WorldWideScience

Sample records for bohunice a-2 reactor

  1. Modernization and safety improvement project of the NPP V-2 Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Michal, V.; Losonsky, B.; Magdolen, J.

    2000-01-01

    This contribution deals with the form, present state, and results of the Nuclear Power Plants Research Institute (the Slovak acronym is VUJE - Vyskumny Ustav Jadrovych Elektrarni) participation in the NPP V-2 Jaslovske Bohunice Modernization and Safety Improvement Project. A short description of VUJE history, activity, and results is also presented as well as NPPs Jaslovske Bohunice characterization. VUJE was established in 1977 and deals with scientific and research needs of nuclear power plants, such as design, construction, commissioning and operation. The next fields of VUJE activity are, NPP reconstruction, NPP personnel training, radioactive waste management technology, and NPP decommissioning. The nuclear power plant, Jaslovske Bohunice, is situated approximately 15 km from the district town of Trnava in the southwestern region of the Slovak Republic. The construction of the first Czechoslovak NPP A-1 began on this site in 1957 .The construction of the double-unit NPP V-1 with WWER-440 (type V-230) reactor began in 1972. The first unit of NPP V-1 began operation in 1978 and the second in 1980. NPPs construction on the Bohunice site continued with NPP V-2, which has two units with WWER-440 (type V-213) reactors. Unit 1 and Unit 2 of NPP V-2 were commissioned in 1984 and 1985, respectively. Slovak electric utility Slovenske elektrarne (SE) is the owner/commissioner of NPP V-2. This NPP is responsible for more than 20% of the total electrical energy production of SE, making it an essential supporter of the Slovak economy. (authors)

  2. Bohunice V-1 and V-2 approach for achieving high availability, reliability and safety

    International Nuclear Information System (INIS)

    Lipar, M.; Kerak, J.; Rohar, S.

    1998-01-01

    Long term operating experience of Bohunice units maintenance activities are overviewed in the paper. Based on common experience of WWER NPP operators, separate maintenance department was established at Bohunice NPP in very early stage of plant operation. Maintenance management, maintenance planning, outage management, diagnostics and monitoring, inspection technologies and backfitting activities are described particularly to demonstrate the capability of Bohunice maintenance department for most complex repairs and maintenance works of nuclear power plant components and equipment, including reactor and turbine itself. (author)

  3. Reuse of discharged fuel in Bohunice-1,2 units

    International Nuclear Information System (INIS)

    Chrapciak, V.; Majercik, J.; Kacmar, M.

    2003-01-01

    During the reconstruction of Bohunice-1,2 units (1997 - 2001), their cycle lengths dropped to very short values. Because of 4-year limit to fuel residence time, refuelling with fresh 2.4 % enriched assemblies seemed to be a solution of the problem. The paper describes the implementation of a final decision to reuse 3.6 % enriched fuel discharged after 3-year irradiation in previous cycles. This decision led to a large-scale moving of discharged assemblies from spent fuel pools back to reactors (Authors)

  4. Operation diagnostics of the reactor coolant pumps in the Jaslovske Bohunice nuclear power plant, CSSR

    International Nuclear Information System (INIS)

    Bahna, J.; Jaros, I.; Oksa, G.

    1990-01-01

    The state of the art of the materials basis, the diagnostics methods used, organization of data collection and processing, and some results of routine and specific investigations concerned with diagnosis of the reactor coolant pump in the Jaslovske Bohunice NPP V-1 are presented. Some information is given about the reactor coolant pump monitor developed in the VUJE. (author)

  5. Lifetime evaluation of Bohunice NPP components

    International Nuclear Information System (INIS)

    Kupca, L.

