WorldWideScience

Sample records for bohunice plant

  1. Long-term corrosion study at nuclear power plant Bohunice (Slovakia)

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, V; Lipka, J; Dekan, J; Toth, I [Department of Nuclear Physics and Technology, Slovak University of Technology Bratislava, Ilkovicova 3, 812 19 Bratislava (Slovakia); Smiesko, I, E-mail: Vladimir.Slugen@stuba.s [NPP Jaslovske Bohunice, SE, a.s. (Slovakia)

    2010-03-01

    Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original 'Bohunice' design in period 1994-1998. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Moessbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Moessbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filter deposits. The corrosion of new feed water pipelines system (from austenitic steel) in combination to innovated operation regimes goes dominantly to magnetite. The hematite presence is mostly on the internal surface of steam generator body and its concentration increases towards the top of the body. In the results interpretation it is necessary to consider also erosion as well as scope and type of maintenance activities. The long-term study of phase composition of corrosion products at VVER reactors is one of precondition for the safe operation over the projected NPP lifetime.

  2. Long-term corrosion study at nuclear power plant Bohunice (Slovakia)

    Science.gov (United States)

    Slugen, V.; Lipka, J.; Dekan, J.; Tóth, I.; Smieško, I.

    2010-03-01

    Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in period 1994-1998. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filter deposits. The corrosion of new feed water pipelines system (from austenitic steel) in combination to innovated operation regimes goes dominantly to magnetite. The hematite presence is mostly on the internal surface of steam generator body and its concentration increases towards the top of the body. In the results interpretation it is necessary to consider also erosion as well as scope and type of maintenance activities. The long-term study of phase composition of corrosion products at VVER reactors is one of precondition for the safe operation over the projected NPP lifetime.

  3. Retrospective study of {sup 14}C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique

    Energy Technology Data Exchange (ETDEWEB)

    Ješkovský, Miroslav [CENTA Laboratory, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Povinec, Pavel P., E-mail: Povinec@fmph.uniba.sk [CENTA Laboratory, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Steier, Peter [VERA Laboratory, Faculty of Physics, University of Vienna, 1090 Vienna (Austria); Šivo, Alexander; Richtáriková, Marta [CENTA Laboratory, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Golser, Robin [VERA Laboratory, Faculty of Physics, University of Vienna, 1090 Vienna (Austria)

    2015-10-15

    Atmospheric radiocarbon has been monitored around the Nuclear Power Plant (NPP) Jaslovské Bohunice (Slovakia) using CO{sub 2} absorption in NaOH solution since 1969. In 2012, tree ring samples were collected from Tilia cordata using an increment borer at Žlkovce monitoring station situated close to the Bohunice NPP. Each tree ring was identified and graphite targets were produced for {sup 14}C analysis by accelerator mass spectrometry. The {sup 14}C concentrations obtained from the tree-ring samples have been in a reasonable agreement with the averaged annual {sup 14}C concentrations in atmospheric CO{sub 2}.

  4. Analysis of Steam Generators Corrosion Products from Slovak NPP Bohunice

    Directory of Open Access Journals (Sweden)

    Jarmila Degmová

    2012-01-01

    Full Text Available One of the main goals of the nuclear industry is to increase the nuclear safety and reliability of nuclear power plants (NPPs. As the steam generator (SG is the most corrosion sensitive component of NPPs, it is important to analyze the corrosion process and optimize its construction materials to avoid damages like corrosion cracking. For this purpose two different kinds of SGs and its feed water distributing systems from the NPP Jaslovske Bohunice were studied by nondestructive Mössbauer spectroscopy. The samples were scraped from the surface and analyzed in transmission geometry. Magnetite and hematite were found to be the main components in the corrosion layers of both SGs. Dependant of the material the SG consisted of, and the location in the system where the samples were taken, the ratios between magnetite and hematite and the paramagnetic components were different. The obtained results can be used to improve corrosion safety of the VVER-440 secondary circuit as well as to optimize its water chemistry regime.

  5. Project Management Unit for decommissioning of NPP Bohunice VI (2003-2014); Project Management Unit para el desmantelamiento de CN Bohunice V1 (2003-2014)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Fernandez-conde, A.; Brochet, I.; Ferreira, A.

    2015-07-01

    From October 2003 until december 2014 the Consortium consisting of Iberdrola Engineering and Construction (leader). Empresarios Agrupados Internacional, and Indra Sistemas has carried out the project Project Management Unit ((PMU) for the decommissioning of Bohunice V1 NPP (units 1 and 2), type VVER-440/V-230 in Slovakia. during the first phase (2003-2007) EdF was also part of the Consortium. The project is funded by the Bohunice International Decommissioning Support Fund (BIDSF) administered by the RBRD. The main objective of the project is to provide the necessary engineering and resources of project management for planning, execution, management, coordination and monitoring of all tasks in support of the decommissioning. (Author)

  6. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    Energy Technology Data Exchange (ETDEWEB)

    Cepcek, S. [Nuclear Regulatory Authority of the Slovak Republic, Trnava (Slovakia)

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  7. Corrosion at Nuclear Power Plant from Mössbauer Spectroscopy Point of View

    Science.gov (United States)

    Slugeň, V.; Lipka, J.; Dekan, J.; Tóth, I.; Smieško, I.

    2010-07-01

    Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in the 1994-1998 period. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during the last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in the form of filters deposits. The corrosion of new feed water pipelines system (from austenitic steel) in combination to innovated operation regimes goes dominantly to magnetite. The hematite presence is mostly on the internal surface of steam generator body and its concentration increases towards the top of the body. In the results interpretation it is necessary to consider also erosion as well as scope and type of maintenance activities. The long-term study of phase composition of corrosion products at VVER reactors is one of precondition for the safe operation over the projected NPP lifetime. Keywords: Enter Keywords here. Text should remain 10-pt.

  8. The LBB methodology application results performed on the safety related piping of NPP V-1 in Jaslovske Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L.; Beno, P. [Nuclear Power Plants Research Institute, Trnava (Slovakia)

    1997-04-01

    A broad overview of the leak before break (LBB) application to the Slovakian V-1 nuclear power plant is presented in the paper. LBB was applied to the primary cooling circuit and surge lines of both WWER 440 type units, and also used to assess the integrity of safety related piping in the feed water and main steam systems. Experiments and calculations performed included analyses of stresses, material mechanical properties, corrosion, fatigue damage, stability of heavy component supports, water hammer, and leak rates. A list of analysis results and recommendations are included in the paper.

  9. Experiences with electronic personal dosimeters at Dukovany Nuclear Power Plant-Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Jurochova, Bozena; Zelenka, Zdenik [Personal Dosimetry Department NPP Dukovany (Czech Republic)

    2004-07-01

    The Dukovany Nuclear Power Plant operates four WWER-440 type reactors. Unit 1 has been operating since 1985, Unit 2 and Unit 3 since 1986, Unit 4 was connected to the grid in 1987. At Dukovany NPP occupational dosimetry is performed by approved Personal Dosimetry Service. The basic facilities for measuring external exposure are film badge (legal dosimeter), electronic personal dosimeter (EPD) and radio-photoluminescent dosimeter (RPL) as operational dosimeter, TLD for measuring doses to the extremities and TLD albedo dosimeter as neutron dosimeter. The presentation is based on the experiences with electronic personal dosimeters gathered at Dukovany NPP for the last three years. Electronic Personal Dosimetry System (EPDS) was developing by Czech company VF, a.s. and from 2002 year is also used at Temelin NPP (Czech Republic), SE VYZ Bohunice (Slovakia) and SE Mochovce NPP (Slovakia) as well. EPDS is designed for Merlin Gerin, Siemens and RADOS electronic dosimeters. Application SW for data analysis is used for daily monitoring of personal doses and for evaluation of collective doses during outages. System gives information about collective doses on devices and collective doses for select work tasks during outages. In addition EPDS allows the calculation of dose indexes I{sub D}. (I{sub D} is the ratio of the relevant collective dose and the number of equivalent working hours). This information is applicable for planning doses on special working activities for next outages and allows a detection radiation sources also.

  10. Manufacturing Plants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China starts to produce vegetables and fruits in a factory sunshine,air and soil are indispensable for green plants. This might be axiomatic but not in a plant factory. By creating a plant factory,scientists are trying to grow plants where natural elements are deficient or absent,such as deserts, islands,water surfaces,South and North poles and space,as well as in human habitats such as skyscrapers in modern cities.

  11. Manufacturing Plants

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2010-01-01

    @@ Sunshine, air and soil are indispensable for green plants. This might be axi-omatic but not in a plant factory. By creating a plant factory, scientists are trying to grow plants where natural elements are deficient or absent, such as deserts,islands, water surfaces, South and North poles and space, as well as in human habi-tats such as skyscrapers in modern cities.

  12. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  13. Medicinal Plants.

    Science.gov (United States)

    Phillipson, J. David

    1997-01-01

    Highlights the demand for medicinal plants as pharmaceuticals and the demand for health care treatments worldwide and the issues that arise from this. Discusses new drugs from plants, anticancer drugs, antiviral drugs, antimalarial drugs, herbal remedies, quality, safety, efficacy, and conservation of plants. Contains 30 references. (JRH)

  14. Autoluminescent plants.

    Directory of Open Access Journals (Sweden)

    Alexander Krichevsky

    Full Text Available Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye.

  15. Plant volatiles.

    Science.gov (United States)

    Baldwin, Ian T

    2010-05-11

    Plant volatiles are the metabolites that plants release into the air. The quantities released are not trivial. Almost one-fifth of the atmospheric CO2 fixed by land plants is released back into the air each day as volatiles. Plants are champion synthetic chemists; they take advantage of their anabolic prowess to produce volatiles, which they use to protect themselves against biotic and abiotic stresses and to provide information - and potentially disinformation - to mutualists and competitors alike. As transferors of information, volatiles have provided plants with solutions to the challenges associated with being rooted in the ground and immobile.

  16. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  17. Plant Behavior

    Science.gov (United States)

    Liu, Dennis W. C.

    2014-01-01

    Plants are a huge and diverse group of organisms, ranging from microscopic marine phytoplankton to enormous terrestrial trees epitomized by the giant sequoia: 300 feet tall, living 3000 years, and weighing as much as 3000 tons. For this plant issue of "CBE-Life Sciences Education," the author focuses on a botanical topic that most…

  18. Plant minichromosomes.

    Science.gov (United States)

    Birchler, James A; Graham, Nathaniel D; Swyers, Nathan C; Cody, Jon P; McCaw, Morgan E

    2016-02-01

    Plant minichromosomes have the potential for stacking multiple traits on a separate entity from the remainder of the genome. Transgenes carried on an independent chromosome would facilitate conferring many new properties to plants and using minichromosomes as genetic tools. The favored method for producing plant minichromosomes is telomere-mediated chromosomal truncation because the epigenetic nature of centromere function prevents using centromere sequences to confer the ability to organize a kinetochore when reintroduced into plant cells. Because haploid induction procedures are not always complete in eliminating one parental genome, chromosomes from the inducer lines are often present in plants that are otherwise haploid. This fact suggests that minichromosomes could be combined with doubled haploid breeding to transfer stacked traits more easily to multiple lines and to use minichromosomes for massive scale genome editing.

  19. Seed planting

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes prairie seed plantings on Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge) between 1992 and 2009.

  20. T Plant

    Data.gov (United States)

    Federal Laboratory Consortium — Arguably the second most historic building at Hanford is the T Plant.This facility is historic in that it's the oldest remaining nuclear facility in the country that...

  1. Plant Macrofossils

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past vegetation and environmental change derived from plant remains large enough to be seen without a microscope (macrofossils), such as leaves, needles,...

  2. Audubon Plant Study Program.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    Included are an illustrated student reader, "The Story of Plants and Flowers," an adult leaders' guide, and a large wall chart picturing 37 wildflowers and describing 23 major plant families. The student reader presents these main topics: The Plant Kingdom, The Wonderful World of Plants, Plants Without Flowers, Flowering Plants, Plants Make Food…

  3. Stress tolerant plants

    OpenAIRE

    2014-01-01

    [EN] The invention relates to transgenic plants and methods for modulating abscisic acid (ABA) perception and signal transduction in plants. The plants find use in increasing yield in plants, particularly under abiotic stress.

  4. Plant fertilizer poisoning

    Science.gov (United States)

    Plant fertilizers and household plant foods are used to improve plant growth. Poisoning can occur if someone swallows these products. Plant fertilizers are mildly poisonous if small amounts are swallowed. ...

  5. Teaching Plant Reproduction.

    Science.gov (United States)

    Tolman, Marvin N., Ed.; Hardy, Garry R., Ed.

    2000-01-01

    Recommends using Amaryllis hippeastrum to teach young children about plant reproduction. Provides tips for growing these plants, discusses the fast growing rate of the plant, and explains the anatomy. (YDS)

  6. Poinsettia plant exposure

    Science.gov (United States)

    Christmas flower poisoning; Lobster plant poisoning; Painted leaf poisoning ... Leaves, stem, sap of the poinsettia plant ... Poinsettia plant exposure can affect many parts of the body. EYES (IF DIRECT CONTACT OCCURS) Burning Redness STOMACH AND ...

  7. Kansas Power Plants

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  8. Ethylene insensitive plants

    Science.gov (United States)

    Ecker, Joseph R.; Nehring, Ramlah; McGrath, Robert B.

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  9. Plant Growth Regulators.

    Science.gov (United States)

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  10. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  11. JSTOR Plant Science

    OpenAIRE

    2010-01-01

    JSTOR Plant Science is an online environment that brings together content, tools, and people interested in plant science. It provides access to foundational content vital to plant science – plant type specimens, taxonomic structures, scientific literature, and related materials, making them widely accessible to the plant science community as well as to researchers in other fields and to the public. It also provides an easy to use interface with powerful functionality that su...

  12. Plant Research '75

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Research is reported on stomatal regulation of the gas exchanges between plant and environment; inhibitory effects in flower formation; plant growth and development through hormones; hormone action; development and nitrogen fixation in algae; primary cell wall glycoprotein ectensin; enzymic mechanisms and control of polysaccharide and glycoprotein synthesis; molecular studies of membrane studies; sensory transduction in plants; regulation of formation of protein complexes and enzymes in higher plant cell and mechanism of sulfur dioxide toxicity in plants. (PCS)

  13. PLANT BIOPRINTING: NOVEL PERSPECTIVE FOR PLANT BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Adhityo WICAKSONO

    2015-12-01

    Full Text Available Bioprinting is a technical innovation that has revolutionized tissue engineering. Using conventional printer cartridges filled with cells as well as a suitable scaffold, major advances have been made in the biomedical field, and it is now possible to print skin, bones, blood vessels, and even organs. Unlike animal systems, the application of bioprinting in simple plant tissue cells is still in a nascent phase and has yet to be studied. One major advantage of plants is that all living parts are reprogrammable in the form of totipotent cells. Plant bioprinting may improve scientists’understanding of plant shape and morphogenesis, and could serve for the mass production of desired tissues or plants, or even the production of plant-based biomaterial for industrial uses. This perspectives paper explores these possibilities using knowledge on what is known about bioprinting in other biosystems.

  14. Pathogen Phytosensing: Plants to Report Plant Pathogens

    Directory of Open Access Journals (Sweden)

    C. Neal Stewart

    2008-04-01

    Full Text Available Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or ‘phytosensors’, by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different

  15. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  16. Plant tissue culture techniques

    OpenAIRE

    Rolf Dieter Illg

    1991-01-01

    Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus) or organized tissues or organs put in culture, under controlled sterile conditions.

  17. Plant growth and cultivation.

    Science.gov (United States)

    Podar, Dorina

    2013-01-01

    There is a variety of methods used for growing plants indoor for laboratory research. In most cases plant research requires germination and growth of plants. Often, people have adapted plant cultivation protocols to the conditions and materials at hand in their own laboratory and growth facilities. Here I will provide a guide for growing some of the most frequently used plant species for research, i.e., Arabidopsis thaliana, barley (Hordeum vulgare) and rice (Oryza sativa). However, the methods presented can be used for other plant species as well, especially if they are related to the above-mentioned species. The presented methods include growing plants in soil, hydroponics, and in vitro on plates. This guide is intended as a starting point for those who are just beginning to work on any of the above-mentioned plant species. Methods presented are to be taken as suggestive and modification can be made according to the conditions existing in the host laboratory.

  18. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  19. Classification of cultivated plants.

    NARCIS (Netherlands)

    Brandenburg, W.A.

    1986-01-01

    Agricultural practice demands principles for classification, starting from the basal entity in cultivated plants: the cultivar. In establishing biosystematic relationships between wild, weedy and cultivated plants, the species concept needs re-examination. Combining of botanic classification, based

  20. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react to their co......Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  1. Fundaments of plant cybernetics.

    Science.gov (United States)

    Zucconi, F

    2001-01-01

    A systemic approach is proposed for analyzing plants' physiological organization and cybernesis. To this end, the plant is inspected as a system, starting from the integration of crown and root systems, and its impact on a number of basic epigenetic events. The approach proves to be axiomatic and facilitates the definition of the principles behind the plant's autonomous control of growth and reproduction.

  2. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  3. Power Plant Cycling Costs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  4. Designing with plants

    NARCIS (Netherlands)

    Smits, R.

    2012-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Rainforests are the lungs of the earth and plants can be the lungs of a buildings. Every plant uses CO2, water and light to produce sugars and oxygen; furthermore plants provide shade, take pollutants from th

  5. Plants of the Bayshore.

    Science.gov (United States)

    Bachle, Leo; And Others

    This field guide gives pictures and descriptions of plants that can be found along the San Francisco Bayshore, especially along the Hayward shoreline. The plants are divided into three categories, those of the mud-flat zone, the drier zone, and the levee zone. Eighteen plants are represented in all. The guide is designed to be used alone, with an…

  6. Plant Diseases & Chemicals

    OpenAIRE

    Thompson, Sherm

    2008-01-01

    This course discusses the use of chemicals for plant disease control. Specifically, pesticides that can be used both in commercial or home/yard sitautions. This course also teaches how to determine plant diseases that may have caused a plant to die.

  7. Iron stress in plants.

    Science.gov (United States)

    Connolly, Erin L; Guerinot, Mary

    2002-07-30

    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches

  8. Iron stress in plants

    OpenAIRE

    Connolly, Erin L.; Guerinot, Mary Lou

    2002-01-01

    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches.

  9. Recognizing plant defense priming

    NARCIS (Netherlands)

    Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; Van Dam, N.M.; Conrath, U.

    2016-01-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in plant

  10. Multinationals and plant survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2010-01-01

    The aim of this paper is twofold: first, to investigate how different ownership structures affect plant survival, and second, to analyze how the presence of foreign multinational enterprises (MNEs) affects domestic plants’ survival. Using a unique and detailed data set on the Swedish manufacturing...... sector, I am able to separate plants into those owned by foreign MNEs, domestic MNEs, exporting non-MNEs, and purely domestic firms. In line with previous findings, the result, when conditioned on other factors affecting survival, shows that foreign MNE plants have lower survival rates than non......-MNE plants. However, separating the non-MNEs into exporters and non-exporters, the result shows that foreign MNE plants have higher survival rates than non-exporting non-MNEs, while the survival rates of foreign MNE plants and exporting non-MNE plants do not seem to differ. Moreover, the simple non...

  11. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max

    Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from......Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...

  12. Toxic proteins in plants.

    Science.gov (United States)

    Dang, Liuyi; Van Damme, Els J M

    2015-09-01

    Plants have evolved to synthesize a variety of noxious compounds to cope with unfavorable circumstances, among which a large group of toxic proteins that play a critical role in plant defense against predators and microbes. Up to now, a wide range of harmful proteins have been discovered in different plants, including lectins, ribosome-inactivating proteins, protease inhibitors, ureases, arcelins, antimicrobial peptides and pore-forming toxins. To fulfill their role in plant defense, these proteins exhibit various degrees of toxicity towards animals, insects, bacteria or fungi. Numerous studies have been carried out to investigate the toxic effects and mode of action of these plant proteins in order to explore their possible applications. Indeed, because of their biological activities, toxic plant proteins are also considered as potentially useful tools in crop protection and in biomedical applications, such as cancer treatment. Genes encoding toxic plant proteins have been introduced into crop genomes using genetic engineering technology in order to increase the plant's resistance against pathogens and diseases. Despite the availability of ample information on toxic plant proteins, very few publications have attempted to summarize the research progress made during the last decades. This review focuses on the diversity of toxic plant proteins in view of their toxicity as well as their mode of action. Furthermore, an outlook towards the biological role(s) of these proteins and their potential applications is discussed.

  13. Pharming and transgenic plants.

    Science.gov (United States)

    Liénard, David; Sourrouille, Christophe; Gomord, Véronique; Faye, Loïc

    2007-01-01

    Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.

  14. Safe genetically engineered plants

    Science.gov (United States)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  15. Risk-taking plants

    Science.gov (United States)

    Sade, Nir; Gebremedhin, Alem; Moshelion, Menachem

    2012-01-01

    Water scarcity is a critical limitation for agricultural systems. Two different water management strategies have evolved in plants: an isohydric strategy and an anisohydric strategy. Isohydric plants maintain a constant midday leaf water potential (Ψleaf) when water is abundant, as well as under drought conditions, by reducing stomatal conductance as necessary to limit transpiration. Anisohydric plants have more variable Ψleaf and keep their stomata open and photosynthetic rates high for longer periods, even in the presence of decreasing leaf water potential. This risk-taking behavior of anisohydric plants might be beneficial when water is abundant, as well as under moderately stressful conditions. However, under conditions of intense drought, this behavior might endanger the plant. We will discuss the advantages and disadvantages of these two water-usage strategies and their effects on the plant’s ability to tolerate abiotic and biotic stress. The involvement of plant tonoplast AQPs in this process will also be discussed. PMID:22751307

  16. Conditional sterility in plants

    Science.gov (United States)

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  17. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants.

  18. Recombinant Cytokines from Plants

    OpenAIRE

    Patrycja Redkiewicz; Anna Góra-Sochacka; Tomas Vaněk; Agnieszka Sirko

    2011-01-01

    Plant-based platforms have been successfully applied for the last two decades for the efficient production of pharmaceutical proteins. The number of commercialized products biomanufactured in plants is, however, rather discouraging. Cytokines are small glycosylated polypeptides used in the treatment of cancer, immune disorders and various other related diseases. Because the clinical use of cytokines is limited by high production costs they are good candidates for plant-made pharmaceuticals. S...

  19. The Kuroshio power plant

    CERN Document Server

    Chen, Falin

    2013-01-01

    By outlining a new design or the Kuroshio power plant, new approaches to turbine design, anchorage system planning, deep sea marine engineering and power plant operations and maintenance are explored and suggested. The impact on the local environment, particularly in the face of natural disasters, is also considered to provide a well rounded introduction to plan and build a 30MW pilot power plant. Following a literature review, the six chapters of this book propose a conceptual design by focusing on the plant's core technologies and establish the separate analysis logics for turbine design and

  20. MBS Native Plant Communities

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer contains results of the Minnesota County Biological Survey (MCBS). It includes polygons representing the highest quality native plant communities...

  1. Plant intelligence and attention.

    Science.gov (United States)

    Marder, Michael

    2013-05-01

    This article applies the phenomenological model of attention to plant monitoring of environmental stimuli and signal perception. Three complementary definitions of attention as selectivity, modulation and perdurance are explained with reference to plant signaling and behaviors, including foraging, ramet placement and abiotic stress communication. Elements of animal and human attentive attitudes are compared with plant attention at the levels of cognitive focus, context and margin. It is argued that the concept of attention holds the potential of becoming a cornerstone of plant intelligence studies.

  2. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  3. Plant Transporter Identification

    DEFF Research Database (Denmark)

    Larsen, Bo

    Membrane transport proteins (transporters) play a critical role for numerous biological processes, by controlling the movements of ions and molecules in and out of cells. In plants, transporters thus function as gatekeepers between the plant and its surrounding environment and between organs......, tissues, cells and intracellular compartments. Since plants are highly compartmentalized organisms with complex transportation infrastructures, they consequently have many transporters. However, the vast majority of predicted transporters have not yet been experimentally verified to have transport...... activity. This project contains a review of the implemented methods, which have led to plant transporter identification, and present our progress on creating a high-throughput functional genomics transporter identification platform....

  4. Oil from plants

    Science.gov (United States)

    Calvin, M.

    1983-01-01

    As a result of the exhaustion of our supplies of ancient photosynthesis (oil and gas) it is necessary to develop renewable fuels for the future. The most immediate source of renewable fuel is, of course, the annually growing green plants, some of which produce hydrocarbon(s) directly. New plant sources can be selected for this purpose, plants which have high potential for production of chemicals and liquid fuels. Suggestions are made for modification of both the product character and the productivity of the plants. Ultimately, a totally synthetic device will be developed for the conversion of solar quanta into useful chemical form completely independent of the need for arable land.

  5. Phyllotactic Patterns on Plants

    Science.gov (United States)

    Shipman, Patrick D.; Newell, Alan C.

    2004-04-01

    We demonstrate how phyllotaxis (the arrangement of leaves on plants) and the deformation configurations seen on plant surfaces may be understood as the energy-minimizing buckling pattern of a compressed shell (the plant's tunica) on an elastic foundation. The key new idea is that the strain energy is minimized by configurations consisting of special triads of almost periodic deformations. We reproduce a wide spectrum of plant patterns, all with the divergence angles observed in nature, and show how the occurrences of Fibonacci-like sequences and the golden angle are natural consequences.

