploring the influences that ultrafiltration water production, trans membrane pressure, water inflow and other factors in operation conditions of different water qualities, the operation mode was found out that the water quality and operation condition were proportion. It can ensure the efficient economic system operates safely and stably.%超滤装置作为火力发电厂锅炉补给水系统主要的工艺设备,可以有效去除水中的悬浮物、有机物、细菌、病毒及胶体物质,有效防止后续反渗透膜污染。当采用中水作为水源时,由于水质复杂,长期造成超滤膜的污堵,影响系统正常运行。本文通过探索不同水质条件下所对应的运行工况,对超滤产水、跨膜压差、进水流量等因素的影响,找出进水水质与运行工况相匹配的运行方式,保证了系统安全稳定高效经济运行。

  12. Central heating: package boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.

    1977-05-01

    Performance and cost data for electrical and fossil-fired package boilers currently available from manufacturers are provided. Performance characteristics investigated include: unit efficiency, rated capacity, and average expected lifetime of units. Costs are tabulated for equipment and installation of various package boilers. The information supplied in this report will simplify the process of selecting package boilers required for industrial, commercial, and residential applications.

  13. On the Safe and Economic Operation of Denitrification System in Thermal Power Plant Boiler%火电厂锅炉脱硝系统安全经济运行探讨

    Institute of Scientific and Technical Information of China (English)

    郝彦胜; 李利; 赵超

    2014-01-01

    This paper analyzes the reason why the liquid ammonia consumption is large and why the NOX content control in flue gas gateway is poor after denitration operation of Eл-670-13.8-545KT type boiler. The operation and management experience are summarized and the safe and economic operation measures of the practical operation of boiler denitration system are found out, which provides referential basis for the safe and economic operation of the same type boiler denitration system.%本文详细分析了漳泽发电分公司E丨-670-13.8-545KT型锅炉烟气脱硝投运后液氨消耗量大,烟气出入口NOX含量控制较差的原因,对运行管理方面的经验进行了总结,并找出了锅炉脱硝系统安全经济运行的实际运行措施,为同类型锅炉脱硝系统安全经济运行提供了参考依据。

  14. On-line testing of a horizontally-baffled flotation column in an operating coal-cleaning plant

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, T.C.; Kawatra, S.K. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Metallurgical and Materials Engineering

    1995-10-01

    A horizontal-baffle arrangement has been developed to prevent excessive axial mixing in flotation columns. These baffles have been shown in previous work to improve the grade/recovery performance of both a laboratory-scale column and a pilot-scale column. In this paper, results are given for continuous on-line operation of the pilot-scale baffled column in a commercial coal-cleaning plant. These results show its ability to operate for extended periods without plugging, to produce a consistent-quality product even while the feed quality was fluctuating, and to remove much of the pyritic sulfur from the coal.

  15. Clean fuels from coal gasification.

    Science.gov (United States)

    Squires, A M

    1974-04-19

    The quickest way to establish a visible new margin against energy demand is the historic producer serving small industry and gasifying Pennsylvania anthracite. In 2 years many producers could be in operation. The quickest way to obtain significant supplies of "new" gas or oil is to retrofit existing electricity and industrial boilers for power or industrial gas. Important results could be achieved in 6 years. Table 3 identifies development activities deserving high priority to speed the capture of gas and oil now burned in boilers, and to speed realization the advantages of combined-cycle equipment running on coal (8). Obviously, these activities are not enough. Many exciting and worthwhile concepts at various stages of development can furnish improved techniques for converting coal to pipeline gas and liquid fuels for the long run. Reviews of these concepts are available (6, 32, 35). I have neglected them in this article not to deny their importance but to stress the earlier opportunities from technology that is ready now, or nearly ready. The oil and gas industries might well consider the historical progression from Wells Fargo to Western Union to American Telephone and Telegraph to Radio Corporation of America. These industries will miss the boat if they regard themselves simply as purveyors of their historical fuels and not as purveyors of clean energy. The gas industry especially will be in trouble if it lets its major industrial customers, such as steel and electricity, provide their own supplies of power and industrial gas.

  16. Thermal Aspects Related to the Operation of Photovoltaic Collectors with Water Film Cleaning System

    Directory of Open Access Journals (Sweden)

    Andrei BUTUZA

    2014-02-01

    Full Text Available This study presents an explorative experimental investigation of solar photovoltaic collector's behavior, when equipped with a water film based cleaning system. The study was focused mainly on thermal aspects and demonstrated the thermal potential of the water film, to be used in preheating domestic water. The results obtained in temperate continental climate and in autumn conditions, are in good agreement with similar studies. The electric effects of the water film were also investigated. This category of results was affected by limited precision of the data acquisition but the trend of water film electric effects could be still revealed. The general practical conclusion of the study is that water film cleaning system of the solar photovoltaic collectors can be recommended only with reserves, because of reduced and uncertain global performances.

  17. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  18. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  19. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  20. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  1. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 2, October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  2. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  3. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    of flue gas cleaning equipment. This survey includes discussions on the inorganic constituents transformation during straw and coal combustion, alkali-ash and alkali sulfur reactions, a survey of power plant and test rig co-firing experiments, a discussion of equilibrium calculations, a discussion......In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...... of alkali getter experiments and a discussion of modeling of alkali reaction with kaolin. Presently there is still a need for a better understanding of especially the reaction of potassium with coal ash, thereby making better predictions of co-firing ash properties....

  4. Air emission points for facilities in Iowa with operating permits for Title V of the Federal Clean Air Act_considered MAJOR permits

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Air emission points for facilities in Iowa with operating permits for Title V of the Federal Clean Air Act, considered "major" permits. Also includes emission points...

  5. REFORM ON ELECTRIC OPERATOR OF CFB BOILER%CFB锅炉电动执行机构改造

    Institute of Scientific and Technical Information of China (English)

    于增健

    2012-01-01

    针对循环流化床锅炉非智能型电动执行机构可靠性和稳定性不足问题,对其进行了改造。说明智能型电动执行机构的性能特点及改造效果。%Reform on non - intelligent type electric operator of circulate fluid bed was made aiming at increasing the reliability and stability. The performance characteristics of intelligent type electric operator and the reformation effect was introduced.

  6. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    Sulphur recirculation is a new technology for reducing boiler corrosion and dioxin formation, which was demonstrated in full-scale tests performed at the Renova Waste to Energy plant at Saevenaes in Goeteborg (Sweden). Sulphur is recirculated from the flue gas cleaning back to the boiler, which reduces the chloride content of the deposits, which in turn reduces boiler corrosion and dioxin formation. Sulphur dioxide was separated from the flue gas in a wet scrubber by adding hydrogen peroxide, producing sulphuric acid. The sulphuric acid was injected into the furnace using nozzles with atomization air, surrounded by recirculated flue gas for improved mixing. By recirculating the sulphur, the sulphur dioxide concentration was increased in the boiler. Each sulphur atom passed the boiler several times and no external sulphur had to be added. Dioxin, ash, deposits and particle samplings together with 1000 h corrosion probe measurements were performed for normal operation (reference) and with sulphur recirculation respectively. During spring 2009, reference measurements were made and the recirculation system was installed and tested. During autumn 2009, a long term test with sulphur recirculation was made. An SO{sub 2} concentration of approximately 800 mg/m3 (n, d.g.) was maintained in the boiler by the system except during a period of extremely low sulphur content in the waste. The sulphur dioxide stack concentrations have been far below the emission limit. Sulphuric acid dew point measurements have shown that the sulphuric acid dosage did not lead to elevated SO{sub 3} concentrations, which may otherwise lead to low temperature corrosion. The chlorine content of both fly ash and boiler ash decreased and the sulphur content increased during the sulphur recirculation tests. The molar chlorine/sulphur ratio (Cl/S) decreased by two thirds in the fly ash as well as in the boiler ash, except for one sample. With sulphur recirculation in operation, the deposit growth was

  7. Effect of maintenance on boiler efficiency. Technical note

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Gibbons, C.; Morgan, P.

    1985-01-01

    This study was carried out on fourteen boiler installations under site conditions by monitoring flue-gas oxygen content and temperature together with ambient air temperature to enable the combustion-loss to be calculated. By undertaking the tests on boilers in both clean and dirty conditions, and recording data every minute over a period of two to three days, representative mean combustion-loss figures were obtained.

  8. Guide to Low-Emission Boiler and Combustion Equipment Selection

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2002-05-06

    Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guide covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.

  9. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Permits for boilers and industrial... PROGRAM Special Forms of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous.... Owners and operators of new boilers and industrial furnaces (those not operating under the interim...

  10. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn;

    The properties of the ash from co-firing of coal and straw have a large influence on boiler operation, flue gas cleaning equipment and appropriate utilization of the fly ash. A study on the fuel composition and local conditions influence on fly ash properties has been done by making entrained flow...... reactor experiments with co-firing of coal and straw, making mineral and alkali vapor laboratory reactor experiments and by developing a model of KCl reaction with kaolin. The results include correlations that can be used to estimate the speciation of potassium in the fly ash when co-firing straw...

  11. The Arnot capacity increase project - An integrated boiler and turbine retrofit by Alstom - Implementation and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Mike; Stephen, Don; Rich, Glyn; Mills, Jeff; Allen, Steve

    2010-09-15

    In cooperation with South African utility giant Eskom, Alstom has undertaken an ambitious project to upgrade the six-unit Arnot Power Station. The objective was to retrofit major plant components in a cost effective manner in order to extend plant life and increase output. This paper will consider the implementation of the project, the challenges overcome and the operational experience subsequently gained. Lessons learned will be identified. Conclusions will be drawn concerning the effectiveness of a comprehensive feasibility study prior to project implementation and the ability of modern design and manufacturing techniques to retrofit older machines, thus releasing latent potential.

  12. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  13. Design, construction, operation and evaluation of a prototype culm combustion boiler/heater unit. Technical progress report, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis and Limited Phase II - Prototype Plant Construction during the period October 1, 1979 through December 31, 1979. The objectives of the program as well as the technical progress and problem areas encountered are presented. Progress on the components and system engineering studies is described. The Preliminary Design of Prototype Unit Topical Report was submitted. Final design activity is continuing and the progress on drawing preparation and advanced procurement activity is discussed. Based on authorization for a limited amount of Phase II activity, initial Purchase Orders were released authorizing preparation of certified drawings for fabricated equipment required to support the Phase I final design activity. The Purchase Order for site clearance and installation of boiler foundations was awarded and ground breaking ceremonies were held at the Prototype Culm Combustion Boiler site in Paxinos, Pennsylvania, on December 7, 1979.

  14. 碱炉高效运行与维护实践%Practices on efficient and higher available operation and maintenance for alkali recovery boilers

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      随着当前能源需求量的急速增长以及对环保要求的不断增强,造纸厂已经将安全和环保问题纳入到方针和行动的各个方面,如造纸厂着力于探索一些能够增强碱炉安全、环保、高效、高开机率的全局性改善措施。探索实践的内容如:熔融物抽取系统、自动清理风口系统、利用安全检修平台进行检修、有味气体的处理和焚烧、先进的工艺控制、先进的安全联锁等都在本文中有相关介绍。%As China economy accelerates, so does the quest for energy to keep its growth humming. The contemporary industrial challenges, including booming demand for energy, heightened scrutiny of the environmental effects, and intensified business competition, are putting greater pressure on energy-intensive industries such as pulp & paper industry, to meet the unprecedented challenges of the new age. Paper enterprises are putting forth to research the improving measures to keep alkali recovery boiler operate safely, environmentally, efficiently and high availably. Systems and practices such as bed smelt extraction system, auto-air-port rodding, usage of safety platform for maintenance, odor gas handling & incineration, advanced process control and advanced safety interlocks are addressed in the paper.

  15. Engineering solutions related to the furnace arrangement of a boiler designed for operating at supercritical steam conditions

    Science.gov (United States)

    Shtegman, A. V.; Ryzhii, I. A.; Sosin, D. V.; Kotler, V. R.

    2014-04-01

    When developing a coal-fired power unit designed for operating at supercritical steam conditions (SSCs), it is necessary not only to achieve high economic performance and the high reliability of a new power unit, but also to tackle many problems related to the efficient combustion of the solid fuel without exceeding the future standards for limitations on emissions of harmful substances into the atmosphere. The technological methods of suppression of nitrogen oxides capable of providing the permissible NO x emissions are discussed. The results of calculations are given that demonstrate the feasibility of achieving the purpose in view by means of installation of new low-NO x burners and staged injection of the fuel even on combustion of the Ekibastuz black coal high in ash content.

  16. Hybrid SBR–FO system for wastewater treatment and reuse: Operation, fouling and cleaning

    KAUST Repository

    Valladares Linares, Rodrigo

    2016-04-05

    Forward osmosis (FO) is a novel membrane separation process that potentially can be used as an energy-saving alternative to conventional membrane processes. A hybrid sequential batch reactor (SBR)–FO process was explored. In this system, a plate and frame FO cell including two flat-sheet FO membranes was submerged in a bioreactor treating synthetic domestic wastewater. The dissolved organic carbon (DOC) removal efficiency of the system was 98.55%. Total nitrogen removal was 62.4%, with nitrate, nitrite and ammonium removals of 58.4%, 96.2% and 88.4%, respectively. Phosphate removal was almost 100%. The 15-hour cycle average water flux of a virgin membrane with air scouring was 2.95 L/m2·h− 1. Air scouring can help to remove loose foulants from the membrane active layer, thus helping to recover up to 89.5% of the original flux. Chemical cleaning of the fouled active layer of the FO membrane was not as effective as air scouring. Natural organic matter (NOM) characterization methods (liquid chromatography–organic carbon detection (LC–OCD) and 3-D fluorescence excitation emission matrix (FEEM)) show that the FO membrane has a very good performance in rejecting biopolymers, humics and building blocks, but a limited ability in rejecting low molecular weight neutrals. Transparent exopolymer particles (TEP) and other biopolymers might be associated with fouling of the membrane on the support layer. A 1% sodium hypochlorite (NaOCl) cleaning solution was proved to be effective for removing the foulants from the support layer and recovering the original flux.

  17. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Follow-up project on circulating fluidized bed boiler introduction (Calaca Batangas Thermal Power Station); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system donyu shien jigyo (junkan ryudosho boiler ni kakawaru follow up jigyo (Calaca Batangas karyoku hatsudensho))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the follow-up project, to promote the diffusion of results of the clean coal technology (CCT) model projects, experts of circulating fluidized bed boilers were dispatched, to guide and advise for the operation of facilities introduced in these projects. The purpose of these projects is to diffuse the CCTs, and to support the promotion of environmental measures. Some guidance and advice about operation processes, data processing, operation regulation, maintenance, and boiler maintenance works were provided to the Ministry of Energy and Electric Power Corporation of the Philippines. Semirara, Malangas, and Samar coals in the Philippines were used for the tests. The boiler facilities could be operated by Philippine operators themselves. Based on the guidance and advice about operation processes, combustion tests using various Philippine coals were also planned and conducted by themselves. The maintenance techniques were transferred to Philippine operators through the inspection, repair and advice. The Philippine side understood the technologies well, and the circulating fluidized bed boiler technology was independently educated in the Philippines. 23 figs., 16 tabs.

  18. Experimental study on operation optimization of the gas/pulverized coal blended combustion boiler%钢厂煤气混烧锅炉运行优化的试验研究

    Institute of Scientific and Technical Information of China (English)

    易正明; 肖慧; 杜炳旭

    2014-01-01

    An experiment was carried out of the adjustment of blast furnace gas (BFG) and coke oven gas (COG) for blended combustion in a gas/pulverized coal blended combustion boiler and analysis was made of the effect of BFG-COG blended combustion on exhaust gas temperature ,fly ash carbon content and superheated steam temperature of the boiler .On this basis ,the boiler operation was opti-mized .The results show that when BFG blending ratio is 30% and COG blending ratio is 40% ,the thermal efficiency of the boiler reaches 80 .9% .This not only guarantees a high thermal efficiency but also achieves a greater proportion blending combustion of BFG ,offering a solution to the problem of excessive BFG and proving to be more economic .%对某钢厂煤气混烧锅炉进行高炉煤气和焦炉煤气掺烧调整试验,分析掺烧对锅炉排烟温度、飞灰含碳量和过热蒸汽温度等的影响,并对锅炉运行进行了优化。结果表明,当高炉煤气掺烧热值比为30%且焦炉煤气掺烧热值比为40%时,锅炉热效率达到80.9%,这样既保证了锅炉较高的热效率,又实现了高炉煤气的较大比例掺烧,解决了其大量过剩问题,具有较好的经济性。

  19. Design criteria for soil cleaning operations in electrokinetic remediation: hydrodynamic aspects in a cylindrical geometry.

    Science.gov (United States)

    Oyanader, Mario A; Arce, Pedro; Dzurik, Andrew

    2005-08-01

    The applications of electrokinetics embrace a large family of important industrial, pharmaceutical, biomedical, and environmental applications. Processes such as separation, drug delivery, soil remediation, and others constitute alist of applications where electrical fields are used to induce the movement of solute species. Different transport driving forces participate in the motion of the solute. In the particular case of soil remediation, the electromechanisms may compete with buoyancy and advection, promoting distinct flow regimes. As a rule of thumb, some of the earlier applications of electrokinetic phenomena, mainly in the area of electrophoresis, neglected this competition, and therefore the hydrodynamics of the systems was considered simpler. The nature of the process in soil, a porous media, calls for a different approach and is in need of further analysis of the complete map of collaborating driving forces. The identification and analysis of the characteristic flow regimes may lead to important guidelines for improving the separation, avoiding the mixing, and more efficient cleaning in a given application. In this contribution, using a cylindrical capillary model, the basic aspects of the behavior of the system are captured. A differential model is formulated using simplifying assumptions, maintaining the mathematical aspects to a minimum level, and a solution is presented for the different fields, i.e., the temperature and the velocity. Based on the selection of values of the parameter space, several limiting cases and flow regimes are presented and discussed. Implications for the design of devices and cleaning strategies are also included. Needs for further research are identified. The main idea behind the study is to obtain a qualitative and semiquantitative description of the different flow regimes inside the channel. This information is useful to identify further aspects of the investigation and delineate a systematic approach for a more rigorous

  20. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  1. A Rule-Based Industrial Boiler Selection System

    Science.gov (United States)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  2. 77 FR 54382 - Revisions of Five California Clean Air Act Title V Operating Permits Programs

    Science.gov (United States)

    2012-09-05

    ... pollution control, Carbon dioxide, Carbon dioxide equivalents, Greenhouse gases, Hydrofluorocarbons... revisions to the Operating Permits (Title V) programs of the Monterey Bay Unified Air Pollution Control District (MBUAPCD), San Luis Obispo County Air Pollution Control District (SLOCAPCD), Santa Barbara...

  3. 40 CFR 62.14830 - Does this subpart require me to obtain an operating permit under title V of the Clean Air Act?

    Science.gov (United States)

    2010-07-01

    ... operating permit unless you meet the relevant requirements specified in 40 CFR 62.14525(a) through (h) and (j) through (o) and all of the requirements specified in 40 CFR 62.14531. ... an operating permit under title V of the Clean Air Act? 62.14830 Section 62.14830 Protection...

  4. Corrosion of oil-fired domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-05-01

    Depending on the surface temperature of the flue gas side the corrosion of oil fired domestic boilers proceeds either mainly by acid corrosion or by oxygen corrosion: (1) At surface temperatures of 60/sup 0/C and higher the corrosion mechanism of acid corrosion prevails and the corrosion rates amount to 0.1-0.3 mm/year (values referred to continuous burner operation). The corrosion products consist of soluble iron(II)- and iron(III)sulfates. Higher corrosion rates can be attributed to an appreciable catalytic formation of sulfur trioxide on the corrosion products formed on the convective heating surfaces. (2) At surface temperatures of 40/sup 0/C the mechanism of oxygen corrosion already dominates and the corrosion rates are about ten times higher (1.5-3 mm/year, referred to continuous burner operation). The high portion of iron oxide hydrates, especially goethit (/alpha/-FeOOH), makes the corrosion products difficult to remove. (3) Distinctly reduced service lives are also expected for the so called reduced temperature boilers ('Niedertemperaturkessel') and low temperature boilers ('Tieftemperaturkessel'): According to the manufacturers these boilers may be operated at boiler water temperatures well below 60/sup 0/C, as they are equipped with constructive measures to enhance the surface temperature on the flue gas side. However, these measures are only fully effective under stationary conditions. Some of the results were obtained from weight loss measurements on test specimen made from St 35.8 and gray cast iron, that were exposed to the flue gases of an fired experimental boiler. Other important results come from field measurements of the sulfuric acid content of about 30 boilers that are in practical use. (orig.).

  5. Large CFB Boilers with Good Prospects in China

    Institute of Scientific and Technical Information of China (English)

    Zhao Changsui

    2007-01-01

    @@ Since many CFB boilers have been put into use, there exist a number of problems urgent to be solved. Based on investigation and analysis on the operating condition of large CFB boilers, ten kinds of the common problems are summed up and relative countermeasures are put forward.

  6. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor.

    Science.gov (United States)

    Khan, Mohiuddin; Danielsen, Steffen; Johansen, Katja; Lorenz, Lindsey; Nelson, Sara; Camper, Anne

    2014-02-01

    Application of environmentally friendly enzymes to remove thin-film composite (TFC) reverse osmosis (RO) membrane biofoulants without changing the physico-chemical properties of the RO surface is a challenging and new concept. Eight enzymes from Novozyme A/S were tested using a commercially available biofouling-resistant TFC polyamide RO membrane (BW30, FilmTech Corporation, Dow Chemical Co.) without filtration in a rotating disk reactor system operated for 58 days. At the end of the operation, the accumulated biofoulants on the TFC RO surfaces were treated with the three best enzymes, Subtilisin protease and lipase; dextranase; and polygalacturonase (PG) based enzymes, at neutral pH (~7) and doses of 50, 100, and 150 ppm. Contact times were 18 and 36 h. Live/dead staining, epifluorescence microscopy measurements, and 5 μm thick cryo-sections of enzyme and physically treated biofouled membranes revealed that Subtilisin protease- and lipase-based enzymes at 100 ppm and 18 h contact time were optimal for removing most of the cells and proteins from the RO surface. Culturable cells inside the biofilm declined by more than five logs even at the lower dose (50 ppm) and shorter incubation period (18 h). Subtilisin protease- and lipase-based enzyme cleaning at 100 ppm and for 18 h contact time restored the hydrophobicity of the TFC RO surface to its virgin condition while physical cleaning alone resulted in a 50° increase in hydrophobicity. Moreover, at this optimum working condition, the Subtilisin protease- and lipase-based enzyme treatment of biofouled RO surface also restored the surface roughness measured with atomic force microscopy and the mass percentage of the chemical compositions on the TFC surface estimated with X-ray photoelectron spectroscopy to its virgin condition. This novel study will encourage the further development and application of enzymes to remove biofoulants on the RO surface without changing its surface properties.