    2001-01-01

    The paper discuss some aspects of the main primary components lifetime evaluation program in Bohunice NPP which is performed by Nuclear Power Plant Research Institute (NPPRI) Trnava in cooperation with Bohunice and other organizations involved. Facts presented here are based on the NPPRI research report which is regularly issued after each reactor fuel campaign under conditions of project resulted from the contract between NPPRI and Bohunice NPP. For the calculations, there has been used some computer codes adapted (or made) by NPPRI and the results are just the conclusive and very brief, presented here in Tables (Figures). (authors)

  6. Thirtieth anniversary of reactor accident in A-1 Nuclear Power Plant Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Kuruc, J.; Matel, L.

    2007-01-01

    The facts about reactor accidents in A-1 Nuclear Power Plant Jaslovske Bohunice, Slovakia are presented. There was the reactor KS150 (HWGCR) cooled with carbon dioxide and moderated with heavy water. A-1 NPP was commissioned on December 25, 1972. The first reactor accident happened on January 5, 1976 during fuel loading. This accident has not been evaluated according to the INES scale up to the present time. The second serious accident in A-1 NPP occurred on February 22, 1977 also during fuel loading. This INES level 4 of reactor accident resulted in damaged fuel integrity with extensive corrosion damage of fuel cladding and release of radioactivity into the plant area. The A-1 NPP was consecutively shut down and is being decommissioned in the present time. Both reactor accidents are described briefly. Some radioecological and radiobiological consequences of accidents and contamination of area of A-1 NPP as well as of Manivier Canal and Dudvah River as result of flooding during the decommissioning are presented (authors)

  7. Safety improvement programme of WWER 440/230 units in Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Tomek, J.

    2000-01-01

    A brief overview is given of the power sources in Slovakia which include 6 operational reactor units (4 at Jaslovske Bohunice and 2 at Mochovce) and 2 units under construction (at Mochovce). The efforts undertaken in the past 10 years and aimed at upgrading the nuclear safety of the two older (V-230 Soviet type) units at Bohunice are highlighted. The relevant regulatory decisions are dealt with and the measures already carried out are listed. Also characterized are several IAEA international safety assessment missions and safety-aimed meetings which took place in 1998 and 1999 and are of concern to the older Bohunice units. (A.K.)

  8. Backfitting of Nuclear Power Plant Bohunice V1 in Slovakia

    International Nuclear Information System (INIS)

    Ferenc, M.

    1999-01-01

    Nuclear power plants in the Slovak Republic generate almost 55 % of electricity. The operating organization and the Nuclear Regulatory Authority of the Slovak Republic pay a great attention to safe and reliable operation of four units with VVER 440 reactors at Bohunices site and one in Mochovce side. Engineering and design organizations in cooperation with well known international companies prepare evaluation of safety conditions, safety analyses and projects for the implementation of modifications to upgrade the nuclear safety of the units in operation. A gradual safety upgrading (reconstruction) of the V-1 Bohunice plant has been in progress, a modernization of the V-2 Bohunice plant is being prepared. Simultaneously the commissioning of Unit 2 at the Mochovce plant is being implemented.(author)

  9. Bohunice Nuclear Power Plant Safety Upgrading Program

    International Nuclear Information System (INIS)

    Toth, A.; Fagula, L.

    1996-01-01

    Bohunice nuclear Power Plant generation represents almost 50% of the Slovak republic electric power production. Due to such high level of commitment to nuclear power in the power generation system, a special attention is given to safe and reliable operation of NPPs. Safety upgrading and operational reliability improvement of Bohunice V-1 NPP was carried out by the Bohunice staff continuously since the plant commissioning. In the 1990 - 1993 period extensive projects were realised. As a result of 'Small Reconstruction of the Bohunice V-1 NPP', the standards of both the nuclear safety and operational reliability have been significantly improved. The implementation of another modifications that will take place gradually during extended refuelling outages and overhauls in the course of 1996 through 1999, is referred to as the Gradual Reconstruction of the Bohunice V-1 Plant. The general goal of the V-1 NPP safety upgrading is the achievement of internationally acceptable level of nuclear safety. Extensive and financially demanding modification process of Bohunice V-2 NPP is likely to be implemented after a completion of the Gradual Reconstruction of the Bohunice V-1 NPP, since the year 1999. With this in mind, a first draft of the strategy of the Bohunice V-2 NPP upgrading program based on Probabilistic Safety assessment consideration was developed. A number of actions with a general effect on Bohunice site safety is evident. All these activities are aimed at reaching the essential objective of Bohunice NPP Management - to ensure a safe, reliable and effective electric energy and heat generation at the Bohunice site. (author)