  6. Explosive Formulation Pilot Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  7. Plant biotic interactions

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    occurring after infestation by olive fly larvae. The last research article by Niu et al.(2016) describes a growth-promoting rhizobacterium that primes induced systemic resistance by suppressing a host R gene-targeting micro RNA pairs and activating host immune responses. This finding further supports the important roles of plant endogenous small RNAs in plant-pathogen interactions. Hailing Jin, Professor Special Issue Editor UC President’s Chair Director of Genetics, Genomics and Bioinformatics Graduate Program, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, USA doi:10.1111/jipb.12476 ©2016 Institute of Botany, Chinese Academy of Sciences REFERENCES Alagna F, Kal enbach M, Pompa A, De Marchis F, Rao R, Baldwin IT, Bonaventure G, Baldoni L (2016) Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. J Integr Plant Biol 58:413–425 Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372 da GraSca JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, Vidalakis G, Zhao H (2016) Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J Integr Plant Biol 58:373–387 Giovino A, Martinel i F, Saia S (2016) Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways. J Integr Plant Biol 58:388–396 Huang J, Yang M, Zhang X (2016) The function of smal RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327 Kaloshian I, Wal ing LL (2016) Hemipteran and dipteran pests: Effectors and plant host immune regulators. J Integr Plant Biol 58:350–361 Mermigka G, Verret F, Kalantidis K (2016) RNA silencing movement in plants. J Integr Plant Biol 58:328–342 Niu D, Xia J, Jiang C, Qi B, Ling X, Lin S, Zhang W, Guo J, Jin H, Zhao H (2016) Bacil us cereus AR156

  8. Overview of plant pigments

    Science.gov (United States)

    Chlorophylls, carotenoids, flavonoids and betalains are four major classes of biological pigments produced in plants. Chlorophylls are the primary pigments responsible for plant green and photosynthesis. The other three are accessary pigments and secondary metabolites that yield non-green colors and...

  9. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  10. Plants without arbuscular mycorrhizae

    Science.gov (United States)

    P is second to N as the most limiting element for plant growth. Plants have evolved a number of effective strategies to acquire P and grow in a P-limited environment. Physiological, biochemical, and molecular studies of P-deficiency adaptations that occur in non-mycorrhizal species have provided str...

  11. MRI of intact plants.

    NARCIS (Netherlands)

    As, H. van; Scheenen, T.W.J.; Vergeldt, F.J.

    2009-01-01

    Nuclear magnetic resonance imaging (MRI) is a non-destructive and non-invasive technique that can be used to acquire two- or even three-dimensional images of intact plants. The information within the images can be manipulated and used to study the dynamics of plant water relations and water transpor

  12. MRI of intact plants

    NARCIS (Netherlands)

    As, van H.; Scheenen, T.; Vergeldt, F.J.

    2009-01-01

    Nuclear magnetic resonance imaging (MRI) is a non-destructive and non-invasive technique that can be used to acquire two- or even three-dimensional images of intact plants. The information within the images can be manipulated and used to study the dynamics of plant water relations and water transpor

  13. Modulating lignin in plants

    Science.gov (United States)

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  14. NMR, Water and Plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  15. Plant pathogen resistance

    Science.gov (United States)

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  16. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  17. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...

  18. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  19. Annual Plant Reviews

    DEFF Research Database (Denmark)

    analysing other organisms. This volume aims to highlight the ways in which proteome analysis has been used to probe the complexities of plant biochemistry and physiology. It is aimed at researchers in plant biochemistry, genomics, transcriptomics and metabolomics who wish to gain an up-to-date insight...

  20. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  1. Plant growth promoting rhizobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  2. Better Plants Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-09-30

    The U.S. Department of Energy’s (DOE’s) Better Buildings, Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy intensive companies and organizations. 157 leading manufacturers and public water and wastewater treatment utilities are partnering with DOE through Better Plants to improve energy efficiency, slash carbon emissions, and cut energy costs.

  3. Cellulose metabolism in plants.

    Science.gov (United States)

    Hayashi, Takahisa; Yoshida, Kouki; Park, Yong Woo; Konishi, Teruko; Baba, Kei'ichi

    2005-01-01

    Many bacterial genomes contain a cellulose synthase operon together with a cellulase gene, indicating that cellulase is required for cellulose biosynthesis. In higher plants, there is evidence that cell growth is enhanced by the overexpression of cellulase and prevented by its suppression. Cellulase overexpression could modify cell walls not only by trimming off the paracrystalline sites of cellulose microfibrils, but also by releasing xyloglucan tethers between the microfibrils. Mutants for membrane-anchored cellulase (Korrigan) also show a typical phenotype of prevention of cellulose biosynthesis in tissues. All plant cellulases belong to family 9, which endohydrolyzes cellulose, but are not strong enough to cause the bulk degradation of cellulose microfibrils in a plant body. It is hypothesized that cellulase participates primarily in repairing or arranging cellulose microfibrils during cellulose biosynthesis in plants. A scheme for the roles of plant cellulose and cellulases is proposed.

  4. Plant plastid engineering.

    Science.gov (United States)

    Wani, Shabir H; Haider, Nadia; Kumar, Hitesh; Singh, N B

    2010-11-01

    Genetic material in plants is distributed into nucleus, plastids and mitochondria. Plastid has a central role of carrying out photosynthesis in plant cells. Plastid transformation is becoming more popular and an alternative to nuclear gene transformation because of various advantages like high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs, and gene containment through the lack of pollen transmission. Recently, much progress in plastid engineering has been made. In addition to model plant tobacco, many transplastomic crop plants have been generated which possess higher resistance to biotic and abiotic stresses and molecular pharming. In this mini review, we will discuss the features of the plastid DNA and advantages of plastid transformation. We will also present some examples of transplastomic plants developed so far through plastid engineering, and the various applications of plastid transformation.

  5. Exploiting plant alkaloids.

    Science.gov (United States)

    Schläger, Sabrina; Dräger, Birgit

    2016-02-01

    Alkaloid-containing plants have been used for medicine since ancient times. Modern pharmaceuticals still rely on alkaloid extraction from plants, some of which grow slowly, are difficult to cultivate and produce low alkaloid yields. Microbial cells as alternative alkaloid production systems are emerging. Before industrial application of genetically engineered bacteria and yeasts, several steps have to be taken. Original alkaloid-forming enzymes have to be elucidated from plants. Their activity in the heterologous host cells, however, may be low. The exchange of individual plant enzymes for alternative catalysts with better performance and optimal fermentation parameters appear promising. The overall aim is enhancement and stabilization of alkaloid yields from microbes in order to replace the tedious extraction of low alkaloid concentrations from intact plants.

  6. Automatic micropropagation of plants

    Science.gov (United States)

    Otte, Clemens; Schwanke, Joerg; Jensch, Peter F.

    1996-12-01

    Micropropagation is a sophisticated technique for the rapid multiplication of plants. It has a great commercial potential due to the speed of propagation, the high plant quality, and the ability to produce disease-free plants. However, micropropagation is usually done by hand which makes the process cost-intensive and tedious for the workers especially because it requires a sterile work-place. Therefore, we have developed a prototype automation system for the micropropagation of a grass species (miscanthus sinensis gigantheus). The objective of this paper is to describe the robotic system in an overview and to discuss the vision system more closely including the implemented morphological operations recognizing the cutting and gripping points of miscanthus plants. Fuzzy controllers are used to adapt the parameters of image operations on-line to each individual plant. Finally, we discuss our experiences with the developed prototype an give a preview of a possible real production line system.

  7. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  8. Mycoplasma infections of plants.

    Science.gov (United States)

    Bove, J M

    1981-07-01

    Plants can be infected by two types of wall-less procaryotes, spiroplasmas and mycoplasma-like organisms (MLO), both located intracellularly in the phloem tissues of affected plants. Spiroplasmas have been cultured, characterized and shown to be true members of the class Mollicutes. MLO have not yet been cultured or characterized; they are thought to be mycoplasma-like on the basis of their ultrastructure as seen in situ, their sensitivity to tetracycline and resistance to penicillin. Mycoplasmas can also be found on the surface of plants. These extracellularly located organisms are members of the following genera: Spiroplasma. Mycoplasma and Acholeplasma. The presence of such surface mycoplasmas must not be overlooked when attempts to culture MLO from affected plants are undertaken. Sensitive serological techniques such as the enzyme-linked immunosorbent assay (ELISA) can successfully be used to compare the MLO located in the phloem of affected plants with those eventually cultured from the same plants. In California and Morocco periwinkles naturally infected with both Spiroplasma citri and MLO have been reported. With such doubly infected plants, the symptom expression has been that characteristic of the MLO disease (phyllody or stolbur), not that given by S. citri. Only S. citri can be cultured from such plants, but this does not indicate that S. citri is the causal agent of the disease expressed by the plant. In California many nonrutaceous plants have been found to be infected with S. citri. Stubborn affected citrus trees represent an important reservoir of S. citri, and Circulifer tenellus is an active leafhopper vector of S. citri. Hence, it is not surprising that in California MLO-infected fruit trees could also become infected with S. citri but it would not mean that S. citri is the causal agent of the disease. Criteria are discussed that are helpful in distinguishing between MLO infections and S. citri infections.

  9. Plant Sex Determination.

    Science.gov (United States)

    Pannell, John R

    2017-03-06

    Sex determination is as important for the fitness of plants as it is for animals, but its mechanisms appear to vary much more among plants than among animals, and the expression of gender in plants differs in important respects from that in most animals. In this Minireview, I provide an overview of the broad variety of ways in which plants determine sex. I suggest that several important peculiarities of plant sex determination can be understood by recognising that: plants show an alternation of generations between sporophytic and gametophytic phases (either of which may take control of sex determination); plants are modular in structure and lack a germ line (allowing for a quantitative expression of gender that is not common in animals); and separate sexes in plants have ultimately evolved from hermaphroditic ancestors. Most theorising about sex determination in plants has focused on dioecious species, but we have much to learn from monecious or hermaphroditic species, where sex is determined at the level of modules, tissues or cells. Because of the fundamental modularity of plant development and potentially important evolutionary links between monoecy and dioecy, it may be useful to relax the distinction often made between 'developmental sex determination' (which underpins the development of male versus female flowers in monoecious species) and 'genetic sex determination' (which underpins the separation of males and females in dioecious species, often mediated by a genetic polymorphism and sex chromosomes). I also argue for relaxing the distinction between sex determination involving a genetic polymorphism and that involving responses to environmental or hormonal cues, because non-genetic cues might easily be converted into genetic switches.

  10. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  11. Global Activities and Plant Survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2014-01-01

    This chapter provides an extensive review of the empirical evidence found for Sweden concerning plant survival. The result reveals that foreign MNE plants and exporting non-MNE plants have the lowest exit rates, followed by purely domestic-oriented plants, and that domestic MNE plants have...... the highest exit rates. Moreover, the exit rates of globally engaged plants seem to be unaffected by increased foreign presence, whereas there appears to be a negative impact on the survival rates of non-exporting non-MNE plants. Finally, the result reveals that the survival ratio of plants of acquired...... exporters, but not other types of plants, improves post acquisition....

  12. Plant-soil feedbacks: role of plant functional group and plant traits

    NARCIS (Netherlands)

    Cortois, R.; Schröder-Georgi, T.; Weigelt, A.; van der Putten, W.H.; De Deyn, G.B.

    2016-01-01

    Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 4

  13. Optofluidics of plants

    Science.gov (United States)

    Psaltis, Demetri; Vasdekis, Andreas E.; Choi, Jae-Woo

    2016-05-01

    Optofluidics is a tool for synthesizing optical systems, making use of the interaction of light with fluids. In this paper we explore optofluidic mechanisms that have evolved in plants where sunlight and fluidic control combine to define most of the functionality of the plan. We hope that the presentation of how plants function, from an optofluidics point of view, will open a window for the optics community to the vast literature of plant physiology and provide inspiration for new ideas for the design of bio-mimetic optofluidic devices.

  14. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  15. Plant Genome Duplication Database.

    Science.gov (United States)

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  16. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Cun, Ki Jung; Shin, In Chul; Lim, Young Taek

    1999-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as acid rain or soil types could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with difference dosage of {gamma}-ray.

  17. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Lee, Byung Hun; Shin, In Chul; Lim, Young Taek

    2000-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant (POD) were accomplished in the plant irradiated with different dose of {gamma}-ray. (author)

  18. TOR signalling in plants.

    Science.gov (United States)

    Rexin, Daniel; Meyer, Christian; Robaglia, Christophe; Veit, Bruce

    2015-08-15

    Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.

  19. Nuclear power plant maintainability.

    Science.gov (United States)

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants.

  20. Lipid signaling in plants

    NARCIS (Netherlands)

    Munnik, T.

    2010-01-01

    This book highlights the current status of plant lipid signaling. Written by leading researchers in the field, the chapters include detailed information on the measurement, regulation and function of phospholipases, lipid kinases, lipid phosphatases, inositolpolyphosphates, polyphosphoinositides, ph

  1. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  2. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  3. Poison plants (image)

    Science.gov (United States)

    ... by poor circulation, even stress. An example of contact dermatitis is the reaction of a sensitive person's skin to poison ivy, oak or sumac. Contact with these plants, which contain a chemical called ...

  4. Plant protein glycosylation

    Science.gov (United States)

    Strasser, Richard

    2016-01-01

    Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures. PMID:26911286

  5. Advanced stellarator power plants

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  6. Plutonium Finishing Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Plutonium Finishing Plant, also known as PFP, represented the end of the line (the final procedure) associated with plutonium production at Hanford.PFP was also...

  7. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  8. Imprinting in plants

    Institute of Scientific and Technical Information of China (English)

    GUTIERREZ-MARCOS Jose

    2009-01-01

    Genomic imprinting leads to the differential expression of parental alleles after fertilization. Imprinting appears to have evolved independently in mammals and flowering plants to regulate the development of nutrient-transfer placental tissues. In addition, the regulation of imprinting in both mammals and flowering plants involves changes in DNA methylation and histone methylation, thus suggesting that the epigenetic signals that regulate imprinting have been co-opted in these distantly related species.

  9. Synthetic Plant Defense Elicitors

    Directory of Open Access Journals (Sweden)

    Yasemin eBektas

    2015-01-01

    Full Text Available To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of the some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  10. Plant Transgenerational Epigenetics

    OpenAIRE

    Quadrana, Leandro; Colot, Vincent

    2016-01-01

    International audience; Transgenerational epigenetics is defined in opposition to developmental epi-genetics and implies an absence of resetting of epigenetic states between generations. Unlike mammals, plants appear to be particularly prone to this type of inheritance. In this review, we summarize our knowledge about trans-generational epigenetics in plants, which entails heritable changes in DNA methylation. We emphasize the role of transposable elements and other repeat sequences in the cr...

  11. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  12. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  13. Plant Mobile Small RNAs

    OpenAIRE

    Dunoyer, Patrice; Melnyk, Charles; Molnar, Attila; Slotkin, R Keith

    2013-01-01

    In plants, RNA silencing is a fundamental regulator of gene expression, heterochromatin formation, suppression of transposable elements, and defense against viruses. The sequence specificity of these processes relies on small noncoding RNA (sRNA) molecules. Although the spreading of RNA silencing across the plant has been recognized for nearly two decades, only recently have sRNAs been formally demonstrated as the mobile silencing signals. Here, we discuss the various types of mobile sRNA mol...

  14. Landscaping plant epigenetics.

    Science.gov (United States)

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  15. Silica in higher plants.

    Science.gov (United States)

    Sangster, A G; Hodson, M J

    1986-01-01

    Opaline silica deposits are formed by many vascular (higher) plants. The capacity of these plants for silica absorption varies considerably according to genotype and environment. Plant communities exchange silica between soil and vegetation, especially in warmer climates. Silica deposition in epidermal cell walls offers mechanical and protective advantages. Biogenic silica particles from plants are also implicated in the causation of cancer. Recent techniques are reviewed which may aid in the identification of plant pathways for soluble silica movement to deposition sites and in the determination of ionic environments. Botanical investigations have focused on silicification of cell walls in relation to plant development, using scanning and transmission electron microscopy combined with X-ray microanalysis. Silica deposition in macrohair walls of the lemma of canary grass (Phalaris) begins at inflorescence emergence and closely follows wall thickening. The structure of the deposited silica may be determined by specific organic polymers present at successive stages of wall development. Lowering of transpiration by enclosure of Phalaris inflorescences in plastic bags reduced silica deposition in macrohairs. Preliminary freeze-substitution studies have located silicon, as well as potassium and chloride, in the cell vacuole and wall deposition sites during initial silicification.

  16. Molecular plant volatile communication.

    Science.gov (United States)

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  17. Tetraspanin genes in plants.

    Science.gov (United States)

    Wang, Feng; Vandepoele, Klaas; Van Lijsebettens, Mieke

    2012-07-01

    Tetraspanins represent a four-transmembrane protein superfamily with a conserved structure and amino acid residues that are present in mammals, insects, fungi and plants. Tetraspanins interact with each other or with other membrane proteins to form tetraspanin-enriched microdomains that play important roles in development, pathogenesis and immune responses via facilitating cell-cell adhesion and fusion, ligand binding and intracellular trafficking. Here, we emphasize evolutionary aspects within the plant kingdom based on genomic sequence information. A phylogenetic tree based on 155 tetraspanin genes of 11 plant species revealed ancient and fast evolving clades. Tetraspanins were only present in multicellular plants, were often duplicated in the plant genomes and predicted by the electronic Fluorescent Pictograph for gene expression analysis to be either functionally redundant or divergent. Tetraspanins contain a large extracellular loop with conserved cysteines that provide the binding sites for the interactions. The Arabidopsis thaliana TETRASPANIN1/TORNADO2/EKEKO has a function in leaf and root patterning and TETRASPANIN3 was identified in the plasmodesmatal proteome, suggesting a role in cell-cell communication during plant development.

  18. Power plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Winter, J.V.; Conner, D.A.

    1978-01-01

    Just to keep up with expected demand, the US will need over 500 new power generation units by 1985. Where these power plants will be located is the subject of heated debate among utility officials, government leaders, conservationists, concerned citizens and a multitude of special interest groups. This book offers a balanced review of all of the salient factors that must be taken into consideration in selecting power plant locations. To deal with this enormously complex subject, the authors (1) offer a general overview of the history and reasoning behind present legislation on the state and national levels; (2) describe the many different agencies that have jurisdiction in power plant location, from local water authorities and city councils to state conservation boards and the Nuclear Regulatory Commission; and (3) include a state-by-state breakdown of siting laws, regulations and present licensing procedures. Architects, engineers, contractors, and others involved in plant construction and site evaluation will learn of the trade-offs that must be made in balancing the engineering, economic, and environmental impacts of plant location. The book covers such areas as availability of water supplies for generation or cooling; geology, typography, and demography of the proposed site; and even the selection of the fuel best suited for the area. Finally, the authors examine the numerous environmental aspects of power plant siting.

  19. Plant-mediated insect interactions on a perennial plant

    NARCIS (Netherlands)

    Stam, J.M.

    2016-01-01

    Plants interact with many organisms around them, and one of the most important groups that a plant has to deal with, are the herbivores. Insects represent the most diverse group of herbivores and have many different ways of using the plant as a food source. Plants can, however, defend themselves aga

  20. Application of Moessbauer spectroscopy on corrosion products of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Dekan, J., E-mail: julius.dekan@stuba.sk; Lipka, J.; Slugen, V. [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, SUT (Slovakia)

    2013-04-15

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original 'Bohunice' design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Moessbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Moessbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  1. Application of Mössbauer spectroscopy on corrosion products of NPP

    Science.gov (United States)

    Dekan, J.; Lipka, J.; Slugeň, V.

    2013-04-01

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  2. Plants in alpine environments

    Science.gov (United States)

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  3. Electroanalysis of Plant Thiols

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2007-06-01

    Full Text Available Due to unique physico-chemical properties of –SH moiety thiols comprise widegroup of biologically important compounds. A review devoted to biological functions ofglutathione and phytochelatins with literature survey of methods used to analysis of thesecompounds and their interactions with cadmium(II ions and Murashige-Skoog medium ispresented. For these purposes electrochemical techniques are used. Moreover, we revealedthe effect of three different cadmium concentrations (0, 10 and 100 μM on cadmiumuptake and thiols content in maize plants during 192 hours long experiments usingdifferential pulse anodic stripping voltammetry to detect cadmium(II ions and highperformance liquid chromatography with electrochemical detection to determineglutathione. Cadmium concentration determined in tissues of the plants cultivated innutrient solution containing 10 μM Cd was very low up to 96 hours long exposition andthen the concentration of Cd markedly increased. On the contrary, the addition of 100 μMCd caused an immediate sharp increase in all maize plant parts to 96 hours Cd expositionbut subsequently the Cd concentration increased more slowly. A high performance liquidchromatography with electrochemical detection was used for glutathione determination intreated maize plants after 96 and 192 hours of treatment. The highest total content of glutathione per one plant was 6 μg (96 h, 10 μM Cd in comparison with non-treated plant (control where glutathione content was 1.5 μg. It can be concluded that electrochemical techniques have proved to be useful to analyse plant thiols.

  4. Plant ID. Agricultural Lesson Plans.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant identification. Presented first are a series of questions and answers designed to convey general information about the scientific classification of plants. The following topics are among those discussed: main types of plants; categories of vascular plants; gymnosperms and…

  5. Aquatic Plants and their Control.

    Science.gov (United States)

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  6. African names for American plants

    NARCIS (Netherlands)

    Andel, van T.R.

    2015-01-01

    African slaves brought plant knowledge to the New World, sometimes applying it to related plants they found there and sometimes bringing Old World plants with them. By tracing the linguistic parallels between names for plants in African languages and in communities descended from African slaves, pie

  7. GEOTHERMAL POWER GENERATION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  8. Engineered plant virus resistance.

    Science.gov (United States)

    Galvez, Leny C; Banerjee, Joydeep; Pinar, Hasan; Mitra, Amitava

    2014-11-01

    Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants.

  9. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  10. Antidiabetic Plants of Iran

    Directory of Open Access Journals (Sweden)

    Ashrafeddin Goushegir

    2011-10-01

    Full Text Available To identify the antidiabetic plants of Iran, a systematic review of the published literature on the efficacy of Iranian medicinal plant for glucose control in patients with type 2 diabetes mellitus was conducted. We performed an electronic literature search of MEDLINE, Science Direct, Scopus, Proquest, Ebsco, Googlescholar, SID, Cochrane Library Database, from 1966 up to June 2010. The search terms were complementary and alternative medicine (CAM, diabetes mellitus, plant (herb, Iran, patient, glycemic control, clinical trial, RCT, natural or herbal medicine, hypoglycemic plants, and individual herb names from popular sources, or combination of these key words. Available Randomized Controlled Trials (RCT published in English or Persian language examined effects of an herb (limited to Iran on glycemic indexes in type 2 diabetic patients were included. Among all of the articles identified in the initial database search, 23 trials were RCT, examining herbs as potential therapy for type 2 diabetes mellitus. The key outcome for antidiabetic effect was changes in blood glucose or HbA1 c, as well as improves in insulin sensitivity or resistance. Available data suggest that several antidiabetic plants of Iran need further study. Among the RCT studies, the best evidence in glycemic control was found in Citrullus colocynthus, Ipomoea betatas, Silybum marianum and Trigonella foenum graecum.

  11. Micropropagation of some ornamental plants

    OpenAIRE

    Koleva Gudeva, Liljana; Spasenoski, Mirko

    2002-01-01

    Till now many horticulture plants have been successfully regenerated on in vitro conditions. Among them there are ornamental plants such as: Rosa-miniature pot roses; myrillocatus geometrizans-cacti, succulent plant; Echinopsis spachiana-cacti, succulent plant and Dianthus cariophyllus-carnation. Regeneration or micropropagation has been used for production of copies(clones) of the original unique plants(Hussery, 1986). Depending on the species, apical or axillar buds was used for micropro...

  12. Geothermal Plant Capacity Factors

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  13. Annotation on Mangrove Plants

    Institute of Scientific and Technical Information of China (English)

    王伯荪; 张炜银; 梁士楚; 昝启杰

    2004-01-01

    This paper reviews and discusses the technical terms and definition of mangrove and mangal, as well as mangrove plant. The word mangrove has been used to refer either to the constituent plant of tropical and subtropical intertidal community or to the community itself, but this usage makes more confusion. Being leaved mangrove in the more limited sense for the constituent plant species, mangal was proposed by MacNae (1968) as aterm for mangrove community, which has been universally applied to most previous studies and should be adopted now. Mangrove should be therefore defined as a tropical and subtropical tree restricted to intertidal zones, which possesses some morphological specializion and physiological mechanism adapted to its habitat, and mangal as a tropical and subtropical forest community restricted to marine intertidal zones and periodically inundeated by the tides. A new term ″consortive plant″ is proposed here for herb, liana, epiphyte or parasite, which is restricted in the strict mangrove habitat.

  14. Domestication and plant genomes.

    Science.gov (United States)

    Tang, Haibao; Sezen, Uzay; Paterson, Andrew H

    2010-04-01

    The techniques of plant improvement have been evolving with the advancement of technology, progressing from crop domestication by Neolithic humans to scientific plant breeding, and now including DNA-based genotyping and genetic engineering. Archeological findings have shown that early human ancestors often unintentionally selected for and finally fixed a few major domestication traits over time. Recent advancement of molecular and genomic tools has enabled scientists to pinpoint changes to specific chromosomal regions and genetic loci that are responsible for dramatic morphological and other transitions that distinguish crops from their wild progenitors. Extensive studies in a multitude of additional crop species, facilitated by rapid progress in sequencing and resequencing(s) of crop genomes, will further our understanding of the genomic impact from both the unusual population history of cultivated plants and millennia of human selection.

  15. Arsenite transport in plants.

    Science.gov (United States)

    Ali, Waqar; Isayenkov, Stanislav V; Zhao, Fang-Jie; Maathuis, Frans J M

    2009-07-01

    Arsenic is a metalloid which is toxic to living organisms. Natural occurrence of arsenic and human activities have led to widespread contamination in many areas of the world, exposing a large section of the human population to potential arsenic poisoning. Arsenic intake can occur through consumption of contaminated crops and it is therefore important to understand the mechanisms of transport, metabolism and tolerance that plants display in response to arsenic. Plants are mainly exposed to the inorganic forms of arsenic, arsenate and arsenite. Recently, significant progress has been made in the identification and characterisation of proteins responsible for movement of arsenite into and within plants. Aquaporins of the NIP (nodulin26-like intrinsic protein) subfamily were shown to transport arsenite in planta and in heterologous systems. In this review, we will evaluate the implications of these new findings and assess how this may help in developing safer and more tolerant crops.