  7. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  8. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief...

  9. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief...

  10. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  11. 46 CFR 62.35-20 - Oil-fired main boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Oil-fired main boilers. 62.35-20 Section 62.35-20... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-20 Oil-fired main boilers. (a) General. (1) All main boilers, regardless of intended mode of operation, must be provided with...

  12. 46 CFR 196.15-15 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Examination of boilers and machinery. 196.15-15 Section... VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-15 Examination of boilers and machinery. (a) It shall be the duty of the chief engineer when he assumes charge of the boilers and machinery of a...

  13. 46 CFR 97.15-15 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Examination of boilers and machinery. 97.15-15 Section... VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-15 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel...

  14. 46 CFR 78.17-30 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Examination of boilers and machinery. 78.17-30 Section... OPERATIONS Tests, Drills, and Inspections § 78.17-30 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel to...

  15. Planning Annual Shutdown Inspection for BFB Boiler

    OpenAIRE

    Sorsa, Tatu

    2014-01-01

    The goal of this thesis was to create an illustrative guidebook of annual inspection planning for BFB boiler to help power plant operator when planning of annual inspection is topical. This thesis was made for Andritz Oy and it is based on inspection reports and experiences of BFB boiler’s maintenance and inspection staff. In this thesis it is shown how to plan an annual inspection for BFB boiler and thesis gives good tools and hints for operator to manage inspection from the beginning ...

  16. An assessment of the environmental emissions from a utility boiler firing beneficiated coal-oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Whaley, H,; Lee, L.K.; Doiron, C.C.

    1980-01-01

    A cooperative demonstration project to evaluate the feasibility of burning coal-oil mixtures (COM) in a small utility boiler is described. The project, undertaken by the New Brunswick Electric Power Commission and the Department of Energy, Mines and Resources Canada has, as a mator objective, an assessment of the environmental impact of COM technology and whether this can be reduced through coal cleaning by spherical agglomeration. It is shown that fly ash emissions can be reduced by as much as 50% and sulphur emissions by 10% using the coal cleaning process. Laboratory tests indicate that this performance can be significantly improved. The paper describes the emissions test program and summarises the emissions of fly ash and sulphur from two years of operation both with and without the agglomeration process.

  17. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  18. Design, construction, operation, and evaluation of a prototype culm-combustion boiler/heater unit. Quarterly technical progress report, October 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis and Phase II - Prototype Plant Construction during the period October 1, 1980 through December 31, 1980. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. The final detail design effort was completed and the final design report submitted. Progress on procurement activity authorized by full Phase II release on March 20, 1980, is discussed. Following approval by DOE, a purchase order was placed with the Norflor Construction Corporation for the prototype plant construction which began in November. Construction of the access roadway installation of the electric power, sewer and water lines was completed during this reporting period. Boiler construction continued.

  19. Design, construction, operation and evaluation of a Prototype Culm Combustion Boiler/Heater Unit. Quarterly technical progress report, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis and Limited Phase II - Prototype Plant Construction during the period October 1, 1979 through December 31, 1979. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. Progress on the components and system engineering studies is described. The Preliminary Design of Prototype Unit Topical Report was submitted during this reporting period. Final design activity is continuing and the progress on drawing preparation and advanced procurement activity is discussed. Based on authorization for a limited amount of Phase II activity, initial purchase orders were released authorizing preparation of certified drawings for fabricated equipment required to support the Phase I final design activity. The Purchase Order for site clearance and installation of boiler foundations was awarded during this reporting period and ground breaking ceremonies were held at the Prototype Culm Combustion Boiler site in Paxinos, Pennsylvania on December 7, 1979.

  20. Co-firing of coal with biomass and waste in full-scale suspension-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, Kim; Frandsen, Flemming J.; Jensen, Peter A.; Jensen, Anker D. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of chemical and Biochemical Engineering

    2013-07-01

    The energy policy in Denmark has for many years focused on lowering the net CO{sub 2} emission from heat and power production by replacing fossil fuels by renewable resources. This has been done by developing dedicated grate-fired boilers for biomass and waste fuels but also by developing coal-based suspension-fired boilers to accept still higher fractions of biomass or waste material as fuels. This last development has been challenging of many reasons, including pre-treatment of fuels, and solving potential emission and operational problems during the simultaneous development of supercritical steam cycles with steam temperatures close to 600 C, providing power efficiencies close to 50% (Hein KRG, Sustainable energy supply and environment protection - strategies, resources and technologies. In: Gupta R, Wall T, Hupa M, Wigley F, Tillman D, Frandsen FJ (eds) Proceedings of international conference on impact of fuel quality on power production and the environment, Banff Conference Centre, Banff, Alberta, Canada, 29 Sept-4 Oct, 2008). For 25 years the CHEC (Combustion and Harmful Emission Control) Research Centre at DTU Chemical Engineering, has attained a leading role in research, supporting power producing industry, plant owners and boiler manufacturers to optimize design and operation and minimize cost and environmental impact using alternative fuels in suspension fired boilers. Our contribution has been made via a combination of full-scale measuring campaigns, pilot-scale studies, lab-scale measurements and modeling tools. The research conducted has addressed many issues important for co-firing, i.e. fuel processing, ash induced boiler deposit formation and corrosion, boiler chamber fuel conversion and emission formation, influence on flue gas cleaning equipment and the utilization of residual products. This chapter provides an overview of research activities, aiming at increasing biomass shares during co-firing in suspension, conducted in close collaboration with

  1. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  2. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  3. An optimization model for the operations of steam production in industrial boilers Um modelo de otimização para as operações de produção de vapor em caldeiras industriais

    Directory of Open Access Journals (Sweden)

    Cleber Damião Rocco

    2012-01-01

    Full Text Available In this study, a mixed integer linear programming model is presented to support some of the key decisions in the steam production system with industrial boilers. The model approaches the fuel management decisions (fuel replenishment and its inventory control, boiler operational decisions (start-up, warm-up, and shutdown operations, and which boiler should produce steam. The model adjustments and its validation were carried out through a case study in a large food industry. In face of the good outcomes achieved in applying the model and the lack of optimization tools to support the decisions in this system, the proposed model is a suitable alternative to support some of the key decisions in the system of steam production with multiple industrial boilers.Apresenta-se neste trabalho um modelo de programação linear inteira mista para apoiar algumas das principais decisões na operação de produção de vapor em caldeiras industriais. O modelo contempla as decisões de gerenciamento dos combustíveis: compra nos fornecedores, transporte para a fábrica e níveis dos estoques, assim como determina o modo de funcionamento das caldeiras: momentos de acionamento (start-up, regime de aquecimento (warm-up e desligamento dos equipamentos (shutdown, e em quais deles haverá produção de vapor. Os ajustes e a validação do modelo ocorreram por meio de um estudo de caso realizado em uma indústria de alimentos de grande porte. Diante dos bons resultados obtidos com a aplicação do modelo e da ausência de protocolos ou ferramentas de otimização para apoiar as decisões no sistema estudado, o modelo proposto apresenta-se como uma alternativa viável para apoiar algumas das principais decisões no sistema de produção de vapor em caldeiras industriais.

  4. 干式排渣在大型电站锅炉上的运行特性分析%Operating Characteristic Analysis of Dry Bottom Ash Handling System on Power Station Boiler

    Institute of Scientific and Technical Information of China (English)

    董信光; 李洪涛; 冷成岗; 李德功

    2012-01-01

    Comparing to the discharging slag by water, the dry bottom ash handling system has many advantages such as simple structure, water conserving, more useful. When the bottom ash system has been changed from water mode to dry mode, the operating characteristics of boiler will be varied, which is analyzed and optimized in detailed. Positive and negative impacts are found, which can be referred when the bottom ash system revised and boiler operating.%和水力除渣方式相比,干式排渣有结构简单、节水、干渣经济价值高等优点。将原水力除渣改为干式排渣后,锅炉的运行特性会发生变化,通过对干式排渣运行特性的全面分析和优化,找出积极因素和负面影响,为除渣系统的改造和运行提供参考。

  5. Analysis of structure of cleaning operation on oil tank cleaning robots%油罐清洗机器人清洗作业装置的结构分析

    Institute of Scientific and Technical Information of China (English)

    何勇强; 周利坤

    2012-01-01

    Put forward a safely and environmentally cleaning mode for the special work circumstance and the character of oil sludge on the bottom of tank, systematically analyzed the practical working process of oil tank cleaning and the overall structure of cleaning operation on the oil tank cleaning ro- bots. The form of tray-brush device and the structure of brush have been designed and made dynamics modeling. It also proposed the matching function and transmission scheme of the roll-brush device, the overall structure and working principle of dirt suction system, as well as the design and analysis of the structure of suction mouth and oil sludze box.%结合油罐清洗的特殊作业环境和罐底油泥特性,提出安全、环保的清洗方式,系统分析了油罐清洗的实际作业流程和油罐清洗机器人清洗作业装置的总体结构。对盘刷装置的组成、刷体构造进行了设计,并进行了动力学建模,还提出滚刷装置的功能匹配和传动方案、吸污系统的总体构成和工作原理,以及吸嘴与油泥箱的结构设计分析。

  6. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Science.gov (United States)

    2010-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement... testing or trial or operational burns of similar boilers or industrial furnaces burning similar...

  7. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    Energy Technology Data Exchange (ETDEWEB)

    Tomberlin, Gregg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-06-01

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  8. Transients in a circulating fluidized bed boiler

    Science.gov (United States)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  9. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  10. Conversion of a recovery boiler to bark burning

    Energy Technology Data Exchange (ETDEWEB)

    Barsin, J.A.; Pottera, J.; Stewart, G.

    1988-03-01

    Georgia-Pacific (GP) operates a large integrated pulp and paper mill in Crossett, Ark., which produces in excess of 1400 dry tons/day of various grades of bleached kraft paper. Steam generation in the mill is approximately 1.2 million lb/h, which is supplied by a 1500-ton recovery boiler, a 400,000-lb/h wood-waste boiler, and two power boilers. Because GP wanted to minimize its use of natural gas as a boiler fuel and because it had a retired recovery boiler which could be converted, the decision was made to proceed with this fuel conversion product as a means of reducing energy costs per ton of product. This paper also discusses the biomass fuel handling system.

  11. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation......, corrosion of steam coils, deactivation of SCR catalysts and utilization of residual products. Abroad range of research tools as probe measurements on power plants, entrain flow reactorstudies and deposit modelling have been used to gain an improved understanding of ash transformation and ash deposit...... to generate ash particles typically in the size range of 50 to 200 μm on biomass suspension fired power plant boilers. A fragmentation rate of fuel particles of 3 have been used to describe both the residual ash formation process in laboratory entrained flow reactors and in full scale boilers.A range...

  12. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  13. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  14. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently

  15. Application of Macro-oil Ignition Technology in the Combustion Operation of 320 MW Unit Boiler%微油点火技术在320MW机组锅炉燃烧运行中的应用

    Institute of Scientific and Technical Information of China (English)

    薛小超; 王华

    2013-01-01

    This paper introduces the working principle of the micro oil ignition technology , and describes the process of ignition in detail according to application of the technology in the combustion operation of 2 ×320MW unit boiler in Anqing Wanjiang Power Generation Company .The analysis of economic benefits shows that micro oil ignition technology , as a new fuel saving technology of the thermal power plant boiler start-up and low load stable combustion , has good energy saving effect which can greatly reduce the cost of power generation and bring considerable economic benefits .%本文介绍了微油点火技术的工作原理,并针对该技术在安庆皖江发电公司2×320 MW机组锅炉燃烧运行的应用情况,详细介绍了点火启动的运行过程。通过经济效益分析表明,作为火电厂锅炉启动及低负荷稳燃的新型节油技术,微油点火技术良好的节能效果,能大大降低发电成本,带来可观的经济收益。

  16. Feasibility of Combustion of Petroleum Coke in 230t/h Circulating Fluidized Bed Boiler

    Institute of Scientific and Technical Information of China (English)

    HAN Dong-tai; SONG Zheng-chang; XU Tao

    2003-01-01

    In order to reuse the high sulfur petroleum coke, the waste in chemical industry, as fuel of power plant for energy recovery, the combustion property of petroleum coke was researched experimentally in circulating fluidized bed (CFB) boiler. The performance of the boiler in burning mixed fuel with different ratios of coal to petroleum coke is obtained. Based on the experimental data, Factors influencing the stability of combustion,thermal efficiency of boiler, and emissions and desulphurisation are discussed. This study demonstrates that the combustion of petroleum coke in CFB boiler is applicable, and has great significance on the design and operation of CFB boiler to burn petroleum coke.

  17. Research on the Effectiveness of Cleaning Cutting Fluid Used for Machining During Abrasive and Diamond Tools Operations

    Directory of Open Access Journals (Sweden)

    Vykintas Dusevičius

    2012-01-01

    Full Text Available The article presents the problem of cleaning effectively lubricant - coolant fluid using two different metal-working techniques. Compared with lubricant-coolant fluid, the use of steel abrasive tools produces very small steel particles having relative weight. Steel processing with diamond polishing tools does not make chips. The paper considers theoretical cleaning methods and compares them with experimental results cleaning an additional flow of lubrication and cooling with a magnetic separator and hydro-cyclone.Article in Lithuanian

  18. Needs-driven soot blowing in waste boilers; Behovsstyrd sotblaasning i avfallspannor

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Davidsson, Kent

    2009-09-15

    The increased use of alternative and waste fuels has resulted in an increased number of plants having trouble with fouling and corrosion on boiler banks and superheater tubes. Frequent sootblowing will keep the surfaces relatively clean, but on the other hand, it may erode the tube material. An intelligent sootblowing system will initiate sootblowings on individual tube banks only when needed for that specific tube bank. Such a system depends on the detection of the degree of fouling of specific tube banks. In this project, the conditions for an intelligent sootblowing system at the waste fired boilers in Boraas are investigated from measured flows, temperatures and pressure drop. New thermocouples at the water tubes between the banks of the economiser have been installed and connected to the control and monitoring system of the boiler. From measured temperatures and flows, heat transfer coefficients are calculated and used to detect the fouling on the heat exchangers. A pressure transducer has been altered to measure the pressure over the boiler bank. At the superheaters, the measurements show a significant improvement of the heat transfer coefficients immediately following sootblowing. Thereafter, the heat transfer coefficients decline more slowly, almost linearly. The measurements indicate that the fouling rate is almost same for the two superheaters and do not motivate individual sootblowing sequences of the two superheaters. The pressure drop over the boiler bank was found too insensitive a measure to be used as an indicator for an intelligent sootblowing system, at least in this specific boiler. In the economiser, the decline of calculated heat transfer coefficients showed a relative rate of fouling on individual tube banks. The results show that the fouling rate is significantly higher in the top tube banks, which comes first in the direction of the flue gas, compared to downstream banks. Experiments by sootblowing the top tube bank more frequently than the

  19. Cleaning of the DENOX reactor at the heating power plant Tiefstack by infrasound - operating experience; Reinigung der DENOX-Reaktoren im Heizkraftwerk Tiefstack mit Infraschall - Betriebserfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Valckenaere, J. [EVA-International Water and Sound Engineers, Bruegge (Belgium). Infraschall Engineering; Basener, H. [Hamburgische Electricitaets-Werke AG, Hamburg (Germany). Kraftwerk Tiefstack

    2000-07-01

    After erection of the 4th catalyser level the cleaning plant was no longer as effective as before for which there were no logic explanations. Thanks to the 3-dimensional numerical analysis method, a new and very exact frequency was identified which otherwise could not have been determined. Thus it was possible to refurbish the plant from a critical condition to a reference plant. After two years of operating experience the efficient operation of infrasound plants for the cleaning of catalyser plants could be confirmed. With their use, it was possible to have the catalysers operate constantly over the operating time of one operating year without intermediate cleanings being necessary. The susceptance to failure of plants, however, must considerably be reduced. Especially to be avoided are the vibration-induced material ruptures at diffusors, resonance tubes, piston springs and clamps by introducing constructive improvements. (orig.) [German] Nach der Montage der 4. Katalysatorebene war die Reinigungsanlage nicht mehr so effektiv wie zuvor. Dafuer gab es keine logischen Erklaerungen. Dank der dreidimensionalen Berechnung wurde eine neue, sehr genaue Frequenz identifiziert, die anders nicht haette ermittelt werden koennen. Dadurch konnte die Anlage aus kritischem Zustand in eine Referenzanlage umgeruestet werden. Nach mehr als zweijaehriger Betriebserfahrung kann die Betriebstuechtigkeit der Infraschallanlagen zur Reinigung von Katalysatoranlagen bestaetigt werden. (orig.)

  20. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  1. Clean air conditioning system design of clean operating departments for the new medical zone of Xiangya Hospital%湘雅医院新医疗区洁净手术部净化空调系统设计

    Institute of Scientific and Technical Information of China (English)

    王小明; 余念贵

    2014-01-01

    简单介绍了湘雅医院新医疗区洁净手术部净化空调系统的设计和修改过程。该工程采用湿度优先控制系统,由新风系统负担手术室的全部湿负荷,解决了洁净手术部与新医疗区共用冷热源可能产生的问题,减少了常规一次回风空调系统中冷热抵消造成的能量浪费,取得了较好的节能效果。%Briefly presents the design and modification process of the clean operating departments.By adopting the humidity priority control system and handling all the moisture load of operating rooms by an outdoor air system,solves the potential problems caused by the clean operating departments and the new medical zone sharing with cold and heat sources,and reduces the energy waste caused by heat and cold offset in conventional primary return air systems,which obtains good energy saving effect.

  2. Intelligent soot blowing for boilers co-firing waste and biofuel; Behovsstyrd sotblaasning foer bio- och avfallseldade pannor - inventering och teknikval

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2003-11-01

    To achieve optimum boiler operation and performance it is necessary to control the cleanliness and limit the fouling of the heat transfer surfaces. Historically, the heating surfaces in boilers firing biomass and waste are cleaned by steamblowing soot blowers on scheduled time-based and/or parameter-based intervals or by mechanical methods. With the advent of fuel switching strategies and use of mixed-in industrial waste, the control of heating surface cleanliness has become even more crucial for these boilers. Scheduled and/or parameter based approaches do not easily address operational changes. As plant operators push to achieve greater efficiency and performance from their boilers, the ability to more effectively optimize cleaning cycles has become increasingly important. If soot blowing is done only when and where it is required rather than at set intervals, unit performance can be maintained with reduced blowing, which saves steam. Two philosophical approaches toward intelligent soot blowing are currently being applied in the industry. One incorporates heat flux monitors to gather real-time heat transfer data to determine which areas of the furnace need cleaning. The other uses indirect temperature and pressure data to infer locations where soot blowing is needed, and is mainly applied for controlling soot blowers in the superheater and economiser area. The heat flux monitors are so fare used for control of the furnace wall blowers. A system using temperature, pressure and flow data does not require much additional instrumentation as compared with what is available on a standard boiler. However the blower control system must be capable of operating blowers on an individual basis. For advanced options it should also be possible to adjust the speed of the soot blower and the steam pressure. The control program could be more or less advanced but the ability to model heating surfaces and determine real-time cleanliness is crucial for an intelligent soot blowing

  3. 谈如何提高工业锅炉热效率%Talking about how to improve thermal efficiency of industrial boiler

    Institute of Scientific and Technical Information of China (English)

    吴文生

    2012-01-01

    以4t/h以上的链条锅炉为例,结合实践工作经验,从锅炉的选用、燃烧的调整、清垢、除灰方面阐述了如何提高锅炉的热效率,指出应加强锅炉的日常运行管理,发现问题及时处理,从而提高能源利用,实现节能减排。%Taking over 4 t/h chain boiler as an example, combining with working experience, the paper describes how to improve thermal efficiency of the boiler from aspects of boiler selection, burning adjustment, cleaning and dedusting and so on, and points out some suggestions, such as strengthening daily boiler operation management and finding and dealing with problems in time, so as to improve the energy utilization and to realize energy-saving and emission reduction.

  4. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    Science.gov (United States)

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  5. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.

  6. Energy efficiency in boilers; Eficiencia energetica em caldeiras

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Ricardo Silva The [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica], email: ricthe@dee.ufc.br; Barbosa, Marcos Antonio Pinheiro; Rufino, Maria da Gracas [Universidade de Fortaleza (UNIFOR), CE (Brazil). Dept. de Engenharia Eletrica], emails: marcos_apb@unifor.br, gsrufino@unifor.br

    2010-07-01

    The boiler is vapor generator equipment that has been widely used in industrial milieu as in electric energy generation in thermoelectric plants. Since their first conception, the boilers have been changed in order to provide security and energetic efficiency. They can present high losses of energy if they don't be operated according to some criteria. A considerable part of boilers operation cost include fuel expenses. So, the adoption of effective steps in order to reduce fuel consumption is important to industry economy, besides it brings environmental benefits through the reduction of pollution liberation. The present article has the objective of emphasizing the effective steps for the economy of energy in boilers, such as, the regulation of combustion; the control of soot and incrustations; the installation of economizers, air heaters and super heaters; the reduction in purges and reintroduction of condensed steam. (author)

  7. Brief introduction of GEF efficient industrial boiler project in China

    Energy Technology Data Exchange (ETDEWEB)

    Meijian, T.

    1996-12-31

    The present situation of installed industrial boilers, their efficiency and environmental impact are assessed. And the factors contribute to the low efficiency and serious pollution are summarized. Based on WB-assisted GEF project, {open_quotes}Efficient Industrial Boiler Project{close_quotes} aimed at CO{sub 2} mitigation in China, a series of effective measures to bring the GHG emission under control are addressed, in technology, system performance, and operation management aspects.