  10. The Modernization Program and Power Up-rate at NPP V2 Jaslovske Bohunice, Slovak Republic

    International Nuclear Information System (INIS)

    Reznik, Vladivoj; Krajmer, Imrich

    2010-01-01

    Slovenske Elektrarne, a.s. is a second largest utility company in the Central and Eastern Europe that owns an optimal production portfolio comprised of nuclear, thermal and hydroelectric power plants. There are two nuclear power plants Bohunice and Mochovce both operate with two units and another two units Mochovce 3 and 4 are currently under construction. Electricity at Nuclear power plant Bohunice V2 is generated by two 440 MW units that had gradually been connected to the power network over the period between 1984 and 1985. In the construction of the nuclear power plant V2 the concept of pressurized water reactors was adopted and the Soviet-era design WWER 440 used. The upgrading of Nuclear Power Plant Bohunice V2 is based on three main points: Modernization, Power up-rate, and Ageing monitoring program. The main targets of the modernization project were: Increasing of the Nuclear Safety and of the Nuclear operational reliability, and Seismic improvement. This modernization program is in full compliance with IAEA requirements and with the decisions from the Nuclear Regulatory Agency of the Slovak Republic (UJD) and achievement of the probabilistic safety criteria in accordance with IAEA recommendations. Except that is ensured a safe, reliable, economical and effective electricity and heat generation. Achieved results are based for further prolongation of the operation life time up to 60 years. (authors)

  11. Commissioning tests at Bohunice NPP V1 unit 2 after reconstruction in 1998

    International Nuclear Information System (INIS)

    Pajtinka, A.; Tvaroska, V.; Wiening, K.-H.; Mueller, B.

    2000-01-01

    The last and the most extensive stage in the reconstruction project of the Bohunice NPP started in July 1998. The main activities performed during a 6-month scheduled unit 2 outage included: - Installation of a new emergency core cooling system with an increased capacity according to the defined broader break spectrum for LOCA; - Reconstruction of the existing confinement spray system and installation of a new confinement pressure suppression system; - Completion of upgrading measures to increase the reliability of emergency power supply systems (replacement of low voltage switchgear, installation of new cabling for all loads important to safety, installation of new motor-generators and rectifier sets); - Connection to the plant and commissioning of the new reactor protection system. Comprehensive tests and checks performed on completion of installation work on the modified mechanical, electrical and I and C systems were important reasons for the absence of major problems during restart of the unit after the several project implementation phases. Operating experience at unit 2 since its recommissioning in January 1999 has confirmed that the required safety standards have been met and that operational reliability has been substantially increased at the sometime. Periodic testing is being performed in accordance with the limits and conditions for safe operation of Bohunice NPP. To date all these tests were completed without significant problems. The functions implemented in the new technology met the test program criteria, which were approved with authority, in all essential areas. Through the close cooperation of the partners involved and through the combined efforts of the various engineering and operating disciplines, technical and scheduling problems could be immediately identified and quickly resolved. In general, these kinds of projects require optimum cooperation among the parties involved. Modernization of the NPP Bohunice V1 unit 2 has shown, that all

  12. Experience from replacement and check of thermocouples during reconstruction of in-reactor temperature measurements at Bohunice V-1 units 1 and 2

    International Nuclear Information System (INIS)

    Slanina, M.; Stanc, J.