  16. Willow plant name 'Preble'

    Science.gov (United States)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2014-06-10

    A distinct female cultivar of Salix viminalis.times.(Salix sachalinensis.times.Salix miyabeana) named `Preble`, characterized by rapid stem growth producing 29% more woody biomass than the average of three current production cultivars (Salix.times.dasyclados `SV1` (unpatented), Salix sachalinensis `SX61` (unpatented), and Salix miyabeana `SX64` (unpatented)) when grown in the same field for the same length of time (three growing seasons after coppice) in two different trials in Constableville, N.Y. and Middlebury, Vt. `Preble` can be planted from dormant stem cuttings, produces multiple stems after coppice and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Preble` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  17. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox...... PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  18. PV power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the international seminar of the Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI) at 11th June, 2012 in Munich (Federal Republic of Germany), the following lectures were held: (1) Technical due diligence (Dietmar Obst); (2) Certification / rating system for large PV plants (Robert Pfatischer); (3) O and M requirements (Lars Rulf); (4) IR photography for large scale systems (Bernhard Weinreich); (5) New market models for PV systems - direct marketing and sales of PV electricity (Martin Schneider); (6) Needs and benefits for plant certification for grid connection and operation (Christoph Luetke-Lengerich); (7) Lare volume module testing / Screening in the field and workshop (Semir Merzoug); (8) Dismantling costs of large scale PV plants (Siegfried Schimpf).

  19. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  20. Apoplastic interactions between plants and plant root intruders

    Directory of Open Access Journals (Sweden)

    Kanako eMitsumasu

    2015-08-01

    Full Text Available Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root-parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones (SLs, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  1. Apoplastic interactions between plants and plant root intruders.

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  2. Total Logistic Plant Solutions

    Directory of Open Access Journals (Sweden)

    Dusan Dorcak

    2016-02-01

    Full Text Available The Total Logistics Plant Solutions, plant logistics system - TLPS, based on the philosophy of advanced control processes enables complex coordination of business processes and flows and the management and scheduling of production in the appropriate production plans and planning periods. Main attributes of TLPS is to create a comprehensive, multi-level, enterprise logistics information system, with a certain degree of intelligence, which accepts the latest science and research results in the field of production technology and logistics. Logistic model of company understands as a system of mutually transforming flows of materials, energy, information, finance, which is realized by chain activities and operations

  3. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement...... and statistical modelling of plant species abundance and the relevant ecological processes that control species abundance. The focus on statistical modelling and likelihood function based methods also means that more algorithm based methods, e.g. ordination techniques and boosted regression tress...

  4. Plant Mobile Small RNAs

    Science.gov (United States)

    Dunoyer, Patrice; Melnyk, Charles; Molnar, Attila; Slotkin, R. Keith

    2013-01-01

    In plants, RNA silencing is a fundamental regulator of gene expression, heterochromatin formation, suppression of transposable elements, and defense against viruses. The sequence specificity of these processes relies on small noncoding RNA (sRNA) molecules. Although the spreading of RNA silencing across the plant has been recognized for nearly two decades, only recently have sRNAs been formally demonstrated as the mobile silencing signals. Here, we discuss the various types of mobile sRNA molecules, their short- and long-range movement, and their function in recipient cells. PMID:23818501

  5. Conceptualizing Pharmaceutical Plants

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Jensen, Klaes Ladeby; Gjøl, Mikkel

    2006-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. In this design process configuration and 3D models can help validate the decisions made. Designing 3D models...... is a complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  6. The plant exocyst

    NARCIS (Netherlands)

    Zhang, Y.; Emons, A.M.C.; Ketelaar, T.

    2010-01-01

    exocyst is an octameric vesicle tethering complex that functions upstream of SNARE mediated exocytotic vesicle fusion with the plasma membrane. All proteins in the complex have been conserved during evolution, and genes that encode the exocyst subunits are present in the genomes of all plants invest

  7. Radiosensitivity in plants

    Energy Technology Data Exchange (ETDEWEB)

    Nauman, A F

    1979-01-01

    The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies are the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations.

  8. Plant Tissue Culture Studies.

    Science.gov (United States)

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  9. Plant Biotech Lab Manual.

    Science.gov (United States)

    Tant, Carl

    This book provides laboratory experiments to enhance any food science/botany curriculum. Chapter 1, "Introduction," presents a survey of the techniques used in plant biotechnology laboratory procedures. Chapter 2, "Micronutrition," discusses media and nutritional requirements for tissue culture studies. Chapter 3, "Sterile Seeds," focuses on the…

  10. Plants under continuous light

    NARCIS (Netherlands)

    Velez Ramirez, A.I.; Ieperen, van W.; Vreugdenhill, D.; Millenaar, F.F.

    2011-01-01

    Continuous light is an essential tool for understanding the plant circadian clock. Additionally, continuous light might increase greenhouse food production. However, using continuous light in research and practice has its challenges. For instance, most of the circadian clock-oriented experiments wer

  11. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in si

  12. Mechanisms in Plant Development

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA ARS Plant Gene Expression Center

    2013-08-21

    This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

  13. Next Generation Plant Breeding

    NARCIS (Netherlands)

    Goud, J.C.

    2012-01-01

    Van 11-14 november 2012 vond in de Reehorst de conferentie ‘Next Generation Plant Breeding’ plaats. Tijdens deze bijeenkomst kwamen de grote uitdagingen van de toekomstige plantenveredeling aan de orde: de opkomst van nieuwe sequencing-technieken, de bijbehorende enorme hoeveelheid gegevens die gepr

  14. Pinellas Plant facts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-11-01

    The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

  15. Tetrapyrrole Signaling in Plants

    Science.gov (United States)

    Larkin, Robert M.

    2016-01-01

    Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.

  16. Chromatin dynamics in plants

    NARCIS (Netherlands)

    Fransz, P.F.; Jong, de J.H.

    2002-01-01

    Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large netwo

  17. [Amebicidal plants extracts].

    Science.gov (United States)

    Derda, Monika; Hadaś, Edward; Thiem, Barbara; Sułek, Anna

    2004-01-01

    The free-living amoebae from genus Acanthamoeba are the causative agents of granulomatous amebic encephalitis (GAE), a chronic progressive disease of the central nervous system; amebic keratitis (AK), a chronic eye infection; amebic pneumitis (AP), a chronic lung infection, and skin infection. Chemotherapy of Acanthamoeba infection is problematic. The majority of infections have been fatal. Only a few cases are reported to have been treated successfully with very highly toxic drugs. The therapy might be succeed, if the diagnosis and therapy is made at very early stage of infection. In our experiments we used the following plant extracts: Solidago virgaurea, Solidago graminifolia, Rubus chamaemorus, Pueraria lobata, and natural plants products as ellagic acid and puerarin. Those therapeutic agents and plants extracts have been tested in vitro for amebicidal or amebostatic activity against pathogenic Acanthamoeba spp. Our results showed that methanol extracts obtained from plants are active against axenic pathogenic Acanthamoeba sp. trophozoites in vitro at concentration below 0.1 mg/ml. Further studies are needed to investigate whether these extracts are also effective in vivo in animal model of infection with Acanthamoeba sp.

  18. Plants on the Move

    Science.gov (United States)

    Bricker, Mary

    2009-01-01

    When it comes to directly interacting with and doing experiments with organisms, plants have some distinct advantages over animals. Their diversity and accessibility allows students to use them in experiments, thus practicing important science inquiry skills. This article describes an investigation that was designed to help students appreciate the…

  19. Engineered minichromosomes in plants.

    Science.gov (United States)

    Birchler, James A

    2015-02-01

    Engineered minichromosomes have been produced in several plant species via telomere-mediated chromosomal truncation. This approach bypasses the complications of the epigenetic nature of centromere function in plants, which has to date precluded the production of minichromosomes by the re-introduction of centromere sequences to a plant cell. Genes to be added to a cleaved chromosome are joined together with telomere repeats on one side. When these constructs are introduced into plant cells, the genes are ligated to the broken chromosomes but the telomere repeats will catalyze the formation of a telomere on the other end cutting the chromosome at that point. Telomere-mediated chromosomal truncation is sufficiently efficient that very small chromosomes can be generated consisting of basically the endogenous centromere and the added transgenes. The added transgenes provide a platform onto which it should be possible to assemble a synthetic chromosome to specification. Combining engineered minichromosomes with doubled haploid breeding should greatly expedite the transfer of transgenes to new lines and to test the interaction of transgenes in new background genotypes. Potential basic and applied applications of synthetic chromosomes are discussed.

  20. Salinity and Plants.

    Science.gov (United States)

    Langsford, Simon; Meredith, Steve; Munday, Bruce

    2002-01-01

    Presents science activities that mirror real life issues relating to plants and sustainability. Describes how to turn seed growing activities into an environmental simulation. Discusses the advantages of cross-curriculum learning opportunities. Includes student references and notes for teachers. (KHR)

  1. Peru, People and Plants.

    Science.gov (United States)

    Thompson, Dennis

    Designed for horticulture, horticulture therapy, and botany students at Edmonds Community College (Washington), this 6-hour module explores the pre-Columbian use of plant materials in Peru and its relationships to cultural practices in modern Peru. The first sections provide basic information about the module, such as its objectives, the concepts…

  2. Phenolics and plant allelopathy.

    Science.gov (United States)

    Li, Zhao-Hui; Wang, Qiang; Ruan, Xiao; Pan, Cun-De; Jiang, De-An

    2010-12-07

    Phenolic compounds arise from the shikimic and acetic acid (polyketide) metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  3. Phenolics and Plant Allelopathy

    Directory of Open Access Journals (Sweden)

    De-An Jiang

    2010-12-01

    Full Text Available Phenolic compounds arise from the shikimic and acetic acid (polyketide metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  4. Plants and Medicinal Chemistry

    Science.gov (United States)

    Bailey, D.

    1977-01-01

    This is the first of two articles showing how plants that have been used in folk medicine for many centuries are guiding scientists in the design and preparation of new and potent drugs. Opium and its chemical derivatives are examined at length in this article. (Author/MA)

  5. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  6. Plants flex their skeletons

    DEFF Research Database (Denmark)

    Foster, Randy; Mattsson, Ole; Mundy, John

    2003-01-01

    Recent work on the fragile fiber mutants of Arabidopsis has identified microtubule-associated proteins that affect the orientation of cellulose microfibrils in cell walls, a major determinant of plant elongation growth. These same proteins are implicated in responses to gibberellin, provoking fresh...

  7. Plants, People, and Politics

    Science.gov (United States)

    Galston, Arthur W.

    1970-01-01

    Advocates that some established botanists should become involved in social and political problems to which botanical expertise is relevant. Discusses food production in relation to world population growth, indicating problems on which botanical knowledge and research should be brought to bear. Discusses herbicides and plant growth regulators as…

  8. Plant biochemistry course, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This paper provides a brief description of a summer lecture course on metabolic pathways and regulation of flow through these pathways in plants. Descriptions of the 1992 course held at La Jolla,Ca; 1993 course held in Madison, Wis, and plans for the 1994 course projected for East Lansing, MI.

  9. Plant research '76

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Overall objective remains unchanged: to contribute to the knowledge, with strong emphasis on fundamental problems, of how plants function, the roles they play in the environment and energy relations of the world, and how these roles may be optimized for the benefit of mankind. (PCS)

  10. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement......, will not be covered in this e-book....

  11. Evolution of plant senescence

    Directory of Open Access Journals (Sweden)

    Young Mike

    2009-07-01

    Full Text Available Abstract Background Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. Results Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. Conclusion The expression and phylogenetic

  12. Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.

    Directory of Open Access Journals (Sweden)

    Shan-Shan Qi

    Full Text Available The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%, compared with the native plants (over 60%. Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.

  13. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant. Se

  14. Evaluating plant and plant oil repellency against the sweetpotato whitefly

    Science.gov (United States)

    The sweetpotato whitefly, Bemisia tabaci is a major insect pest of vegetables world-wide. We evaluated the effect of commercial plant oils – garlic oil, hot pepper wax, and mustard oil against B. tabaci. Cucumber plants served as the control. Additional treatments included no plants or oil (clear ai...

  15. 7 CFR 1032.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  16. 7 CFR 1033.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  17. 7 CFR 1124.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  18. 7 CFR 1001.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  19. 7 CFR 1030.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  20. Networking in the Plant Microbiome

    NARCIS (Netherlands)

    van der Heijden, Marcel G A; Hartmann, Martin

    2016-01-01

    Almost all higher organisms, including plants, insects, and mammals, are colonized by complex microbial communities and harbor a microbiome. Emerging studies with plants reveal that these microbiomes are structured and form complex, interconnected microbial networks. Within these networks, different

  1. The hidden world within plants

    NARCIS (Netherlands)

    Hardoim, Pablo R.; Overbeek, Van Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and inform

  2. [Alfalfa Planting as weed control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a letter to farming cooperators regarding the stipulations surrounding alfalfa plantings in lieu of small grain plantings to provide weed control,...

  3. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  4. Jennings Demonstration PLant

    Energy Technology Data Exchange (ETDEWEB)

    Russ Heissner

    2010-08-31

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  5. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  6. Powder detergents production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for powder detergent production plant, using technology developed in the IGPC laboratories, in 1998. - 2000. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with a capacity of 25,000 t/y was manufactured, at "Delta In", Zrenjanin, in 2000.This technology was an innovation, because new approach in mixing a powder materials was used, as well as introducing a new type of dryer in detergent production. The product meets all quality demands for detergents with high specific weight (1000 g/l, as well as environmental regulations. The detergent production process is fully automatized, and the product has uniform quality. There is no waste material in detergent zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during start-up, and repairs.

  7. A solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, Yu.V.; Dabagyan, T.N.; Gagiyan, L.A.; Kharapetyan, G.S.; Vartanyan, A.V.

    1984-01-01

    This invention is designed for solar energy collectors in the form of heat pipes. A solar power plant is proposed that contains a solar concentrator in the form of at least one heat pipe with evaporation and condensation sections, the first of which is constructed to absorb solar emission and the second located in a heat exchanger equipped with inlet and outlet pipes. In order to simplify the design, the solar power plant is equipped with an additional heat exchanger connected through a connector to the inlet and outlet pipes, while the evaporation section holds an additional section in the lower half, within the auxiliary heat exchanger. During operation as a solar energy collector, the evaporation region absorbs the solar energy and converts it to heat, which is then carried by the heat transfer medium to the heating tube.

  8. Dry alcohol production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for dry alcohol production plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects a production plant with a capacity of 40 m3/y was manufactured, at "Zorka Pharma", Šabac in 1995-1996. The product meets all quality demands, as well as environmental regulations. The dry alcohol production process is fully automatized. There is no waste in the process, neither gaseous, nor liquid. The chosen process provides safe operation according to temperature regime and resistance in the pipes, air purification columns and filters. Working at increased pressure is suitable for evaporation and condensation at increased temperatures. The production process can be controlled manually, which is necessary during start-up, and repairs.

  9. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  10. Phytochemistry of Medicinal Plants

    OpenAIRE

    2013-01-01

    Medicinal plants are a rich source of bioactive phytochemicals or bionutrients. Studies carried out during the past 2–3 decades have shown that these phytochemicals have an important role in preventing chronic diseases like cancer, diabetes and coronary heart disease. The major classes of phytochemicals with disease-preventing functions are dietary fibre, antioxidants, anticancer, detoxifying agents, immunity-potentiating agents and neuropharmacological agents. Each class of these functional ...

  11. Epigenetic memory in plants.

    Science.gov (United States)

    Iwasaki, Mayumi; Paszkowski, Jerzy

    2014-09-17

    Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable 'cellular memory'. Here, we review selected examples of epigenetic memory in plants and briefly discuss underlying mechanisms.

  12. Planting Guidelines for Seagrasses.

    Science.gov (United States)

    1980-02-01

    Shoalgrass and Manatee Grass in Lower Laguna Madre , Texas ," Journal of Wildlife Management, Vol. 32, No. 3, July 1968, pp. 501-506. MCMILLAN, C...Atmospheric Administration (NOAA), and local U.S. Fish and Wildlife Service Refuges, bait houses, or boat marinas. If unavailable, salinity should be...metal would not kill the plants. Phillips (1976) found that turtle grass and shoalgrass in Texas and eelgrass in Alaska were killed when metal anchors

  13. Nuclear Plant Inspection

    Science.gov (United States)

    1983-01-01

    Engineers from the Power Authority of the State of New York use a Crack Growth Analysis Program supplied by COSMIC (Computer Software Management and Information Center) in one stage of nuclear plant inspection. Welds of the nuclear steam supply system are checked for cracks; radiographs, dye penetration and visual inspections are performed to locate cracks in the metal structure and welds. The software package includes three separate crack growth analysis models and enables necessary repairs to be planned before serious problems develop.

  14. Mannitol in Plants, Fungi, and Plant-Fungal Interactions.

    Science.gov (United States)

    Patel, Takshay K; Williamson, John D

    2016-06-01

    Although the presence of mannitol in organisms as diverse as plants and fungi clearly suggests that this compound has important roles, our understanding of fungal mannitol metabolism and its interaction with mannitol metabolism in plants is far from complete. Despite recent inroads into understanding the importance of mannitol and its metabolic roles in salt, osmotic, and oxidative stress tolerance in plants and fungi, our current understanding of exactly how mannitol protects against reactive oxygen is also still incomplete. In this opinion, we propose a new model of the interface between mannitol metabolism in plants and fungi and how it impacts plant-pathogen interactions.

  15. DNA barcoding for plants.

    Science.gov (United States)

    de Vere, Natasha; Rich, Tim C G; Trinder, Sarah A; Long, Charlotte

    2015-01-01

    DNA barcoding uses specific regions of DNA in order to identify species. Initiatives are taking place around the world to generate DNA barcodes for all groups of living organisms and to make these data publically available in order to help understand, conserve, and utilize the world's biodiversity. For land plants the core DNA barcode markers are two sections of coding regions within the chloroplast, part of the genes, rbcL and matK. In order to create high quality databases, each plant that is DNA barcoded needs to have a herbarium voucher that accompanies the rbcL and matK DNA sequences. The quality of the DNA sequences, the primers used, and trace files should also be accessible to users of the data. Multiple individuals should be DNA barcoded for each species in order to check for errors and allow for intraspecific variation. The world's herbaria provide a rich resource of already preserved and identified material and these can be used for DNA barcoding as well as by collecting fresh samples from the wild. These protocols describe the whole DNA barcoding process, from the collection of plant material from the wild or from the herbarium, how to extract and amplify the DNA, and how to check the quality of the data after sequencing.

  16. Genetics and plant development.

    Science.gov (United States)

    Prunet, Nathanaël; Meyerowitz, Elliot M

    2016-01-01

    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different - while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later - as late as the 1980s.

  17. Plant Transgenerational Epigenetics.

    Science.gov (United States)

    Quadrana, Leandro; Colot, Vincent

    2016-11-23

    Transgenerational epigenetics is defined in opposition to developmental epigenetics and implies an absence of resetting of epigenetic states between generations. Unlike mammals, plants appear to be particularly prone to this type of inheritance. In this review, we summarize our knowledge about transgenerational epigenetics in plants, which entails heritable changes in DNA methylation. We emphasize the role of transposable elements and other repeat sequences in the creation of epimutable alleles. We also argue that because reprogramming of DNA methylation across generations seems limited in plants, the inheritance of DNA methylation defects results from the failure to reinforce rather than reset this modification during sexual reproduction. We compare genome-wide assessments of heritable DNA methylation variation and its phenotypic impact in natural populations to those made using near-isogenic populations derived from crosses between parents with experimentally induced DNA methylation differences. Finally, we question the role of the environment in inducing transgenerational epigenetic variation and briefly present theoretical models under which epimutability is expected to be selected for.

  18. Paramutation phenomena in plants.

    Science.gov (United States)

    Pilu, Roberto

    2015-08-01

    Paramutation is a particular epigenetic phenomenon discovered in Zea mays by Alexander Brink in the 1950s, and then also found in other plants and animals. Brink coined the term paramutation (from the Greek syllable "para" meaning beside, near, beyond, aside) in 1958, with the aim to differentiate paramutation from mutation. The peculiarity of paramutation with respect to other gene silencing phenomena consists in the ability of the silenced allele (named paramutagenic) to silence the other allele (paramutable) present in trans. The newly silenced (paramutated) allele remains stable in the next generations even after segregation from the paramutagenic allele and acquires paramutagenic ability itself. The inheritance behaviour of these epialleles permits a fast diffusion of a particular gene expression level/phenotype in a population even in the absence of other evolutionary influences, thus breaking the Hardy-Weinberg law. As with other gene silencing phenomena such as quelling in the fungus Neurospora crassa, transvection in Drosophila, co-suppression and virus-induced gene silencing (VIGS) described in transgenic plants and RNA interference (RNAi) in the nematode Caenorhabditis elegans, paramutation occurs without changes in the DNA sequence. So far the molecular basis of paramutation remains not fully understood, although many studies point to the involvement of RNA causing changes in DNA methylation and chromatin structure of the silenced genes. In this review I summarize all paramutation phenomena described in plants, focusing on the similarities and differences between them.

  19. Toluene emissions from plants

    Science.gov (United States)

    Heiden, A. C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J.

    The emission of toluene from different plants was observed in continuously stirred tank reactors and in field measurements. For plants growing without stress, emission rates were low and ranged from the detection limit up to 2·10-16 mol·cm-2·s-1. Under conditions of stress, the emission rates exceeded 10-14 mol·cm-2·s-1. Exposure of sunflower (Helianthus annuus L. cv. Gigantheus) to 13CO2 resulted in 13C-labeling of the emitted toluene on a time scale of hours. Although no biochemical pathway for the production of toluene is known, these results indicate that toluene is synthesized by the plants. The emission rates of toluene from sunflower are dependent on nutrient supply and wounding. Since α-pinene emission rates are also influenced by these factors, toluene and α-pinene emissions show a high correlation. During pathogen attack on Scots pines (Pinus sylvestris L.) significant toluene emissions were observed. In this case emissions of toluene and α-pinene also show a good correlation. Toluene emissions were also found in field experiments with pines using branch enclosures.

  20. Hormonal crosstalk in plant immunity

    NARCIS (Netherlands)

    van der Does, A.

    2012-01-01

    The plant hormones salicylic acid (SA), also known as plant aspirin, and jasmonic acid (JA) play major roles in the regulation of the plant immune system. In general, SA is important for defense against pathogens with a biotrophic lifestyle, whereas JA is essential for defense against insect herbivo

  1. Classical mutagenesis in higher plants

    NARCIS (Netherlands)

    Koornneef, M.

    2002-01-01

    For a long time, mutagenesis research in plants focused on crop improvement and, especially for crop plants, opimised protocols were developed with barley being one of the favourite species. However, the interest in mutagenesis has shifted to basic plant research in the last 20 years, when the power

  2. Plant Pathogenic Fungi and Oomycetes

    NARCIS (Netherlands)

    Wit, de P.J.G.M.

    2015-01-01

    Fungi and Oomycetes are notorious plant pathogens and use similar strategies to infect plants. The majority of plants, however, is not infected by pathogens as they recognize pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors that mediate PAMP-triggered immunity (PTI) ,

  3. 76 FR 31171 - Importation of Plants for Planting; Establishing a Category of Plants for Planting Not Authorized...

    Science.gov (United States)

    2011-05-27

    ... INFORMATION CONTACT: Dr. Arnold Tschanz, Senior Plant Pathologist, Plants for Planting Policy, Risk Management... described in the risk management section of the PRA or, if the risk associated with the importation of the... anthracnose, Port Orford cedar root disease, white pine blister rust, and sudden oak death...

  4. Assimilate Partitioning and Plant Development

    Institute of Scientific and Technical Information of China (English)

    Yong-Ling Ruan; John W.Patrick; Hans Weber

    2010-01-01

    @@ It has been a pleasure to organize this special issue of Molecular Plant on 'Assimilate Partitioning and Plant Development'. Assimilate, a collective term describing organic carbon (C) and nitrogen (N), is of paramount importance for plant development and realization of crop productivity.

  5. Regulating nutrient allocation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  6. Fertigation management of potted plants

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The horticultural crops considered in this chapter are characterised by the fact that the plants are grown in a restricted volume, like pots, containers, plastic trays or compressed peat blocks. In the market these crops are recognized as potted plants, bedding plants and container grown nursery sto

  7. Adaptation of thermal power plants

    NARCIS (Netherlands)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, van Michelle T.H.