  8. Thermal Analysis of Superheater Platen Tubesin Boilers

    Directory of Open Access Journals (Sweden)

    Shahram Falahatkar

    2014-01-01

    Full Text Available Superheaters are among the most important components of boilers and have major importance due to this operation in high temperatures and pressures. Turbines are sensitive to the fluctuation of superheaterstemperature;therefore even the slightest fluctuation in the outlet vapor temperature from the superheaters does damage the turbine axis and fins. Examining the potential damages of combustion in the boilers and components such as the superheaters can have a vital contribution to the progression of the productivity of boiler, turbine and the power plant altogether it solutions are to be fund to improve such systems. In this study, the focus is on the nearest tube set of superheaters to the combustion chamber.These types of tubes are exposed to a wide range ofcombustion flames such that the most heat transfer to them is radiation type.Here, the 320 MW boiler of Isfahan power plant (Iran, the combustion chamber, 16 burners and the platensuperheater tubes were remodeled by CFD technique. The fluid motion, the heat transfer and combustion processes are analyzed. The two-equation turbulence model of k-εis adopted to measure the eddy viscosity. The eddy dissipation model is used to calculate the combustion as well as the P-1 radiation model to quantify the radiation. The overheated zones of superheater tubes and the combustion chamber are identified in order toimprove this problem by applying the radiation thermal shields and knees with porous crust which are introduced as the new techniques.

  9. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  10. PIV measurements of the turbulence integral length scale on cold combustion flow field of tangential firing boiler

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-fei; Xie, Jing-xing; Gong, Zhi-jun; Li, Bao-wei [Inner Mongolia Univ. of Science and Technology, Baotou (China). Inner Mongolia Key Lab. for Utilization of Bayan Obo Multi-Metallic Resources: Elected State Key Lab.

    2013-07-01

    The process of the pulverized coal combustion in tangential firing boiler has prominent significance on improving boiler operation efficiency and reducing NO{sub X} emission. This paper aims at researching complex turbulent vortex coherent structure formed by the four corners jets in the burner zone, a cold experimental model of tangential firing boiler has been built. And by employing spatial correlation analysis method and PIV (Particle Image Velocimetry) technique, the law of Vortex scale distribution on the three typical horizontal layers of the model based on the turbulent Integral Length Scale (ILS) has been researched. According to the correlation analysis of ILS and the temporal average velocity, it can be seen that the turbulent vortex scale distribution in the burner zone of the model is affected by both jet velocity and the position of wind layers, and is not linear with the variation of jet velocity. The vortex scale distribution of the upper primary air is significantly different from the others. Therefore, studying the ILS of turbulent vortex integral scale is instructive to high efficiency cleaning combustion of pulverized coal in theory.

  11. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  12. 76 FR 53452 - Clean Air Act Operating Permit Program; Response to Petition To Reopen the 2001 Title V Permit...

    Science.gov (United States)

    2011-08-26

    ... the U.S. Court of Appeals for Third Circuit. Under the terms of a settlement agreement between EPA and... Circuit Court of Appeals is the appropriate court of appeals. Section 307(b)(1) also requires that any.... Judicial Review Section 307(b)(1) of the Clean Air Act indicates which Federal Courts of Appeals have...

  13. Pure Air`s advanced flue gas desulfurization clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.R. [Pure Air Bailly Station, Chesterton, IN (United States)

    1998-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project successfully completed four and a half years of operation in December 1996 at Northern Indiana Public Service Company`s (NIPSCO) Bailly Generating Station. This project received a $60 million grant from the DOE Clean Coal II program. Included in this was a three year DOE demonstration period. The facility was designed, built and is owned and operated by Pure Air of Allentown, Pennsylvania, through its project company, Pure Air on the Lake, Limited Partnership. The project met or exceeded all performance criteria. It has averaged 95.3% SO{sub 2} removal, 99.9% availability and produced high quality commercial gypsum during this four and a half year period. It demonstrated many advanced technology features including a single, large absorber module serving two boilers, a wastewater evaporation system, an air rotary sparger for oxidation, and a new technology for agglomerating gypsum.

  14. Clean data

    CERN Document Server

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  15. Slag monitoring system for combustion chambers of steam boilers

    Energy Technology Data Exchange (ETDEWEB)

    Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

    2009-07-01

    The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

  16. Utilization of coal-water fuels in fire-tube boilers

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, D.K.; Melick, T.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orrville, OH (United States)

    1993-12-31

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama and Jim Walter Resources, was awarded a DOE contract to retrofit an existing fire-tube boiler with a coal-water slurry (CWS) firing system. Recognizing that combustion efficiency is the principle concern when firing slurry in fire-tube boilers, EER has focused the program on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler was successfully operated on coal-water slurry for 800 hours. A boiler derate of 20 percent was necessary for successful operation with slurry accounting 62 percent of the total heat input with the balance provided by natural gas. Under these boiler conditions, the carbon conversion was 90 percent. Further data evaluation, a market analysis, and final report preparation remain to be completed.

  17. Operational experiences with the waste heat boilers of the gas and steam installation in the district heating power station Dresden-Nossener Bruecke; Betriebserfahrungen mit den Abhitzekesseln der GuD-Anlage im HKW Dresden-Nossener Bruecke

    Energy Technology Data Exchange (ETDEWEB)

    Busch, F. [DREWAG, Dresden (Germany); Klauke, F. [BBP ENERGY, Oberhausen (Germany)

    2001-07-01

    Today, Dresden is covering just under half of the total heat requirements by district heating, 95% of which come from heating and refuse incineration and heating power stations. The location of the new gas-cycle power station at the intersection of the big long-distance heating lines is near the centre of the town. The district heating power station Dresden-Nossener Bruecke was conceived for base-load operation and, thanks to its flexible design, is capable of supplying the city's networks with about 85% of its requirements of electric energy and district heating in gas and steam operation. For an adequate supply with a high rate of fuel utilization the waste-heat boilers were designed in such a way as to be usable in five different operating modes. (orig.) [German] Dresden deckt heute knapp die Haelfte des gesamten Waermebedarfs durch Fernwaerme, die zu 95% aus Heiz- und Muell-Heizkraftwerken stammt. Der Standort der neuen GuD-Anlage am Knotenpunkt der grossen Fernwaermeleitungen liegt zentrumsnah. Das Heizkraftwerk Dresden-Nossener Bruecke wurde fuer den Grundlastbetrieb konzipiert und ist dank flexibler Auslegung in der Lage, die Stadtnetze mit rund 85% ihres Elektroenergie- und Fernwaermebedarfs im GuD-Betrieb zu versorgen. Zur leistungsgerechten Versorgung mit hohem Brennstoffnutzungsgrad wurden die Abhitzekessel so ausgestattet, dass sie in fuenf verschiedenen Betriebsarten einsetzbar sind. (orig.)

  18. Condition monitoring, diagnostic and controlling tool for boiler feed pump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sohail [Siemens AG, Muelheim (Germany). Energy Sector; Leithner, Reinhard; Kosyna, Guenter [TU Braunschweig (Germany)

    2010-07-01

    The boiler feed pump is an important component of a thermal power generation cycle and demands high safety and unquestionable availability for flexible power plant operation. In this research paper, the methodology of a general purpose condition monitoring, diagnostic and controlling tool is presented, which can address the challenges of operational safety and availability as well as optimal operation of a boiler feed pump. This tool not only effectively records the life time consumption of both casings and rotors and monitors the small gaps between casings and rotors but also suggests appropriate actions in order to ensure that the pump operates within the allowable design limits. (orig.)

  19. Operational experience of a 300-MW lignite-fired utility unit: environmental performance after retrofiitting of a low pressure turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tanetsakunvatana, Vicharn; Arkornsakul, P.

    2010-09-15

    The experimental data on major emissions from a 300-MW lignite-fired boiler operating under different fuel LHVs and turbine rotors are discussed. The thermal efficiency was quantified based on the heat loss method. The PM and CO2 emission rates were predicted. Specific emissions were quantified for the boiler of interest. The SO2, PM and NOx emission concentrations in flue gas were found lower than the respective emission standard. The CO2 emissions have also declined 4.65% in 2009, compared to 2008 and before. The clean development mechanism complied with UNFCCC methodology is adopted in this study responding to the global changes.

  20. A review: Fly ash and deposit formation in PF fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Jappe Frandsen, Flemming; Wu, Hao;

    2016-01-01

    In recent years suspension fired boilers have been increasingly used for biomass based heat and power production in several countries. This has included co-firing of coal and straw, up to 100% firing of wood or straw and the use of additives to remedy problems with biomass firing. In parallel...... in biomass suspension fired boilers is provided. Furthermore the influence of co-firing and use of additives on ash chemistry, deposit properties and boiler operation is discussed....

  1. Research on Fuzzy Diagnosis Method of Boiler Steam and Water Pipe Leakage

    Science.gov (United States)

    Yin, Xianglei; Wang, Yan

    Diagnosis pipe leakage timely and accurately is of great significance for safe and economic operation for boilers. According to the characteristics of the failure of boiler, this paper gives new function to describe fault symptoms and puts forward a new method of fault fuzzy recognition. Through simulation experiment, the new method was validated and compared with the existing fault diagnosis methods. The simulation results show that the new method for boiler failure recognition has high accuracy, and is better than other methods.

  2. Energy Analysis of Baby Boiler for Steaming of Raw Cashew Nut Seeds

    OpenAIRE

    Atul Mohod; Y. P. Khandetod; S. H. Sengar; Shrirame, H. Y.

    2012-01-01

    The steaming of raw cashew seeds prior to shelling is adopted widely in small-scale cashew nut processing mills with the help of baby boiler. The wide variations in energy intensity of these mills reveal the scope for energy conservation. The baby boiler coupled with cooker commonly used for steaming of raw seeds was evaluated. The variation in steam pressure, temperature and operating time with respect to fuel was observed along with thermal efficiency of a boiler. The energy intensity to pr...

  3. Pulverized-coal-firing small-size boiler for coal-cartridge system

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Kawasaki Heavy Industries, Ltd. supplied a test boiler plant to the Iwakuni Experimental Station of the Coal Cartridge System (CCS) Promotion Association in September 1985; this was the first pulverized-coal-fired small industrial boiler in Japan. Tests will be performed for two years, until fiscal 1987, at the CCS Iwakuni Experimental Station to establish a method of coal-firing with a performance comparable to heavy oil firing. The boiler plant has been operating satisfactorily.

  4. Transparent and Explicable Boiler Fouling Monitoring with Fuzzy Neural Newtwork

    Institute of Scientific and Technical Information of China (English)

    BinWu; You-TingShen

    1998-01-01

    Fouling on boiler beating surfaces is one of the important factors that damage boiler's economical performance and safety,with on-line monitoring of foiling states on boler heating surfaces,it is possible to optimize sootblower system,to visualize fouling states,to improve performance,as well as to remedy the insufficiency of experiment research in boiler heating surface fouling process.New method based on Fuzzy Neural Network(FNN) is presented to monitor fouling states on boiler heating surfaces on-line.Compared with regular methods,since FNN's reasoning process is transparent and comprehensible,it is possible to explain and comprehend reasoning process,which makes the FNN based system perform as an additional operation consulting system.

  5. DOWNSCALE APPLICATION OF BOILER THERMAL CALCULATION APPROACH

    OpenAIRE

    Zelený, Zbynĕk; Hrdlička, Jan

    2016-01-01

    Commonly used thermal calculation methods are intended primarily for large scale boilers. Hot water small scale boilers, which are commonly used for home heating have many specifics, that distinguish them from large scale boilers especially steam boilers. This paper is focused on application of thermal calculation procedure that is designed for large scale boilers, on a small scale boiler for biomass combustion of load capacity 25 kW. Special issue solved here is influence of formation of dep...

  6. Development of advanced coal cleaning process; Kodo sekitan kaishitsu gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, S. [Center for Coal Utilization, Japan, Tokyo (Japan); Akimoto, A.; Yamashita, T. [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    This paper aims to develop a clean coal production process which excellently removes environmental pollutant, is low-costed, and need no particular systems for distribution of products. The result of the development was described paying attention to column flotation which is a technology to high-efficiently select particulate regions, particulate heavy media cyclone, magnetic separation, and the basic design of the process into which those above were integrated. The two-stage selection process, which is an integration of column flotation and particulate heavy media cyclone into the conventional coal preparation equipment, can produce low-ash clean coal at high separation efficiency and also suppress the rise in processing cost. This process was also effective for removal of sulfur content and trace metal elements. The use of clean coal at power plant can be effective for not only the reduction in ash treatment amount, but the aspect of boiler operation characteristics such as heat transfer efficiency of boiler furnace wall, ash related troubles, loads of electrostatic precipitator, loads of flue gas desulfurization facilities. 17 figs., 5 tabs.

  7. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  8. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  9. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  10. Superheater corrosion in kraft recovery boilers; Korrosion hos oeverhettare i sodapannor. En oeversikt och diskussion

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, F. [AaF-IPK, Stockholm (Sweden)

    1997-02-01

    Corrosion seems to be the most essential factor limiting the life and the availability of kraft recovery boilers. The steam temperature from the kraft recovery boiler has, seen from the view of electricity production and steam turbine operation, traditionally been kept moderate, especially in comparison with steam data from normal utility power plants. So the corrosion of the superheaters has been more a limitation for the temperature of the steam produced by the boiler than a life length limitation. Both the pressure and the temperature of the steam are limited by corrosion. The temperature of the boiling water, and hence the pressure, is limited by the corrosion in the lower furnace. The temperature of the steam is limited by the corrosion in the superheater. Kraft boiler superheater corrosion is here governed not only by the boiler design, but more by the mill chemistry and boiler operation practice. This report discusses the formation and the properties of the deposits and their relation to boiler operation and the corrosion of the superheater tube material. We have tried to understand the corrosion in the kraft boiler superheaters better by comparing with the experience from the utility boilers. 86 refs, 79 figs

  11. 对冲燃烧锅炉水冷壁高温腐蚀运行调整%Operation adj ustment for high temperature corrosion in water wall of supercritical opposed firing boiler

    Institute of Scientific and Technical Information of China (English)

    周科; 佘园元; 鲁芬; 李建设; 陈俊彬

    2016-01-01

    Due to the strong reducing atmosphere and H2S formation around the water wall of a supercritical opposed firing boiler,serious high temperature corrosion occurred in the water walls.To solve this prob-lem,the single factor alternate method was applied to experimentally investigate the effects of main operat-ing parameters on H2 S concentrations around side water wall.The results show that,on the basis of cus-tomary boiler operating condition,after a series of regulations,such as weakening the tertiary air swirl of the main burner appropriately,distributing the tertiary air flow as bowl type,strengthening the secondary air swirl of the main burner appropriately,increasing the swirling air ratio of the OFA burner,reducing di-rect air ratio of the OFA burner,increasing the running oxygen concentration appropriately,distributing the mills output uniformly,increasing the primary air velocity appropriately,and reducing the coal fineness, the H2 S concentration around the side water wall decreased from 876.5 mg/m3 to 352.2 mg/m3 .The at-mosphere around the water wall surface was greatly improved,and the security of the boiler operation was enhanced.%某超临界机组对冲燃烧锅炉水冷壁存在严重高温腐蚀的现象,这主要因水冷壁壁面附近存在强还原性气氛并伴有 H2 S气体产生所致.本文采用单因素轮换法,试验研究了主燃烧器的三次风旋流强度、三次风风量、二次风旋流强度、二次风风量等主要运行参数调整对锅炉水冷壁壁面气氛特性参数 H2 S质量浓度的影响规律.结果表明,在锅炉习惯运行方式的基础上,通过适当削弱主燃烧器三次风旋流,同层燃烧器三次风采取“碗式配风”,适当增强主燃烧器二次风旋流,增加燃尽风二次风风量,减少燃尽风一次风风量,适当提高运行氧量和一次风速,采取均等配煤方式,降低煤粉细度后,水冷壁侧墙平均H2 S质量浓度由876.5 mg/m3降至352.2 mg/m3,水冷壁壁

  12. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2011-01-01

    The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m2 h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality. © 2010 Elsevier Ltd.

  13. Experience of applying the results of investigations into controlling lines of the salt ratio between the salt and pure sections of high-pressure drum boilers

    Science.gov (United States)

    Fedorov, A. I.

    2013-12-01

    Layouts of the connection of the salt ratio lines (SRLs) existing in domestic boiler building are analyzed and the main causes of their low operational efficiency are shown. The results of investigation of hydraulics and the salt mode of an internal boiler layout with the SRL of the TPE-208 boiler are presented. Recommendations on designing the SRL in internal boiler layouts of high-pressure drum boilers, which make it possible to increase the reliability of boilers and to decrease the annual consumption of phosphates, are developed.

  14. Clean and Secure Energy from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: • Oxy-Coal Combustion – To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. • High-Pressure, Entrained-Flow Coal Gasification – To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. • Chemical Looping Combustion (CLC) – To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. • Underground Coal Thermal Treatment – To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. • Mercury Control – To understand the effect of oxy-firing on the fate of mercury. • Environmental, Legal, and Policy Issues – To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. • Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility – To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

  15. Innovative clean coal technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-13

    The major objectives of the project are to: (1) demonstrate the performance of three combustion NO{sub x} control technologies; (2) determine the short-term NO{sub x} emission trends for each of the operating configurations; (3) determine the dynamic long-term NO{sub x} emission characteristics for each of the operating configurations using sophisticated statistical techniques; (4) evaluate progressive cost-effectiveness (i.e., dollars per ton of NO{sub x} removed) of the low NO{sub x} combustion technologies tested; and (5) determine the effects on other combustion parameters (e.g., CO production, carbon carry-over, particulate characteristics) of applying the low NO{sub x} combustion technologies. (VC)

  16. Boiler design for fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, M.P.; Sastry, C.V.R.L.; Tharakraj, M.

    1980-03-01

    In view of the limited fuel resources and ever increasing demand, Bharat Heavy Electricals, Ltd. (BHEL), as the leading boiler manufacturer, always endeavours to effect fuel economy in all possible avenues, leaving no stone unturned in this effort. This paper outlines some of the major efforts of BHEL in the area of boiler design to effect fuel economy.

  17. Boiler for ships; Hakuyo boira

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, F. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1999-07-20

    In this paper, production and technology trend of boiler for ships in 1998 are described. The actual results of main boiler are as follows. As the main boiler for LNG ships, 4 boilers produced by Mitsui Engineering and Shipbuilding for Qatar Project, 8 produced by Kawasaki Heavy Industries for South Korea and 10 produced by Mitsubishi Heavy Industries for domestic use and South Korea. 1998 was an active year for the main boiler for ships. The auxiliary boiler of steam pressure of 16k to 25k equipping for tanker ships was 115 (4,441t/h of steam quantity in total), it greatly increased in comparison with 88 (3,172t/h) produced in the proceeding year. Donkey boilers of steam pressure of 6k to 10k equipping for container ships and bulk cargo was 147 (672t/h), and it substantially decreased in comparison with 274 (693t/h) of the proceeding year, but capacity per boiler increased. The gas exhaust economizer for turbo power generation plants was 6 produced for VLCC. (NEDO)

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  19. Maximising safety in the boiler house.

    Science.gov (United States)

    Derry, Carr

    2013-03-01

    Last month's HEJ featured an article, the second in our new series of guidance pieces aimed principally at Technician-level engineers, highlighting some of the key steps that boiler operators can take to maximise system performance and efficiency, and thus reduce running both costs and carbon footprint. In the third such article, Derry Carr, C.Env, I.Eng, BSc (Hons), M.I.Plant.E., M.S.O.E., technical manager & group gas manager at Dalkia, who is vice-chairman of the Combustion Engineering Association, examines the key regulatory and safety obligations for hospital energy managers and boiler technicians, a number of which have seen changes in recent years with revision to guidance and other documentation.

  20. On-line monitoring and control of furnace wall corrosion in pf-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, D.M.; Robbins, B.J.; Sikka, P.; Seaman, M. [Rowan Technologies Ltd., Manchester (United Kingdom)

    2004-05-15

    Corrosion, fouling and sometimes failure of heat exchanger tubing that makes up the boiler walls is a major obstacle to minimising boiler downtime. Rowan Technologies Ltd., has been developing corrosion scanners to enable the condition of these heat exchanger tubes to be assessed online. These scanners are able to monitor fireside corrosion over entire boiler walls and whilst the boiler is operational. This paper describes how the scanner systems can be used to monitor this corrosion and how the corrosion can be subsequently controlled. 8 refs., 9 figs.

  1. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  2. Exhaust gas side corrosion of oil fired central heating boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1987-09-01

    While Swiss boiler producers aim primarily at achieving low exhaust gas temperatures, in our northern neighbouring country, lower boiler water temperatures are being set as favourite objectives to be met. The first method aims at reducing the exhaust gas losses, i.e. of the heat content of the exhaust gases; the second one aims at reducing service life losses (= losses in the off-air of the boiler). Flue-gas caused corrosion, however, sets practical limits to the energy-saving reduction of the exhaust gas and boiler water temperatures. To be able to define this practical limit more exactly is the main goal of this project which is supported by NEFF and which is carried out in cooperation with the Institute for Energy Engineering of the ETHZ (Professor P. Suter). In addition to this, however, the author also head to find out about sill inexplained cases of corrosion in boilers which are being operated correctly, i.e. with comparably high boiler water and exhaust gas temperatures.

  3. Notice of construction for proposed backup package boiler

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Hanford Site steam plant consists of coal-fired boilers located at the 200 East and the 200 West Areas. These boilers have provided steam to heat and cool facilities in the 200 Areas since the early 1940`s. As part of Project L-017, ``Steam System Rehabilitation, Phase II``, the 200 West Area coal-fired boilers will be permanently shut down. The shut down will only occur after a proposed package backup boiler (50,000 pounds per hour (lb/hr) steam, firing No. 2 oil) is installed at the 200 West Area. The proposed backup boiler will provide back-up services when the 200 East Area steam line, which provides steam to the 200 West Area, is down for maintenance or, when the demand for steam exceeds the supply available from the 200 East Plant. This application is a request for approval to construct and operate the package backup boiler. This request is being made pursuant to Washington Administration Code (WAC) Chapter 173-400, ``General Regulations for Air Pollution Sources``, and Chapter 173-460, ``Controls for New Sources of Toxic Air Pollutants``.