    2001-01-01

    Replacement of thermocouples in the protection tube blocks was a key phase of the reconstruction of in-reactor temperature measurements at Bohunice V-1 with regard to the success, reliability and impact on safety of unit operation. The replacement consisted of reliable and safe withdrawal of 216 old thermocouples, their disposal and installation of new thermocouples into dry channels. In the material presented, this phase of reconstruction is described in details, with focus on the evaluation of replacement quality and check activities carried out at the new installed thermocouples. (Authors)

  13. Information about environmental effects of Bohunice NPPs V-1 and V-2 within February 2002

    International Nuclear Information System (INIS)

    2002-01-01

    In this leaflet the results of monitoring of chemical gaseous and liquid effluents into the rivers Vah and Dudvah as well as of radiation monitoring of Bohunice V-1 and V-2 NPPs are presented. The radioactive effluents within a February 2002 (for NPP V-1 and NPP V-2, respectively) were: 0.571 TBq and 0.664 TBq of rare gases, 0.711 MBq and 0.244 MBq of aero-soles, 2.121 MBq and 0.138 MBq of iodine, 2.022 MBq and 0.564 MBq of corrosive and fission products, and 1.420 TBq and 1.643 TBq of tritium. For the period January - February 2002 these radioactive effluents represent for rare gases 1.286 TBq for NPP V-1 and 1.475 TBq for NPP V-2 (2.761 TBq (0.069% of annually limit (AL) for the locality Bohunice), for aerosols 2.645 MBq for NPP V-1 and 0.542 MBq for NPP V-2 (3.187 MBq (0.002% of AL for the locality Bohunice), for corrosive and fission products 3.848 MBq for NPP V-1 and 1.510 MBq for NPP V-2 (5.358 MBq (0.01% of AL) for the locality Bohunice), and for iodine 2.616 MBq for NPP V-1 and 0.279 MBq (2.894 MBq (0.002% of AL) for the locality Bohunice), and for tritium it is 2.395 TBq for NPP V-1 and 3.532 TBq for NPP V-2 (5.358 TBq (13.56% of AL) for the locality Bohunice

  14. Main features of buildings and structures important to safety of units V1 and V2 of Bohunice NPP

    International Nuclear Information System (INIS)

    David, M.

    1993-01-01

    The program of seismic upgrading of Bohunice NPPs has been started in the year 1989 (after finishing of new seismic input). Since that time the seismic upgrading of Main building of NPP V1 has already been realized, structural as well as technological parts. Beside that the designs of seismic upgrading of other structures of NPP V1 and V2 have been completed. It has been proved that the seismic upgrading of NPPs with reactors WWER 440 is very complicated, but still possible, even in the case with high seismic intensity. It would be not possible to fulfill this complicated task without the help of IAEA Missions. The activities of IAEA experts in the program of Bohunice NPPs upgrading are appreciated very much

  15. Design of fuel loading for Bohunice V-1 Unit 2 reaktor for fuel cycle No.19

    International Nuclear Information System (INIS)

    Majercik, J.

    1998-01-01

    The report contains description of the design of fuel loading for the fuel cycle No. 19 in the V-1 Bohunice Unit 2 reactor. Input data and computer codes used for the development of the design are shown. The fuel loading is characterized by the assortment of the fuel loaded and by the scheme of re shuffling of assemblies in the core. An evaluation of basic neutronic core parameters as relates to the compliance with safety criteria is a part of the report as well

  16. Optimization of radiation protection at Bohunice NPP

    International Nuclear Information System (INIS)

    Dobis, L.; Svitek, J.