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate

  8. Arabinogalactan proteins in plants

    Directory of Open Access Journals (Sweden)

    Ewa Szczuka

    2013-04-01

    Full Text Available AGPs (arabinogalactan-proteins are the major constituent of arabic gum and have been used as emulsifiers and stabilizing agents. They are also one of the most abundant and heterogeneous class forming a large family of proteoglycans that sculpt the surface not only of plant but also of all eukaryotic cells. Undoubtedly, AGPs appear in numerous biological processes, playing diverse functions. Despite their abundance in nature and industrial utility, the in vivofunction(s of AGPs still remains unclear or even unknown. AGPs are commonly distributed in different plant organs and probably participate in all aspects of plant growth and development including reproduction (e.g. they are present in the stigma including stigma exudates, and in transmitting tissues in styles, pollen grains, and pollen tubes. The functions and evident involvement of AGPs in sexual plant reproduction in a few plant species as Actinidia deliciosa (A.Chev. C.F.Liang & A.R.Ferguson, Amaranthus hypochondriacus L., Catharanthus roseus (L. G.Don, Lolium perenneL. and Larix deciduaMill. are known from literature. The localization of two kinds of AGP epitopes, recognized by the JIM8 and JIM13 mAbs, in anatomically different ovules revealed some differences in spatial localization of these epitopes in ovules of monocots Galanthus nivalis L. and Galtonia candicans (Baker Decne. and dicots like Oenothera species and Sinapis albaL. A detailed study of the localization of AGPs in egg cells, zygotes, including the zygote division stage, and in two-celled proembryos in Nicotiana tabacumL. prompts consideration of the necessity of their presence in the very early steps of ontogenesis. The selective labeling obtained with AGP mAbs JIM8, JIM13, MAC207, and LM2 during Arabidopsis thaliana(L. Heynh. development suggests that some AGPs can be regarded as molecular markers for gametophytic cell differentiation. Moreover, the results show evident differences in the distribution of specific AGP

  9. Plantas Tintureiras Dye Plants

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Serrano

    2008-12-01

    Full Text Available Existe uma vasta bibliografia, até ao séc. XVIII, sobre plantas produtoras de corantes naturais, sendo que apenas um número limitado foi utilizado no tingimento de têxteis antigos, devido à capacidade de resistência à lavagem e ao desvanecimento. O cultivo de plantas ou a sua existência no mundo silvestre tiveram uma enorme importância sócio-económica para muitas comunidades espalhadas pelo mundo e pelas intensas trocas comerciais que geraram. A extracção dos corantes era feita a partir de diferentes partes de plantas ou árvores. Nalgumas plantas eram utilizadas as folhas, enquanto noutras se aproveitavam as flores, as raízes, os frutos, troncos ou sementes. Os corantes podiam ser extraídos através de processos complexos que envolviam diversas operações como maceração, destilação, fermentação, decantação, precipitação, filtração, etc. Neste âmbito, são apresentadas algumas das plantas cultivadas em Portugal e em muitos outros países europeus e que foram usadas em tinturaria. Este trabalho pretende ser um contributo para obstar à perda de conhecimentos das condições de cultivo e da forma como se maximizava a produção de corantes.A vast bibliography exists, until the 18th cen-tury, on natural dyes obtained from plants, but only one limited number was used in the dyeing of old textiles, due to capacity of resistance to wash and light fading. The culture of plants or its existence in the wild world had an enormous economical importance for many communities spread for the world, and the intense commercial exchanges that had generated. The extraction of dyes was done from different parts of plants or trees. In some plants was used the leaves, others, only the roots, the fruits, trunks or seeds. The dyes could be extracted through complex processes that involved various operations as maceration, distillation, fermentation, decantation, precipitation, filtration, etc. In this scope, some of the plants cultivated in

  10. Mycorrhizal fungal identity and diversity relaxes plant-plant competition.

    Science.gov (United States)

    Wagg, Cameron; Jansa, Jan; Stadler, Marina; Schmid, Bernhard; van der Heijden, Marcel G A

    2011-06-01

    There is a great interest in ecology in understanding the role of soil microbial diversity for plant productivity and coexistence. Recent research has shown increases in species richness of mutualistic soil fungi, the arbuscular mycorrhizal fungi (AMF), to be related to increases in aboveground productivity of plant communities. However, the impact of AMF richness on plant-plant interactions has not been determined. Moreover, it is unknown whether species-rich AMF communities can act as insurance to maintain productivity in a fluctuating environment (e.g., upon changing soil conditions). We tested the impact of four different AMF taxa and of AMF diversity (no AMF, single AMF taxa, and all four together) on competitive interactions between the legume Trifolium pratense and the grass Lolium multiflorum grown under two different soil conditions of low and high sand content. We hypothesized that more diverse mutualistic interactions (e.g., when four AMF taxa are present) can ease competitive effects between plants, increase plant growth, and maintain plant productivity across different soil environments. We used quantitative PCR to verify that AMF taxa inoculated at the beginning of the experiment were still present at the end. The presence of AMF reduced the competitive inequality between the two plant species by reducing the growth suppression of the legume by the grass. High AMF richness enhanced the combined biomass production of the two plant species and the yield of the legume, particularly in the more productive soil with low sand content. In the less productive (high sand content) soil, the single most effective AMF had an equally beneficial effect on plant productivity as the mixture of four AMF. Since contributions of single AMF to plant productivity varied between both soils, higher AMF richness would be required to maintain plant productivity in heterogeneous environments. Overall this work shows that AMF diversity promotes plant productivity and that AMF

  11. The plants in the Florilegia

    DEFF Research Database (Denmark)

    Arnklit, Folmer; Frederiksen, Signe; Hansen, Hans Vilhelm

    2013-01-01

    The Gottorfer Codex and The Green Florilegium contain a total of more than 1,500 pictures of plants. In this article the botanists who recently identified the plants in the two albums take a look at the works as seen through the eyes of a botanist. Based on their knowledge of the plants behind...... the pictures the authors shed light on a range of different aspects, e.g. the relationship between figures and real plants and the horticultural background of the plants. They also offer botanical explanations for peculiarities such as double and proliferous flowers....

  12. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration

    NARCIS (Netherlands)

    Vries, de Jorad; Evers, Jochem B.; Poelman, Erik H.

    2017-01-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate an

  13. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    block number) FIELD GROUP SUB-GROUP Allelopathy "Bioassay . Growth inhibition. Aquatic macrophytes. Biocontrol Lena minor 19. ABSTRACT (Continue on...Bibliography of Aquatic Plant Allelopathy ........ Al 2 ALLELOPATHIC AQUATIC PLANTS FOR AQUATIC PLANT MANAGEMENT; A FEASIBILITY STUDY Introduction Background 1...nutrients, water, and other biotic effects could have overriding effects that appear as competition or allelopathy . These biotic factors must be

  14. Phytochrome, plant growth and flowering

    Science.gov (United States)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  15. Towards Multi Fuel SOFC Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Clausen, Lasse Røngaard; Bang-Møller, Christian

    2011-01-01

    Complete Solid Oxide Fuel Cell (SOFC) plants fed by several different fuels are suggested and analyzed. The plants sizes are about 10 kW which is suitable for single family house with needs for both electricity and heat. Alternative fuels such as, methanol, DME (Di-Methyl Ether) and ethanol...... are also considered and the results will be compared with the base plant fed by Natural Gas (NG). A single plant design will be suggested that can be fed with methanol, DME and ethanol whenever these fuels are available. It will be shown that the plant fed by ethanol will have slightly higher electrical...... efficiency compared with other fuels. A methanator will be suggested to be included into the plants design in order to produce methane from the fuel before entering the anode side of the SOFC stacks. Increasing methane content will decrease the needed compressor effect and thereby increase the plant power....

  16. Pinellas Plant Environmental Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  17. Silicon in plant disease control

    Directory of Open Access Journals (Sweden)

    Edson Ampélio Pozza

    2015-06-01

    Full Text Available All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.

  18. [Quality control of plant extract].

    Science.gov (United States)

    Shao, Yun-dong; Gao, Wen-yuan; Liu, Dan; Jia, Wei; Duan, Hong-Quan; Zhang, Tie-jun

    2003-10-01

    The current situation of plant extract in domestic and international market was analyzed in the paper. The quality control of 20 plant extracts which have reasonably good sales in USA market was compared and analyzed. The analysis of the quality control of six plant extracts indicated that there were two main reasons leading to the varied quality specifications among different suppliers. One reason was that the plant species utilized by different companies were different. The other reason was that the extraction processes were different among different production plants. Comparing with the significant international suppliers of plant extracts, the product quality of Chinese companies were not satisfactory. It was suggested that chromatography and chromatographic fingerprint techniques should be applied to improve the quality control standard of plant extract in our country.

  19. Plant biomass degradation by fungi.

    Science.gov (United States)

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.

  20. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Directory of Open Access Journals (Sweden)

    Stephen A Goff

    2011-07-01

    Full Text Available The iPlant Collaborative (iPlant is a United States National Science Foundation (NSF funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006. iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  1. Resources of medicinal plants in China

    OpenAIRE

    1991-01-01

    Four aspect dealts with in this paper are as follows: 1. environment of medicinal plants; 2. brief history on studies of medicinal plants; 3. species of medicinal plants; 4. studies on development and utilization of medicinal plant resources.

  2. Robots and plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.

    1996-02-01

    The application of robots in the harsh environments in which TELEMAN equipment will have to operate has large benefits, but also some drawbacks. The main benefit is the ability gained to perform tasks where people cannot go, while there is a possibility of inflicting damage to the equipment handled by the robot, and the plant when mobile robots are involved. The paper describes the types of possible damage and the precautions to be taken in order to reduce the frequency of the damaging events. A literature study for the topic only gave some insight into examples, but no means for a systematic treatment of the topic. (au) 16 refs.

  3. Synthesis of plant arabinogalactans

    Institute of Scientific and Technical Information of China (English)

    Fanzuo KONG

    2009-01-01

    Plant arabinogalactans consisting of a β-(1→6)-linked D-galactopyranosyl oligosaccharide back-synthesized based on the 1,2-anhydro galactopyranose technique, orthogonal (methoxydimethyl)methyl (MIP) and (2-naphthyl)methyl (NAP) protection strategy, and selective acylation or glycosylation method. The third method is the most simple and effective and it is also used for the synthesis of arabinogalactans composed of a β-(1→6)-linked D-galactopyranosyl oligosaccharide back-bone with α-(→3)-L-arabinofuranosyl branches.

  4. Current power plant

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, J.H.

    1979-03-06

    A current power plant is described that includes a shaft mounted turbine wheel for employment in water current, a housing adjacent the impeller and to which the shaft extends, a ramp positioned on the upstream side of the impellar, and a frame on which the turbine wheel is mounted. The frame is mounted by rollers on a tract such that the impeller and frame may be rolled on the tracks inside the housing, whereafter doors are closed, and water around the turbine wheel may be pumped out to facilitate turbine repair.

  5. Plants with useful traits and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Sally Ann; De la Rosa Santamaria, Roberto

    2016-10-25

    The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.

  6. Simulating solar power plant variability :

    Energy Technology Data Exchange (ETDEWEB)

    Lave, Matthew Samuel; Ellis, Abraham; Stein, Joshua.

    2013-06-01

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  7. Lipid hydroperoxides in plants.

    Science.gov (United States)

    Griffiths, G; Leverentz, M; Silkowski, H; Gill, N; Sánchez-Serrano, J J

    2000-12-01

    Hydroperoxides are the primary oxygenated products of polyunsaturated fatty acids and were determined spectrophotometrically based on their reaction with an excess of Fe2+ at low pH in the presence of the dye Xylenol Orange. Triphenylphosphine-mediated hydroxide formation was used to authenticate the signal generated by the hydroperoxides. The method readily detected lipid peroxidation in a range of plant tissues including Phaseolus hypocotyls (26 +/- 5 nmol.g of fresh weight(-1); mean +/- S.D.), Alstroemeria floral tissues (sepals, 66+/-13 nmol.g of fresh weight(-1); petals, 49+/-6 nmol.g of fresh weight(-1)), potato leaves (334+/-75 nmol.g of fresh weight(-1)), broccoli florets (568+/-68 nmol.g of fresh weight(-1)) and Chlamydomonas cells (602+/-40 nmol.g of wet weight(-1)). Relative to the total fatty acid content of the tissues, the percentage hydroperoxide content was within the range of 0.6-1.7% for all tissue types (photosynthetic and non-photosynthetic) and represents the basal oxidation level of membrane fatty acids in plant cells. Leaves of transgenic potato with the fatty acid hydroperoxide lyase enzyme expressed in the antisense orientation were elevated by 38%, indicating a role for this enzyme in the maintenance of cellular levels of lipid hydroperoxides.

  8. Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Analia Bonelli

    2012-01-01

    Full Text Available A description of the results for a Station Black-Out analysis for Atucha 2 Nuclear Power Plant is presented here. Calculations were performed with MELCOR 1.8.6 YV3165 Code. Atucha 2 is a pressurized heavy water reactor, cooled and moderated with heavy water, by two separate systems, presently under final construction in Argentina. The initiating event is loss of power, accompanied by the failure of four out of four diesel generators. All remaining plant safety systems are supposed to be available. It is assumed that during the Station Black-Out sequence the first pressurizer safety valve fails stuck open after 3 cycles of water release, respectively, 17 cycles in total. During the transient, the water in the fuel channels evaporates first while the moderator tank is still partially full. The moderator tank inventory acts as a temporary heat sink for the decay heat, which is evacuated through conduction and radiation heat transfer, delaying core degradation. This feature, together with the large volume of the steel filler pieces in the lower plenum and a high primary system volume to thermal power ratio, derives in a very slow transient in which RPV failure time is four to five times larger than that of other German PWRs.

  9. [On Mexican medicinal plants].

    Science.gov (United States)

    de Micheli, Alfredo; Izaguirre-Avila, Raúl

    2009-12-01

    During the XVIII century, two Spanish scientific expeditions arrived here led, respectively, by the naturalist Martín Sessé and by the Italian mariner Alessandro Malaspina di Mulazzo, dependent from the Spanish Government. The members collected a rich scientific material, which was carried to Madrid in 1820. At the end of XVIII century, the Franciscan friar Juan Navarro depicted and described several Mexican medicinal plants in the fifth volume of his "American Garden". In the last years of the Colonial period, fundamental works of Humboldt and Bonpland, on the geographic distribution of the American plants, were published. At the end of the XIX century, the first researches on the Mexican medicinal botany were performed at the laboratory of the "Instituto Médico Nacional" under the leadership of doctor Fernando Altamirano, starting pharmacological studies in our country. During the first half of the XX century, trials of cardiovascular pharmacology were performed in the small laboratories of the cardiological unit at the General Hospital of Mexico, due to doctor Ignacio Chávez, initiative. Mexican botanical-pharmacological tradition remains alive and vigorous in the modern scientific institutes of the country.

  10. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  11. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  12. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  13. 7 CFR 1000.8 - Nonpool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows:...

  14. 7 CFR 1126.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  15. 7 CFR 1131.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  16. 7 CFR 1007.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  17. 7 CFR 1005.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  18. 7 CFR 1006.7 - Pool plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  19. Attention "Blinks" Differently for Plants and Animals

    Science.gov (United States)

    Balas, Benjamin; Momsen, Jennifer L.

    2014-01-01

    Plants, to many, are simply not as interesting as animals. Students typically prefer to study animals rather than plants and recall plants more poorly, and plants are underrepresented in the classroom. The observed paucity of interest for plants has been described as "plant blindness," a term that is meant to encapsulate both the…

  20. [Plant hydroponics and its application prospect in medicinal plants study].

    Science.gov (United States)

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  1. Plant caspase-like proteases in plant programmed cell death

    OpenAIRE

    Xu, Qixian; Zhang, Lingrui

    2009-01-01

    Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, ...

  2. [Distribution of HCB discharged from a chemical plant in plants].

    Science.gov (United States)

    Chen, Jing; Wang, Lin-Ling; Lu, Xiao-Hua; Yuan, Song-Hu; Liu, Xi-Xiang; Wang, Yue; Zhao, Qian; Mei, Ling-Fang

    2009-04-15

    The distribution characteristics of hexachlorobenzene (HCB) in plant and rhizosphere soil in contamination conduit, a nearby river and a cropland were studied and the impact factors were also discussed. The results are summarized as follows: the range of the HCB concentration in plant and rhizosphere soil in investigation area were respectively from 4.45 microg x kg(-1) to 1,189.89 microg x kg(-1) (dw) and from 27.93 microg x kg(-1) to 3,480.71 microg x kg(-1) (dw). Higher enrichment of HCB in woodplant than herbs due to higher fat concentration in woodplant in the contamination conduit and the rich concentrtion factor of woodplant and herbs were 0.41-2.55 and 0.01-1.34. The range of HCB concentrations in plants in nearby croplands was significantly wide (4.45-333.1 microg x kg(-1)) while HCB concentrations in different parts of plant were various, e.g. HCB concentrations in fruit, root and shoot of taro were 318.77 microg x kg(-1), 281.02 microg x kg(-1) and 10.94 microg x kg(-1). There was a remarkable positive relation between the concentrations of HCB in plant and fat concentration of plant while no relativity between the concentrations of HCB in plant and those in ground soils in the contamination conduit and cropland. The concentration levels of HCB in plant and rhizosphere soil in river were dramatically decreased with increasing distance from contaminated conduit. There was a remarkable positive relation between the concentrations of HCB in plant and those in ground soils but no relation between concentrations of HCB in plant and fat concentration of plant in river. The distribution characteristics of HCB in plants were influenced by contaminated levels, fat concentration and Partition-transfer model.

  3. Celebrating Plant Cells: A Special Issue on Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A special issue on plant cell biology is long overdue for JIPB! In the last two decades or so, the plant biology community has been thrilled by explosive discoveries regarding the molecular and genetic basis of plant growth, development, and responses to the environment, largely owing to recent maturation of model systems like Arabidopsis thaliana and the rice Oryza sativa, as well as the rapid development of high throughput technologies associated with genomics and proteomics.

  4. 78 FR 9851 - Importation of Plants for Planting

    Science.gov (United States)

    2013-02-12

    ... cultures of orchid plants) from any country or locality except Canada, as subparagraph (a)(1). (Current... discovered in Albania, Falkland Islands, Indonesia, Libya, Liechtenstein, Madeira, Mallorca, Romania,...

  5. Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2007-06-01

    The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

  6. Carbohydrate microarrays in plant science.

    Science.gov (United States)

    Fangel, Jonatan U; Pedersen, Henriette L; Vidal-Melgosa, Silvia; Ahl, Louise I; Salmean, Armando Asuncion; Egelund, Jack; Rydahl, Maja Gro; Clausen, Mads H; Willats, William G T

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.

  7. Anthocyanins. Plant pigments and beyond.

    Science.gov (United States)

    Santos-Buelga, Celestino; Mateus, Nuno; De Freitas, Victor

    2014-07-23

    Anthocyanins are plant pigments widespread in nature. They play relevant roles in plant propagation and ecophysiology and plant defense mechanisms and are responsible for the color of fruits and vegetables. A large number of novel anthocyanin structures have been identified, including new families such as pyranoanthocyanins or anthocyanin oligomers; their biosynthesis pathways have been elucidated, and new plants with "a la carte" colors have been created by genetic engineering. Furthermore, evidence about their benefits in human health has accumulated, and processes of anthocyanin absorption and biotransformation in the human organism have started to be ascertained. These advances in anthocyanin research were revised in the Seventh International Workshop on Anthocyanins that took place in Porto (Portugal) on September 9-11, 2013. Some selected papers are collected in this special issue, where aspects such as anthocyanin accumulation in plants, relationship with color expression, stability in plants and food, and bioavailability or biological activity are revised.

  8. Plant injury induced by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A.C.; Pack, M.R.; Treshow, M.; Downs, R.J.; Transtrum, L.G.

    1961-06-01

    Phytotoxicity of ozone to 34 plant species was studied in controlled-atmosphere greenhouses. Plants were subjected at various stages of growth to 0.13-0.72 ppm ozone for 2-hour periods. Injury symptoms developed on 28 species. Some of the most sensitive species were small grains, alfalfa, spinach, and tobacco. There was a general tendency for sensitivity to increase with maturity of tissue. Palisade cells were most readily injured by ozone. On plants with adaxial palisade parenchyma, chlorotic spots and bleached necrotic areas developed on the upper leaf surface. Injury was equally apparent from either leaf surface of plants with undifferentiated mesophyll. Necrotic spots extending completely through the leaf developed on plants with either mesophyll structure when injury was severe. Ozone caused conspicuous tumors to develop on broccoli leaves. Symptoms similar to those produced by ozone fumigations have been observed on a wide range of plant species growing near several large metropolitan centers. 18 references, 8 figures, 2 tables.

  9. Plant features measurements for robotics

    Science.gov (United States)

    Miles, Gaines E.

    1989-01-01

    Initial studies of the technical feasibility of using machine vision and color image processing to measure plant health were performed. Wheat plants were grown in nutrient solutions deficient in nitrogen, potassium, and iron. An additional treatment imposed water stress on wheat plants which received a full complement of nutrients. The results for juvenile (less than 2 weeks old) wheat plants show that imaging technology can be used to detect nutrient deficiencies. The relative amount of green color in a leaf declined with increased water stress. The absolute amount of green was higher for nitrogen deficient leaves compared to the control plants. Relative greenness was lower for iron deficient leaves, but the absolute green values were higher. The data showed patterns across the leaf consistent with visual symptons. The development of additional color image processing routines to recognize these patterns would improve the performance of this sensor of plant health.

  10. Photovoltaic power plants: production calculation

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, E.; Lazzarin, R.

    Rational sizing of a photovoltaic plant requires a good evaluation of the obtainable electric energy as a function of the many meteorological and plant parameters. A computing procedure is described in detail together with a fully developed numerical example. The procedure is based on monthly usability. It is reliable and it allows designers to take into account the influence of the main plant parameters within rather wide ranges.

  11. Output Model of Steel Plant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Long-qiang; TIAN Nai-yuan; ZHANG Jin; XU An-jun

    2008-01-01

    Based on the requirement of compactivity, continuity, and high efficiency, and taking full advantage of cushion capability of flexible parts such as external refining in new generation steel plant, an output model of steel plant was established in terms of matching between BOF and caster. Using this model, the BOF nominal capacity is selected, the caster output and equipment amount are computed, and then the steel plant output is computed.

  12. Elicitors in Plant Tissue Culture

    Directory of Open Access Journals (Sweden)

    R. Krishnamurthy

    2013-07-01

    Full Text Available Plants or Plant cells in vitro, show physiological and morphological response to microbial, physical or chemical factors which are known as ‘elicitors’. Elicitation is a process of induced or enhanced synthesis of secondary metabolites by the plants to ensure their survival persistence and competitiveness. The application of elicitors, which is currently the focus of research, has been considered as one of the most effective methods to improve the synthesis of secondary metabolites in medicinal plants. Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavours and other industrial materials. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Commonly tested chemical elicitors are salicylic acid, methyl salicylate, bezoic acid, chitosan and so forth which affect production of phenolic compounds and activation of various defense-related enzymes in plants. Plants are challenged by a variety of biotic stresses like fungal, bacterial or viral infections. This lead to the great loss to a plant yield. Here we discuss the classification of elicitors, mechanism of elicitor, the use of elicitors and the different features of elicitors.

  13. Soil microbes and plant fertilization.

    Science.gov (United States)

    Miransari, Mohammad

    2011-12-01

    With respect to the adverse effects of chemical fertilization on the environment and their related expenses, especially when overused, alternative methods of fertilization have been suggested and tested. For example, the combined use of chemical fertilization with organic fertilization and/or biological fertilization is among such methods. It has been indicated that the use of organic fertilization with chemical fertilization is a suitable method of providing crop plants with adequate amount of nutrients, while environmentally and economically appropriate. In this article, the importance of soil microbes to the ecosystem is reviewed, with particular emphasis on the role of plant growth-promoting rhizobacteria, arbuscular mycorrhizal fungi, and endophytic bacteria in providing necessary nutrients for plant growth and yield production. Such microbes are beneficial to plant growth through colonizing plant roots and inducing mechanisms by which plant growth increases. Although there has been extensive research work regarding the use of microbes as a method of fertilizing plants, it is yet a question how the efficiency of such microbial fertilization to the plant can be determined and increased. In other words, how the right combination of chemical and biological fertilization can be determined. In this article, the most recent advances regarding the effects of microbial fertilization on plant growth and yield production in their combined use with chemical fertilization are reviewed. There are also some details related to the molecular mechanisms affecting the microbial performance and how the use of biological techniques may affect the efficiency of biological fertilization.

  14. Of Plants, and Other Secrets

    Directory of Open Access Journals (Sweden)

    Michael Marder

    2012-12-01

    Full Text Available In this article, I inquire into the reasons for the all-too-frequent association of plants and secrets. Among various hypotheses explaining this connection from the standpoint of plant morphology and physiology, the one that stands out is the idea that plants are not only objects in the natural environment, but also subjects with a peculiar mode of accessing the world. The core of the “plant enigma” is, therefore, onto-phenomenological. Positively understood, the secret of their subjectivity leaves just enough space for the self-expression and the self-interpretation of vegetal life.

  15. Asbury power plant, Asbury, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2005-08-01

    The Asbury power plant in rural southwest Missouri is off the beaten path in more ways than one. Three years ago, Empire District Electric Co., the plant's owner/operator, began mixing pieces of discarded tires into its coal fuel supply. Each ensuing year, without compromising local air quality, the plant has rid the area of millions of tires that otherwise would have ended up in a landfill. For demonstrating that a blight can be made right, Asbury is one of Power's 2005 top plants. 2 figs., 1 tab.

  16. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  17. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  18. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  19. Bioinspired materials: Boosting plant biology

    Science.gov (United States)

    Scholes, Gregory D.; Sargent, Edward H.

    2014-04-01

    Chloroplasts with extended photosynthetic activity beyond the visible absorption spectrum, and living leaves that perform non-biological functions, are made possible by localizing nanoparticles within plant organelles.

  20. Uptake of nuclides by plants

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate.

  1. Ecological Effects of Allelopathic Plants

    DEFF Research Database (Denmark)

    Kruse, M.; Strandberg, M.; Strandberg, B.

    with the environment through spread of GM-plants or transgenes outside agricultural areas. The last chapter discuss GM-allelopathic plants in relation to the ecological risk assessment. Preface: This report is based on a literature review on allelopathy from an ecological impact point of view carried out in 1999...... on allelopathy in these crops. It discusses the ecological effects of allelopathic plants in natural ecosystems and factors of importance for the effects of these plants are pointed out. Finally the report presents suggestions for an ecological risk assessment of crops with an enhanced release of allelochemicals...

  2. Interspecific Hybridization within Ornamental Plants

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna

    The economic importance of the ornamental plant industry requires constant development of novel and high quality varieties. Traits attractive for production of new ornamental plants may not be available within the commercial cultivars, but broad genetic variation is present within the plant genera...... commercially important genera of ornamental plants: Kalanchoë and Hibiscus. The nature of hybridization barriers hampering hybrid production was investigated during pre- and post-fertilization stages. For each genus the interspecific crosses of Kalanchoë species and Hibiscus species, abnormal germination...

  3. TYPHONIUM FLAGELLIFORME: A MULTIPURPOSE PLANT

    Directory of Open Access Journals (Sweden)

    Singh Mankaran

    2013-03-01

    Full Text Available Typhonium flagelliforme is a prominent plant candidate from aroid family, endowing various curative properties against a variety of illness and infections. This tropical plant found in damp, shady habitats and population of south east asian countries used it as alternative curative health supplement. Traditionally, this plant is used as a alternative remedy for cancer. Also, antibacterial and antioxidant activities are well established. This plant has shown promising results as a cough suppressant, which can be helpful in various respiratory tract problems. This review focuses on various biological activities of Typhonium flagelliforme.

  4. Multispectral Image Processing for Plants

    Science.gov (United States)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  5. Towards plant pangenomics.

    Science.gov (United States)

    Golicz, Agnieszka A; Batley, Jacqueline; Edwards, David

    2016-04-01

    As an increasing number of genome sequences become available for a wide range of species, there is a growing understanding that the genome of a single individual is insufficient to represent the gene diversity within a whole species. Many studies examine the sequence diversity within genes, and this allelic variation is an important source of phenotypic variation which can be selected for by man or nature. However, the significant gene presence/absence variation that has been observed within species and the impact of this variation on traits is only now being studied in detail. The sum of the genes for a species is termed the pangenome, and the determination and characterization of the pangenome is a requirement to understand variation within a species. In this review, we explore the current progress in pangenomics as well as methods and approaches for the characterization of pangenomes for a wide range of plant species.