  4. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  5. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  6. Constrained control of a once-through boiler with recirculation

    DEFF Research Database (Denmark)

    Trangbæk, K

    2008-01-01

    There is an increasing need to operate power plants at low load for longer periods of time. When a once-through boiler operates at a sufficiently low load, recirculation is introduced, significantly altering the control structure. This paper illustrates the possibilities for using constrained con...

  7. Operator dermal exposure and protection provided by personal protective equipment and working coveralls during mixing/loading, application and sprayer cleaning in vineyards.

    Science.gov (United States)

    Thouvenin, Isabelle; Bouneb, Françoise; Mercier, Thierry

    2016-07-06

    The efficiency of a working coverall combined with personal protective equipment to protect operators against dermal exposure to plant protection products under field conditions was studied. Operators wore a non-certified water-repellent finish polyester/cotton coverall plus a certified gown during the mixing/loading and the cleaning phases. Insecticide foliar application to a vineyard was selected as the exposure scenario. The overall dermal residue levels measured in this study were in the range of data recently collected in Europe. The water-repellent finish working coverall reduced body exposure by a factor of approximately 95%. Wearing a Category III Type 3 partial body gown during mixing/loading and cleaning of the application equipment led to a further protective effect of 98.7%. The combination of a water-repellent finish working coverall and partial body protection during specific tasks provided satisfactory levels of protection and can be considered as suitable protection for the conditions of use studied.

  8. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  9. Studying flame combustion of coal-water slurries in the furnaces of power-generating boilers

    Science.gov (United States)

    Osintsev, K. V.

    2012-06-01

    Matters concerned with organizing combustion of different types of coal-water slurries in coalfired boilers at thermal power stations are considered. Recommendations for improving the economic and environmental indicators and for achieving more reliable operation of furnace devices and boiler as a whole are given.

  10. 46 CFR 35.25-1 - Examination of boilers and machinery by engineer-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Examination of boilers and machinery by engineer-T/ALL. 35.25-1 Section 35.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Engine Department § 35.25-1 Examination of boilers and machinery by engineer—T/ALL. It shall be the...

  11. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's boilers. 1915.162 Section 1915.162 Labor Regulations... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where... dead boiler with the live system or systems shall be secured, blanked, and tagged indicating...

  12. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  13. 46 CFR 61.05-10 - Boilers in service.

    Science.gov (United States)

    2010-10-01

    ... INSPECTIONS Tests and Inspections of Boilers § 61.05-10 Boilers in service. (a) Each boiler, including superheater, reheater, economizer, auxiliary boiler, low-pressure heating boiler, and unfired steam boiler... 46 Shipping 2 2010-10-01 2010-10-01 false Boilers in service. 61.05-10 Section 61.05-10...

  14. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  15. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, David W. [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Shingledecker, John P. [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2011-05-11

    Coal-fired power plants are a significant part of the nation's power generating capacity, currently accounting for more than 55% of the country's total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760°C (1400°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  16. Cleaning without chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  17. Corrosion of oil-fired boilers caused by sour combustion products of the sulfur contained in fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1987-01-01

    A corrosion model helps to experimentally explain why industrial boilers are more susceptible to corrosion than smaller boilers and why vapour dew points are relevant to heating boilers while sulfuric acid dew points are relevant to steam boilers. Analyses are based on model verifications (measurement of critical boiler factors). Access is given to the sulfur trioxide measuring methods as well as to the respective tests of 30 actively operated boilers (sulfur oxide concentrations at burner outlets), the catalytic formation of sulfur oxides, and tests of the test stand boiler (sulfur oxide deposits). The paper concludes with a description of corrosion product analyses as such as well as with an account of the results obtained. Analyses and results (wet analysis, X-ray structure analysis, influence of temperatures, FeSO/sub 4/ x H/sub 2/O tracing) are presented in the form of eight brief statements. (HWJ)

  18. Fuel sulfur and boiler fouling

    Energy Technology Data Exchange (ETDEWEB)

    Litzke, W.; Celebi, Y.; Butcher, T. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Fouling of the heat transfer surfaces of boilers and furnaces by `soot` leads to reduced efficiency and increased service requirements. The average level of annual efficiency reduction as a result of fouling if generally accepted as 2% per year. Improving the efficiency of equipment in the field may be the most important oil heat conservation opportunity at present. Improvements can be realized by reducing fouling rates, promoting lower firing rates in existing equipment, and enabling excess air levels to be set lower without raising concerns about increased service requirements. In spite of the importance of efficiency in the field there is very little data available on efficiency degradation rates with modern equipment, actual field operating conditions (excess air and smoke number settings) and service problems which affect efficiency. During 1993-94 field tests were initiated to obtain such data and to obtain information that would compliment existing and current laboratory work. Experimental work conducted on a bench scale level have included tests with various advanced burners, fuel types, and different operating conditions which have been done at the BNL Rapid Fouling Test Facility. This report will focus on the field study of fouling effects on ten residential heating service problems at each site are summarized. In addition, the technical difficulties involved with conducting such a field study shall also be discussed as the findings should serve to improve future work in this area.

  19. Optimised control of coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Owens, D.H.; MacConnell, P.F.A.; Neuffer, D.; Dando, R. [University of Exeter, Exeter (United Kingdom). Centre for System and Control Engineering

    1997-07-01

    The objective of the project is to develop and specify a control methodology that will enable existing coal combustion plant to take maximum advantage of modern control techniques. The research is specifically aimed at chain-grate stoker plant (such as the test facility at the Coal Research Establishment, Cheltenham) on which little work has been done for thirty years yet which still represents a large proportion of industrial coal-fired plant in operation worldwide. In detail, the project: reviewed existing control strategies for moving grate stokers, highlighting their limitations and areas for improvements; carried out plant trials to identify the system characteristics such as response time and input/output behaviour; developed a theoretical process based on physical and chemical laws and backed up by trial data; specified control strategies for a single boiler; simulated and evaluated the control strategies using model simulations; developed of an optimised. Control strategy for a single boiler; and assessed the applicability and effects of this control strategy on multiple boiler installations. 67 refs., 34 figs.

  20. Particulate emission abatement for Krakow boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  1. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  2. Wastewater Facilities Operation and Management. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Long, David A.

    Local communities must be willing to spend funds to assure the proper operation and management of wastewater treatment facilities. Designed for citizen advisory groups, the one-hour learning session described in this instructor's manual covers problem areas, federal requirements, and responsibilities for wastewater plant operations and management.…

  3. Healy Clean Coal Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  4. Corrosion protection of condensing boilers with organic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Faller, M.; Schicker, M.; Richner, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2000-07-01

    An investigation was conducted into whether organic coatings may be used to provide protection from the corrosive condensate which occurs in condensing boilers. The suitability of various coating systems was investigated in laboratory tests. On the basis of these results, a heat curing phenolic resin was selected for field trials in boilers from various manufacturers. The boilers were operated for up to two years. The condition of the coating was investigated during operation and after completion of the trial period. It was found that the selected coating provides good corrosion protection in areas not exposed to very high temperatures, which is precisely where condensation is most severe and there is thus the greatest risk of corrosion. (orig.)

  5. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  6. A Method for Determining the Usability Potential of Ship Steam Boilers

    Directory of Open Access Journals (Sweden)

    Muślewski Łukasz

    2016-12-01

    Full Text Available Ship large-power steam boiler may serve as an example of complex critical technical system. A basis for rational control of operation of such system is knowledge on its capability of fulfilling the tasks to which it was intended. In order to make it possible to apply computer aiding to operational decision-making the capability should be described analytically. In this paper it was proposed to express the capability of ship steam boiler ( considered a complex system to perform service tasks, by calculating components of its usability potential in a given instant t. To this end , was distinguished a set of steam boiler fundamental features which formulate space of its technical states. Values and characteristic intervals of the features were defined and this way sub-spaces of serviceability and non-serviceability states of the object in question were determined. Next, in the considered space, technical state of the boiler and its usability potential was determined. Owing to this it become possible to quantitatively express the steam boiler functioning capability which served as a basis for elaborating an algorithm for controlling the operational processes of a complex technical system under action. In this paper is also described a way of application of the presented method to calculation of ship steam boiler usability potential, which may be especially instrumental in the case of operational control of the boilers of the kind , equipped with interstage reheaters, i.e. those operating with high values of operational parameters.

  7. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Effluent Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2002-09-01

    The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.

  8. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  9. Oil ash corrosion; A review of utility boiler experience

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D. (Babcock and Wilcox Co., Alliance, OH (United States)); Seeley, R.R. (Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada))

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  10. Reasons and solution way for reverse osmosis set in of must frequent cleaning Shuidonggou Power Plant%水洞沟电厂反渗透装置必须频繁清洗原因分析及解决方法

    Institute of Scientific and Technical Information of China (English)

    张建斌; 王刚; 王文凯

    2012-01-01

    To introduce the power plant boiler make - up water treatment workshop reverse osmosis set in normal operation stage of frequent cleaning, find out the cause and the solving methods.%介绍了火电厂锅炉补给水处理车间反渗透装置在正常运行阶段的频繁清洗现象,找出了原因和解决方法。

  11. Application of advanced technologies to ash-related problems in boilers

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States); Richards, G.; Harb, J. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.

    1995-01-01

    Prediction of ash behavior in boilers has, for many years, been based on relatively simple relationships involving the composition of inorganic material in fuels. In recent years, advanced analyses for both fuels and deposits have seen increasing use in the solid fuel combustion community. The combination of the standard and advanced analyses, together with a knowledge of boiler design and operating conditions, allow better interpretation of ash behavior in boilers than has previously been possible. This paper discusses several case histories where advanced technologies have been applied to interpret ash behavior in boilers where standard techniques were insufficient. Included in the discussion are: (1) the behavior of blends of fuels; (2) explanations for markedly different behavior between fuels with similar ASTM characteristics; and (3) effects of boiler operating conditions on ash deposit formation.

  12. On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface

    Institute of Scientific and Technical Information of China (English)

    Yang Dong; Wang Zhongyuan

    2005-01-01

    High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.

  13. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces

    Institute of Scientific and Technical Information of China (English)

    WANG Xi-fen; ZHOU Huai-chun

    2005-01-01

    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pcfired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the fumacs temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.

  14. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  15. CFD Studies on Multi Lead Rifled [MLR] Boiler Tubes

    Directory of Open Access Journals (Sweden)

    Dr T C Mohankumar

    2013-09-01

    Full Text Available This paper reports the merits of multi lead rifled [MLR] tubes in vertical water tube boiler using CFD tool. Heat transfer enhancement of MLR tubes was mainly taken in to consideration. Performance of multi lead rifled tube was studied by varying its influencing geometrical parameter like number of rifling, height of rifling, length of pitch of rifling for a particular length. The heat transfer analysis was done at operating conditions of an actual coal fired water tube boiler situated at Apollo Tyres LTD, Chalakudy, India for saturated process steam production. The results showed that the heat transfer increased when compared with existing inner plane wall water tubes.

  16. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  17. 改进手术室地面清洁洁具清洗方法的效果评价%Evaluation on effectiveness of improved cleaning method for operating room floor mop towel

    Institute of Scientific and Technical Information of China (English)

    陈锐; 李静; 许少珍

    2014-01-01

    Objective To improve cleaning methods of ground towel in operating room ,standardize the cleaning of ground of operating room,prevent and control the occurrence of healthcare-associated infection (HAI),and im-prove management quality.Methods Operating room mops were changed into detachable mops,ground towels were cleaned and disinfected by automated washing machine (mechanical cleaning group ),disinfection effect and time need to finish cleaning between mechanical cleaning group and manual cleaning group were compared.Results The qualified rates of disinfection effect of ground and ground towels in mechanical cleaning group were both 96.67%(29/30),in manual cleaning group was 83.33% (25/30)and 66.67% (20/30)respectively;the time need to complete the cleaning and disinfection of operating ground and batch cleaning of towels in mechanical cleaning group was(1 .91 ±0.37)and (35.00±2.47)minutes respectively,and in mechanical cleaning group was(4.53±1.56 )and (41.00± 5.33)minutes respectively;there was significant difference between two groups (all P<0.01). Conclusion Me-chanically towel cleaning method can effectively improve ground cleaning effectively and shorten cleaning time.%目的:通过改进手术室地面洁具清洗方法,规范地面清洁工作,预防和控制手术室医院感染的发生,提高管理质量。方法将手术室一体式拖把更换为可拆卸式,并应用全自动洗衣机实施地巾机械清洗与消毒(机械清洗组),比较机械清洗组与手工清洗组(手工清洗地巾)的消毒效果及用时。结果机械清洗组在地面及地巾的消毒效果监测中合格率均达96.67%(29/30),而手工清洗组地面及地巾的消毒效果监测合格率分别为83.33%(25/30)、66.67%(20/30);机械清洗组完成手术间清洁消毒及批量清洁地巾的时间分别为(1.91±0.37)min 和(35.00±2.47)min,手工清洗组完成手术间清洁消毒及批量清

  18. Gas Cleaning System with a Pre-Unloading Flow

    Directory of Open Access Journals (Sweden)

    Vasilevsky Michail

    2016-01-01

    Full Text Available The analysis of the causes and mechanisms reduce the efficiency of processes separation in cyclone devices, the results of field surveys of industrial cyclone. It offers an alternative solution to clean the flue gases from the boiler KE-10/14.

  19. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

    1999-05-31

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

  20. Heat flux distribution on circulating fluidized bed boiler water wall

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The future of circulating fluidized bed (CFB)combustion technology is in raising the steam parameters to supercritical levels.Understanding the heat flux distribution on the water wall is one of the most important issues in the design and operation of supercritical pressure CFB boilers.In the present paper,the finite element analysis (FEA) method is adopted to predict the heat transfer coefficient as well as the heat flux of the membrane wall and the results are validated by direct measurement of the temperature around the tube.Studies on the horizontal heat flux distribution were conducted in three CFB boilers with different furnace size,tube dimension and water temperature.The results are useful in supercritical pressure CFB boiler design.

  1. Modelling and Simulation of the 50 MWe CFBC Boiler

    Institute of Scientific and Technical Information of China (English)

    WeidouNi; ZhengLi

    1994-01-01

    A general mathematical model of CFBC boiler by taking the 50 MWe Tsinghua CFBC boiler as the object is established.the model has some distinguished features,Firstly,in order to describe the CFBC precisely,emphasis is paid to take the broad soze distribution of feeding coal and bed invertory into consideration.Secondly,the emplogying of cell model makes it possible to show the distribution of any interested vaiabled inside furnace,Thirdly,since partial aspects such as hydrodynamics,devolatilization of coal,combustion of char and the formation and reduction of harmful substances are considered in detail,therefore the emission at the outlet of the furnace can be estimated .By using the model,simulation is carried out to predict the performance of the 50 MWe Tsinghua CFBC boiler for both design and off-design operation.The results are useful for dsigners and possible improvement of design.

  2. Influence of constricted air distribution on NOx emissions in pulverized coal combustion boiler

    Institute of Scientific and Technical Information of China (English)

    WEI Feng(魏风); ZHANG Jun-ying(张军营); TANG Bi-guang(唐必光); ZHENG Chu-guang(郑楚光)

    2003-01-01

    This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NOx emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NOx emissions and the principle of boiler operation and regulation through analyzing NOx emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NOx emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.

  3. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  4. Assessment of the potential for conversion of TP-108 boilers to firing natural gas and fuel oil

    Science.gov (United States)

    Tugov, A. N.; Supranov, V. M.; Izyumov, M. A.; Vereshchetin, V. A.; Usman, Yu. M.; Natal'in, A. S.

    2017-03-01

    TP-108 boilers were initially designed to burn milled peat. In the 1980s, they were reconstructed for conversion to burning natural gas as well. However, operation of these boilers revealed problems due to low reheat temperature and great air inleakage in the furnace. The initial design of the boiler and its subsequent reconstruction are described in the paper. Measures are presented for further modernization of TP-108 boilers to eliminate the above-mentioned problems and enable natural gas or fuel oil only to be burned in them. Thermal design calculations made using a specially developed adapted model (AM) suggest that replacement of the existing burners with new oil/gas burners, installation of steam-to-steam heat exchangers (SSHE), and sealing of the boiler gas path to make it gas tight will allow the parameters typical of gas-and-oil fired boilers to be attained. It is demonstrated that SSHEs can yield the design secondary steam reheat temperature, although this solution is not typical for natural circulation boilers with steam reheat. The boiler equipped with SSHEs can operate on fuel oil or natural gas with flue gas recirculation or without it. Moreover, operation of the boiler with flue gas recirculation to the air duct in combination with staged combustion enables the required environmental indicators to be attained.

  5. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schlager

    2002-04-19

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder

  6. Boiler Tube Corrosion Characterization with a Scanning Thermal Line

    Science.gov (United States)

    Cramer, K. Elliott; Jacobstein, Ronald; Reilly, Thomas

    2001-01-01

    Wall thinning due to corrosion in utility boiler water wall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler water walls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of the application of this technology to actual water wall

  7. Safety conditions of steam boilers in companies associated with a professional risk administration company in Antioquia, 2009

    Directory of Open Access Journals (Sweden)

    Diego L. Sepúlveda M

    2011-07-01

    Full Text Available Objective: to determine the safety conditions of steam boilers in companies associated with a professional risk administra-tion company in Antioquia, Colombia. To this end, their op-eration conditions shall be characterized, the associated risks identified, and their safety level assessed. Methodology:. a descriptive crosssectional study was carried out in twenty companies whose production processes involve boilers. A survey on the conditions for operation was applied on both the maintenance managers and the boilers’ operators in each company. A hazard risk assessment matrix was made as in-structed in the GTC-45 Colombian technical guide, and an assessment instrument was applied to determine the safety level for each boiler. Results: 70% of the assessed boilers obtained a low score (less than 65 points according to the scale, which has been validated by experts; the remaining boilers obtained an acceptable score (66 to 81 points. It was also found that 85% of the boilers had no operating instructions, and 60% of them did not have any kind of alarm. Conclusions: the stud-ied boilers had poor security conditions, mainly related to the absence of operation protocols, boiler operator training, and poor supervision by competent authorities

  8. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schlager; Tom Millar

    2002-10-18

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and

  9. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schlager; Tom Millar

    2003-01-27

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and

  10. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schlager

    2002-08-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder

  11. Boiler for generating high quality vapor

    Science.gov (United States)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  12. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2001-08-01

    The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay

  13. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  14. Combustion of bark and wood waste in the fluidized bed boiler

    Science.gov (United States)

    Pleshanov, K. A.; Ionkin, I. L.; Roslyakov, P. V.; Maslov, R. S.; Ragutkin, A. V.; Kondrat'eva, O. E.

    2016-11-01

    In the Energy Development Strategy of Russia for the Period until 2035, special attention is paid to increased use of local fuel kinds—one of which is biofuel, in particular, bark and wood waste (BWW)— whose application at thermal power plants in Russia has been not developed due to the lack of appropriate technologies mastered by domestic energy mechanical engineering. The article describes the experience of BWW combustion in fluidized bed boilers installed on the energy objects of northern European countries. Based on this, reference points were defined (it is the section of boiler air-gas path where initially the approximate temperatures are set), making it possible to carry out a thermal design of a boiler and ensure its operation reliability. Permissible gas temperature at the furnace outlet at BWW combustion amounted to 950-1000°C. Exit gas temperature, depending on the implementation of special measures on protection of air heater from corrosion, amounted to 140-190°C. Recommended hot air temperature is within the range of 200-250°C. Recommendations for determining the boiler furnace dimensions are presented. Based on the presented reference temperatures in the main reference points, the thermal design of hot water boiler of KV-F-116-150 type with 116 MW capacity was carried out. The analysis of the results and comparison of designed boiler characteristics with operating energy boilers, in which a fuel is burned in a fluidized bed, were carried out. It is shown that, with increasing the boiler capacity, the ratio of its heating power Q to the crosssectional area of furnace chamber F rises. For power-generating boiler of thermal capacity of 100 MW, the ratio is within 1.8-2.2MW/m2. The boiler efficiency exceeds 90% in the range of changes of exit gas temperature typical for such equipment.

  15. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    Energy Technology Data Exchange (ETDEWEB)

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  16. Multi-objective Optimization of Coal-fired Boiler Combustion Based on NSGA-II

    Directory of Open Access Journals (Sweden)

    Tingfang Yu

    2013-06-01

    Full Text Available NOx emission characteristics and overall heat loss model for a 300MW coal-fired boiler were established by Back Propagation (BP neural network, by which the the functional relationship between outputs (NOx emissions & overall heat loss of the boiler and inputs (operational parameters of the boiler of a coal-fired boiler can be predicted. A number of field test data from a full-scale operating 300MWe boiler were used to train and verify the BP model. The NOx emissions & heat loss predicted by the BP neural network model showed good agreement with the measured. Then, BP model and the non-dominated sorting genetic algorithm II (NSGA-II were combined to gain the optimal operating parameters which lead to lower NOx emissions and overall heat loss boiler. The optimization results showed that hybrid algorithm by combining BP neural network with NSGA-II can be a good tool to solve the problem of multi-objective optimization of a coal-fired combustion, which can reduce NOx emissions and overall heat loss effectively for the coal-fired boiler.

  17. Description and identification of difficulties arising from the application of a cleaning process in operating conditions for the treatment of components used on liquid metal fast reactors (LMFR). A technical designed approach to avoid these situations.

    Science.gov (United States)

    Rodriguez, G; Karpov, A V; Nalimov, Y P

    2001-01-01

    The cleaning process is one of the major maintenance operation for liquid metal fast reactors (LMFRs), both in operation and in their decommissioning stage. Russian and French cleaning processes are briefly described, including problems which have arisen during the processes. It appears that the cause of these problems is always connected to bad draining of the component, resulting in a vigorous reaction between vapour or liquid water and the bulk of sodium. From this discussion, the paper makes major recommendations for the efficient and safe cleaning of sodium wetted components, and proposes several processes which should be developed in order to deal with difficult situations, for example the removal of large amounts of undrainable sodium.