    2003-01-01

    Bohunice Nuclear Power Plant is situated in south - western part of Slovakia about 50 km away from Bratislava. There are four PWR reactors 440 MW e each - two units with reactors WWER - 230 (V1 NPP) and two units with WWER - 213 (V2 NPP). requirements for the optimization process are given in the mentioned Code No.12 of Ministry of Health. Code 12 stipulates the technical and organizational requirements for proving the Rational Achievable Level (RAL) of radiation protection. This level can be proved by means of the comparison of the dose distribution to the costs of protection. An example of two figures of dose constraints is: collective dose 20 man mSv for the specific task; individual exposure 1 mSv per day. The values of the financial equivalents of personal exposure - so called the alpha coefficients - are used for the calculation of the benefit of proposed measures. Impact of legislative changes into Bohunice NPP and optimization process are presented. Apparently the new law and the associate code created a base of transparent and understandable policy of radiation protection and optimization in Slovak Republic. The radiation protection legislative was implemented into the praxis and persons became familiar with it. Defining clear and unambiguous terms facilitated the communication between users and the regulatory body - State Health Institute. Optimization was generally accepted by the workers and managers and began to be a part of safety culture of operation at nuclear power plants. (authors)

  17. Bohunice V1 NPP upgrading programme

    International Nuclear Information System (INIS)

    Kerak, J.

    2001-01-01

    The paper describes whole process of Bohunice V1 NPP nuclear safety and operational reliability level increase which has been performed since units commissioning (1. unit in 1978, 2. unit in 1980), continued Small Reconstruction (1991 -1993) and finished Gradual Upgrading(1994 -2000). The main purpose is to last stage -Gradual upgrading of Bohunice V1 NPP. (author)

  18. Bohunice V-1. Review of safety upgrading and operating experiences

    International Nuclear Information System (INIS)

    Korec, J.; Kuschel, D.

    2000-01-01

    The Bohunice site in the Slovak Republic has two Russian-designed twin-unit nuclear power plants, one equipped with reactors of the WWER 440/230 type, the other with type WWER 440/213 reactors. Two older units (V-1) started commercial operation in late 1978 and 1980 respectively and have been supplying electricity to the national grid since that time without any events that could have degraded plant safety level. In the period prior to 1990 the utility Slovenske Elektrarne (S.E.) performed extensive modifications and upgrades to the original design of the two older units V-1 NPP. Furthermore, significant steps in safety improvement for Bohunice NPP V-1 have been made since 1990. Following the political restructuring of the former Czechoslovakia and the country's new open-door policy towards western organizations, several international expert missions were focused on evaluation of Bohunice NPP safety status level and operational reliability, particularly targeting the two older units. Based on recommendations of individual expert missions and complementary deterministic and probabilistic safety analyses performed by S.E., the Czechoslovak Nuclear Regulatory Authority issued the Resolution No. 5/91 defining 81 measures concerning further safety and reliability improvement of Bohunice V1 .A range of short-term and long-term upgrades was prioritised in terms of importance to plant safety and work to implement these measures commenced in the early nineties. During the 'Small Reconstruction' from 1991 to 1993 some of the short term upgrading measures were realized to eliminate the most serious safety deficits, thus to achieve a significant reduction in core damage frequency and a major improvement in confinement integrity. In this paper and presentation the goals of the gradual reconstruction project, basic engineering, detailed engineering and realization, last major stage of Unit 2 upgrade, as well as final stage of Unit 1 upgrade in early 2000 are presented

  19. Slovak power stations, Nuclear power plants Jaslovske Bohunice. (Annual report 1997)

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Foreword by the director of Bohunice NPPs; (2) Management of Bohunice NPPs Subsidiary Plant; (3) The most significant events of the year 1997; (4) Electricity and heat production; (5) Safety; (6) Bohunice NPPs operation impact on environment; (7) The V-1 NPP and V-2 NPP upgrading; (8) Maintenance; (9) Capital construction; (10) Economic balance; (11) International co-operation; (12) Human sources; (12) Public relations

  20. Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovakia

    International Nuclear Information System (INIS)

    Povinec, P.P.; Chudy, M.; Sivo, A.; Simon, J.; Holy, K.; Richtarikova, M.