  6. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  7. Plant molecular stress responses face climate change. Trends in Plants

    NARCIS (Netherlands)

    Ahuja, I.; Vos, de R.C.H.; Bones, A.M.; Hall, R.D.

    2010-01-01

    Environmental stress factors such as drought, elevated temperature, salinity and rising CO2 affect plant growth and pose a growing threat to sustainable agriculture. This has become a hot issue due to concerns about the effects of climate change on plant resources, biodiversity and global food secur

  8. Rhizosphere communication of plants, parasitic plants and AM fungi

    NARCIS (Netherlands)

    Bouwmeester, H.J.; Roux, Chr.; Lopez Raez, J.A.; Bécard, G.

    2007-01-01

    Plants use an array of secondary metabolites to defend themselves against harmful organisms and to attract others that are beneficial. However, the attraction of beneficial organisms could also lead to abuse by malevolent organisms. An exciting example of such abuse is the relationship between plant

  9. Plant-soil feedbacks and the coexistence of competing plants

    NARCIS (Netherlands)

    Revilla Rimbach, Tomas; Veen, G. F. (Ciska); Eppinga, Maarten B.; Weissing, Franz J.

    2013-01-01

    Plant-soil feedbacks can have important implications for the interactions among plants. Understanding these effects is a major challenge since it is inherently difficult to measure and manipulate highly diverse soil communities. Mathematical models may advance this understanding by making the interp

  10. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  11. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  12. Compatible plant-aphid interactions: how aphids manipulate plant responses.

    Science.gov (United States)

    Giordanengo, Philippe; Brunissen, Laurence; Rusterucci, Christine; Vincent, Charles; van Bel, Aart; Dinant, Sylvie; Girousse, Christine; Faucher, Mireille; Bonnemain, Jean-Louis

    2010-01-01

    To access phloem sap, aphids have developed a furtive strategy, their stylets progressing towards sieve tubes mainly through the apoplasmic compartment. Aphid feeding requires that they overcome a number of plant responses, ranging from sieve tube occlusion and activation of phytohormone-signalling pathways to expression of anti-insect molecules. In addition to bypassing plant defences, aphids have been shown to affect plant primary metabolism, which could be a strategy to improve phloem sap composition in nutrients required for their growth. During compatible interactions, leading to successful feeding and reproduction, aphids cause alterations in their host plant, including morphological changes, modified resource allocation and various local as well as systemic symptoms. Repeated salivary secretions injected from the first probe in the epidermal tissue up to ingestion of sieve-tube sap may play a crucial role in the compatibility between the aphid and the plant.

  13. Arbuscular mycorrhizal fungal mediation of plant-plant interactions in a marshland plant community.

    Science.gov (United States)

    Zhang, Qian; Sun, Qixiang; Koide, Roger T; Peng, Zhenhua; Zhou, Jinxing; Gu, Xungang; Gao, Weidong; Yu, Meng

    2014-01-01

    Obligate aerobic AMF taxa have high species richness under waterlogged conditions, but their ecological role remains unclear. Here we focused on AM fungal mediation of plant interactions in a marshland plant community. Five cooccurring plant species were chosen for a neighbor removal experiment in which benomyl was used to suppress AMF colonization. A Phragmites australis removal experiment was also performed to study its role in promoting AMF colonization by increasing rhizosphere oxygen concentration. Mycorrhizal fungal effects on plant interactions were different for dominant and subdominant plant species. AMF colonization has driven positive neighbor effects for three subdominant plant species including Kummerowia striata, Leonurus artemisia, and Ixeris polycephala. In contrast, AMF colonization enhanced the negative effects of neighbors on the dominant Conyza canadensis and had no significant impact on the neighbor interaction to the dominant Polygonum pubescens. AM colonization was positively related to oxygen concentration. P. australis increased oxygen concentration, enhanced AMF colonization, and was thus indirectly capable of influencing plant interactions. Aerobic AM fungi appear to be ecologically relevant in this wetland ecosystem. They drive positive neighbor interactions for subdominant plant species, effectively increasing plant diversity. We suggest, therefore, that AM fungi may be ecologically important even under waterlogged conditions.

  14. Arbuscular Mycorrhizal Fungal Mediation of Plant-Plant Interactions in a Marshland Plant Community

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2014-01-01

    Full Text Available Obligate aerobic AMF taxa have high species richness under waterlogged conditions, but their ecological role remains unclear. Here we focused on AM fungal mediation of plant interactions in a marshland plant community. Five cooccurring plant species were chosen for a neighbor removal experiment in which benomyl was used to suppress AMF colonization. A Phragmites australis removal experiment was also performed to study its role in promoting AMF colonization by increasing rhizosphere oxygen concentration. Mycorrhizal fungal effects on plant interactions were different for dominant and subdominant plant species. AMF colonization has driven positive neighbor effects for three subdominant plant species including Kummerowia striata, Leonurus artemisia, and Ixeris polycephala. In contrast, AMF colonization enhanced the negative effects of neighbors on the dominant Conyza canadensis and had no significant impact on the neighbor interaction to the dominant Polygonum pubescens. AM colonization was positively related to oxygen concentration. P. australis increased oxygen concentration, enhanced AMF colonization, and was thus indirectly capable of influencing plant interactions. Aerobic AM fungi appear to be ecologically relevant in this wetland ecosystem. They drive positive neighbor interactions for subdominant plant species, effectively increasing plant diversity. We suggest, therefore, that AM fungi may be ecologically important even under waterlogged conditions.

  15. The Intelligent Behavior of Plants

    NARCIS (Netherlands)

    van Loon, Leendert C

    2016-01-01

    Plants are as adept as animals and humans in reacting effectively to their ever-changing environment. Of necessity, their sessile nature requires specific adaptations, but their cells possess a network-type communication system with emerging properties at the level of the organ or entire plant. The

  16. Plant modification needs more discussion

    DEFF Research Database (Denmark)

    Porter, J. R.

    1997-01-01

    AB In response to a letter by D. R. Ort (Nature (London) (1997) 385, 290) it is suggested that the claim that foods from genetically engineered plants are essentially the same as those from conventionally bred plants (from a biosafety perspective) is not easily reconciled with the emphasis on the...

  17. Plant volatiles and the environment

    NARCIS (Netherlands)

    Loreto, F.; Dicke, M.; Schnitzler, J.P.; Turlings, T.C.J.

    2014-01-01

    Volatile organic compounds emitted by plants represent the largest part of biogenic volatile organic compounds (BVOCs) released into our atmosphere. Plant volatiles are formed through many biochemical pathways, constitutively and after stress induction. In recent years, our understanding of the func

  18. Plant responses to tropospheric ozone

    Science.gov (United States)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  19. Plant growth under high salinity

    NARCIS (Netherlands)

    Blom, M.; Brandenburg, W.A.

    2011-01-01

    Plants most suitable for growing under high saline or even seawater conditions are the ones naturally living under high saline circumstances. A series of tolerant or moderate salt tolerant plants are experimentally tested and described in literature. For many species of this group a threshold value

  20. Managing sulfur metabolism in plants

    NARCIS (Netherlands)

    Hawkesford, M.J.; De Kok, LJ

    2006-01-01

    Resolution and analysis of genes encoding components of the pathways of primary sulphur assimilation have provided the potential to elucidate how sulphur is managed by plants. Individual roles for members of gene families and regulatory mechanisms operating at gene, cellular and whole plant levels h

  1. Leaf segmentation in plant phenotyping

    NARCIS (Netherlands)

    Scharr, Hanno; Minervini, Massimo; French, Andrew P.; Klukas, Christian; Kramer, David M.; Liu, Xiaoming; Luengo, Imanol; Pape, Jean Michel; Polder, Gerrit; Vukadinovic, Danijela; Yin, Xi; Tsaftaris, Sotirios A.

    2016-01-01

    Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape cha

  2. MRI of plants and foods

    NARCIS (Netherlands)

    As, van H.; Duynhoven, van J.P.M.

    2013-01-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by

  3. Modeling plants with sensor data

    Institute of Scientific and Technical Information of China (English)

    MA Wei; XIANG Bo; ZHA HongBin; LIU Jia; ZHANG XiaoPeng

    2009-01-01

    Sensor data,typically images and laser data,are essential to modeling real plants.However,due to the complex geometry of the plants,the measurement data are generally limited,thereby bringing great difficulties in classifying and constructing plant organs,comprising leaves and branches.The paper presents an approach to modeling plants with the sensor data by detecting reliable sharp features,i.e.the leaf apexes of the plants with leaves and the branch tips of the plants without leaves,on volumes recovered from the raw data.The extracted features provide good estimations of correct positions of the organs.Thereafter,the leaves are reconstructed separately by simply fitting and optimizing a generic leaf model.One advantage of the method is that it involves limited manual intervention.For plants without leaves,we develop an efficient strategy for decomposition-based skeletonization by using the tip features to reconstruct the 3D models from noisy laser data.Experiments show that the sharp feature detection algorithm is effective,and the proposed plant modeling approach is competent in constructing realistic models with sensor data.

  4. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  5. Genetic variation in plant chemistry

    NARCIS (Netherlands)

    Geem, van Moniek

    2016-01-01

    Plants form the basis of many food webs and are consumed by a wide variety of organisms, including herbivorous insects. Over the course of evolution, plants have evolved mechanisms to defend themselves against herbivory, whereas herbivorous insects have evolved counter-mechanisms to overcome these d

  6. Our Human-Plant Connection

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2011-01-01

    It is relatively easy to incorporate plants into a curriculum and extend their use beyond the botany unit into other scientific arenas. There are numerous web-based resources for teachers, including the Human Flower Project (HFP) website, which offers numerous vignettes on all aspects of flowering plants. In addition to botany and invasive plant…

  7. Dominant resistance against plant viruses

    NARCIS (Netherlands)

    Ronde, de D.; Butterbach, P.B.E.; Kormelink, R.J.M.

    2014-01-01

    To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified agains

  8. Plant Nematodes Occurring in Arkansas

    OpenAIRE

    Wehunt, E. J.; Golden, A. M.; Robbins, R. T.

    1989-01-01

    A total of 110 species of plant nematodes were found in various habitats in Arkansas. Thirty species from 19 genera are reported here for the first time. Included in the new reports are the known plant pathogens Criconemella onoense, Hirshmanniella oryzae, Longidorus elongatus, and Pratylenchus pratensis.

  9. Operate a Nuclear Power Plant.

    Science.gov (United States)

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  10. DIMO, a plant dispersal model

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Jochem, R.; Greft, van der J.G.M.; Franke, J.; Malinowska, A.H.; Geertsema, W.; Prins, A.H.; Ozinga, W.A.; Hoek, van der D.C.J.; Grashof-Bokdam, C.J.

    2014-01-01

    Due to human activities many natural habitats have become isolated. As a result the dispersal of many plant species is hampered. Isolated populations may become extinct and have a lower probability to become reestablished in a natural way. Moreover, plant species may be forced to migrate to new area

  11. Chemical Control of Plant Growth.

    Science.gov (United States)

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  12. TRANSGENIC PLANTS RESISTANT TO INSECTS

    Directory of Open Access Journals (Sweden)

    S. Kereša

    2009-09-01

    Full Text Available Proteinase inhibitors are secondary metabolites present in all plants and it seems that their major role is protection of plants against attacks of animals, insects and microorganisms. One of the family of proteinase inhibitors are squash inhibitors of serine proteinases purified from seeds belonging to genera Cucurbita, Cucumis and Momordica. Squash inhibitors consist of 29-32 amino acid residues and are considered to be the smallest inhibitors of the serine proteinases known. Because of shortness, genes for these inhibitors could be synthesised and modified at different ways. Modifications could lead to changes in inhibitor activity. Tobacco as a model plant was transformed with 12 different genes of squash inhibitors. Stable integration of transgenes in putative transgenic plants was determined by PCR analysis using genomic DNA and primers that anneal to promoter and terminator region. The first step of proteinase inhibitor gene expression in transgenic plants was revealed by RT-PCR analysis. In entomological tests where larvae were fed with leaves, influence of transgenic T0 plants, as well as non-transgenic control plants on retardation of larval growth of S. littoralis was examined. Results of entomological tests showed that it is possible to express squash proteinase inhibitors in plants at level that significantly reduces S. littoralis larval growth.

  13. Antifertility activity of medicinal plants.

    Science.gov (United States)

    Daniyal, Muhammad; Akram, Muhammad

    2015-07-01

    The aim of this review was to provide a comprehensive summary of medicinal plants used as antifertility agents in females throughout the world by various tribes and ethnic groups. We undertook an extensive bibliographic review by analyzing classical text books and peer reviewed papers, and further consulting well accepted worldwide scientific databases. We performed CENTRAL, Embase, and PubMed searches using terms such as "antifertility", "anti-implantation", "antiovulation", and "antispermatogenic" activity of plants. Plants, including their parts and extracts, that have traditionally been used to facilitate antifertility have been considered as antifertility agents. In this paper, various medicinal plants have been reviewed for thorough studies such as Polygonum hydropiper Linn, Citrus limonum, Piper nigrum Linn, Juniperis communis, Achyanthes aspera, Azadirachta indica, Tinospora cordifolia, and Barleria prionitis. Many of these medicinal plants appear to act through an antizygotic mechanism. This review clearly demonstrates that it is time to expand upon experimental studies to source new potential chemical constituents from medicinal plants; plant extracts and their active constituents should be further investigated for their mechanisms. This review creates a solid foundation upon which to further study the efficacy of plants that are both currently used by women as traditional antifertility medicines, but also could be efficacious as an antifertility agent with additional research and study.

  14. Bioprospecting plant-associated microbiomes.

    Science.gov (United States)

    Müller, Christina A; Obermeier, Melanie M; Berg, Gabriele

    2016-10-10

    There is growing demand for new bioactive compounds and biologicals for the pharmaceutical, agro- and food industries. Plant-associated microbes present an attractive and promising source to this end, but are nearly unexploited. Therefore, bioprospecting of plant microbiomes is gaining more and more attention. Due to their highly specialized and co-evolved genetic pool, plant microbiomes host a rich secondary metabolism. This article highlights the potential detection and use of secondary metabolites and enzymes derived from plant-associated microorganisms in biotechnology. As an example we summarize the findings from the moss microbiome with special focus on the genus Sphagnum and its biotechnological potential for the discovery of novel microorganisms and bioactive molecules. The selected examples illustrate unique and yet untapped properties of plant-associated microbiomes, which are an immense treasure box for future research.

  15. A history of plant virology.

    Science.gov (United States)

    van der Want, J P H; Dijkstra, J

    2006-08-01

    This review traces developments in plant virus research from its very beginning in the eighties of the 19th century until the present day. Starting with the earliest research, which gave a clue as to the existence of a pathogen different from the then known bacteria and fungi, the subsequent topics in plant virus research are highlighted, including the spread of plant viruses in nature and their relationships with possible vectors. In the course of more than a century, macroscopical and (sub)microscopical studies gave way to those with a molecular dimension, thanks to the development of sophisticated molecular-biological techniques and information technology. As a result an insight has been gained into both the molecular characteristics of plant viruses and various resistance mechanisms in plants.

  16. Innate immune memory in plants.

    Science.gov (United States)

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.

  17. Plant tendrils: Nature's hygroscopic springs

    Science.gov (United States)

    Gerbode, Sharon; Puzey, Joshua; McCormick, Andrew; Mahadevan, L.

    2012-02-01

    Plant tendrils are specialized climbing organs that have fascinated biologists and physicists alike for centuries. Initially straight tendrils attach at the tip to an elevated rigid support and then winch the plant upward by coiling into a helical morphology characterized by two helices of opposite handedness connected by a helical perversion. In his renowned treatise on twining and tendril-bearing plants, Charles Darwin surmised that coiled tendrils serve as soft, springy attachments for the climbing plant. Yet, the true effect of the perverted helical shape of a coiled plant tendril has not been fully revealed. Using a combination of experiments on Cucurbitaceae tendrils, physical models constructed from strained rubber sheets, and numerical models of helical perversions, we have uncovered that tendril coiling occurs via anisotropic shrinkage of a strip of specialized cells in the interior of the tendril. Furthermore, variations in the mechanical behavior of tendrils as they become drier and ``woodier'' adds a new twist to the story of tendril coiling.

  18. Approaches to translational plant science

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Christensen, Brian; Thorup-Kristensen, Kristian

    2015-01-01

    Translational science deals with the dilemma between basic research and the practical application of scientific results. In translational plant science, focus is on the relationship between agricultural crop production and basic science in various research fields, but primarily in the basic plant...... science. Scientific and technological developments have allowed great progress in our understanding of plant genetics and molecular physiology, with potentials for improving agricultural production. However, this development has led to a separation of the laboratory-based research from the crop production...... is lessened. In our opinion, implementation of translational plant science is a necessity in order to solve the agricultural challenges of producing food and materials in the future. We suggest an approach to translational plant science forcing scientists to think beyond their own area and to consider higher...

  19. Amino Acid Catabolism in Plants.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Nunes Nesi, Adriano; Araújo, Wagner L; Braun, Hans-Peter

    2015-11-02

    Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.

  20. Plant response to polluted air

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, J.B. Jr.; Darley, E.F.; Middleton, J.T.; Paulus, A.O.

    1956-08-01

    Field observations and controlled fumigation experiments have shown that plants differ in their response to atmospheric contamination by ethylene, herbicides, fluorides, sulfur dioxide, and smog, or oxidized hydrocarbons. Controlled experiments have also shown that plant response to air pollution varies with species and variety of plant, age of plant tissue, soil fertility levels, soil moisture, air temperatures during the prefumigation growth period, and presence of certain agricultural chemicals on leaves. The leaves of many plants; such as tomato, African marigold, fuchsia, pepper, and potato, become curved and malformed in the presence of ethylene, while those of cantaloupe, China aster, gardenia, Cattleya orchid, and snapdragon do not. Ethylene may cause serious damage to the sepals of orchids without injury to the petals or leaves.

  1. Plant innate immunity multicomponent model

    Directory of Open Access Journals (Sweden)

    Giuseppe eAndolfo

    2015-11-01

    Full Text Available Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defence mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defence response activation. To better describe the sophisticated defence system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behaviour of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defence against the different behaviours of pathogens with the intention to stimulate further interest in this research area.

  2. Plant health sensing system for determining nitrogen status in plants

    Science.gov (United States)

    Thomasson, J. A.; Sui, Ruixiu; Read, John J.; Reddy, K. R.

    2004-03-01

    A plant health sensing system was developed for determining nitrogen status in plants. The system consists of a multi-spectral optical sensor and a data-acquisition and processing unit. The optical sensor"s light source provides modulated panchromatic illumination of a plant canopy with light-emitting diodes, and the sensor measures spectral reflectance through optical filters that partition the energy into blue, green, red, and near-infrared wavebands. Spectral reflectance of plants is detected in situ, at the four wavebands, in real time. The data-acquisition and processing unit is based on a single board computer that collects data from the multi-spectral sensor and spatial information from a global positioning system receiver. Spectral reflectance at the selected wavebands is analyzed, with algorithms developed during preliminary work, to determine nitrogen status in plants. The plant health sensing system has been tested primarily in the laboratory and field so far, and promising results have been obtained. This article describes the development, theory of operation, and test results of the plant health sensing system.

  3. Application of plant impedance for diagnosing plant disease

    Science.gov (United States)

    Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin

    2006-10-01

    Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.

  4. Linking plant nutritional status to plant-microbe interactions.

    Directory of Open Access Journals (Sweden)

    Lilia C Carvalhais

    Full Text Available Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N, phosphate (P, iron (Fe and potassium (K deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress.

  5. Biodiversity effects on plant stoichiometry.

    Science.gov (United States)

    Abbas, Maike; Ebeling, Anne; Oelmann, Yvonne; Ptacnik, Robert; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang W; Wilcke, Wolfgang; Hillebrand, Helmut

    2013-01-01

    In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, phosphorus, and potassium) and its relationship to plant diversity in a 5-year study in a large grassland biodiversity experiment (Jena Experiment). Species richness and functional group richness affected community stoichiometry, especially by increasing C:P and N:P ratios. The primacy of either species or functional group richness effects depended on the sequence of testing these terms, indicating that both aspects of richness were congruent and complementary to expected strong effects of legume presence and grass presence on plant chemical composition. Legumes and grasses had antagonistic effects on C:N (-27.7% in the presence of legumes, +32.7% in the presence of grasses). In addition to diversity effects on mean ratios, higher species richness consistently decreased the variance of chemical composition for all elemental ratios. The diversity effects on plant stoichiometry has several non-exclusive explanations: The reduction in variance can reflect a statistical averaging effect of species with different chemical composition or a optimization of nutrient uptake at high diversity, leading to converging ratios at high diversity. The shifts in mean ratios potentially reflect higher allocation to stem tissue as plants grew taller at higher richness. By showing a first link between plant diversity and stoichiometry in a multiyear experiment, our results indicate that losing plant species from grassland ecosystems will lead to less reliable chemical composition of forage for

  6. Polyamines in plant physiology

    Science.gov (United States)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  7. CHOOSING SOLAR PHOTOVOLTAIC PLANT

    Directory of Open Access Journals (Sweden)

    Vinnikov A. V.

    2015-04-01

    Full Text Available Promising is the direction and, above all, in matters of energy saving and energy efficiency of Autonomous systems of power supply, the use of renewable sources-newable energy as a major source of energy for consumers in remote areas. Here priority is given to solar energy. Since solar radiation can be change place not only in heat and electrical. The article contains three main structural schematics of electricity supply with solar power plants. The features of their work are disclosed, as well as an algorithm for calculating solar energy systems, the sequence of which is to define the required parameters, the daily energy consumption by consumers of electric power, the calculation capacity of the battery, the choice of the inverter and determining the area of solar batteries. The article reveals the conditions that affect the calculation of the PV system. It is shown that the greatest efficiency, including economic and reliability we have at combined (hybrid Autonomous system, which was carried out with both solar power and wind power and gas stations. The important matters of improving the reliability of solar systems are the introduction to the design of a new element of the base, and first and foremost, Autonomous inventors performed on a single-phase transformer with a rotating magnetic field

  8. Aquatic plant control research

    Energy Technology Data Exchange (ETDEWEB)

    Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

    1997-05-01

    The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

  9. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

    2000-10-26

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  10. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq Ahmed; John H. Anderson; Charles Benham; Earl R. Berry; Fred Brent; Belma Demirel; Ming He; Troy Raybold; Manuel E. Quintana; Lalit S. Shah; Kenneth A. Yackly

    2003-06-09

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  11. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

    2001-05-17

    The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

  12. Compounds and methods for improving plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Knight, Thomas Joseph

    2016-09-20

    The invention is directed to methods and compositions for increasing a growth characteristic of a plant, increasing nutrient use efficiency of a plant, or improving a plant's ability to overcome stress comprising applying a composition comprising ketosuccinamate, a derivative thereof, or a salt thereof, to the plant or to a propagation material of the plant.

  13. 7 CFR 1000.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1000.6 Section 1000.6 Agriculture... Definitions § 1000.6 Supply plant. Supply plant means a plant approved by a duly constituted regulatory agency... diverts fluid milk products to other plants or manufactures dairy products on its premises....

  14. Compounds and methods for improving plant performance

    Science.gov (United States)

    Unkefer, Pat J.; Knight, Thomas Joseph

    2016-09-20

    The invention is directed to methods and compositions for increasing a growth characteristic of a plant, increasing nutrient use efficiency of a plant, or improving a plant's ability to overcome stress comprising applying a composition comprising ketosuccinamate, a derivative thereof, or a salt thereof, to the plant or to a propagation material of the plant.

  15. 7 CFR 1000.5 - Distributing plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants....

  16. 7 CFR 52.81 - Plant survey.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Plant survey. 52.81 Section 52.81 Agriculture... Contract In-Plant Inspection Services 1 § 52.81 Plant survey. Prior to a plant being approved, or the..., the Administrator will make, or cause to be made, a survey and inspection of the plant where...

  17. Dairy Product Manufacturing Costs at Cooperative Plants

    OpenAIRE

    Ling, K. Charles

    1983-01-01

    Cost data are summarized for 14 plants manufacturing cheese, butter, and powder and average costs are presented for each product. Average cost curves are estimated for each plant. The scale of plant for least-cost operations is identified for plants of each product type. Plant capacity utilization and seasonal volume variation and their impacts on manufacturing cost are delineated.

  18. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment.

    Science.gov (United States)

    van der Heijden, Marcel G A; de Bruin, Susanne; Luckerhoff, Ludo; van Logtestijn, Richard S P; Schlaeppi, Klaus

    2016-02-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.

  19. Plant Watering Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hema Nagaraja

    2012-07-01

    Full Text Available Now days, due to busy routine life, people forget to water their plants. In this paper, we present a completely autonomous and a cost-effective system for watering indoor potted plants placed on an even surface. The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module. The paper describes the hardware architecture of the fully automated watering system, which uses wireless communication to communicate between the mobile robot and the sensing module. This gardening robot is completely portable and is equipped with a Radio Frequency Identification (RFID module, a microcontroller, an on-board water reservoir and an attached water pump. It is capable of sensing the watering needs of the plants, locating them and finally watering them autonomously without any human intervention. Mobilization of the robot to the potted plant is achieved by using a predefined path. For identification, an RFID tag is attached to each potted plant. The paper also discusses the detailed implementation of the system supported with complete circuitry. Finally, the paper concludes with system performance including the analysis of the water carrying capacity and time requirements to water a set of plants.

  20. Organelle Extensions in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Jaideep Mathur; Alena Mammone; Kiah A.Barton

    2012-01-01

    Cell walls lock each cell in a specific position within the supraorganization of a plant.Despite its fixed location,each cell must be able to sense alterations in its immediate environment and respond rapidly to ensure the optimal functioning,continued growth and development,and eventual long-term survival of the plant.The ultra-structural detail that underlies our present understanding of the plant cell has largely been acquired from fixed and processed material that does not allow an appreciation of the dynamic nature of sub-cellular events in the cell.In recent years,fluorescent proteinaided imaging of living plant cells has added to our understanding of the dynamic nature of the plant cell.One of the major outcomes of live imaging of plant cells is the growing appreciation that organelle shapes are not fixed,and many organelles extend their surface transiently in rapid response to environmental stimuli.In many cases,the extensions appear as tubules extending from the main organelle.Specific terms such as stromules from plastids,matrixules from mitochondria,and peroxules from peroxisomes have been coined to describe the extensions.Here,we review our present understanding of organelle extensions and discuss how they may play potential roles in maintaining cellular homeostasis in plant cells.