  18. Development of a low NO{sub x} combustion system for a roof-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Bionda, J.P.; Glickert, R.W. [Energy Systems Associates, Pittsburgh, PA (United States); Hallo, A.; Gretz, G.F. [Duquesne Light Co., Pittsburgh, PA (United States)

    1995-12-31

    Duquesne Light Company operates three roof-fired utility boilers at its Elrama Power Station in Elrama, Pennsylvania. These units are required to comply with the requirements of the Clean Air Act Amendments. Specifically, they need to reduce the emission rate of nitric oxide (NO{sub x}) to less than 0.50 lb/MBtu by May 31, 1995. Energy Systems Associates (ESA) was contracted to design a low NO{sub x} retrofit system for these units. Preliminary testing was performed to establish a baseline for NO{sub x}, CO and flyash carbon. A computational furnace model was utilized to evaluate various low NO{sub x} burner and separated overfire air (SOFA) designs. ``Proof of Concept`` field testing validated the low NO{sub x} burner design effectiveness. The SOFA system design was finalized and installed. This paper describes the development, design, and results of the Elrama low NO{sub x} retrofit system. The results of this project should be of interest to utilities evaluating low NO{sub x} retrofit technologies for roof-fired boilers.

  19. An alternative process to treat boiler feed water for reuse.

    Science.gov (United States)

    Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya

    2012-09-01

    A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse.

  20. Investigation of occupation protection of cleaner in clean operation rooms%洁净手术室保洁员职业防护调查与管理

    Institute of Scientific and Technical Information of China (English)

    张红梅; 柴艳红; 薛海丹

    2014-01-01

    OBJECTIVE To understand hospital infection of cleaner in clean operation rooms , awareness of occupation exposure and qualified occupation protection so as to provide specific intervention to avoid occupation exposure of cleaners .METHODS From Dec .2012 to Feb .2013 ,16 cleaners in clean operation rooms were investigated for knowledge related to hospital infection ,harm of occupation exposure and knowledge on occupation protection by means of self-designed questionnaire and interview .RESULTS All cleaner investigated had good knowledge on partition using of cleaning tools ,correct preparation and use of disinfectant and requirements of medical waste collection and storage ,and the cognition rate was 93 .75% ,87 .50% and 81 .25% respectively .The cleaners had good knowledge on that needlestick injuries could cause blood borne infectious disease and the medical waste was dangerous ,and the cognition rate was 56 .25% and 43 .75% .However ,the cognition rate of correct treatment of wounds after injured by needlestick was 0 . They were also lack of knowledge on occupation protection ,and the pass rate of occupation protection was low .CONCLUSION It is necessary for operation manager to take some intervention strategies such as train , educate , supervise and instruct cleaners so as to improve the cognitive level of hospital infection and occupation protection .%目的:了解洁净手术室保洁员医院感染相关知识、职业暴露危害认知率、职业防护合格率,以便针对性的采取干预措施,减少保洁员职业暴露的发生。方法2012年12月-2013年2月采用自行设计的调查表,以问卷与访谈相结合的方法,对16名洁净手术室保洁员进行医院感染相关知识、职业暴露危害的认知、保洁人员职业防护的调查。结果16名保洁员对保洁工具分区使用和终末处置、消毒剂正确配置和使用、医疗废物收集及保存要求的认知率较高,分别为93.75%、87.50%、81

  1. 锅炉安装施工的质量控制%Quality Control for Boiler Installation and Construction

    Institute of Scientific and Technical Information of China (English)

    杨庆喜

    2015-01-01

    锅炉安装施工关系到锅炉的安全运行和功能发挥,对电力生产安全与运行安全有着直接的影响。因此,要重视锅炉安装施工的质量控制。要注重锅炉安装施工前、锅炉安装施工中、锅炉本体水压试验、锅炉安装施工后期的质量控制,保证锅炉安装施工的质量,提高锅炉安装施工的科学性和经济性,支持电力工程系统性建设。%The boiler ins tallation and construction related to the boiler safety operation and function, the power production safety and operation safety has a direct impact. Therefore, pay attention to the boiler installation construction quality control. To focus on boiler installation of pre construction, boiler installation construction, boiler body water pressure test, boiler during the later period of the construction quality control of the installation of the, boiler installation construction quality assurance, improve the boiler installation construction of science and economy, support system of electric power engineering construction.

  2. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  3. Conversion of KVGM-100-150 boilers to cyclone-swirl burning of gas

    Science.gov (United States)

    Shtym, K. A.; Solov'eva, T. A.

    2015-03-01

    Heating sources of Vladivostok with boilers reconstructed in 2011 to gas burning is presented. The historical reference of the experience of boiler conversion to cyclone-swirl technology of burning of fuel oil and gas is given. Stages of the primary furnace and boiler upgrading are shown. Taking BKZ 75-16 and BKZ-120-100 boilers as examples, the principal differences of the swirl type of fuel burning from the burner type are demonstrated. Data of the KVGM-100-150 MTs boiler with cyclone-swirl burning of gas and fuel oil is represented. The mathematical model developed for the primary furnace with the 65 MW capacity gives detailed explanations to the features of mixing in the combustion chamber of the primary furnace, which substantiate conditions and places of the fuel injection. The practical result is supported by test data obtained on the operating equipment. To enhance the effectiveness of fuel consumption on six converted KVGM-100-150 MTs boilers, the convective section was restructured and the water circulation circuit was optimized. Comparative analysis of estimated and operating characteristics showed the efficiency increment. The application of cyclone-swirl technology made it possible to increase the effectiveness of the KVGM-100-150 boiler and improve its environmental indicators.

  4. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Steve [Burns & McDonnell, Inc., Kansas City, MO (United States); Knapp, David [Burns & McDonnell, Inc., Kansas City, MO (United States)

    2012-07-01

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a biomass-fired boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using carbon neutral fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO2) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO2 emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO2 emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO2. The boiler does require auxiliary functions, however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO2 emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO2 per year.

  5. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  6. Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting The Business Operating Model and How-To Manual for 450 Specific Applications

    CERN Document Server

    Maasberg, Wolfgang

    2012-01-01

    Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting is the first proprietary manual for cleaning and rehabilitation through pressure-washing, hydro-blasting and ultra high pressure water jetting (UHP).   It examines the cleaning, restoration and rehabilitation of statuary and historical structures; manufacturing hardware; and application technologies for residential, commercial and industrial areas, structures and buildings. Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting contains over 450 applications from agricultural, marine, municipal, food processing, paper-pulp, pharmaceutical and cosmetic, industrial and power generating maintenance areas. It includes gear lists to help readers easily identify the appropriate tooling and equipment for each specific application and industry.   Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting supplies readers with the tools to create a successful business model for re...

  7. Results of the clean-up operation to reduce pollution on flooded agricultural fields after the red mud spill in Hungary.

    Science.gov (United States)

    Uzinger, Nikolett; Anton, Áron Dániel; Ötvös, Károly; Tamás, Péter; Anton, Attila

    2015-07-01

    In Hungary, the dam of a red mud reservoir breached shortly after noon on October 4, 2010. Approximately 0.7-1 million m(3) highly alkaline red mud with very low dry matter content flowed into the Torna Creek and the surrounding area, covering 1017 ha of agricultural land. Results of the risk assessment of the accident indicated that the red mud should be removed from the surface of fields where it formed a continuous layer of more than 5 cm. After the removal, samples were taken manually from depths of 0.0-0.2 m and 0.2-0.4 m in a sampling grid and background samples unaffected by red mud from the depth of 0.0-0.3 m. Total element contents (Ag, As, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sn, Zn, and Na) and pH values were measured, and the results were analysed using correlation analysis and the Kruskal-Wallis probe. Dependence of the measured variables from elevation above sea level was studied using a 10 m by 10 m digital elevation model. Only ∼6.5% of the flooded area was temporarily designated as unsuitable for the production of food and fodder crops. In summary, the clean-up operation can be said to have been a success.

  8. Fuel moisture content analysis as a basis for process monitoring of a BioGrate boiler

    OpenAIRE

    Boriouchkine, Alexander; Zakharov, Alexey; Jämsä-Jounela, Sirkka-Liisa

    2010-01-01

    This paper considers the utilization of first principle models of a BioGrate boiler in a disturbance analysis study. The study focuses on the effect of fuel moisture content on the fuel combustion, since it is the most significant disturbance source in the boiler operation. The dynamic model of a BioGrate boiler, upon which the study is based, is heterogeneous, including solid and gas phases. Furthermore, the model considers chemical reactions in both gas and solid phases. In addition, fuel m...

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  10. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  11. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  12. Boiler Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  13. Boiler Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-04-20

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

  14. Boiler Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  15. Boiler Materials For Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  16. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  17. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  18. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  19. Application of biofilm cleaners for cleaning endoscopic equipment in operation room%生物膜清洁剂在手术室内镜器械清洗中的应用

    Institute of Scientific and Technical Information of China (English)

    杨坤明; 吴冉; 任素香

    2013-01-01

    Objective To discuss the cleaning effect of biofilm cleaners for the endoscopic equipment,in order to clean the endoscopic equipment in the operation room thoroughly,improve the cleaning quality of surgical instruments in hospital and prevent nosocomial infection.Methods 300 polluted endoscopic equipments were selected in the operation room and were divided into the experimental group and the control group randomly.Then the two groups were dealt with biofilm cleaners and multi-enzyme detergent respectively.At the end of the cleaning step,the cleaning effect were compared between the two groups.Results The passing rate of cleaning in the experimental group was 96.8%,significantly better than that of the control group,which was 78.0%.The difference between two groups had statistical significance.Conclusions Cleaning endoscopic equipment with biofilm cleaners can improve the cleaning effect of the surgical instruments,ensure the cleaning quality of the surgical instruments.%目的 探讨生物膜清洁剂对内镜器械的清洗效果,以彻底清洁手术室内镜器械,提高医院手术器械清洗质量,防止医院感染.方法 选择手术室的污染内镜器械300件,随机分为实验组和对照组各150件,分别用生物膜清洁剂和多酶清洗剂对污染器械进行处理,清洗步骤结束后比较2组清洗效果.结果 采用生物膜清洁剂清洗内镜器械的实验组的清洗合格率为96.8%,明显优于对照组(合格率78.0%),2组比较差异有统计学意义.结论 生物膜清洁剂清洗手术室内镜器械可提高手术器械的清洗效果,保证手术器械清洗质量.

  20. Clean catch urine sample

    Science.gov (United States)

    ... specimen; Urine collection - clean catch; UTI - clean catch; Urinary tract infection - clean catch; Cystitis - clean catch ... LE, Norrby SR. Approach to the patient with urinary tract infection. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  1. Reduction efficiency prediction of CENIBRA's recovery boiler by direct minimization of gibbs free energy

    Directory of Open Access Journals (Sweden)

    W. L. Silva

    2008-09-01

    Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.

  2. The System Form of Clean Operation Room Class III with Respect to Energy Saving%从节能的角度看III级洁净手术室的系统形式

    Institute of Scientific and Technical Information of China (English)

    李志红

    2012-01-01

    洁净手术部建设中对于III级手术室的空调系统形式一般的设计为一拖三的形式,很明显这不是避免交叉感染的最好形式,有悖于建造洁净手术部来降低手术感染风险的初衷。通过对投资以及运营方面的比对来探讨新的系统形式%The general practice for air-conditioning system of Clean Operation Room Grade III in clean operation department is designed in the form of one-driving-three, which is not the best form to avoid cross-contamination. The new system form was studied with comparision with respect to investment and operation.

  3. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  4. Clean fuel for demanding environmental markets

    Energy Technology Data Exchange (ETDEWEB)

    Josewicz, W.; Natschke, D.E. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  5. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2002-10-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  9. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R. van [KemaPower Generation, Arnhem (Netherlands)

    1998-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  10. INCREASING OF PRECISE ESTIMATION OF OPTIMAL CRITERIA BOILER FUNCTIONING

    Directory of Open Access Journals (Sweden)

    Y. M. Skakovsk

    2016-08-01

    Full Text Available Results of laboratory and industrial research allowed offering a way to improve the accuracy of estimation the optimal criterion of boilers' operation depending on fuel quality. Criterion is calculated continuously during boiler operation as heat ratio transmitted in production with superheated steam to the thermal energy obtained by combustion in boiler’s furnace fuel (natural gas .The non-linearity dependence of steam enthalpy from its temperature and pressure are considered when calculating, as well as changes in calorific value of natural gas, depending on variety in nitrogen content therein. The control algorithm and program for Ukrainian PLC MIC-52 are offered. The user selection program implements two searching modes for criterion maximum: automated and automatic. The results are going to be used for upgrading the existing control system on sugar factory.

  11. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  12. Review of Individual Technology Assessment Reports (ITAR) for industrial boiler applications

    Energy Technology Data Exchange (ETDEWEB)

    Archer, T.; Bakshi, P.; Weisenberg, I.J.

    1980-01-01

    Eight Individual Technology Assessment Reports and one Background Study in Support of New Source Performance Standards for Industrial Boilers are reviewed. These ITARs were prepared for the EPA and include studies of particulate control, flue-gas desulfurization, fluidized-bed combustion, NO/sub x/ combustion modification, NO/sub x/ flue-gas treatment, coal cleaning, synthetic fuels, and oil cleaning. The ITARs provide engineering and cost data for the air pollution control technologies that will be required to meet the New Source Performance Standards for industrial boilers. The pollutants considered were SO/sub x/, NO/sub x/, and particulates. Each ITAR is reviewed from the standpoint of engineering, demonstrated technology, and costing methodology. The cost review includes a comparison of the costing methodology of each ITAR with the costing methodology recommended by the EPA background document.

  13. CFD Simulation On CFBC Boiler

    OpenAIRE

    Amol S. Kinkar; G. M. Dhote; R.R. Chokkar

    2015-01-01

    Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays...

  14. Energy storage-boiler tank

    Science.gov (United States)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  15. Research on control measures for the stability of micro-environmental indicators in clean operating department%洁净手术部微环境指标的稳定性控制措施

    Institute of Scientific and Technical Information of China (English)

    高兴莲; 沈剑辉; 赵晶; 吴荷玉; 杨英; 王曾妍; 胡娟娟

    2014-01-01

    目的:探讨洁净手术部微环境指标稳定性控制的有效措施。方法通过聘请洁净技术专业工程人员参与管理层流机组运行与维护,手术室管理者定期抽样百级、千级、万级、十万级手术间微环境中温度、湿度、压差、照明与声贝5项指标,与国家标准中手术部微环境指标参数进行对照;对洁净手术部全年沉降菌监测结果进行比较。结果洁净手术部微环境各项指标在专业技术人员管理下,百级、千级、万级、十万级手术间微环境中温度、湿度、压差、照明与声贝均在行业规定值范围内;2013年百级、千级、万级、十万级手术间沉降菌监测结果,在GB50333国标值范围内,且低于国标规定值。结论专业工程技术人员参与洁净手术部微环境管理维护,手术室管理者进行不定期抽样监督,手术部微环境各项指标可得到很好地控制。%Objective To explore the effective measures for the stability of micro-environmental indicators in clean operating department.Methods Professionals of clean technology were invited to participate in unit operation and maintenance of management.Besides, operating room managers conducted regular sampling analysis of five micro-environmental indicators, including temperature, humidity, differential pressure, illumination and decibel, in 100-level, 1 000-level, 10 000-level, 100 000-level clean operating rooms, and compared the test results with parameters of target environmental indicators regulated in national standards.Then the test results of annual bacteria subsidence from different operating rooms in clean operating department were compared.Results Under the management of professionals, the values of temperature, humidity, differential pressure, illumination and decibel from micro-environment in 100-level, 1 000-level, 10 000-level, 100 000-level clean operating rooms were in accordance with rated values in the industry with

  16. 2012 Clean Energy: Project Summaries

    OpenAIRE

    Asian Development Bank

    2013-01-01

    This report summarizes the investments in clean energy made by the operations departments of the Asian Development Bank (ADB) in 2012, condensing information from project databases and formal reports in an easy-to-reference format. This report was prepared by ADB’s Clean Energy Program which provides the cohesive agenda that encompasses and guides ADB’s lending and non-lending assistance, initiatives, and plan of action for sustainable growth in Asia and the Pacific.

  17. 超超临界锅炉安装易发问题分析与对策%Problems in Ultra-supercritical Boiler Installation and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    张耀庆

    2014-01-01

    This paper proposes effective countermeasures according to problems in ultra-supercritical boiler installation, aims at improving the quality of boiler installation, ensure the safe operation of the boiler.%本文针对超超临界锅炉安装过程中可能存在的问题,提出有效的解决对策,旨在提高锅炉安装质量,确保锅炉安全运行。

  18. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  19. Coal-fired boiler houses in Cracow present state and possibilities to improve their efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cyklis, P. [Institute of Industrial Equipment and Power Engineering, Cracow (Poland); Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-31

    A significant amount of heat energy both for heating and process purposes is generated in Cracow, Poland in small-and medium size local boiler houses. The operating procedure of these boiler houses is most often economically and ecologically ineffective because of the bad condition of boilers and lack of funds to install automation, control and measurement equipment. Within the Polish-American Program of Elimination of Low Emission Sources financed by the US Department of Energy, the ENERGOEKSPERT Co., Ltd. investigated chosen boiler houses in Cracow, commissioned by the Cracow Development Office. The results of these investigations were subject of engineering analysis carried out at the Institute of Industrial Equipment and Power Engineering, Technical University, Cracow. The analysis proved that the low-cost improvement of economic efficiency and reduction of air pollutant emission is feasible for combustion of coal fuels.

  20. Survey of surface contamination of digital equipment in clean operating room Survey of surface contamination of digital equipment in clean operating room%洁净手术室数字化设备表面污染情况调查

    Institute of Scientific and Technical Information of China (English)

    林志敏; 章明阳; 马颖; 杨维泽

    2015-01-01

    目的:了解洁净手术室数字化设备的细菌污染状况,拟定合理的防控措施。方法2014年3月选取我院10间手术间共20个单位的数字化设备(包括电脑主机、键盘、鼠标、显示器、条码扫描及打印机)表面进行细菌分布情况及种类监测,4月采取新的防控措施后再次对该设备进行监测分析。结果3月份共检出44份阳性标本,4月共检出8份阳性标本,差异有统计学意义( P<0.05);3月检测出病原微生物菌19株,4月未检测到各类病原微生物,实施新防控措施前后差异显著。结论洁净手术室内不同区域数字化设备存在不同差异的细菌污染,采取有效的防控措施能够明显改善污染状况。%Objective To explore the condition of bacterial contamination of digitizing equipment in clean operating room, and de-velop reasonable control measures.Methods In march of 2014 , a total of 20 units of the surface of the digital equipment ( including com-puter host, keyboard, mouse, display, barcode scanning and printer) were selected from 10 operating rooms, bacterial distribution and types were monitored, again after April new prevention and control measures were taken to conduct monitoring and analysis of the device.Results 44positivespecimenswerecheckedoutinMarch,eightmasculinespecimenwerecheckedinApril,thedifferencewasstatisticallysignifi-cant (P<0.05), 19 strains of pathogenic microorganisms bacteria were checked out in March, none of pathogenic microorganisms was detec-ted in April, the significant difference before and after the implementation of the new prevention and control measures.Conclusions There exist different bacterial contamination in the different regions digital devices in the clean operating room, effective prevention and control measures can greatly improve the pollution condition.

  1. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    Energy Technology Data Exchange (ETDEWEB)

    John S. Nordin; Norman W. Merriam

    1997-04-01

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  2. Status of combustion-modification technology for utility-boiler NO/sub x/ control

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report documents significant developments in the subject area of combustion modifications as applied to coal-fired utility boilers. The primary emphasis is on the status of NO/sub x/ control technology, but related topics, such as boiler corrosion and hazardous emissions during modified-combustion operation, are also discussed. This report is intended as a complement to the 1977 Assessment of NO/sub x/ Control Technology for Coal-Fired Utility Boilers (ANL/ECT-3, Appendix D). A synopsis of recent NO/sub x/ field-test programs undertaken by the U.S. Environmental Protection Agency (EPA) and the Electric Power Research Institute (EPRI) is presented along with a status report on the major boiler manufacturers' low-NO/sub x/ burner/boiler development efforts. Because of concerns that low-NO/sub x/ operating modes may increase boiler-tubewall corrosion and increase polycyclic-organic-matter (POM) and SO/sub 3/ emissions, discussions of recent test programs and analytical studies on these topics are also included.

  3. Fruit fly optimization algorithm based high efficiency and low NOx combustion modeling for a boiler

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenxing∗; SUN Baomin; XIN Jing

    2014-01-01

    In order to control NOx emissions and enhance boiler efficiency in coal-fired boilers,the thermal operating data from an ultra-supercritical 1 000 MW unit boiler were analyzed.On the basis of the support vector regression machine (SVM),the fruit fly optimization algorithm (FOA)was applied to optimize the penalty parameter C,ker-nel parameter g and insensitive loss coefficient of the model.Then,the FOA-SVM model was established to predict the NOx emissions and boiler efficiency,and the performance of this model was compared with that of the GA-SVM model optimized by genetic algorithm (GA).The results show the FOA-SVM model has better prediction accuracy and generalization capability,of which the maximum average relative error of testing set lies in the NOx emissions model,which is only 3 .5 9%.The above models can predict the NOx emissions and boiler efficiency accurately,so they are very suitable for on-line modeling prediction,which provides a good model foundation for further optimiza-tion operation of large capacity boilers.

  4. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  5. COAL COMBUSTION EFFICIENCY IN CFB BOILER

    Institute of Scientific and Technical Information of China (English)

    Hairui Yang; Guangxi Yue

    2005-01-01

    The carbon content in the fly ash from most Chinese circulating fluidized bed (CFB) boilers is much higher than expected, thus directly influencing the combustion efficiency. In the present paper, carbon burnout was investigated both in field tests and laboratory experiments. The effect of coal property, operation condition, gas-solid mixing, char deactivation,residence time and cyclone performance are analyzed seriatim based on large amount of experimental results.A coal index is proposed to describe the coal rank, defined by the ratio of the volatile content to the coal heat value, is a useful parameter to analyze the char burnout. The carbon content in the fly ash depends on the coal rank strongly. CFB boilers burning anthracite, which has low coal index, usually have high carbon content in the fly ash. On the contrary, the CFB boilers burning brown coal, which has high coal index, normally have low carbon content.Poor gas-solid mixing in the furnace is another important reason of the higher carbon content in the fly ash. Increasing the velocity and rigidity of the secondary air could extend the penetration depth and induce more oxygen into the furnace center. Better gas solid mixing will decrease the lean oxygen core area and increase char combustion efficiency.The fine char particles could be divided into two groups according to their reactivity. One group is "fresh" char particles with high reactivity and certain amount of volatile content. The other group of char particles has experienced sufficient combustion time both in the furnace and in the cyclone, with nearly no volatile. These "old" chars in the fly ash will be deactivated during combustion of large coal particles and have very low carbon reactivity. The generated fine inert char particles by attrition of large coal particles could not easily burn out even with the fly ash recirculation. The fraction of large coal particles in coal feed should be reduced during fuel preparation process.The cyclone

  6. Applying the Science of Science Communication to Climate Change and Clean Energy: Lessons Learned from the NSF- and PBS-supported "Earth: The Operators' Manual"

    Science.gov (United States)

    Haines-Stiles, G.; Akuginow, E.; Sanford, C.