    2009-01-01

    Radiocarbon variations in the atmospheric CO 2 with attenuating amplitudes and decreasing mean values with typical maxima in summer and minima in winter have been observed since 1967 in two localities of Slovakia, in Bratislava and Zlkovce, situated about 60 km NE from Bratislava, only 5 km from the Bohunice Nuclear Power Plant (NPP). The 14 C record in Bratislava has been influenced mainly by fossil CO 2 emissions, in contrast to the Zlkovce record which has been more variable, as it has clearly been affected by operation of the Bohunice NPP. However, during specific meteorological conditions with NE transport of air masses to Bratislava, the effect of the Bohunice NPP has been visible in Bratislava as well. Maximum 14 C concentrations (up to 120% above a natural background) were observed around A1 NPP which used CO 2 with admixture of air as a cooling agent. The 14 C concentrations around four pressurized light water reactors were up to 30% above the background. The Δ 14 C values in the heavily polluted atmosphere of Bratislava were up to 10% and at Zlkovce up to 5% lower than the European clean air represented by the Jungfraujoch Δ 14 C data. Later the Δ 14 C values were similar at both sites, and from 2003 they were close to the European clean air levels. The observed Δ 14 C behaviour in the atmosphere provides a unique evidence of decreased fossil fuel CO 2 emissions in the region, as well as the long-term effect of the Bohunice NPP on the Bratislava and Zlkovce stations. The estimated annual radiation doses to the local public due to digestion of radiocarbon contaminated food have been estimated to be around 3 μSv

  1. Safety upgrading of Bohunice V1 NPP

    International Nuclear Information System (INIS)

    2001-01-01

    This CD is multimedia presentation of programme safety upgrading of Bohunice V1 NPP. It consist of next chapters: (1) Introductory speeches; (2) Nuclear power plant WWER 440; (3) Safety improvement; (4) Bohunice Nuclear power plants subsidiary; (5) Siemens; (6) REKON; (7) VUJE Trnava, Inc. - Engineering, Design and Research Organisation; (8) Album

  2. Experience of Bohunice V-1 NPP

    International Nuclear Information System (INIS)

    Dobik, Dobroslav

    2000-01-01

    Slovakia remains significantly dependent on imports of primary energy sources, which represent as much as 80% of the demand. Of the total consumption of electricity in Slovakia, 40% was generated in nuclear power plant units in 1998. Slovakia operates 6 units with WWER 440 nuclear reactors. Slovakia is the signatory of all important international agreements and conventions in the field of nuclear energy, and its legislation is in an advanced stage of approximation to European Union law. This is a very important aspect, showing Slovakia's approach to nuclear safety. In 1993 Slovakia accepted the commitments of the UN Convention on Climate Changes, including a reduction of greenhouse gases to 1990 levels by the year 2000. Moreover, as an internal target Slovakia has set the reaching of the 'Toronto Objective', i.e. 20% reduction in CO x , emissions through the year 2005 as compared to 1988. In our opinion, this is not possible without nuclear energy. Time has shown, that the political aspects are more powerful, especially if you underestimate their importance over the than the technical ones. In the case of Bohunice V-1 NPP the political aspects were on the following levels: 1. Slovak republic (Czechoslovakia), political changes, decisions of the government; 2. European Union - Agenda 2000, Accession criteria, nuclear safety criteria, EBRD; 3. Austria as a neighbouring country. Starting with year 1990, 23 expert missions took place at Bohunice V-1 NPP by now. The only criteria for further operation should have been Nuclear safety, which is supervised by NRA SR. It was fully in compliance with EU policy, each country is solely responsible for its energy sector and for nuclear energy use. Our satisfaction lasted not too long. Following negotiation with EU on the highest political level, driven by willingness to be invited for negotiation of accession on the Helsinki Summit, the Slovak government decided on September 14th, on Bohunice V-1 Units shutdown in 2006 and 2008

  3. District heating by the Bohunice nuclear power plant

    International Nuclear Information System (INIS)

    Metke, E.; Skvarka, P.