  1. Plant reproduction in spaceflight environments

    Science.gov (United States)

    Musgrave, M. E.; Kuang, A.; Porterfield, D. M.

    1997-01-01

    Because plant reproduction is a complex developmental process there are many possible sites of perturbation by the unusual environments of orbital spacecraft. Previous long-duration experiments on Soviet platforms shared features of slowed development through the vegetative stage of plant growth and aborted reproductive function. Our goal has been to understand how special features of the spaceflight environment impact physiological function and reproductive development. In a series of short-duration experiments in the Shuttle mid-deck we studied early reproductive development in Arabidopsis thaliana. Pollen and ovule development aborted at an early stage in the first experiment on STS-54 which utilized closed plant growth chambers. Post-flight analysis suggested that the plants may have been carbon dioxide limited. Subsequent experiments utilized carbon dioxide enrichment (on STS-51) and cabin air flow-through with an air exchange system (on STS-68). Both modifications allowed pollen and ovule development to occur normally on orbit, and full reproductive development up to the stage of an immature seed occurred on STS-68. However, analysis of plant roots from these experiments demonstrated a limitation in rootzone aeration in the spaceflight material that was not mitigated by these procedures. In the future, additional resources (crew time, upgraded flight hardware, and special platforms) will invite more elaborate, long-duration experimentation. On the ISS, a variable speed centrifuge and upgraded plant habitats will permit detailed experiments on the role of gravity in shaping the plant micro-environment, and what influence this plays during reproduction.

  2. Gravity, light and plant form.

    Science.gov (United States)

    Hangarter, R P

    1997-06-01

    Plants have evolved highly sensitive and selective mechanisms that detect and respond to various aspects of their environment. As a plant develops, it integrates the environmental information perceived by all of its sensory systems and adapts its growth to the prevailing environmental conditions. Light is of critical importance because plants depend on it for energy and, thus, survival. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency. Gravity provides an almost constant stimulus that is the source of critical spatial information about its surroundings and provides important cues for orientating plant growth. Gravity plays a particularly important role during the early stages of seedling growth by stimulating a negative gravitropic response in the primary shoot that orientates it towards the source of light, and a positive gravitropic response in the primary root that causes it to grow down into the soil, providing support and nutrient acquisition. Gravity also influences plant form during later stages of development through its effect on lateral organs and supporting structures. Thus, the final form of a plant depends on the cumulative effects of light, gravity and other environmental sensory inputs on endogenous developmental programs. This article is focused on developmental interactions modulated by light and gravity.

  3. Indigenous actinorhizal plants of Australia

    Indian Academy of Sciences (India)

    Nishath K Ganguli; Ivan R Kennedy

    2013-11-01

    Indigenous species of actinorhizal plants of Casuarinaceae, Elaeagnaceae and Rhamnaceae are found in specific regions of Australia. Most of these plants belong to Casuarinaceae, the dominant actinorhizal family in Australia. Many of them have significant environmental and economical value. The other two families with their indigenous actinorhizal plants have only a minor presence in Australia. Most Australian actinorhizal plants have their native range only in Australia, whereas two of these plants are also found indigenously elsewhere. The nitrogen-fixing ability of these plants varies between species. This ability needs to be investigated in some of these plants. Casuarinas form a distinctive but declining part of the Australian landscape. Their potential has rarely been applied in forestry in Australia despite their well-known uses, which are being judiciously exploited elsewhere. To remedy this oversight, a programme has been proposed for increasing and improving casuarinas that would aid in greening more regions of Australia, increasing the soil fertility and the area of wild life habitat (including endangered species). Whether these improved clones would be productive with local strains of Frankia or they need an external inoculum of Frankia should be determined and the influence of mycorrhizal fungi on these clones also should be investigated.

  4. Plant-herbivore synchrony and selection on plant flowering phenology.

    Science.gov (United States)

    Fogelström, Elsa; Olofsson, Martin; Posledovich, Diana; Wiklund, Christer; Dahlgren, Johan P; Ehrlén, Johan

    2017-03-01

    Temporal variation in natural selection has profound effects on the evolutionary trajectories of populations. One potential source of variation in selection is that differences in thermal reaction norms and temperature influence the relative phenology of interacting species. We manipulated the phenology of the butterfly herbivore Anthocharis cardamines relative to genetically identical populations of its host plant, Cardamine pratensis, and examined the effects on butterfly preferences and selection acting on the host plant. We found that butterflies preferred plants at an intermediate flowering stage, regardless of the timing of butterfly flight relative to flowering onset of the population. Consequently, the probability that plant genotypes differing in timing of flowering should experience a butterfly attack depended strongly on relative phenology. These results suggest that differences in spring temperature influence the direction of herbivore-mediated selection on flowering phenology, and that climatic conditions can influence natural selection also when phenotypic preferences remain constant.

  5. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  6. Air pollution impedes plant-to-plant communication by volatiles.

    Science.gov (United States)

    Blande, James D; Holopainen, Jarmo K; Li, Tao

    2010-09-01

    Volatile organic compounds (VOCs) emitted by damaged plants convey information to undamaged neighbouring plants, and previous research has shown that these signals are effective over short distances in nature. Many herbivore-induced VOCs react with ozone, which is the most important tropospheric air pollutant in rural areas. We used extrafloral nectar (EFN) secretion as a phenotypic indicator of between-plant communication in Phaseolus lunatus L. (Lima bean) and show that an ozone-rich (80 ppb) atmosphere reduces the distance over which signalling occurs. We found that ozone degrades several herbivore-induced VOCs, a likely mechanism reducing communication distances. Direct exposure to 80-ppb ozone did not affect the VOC emissions from P. lunatus. In addition, we demonstrated that high ozone concentrations, 120 and 160 ppb, induced EFN secretion in exposed plants, whereas more moderate concentrations, 80 and 100 ppb, did not. This suggests that ozone can play a complex role in the indirect defence of P. lunatus.

  7. AND THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alduhov Oleg Aleksandrovich

    2012-10-01

    Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.

  8. Plant-plant interactions in the restoration of Mediterranean drylands

    Science.gov (United States)

    Valdecantos, Alejandro; Fuentes, David; Smanis, Athanasios

    2014-05-01

    Plant-plant interactions are complex and dependent of both local abiotic features of the ecosystem and biotic relationships with other plants and animals. The net result of these interactions may be positive, negative or neutral resulting in facilitation, competition or neutralism, respectively (role of phylogeny). It has been proposed that competition is stronger between those individuals that share functional traits than between unrelated ones. The relative interaction effect of one plant on a neighbour may change in relation to resource availability - especially water in drylands. In addition, plants develop above and belowground biomass with time increasing the level and, eventually, changing the intensity and/or the direction of the interaction. In the framework of the restoration of degraded drylands, many studies have focused on the positive (nurse) effects of adult trees, shrubs and even grasses on artificially planted seedlings by improving the microclimate or providing protection against herbivores, but little is known about the interactions between seedlings of different life traits planted together under natural field conditions. In 2010 we established planting plots in two contrasted sites under semiarid Mediterranean climate and introduced one year old seedlings in different combinations of three species, two shrubs (Olea europaea and Pistacia lentiscus) and one grass (Stipa tenacissima). Half of the planting holes in each site were implemented with low-cost ecotechnological inputs to increase water availability by forcing runoff production and promoting deep infiltration (small plastic fabric + dry well). This resulted in four levels of abiotic stress. Biotic interactions were assessed by monitoring seedling survival and growth for three years after planting. The Relative Interaction Index (RII) of S. tenacissima on O. europaea was almost flat and close to 0 along the stress gradient since the beginning of the study suggesting limited interaction

  9. The Water Circuit of the Plants - Do Plants have Hearts ?

    OpenAIRE

    Kundt, Wolfgang; Gruber, Eva

    2006-01-01

    There is a correspondence between the circulation of blood in all higher animals and the circulation of sap in all higher plants - up to heights h of 140 m - through the xylem and phloem vessels. Plants suck in water from the soil, osmotically through the roothair zone, and subsequently lift it osmotically again, and by capillary suction (via their buds, leaves, and fruits) into their crowns. In between happens a reverse osmosis - the endodermis jump - realized by two layers of subcellular me...

  10. Negative plant soil feedback explaining ring formation in clonal plants.

    Science.gov (United States)

    Cartenì, Fabrizio; Marasco, Addolorata; Bonanomi, Giuliano; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2012-11-21

    Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in ecosystems without limiting water conditions. In this work, a spatially explicit model is presented in order to investigate the role of negative plant-soil feedback as an additional explanation for ring formation. The model describes the dynamics of the plant biomass in the presence of toxicity produced by the decomposition of accumulated litter in the soil. Our model qualitatively reproduces the emergence of ring patterns of a single clonal plant species during colonisation of a bare substrate. The model admits two homogeneous stationary solutions representing bare soil and uniform vegetation cover which depend only on the ratio between the biomass death and growth rates. Moreover, differently from other plant spatial patterns models, but in agreement with real field observations of vegetation dynamics, we demonstrated that the pattern dynamics always lead to spatially homogeneous vegetation covers without creation of stable Turing patterns. Analytical results show that ring formation is a function of two main components, the plant specific susceptibility to toxic compounds released in the soil by the accumulated litter and the decay rate of these same compounds, depending on environmental conditions. These components act at the same time and their respective intensities can give rise to the different ring structures observed in nature, ranging from slight reductions of biomass in patch centres, to the appearance of marked rings with bare inner zones, as well as the occurrence of ephemeral waves of plant cover. Our results highlight the potential role of plant-soil negative feedback depending on decomposition processes for the development of transient vegetation patterns.

  11. Modeling golden section in plants

    Institute of Scientific and Technical Information of China (English)

    Lanling Zeng; Guozhao Wang

    2009-01-01

    Plants are complex structures, changing their shapes in response to environmental factors such as sunlight, water and neighboring plants. However, some mathematical rules can be found in their growth patterns, one of which is the golden section. The golden section can be observed in branching systems, phyllotaxis, flowers and seeds, and often the spiral arrangement of plant organs. In this study, tree, flower and fruit models have been generated by using the corresponding golden section characteristics, resulting in more natural patterns. Furthermore, the golden section can be found in the bifurcate angles of trees and lobed leaves, extending the golden section theory.

  12. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  13. Largest US plant gets larger

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2000-04-01

    CONSOL Energy's Bailey complex consists of two extremely large underground mining operations, the Bailey and Enlow Fork mines, and the largest US preparation plant, the Bailey central plant. The original plant was designed with a raw feed capacity of 900 tph and was expanded to a total capacity of 2,200 tph. The recent upgrade, referred to as No. 1B, was completed in early 1999. Two new silos were added and raw feed conveyors were upgraded. The article gives details on the recent upgrade. 2 photos.

  14. Melvin Calvin: Fuels from Plants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.E.; Otvos, J.W.

    1998-11-24

    A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

  15. Aseptic Plant Culture System (APCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aseptic plant culture plays a significant role in biotechnology and plant physiology research, and in vegetative propagation of many plant species. The development...

  16. Aseptic Plant Culture System (APCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aseptic plant culture plays a significant role in biotechnology and plant physiology research and in vegetative propagation of many plant species. The development of...

  17. 78 FR 41866 - Restructuring of Regulations on the Importation of Plants for Planting

    Science.gov (United States)

    2013-07-12

    ... Animal and Plant Health Inspection Service 7 CFR Parts 319 and 340 RIN 0579-AD75 Restructuring of Regulations on the Importation of Plants for Planting AGENCY: Animal and Plant Health Inspection Service, USDA... importation of plants for planting. This action will allow interested persons additional time to prepare...

  18. Native Plants and Seeds, Oh My! Fifth Graders Explore an Unfamiliar Subject While Learning Plant Basics

    Science.gov (United States)

    Pauley, Lauren; Weege, Kendra; Koomen, Michele Hollingsworth

    2016-01-01

    Native plants are not typically the kinds of plants that are used in elementary classroom studies of plant biology. More commonly, students sprout beans or investigate with fast plants. At the time the authors started their plant unit (November), the school-yard garden had an abundance of native plants that had just started seeding, including…

  19. Plant Hormones: Metabolism, Signaling and Crosstalk

    Institute of Scientific and Technical Information of China (English)

    Li-Jia Qu; Yunde Zhao

    2011-01-01

    @@ Plants synthesize various hormones in response to environmental cues and developmental signals to ensure their proper growth and development.Elucidation of the molecular mechanisms by which plant hormones control growth and development contributes to our understanding of fundamental plant biology and provides tools to improve crops.Because of their critical roles in plant growth and development, plant hormones have been studied extensively since the early days of plant biology.

  20. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense

    Directory of Open Access Journals (Sweden)

    Clemencia M Rojas

    2014-02-01

    Full Text Available Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.

  1. The drivers of plant diversity

    DEFF Research Database (Denmark)

    Jensen, Kristine Engemann

    In this thesis we use a “big data” approach to describe and explain large-scale patterns of plant diversity. The botanical data used for the six papers come from three different databases covering the New World, North America, and Europe respectively. The data on plant distributions were combined...... and beta diversity over time for woody forest communities in North America, using a 20 year forest plot dataset from the United States Department of Agriculture Forest Inventory and Analysis program. To assess functional diversity, we combined the plot data with data on four functional traits. Over time...... with environmental data on climate, soil, topography, and disturbance to identify the drivers of macroecological plant diversity patterns. Unless otherwise stated, the botanical data used in the papers come from the Botanical Information and Ecology Network. Paper I describes how we compiled a new plant growth form...

  2. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although......Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar....... Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight...

  3. Power Plant Water Intake Assessment.

    Science.gov (United States)

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  4. Protecting Yourself from Poisonous Plants

    Science.gov (United States)

    ... Products NIOSH-Issued Publications Publication Types Alerts Current Intelligence Bulletins Criteria Documents Fact Sheets Health Hazard Evaluations ( ... contact with the plant Indirect contact (touching tools, animals, or clothing with urushiol on them) Inhalation of ...

  5. Introns in higher plant genes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The intron is an important component of eukaryotic gene. Extensive studies have been conducted to get a better understanding of its structure and function. This paper presents a brief review of the structure and function of introns in higher plant genes. It is shown that higher plant introns possess structural properties shared by all eukaryotic introns, however, they also exhibit a striking degree of diversity. The process of intron splicing in higher plant genes involves interaction between multiple cis-acting elements and trans-acting factors, such as 5′ splicing site, 3′ splicing site and many protein factors. The process of intron splicing is an important level at which gene expression is regulated. Especially alternative splicing of intron can regulate time and space of gene expression. In addition, some introns in higher plant genes also regulate gene expression by affecting the pattern of gene expression, enhancing the level of gene expression and driving the gene expression.

  6. Business Plan: Paper Recycling Plant

    OpenAIRE

    Ali, Muhammad; Askari, Sana; Salman, Muhammad; Askari, Sheba

    2008-01-01

    This Business Plan was written for Business Plan competition organized by Ministry of Youth Affairs Government of Pakistan. It explains the paper recycling business, its pros and cons, cost of paper recycling, plant options and feasibility.

  7. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  8. Crestridge Plant Surveys [ds210

    Data.gov (United States)

    California Department of Resources — Sensitive plant surveys were conducted in 2000 for development of a Habitat Management and Monitoring Plan by Patricia Gordon-Reedy of the Conservation Biology...

  9. 1986 Wetland Plant List Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Wetland Plant List represents the combined efforts of many biologistsworking over the last 10 years to define the wetland flora of the UnitedStates.

  10. Balancing people, plants, and practices

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, R.

    2006-04-15

    Two of the biggest challenges facing the US power industry today are retaining an experienced, capable workforce and operating and maintaining a reliable, diversified fleet of generating plants. Success in the marketplace requires a proper balancing of staff and new technology, something few gencos do well. Following this introductory paper in this issue are several technical articles representing a small sample of the steps that gencos nationwide are taking to prolong plant life. Unlike the false promise of Ponce de Leon's fountain of youth in Florida, the promise of longer life for aging plants is real wherever experienced engineers and technicians are on the job. The article looks at problems across America, from the East Coast to the West Coast. It is supported by diagrams projecting US new capacity and plant type additions up to 2014. 5 figs.

  11. Plants and Medicinal Chemistry--2

    Science.gov (United States)

    Bailey, D.

    1977-01-01

    Second of a two part article on the influence of plants on medicinal chemistry. This part considers how drugs work, the attempts to develop anaesthetics safer than cocaine, and useful poisons. (Author/SL)

  12. Nuclear Power Plant Simulation Game.

    Science.gov (United States)

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  13. Indoor plants as air cleaners

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Müller, Renate

    2015-01-01

    Plants have been used decoratively indoors for centuries. For the last 25-30 years, their beneficial abilities to reduce the levels of harmful volatile organic compounds (VOCs) from the indoor air have also been investigated. Previous studies have shown that VOCs are removed by the plant itself......, but also by microorganisms in the soil. Furthermore, the rate of removal is dependent on the plant species and can be influenced by exogenous factors such as light intensity and VOC concentration. The research within this field is, however, limited by the fact that the knowledge gained from laboratory...... be an underestimation of the plants' real potential. The next step will be to use the new system to investigate the effects of the exogenous factors temperature, light intensity and CO2 concentration on VOC removal rates....

  14. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  15. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  16. PLANT TRANSFORMATION: ADVANCES AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Alves Adriana Cristina

    1999-01-01

    Full Text Available Genetic transformation is a powerful tool for plant breeding and genetical, physiological or biochemical research, consequently it is an extremely dynamic field. Transgenic plants are commonly used to complete or substitute mutants in basic research, helping the studies of complex biological situations such as pathogenesis process, genome organization, light reception and signal transduction. In this review, recent approaches for foreign gene introduction (e.g. Agrobiolistics, whole tissue electroporation, in planta Agrobacterium transformation, screening (reporter gene possibilities and performance and transformant selection (ipt selective marker are discussed. Transgene expression and mechanisms underlying (transgene inactivation are presented. Practical applications of genetically modified plants, field tests and commercial transgenic crops worldwide and in Brazil are listed, as well as the main traits and species modified. Potential uses of transgenic plants for animal compound production, biological remediation and synthetic polymer assembly are also shown.

  17. Language of plants: Where is the word?

    Science.gov (United States)

    Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K

    2016-04-01

    Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds.

  18. Field Guide to Plant Model Systems.

    Science.gov (United States)

    Chang, Caren; Bowman, John L; Meyerowitz, Elliot M

    2016-10-06

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.

  19. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several

  20. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    John Anderson; Charles Schrader

    2004-01-26

    In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and

  1. Researchers Discover Plants Biological Clock

    Institute of Scientific and Technical Information of China (English)

    王全良

    1996-01-01

    Scientists who created glow-in-the-dark plants by shooting up seedlingswith firefly DNA have identified the first biological clock gene in plants. Discovery of the timepiece gene, which controls such biological rhythmsas daily leaf movements and proe openings, flower-blooming schedules andphotosynthesis cycles, could lead to a host of applications in ornamental horti-culture, agriculture and even human health. Many researchers believe that

  2. Aquatic Plants Aid Sewage Filter

    Science.gov (United States)

    Wolverton, B. C.

    1985-01-01

    Method of wastewater treatment combines micro-organisms and aquatic plant roots in filter bed. Treatment occurs as liquid flows up through system. Micro-organisms, attached themselves to rocky base material of filter, act in several steps to decompose organic matter in wastewater. Vascular aquatic plants (typically, reeds, rushes, cattails, or water hyacinths) absorb nitrogen, phosphorus, other nutrients, and heavy metals from water through finely divided roots.

  3. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  4. Enrichment planting without soil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, Mats

    1998-12-31

    Where enrichment planting had been carried out with either of the two species Picea abies and Pinus contorta, the survival of the planted seedlings was at least as good as after planting in a normal clear cut area treated with soil scarification. This was in spite of the fact that the seedlings were placed shallow in the humus layer without any soil treatment. However, they were sheltered from insects by treatment before planting. Where enrichment planting was carried out with Pinus sylvestris the survival in dense forest was poor, but in open forest the survival was good. The growth of planted seedlings was enhanced by traditional clearing and soil treatment. However, this was for Pinus sylvestris not enough to compensate for the loss of time, 1-2 years, caused by arrangement of soil scarification. The growth of seedlings planted under crown cover was directly related to basal area of retained trees. However, the variation in height growth among individual seedlings was very big, which meant that some seedlings grow well also under a fairly dense forest cover. The pioneer species Pinus sylvestris reacted more strongly to basal area of retained trees than did the shade tolerant species Picea abies. Enrichment planting seems to be a necessary tool for preserving volume productivity, at places where fairly intensive harvest of mature trees has been carried out in stands of ordinary forest type in central Sweden. If double seedlings, with one Picea abies and one Pinus sylvestris, are used, the probability for long term establishment is enhanced 13 refs, 20 figs, 4 tabs

  5. Plant genetics for forensic applications.

    Science.gov (United States)

    Zaya, David N; Ashley, Mary V

    2012-01-01

    An emerging application for plant DNA fingerprinting and barcoding involves forensic investigations. Examples of DNA analysis of botanical evidence include crime scene analysis, identifying the source of commercial plant products, and investigation of trade in illicit drugs. Here, we review real and potential applications of DNA-based forensic botany and provide a protocol for microsatellite genotyping of leaf material, a protocol that could be used to link a suspect to a victim or to a crime scene.

  6. Method for growing plants aeroponically.

    Science.gov (United States)

    Zobel, R W; Del Tredici, P; Torrey, J G

    1976-03-01

    A simple, inexpensive system for growing plants with their roots bathed in nutrient mist is described. The aeroponics system uses a spinner from a home humidifier to propel nutrient solution into a polyethylene-lined plywood box atop which plants are supported on plastic light-fixture "egg crating." Success in growing a number of herbaceous and woody species, including nodulated legumes and nonlegumes, is reported.

  7. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids

  8. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids

  9. Game theory and plant ecology.

    Science.gov (United States)

    McNickle, Gordon G; Dybzinski, Ray

    2013-04-01

    The fixed and plastic traits possessed by a plant, which may be collectively thought of as its strategy, are commonly modelled as density-independent adaptations to its environment. However, plant strategies may also represent density- or frequency-dependent adaptations to the strategies used by neighbours. Game theory provides the tools to characterise such density- and frequency-dependent interactions. Here, we review the contributions of game theory to plant ecology. After briefly reviewing game theory from the perspective of plant ecology, we divide our review into three sections. First, game theoretical models of allocation to shoots and roots often predict investment in those organs beyond what would be optimal in the absence of competition. Second, game theoretical models of enemy defence suggest that an individual's investment in defence is not only a means of reducing its own tissue damage but also a means of deflecting enemies onto competitors. Finally, game theoretical models of trade with mutualistic partners suggest that the optimal trade may reflect competition for access to mutualistic partners among plants. In short, our review provides an accessible entrance to game theory that will help plant ecologists enrich their research with its worldview and existing predictions.

  10. Plant Biotechnology: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    P.V. Lakshmana Rao

    1996-01-01

    Full Text Available Development of procedures in cell biology to regenerate plants from single cells in any desired quantity provides the prerequisite for the practical use of plant tissue culture and genetic engineering in crop improvement. Such regenerating cell cultures are used for selection of mutants and for DNA transformation experiments. DNA transfer by means of engineered Ti and Ri plasmids has become an established technique for the rapidly growing list of dicotyledonous plants. Considerable success has also been achieved in making gene transfer techniques independent of cell culture methods. These techniques have given the opportunity to create, characterise and select plant cultivars which cannot be obtained by traditional breeding methods. The exploitation of plant cell cultures for production of pharmaceuticals, natural products of commercial importance and mass propagation of high-value crops by automation, have developed into an important industry with considerable potential for future. This paper discusses the recent advances and applications of plant biotechnology in agriculture and industry and the challenges the still exist.

  11. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  12. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  13. MRI of plants and foods

    Science.gov (United States)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  14. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  15. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  16. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

    2003-09-15

    The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making

  17. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

    2003-08-21

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst

  18. EARLY ENTRANCE COPRODUCTION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

    2004-01-27

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the

  19. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of Betu

  20. Plant reproduction and environmental noise: how do plants do it?

    Science.gov (United States)

    Lyles, Danielle; Rosenstock, Todd S; Hastings, Alan

    2015-04-21

    Plant populations exhibit a wide continuum of reproductive behavior, ranging from nearly constant reproductive output on one end to the extreme of masting (synchronized, highly variable reproduction) on the other. Here, we show that including variability (noise) in density-dependent pollen limitation in current models for pollen-limited plant reproduction may produce any behavior on this continuum. We previously showed that (large) variability in pollination efficiency (a related phenomenon) may induce masting in non-pollen-limited plant populations. Other modeling studies have shown that including variability in accumulated resources (and/or the threshold for reproduction) may induce masting, but do account for masting in non-pollen-limited plant populations. Thus, our results suggest that the range of plant reproductive behavior may be explained with the simple resource budget model combined with the biological realism of variability in density-dependent pollen limitation. This is a specific example of an important functional consequence of the interactions between stochasticity and nonlinearity, and highlights the importance of carefully considering both the biological basis and the mathematical effects of the noise term.

  1. Plant MITEs: Useful Tools for Plant Genetics and Genomics

    Institute of Scientific and Technical Information of China (English)

    Ying Feng

    2003-01-01

    MITEs (Miniature inverted-repeat transposable elements) are reminiscence of non-autonomous DNA (class Ⅱ) elements, which are distinguished from other transpos-able elements by their small size, short terminal inverted repeats (TIRs), high copynumbers, genic preference, and DNA sequence identity among family members. Al-though MITEs were first discovered in plants and still actively reshaping genomes,they have been isolated from a wide range of eukaryotic organisms. MITEs canbe divided into Tourist-like, Stowaway-like, and pogo-like groups, according tosimilarities of their TIRs and TSDs (target site duplications). In despite of sev-eral models to explain the origin and amplification of MITEs, their mechanisms oftransposition and accumulation in eukaryotic genomes remain poorly understoodowing to insufficient experimental data. The unique properties of MITEs have beenexploited as useful genetic tools for plant genome analysis. Utilization of MITEsas effective and informative genomic markers and potential application of MITEsin plants systematic, phylogenetic, and genetic studies are discussed.