    2014-12-01

    Yale legal scholar and professor of psychology Dan Kahan has criticized the climate change science community for not applying what's known about effective communications strategies to topics with potentially controversial content. "Earth: The Operators' Manual," funded by NSF's Informal Science Education program and appearing on PBS was hosted by Penn State geoscientist Richard Alley. From the initial proposal forward into airing on public television in 2011 and 2012, ETOM aimed to be authoritative and apolitical while still being engaging to general audiences. Based on social scientific insights from project Advisor, Suzanne Moser, and others, ETOM aimed to avoid "climate porn" scare tactics and over-used footage, and to enlist a diverse group of "messengers" in addition to Alley. An important design criterion was to give equal time to clean energy solutions while pulling no punches as to the consensus findings of leading climate scientists. With the ETOM project now completed and final reports submitted to NSF, what results can be shared to inform future efforts? And how did ETOM compare in audience impact with other major media efforts such as Al Gore's "An Inconvenient Truth" or Showtime's more recent "Years of Living Dangerously"? Results reported draw on the external evaluation by Rockman Et Al, and include both quantitative and qualitative data. Key findings are the importance of including Texan ranchers enthusiastic about wind power alongside Navy Admirals adamant that climate change is human-caused and Marines implementing solar energy to reduce casualties incurred while transporting fossil fuels. In-person presentations by Alley and others at science centers served as de facto focus groups for scripting the TV programs, along with actual focus groups convened by Rockman. The 3rd program, ENERGY QUEST USA, documented 5 quite different communities, from Alaska to Forth Worth, Baltimore, Portland and Kansas, all using competition, local values, and economic

  7. Evaluation of activated carbon for control of mercury from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.; Laudal, D.; Dunham, G. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-11-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments` requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200{degrees} and 400{degrees}F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy & Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature.

  8. Erosion in Steam General Tubes in Boiler and ID Fans in Coal Fired FBC Power Plant

    Directory of Open Access Journals (Sweden)

    Shaheen Aziz

    2012-01-01

    Full Text Available The FBC (Fluidized Bed Combustion is a technique used to make solid particles behave like fluid and grow very fast for the power generation using low grade coal. Due to its merits, first time this technology has been introduced in Pakistan by installing 3x50 MW power plants at Khanote. Fluidized beds have long been used for the combustion of low-quality, difficult fuels and have become a rapidly developing technology for the clean burning of coal. The FBC Power Plant at Khanote has been facing operational and technical problems, resulting frequently shut down of generation units, consequently facing heavy financial losses. This study reveals that due to the presence of high percentage of silica in the lime stone that are further distributed in the bottom ash, fly ash and re-injection material, the generation tubes in the boiler and wings/blades of ID (Induced Draft fans were eroded. In addition, filter bags were also ruptured; resulting frequent shut down of power plant units.

  9. Precision Cleaning - Path to Premier

    Science.gov (United States)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  10. KINERJA ECONOMIZER PADA BOILER

    Directory of Open Access Journals (Sweden)

    Muhammad Sjahid Akbar

    2009-01-01

    Full Text Available This paper employed the dual response approach for case of Multivariate Robust Parameter Design (MRPD which is developed by Del Castillo and Miro Quesada. MRPD method can be applied for any design of experiment. The optimization in this method uses minimizing variance function with restriction on mean function. In this paper, MRPD is applied to the case of optimization of heat transfer efectivity and operational cost at economizer. Those two responses are optimized by setting the level of control factors; diametre of tube hole, transversal spacing, and fin nearness. Temperature of feedwater is hold as a noise factor. Optimization is calculated by fmincon in MATLAB 7.0. The optimal condition for heat tranfer efectivity is 77.17% and operational cost is 30.58 kW. The optimal condition is attained at diametre of tube hole 1.5 inch, transversal spacing 3.5 inch, and fin density 3 fin/inch. Abstract in Bahasa Indonesia: Penelitian ini menggunakan metode pendekatan dual response terhadap kasus Multivariate Robust Parameter Design (MRPD yang dikembangkan oleh Del Castillo dan Miro Quesada. Metode MRPD tidak mensyaratkan jenis rancangan percobaan yang dapat digunakan dalam proses optimasi, yang dilakukan dengan meminimalkan fungsi varians terhadap kendala fungsi rerata. Pada penelitian ini, metode MRPD diterapkan untuk kasus pencarian nilai optimal respon yaitu efektifitas perpindahan panas dan biaya operasi pada economizer. Optimasi kedua respon dilakukan dengan cara mengoptimalkan level faktor kontrol diameter luar tubing, transversal spacing, dan kerapatan fin. Temperatur feedwater berlaku sebagai faktor noise. Optimasi dilakukan dengan bantuan fmincon pada MATLAB 7.0 yang menghasilkan kondisi optimum untuk efektifitas perpindahan panas sebesar 77,17% dan biaya operasi sebesar 30,58 kW. Kondisi tersebut dicapai pada saat level diameter luar tubing sebesar 1,5 inci, transversal spacing sebesar 3,5 inci, dan kerapatan fin sebesar 3 fin/inci. Kata kunci

  11. Safety conditions of steam boilers in companies associated with a professional risk administration company in Antioquia, 2009

    OpenAIRE

    Diego L. Sepúlveda M; Jairo Ramírez G

    2011-01-01

    Objective: to determine the safety conditions of steam boilers in companies associated with a professional risk administra-tion company in Antioquia, Colombia. To this end, their op-eration conditions shall be characterized, the associated risks identified, and their safety level assessed. Methodology:. a descriptive crosssectional study was carried out in twenty companies whose production processes involve boilers. A survey on the conditions for operation was applied on both the maintena...

  12. Supersonic Gas-Liquid Cleaning System

    Science.gov (United States)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  13. 600MW机组对冲燃烧锅炉低氮燃烧改造及运行调整%Low NOx burner retrofit and operation adjustment of 600 MW opposed wall firing boiler

    Institute of Scientific and Technical Information of China (English)

    应明良; 戴成峰; 胡伟锋; 徐良; 屠小宝

    2011-01-01

    For the high NO.duscharge density of 600 MW opposed wall firing boiler,the retrofitting of combustors with low NOx was carried on. By replacing low NOx burner,arranging OFA appropriately, and adopting staged-air furnace combustion technology, the NOx discharge density was decreased to 300 mg/m3.The unburned carbon mass fraction in fly ash was not changed greatly.By replacing parts of the low-temperatuer superheater with the economizer, the desuperheating water flow of superheater was reduced,the gas temperature in air preheater outlet was decreased and teh echaust gas temperature of boiler was decreased.All of these are good for improving the boiler efficiency.After the replacing of parts of the low-temperature superheater with the ecoomizer, the water temperature of economizer outlet wasd increated .But the under-saturationg temperaturae difference and the safety margin still exist.%为解决600MW火电机组对冲燃烧锅炉NO,排放质量浓度过高的问题,进行了低氮燃烧改造.通过低氮燃烧器更换,合理布置燃尽风喷嘴,采用全炉膛分级燃烧技术,使NOx排放质量浓度降低至300mg/m3左右,达到了降低NOx排放的效果,同时锅炉飞灰含碳质量分数没有明显的变化.通过部分低温过热器置换为省煤器.降低了过热器减温水流量,同时空气预热器进口烟气温度下降,锅炉排烟温度也会随之下降,有利于提高锅炉热效率.部分低温过热器置换后省煤器出口水温提高,但还有一定的欠饱和温差,距汽化仍有一定的安全裕度.

  14. Particle Formation in Moving Grate Boilers Fired with Wood Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Bioenergy Technology; Pagels, Joalum; Szpila, Aneta; Bohgard, Mats [Lund Univ. (Sweden). Div. of Ergonomics and Aerosol Technology; Swietlicki, Erik [Lund Univ. (Sweden). Div. of Nuclear Physics

    2005-07-01

    In this work the size resolved elemental particle concentration from five district heating moving grate boilers operating on different woody biofuels have been analysed in order to investigate the general formation mechanism in this kind of boiler. Aerosol particles were characterised in the five boilers operating on forest residues, pellets, or saw dust. The aerosol particles were sampled downstream of the multicyclone using a dilution system in order to decrease temperature and humidity. The proposed mechanism for formation of the fine mode is homogenous chemical reactions to form potassium sulphate, which nucleates to form the fine particle mode at high temperatures. The concentration profile of zinc indicates that zinc-containing species in some cases may form particles by gas-to particle conversion prior to the nucleation of potassium sulphate. As the flue gas temperature decrease below 650 C potassium chloride will condense on the surfaces of the previously formed particles. The proposed mechanism for inception of the coarse particle mode was fragmentation/dispersion of refractory material from the burning char or from the residual ash in the bed. The ratios of the potentially volatile elements potassium, sulphur and chlorine, were similar in the fine and the coarse mode, indicating the material had the same origin in both modes. The presence of the volatile components may be explained by non-complete vaporisation, chemical surface reactions, re-entrainment of deposited particles, and coagulation with the fine particle mode.

  15. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  16. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, G. [Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol (A Coruna) (Spain)], E-mail: gines@cdf.udc.es; Mateo, M.P.; Yanez, A. [Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol (A Coruna) (Spain)

    2007-12-15

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits.

  17. Modeling energy consumption of residential furnaces and boilers in U.S. homes

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

    2004-02-01

    In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

  18. PAH emission from the industrial boilers.

    Science.gov (United States)

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler.

  19. Effect of laminar flow clean operating room on surgical wound infection rate%层流洁净手术室对手术切口感染的影响研究

    Institute of Scientific and Technical Information of China (English)

    方群

    2013-01-01

    目的 探讨层流洁净手术室对手术切口感染的影响,为不同类型手术的手术室安排及手术切口感染控制提供参考依据.方法 采用回顾性方法对医院2010年1月-2011年6月普通手术室1652台手术以及2011年7月-2012年6月层流洁净手术室842台手术资料分析,比较各类切口在普通手术室和层流洁净手术室施行的手术切口感染率.结果 洁净手术室手术切口总感染率为1.31%,普通手术室切口总感染率为2.66%,洁净手术室切口总感染率低于普通手术室(P<0.05);洁净层流手术室Ⅰ、Ⅱ、Ⅲ类手术切口感染率分别为0、0.40%、5.10%,普通手术室Ⅰ、Ⅱ、Ⅲ类手术切口感染率分别为1.14%、2.48%、5.77%,洁净层流手术室Ⅰ、Ⅱ类切口感染率低于普通手术室(P<0.05);Ⅲ类手术切口感染率同普通手术室差异无统计学意义.结论 层流洁净手术室能够降低Ⅰ、Ⅱ类手术切口感染率,有利于医院感染控制.%OBJECTIVE To investigate the effect of laminar flow clean operating room on the incidence of surgical incision infections so as to provide basis for the arrangement of operating room as well as for the control of surgical incision infections.METHODS Totally 1652 cases of operations in the ordinary operating rooms from Jan 2010 to Jun 2011 and 842 cases of operations in laminar flow clean operating rooms from Jul 2011 to Jun 2012 were enrolled in the study,then the clinical data of the cases were retrospectively analyzed,and the incidence of surgical incision infections was compared between the ordinary operating rooms and the laminar flow clean operating rooms.RESULTS The total incidence rate of surgical incision infections in the ordinary operating rooms was 2.66%,significantly higher than 1.31% in the laminar flow clean operating rooms (P<0.05).In the laminar flow clean operating rooms,the incidence rate of type Ⅰ incision infection was 0%,the type Ⅱ incision

  20. National Clean Fleets Partnership (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  1. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  2. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Packaged Boilers § 431.82 Definitions concerning commercial...). Commercial packaged boiler means a type of packaged low pressure boiler that is industrial equipment with a... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers....

  3. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  4. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a)...

  5. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  6. 46 CFR 61.05-20 - Boiler safety valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler safety valves. 61.05-20 Section 61.05-20 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-20 Boiler safety valves. Each safety valve for a drum, superheater, or reheater of a boiler shall be tested at the interval specified by table 61.05-10....

  7. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires...

  8. 40 CFR 65.149 - Boilers and process heaters.

    Science.gov (United States)

    2010-07-01

    ... thermal units per hour) or greater. (ii) A boiler or process heater into which the vent stream is... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters. 65.149... System or a Process § 65.149 Boilers and process heaters. (a) Boiler and process heater equipment...

  9. Investigation to usage of operation posture mat and improvement of cleaning and disinfecting methods%手术体位垫使用调查及清洗消毒方法改进

    Institute of Scientific and Technical Information of China (English)

    徐淑娟; 孙薇薇

    2011-01-01

    OBJECTIVE To explore the usage of operation posture mat and effective measures for cleaning and disinfection. METHODS The current status of using posture mat was investigated, and the methods of using,cleaning and disinfecting posture mat were summarized and standardized according to classification of different operations. RESULTS The standardized and improved methods were convenient and easy to operate. Most importantly, the improved disinfection methods effectively avoid the cross-infection. CONCLUSION The application of standardized and improved methods of using, cleaning and disinfecting of operation posture mat not only are convenient and practical, but also can ensure the occupational safety of the nurses and avoid crossinfection among patients.%目的 探索手术体位垫使用、清洗消毒的有效方法.方法 调查手术体位垫使用现状,分类规范手术体位垫的使用和清洗消毒方法.结果 规范了手术体位垫的使用、清洗、消毒方法,可以做到彻底消毒、隔离,有效切断在体位垫使用中的交叉污染.结论 手术体位垫使用、清洗消毒的方法有效、规范、便捷,在实际工作中具有可操作性,综合应用取得很好的效果,还利于保护手术室护理人员的职业安全.

  10. An automated cleaning system for hospitals

    OpenAIRE

    Griffin, Colin

    2009-01-01

    Insufficient hygienic practices in Irish hospitals coupled with one of the highest number of reported cases of MRSA in Europe have highlighted the need for solutions to aid in the task of cleaning. This automated cleaning system consisted of two robots: a core robot developed separately with navigational and task scheduling capabilities integrated. The cleaning task was carried out by making use of a commercially available Roomba vacuum cleaner which had been adapted to operate in conju...

  11. Energy Saving Control of Gas Boiler%燃气锅炉的节能运行控制

    Institute of Scientific and Technical Information of China (English)

    王伟明

    2015-01-01

    燃气锅炉在冶金企业中广泛应用,本文介绍了燃气锅炉在节能降耗方面的操作经验,从而更有效利用了高炉煤气的热值,提高了锅炉的运行效率.%The gas boiler is widely used in the metallurgical enterprises.this paper introduces the experience in energy sav-ing for the gas boiler, and thus more efficient use of heat value blast furnace gas, improve the operating efficiency of the boiler.

  12. Gain-Scheduled Control of a Fossil-Fired Power Plant Boiler

    DEFF Research Database (Denmark)

    Hangstrup, M.; Stoustrup, Jakob; Andersen, Palle;

    1999-01-01

    In this paper the objective is to optimize the control of a coal fired 250 MW power plant boiler. The conventional control system is supplemented with a multivariable optimizing controller operating in parallel with the conventional control system. Due to the strong dependence of the gains...... and dynamics upon the load, it is beneficial to consider a gain-scheduling control approach. Optimization using complex mu synthesis results in unstable LTI controllers in some operating points of the boiler. A recent gain-scheduling approach allowing for unstable fixed LTI controllers is applied. Gain...

  13. Neural network approach to the diagnosis of the boiler combustion in a coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Villar, J.; Sanz-Bobi, M.A. [Universidad Pontificia Comillas, Madrid (Spain). Instituto de Investigacion Tecnologia

    1995-08-01

    In order to optimise boiler operation some sort of monitoring system is needed. Monitors can tell the operator about heat production and inputs to heat production; however they cannot monitor the process itself, only its effects. In this example the coal quality used varied, causing the amount of heat produced from the same fuel input to vary. Where quality is very poor the boiler may shutdown. To improve monitoring, flame visualisation techniques were used linked to an automatic diagnosis system. The system was based on artificial neural networks and mathematical techniques. It was installed in the Meirama power plant in Northwest Spain. 18 refs., 17 figs.

  14. A Model for Optimization and Analysis of Energy Flexible Boiler Plants for Building Heating Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J.R.

    1996-05-01

    This doctoral thesis presents a model for optimization and analysis of boiler plants. The model optimizes a boiler plant with respect to the annual total costs or with respect to energy consumption. The optimum solution is identified for a given number of energy carriers and defined characteristics of the heat production units. The number of heat production units and the capacity of units related to each energy carrier or the capacity of units related to the same energy carrier can be found. For a problem comprising large variation during a defined analysis period the model gives the operating costs and energy consumption to be used in an extended optimization. The model can be used to analyse the consequences with respect to costs and energy consumption due to capacity margins and shifts in the boundary conditions. The model is based on a search approach comprising an operational simulator. The simulator is based on a marginal cost method and dynamic programming. The simulation is performed on an hourly basis. A general boiler characteristic representation is maintained by linear energy or cost functions. The heat pump characteristics are represented by tabulated performance and efficiency as function of state and nominal aggregate capacities. The simulation procedure requires a heat load profile on an hourly basis. The problem of the presence of capacity margins in boiler plants is studied for selected cases. The single-boiler, oil-fired plant is very sensitive to the magnitude of the losses present during burner off-time. For a plant comprising two oil-fired burners, the impact of a capacity margin can be dampened by the selected capacity configuration. The present incentive, in Norway, to install an electric element boiler in an oil-fired boiler plant is analysed. 77 refs., 74 figs., 12 tabs.

  15. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  16. 井下作业清洁生产的影响因素及综合治理措施%Factors influencing clean production in down-hole operation and comprehensive control measures

    Institute of Scientific and Technical Information of China (English)

    薛雁海

    2015-01-01

    本文分别对维修油水井前期、维修油水井中期与维修完成后所遗留的污染物等方面对影响井下作业清洁生产的主要因素进行了分析与探讨。%This paper discusses and analyzes the main factors influencing clean production in down-hole operation from the aspects such as the pollutants left in three different stages of oil-water well maintenance:pre-phase maintenance stage,medium maintenance stage and after-maintenance stage.

  17. Saltstone Clean Cap Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2005-04-22

    The current operation strategy for using Saltstone Vault 4 to receive 0.2 Ci/gallon salt solution waste involves pouring a clean grout layer over the radioactive grout prior to initiating pour into another cell. This will minimize the radiating surface area and reduce the dose rate at the vault and surrounding area. The Clean Cap will be used to shield about four feet of Saltstone poured into a Z-Area vault cell prior to moving to another cell. The minimum thickness of the Clean Cap layer will be determined by the cesium concentration and resulting dose levels and it is expected to be about one foot thick based on current calculations for 0.1 Ci Saltstone that is produced in the Saltstone process by stabilization of 0.2 Ci salt solution. This report documents experiments performed to identify a formulation for the Clean Cap. Thermal transient calculations, adiabatic temperature rise measurements, pour height, time between pour calculations and shielding calculations were beyond the scope and time limitations of this study. However, data required for shielding calculations (composition and specific gravity) are provided for shielding calculations. The approach used to design a Clean Cap formulation was to produce a slurry from the reference premix (10/45/45 weight percent cement/slag/fly ash) and domestic water that resembled as closely as possible the properties of the Saltstone slurry. In addition, options were investigated that may offer advantages such as less bleed water and less heat generation. The options with less bleed water required addition of dispersants. The options with lower heat contained more fly ash and less slag. A mix containing 10/45/45 weight percent cement/slag/fly ash with a water to premix ratio of 0.60 is recommended for the Clean Cap. Although this mix may generate more than 3 volume percent standing water (bleed water), it has rheological, mixing and flow properties that are similar to previously processed Saltstone. The recommended

  18. Optimal scheduling of sootblowers in power plant boilers

    Science.gov (United States)

    Vasquez-Urbano, Pedro Manuel

    1997-11-01

    Burning coal or other fossil fuels in a utility boiler fouls the surfaces of its heat exchangers with ash and soot residues. These deposits affect the performance of the power plant since they reduce heat transfer from the combustion gases to the water or steam. Fouling can be removed during the operation of the plant with the use of lances, called sootblowers, that direct high-pressure air or steam onto the fouled surfaces. Sootblowing operations are key to plant efficiency and boiler maintenance, but they also incur operating costs. A utility boiler may have a hundred or so sootblowers placed in fixed locations. Deciding which of these should be used at any moment is complicated by the lack of instrumentation that can monitor fouling levels. This dissertation studies the optimization problem of scheduling sootblowing activities at a utility plant. The objective is to develop an optimization approach to determine which sootblowers should be activated at any moment in order to maximize plant efficiency. To accomplish this, three issues are addressed. First, models are developed that can estimate fouling conditions indirectly during plant operation using commonly available data. The approach used relies on a sequential application of linear regression fits. Secondly, autoregressive exogenous (ARX) models are used to describe the dynamics of the fouling process and to estimate the consequences of fouling on plant efficiency. All the foregoing empirical models are developed using data from a power plant. Finally, using the empirical models, an optimization model is formulated for the sootblowing scheduling problem and different optimization approaches that combine nonlinear programming with heuristics methods are investigated for its solution. The applicability of dynamic programming to this optimization problem is also explored.