    1984-01-01

    Technical and economical aspects of district heating by the electricity generating nuclear plants in Czechoslovakia are discussed. As a first stage of the project, 240 MW thermal power will be supplied using bleeding lines steam from the B-2 nuclear power plant at Jaslovske Bohunice to heat up water at a central station to 130 grad C. The maximal thermal power that can be produced for district heating by WWER type reactors with regular condensation turbines is estimated to be: 465 MW for a WWER-440 reactor with two 220 MWe turbines and 950 MW for a WWER-1000 reactor with a Skoda made 1000 MWe turbine using a three-stage scheme to heat up water from 60 grad C to 150 grad C. The use of satelite heating turbines connected to the steam collector is expected to improve the efficiency. District heating needs will de taken into account for siting of the new power plants

  4. Bituminization plant Jaslovske Bohunice

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the principle of the bituminization plant for radioactive concentrate (the intermediate liquid radioactive waste generated during the NPP A1, V-1, V-2 operations) solidification used in the Bohunice Radwaste Treatment Centre (BSC RAO) is presented

  5. REKO - Bohunice V-1. Experience with instrumentation and control system

    International Nuclear Information System (INIS)

    Arbet, L.; Ziska, D.; Golan, P.; Karaba, P.; Krupa, S.; Wiening, K.-H.

    2000-01-01

    In this paper and in presentation some results of upgrading of the NPP Bohunice V-1 are presented. For the first time, extensive upgrades are performed in all safety-related areas of both units with VVER 440/230 reactors. These upgrades focused on: - Expansion and upgrading of the process safety systems; - Replacement of the safety I and C system with a TELEPERM XS-based system; - Spatial separation of safety equipment; - Modernisation of the electrical auxiliary power systems; - Seismic upgrading and fire protection; - Improvement of the man-machine interface. This upgrade is considered exemplary around the world. The most extensive stage of gradual reconstruction of Unit 2 was completed according to the schedule in January 1999. For the first time, a reactor which incorporates state-of-the-art digital I and C in its reactor protection system is on-line. (author)

  6. ESTE EMO and ESTE EBO - emergency response system for NPP Mochovce and NPP Bohunice V-2

    International Nuclear Information System (INIS)

    Caeny, P.; Chyly, M.; Suchon, D.; Smejkalova, E.; Fabova, V.; Mancikova, M.; Muller, P.

    2009-01-01

    Programs ESTE EMO and ESTE EBO are emergency response systems that help the crisis staff of the NPP in assessing the source term (predicted possible release of radionuclides to the atmosphere ), in assessing the urgent protective measures and sectors under threat, in assessing real release (symptoms of release really detected and observed), in calculating radiological impacts of real release, averted or avertable doses, potential doses and doses during transport or evacuation on specified routes. Both systems serve as instruments in case of severe accident (DBA or BDBA) at NPP Mochovce or NPP Bohunice, accidents with threat of release of radioactivity to the atmosphere. Systems are implemented at emergency centre of Mochovce NPP and Bohunice NPP and connected online to the sources of technological and radiological data from the reactor, primary circuit, confinement, secondary circuit, ventilation stack, from the area of NPP (TDS 1) and from the emergency planning zone (TDS 11). Systems are connected online to the sources of meteorological data, too. (authors)

  7. ESTE EMO and ESTE EBO - emergency response system for NPP Mochovce and NPP Bohunice V-2

    International Nuclear Information System (INIS)

    Caeny, P.; Chyly, M.; Suchon, D.; Smejkalova, E.; Fabova, V.; Mancikova, M.; Muller, P.