  2. Primary plant performance evaluation and plant signals validation

    Energy Technology Data Exchange (ETDEWEB)

    Anikanov, S. S. [Westinghouse LLC, 4350 Northern Pike, Monroeville, PA 15146 (United States); Stolyetniy, I. V.; Semenovski, Y. P. [Westron, 1, Academic Proskura str., Kharkov (Ukraine)

    2006-07-01

    This paper discusses results of the implementation of NPP signal validation and data reconciliation algorithms applied to VVER-1000 reactor as part of the Core Monitoring System (CMS) project at South Ukrainian NPP. The proposed method is compared with the G2TM tool (Gensym) application of neural network algorithms to the same plant data. The proposed algorithms yield practically identical results for situations with a significant amount of erroneous data, even though it runs in on-line mode as oppose to the off-line mode of the G2TM tool. The method described in this paper includes preliminary signal processing, data fusion, and data reconciliation algorithms. All major primary and secondary sides measurements, used for plant thermal power evaluation based on different methods, were undergone the proposed processing algorithm. Some plant life data is presented to illustrate quality of input signals used to obtain calculation results. (authors)

  3. Marketing time predicts naturalization of horticultural plants.

    Science.gov (United States)

    Pemberton, Robert W; Liu, Hong

    2009-01-01

    Horticulture is an important source of naturalized plants, but our knowledge about naturalization frequencies and potential patterns of naturalization in horticultural plants is limited. We analyzed a unique set of data derived from the detailed sales catalogs (1887-1930) of the most important early Florida, USA, plant nursery (Royal Palm Nursery) to detect naturalization patterns of these horticultural plants in the state. Of the 1903 nonnative species sold by the nursery, 15% naturalized. The probability of plants becoming naturalized increases significantly with the number of years the plants were marketed. Plants that became invasive and naturalized were sold for an average of 19.6 and 14.8 years, respectively, compared to 6.8 years for non-naturalized plants, and the naturalization of plants sold for 30 years or more is 70%. Unexpectedly, plants that were sold earlier were less likely to naturalize than those sold later. The nursery's inexperience, which caused them to grow and market many plants unsuited to Florida during their early period, may account for this pattern. Plants with pantropical distributions and those native to both Africa and Asia were more likely to naturalize (42%), than were plants native to other smaller regions, suggesting that plants with large native ranges were more likely to naturalize. Naturalization percentages also differed according to plant life form, with the most naturalization occurring in aquatic herbs (36.8%) and vines (30.8%). Plants belonging to the families Araceae, Apocynaceae, Convolvulaceae, Moraceae, Oleaceae, and Verbenaceae had higher than expected naturalization. Information theoretic model selection indicated that the number of years a plant was sold, alone or together with the first year a plant was sold, was the strongest predictor of naturalization. Because continued importation and marketing of nonnative horticultural plants will lead to additional plant naturalization and invasion, a comprehensive approach

  4. Testing Times for Plant Family Recognition

    Science.gov (United States)

    Burrows, Geoffrey E.

    2010-01-01

    Plant families are the level of the taxonomic hierarchy that many biologists use to organise their understanding of plant diversity. Consequently, from many perspectives, it is very useful to be able to recognise the major plant families "on sight". To this end numerous books and web sites have described and illustrated plant families,…

  5. Plant Evolution: A Manufacturing Network Perspective

    DEFF Research Database (Denmark)

    Yang, Cheng; Johansen, John; Boer, Harry

    2009-01-01

    Viewing them as portfolios of products and processes, we aim to address how plants evolve in the context of a manufacturing network and how the evolution of one plant impacts other plants in the same manufacturing network. Based on discussions of ten plants from three Danish companies, we identify...

  6. 27 CFR 19.915 - Large plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Large plants. 19.915... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.915 Large plants. Any person wishing to establish a large plant shall make application for and obtain...

  7. 25 CFR 140.26 - Infectious plants.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Infectious plants. 140.26 Section 140.26 Indians BUREAU... Infectious plants. Traders shall not introduce into, sell, or spread within Indian reservations any plant, plant product, seed, or any type of vegetation, which is infested, or infected or which might act as...

  8. 27 CFR 19.914 - Medium plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Medium plants. 19.914... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.914 Medium plants. Any person wishing to establish a medium plant shall make application for and obtain...

  9. 27 CFR 19.912 - Small plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Small plants. 19.912... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.912 Small plants. Persons wishing to establish a small plant shall apply for a permit as provided in...

  10. The Marstal Central Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Jochen, Dahm

    1999-01-01

    The central solar heating plant in Marstal is running since 1996 and has been monitored since. The resulting data from the plant is analysed and the plant performance evaluated. A TRNSYS-model (computersimulation) id prepared and validated based on the measured data from the plant. Acceptable good...

  11. 7 CFR 1001.4 - Plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1001.4 Section 1001.4 Agriculture Regulations of... Definitions § 1001.4 Plant. (a) Except as provided in paragraph (b) of this section, plant means the land...) of this section if the facility receives the milk of more than one dairy farmer. (b) Plant shall...

  12. 47 CFR 32.2006 - Nonoperating plant.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Nonoperating plant. 32.2006 Section 32.2006... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2006 Nonoperating plant... in the plant accounts as operating telecommunications plant. It shall include the...

  13. 7 CFR 1000.4 - Plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1000.4 Section 1000.4 Agriculture Regulations of... § 1000.4 Plant. (a) Except as provided in paragraph (b) of this section, plant means the land, buildings... section if the facility receives the milk of more than one dairy farmer. (b) Plant shall not include:...

  14. PHYTOREMEDIATION OF PERCHLORATE BY TOBACCO PLANTS

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in the plant tissues. The objective of this research was to determine the effectiveness of tobacco plants in phytoremediation, a technology that employs plants to degrade,...

  15. Short communication. Plant density effect on the individual plant to plant yield variability expressed as coefficient of variation in barley

    Energy Technology Data Exchange (ETDEWEB)

    Kotzamanidis, S. T.; Lithourgidis, A. S.; Roupakias, D. G.

    2009-07-01

    The effect of plant density on the coefficient of variation (CV) for individual plant yield was studied in barley (Hordeum vulgare L.). An F2 population originating from the cross Niki x Carina was planted in three densities: high (51.32 plants m{sup -}2), intermediate (4.61 plants m{sup -}2), and low (1.15 plants m-2) using the honeycomb design. In each of the experiments, the most promising 15 plants were selected based on the individual plant yield. Progeny (F3) of the 30 plants selected from the intermediate and the low plant density were grown the following year in two experiments under an intermediate and low density. It was observed that in the F2 population the CV was reduced from 71 to 55% when the density reduced from 51.32 to 4.61 plants m{sup -}2, whereas the CV value was increased when the density was further reduced to 1.15 plants m{sup -}2. Similarly, the following year the CV was increased from 39 to 56% when the density was decreased from 4.61 to 1.15 plants m{sup -}2 in the F3 generation, and from 22 to 58% in the control. It was concluded that for barley an optimum plant density might exist under which the CV for individual plant yield is minimized and therefore the effectiveness of selection might be optimized. (Author)18 refs.

  16. History of plant tissue culture.

    Science.gov (United States)

    Thorpe, Trevor

    2012-01-01

    Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the beginning of the twentieth century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology in the twenty-first century. The historical development of these in vitro technologies and their applications is the focus of this chapter.

  17. Transcriptional networks in plant immunity.

    Science.gov (United States)

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.

  18. Defense mutualisms enhance plant diversification.

    Science.gov (United States)

    Weber, Marjorie G; Agrawal, Anurag A

    2014-11-18

    The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity.

  19. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  20. State power plant productivity programs

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  1. Physical methods for genetic plant transformation

    Science.gov (United States)

    Rivera, Ana Leonor; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.

    2012-09-01

    Production of transgenic plants is a routine process for many crop species. Transgenes are introduced into plants to confer novel traits such as improved nutritional qualities, tolerance to pollutants, resistance to pathogens and for studies of plant metabolism. Nowadays, it is possible to insert genes from plants evolutionary distant from the host plant, as well as from fungi, viruses, bacteria and even animals. Genetic transformation requires penetration of the transgene through the plant cell wall, facilitated by biological or physical methods. The objective of this article is to review the state of the art of the physical methods used for genetic plant transformation and to describe the basic physics behind them.

  2. Plant growth-promoting bacterial endophytes.

    Science.gov (United States)

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.

  3. Plants having modified response to ethylene

    Science.gov (United States)

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  4. Large animal hepatotoxic and nephrotoxic plants.

    Science.gov (United States)

    Oladosu, L A; Case, A A

    1979-10-01

    The hepatotoxic and nephrotoxic plants of large domestic animals have been reviewed. The most important ones are those widely distributed as weeds over pastures, negelcted forests and grasslands, those used as ornamentals, the nitrate concentrating forage crops, and the cyanophoric plants. Crotolaria spp, the ragwort (Senecia jacobaea), the lantana spp. and heliotopum are common hepatoxic plants. Amaranthus retroflexus, Datura stramonium, Solanum rostratum, and the castor oil plant (Ricinus communis) are nephrotoxic plants.

  5. Granulated zeolite plant "Alusil", Zvornik

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC's Engineering Department designed basic technological and machine projects for a granulated zeolite production plant, on the basis of which a pilot plant with an initial capacity of 5,000 t/y was constructed in 1984, within Birač - Zvornik production complex. The technology in these projects was developed in the laboratories of the IGPC.Several goals were realized by designing a granulated zeolite production plant. This technology is one of the newest state of the art high tech technologies. The product meets all quality demands, as well as environmental regulations, by which granulated zeolite production for various uses was developed. The granulated zeolite production process is fully automatized, and the product has uniform quality. There is no waste material in granulated zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during start - up, and repairs.

  6. Pentatricopeptide repeat proteins in plants.

    Science.gov (United States)

    Barkan, Alice; Small, Ian

    2014-01-01

    Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.

  7. Chirospecific analysis of plant volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Tkachev, A V [N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-10-31

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  8. Chirospecific analysis of plant volatiles

    Science.gov (United States)

    Tkachev, A. V.

    2007-10-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  9. Methane production from plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zauner, E.

    1985-01-01

    Methane fermentations of plant biomass were performed to increase basic knowledge necessary for development of suitable conversion technologies. Effects of bacterial inoculants, substrate compounds and varied process conditions were analyzed in batch and continuous fermentation experiments. Use of enriched bacterial populations precultured and adapted to plant materials was proved to be advantageous for inoculation. Methane yields and productivities as well as chemical and bacterial composition of digester fluids were determined at various loading rates and retention times during fermentation of different grass and maize silages. Recycling for favorable amounts of decomposed effluent for neutralization of supplied acid raw materials was important to achieve high methane yields. Quantity and composition of acido-, aceto- and methanogenic bacteria were not essentially influenced by changed fermentation conditions. Results of these laboratory examinations have to be completed by long run and scale up experiments to develop control parameters for plant biogas digesters.

  10. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    Salguero-Gomez, Roberto; Jones, Owen; Archer, C. Ruth

    2015-01-01

    growth or decline, such data furthermore help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change, and how to develop successful management tools for endangered or invasive species. 2. Matrix population models summarize the life cycle...... components of survival, growth and reproduction, while explicitly acknowledging heterogeneity among classes of individuals in the population. Matrix models have comparable structures, and their emergent measures of population dynamics, such as population growth rate or mean life expectancy, have direct...... biological interpretations, facilitating comparisons among populations and species. 3. Thousands of plant matrix population models have been parameterized from empirical data, but they are largely dispersed through peer reviewed and grey literature, and thus remain inaccessible for synthetic analysis. Here...

  11. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar....... Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight......, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce...

  12. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might......, in a modern power system with large scale integration wind power. This study presents the investigation of the real-time balance control in a modern Danish power system, where WPPs can actively contribute to active power balance control. New solutions for the automatic generation control (AGC) dealing...

  13. Transgenic woody plants for biofuel

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Anna Y.Tang

    2014-01-01

    Transgenic trees as a new source for biofuel have brought a great interest in tree biotechnology. Genetically modifying forest trees for ethanol production have advantages in technical challenges, costs, environmental concerns, and financial problems over some of crops. Genetic engineering of forest trees can be used to reduce the level of lignin, to produce the fast-growing trees, to develop trees with higher cellulose, and to allow the trees to be grown more widely. Trees can establish themselves in the field with less care of farmers, compared to most of crops. Transgenic crops as a new source for biofuel have been recently reviewed in several reviews. Here, we overview transgenic woody plants as a new source for biofuel including genetically modified woody plants and environment; main focus of woody plants genetic modifications;solar to chemical energy transfer; cellulose biosynthesis;lignin biosynthesis;and cellulosic ethanol as biofuel.

  14. Plant domestication slows pest evolution.

    Science.gov (United States)

    Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J

    2015-09-01

    Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics.

  15. Medicines and Drugs from Plants

    Science.gov (United States)

    Agosta, William C.

    1997-07-01

    Natural preparations have been used for thousands of ages for a variety of purposes including as medicines, poisons, and psychotropic drugs. The largest grouped of preparations from living organisms are medicines, and historically these have come from plants. Quinine and aspirin are two examples of medicines which were extracted originally from plants. Mind-altering, or psychotropic, drugs come mostly from plants or fungi. In many traditional cultures, sickness and death are attributed to maligned spirits so that medicine and religion become inseparable. Uses of cohohba, snakeplant, coca, and peyote are discussed. The process by which new pharmaceuticals are discovered from natural products is described. The implications of an agreement between a major pharmaceutical company and a country in the tropics are discussed.

  16. Hybrid power plants; Thermische Hybridkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Tuschy, I. [ALSTOM Power Support, Mannheim (Germany). Bereiche Forschung und Entwicklung/Ingenieurdienstleistungen; Franke, U. [Fachhochschule Flensburg (Germany). Thermodynamik

    2002-07-01

    New German laws concerning the use of biomass and other renewable energy sources have improved the conditions for power generation with renewable energies. A promising alternative to common small-scale (combined-heat-and-) power plants could be found in so-called hybrid power plants which use renewable energies and fossil fuels in combination. A thermodynamic process analysis shows how to determine the renewable energies' portion of a hybrid power plant's total output. [German] Mit den veraenderten gesetzlichen Rahmenbedingungen erhoeht sich die Motivation, regenerative Energiequellen zur Stromerzeugung zu nutzen. Neben dem exklusiven Einsatz in kleineren (Heiz-) Kraftwerken bietet sich die gemeinsame Nutzung mit fossilen Energietraegern in sogenannten Hybridkraftwerken an. Hier stellt sich die Frage, wie der Anteil der regenerativen Energien an der Gesamt-Stromproduktion des Hybridkraftwerkes zu ermitteln ist. Eine thermodynamische Prozessanalyse kann darueber Aufschluss geben.

  17. Innovations in teaching plant pathology.

    Science.gov (United States)

    Schumann, G L

    2003-01-01

    The teaching environment for plant pathology is changing in both positive and negative ways. Teaching expectations are increasing and resources are decreasing, but recent educational research and instructional technology offer new approaches to meet these challenges. Plant pathologists are teaching courses that may attract new students to the discipline or at least improve agricultural awareness. The Internet offers rapid access to information and images for both students and instructors. Instructional technology provides new tools for classroom presentations, communication with students, reaching new audiences, and distance learning, but using these new tools to enhance learning requires skilled and creative instructors. In the past, many plant pathology instructors worked in relative isolation, but new communication technologies and publishing opportunities for teaching scholarship should improve the sharing of instructional resources and methods.

  18. Theoretical considerations of plant gravisensing

    Science.gov (United States)

    Kondrachuk, A. V.

    The mechanisms proposed to explain gravity sensing can be divided into two groups, "statolith" and "non-statolith" mechanisms. The traditional estimates of the plausibility of these mechanisms are based on the analysis of the signal-to-noise ratio. The existing data indicate that the problem of plant gravisensing may be related to the general problem of the detection of weak signals in mechanoreceptors. This paper reviews the known mechanisms of plant gravisensing as well as the latest nonlinear stochastic models of mechanoreception in which noise promotes detection and amplification of weak signals. These models based on nonlinear stochastic phenomena may be used to explain plant gravisensing, if the cell is considered a dynamic, spatially distributed system of active intracellular cytoskeletal networks and mechanosensitive proteins.

  19. Atmospheric transformation of plant volatiles disrupts host plant finding

    Science.gov (United States)

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-09-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.

  20. Climate warming, plant invasions and plant-enemy interactions

    NARCIS (Netherlands)

    Engelkes, T.

    2010-01-01

    The climate is changing and temperatures are predicted to further increase in the future. Species respond to these changes by either adapting to the local warmer conditions and/or range shifting to higher latitudes. Some of these successful range shifting plants can become invasive in their new rang

  1. Integrating a SOFC Plant with a Steam Turbine Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    A Solid Oxide Fuel Cell (SOFC) is integrated with a Steam Turbine (ST) cycle. Different hybrid configurations are studied. The fuel for the plants is assumed to be natural gas (NG). Since the NG cannot be sent to the anode side of the SOFC directly, a desulfurization reactor is used to remove...

  2. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  3. Reshaping Plant Biology: Qualitative and Quantitative Descriptors for Plant Morphology

    Science.gov (United States)

    Balduzzi, Mathilde; Binder, Brad M.; Bucksch, Alexander; Chang, Cynthia; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Pradal, Christophe; Sparks, Erin E.

    2017-01-01

    An emerging challenge in plant biology is to develop qualitative and quantitative measures to describe the appearance of plants through the integration of mathematics and biology. A major hurdle in developing these metrics is finding common terminology across fields. In this review, we define approaches for analyzing plant geometry, topology, and shape, and provide examples for how these terms have been and can be applied to plants. In leaf morphological quantifications both geometry and shape have been used to gain insight into leaf function and evolution. For the analysis of cell growth and expansion, we highlight the utility of geometric descriptors for understanding sepal and hypocotyl development. For branched structures, we describe how topology has been applied to quantify root system architecture to lend insight into root function. Lastly, we discuss the importance of using morphological descriptors in ecology to assess how communities interact, function, and respond within different environments. This review aims to provide a basic description of the mathematical principles underlying morphological quantifications. PMID:28217137

  4. Plant-soil feedbacks and the coexistence of competing plants

    NARCIS (Netherlands)

    Revilla, T.A.; Veen, G.F.; Eppinga, M.B.; Weissing, F.J.

    2013-01-01

    Plant–soil feedbacks can have important implications for the interactions among plants. Understanding these effects is a major challenge since it is inherently difficult to measure and manipulate highly diverse soil communities. Mathematical models may advance this understanding by making the interp

  5. Top 10 plant-parasitic nematodes in molecular plant pathology

    NARCIS (Netherlands)

    Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N.

    2013-01-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a ‘top 10’ list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region o

  6. Finding Signals for Plant Promoters

    Institute of Scientific and Technical Information of China (English)

    Weimou Zheng

    2003-01-01

    The strongest signal of plant promoter is searched with the model of single motif with two types. It turns out that the dominant type is the TATA-box. The other type may be called TATA-less signal, and may be used in gene finders for promoter recognition. While the TATA signals are very close for the monocot and the dicot, their TATA-less signals are significantly different. A general and flexible multi-motif model is also proposed for promoter analysis based on dynamic programming. By extending the Gibbs sampler to the dynamic programming and introducing temperature, an efficient algorithm is developed for searching signals in plant promoters.

  7. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  8. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.

    2012-01-01

    industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high......-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools...... for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  9. Water Filtration Using Plant Xylem

    CERN Document Server

    Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2013-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees - a readily available, inexpensive, biodegradable, and disposable material - can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  10. Plant traits determine forest flammability

    Science.gov (United States)

    Zylstra, Philip; Bradstock, Ross

    2016-04-01

    Carbon and nutrient cycles in forest ecosystems are influenced by their inherent flammability - a property determined by the traits of the component plant species that form the fuel and influence the micro climate of a fire. In the absence of a model capable of explaining the complexity of such a system however, flammability is frequently represented by simple metrics such as surface fuel load. The implications of modelling fire - flammability feedbacks using surface fuel load were examined and compared to a biophysical, mechanistic model (Forest Flammability Model) that incorporates the influence of structural plant traits (e.g. crown shape and spacing) and leaf traits (e.g. thickness, dimensions and moisture). Fuels burn with values of combustibility modelled from leaf traits, transferring convective heat along vectors defined by flame angle and with plume temperatures that decrease with distance from the flame. Flames are re-calculated in one-second time-steps, with new leaves within the plant, neighbouring plants or higher strata ignited when the modelled time to ignition is reached, and other leaves extinguishing when their modelled flame duration is exceeded. The relative influence of surface fuels, vegetation structure and plant leaf traits were examined by comparing flame heights modelled using three treatments that successively added these components within the FFM. Validation was performed across a diverse range of eucalypt forests burnt under widely varying conditions during a forest fire in the Brindabella Ranges west of Canberra (ACT) in 2003. Flame heights ranged from 10 cm to more than 20 m, with an average of 4 m. When modelled from surface fuels alone, flame heights were on average 1.5m smaller than observed values, and were predicted within the error range 28% of the time. The addition of plant structure produced predicted flame heights that were on average 1.5m larger than observed, but were correct 53% of the time. The over-prediction in this

  11. Alert Systems for production Plants

    DEFF Research Database (Denmark)

    Nielsen, Thomas Dyhre; Jensen, Finn Verner

    2005-01-01

    We present a new methodology for detecting faults and abnormal behavior in production plants. The methodology stems from a joint project with a Danish energy consortium. During the course of the project we encountered several problems that we believe are common for projects of this type. Most...... system operation, i.e., it does not rely on information about the possible faults. We illustrate the proposed method using real-world data from a coal driven power plant as well as simulated data from an oil production facility....

  12. MIPS plant genome information resources.

    Science.gov (United States)

    Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X

    2007-01-01

    The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.

  13. Crop plants as models for understanding plant adaptation and diversification

    Directory of Open Access Journals (Sweden)

    Kenneth M Olsen

    2013-08-01

    Full Text Available Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of domestication syndrome traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various omics involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.

  14. An Automated and Continuous Plant Weight Measurement System for Plant Factory

    Science.gov (United States)

    Chen, Wei-Tai; Yeh, Yu-Hui F.; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040

  15. New advances in virtual plant research

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Virtual plants are computer simulations of the growth, development and deployment of plants in a three-dimensional space. Over the past 20 years, significant pro-gress has been made in virtual plant modeling corresponding to the rapid advances in information technology. Virtual plant research has broad applications in agronomy, forestry, ecology, and remote sensing areas. In this review, we attempt to introduce the significance, modeling methodology, and main advances in virtual plant research and applications. The challenges associated with virtual plant modeling in agronomy applications, including the interaction mechanism between plant and environment and root system modeling, are also discussed. Insights into applications of virtual plants in agronomy are given in the areas of performing virtual experiments to accurately quantify the utilization of soil water and nutrients, to design crop ideotype on computers, and to improve crop planting.

  16. Plant physiology for profitable pastures

    Science.gov (United States)

    A basic question of pasture-based livestock production is whether producers should manage pastures on the basis of what is best for the animal or what is best for the plant. Given that pastures are the principal and most economical source of feed, producers should carefully consider how they manage...

  17. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants. With the......Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay......-green cultivars do not display significant effects with regards to productivity. In several crops, the stay-green phenotype is observed to be associated with a higher drought resistance and a better performance under low nitrogen conditions. Among the approaches used to achieve stay-green phenotypes in transgenic...

  18. Sulfur plant start-up

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Hank; Grigson, Susan [Ortloff Engineers Ltd. (United States)

    2002-02-01

    The authors discuss an Ortloff sulfur plant design concept using the Claus reaction that differs from accepted 'industry practice': cold reactor bed start-up. The process is designed to eliminate catalyst sulfation, heat damage and furnace overheating in sulfur recovery units. (UK)

  19. Planting depth for oilseed calendula

    Science.gov (United States)

    Calendula (Calendula officinalis L.) is not only a popular ornamental plant in temperate climates, but also a potential oilseed crop. Its seed oil has high levels of calendic acid, which makes it a highly valued drying oil with important industrial applications. Much basic agronomic information on c...

  20. Introduced aquatic plants and algae

    Science.gov (United States)

    Non-native aquatic plants such as waterhyacinth and hydrilla severely impair the uses of aquatic resources including recreational faculties (lakes, reservoirs, rivers) as well as timely delivery of irrigation water for agriculture. Costs associated with impacts and management of all types of aquatic...

  1. A history of plant virology

    NARCIS (Netherlands)

    Want, van der J.P.H.; Dijkstra, J.

    2006-01-01

    This review traces developments in plant virus research from its very beginning in the eighties of the 19th century until the present day. Starting with the earliest research, which gave a clue as to the existence of a pathogen different from the then known bacteria and fungi, the subsequent topics

  2. Process control in biogas plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Oleskowicz-Popiel, Piotr

    2013-01-01

    Efficient monitoring and control of anaerobic digestion (AD) processes are necessary in order to enhance biogas plant performance. The aim of monitoring and controlling the biological processes is to stabilise and optimise the production of biogas. The principles of process analytical technology...

  3. Imaging lipids in living plants

    NARCIS (Netherlands)

    J.E.M. Vermeer; T. Munnik

    2010-01-01

    Phospholipids are important constituents of biological membranes, most of them fulfilling a structural role. However, it has become clear that in plants, just as in mammalian and yeast cells, some minor phospholipids, e.g. phosphoinositides, are important regulators of cellular function, providing d

  4. Engineering disease resistance in plants

    NARCIS (Netherlands)

    Custers, J.H.H.V.

    2007-01-01

    The genetic engineering of plants for increased pathogen resistance has engaged researchers and companies for decades. Until now, thenumberof crops with genetically engineered disease resistance traits which have entered the market are limited to products displaying virus an

  5. Investigating Evolution with Living Plants.

    Science.gov (United States)

    Schlessman, Mark A.