  19. Experiences with the KEMA Corrosion Probe in waste incineration plants and coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.P. de; Leferink, R.G.I. [KEMA Nederland B.V. Arnhem, (Netherlands)

    2001-07-01

    Fireside corrosion is still a major cause of concern in coal- fired power plants and municipal waste incineration plants. In a highly competitive electricity market, the demand for a method to determine the quality or protectiveness of the oxide layers on evaporator walls, in boilers of power plants with low-NO{sub x} firing techniques, will increase. Moreover, co-firing of new fuels (RDF, pulverised wood and other residual fractions) has as yet unknown consequences for corrosion in evaporator walls and super heaters in boiler installations and waste incinerators. Corrosion monitoring enables operators of coal fired power plants to measure and act when corrosion problems are likely to occur. If done properly corrosion monitoring allows the plant operator to adjust the (co-) firing conditions to less corrosive conditions with the highest possible plant efficiency. Recently KEMA developed the KEMA Corrosion Probe (KEMCOP) which enables plant owners to determine fireside corrosion in different locations in their boiler. A good example is the 540 MWe E.on Maasvlakte power plant, which was recently fitted for the exposure of 144 probes simultaneously. The probes can also be used for material testing by exposing different materials under actual firing conditions. Aside from corrosion monitoring also slagging behaviour and condensation of heavy metals can be monitored. In the Netherlands KEMCOP probes are used for several purposes and are more and more becoming common practice for coal fired boilers and waste incinerators. Until now almost 300 probes have been mounted in coal fired boilers and waste incineration plants. (orig.)

  20. Mechanical Design of Steel Tubing for Use in Black Liquor Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Taljat, B.; Zacharaia, T.; Wang, X.; Kesier, J.; Swindeman, R.; Hubbard, C.

    1999-05-26

    Finite element models were developed for thermal-mechanical analysis of black liquor recovery boiler floor tubes. Residual stresses in boiler floors due to various manufacturing processes were analyzed. The modeling results were verified by X-ray and neutron diffraction measurements at room temperature on as-manufactured tubes as well as tubes after service. The established finite element models were then used to evaluate stress conditions during boiler operation. Using these finite element models, a parametric response surface study was performed to investigate the influence of material properties of the clad layer on stresses in the floor tubes during various boiler operating conditions, which yielded a generalized solution of stresses in the composite tube floors. The results of the study are useful for identifying the mechanisms of cracking experienced by recovery boilers. Based on the results of the response surface study, a recommendation was made for more suitable materials in terms of the analyzed mechanical properties. Alternative materials and manufacturing processes are being considered to improve the resistance to cracking and the in-service life of composite tubes. To avoid numerous FE stress-strain analyses of composite tubes made of different material combinations, a response surface study was performed that considered two essential mechanical properties of the clad material - coefficient of thermal expansion and yield stress - as independent variables. The response surface study provided a generalized solution of stresses in the floor in terms of the two selected parameters.

  1. ANALYSIS ON SELECTION OF FERROSILICON FURNACE WASTE HEAT BOILER%硅铁矿热炉余热锅炉选型分析

    Institute of Scientific and Technical Information of China (English)

    仝伟峰; 彭岩; 吴海燕; 时小宝

    2016-01-01

    介绍了目前硅铁矿热炉余热发电工程中采用的主要余热锅炉型式,分析了各种余热锅炉型式的特点,重点剖析了余热锅炉选型的影响因素及清灰方式对余热锅炉布置型式的影响,提出了适合于硅铁矿热炉余热锅炉的清灰方式及相应的锅炉布置型式,为硅铁矿热炉余热锅炉的选型提供参考,同时也可以为半封闭工业硅矿热炉余热锅炉的选型提供借鉴和参考。%AbstractThe paper introduces the type of waste heat boiler mainly used in ferrosilicon furnace waste heat generating projects currently, analyzes the characteristics of various types of waste heat boiler, mainly expounds the factors influencing the selection of waste heat boiler and effects of dust cleaning method on waste heat boiler arrangement, proposes a cleaning method suitable for ferrosilicon furnace waste heat boiler and the corresponding the boiler arrangement. It provides reference for the selection of ferrosilicon furnace waste heat boiler, and can provide reference for the selection of semi-closed industrial silicon furnace waste heat boiler.

  2. The production of hot sanitary water by condensing boilers: Analysis of the seasonal experimental results of a central heating plant

    Energy Technology Data Exchange (ETDEWEB)

    Caliari, R.; Cirillo, E.; Lazzarin, R.; Piccininni, F.

    1988-12-01

    The use of condensing boilers in the production of hot sanitary water clearly evidences their advantages, since the highest operating temperatures are only around 60/degree/C. This paper examines performance test results relevant to a central heating plant (serving a residential area in Rovereto, Italy) with 112 kW of thermal power. The analysis reveals the excellent performance characteristics of the condensing boilers and points out the importance of proper management of the recirculation system.

  3. 30 CFR 56.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... Valves BNon-ASME Code Boilers and Pressure Vessels CStorage of Mild Steel Covered Arc Welding Electrodes... American Society of Mechanical Engineers, 22 Law Drive, P.O. Box 2900, Fairfield, New Jersey 07007,...

  4. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels;

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  5. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus; Condra, Thomas Joseph;

    2003-01-01

    A model for a ue gas boiler covering the ue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been dened for the furnace, the convection zone (split in 2: a zone...... submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic- Equation system (DAE). Subsequently MatLab/Simulink has...... been applied for carrying out the simulations. To be able to verify the simulated results an experiments has been carried out on a full scale boiler plant....

  6. Boiler scale prevention employing an organic chelant

    Science.gov (United States)

    Wallace, Steven L.; Griffin, Jr., Freddie; Tvedt, Jr., Thorwald J.

    1984-01-01

    An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

  7. New thinking for the boiler room.

    Science.gov (United States)

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  8. The effects of different disinfectants on polluted surfaces in clean operating room%不同消毒液对洁净手术室污染物体表面消毒效果

    Institute of Scientific and Technical Information of China (English)

    吴建文

    2011-01-01

    目的 比较乙醇、新洁尔灭和含氯消毒剂3种消毒液对洁净手术室污染物体表面的消毒效果.方法 选择万级洁净手术间3间,于非感染手术结束后,先用清水擦拭所有物体表面,再分别用75%的乙醇、0.5%的新洁尔灭和含氯消毒剂擦拭被血液、体液等有机物污染的物体表面,30 min后对物体表面采样,检测菌落数,比较3种消毒液的消毒效果.结果 3种消毒液消毒的物体表面菌落数比较,差异无统计学意义(P>0.05).结论 乙醇、新洁尔灭、含氯消毒剂均可达到洁净手术室物体表面消毒效果.%Objective To compare the effects of ethanol,benzalkonium bromide and chlorine - containing disinfectant on polluted surface in clean operating room.Methods Three rooms of cleanliness class 10 000 were selected.At the end of non - infectious operations,the stuff surfaces which were polluted by blood,body fluids were cleaned firstly by clean water and then wiped by 75% ethanol,0.5%benzalkonium bromide and chlorine -containing disinfectant respectively..After 30 minutes,samples from the different surfaces were collected,and the clones of bacteria were examined,and the effects of the disinfection were compared.Results There was no significant difference among the three disinfectants ( P > 0.05).Conclusions Ethanol,benzalkonium bromide and chlorine - containing disinfectant can all achieve satisfactory disinfection results on the surfaces in clean operating room.

  9. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  10. Bergemann lance-type water blowers for coal boilers; Bergemann-Wasserlanzenblaeser fuer Kohlekessel

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, F.; Weber, H.G.

    1995-12-31

    Residues from coal combustion create considerable problems for boilers. Slag and ashes on heating surfaces have a negative influence on steam generator efficiency and reduce boiler cycles. If different types of coal are used there are not only specific demands for stable furnace operation but problems of slag control at the different steam generator surfaces. Vaporiser heating surfaces of combustion chambers show extra-tough slag which can not always be removed by steam or air blowers. Forty years ago one therefore started using water as an alternative cleaning agent. At first, hand-held lances were used. Due to its high kinetic energy, water jets penetrate the pores of the slag layers on the vaporiser pipes where it evaporates and makes the slag pop off due to the sudden considerable increase in volume. These results consequently lead to the mechanisation of water-blowing as early as the 1950s; steam soot blowers were retrofitted for water. The Bergemann company used its own system of wall-blowers and improved the water blowing technology with the help of RWE by testing the technology under real life conditions in one or RWE`s lignite power stations. (orig.) [Deutsch] Rueckstaende aus der Verbrennung von Kohle-Brennstoffen fuehren beim Betrieb von Kesselanlagen zu erheblichen Problemen. Der Wirkungsgrad der Dampferzeuger wird durch zum Teil hartnaeckige Ansaetze von Schlacken und Aschen auf den Heizflaechen negativ beeinflusst und die Kessel-Reisezeit herabgesetzt. Besonders die Verbrennung von verschiedenen Kohlearten mit einem breiten Brennstoffband fuehrt neben spezifischen Anforderungen an den stabilen Feuerungsbetrieb vor allem auch zu den Fragen der Beherrschung von Verschlackungen an den unterschiedlichen Dampferzeugerheizflaechen. An den Verdampferheizflaechen der Brennkammern koennen besonders hartnaeckige Verschlackungen auftreten, die mit Dampf und Luft als Blasmedium nicht immer zu entfernen sind. Wasser wurde deshalb als alternatives Reinigungsmedium

  11. IHI-FW circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Omata, K.; Ishimoto, R.; Asai, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1993-07-01

    The technology and application of the circulating fluidized bed boiler (IHI-FW) are outlined. Circulating fluidized bed boilers have various features as compared with bubbling fluidized bed boilers as follows; a high combustion efficiency, efficient use of limestone for desulfurization, low NOx emission, adaptability to various fuels and capability to cope with load change. The IHI-FW boiler is furthermore featured by water-wall furnace of all-welded structure, water-cooled/steam cooled cyclone, and simple circulating system. The 30 t/h circulating fluidized bed boiler was introduced into the Tsu Works, Omikenshi Co., Ltd., Japan for private power generation. The boiler equipped with a backup heavy oil burner mainly uses semi-anthracite coal, and besides sulfur capture and NOx reduction functions of a bed, a bag filter with a high dust collecting efficiency is installed in an exhaust gas system. The installation period was reduced to 2.5 months, a half of conventional ones, by more assembly in a factory followed by less field works. 7 figs., 2 tabs.

  12. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do

  13. Hyperbolic Divergence Cleaning for SPH

    CERN Document Server

    Tricco, Terrence S

    2012-01-01

    We present SPH formulations of Dedner et al's hyperbolic/parabolic divergence cleaning scheme for magnetic and velocity fields. Our implementation preserves the conservation properties of SPH which is important for stability. This is achieved by deriving an energy term for the Psi field, and imposing energy conservation on the cleaning subsystem of equations. This necessitates use of conjugate operators for divB and gradPsi in the numerical equations. For both the magnetic and velocity fields, the average divergence error in the system is reduced by an order of magnitude with our cleaning algorithm. Divergence errors in SPMHD are maintained to < 1%, even for realistic 3D applications with a corresponding gain in numerical stability. Density errors for an oscillating elliptic water drop using weakly compressible SPH are reduced by a factor of two.

  14. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  15. On Propagating Requirements and Selecting Fuels for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Wisniewski, Rafal; Mølbak, Tommy

    2008-01-01

    In this paper, the problem of optimal choice of sensors and actuators is addressed. Given a functional encapsulating information of the desired performance and production economy the objective is to choose a control instrumentation from a given set to comply with its minimum. The objective of the...... to propagate a global objective to local subsystems. Particular focus is on a boiler in a power plant operated by Dong Energy. The business objectives have been propagated to the actuator level to allow for selection of an actuator configuration....

  16. Combustion zone investigation in fuel flexible suspension fired boilers, Experimental

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Hvid, Søren Lovmand;

    The purpose of the project is to obtain data for full-scale validation of predictive models for combustion and cocombustion of biomass in utility boilers. In addition, focus was on development of innovative optical measuring techniques as a means to increase data quality by fast measurements......-straw flame at conditions close to daily co-firing operation. 4 measurement ports was used for mapping of flames with a distance up to 6.72 m from burner wall using 5 m and 7 m long water-cooled probes. Gas temperatures and gas composition were measured by FTIR fibre-optic probe and extractive gas sampling...

  17. Robotic cleaning of a spent fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Roman, H.T.; Marian, F.A. (PSE and G Research Corp., Newark, NJ (US)); Silverman, E.B.; Barkley, V.P. (ARD Corp., Columbia, MD (US))

    1987-05-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant.

  18. Numerical studies of the combustion of fuel oil in the boiler furnace at reduced load

    Directory of Open Access Journals (Sweden)

    Ivantsov Aleksandr A.

    2014-01-01

    Full Text Available Relevance of the work due to the need to assess the effectiveness and reliability of the boiler units on reserve fuel after reconstruction associated with a change in the base fuel and approaches of numerical analysis. Analysis of physical and chemical processes in the furnace volume of boiler BKZ–210–140 operating on reserve fuel and rated load when using the Euler and Euler combined and Lagrangian modeling approaches. Results of the numerical modeling of the processes of aerodynamics, heat exchange, and combustion in the furnace volume.

  19. Modern power station practice mechanical boilers, fuel-, and ash-handling plant

    CERN Document Server

    Sherry, A; Cruddace, AE

    2014-01-01

    Modern Power Station Practice, Second Edition, Volume 2: Mechanical (Boilers, Fuel-, and Ash-Handling Plant) focuses on the design, manufacture and operation of boiler units and fuel-and ash-handling plants.This book is organized into five main topics-furnace and combustion equipment, steam and water circuits, ancillary plant and fittings, dust extraction and draught plant, and fuel-and ash-handling plant.In these topics, this text specifically discusses the influence of nature of coal on choice of firing equipment; oil-burner arrangements, ignition and control; disposition of the heating surf

  20. Processing of Egyptian boiler-ash for extraction of vanadium and nickel.

    Science.gov (United States)

    Amer, A M

    2002-01-01

    Proposed technique in this investigation is given for vanadium and nickel enrichment in the Egyptian boiler ash. Among the various concepts for recovery of vanadium and nickel from boiler ash, the pyro-metallurgical approach is technically feasible, but is not cost-effective from an operational economy standpoint. Another technically viable process which, however, needs further development and presented in this investigation, is the hydrometallurgical processing that involves acid leaching under oxygen pressure of ground ash, followed by electrolytic separation of nickel from sulphate solution and vanadium is then neutralized and precipitated by adjustment the pH value and calcined to produce V2O5.

  1. EFFICIENCY OF MULTI-MODULE SOLAR COLLECTORS AS A PREFIX TO A BOILER

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2014-12-01

    Full Text Available Influencing factors on thermal and economic efficiency of the combined of heat supply installation are established. Constructive circuits of solar heat supply "prefix" interaction with boiler installation are worked out. Mathematical models of heat exchange processes in elements of combined heat supply system with the account solar engineering characteristics are developed. The techniques of analysis of efficiency of multi-modular system of solar collectors with compulsory circulation for water heating boiler allowing calculating of efficiency factor; heat removal factor and heat transfer factor with the account of construction and operation conditions of alternative heat supply system are presented.

  2. 浅谈锅炉微机控制技术%Boiler Computer Control Technology Introduction

    Institute of Scientific and Technical Information of China (English)

    王敏

    2001-01-01

    The composition of boiler Computer control technology is introduced herein,which is useful for saving energy,improving boiler operation level,redcing environmental pollution.%叙述了锅炉微计算机控制系统的构成。该系统能保证锅炉既可节能又可提高锅炉的运行管理水平,减轻环境污染,是一件具有意义的工作。

  3. Results from studies of furnace processes in boilers constructed on the basis of vortex combustion technology

    Science.gov (United States)

    Salomatov, V. V.

    2012-06-01

    The main results obtained from experimental and numerical simulation of furnace processes and emission of toxic substances during the firing of low-grade coals, in particular, in a steam generator equipped with the vortex furnace designed by N.V. Golovanov from the Central Boiler-Turbine Institute, are presented. A set of research works carried out at the modern level made it possible to work out recommendations for making further improvements in the design and operating characteristics of boilers equipped with a vortex furnace.

  4. Corrosion of boiler tube alloys in refuse firing: Shredded vs bulk refuse

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H.H. (Battelle, Columbus, OH (United States)); Daniel, P.L.; Blue, J.D. (Babcock Wilcox, Barberton, OH (United States))

    1994-08-01

    Results of corrosion probe exposures at two mass burning incinerators were compared with those conducted in a unit burning refuse-derived fuel. Tests were conducted with carbon steel, low-alloy steels, stainless steels, and high nickel-chromium alloys. Corrosion rates at similar metal and gas temperatures were essentially the same for both types of fuel. Boiler tube performance in the waterwalls of other incinerators confirmed these results. Boiler design and operating conditions appear to be more important factors in tube wastage than the extent of refuse processing.

  5. The Principle of Super Boiler%超级锅炉工作原理

    Institute of Scientific and Technical Information of China (English)

    周江尧

    2012-01-01

    文章介绍了美国锅炉制造商和能源部共同开发的一种新型工业锅炉系统-超级锅炉,通过改善燃烧、扩展对流换热表面积、采用新型换热设备(TMC/HAH)、先进的控制系统四项措施,使得其锅炉效率达到94%,降低水和燃料的消耗,并具有轻的重量和较少的占地面积。该类型锅炉已在美国多个工厂完成了现场试验,并开始了商业化运作。%The paper described the United States manufacturer of boilers and Department of Energy to jointly develop a new system of industrial boiler system-super boiler,by improving combustion,expanding convective heat transfer surface area,using new heat exchanging equipment(TMC/HAH),advanced control system of four measures,making the boiler efficiency to achieve 94 %,reduce the consumption of water and fuel,and has a lighter weight and smaller footprint.This type of boiler have completed field tests in the United States more factories,and began commercial operation.

  6. Usage of Boiler Unit Exhaust Gas Heat in Contact Heat Exchanger

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2010-01-01

    Full Text Available The paper presents Results of investigations pertaining to operation of a GM-50-14/250 boiler with a contact economizer are given in the paper. The paper reveals influence of contact economizer on fuel economy and reduction of nitrogen oxide discharge.

  7. Flue gas cleaning chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gutberlet, H. [VEBA Kraftwerke Ruhr AG, Gelsenkirchen (Germany)

    1996-12-01

    The introduction of modern flue gas cleaning technology into fossil-fueled power stations has repeatedly confronted the power station chemists with new and interesting problems over the last 15 - 20 years. Both flue gas desulphurization by lime washing and catalytic removal of nitrogen oxides are based on simple basic chemical reactions. Owing to the use of readily available starting materials, the production of safe, useful end products and, last but not least, the possibility of implementing all this on an industrial scale by means of efficient process engineering, limestone desulphurization and catalytic removal of nitrogen oxides dominate the world market and, little by little, are becoming still more widespread. The origin and thus the quality of fuels and starting materials, the firing method, the mode of operation and engineering peculiarities in each plant interact in a complex manner. Simple cause/effect relationships are frequently incapable of explaining phenomena; thinking in complex interrelationships is needed. (EG)

  8. Assessing the emission factors of low-pour-fuel-oil and diesel in steam boilers

    Directory of Open Access Journals (Sweden)

    Ohijeagbon, I.O.

    2012-12-01

    Full Text Available The purpose of this study is to examine the emissions effects resulting from the use of low pour fuel oil (LPFO and diesel fuels in industrial steam boilers operation. The method of ultimate analysis of the products of combustion and emissions of pollutant analysis were used to estimate the annual rate of emissions of boilers. The results shows that the levels of uncontrolled boiler emissions on the environment can lead to increased greenhouse effects, global warming, and pollution and toxilogical impacts on human health. Only carbon monoxide emission was found to vary with the levels of oxygen generation in the products of combustion, while other substances were generally in relation to constituents and rates of consumption of fuel.

  9. Parameter Tuning via Genetic Algorithm of Fuzzy Controller for Fire Tube Boiler

    Directory of Open Access Journals (Sweden)

    Osama I. Hassanein

    2012-04-01

    Full Text Available The optimal use of fuel energy and water in a fire tube boiler is important in achieving economical system operation, precise control system design required to achieve high speed of response with no overshot. Two artificial intelligence techniques, fuzzy control (FLC and genetic-fuzzy control (GFLC applied to control both of the water/steam temperature and water level control loops of boiler. The parameters of the FLC are optimized to locating the optimal solutions to meet the required performance objectives using a genetic algorithm. The parameters subject to optimization are the width of the membership functions and scaling factors. The performance of the fire tube boiler that fitted with GFLC has reliable dynamic performance as compared with the system fitted with FLC.

  10. Static and Transient Performance Prediction for CFB Boilers Using a Bayesian—Gaussian Neural Network

    Institute of Scientific and Technical Information of China (English)

    HaiwenYe; WeidouNi

    1997-01-01

    A bayesian-Gaussian Neural Network(BGNN)is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed(CFB) boilers.The advantages of this network over Back-Propagation Neural Networks(BPNNs),easier determination of topology,simpler and time saving in training process as well as self-organizing bility,make this network more practical in on-line performance prediction for complicatied processes,Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers.Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers,which are under research by the authors.

  11. Pure Air`s Advanced Flue Gas Desulfurization Clean Coal Project

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.R. [Pure Air Bailly Station, Chesterton, IN (United States)

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project successfully completed four and a half years of operation in December 1996 at Northern Indiana Public Service Company`s (NIPSCO) Bailly Generation Station. Included in this was a three year DOE demonstration period. The project was built by a joint venture company of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc., utilizing Mitsubishi`s wet limestone flue gas desulfurization technology. The project met or exceeded all performance criteria. It has averaged 95.3% SO{sub 2} removal, 99.9% availability and produced 936,000 metric tons of high quality commercial gypsum during this four and a half year period. It demonstrated many advanced technology features including a single, large absorber module serving two boilers, a wastewater evaporation system, an air rotary sparger for oxidation, and a new technology for agglomerating gypsum. The AFGD system was designed, built, owned and operated by Pure Air and will continue to serve NIPSCO`s Bailly Station for at least another 15{1/2} years under an Own and Operate contract. The project enabled NIPSCO to cost effectively achieve full system wide compliance with the Phase 2 emission requirements for SO{sub 2} of the Clean Air Act Amendments (CAAA) of 1990 almost eight years before the target date. The project was the recipient of the Outstanding Engineering Achievement Award from the National Society of Professional Engineers in 1993 and the 1993 Powerplant Award from Power magazine. The data presented in this paper are based on performance during the first three years of operation.

  12. Scandinavian baffle boiler design revisited

    Directory of Open Access Journals (Sweden)

    Stepanov Borivoj Lj.