    1997-01-01

    Describes two investigative labs that use live plants to illustrate important biological principles, include quantitative analysis, and require very little equipment. Each lab is adaptable to a variety of class sizes, course contents, and student backgrounds. Topics include the evolution of flower size in Mimulus and pollination of Brassicas. (DDR)

  6. Aloe vera: Plant of Immortality

    Directory of Open Access Journals (Sweden)

    Sikarwar Mukesh. S.

    2010-02-01

    Full Text Available The Egyptians called Aloe the “Plant of Immortality” because it can live and even bloom without soil. Aloe has been used medicinally since at least the first century C.E. and continues to be used extensively worldwide.

  7. Peroxiredoxins in plants and cyanobacteria.

    Science.gov (United States)

    Dietz, Karl-Josef

    2011-08-15

    Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H2O2, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants.

  8. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    2014-01-01

    COMPADRE contains demographic information on hundreds of plant species. The data in COMPADRE are in the form of matrix population models and our goal is to make these publicly available to facilitate their use for research and teaching purposes. COMPADRE is an open-access database. We only request...

  9. Stress activated MAPKs in plants

    NARCIS (Netherlands)

    Ligterink, W.

    2000-01-01

    Plants are exposed to a wide variety of extracellular stimuli and employ a broad set of signaling pathways to give the appropriate response. M itogen a ctivated p rotein k inases (MAPKs) play an important role in the signal transduction of yeast and animals and increasing

  10. Mass Customization of process plants

    DEFF Research Database (Denmark)

    Hvam, Lars

    2006-01-01

    This case study describes how F.L.Smidth A/S, a manufacturer of large processing plants for cement production, has applied the principles of mass customisation in the area of highly complex, custom engineered products. The company has based its sales process on a configuration system to achieve...

  11. Modular Engineering of Production Plants

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    Based on a case-study on design of pharmaceutical production plants, this paper suggests that modularity may support business efficiency for companies with one-of-a-kind production and without in-house manufacturing. Modularity may support efficient management of design knowledge and may facilitate...

  12. Plant Life of the Dolomites

    Directory of Open Access Journals (Sweden)

    Rob Brooker

    2015-02-01

    Full Text Available Reviewed: Plant Life of the Dolomites. By Erika Pignatti and Sandro Pignatti. Heidelberg, Germany: Springer, 2014. xxxvii + 769 pp. US$ 209.00, £ 135.00, J 149.95. Also available as an e-book. ISBN 978-3-642-31042-3.

  13. RNA Editing in Plant Mitochondria

    Science.gov (United States)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  14. Project Work on Plant Roots.

    Science.gov (United States)

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  15. Thrips responses to plant odours

    NARCIS (Netherlands)

    Kogel, de W.J.; Koschier, E.H.

    2002-01-01

    Thrips responses to plant odour compounds were assessed using a Y-tube olfactometer. Several compounds were attractive to adult Frankliniella occidentalis females, since the majority walked towards the odour source. Some odours that were attractive for western flower thrips appeared to be non-attrac

  16. Plant macro- and micronutrient minerals

    Science.gov (United States)

    All plants must obtain a number of inorganic mineral elements from their environment to ensure successful growth and development of both vegetative and reproductive tissues. A total of fourteen mineral nutrients are considered to be essential. Several other elements have been shown to have beneficia...

  17. Plant biomass degradation by fungi

    NARCIS (Netherlands)

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the

  18. Basic types of plant layout

    OpenAIRE

    Salas Bacalla, Julio; Docente FII-UNMSM

    2014-01-01

    Basic formats plant layout shown, considering the criteria to be taken into account in each of the formats.  Se muestra los formatos básicos de la distribución de planta, considerando los criterios que se deben tomar en cuenta en cada uno de los formatos.

  19. Water treatment plants assessment at Talkha power plant.

    Science.gov (United States)

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  20. Strip plantings planted in Spring of 1938 : Sand Lake Migratory Waterfowl Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains a record of vegetation planted on Sand Lake NWR in 1938. The date of the planting, the count of each species that was planted, and a survival...

  1. ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS: DEVELOPMENT OF A PLANT KINETIC MODEL

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in plant tissues. This research determined the uptake, translocation, and accumulation of perchlorate in tobacco plants. Three hydroponics growth studies were completed u...

  2. MYCOPOPULATION OF MEDICINAL PLANTS IN CROATIA

    Directory of Open Access Journals (Sweden)

    Karolina Vrandečić

    2011-12-01

    Full Text Available There has not been a systematic research of medicinal plants mycoflora in Croatia. This paper aims to present the results of preliminary research of mycopopulation of 14 species of medicinal plants. Total of 393 plant parts has been examined and 10 genera of fungi were isolated: Penicillium, Aspergillus, Sordaria, Phoma, Cladosporium, Rhizopus, Stemphillium, Fusarium, Phomopsis and one unidentified genus. Penicillium sp. (from 11 of 14 plant species was isolated from the majority of samples. The plants fungi were isolated from did not show any macroscopically visible symptoms of infection, except plant parts of Lavandula x intermedia and Foeniculum vulgare, from which Phomopsis sp. and Fusarium sp. were isolated

  3. Audit of Mound Plant`s reduction in force

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-17

    Objective of this audit was to determine whether the Mound Plant`s Fiscal Year 1992 reduction in force (RIF) was effectively managed and implemented properly by DOE. DOE established policy to encourage contractors to reduce staffing by voluntary separations without unreasonable separation costs. EG&G Mound`s FY 1992 RIF was accomplished by voluntary separations; however, its implementation unreasonably increased costs because DOE did not have adequate criteria or guidelines for evaluating contractors` RIF proposals, and because EG&G Mound furnished inaccurate cost data to DOE evaluators. The unreasonable costs amounted to at least $21 million. Recommendations are made that DOE develop and implement guidelines to impose limitations on voluntary separation allowances, early retirement incentive payments, and inclusion of crucial employee classifications in voluntary RIFs.

  4. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development.

    Science.gov (United States)

    Lawit, Shai J; Wych, Heidi M; Xu, Deping; Kundu, Suman; Tomes, Dwight T

    2010-11-01

    DELLA proteins are nuclear-localized negative regulators of gibberellin signaling found ubiquitously throughout higher plants. Dominant dwarfing mutations of DELLA proteins have been primarily responsible for the dramatic increases in harvest index of the 'green revolution'. Maize contains two genetic loci encoding DELLA proteins, dwarf plant8 (d8) and dwarf plant 9 (d9). The d8 gene and three of its dominant dwarfing alleles have been previously characterized at the molecular level. Almost 20 years after the initial description of the mutant, this investigation represents the first molecular characterization of d9 and its gibberellin-insensitive mutant, D9-1. We have molecularly, subcellularly and phenotypically characterized the gene products of five maize DELLA alleles in transgenic Arabidopsis. In dissecting the molecular differences in D9-1, a critical residue for normal DELLA function has been uncovered, corresponding to E600 of the D9 protein. The gibberellin-insensitive D9-1 was found to produce dwarfing and, notably, earlier flowering in Arabidopsis. Conversely, overexpression of the D9-1 allele delayed flowering in transgenic maize, while overexpression of the d9 allele led to earlier flowering. These results corroborate findings that DELLA proteins are at the crux of many plant developmental pathways and suggest differing mechanisms of flowering time control by DELLAs in maize and Arabidopsis.

  5. Caspases in plants: metacaspase gene family in plant stress responses.

    Science.gov (United States)

    Fagundes, David; Bohn, Bianca; Cabreira, Caroline; Leipelt, Fábio; Dias, Nathalia; Bodanese-Zanettini, Maria H; Cagliari, Alexandro

    2015-11-01

    Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms.

  6. Growing plants on atoll soils

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E L; Migvar, L; Robison, W L

    2000-02-16

    Many years ago people living on atolls depended entirely on foods gathered from the sea and reefs and grown on land. Only a few plants, such as coconut (ni), Pandanus (bob), and arrowroot (mok-mok), could be grown on the lower rainfall atolls, although adequate groundwater conditions also allowed taro (iaraj, kotak, wot) to be cultivated. On higher rainfall atolls, breadfruit (ma) was a major food source, and banana (binana, kepran), lime (laim), and taros (iaraj, kotak, wot) could be grown. The early atoll populations were experts in growing plants that were vital to sustaining their nutrition requirements and to providing materials for thatch, basketry, cordage, canoe construction, flowers, and medicine. They knew which varieties of food plants grew well or poorly on their atolls, how to propagate them, and where on their atoll they grew best. They knew the uses of most native plants and what the various woods were well suited for. Many varieties of Pandanus (bob) and breadfruit (ma) grew well with high rainfall, but only a few produced well on drier atolls. Such information had been passed down through the generations although some of it has been lost in the last century. Today there are new plants and new varieties of existing plants that can be grown on atolls. There are also new materials and information on how to grow both the old and new plants more effectively. However, there are also introduced weeds and pests to control. Today, there is also an acute need to grow more of the useful plants adapted to atolls. Increasing numbers of people living on an atoll without an equal increase in income or food production stretches the available food supplies. Much has been written about the poor conditions for plant growth on atolls. As compared with many places in the world where crops are grown, however, atolls can provide some highly favorable conditions. For instance, the driving force for plant growth is sunlight, and on atolls light is abundant throughout the

  7. Insects as a Nitrogen Source for Plants.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2013-07-31

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  8. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  9. Effects of Plant Density on Forage Nutritive Value of Whole Plant Corn

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-wang; HU Chang-hao; WANG Kong-jun; DONG Shu-ting; LIU Peng

    2004-01-01

    In the field experiment, the effects of plant densities (75000, 112 500 and 150 000 plants ha-1) on forage nutritive value of whole plant corn (WPC) were studied from 1999 to 2001.The results demonstrated that with the increasing of plant density, the forage matter yield per plant corn decreased significantly, while the fresh matter and dry matter per hectare corn increased significantly, and a higher grains yield was gotten at higher plant densities. Forage nutritive quality of whole plant corn was changed as plant density increased, the crude protein (CP), ether extract (EE), crude fiber (CF),nitrogen free extract (NFE) and general energy (GE) yields increased obviously. Increasing plant density reasonably with the application of plant growth regulators could improve plant properties, harvest more forage matter, and enhance forage nutritive value of WPC.

  10. Some Recent Advances in Plant Physiology

    Science.gov (United States)

    Stafford, G. A.

    1972-01-01

    A popular review of plant physiological research, emphasizing those apsects of plant metabolism where there has been a recent shift in emphasis that is not yet reflected in secondary school advanced texts. (AL)

  11. Oils and rubber from arid land plants

    Science.gov (United States)

    Johnson, J. D.; Hinman, C. W.

    1980-05-01

    In this article the economic development potentials of Cucurbita species (buffalo gourd and others), Simmondsia chinensis (jojoba), Euphorbia lathyris (gopher plant), and Parthenium argentatum (guayule) are discussed. All of these plants may become important sources of oils or rubber.

  12. St. Vincent National Wildlife Refuge : Plant Database

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the plant database for St. Vincent National Wildlife Refuge. The database is a compilation of published lists of plants for the refuge as well as site...

  13. Fight plant pests using RNA interference

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ CAS plant physiologists have recently invented a plant-mediated RNA interference (RNAi) technique to effectively and specifically control the gene expression of the cotton bollworm (Helicoverpa armigera) and stunt its growth.

  14. Engineered resistance against fungal plant pathogens

    NARCIS (Netherlands)

    Honée, G.

    1999-01-01

    Development of genetic engineering technology and molecular characterization of plant defense responses have provided strategies for controlling plant diseases additional to those based on chemical control or classical breeding programs. Most of these alternative strategies are based on the overprod

  15. Gramene database: navigating plant comparative genomics resources

    Science.gov (United States)

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  16. Terpenoids in plant signaling, chemical ecology

    NARCIS (Netherlands)

    Kappers, I.F.; Dicke, M.; Bouwmeester, H.J.

    2008-01-01

    Terpenoids constitute the largest class of secondary metabolites in the plant kingdom. Because of their immense structural diversity and the resulting diversity in physiochemical properties, these molecules are particularly important for plant communication with other organisms. In this article, we

  17. Towards an improved European plant germplasm system

    NARCIS (Netherlands)

    Frese, L.; Palmé, A.; Bülow, L.; Kik, C.

    2016-01-01

    This chapter focuses on recommendations addressing the main problems of managing ex situ plant genetic resources in Europe. Information on the plant genetic resources conservation and use problems in Europe are also presented.

  18. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  19. Micro-shock Wave Assisted Plant Transformation

    Science.gov (United States)

    Gnanadhas, Divya Prakash; Datey, Akshay; Chakravortty, Dipshikha; Gopalan, Jagadeesh

    Genetically modified (GM) crops are developed by transforming the desired DNA to plant. There are various methods employed to achieve the required transformation in plants. Agrobacterium mediated transformation and Biolistics or particle bombardment method are the most commonly used methods.

  20. Plant conservation priorities of Xinjiang region, China

    Science.gov (United States)

    Li, L. P.; Cui, W. H.; Wang, T.; Tian, S.; Xing, W. J.; Yin, L. K.; Abdusalih, N.; Jiang, Y. M.

    2017-02-01

    As an important region in the Silk Road, Xinjiang is getting a good chance of developing economy. However at the same time, its natural environment is facing a big challenge. To better protect the plant diversity, it is urgent to make a thorough conservation plan. With a full database of vascular and medicinal plant distributions and nature reserve plant lists and boundaries in Xinjiang of China, we analysed the plant diversity hotspots, protection gaps and proposed the plant conservation priorities of this region. Differed from the widely accepted viewpoints that lots of plants were not included in nature reserves, we found that most of the plants ( > 90%) were actually included in the current nature reserves. We believe that compared with establishing more nature reserves, improving the management of the existing ones is also important. Furthermore, the very few unprotected plants ( < 10%) were distributed mostly in the regions of Aletai, Tacheng, Zhaosu, Manasi, Qitai and Hetian which could be the future conservation priorities.

  1. Walnut Creek National Wildlife 1993 planting strategy

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following is a summary of seed and ecotypes of seed available for planting on WNT, as well as development of planting and subsequent management strategies:

  2. US Forest Service Current Invasive Plants Inventory

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting the most recent measurement of Invasive Plant Infestation polygons collected by the National Invasive Plant Inventory Protocol....

  3. Bacterial Modulation of Plant Ethylene Levels.

    Science.gov (United States)

    Gamalero, Elisa; Glick, Bernard R

    2015-09-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.

  4. TRY - a global database of plant traits

    NARCIS (Netherlands)

    Kattge, J.; Diaz, S.; Lavorel, S.; Prentice, C.; Leadley, P.; Boenisch, G.; Garnier, E.; Westoby, M.; Reich, P. B.; Wright, I. J.; Cornelissen, J. H. C.; Violle, C.; Harrison, S. P.; van Bodegom, P. M.; Reichstein, M.; Enquist, B. J.; Soudzilovskaia, N. A.; Ackerly, D. D.; Anand, M.; Atkin, O.; Bahn, M.; Baker, T. R.; Baldocchi, D.; Bekker, R.; Blanco, C. C.; Blonder, B.; Bond, W. J.; Bradstock, R.; Bunker, D. E.; Casanoves, F.; Cavender-Bares, J.; Chambers, J. Q.; Chapin, F. S.; Chave, J.; Coomes, D.; Cornwell, W. K.; Craine, J. M.; Dobrin, B. H.; Duarte, L.; Durka, W.; Elser, J.; Esser, G.; Estiarte, M.; Fagan, W. F.; Fang, J.; Fernandez-Mendez, F.; Fidelis, A.; Finegan, B.; Flores, O.; Ford, H.; Frank, D.; Freschet, G. T.; Fyllas, N. M.; Gallagher, R. V.; Green, W. A.; Gutierrez, A. G.; Hickler, T.; Higgins, S. I.; Hodgson, J. G.; Jalili, A.; Jansen, S.; Joly, C. A.; Kerkhoff, A. J.; Kirkup, D.; Kitajima, K.; Kleyer, M.; Klotz, S.; Knops, J. M. H.; Kramer, K.; Kuehn, I.; Kurokawa, H.; Laughlin, D.; Lee, T. D.; Leishman, M.; Lens, F.; Lenz, T.; Lewis, S. L.; Lloyd, J.; Llusia, J.; Louault, F.; Ma, S.; Mahecha, M. D.; Manning, P.; Massad, T.; Medlyn, B. E.; Messier, J.; Moles, A. T.; Mueller, S. C.; Nadrowski, K.; Naeem, S.; Niinemets, Ue.; Noellert, S.; Nueske, A.; Ogaya, R.; Oleksyn, J.; Onipchenko, V. G.; Onoda, Y.; Ordonez, J.; Overbeck, G.; Ozinga, W. A.; Patino, S.; Paula, S.; Pausas, J. G.; Penuelas, J.; Phillips, O. L.; Pillar, V.; Poorter, H.; Poorter, L.; Poschlod, P.; Prinzing, A.; Proulx, R.; Rammig, A.; Reinsch, S.; Reu, B.; Sack, L.; Salgado-Negre, B.; Sardans, J.; Shiodera, S.; Shipley, B.; Siefert, A.; Sosinski, E.; Soussana, J. -F.; Swaine, E.; Swenson, N.; Thompson, K.; Thornton, P.; Waldram, M.; Weiher, E.; White, M.; White, S.; Wright, S. J.; Yguel, B.; Zaehle, S.; Zanne, A. E.; Wirth, C.

    2011-01-01

    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs - determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from spe

  5. Metal accumulating plants: Medium's role

    Science.gov (United States)

    Rabier, J.; Prudent, P.; Szymanska, B.; Mevy, J.-P.

    2003-05-01

    To evaluate phytoremediation potentialities by metal accumulation in tolerant plants, trials are carried out using in vitro cultures. Organie compounds influence on metal accumulation is studied with metals supplemented media. The tested compounds on zinc and lead absorption by Brassica juncea, are chelating agents (EDTA, citric acid) and soluble organic fractions of compost. EDTA seems to enhance the transfer of lead in plant but it is the opposite in the case of zinc. Citric acid stimulates root absorption for both zinc and lead. For the aqueous extracts of compost, variable effects are obtained according to the origin of compost (green wastes and food wastes). In'all tested conditions of cultures, zinc is mainly exported towards shoot while lead is stored in root.

  6. Fining Signals for Plant Promoters

    Institute of Scientific and Technical Information of China (English)

    WeimouZheng

    2003-01-01

    The strongest signal of plant promoter is searched with the model of single motif with two types.It turns out that the dominant type is the TATA-box.The other type may be called TATA-less signal,and may be used in gene finders for promoter recognition.While the TATA signals are very close for the monocot and the dicot,their TATA-less signals are significantly different.A general and flexible multi-motif model is also proposed for promoter analysis based on dynamic programming.By extending the Gibbs sampler to the dynamic programming and introducing temperature,an efficient algorithm is developed for searching signals in plant promoters.

  7. The plant ADH gene family.

    Science.gov (United States)

    Strommer, Judith

    2011-04-01

    The structures, evolution and functions of alcohol dehydrogenase gene families and their products have been scrutinized for half a century. Our understanding of the enzyme structure and catalytic activity of plant alcohol dehydrogenase (ADH-P) is based on the vast amount of information available for its animal counterpart. The probable origins of the enzyme from a simple β-coil and eventual emergence from a glutathione-dependent formaldehyde dehydrogenase have been well described. There is compelling evidence that the small ADH gene families found in plants today are the survivors of multiple rounds of gene expansion and contraction. To the probable original function of their products in the terminal reaction of anaerobic fermentation have been added roles in yeast-like aerobic fermentation and the production of characteristic scents that act to attract animals that serve as pollinators or agents of seed dispersal and to protect against herbivores.

  8. Vandregnskab i PlanteInfo

    DEFF Research Database (Denmark)

    Thysen, Iver; Andersen, Mathias Neumann; Plauborg, Finn Lars

    2006-01-01

    Vandingsstyring er i vækstsæsonen en vigtig faktor for driftslederen. Vandregnskab på PlanteInfo er et online program til optimering og styring af bedriftens vanding. Ved hjælp af få inddata om fx marker, jordtype og afgrøde, samt evt. nedbørdata fra bedriften kan en vandingsvejledning udarbejdes....... I PlanteInfo er meteorologiske data til rådighed, og der gives endvidere en prognose for de følgende fem dage. Vandingsplanen kan fås enten via mobiltelefonen eller hjemme ved computeren via internettet. Eventuelle vandinger kan endvidere indtastes via mobiltelefonen. Driftslederen kan således ved...

  9. Nuclear lamina in plant cells

    Institute of Scientific and Technical Information of China (English)

    汪健; 杨澄; 翟中和

    1996-01-01

    By using selective extraction and diethylene glycol distearate (DGD) embedment and embedment-free electron microscopy, the nuclear lamina was demonstrated in carrot and Ginkgo male generative cells. Western blotting revealed that the nuclear lamina was composed of A-type and B-type lamins which contained at least 66-ku and 84-ku or 66-ku and 86-ku polypeptides, respectively. These lamin proteins were localized at the nudear periphery as shown by immunogold-labelling. In situ hybridization for light microscope and electron microscope showed that plant cells have the homologous sequences of animal lamin cDNA. The sorting site of lamin mRNA is mainly distributed in the cytoplasm near the nudear envelope. The data have verified that there indeed exists nudear lamina in plant cells.

  10. RNA silencing movement in plants

    Institute of Scientific and Technical Information of China (English)

    Glykeria Mermigka; Frederic Verret; Kriton Kalantidis

    2016-01-01

    Multicellular organisms, like higher plants, need to coordinate their growth and development and to cope with environmental cues. To achieve this, various signal molecules are transported between neighboring cells and distant organs to control the fate of the recipient cells and organs. RNA silencing produces cell non-autonomous signal molecules that can move over short or long distances leading to the sequence specific silencing of a target gene in a well defined area of cells or throughout the entire plant, respectively. The nature of these signal molecules, the route of silencing spread, and the genes involved in their production, movement and reception are discussed in this review. Additionally, a short section on features of silencing spread in animal models is presented at the end of this review.

  11. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  12. Monitoring of biogas test plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Esbensen, Kim H.

    2011-01-01

    Most studies reported in the literature have investigated near infrared spectroscopy (NIR) in laboratory-scale or minor pilot biogas plants only; practically no other studies have examined the potential for meso-scale/full-scale on-line process monitoring. The focus of this study is on a meso......-scale biogas test plant implementation of process analytical technologies (PAT) to develop multivariate calibration/prediction models for anaerobic digestion (AD) processes. A 150 L bioreactor was fitted with a recurrent loop at which NIR spectroscopy and attendant reference sampling were carried out. In all...... realistic bioreactor scales, it is necessary to obtain a fairly constant level of volatile fatty acid (VFA) concentration, which furthers a stable biogas production. Uncontrolled VFA contents have a significant negative impact on biogas production; VFA concentrations should not exceed 5–6000 mg/L lest...

  13. Antiartherosclerotic Effects of Plant Flavonoids

    Directory of Open Access Journals (Sweden)

    Shamala Salvamani

    2014-01-01

    Full Text Available Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.

  14. Ambient temperature signalling in plants.

    Science.gov (United States)

    Wigge, Philip A

    2013-10-01

    Plants are exposed to daily and seasonal fluctuations in temperature. Within the 'ambient' temperature range (about 12-27°C for Arabidopsis) temperature differences have large effects on plant growth and development, disease resistance pathways and the circadian clock without activating temperature stress pathways. It is this developmental sensing and response to non-stressful temperatures that will be covered in this review. Recent advances have revealed key players in mediating temperature signals. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been shown to be a hub for multiple responses to warmer temperature in Arabidopsis, including flowering and hypocotyl elongation. Changes in chromatin state are involved in transmitting temperature signals to the transcriptome. Determining the precise mechanisms of temperature perception represents an exciting goal for the field.

  15. Monitoring Systems for Hydropower Plants

    Directory of Open Access Journals (Sweden)

    Damaschin Pepa

    2015-07-01

    Full Text Available One of the most important issue in hydro power industry is to determine the necessary degree of automation in order to improve the operation security. Depending upon the complexity of the system (the power plant equipment the automation specialist will build a philosophy of control following some general principals of security and operation. Helped by the modern digital equipment, today is relative easy to design a complete monitoring and supervising system including all the subparts of a hydro aggregate. A series of sensors and transducers specific for each auxiliary installation of the turbine and generator will be provided, together with a PLC or an industrial PC that will run an application software for implementing the security and control algorithms. The purpose of this paper is to offer a general view of these issues, providing a view of designing an automation & control and security system for hydro power plants of small, medium and big power.

  16. Natural products for plant protection

    Directory of Open Access Journals (Sweden)

    Čeković Živorad

    2006-01-01

    Full Text Available The advantage applying natural products, such as a secondary metabolites, in plant protection is shortly presented. Acceptable solutions for the enhanced ecological criteria, which are requested by the users of pesticides and consumers of agricultural goods, could be the replacement of classical pesticides by natural products in plant protection. Some natural products are already in use as insecticides, herbicides and fungicides because new biotechnological processes, fermentation and biotransformations provide procedures for their industrial production. In addition to biotechnical processes natural compounds possessing pesticide activities are also prepared by chemical synthesis. An active secondary metabolite must first be isolated from natural sauces and then, based on biological toxicological and ecological studies, acceptable compounds are selected for laboratory and industrial chemical synthesis. Several compounds possessing insecticidal, herbicidal and fungicidal activities, which have been successfully applied for plan protection are presented.

  17. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  18. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  19. Design quality assurance for plant modifications

    Energy Technology Data Exchange (ETDEWEB)

    Ankrum, G.T.; Norkin, D.P.; Architzel, R.

    1985-11-01

    The US Nuclear Regulatory Commission's Office of Inspection and Enforcement has conducted direct inspections of the technical aspects of the nuclear plant design process for several plants under construction. It has also evaluated independent design verification programs and engineering assurance programs at a number of other plants under construction. Many of the lessons learned from these construction phase efforts are directly applicable to operating plants undergoing major modifications.

  20. Measuring wage effects of plant size

    DEFF Research Database (Denmark)

    Albæk, Karsten; Arai, Mahmood; Asplund, Rita

    1998-01-01

    There are large plant size–wage effects in the Nordic countries after taking into account individual and job characteristics as well as systematical sorting of the workers into various plant-sizes. The plant size–wage elasticities we obtain are, in contrast to other dimensions of the wage distrib......–wage elasticity. Our results indicate that using size–class midpoints yields essentially the same results as using exact measures of plant size...