    2015-01-01

    Full Text Available The aim of this paper is to examine whether the use of baffles in a combustion chamber, one of the well-known low-cost methods for the boiler performance improvement, can be enhanced. Modern day tools like computational fluid dynamics were not present at the time when these measures were invented, developed and successfully applied. The objective of this study is to determine the influence of location and length of a baffle in a furnace, for different mass flows, on gas residence time. The numerical simulations have been performed of a simple Scandinavian stove like furnace. The isothermal model is used, while air is used as a medium and turbulence is modeled by realizable k-epsilon model. The Lagrange particle tracking is used for the residence time distribution determination. The statistical analysis yielded the average residence time. The results of the computational fluid dynamics studies for different baffle positions, dimensions and flow rates show from up to 17% decrease to up to 13 % increase of residence time. The conclusion is that vertical position of the baffle is the most important factor, followed by the length of the baffle, while the least important showed to be the mass flow. [Projekat Ministarstva nauke Republike Srbije, br. III 43008: Development of methods, sensors and systems for monitoring of quality of water, air and land

  13. Self-Scrubbing Coal -- an integrated approach to clean air

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K.E. [Custom Coals Corp., Pittsburgh, PA (United States)

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  14. The partitioning of calcium and sulfur between bottom ash and flyash in a commercial CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Rozelle, P.L.; Pisupati, S.V.; Morrison, J.L.; Scaroni, A.W.

    1999-07-01

    As part of a program to examine the effect of sorbent properties on sulfation performance in the circulating fluidized bed (CFB) combustion process, a series of sorbents varying in chemical composition was tested under similar operating conditions in a 30 MW(e) CFB boiler. These sorbents ranged from 27.8 to 55.2 wt% CaO, and from 0.54 to 18.8 wt% MgO. The fuel used was a high ash content (68 wt%) coal refuse. Parameters of boiler operation were established from distributed control system data, used to screen test results, and data were eliminated from consideration where changes in boiler load or bed inventory levels were seen prior to sampling of bottom ash and flyash streams. This, and the development of a set of simultaneous equations for measuring individual ash stream flow rates, allowed the computation of calcium and sulfur material balances around the boiler for each sorbent test. The partitioning of calcium and sulfur to the bottom ash and flyash streams was examined. It was found that the majority of both calcium and sulfur fed to the boiler was removed with the flyash, regardless of the sorbent. It was further found that across the range of sorbent properties, the flow of sulfur as a solid with the flyash was relatively uniform (71 to 86 wt% of that fed to the boiler). Calcium to sulfur ratios in the bottom ash were uniformly higher than those found for the corresponding flyash streams, indicating that attrition may play a key role in overall sorbent performance. The calcium balance data also indicated that thermally induced fractures (TIFs) may affect attrition.

  15. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  16. Boiler materials for ultra supercritical coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries of Ohio, Independence, OH (United States); Shingledecker, John [Electric Power Research Inst., Palo Alto, CA (United States); Pschirer, James [Alstom Power Inc., Windsor, CT (Untied States); Ganta, Reddy [Alstom Power Inc., Windsor, CT (Untied States); Weitzel, Paul [The Babcock & Wilcox Company, Baberton, OH (United States); Sarver, Jeff [The Babcock & Wilcox Company, Baberton, OH (United States); Vitalis, Brian [Riley Power Inc., Worchester, WA (United States); Gagliano, Michael [Foster Wheeler North America Corp., Hampton, NJ (United States); Stanko, Greg [Foster Wheeler North America Corp., Hampton, NJ (United States); Tortorelli, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-29

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this project is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a basis for

  17. Airing 'clean air' in Clean India Mission.

    Science.gov (United States)

    Banerjee, T; Kumar, M; Mall, R K; Singh, R S

    2016-12-30

    The submission explores the possibility of a policy revision for considering clean air quality in recently launched nationwide campaign, Clean India Mission (CIM). Despite of several efforts for improving availability of clean household energy and sanitation facilities, situation remain still depressing as almost half of global population lacks access to clean energy and proper sanitation. Globally, at least 2.5 billion people do not have access to basic sanitation facilities. There are also evidences of 7 million premature deaths by air pollution in year 2012. The situation is even more disastrous for India especially in rural areas. Although, India has reasonably progressed in developing sanitary facilities and disseminating clean fuel to its urban households, the situation in rural areas is still miserable and needs to be reviewed. Several policy interventions and campaigns were made to improve the scenario but outcomes were remarkably poor. Indian census revealed a mere 31% sanitation coverage (in 2011) compared to 22% in 2001 while 60% of population (700 million) still use solid biofuels and traditional cook stoves for household cooking. Further, last decade (2001-2011) witnessed the progress decelerating down with rural households without sanitation facilities increased by 8.3 million while minimum progress has been made in conversion of conventional to modern fuels. To revamp the sanitation coverage, an overambitious nationwide campaign CIM was initiated in 2014 and present submission explores the possibility of including 'clean air' considerations within it. The article draws evidence from literatures on scenarios of rural sanitation, energy practises, pollution induced mortality and climatic impacts of air pollution. This subsequently hypothesised with possible modification in available technologies, dissemination modes, financing and implementation for integration of CIM with 'clean air' so that access to both sanitation and clean household energy may be

  18. Current and advanced NO/sub x/-control technology for coal-fired industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A NOx-control-technology assessment study of coal-fired industrial boilers was conducted to examine the effectiveness of combustion-modification methods, including low excess air, staged combustion, and burner modifications. Boiler types considered included overfed and underfed stokers, spreader stokers, pulverized-coal and coal-fired cyclone units. Significant variations in NOx emissions occur with boiler type, firing method, and coal type; a relative comparison of emission-control performance, cost, and operational considerations is presented for each method. Baseline (as-found) emissions from grate-fired stokers were shown to be in the range of 200 to 300 ppM. Similarly, as-found emissions from suspension-fired units were quite low (350 to 600 ppM) as compared to comparably designed utility-sized units. Low excess air was shown to be the most effective method on existing units, reducing emissions by approximately 10%. Evaluation of staged combustion and burner modification, however, were limited due to current boiler designs. Major hardware modification/design and implementation are necessary before the potential of these techniques can be fully evaluated. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion-modification program, including energy considerations, incremental capital and operating costs, corrosion, secondary pollutants, and retrofit potential.

  19. Influence of Heat Flux and Friction Coefficient on Thermal Stresses in Risers of Drum Boilers under Dynamic Conditions of Steam Demand

    Directory of Open Access Journals (Sweden)

    M. A. Habib

    2013-01-01

    Full Text Available Boiler swing rate, which is the rate at which the boiler load is changed, has significant influence on the parameters of the boiler operating conditions such as drum water pressure and level, steam quality in the riser tubes, wall temperatures of riser tubes, and the associated thermal stresses. In this paper, the thermal stresses developed in boiler tubes due to elevated rates of heat transfer and friction are presented versus thermal stresses developed in tubes operated under normal conditions. The differential equations comprising the nonlinear model and governing the flow inside the boiler tubes were formulated to study different operational scenarios in terms of resulting dynamic response of critical variables. The experimental results and field data were obtained to validate the present nonlinear dynamic model. The calculations of the heat flux and the allowable steam quality were used to determine the maximum boiler swing rates at different conditions of riser tube of friction factor and heat flux. Diagrams for the influence of friction factor of the boiler tubes and the heat flux, that the tube is subjected to, on the maximum swing rate were examined.

  20. Probabilistic approach to determining the optimum replacement of a superheater stage in 680 MW coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Robert; Star, Ruud van der [Nuon Power Generation, Amsterdam (Netherlands)

    2009-07-01

    The boiler of the NUON power plant HW08 that went into operation in 1993 is designed as Benson boiler and mainly fired with hard coal. A creep-related tube failure occurred in the tertiary superheater that had been due to increased wall temperature caused by steam side formation of oxide layers. The theoretical lifetime of the components was calculated with the aid of the results of steam side oxide measurements and condition evaluation of the tertiary superheater with the aid of tube samples. The objective is to establish an operation and maintenance schedule for the desired operating lifetime of 300,000 hours. (orig.)

  1. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  2. Independent Research and Design of 600-MW Supercritical CFB Boiler

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to further develop and improve the technologies for large-capacity supercritical CFB boiler, the key technologies for large CFB boiler were systematically studied, based on the development of first domestically-made 210-MW and 330-MW CFB boilers. The scheme of 600-MW supercritical CFB boiler was designed, including the furnace structure, key components, steam-water system and auxiliary systems, which laid a technical foundation for the engineering applications.

  3. Computer simulation of the fire-tube boiler hydrodynamics

    OpenAIRE

    Khaustov Sergei A.; Zavorin Alexander S.; Buvakov Konstantin V.; Sheikin Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  4. Preperation for a Clean Surface

    Directory of Open Access Journals (Sweden)

    Aurimas Ralys

    2012-12-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  5. Preperation for a Clean Surface

    Directory of Open Access Journals (Sweden)

    Aurimas Ralys

    2013-02-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  6. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  7. Boiler and steam generator corrosion. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter...

  9. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  10. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted...

  11. THERMAL BOUNDARY LAYER IN CFB BOILER RISER

    Institute of Scientific and Technical Information of China (English)

    Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue

    2006-01-01

    Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.

  12. Direct contact, binary fluid geothermal boiler

    Science.gov (United States)

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  13. 我国煤炭高效洁净利用新技术%New Technology of Coal High Efficient and Cleaning Utilization in China

    Institute of Scientific and Technical Information of China (English)

    王金华

    2012-01-01

    The high efficient and clean utilization of coal is the effective access to realize the energy saving and emission reduction.Based on the circumstances,the paper introduced the technical principle,innovations,technical advantage and promotion conditions of the three new technologies of the coal high efficient and clean utilization,including the high efficient pulverized coal industrial boiler technology,the coal water mixture preparation and new technology application and the dry flue gas cleaning technology of the active coke.In combination with the present actual conditions,the development orientation of the high efficient pulverized coal industrial boiler technology as pointed would be finally to set up the high efficient pulverized coal industrial boiler technology system with the deep systematic study on the clean pulverized coal preparation technology,the pulverized coal logistic and distribution technology,the pulverized coal boiler combustion and cleaning technology as well as the commercialized operation mode.The gasification coal water mixture prepared with the mine water and the long distance pipeline transportation would be the development orientation of the gasification coal water mixture.The dry flue gas cleaning technology of active coke would be suitable applied to the zone lacking of water resources and the development direction in the near future would be to improve the performances of the active coke,to reduce the technique cost,to improve the de-nitre capacity,to simplify the technique procedure and to have the removing and regeneration completed in a device.%煤炭的高效洁净利用是实现节能减排的有效途径,基于此,对我国目前煤炭高效洁净利用3项新技术(高效煤粉工业锅炉技术、水煤浆制备和应用新技术、活性焦干法烟气净化技术)的技术原理、创新点、技术优点及推广情况进行了介绍。结合当前实际,指出高效煤粉工业锅炉技术的发展方向是通过对

  14. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  15. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  16. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  17. Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components

    Indian Academy of Sciences (India)

    S K Das; K M Godiwalla; S P Mehrotra; K K M Sastry; P K Dey

    2006-10-01

    Fly ash particles entrained in the flue gas from boiler furnaces in coal-fired power stations can cause serious erosive wear on steel surfaces along the flow path. Such erosion can significantly reduce the operational life of the boiler components. A mathematical model embodying the mechanisms of erosion on behaviour, has been developed to predict erosion rates of coal-fired boiler components at different temperatures. Various grades of steels used in fabrication of boiler components and published data pertaining to boiler fly ash have been used for the modelling. The model incorporates high temperature tensile properties of the target metal surface at room and elevated temperatures and has been implemented in an user-interactive in-house computer code (EROSIM–1), to predict the erosion rates of various grades of steel. Predictions have been found to be in good agreement with the published data. The model is calibrated with plant and experimental data generated from a high temperature air-jet erosion-testing facility. It is hoped that the calibrated model will be useful for erosion analysis of boiler components.

  18. Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Godiwalla, K.M.; Mehrotra, S.P.; Sastry, K.K.M.; Dey, P.K.

    2006-10-15

    Fly ash particles entrained in the flue gas from boiler furnaces in coal-fired power stations can cause serious erosive wear on steel surfaces along the flow path. Such erosion can significantly reduce the operational life of the boiler components. A mathematical model, embodying the mechanisms of erosion on behaviour, has been developed to predict erosion rates of coal-fired boiler components at different temperatures. Various grades of steels used in fabrication of boiler components and published data pertaining to boiler fly ash have been used for the modelling. The model incorporates high temperature tensile properties of the target metal surface at room and elevated temperatures and has been implemented in an user-interactive in-house computer code (EROSIM-1), to predict the erosion rates of various grades of steel. Predictions have been found to be in good agreement with the published data. The model is calibrated with plant and experimental data generated from a high temperature air-jet erosion-testing facility. It is hoped that the calibrated model will be useful for erosion analysis of boiler components.

  19. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  20. Central heating: fossil-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-05-01

    This evaluation provides performance and cost data for fossil-fuel-fired steam boilers, hot-water generators, and thermal fluid generators currently available from manufacturers. Advanced-technology fluidized-bed boilers also are covered. Performance characteristics investigated include unit efficiencies, turndown capacity, and pollution requirements. Costs are tabulated for equipment and installation of both field-erected and packaged units. The information compiled in this evaluation will assist in the process of selecting energy-conversion units required for industrial, commercial, and residential applications.

  1. Soot blowing methods and soot steam consumption in Swedish recovery boilers; Sotningsmetoder och sotaangfoerbrukning i svenska sodapannor

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Wallin, Erik; Ahlroth, Mikael

    2008-09-15

    The aim with the report was to put together a description of the current state of the sootblowing systems at Swedish recovery boilers, and to explain differences in cleanability and sootblowing efficiency. In chapter 4 a summary of new techniques and alternative soot blowing methods is found. The report is intended for persons working in the pulp industry. To facilitate the benchmarking the recovery boilers have been divided into two groups. Group A comprises recovery boilers which only have one stop per year and the remaining recovery boilers with more than one stop are classified into group B. The following conclusions, based on the recovery boiler design specifications, are of importance to achieve high boiler availability: Low furnace load; High recovery boiler, wide furnace bottom area; Modern air ports; Small or no correlation between cross pitch division in heat surfaces and cleanability could be seen. The expectation was to identify such a relation. However there are doubts on the correctness in reported data. The amount of chlorine and potassium is assumed to affect the cleanability for a few recovery boilers, but for the majority the amounts are low and most likely do not impact the operation. Because of the large impact of the recovery boilers design data (furnace area, load etc.) on the sootblowing, it has been hard to identify the relation cleanability contra sootblowing system. The relations that could be seen are: No distinction between normally designed nozzles and 'high efficiency' nozzles could be identified. The operational conditions for the different models differ a lot and the effect of nozzle type could not be distinguished. Only a minority of the soot blowing sequences are known from the study. In the recovery boilers with problematic areas improvements can be made in the soot blowing sequence. Four recovery boilers are using intelligent soot blowing of some kind. Two of these boilers have low availability and the other two have

  2. Rudimentary Cleaning Compared to Level 300A

    Science.gov (United States)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  3. Laser cleaning on Roman coins

    Science.gov (United States)

    Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.

    Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.

  4. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  5. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a PCB feed sample collected from Central Illinois Power`s Newton Power Station using column flotation and an enhanced gravity separator as separate units and in a circuitry arrangement. The PCB feed sample having a low ash content of about 12% was further cleaned to 6% while achieving a very high energy recovery of about 90% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Microcel column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  6. Cathodic ARC surface cleaning prior to brazing

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. R. (Vivek R.); Hollis, K. J. (Kendall J.); Castro, R. G. (Richard G.); Smith, F. M. (Frank M.); Javernick, D. A. (Daniel A.)

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  7. Cleaning and surface properties

    CERN Document Server

    Taborelli, M

    2007-01-01

    Principles of precision cleaning for ultra high vacuum applications are reviewed together with the techniques for the evaluation of surface cleanliness. Methods to verify the effectiveness of cleaning procedures are discussed. Examples are presented to illustrate the influence of packaging and storage on the recontamination of the surface after cleaning. Finally, the effect of contamination on some relevant surface properties, like secondary electron emission and wettability is presented.

  8. Clean Energy Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  9. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  10. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eskinazi, D. [Electric Power Research Inst., Washington, DC (United States); Tavoulareas, E.S. [Energy Technologies Enterprises Corp., McLean, VA (United States)

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  11. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  12. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  13. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-04-30

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream

  14. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analysis...

  15. Debugging and Rectification of Electric Heating Boilers

    Institute of Scientific and Technical Information of China (English)

    GE; Cheng-song

    2015-01-01

    Steam system of CRARL mainly provides steam for dissolving system,and steam was transported through pipes.The major equipment is a150kW steam electric heating boiler(FH-JZ-003),with rated evaporation 0.2T/h and rated pressure 1.0MPa.It was found during debugging

  16. Is That Boiler Ready To Blow?

    Science.gov (United States)

    Robinson, Glenn S.; Trombley, Robert E.

    2001-01-01

    Discusses implementation of a thorough assessment program to determine the condition of boilers, pressure vessels and other plant equipment to determine the feasibility of part or entire system replacement. Assessment basics are examined as are tips for selecting the right inspection and engineering contractor for assessments. (GR)

  17. Control of boiler temperature with explicit MPC; Panntemperaturreglering med explicit MPC

    Energy Technology Data Exchange (ETDEWEB)

    Slaetteke, Ola; Velut, Stefan; Raaberg, Martin

    2012-02-15

    MPC is the multivariable controller that has been most successful in the process industry and particularly the petrochemical industry. It has been described as one of the most significant developments in process control and the main reasons for this are: 1. It handles multivariable control problems in a natural manner. 2. It is relative easy to understand the structure of the controller, which is the same whether it is a simple loop or a multivariable system. 3. It handles limitations of both the process and other practical constraints in a systematic way. Examples of this is that a valve can only work between 0 and 100 %, but also that the CO-level in the flue gas must not exceed a certain level. 4. It allows for operating conditions near critical process boundaries, which in many cases is synonymous with increased production rates, reduced raw material consumption, better energy utilization, and faster process transitions. The aim of the project is to evaluate the potential of multivariable control in the form of explicit MPC in a boiler at Stora Enso Hylte Bruk. This research task can be divided into two sub-tasks: 1. General evaluation of explicit MPC. 2. Evaluation of multivariable control of boiler temperature The purpose of subtask one is to evaluate what is required of a facility owner to implement explicit MPC in a control system. This includes everything from available calculation tools, what is important to consider during the design phase of the controller, different pitfalls that exist, management of different operating modes, to how the controller should be implemented and commissioned. Subtask two is intended to evaluate the multivariable control of a boiler of CFB type (circulating fluidized bed). MPC controller will regulate the temperature in the boiler. In order to maintain the waste incineration directive, the temperature in the upper part of the boiler is controlled. This is done by means of changes in the flow of natural gas injection and

  18. 锅炉燃烧控制系统优化%Optimization of Boiler Combustion Control System

    Institute of Scientific and Technical Information of China (English)

    王鹏

    2012-01-01

    在锅炉燃烧运行控制中,锅炉燃烧器控制部分是锅炉控制系统的一个重要组成.本文分析了锅炉应用进口燃烧器存在的一些问题,通过改善锅炉控制系统整体控制结构的方法,解决了原有锅炉控制系统控制结构复杂,控制器独立和封闭的特点,采用通用的PLC实现了锅炉的燃烧和运行控制.控制方案的成功也为今后锅炉配套进口燃烧器时应用PLC代替专用燃烧程控器奠定了基础,为企业在锅炉上应用进口燃烧器提供了新的解决思路.%In the boiler combustion operation control, boiler burner control part of the boiler control system is an important component. This paper analyzes the imported burner boiler applications of existing problems through the boiler control system to improve overall control structure, the method solves the complexity of the existing boiler control system control structure and the characteristics of the independent closed of contrller. The general PLC is adopted to realize the control of the boiler combustion and operation control. The success of the control scheme settles the foundation of the application of PLC and provides a new solving idea for imported burner.

  19. 洁净手术室医疗废物感染的管理%Management of medical waste in clean operating rooms

    Institute of Scientific and Technical Information of China (English)

    银彩霞; 董薪; 李丽霞; 龚珊; 文玉琴

    2012-01-01

    OBJECTIVE To investigate the management of medical waste in operating rooms so as to avoid secondary infections due to the contamination. METHODS The current status of administration of medical waste was analyzed, the whole management process of medical waste and innocuous disposal were explored. RESULTS Through all the measures, the awareness of the medical staff to the medical waster management was intensified, the classification and recovery rate of the medical waste reached up to 100. 0% , the infections due to leakage and diffusion did not occurred. CONCLUSION Through the establishment of sound organization and the completed management system, clear assignment of the department s duty, and enhancement of coordination and cooperation, the whole process management of medical waste in operating room has been achieved.%目的 探讨医院手术室医疗废物管理方法,防止污物扩散造成的二次感染.方法 分析手术室医疗废物管理现状,探讨医疗废物的全程管理及环境无害化处理.结果 各项措施得到落实,增强了医护人员对医疗废物管理意识,医疗废物分类回收率达100.0%,未发生泄漏、扩散造成感染.结论 通过建立健全组织机构、完善管理机制,明确各部门职责,加强协调与合作,实现了手术室医疗废物的全程管理.

  20. Economic valuation of heat pumps and electric boilers in the Danish energy system

    DEFF Research Database (Denmark)

    Nielsen, Maria Grønnegaard; Morales González, Juan Miguel; Zugno, Marco

    2016-01-01

    Heat pumps (HP) and electric immersion boilers (EB) have great potential to increase flexibility in energy systems. In parallel, decreasing taxes on electricity-based heat production are creating a more favorable economic environment for the deployment of these units in Denmark. In this paper......, the economic value of heat pumps and electric boilers is assessed by simulating their day-to-day market performance using a novel operational strategy based on two-stage stochastic programming. This stochastic model is employed to optimize jointly the daily operation of HPs and EBs along with the Combined Heat...... representative weeks of 2013. We show that the use of stochastic operational models is critical, as standard deterministic models provide an overestimation of the added benefits from the installation of HPs and EBs, thus leading to over-investment in capacity. Furthermore, we perform sensitivity studies...