    2008-01-01

    Programs ESTE EMO and ESTE EBO are emergency response systems that help the crisis staff of the NPP in assessing the source term (predicted possible release of radionuclides to the atmosphere ), in assessing the urgent protective measures and sectors under threat, in assessing real release (symptoms of release really detected and observed), in calculating radiological impacts of real release, averted or avertable doses, potential doses and doses during transport or evacuation on specified routes. Both systems serve as instruments in case of severe accident (DBA or BDBA) at NPP Mochovce or NPP Bohunice, accidents with threat of release of radioactivity to the atmosphere. Systems are implemented at emergency centre of Mochovce NPP and Bohunice NPP and connected online to the sources of technological and radiological data from the reactor, primary circuit, confinement, secondary circuit, ventilation stack, from the area of NPP (TDS 1) and from the emergency planning zone (TDS 11). Systems are connected online to the sources of meteorological data, too. (authors)

  8. Radiation protection in Bohunice NPP. Description of present status

    International Nuclear Information System (INIS)

    Dobis, L.

    2001-01-01

    Radiation protection (RP) at Bohunice NPP has reached the high international standard. The fact was approved by several independent international missions (OSART , WANO, WENRA, ...). A lot of modifications have been done in order to improve the standard of radiation protection. All the BSS requirements have been implemented into the plant regulations before the State Law No 290/1996 and 470/2000 came into the force. Internal audits are regularly performed at NPP in order to reveal potential deficiencies. In 2001 there were 4 such audits focused on quality assurance, software operation, LBB concept and limits and condition of safe operation. State Health Institute, the regulatory body in the radiation protection, performs the inspection at least ones a month. Good relationship with the inspectors of State Health Institute also contributes to the safe operation of the NPP. There were not any radiation accident. All anomalies or radiation events are investigated at a plant level. The results of root cause analysis and proposal of corrective actions are provided to IAEA and WANO databases for the distribution. The Radiation protection department of Bohunice NPP cooperates with the other Czech and Slovak NPPs. Regular meetings on radiation protection and lately also on emergency preparedness are organized. The cooperation is excellent. Occupational exposure is reviewed also with respect of ISOE data. Bohunice NPP (even with high dose burden caused by reconstruction of V1 NPP) can be found in the first half of world PWR speaking about the collective exposure per reactor. V2 NPP itself reaches the lowest collective exposure in the world. All doses are below the limits and kept ALARA. ALARA system has been established already in 1997 at Bohunice NPP and its results are obvious for example looking at dose results during the reconstruction works at V1 NPP. The operation of Bohunice NPP has negligible influence to its surroundings. The values of gas and liquid effluents move

  9. Primary system hydraulic characteristics after modification of reactor coolant pumps' impeller wheels at Bohunice NPP executed in 2012 and 2013

    International Nuclear Information System (INIS)

    Hermansky, Jozef; Zavodsky, Martin

    2014-01-01

    A coolant flow through the reactor is usually determined after annual outages at Slovak NPP (VVER 440) in two distinct ways. First method is determination on the basis of the secondary system parameters - measurement of thermal balances. The value achieved by this method is used as the input parameter in the Table of allowed reactor operation modes. The second method draws from the primary system parameters - measurement of primary system hydraulic characteristics. Flow nozzles used for the measurement of feed water flow behind high pressure heaters were replaced at both Bohunice Units during outages in 2008. The feed water flow behind high pressure heaters is one of the main parameters used for the determination of coolant flow through the reactor by the first method. Compared to the measurement executed during previous fuel cycles, the calculated coolant flow through the reactor decreased considerably after the change of flow nozzles. The imaginary change of coolant flow through the reactor at Unit 3 was -1,6 %; and at Unit 4 -2,6 %. This change was not proved by the parallel measurement of primary system hydraulic characteristics. Later it was found out that the original flow nozzles used for 25 years were substantially deposited (original inner diameter of the nozzles was reduced by about 0,6-0,9 mm). Therefore feed water flow measurement was untrustworthy within the recent years. On the findings stated above, Bohunice NPP has decided to increase coolant flow through the reactor by changing the reactor coolant pumps impeller wheels. The modification of impellers wheels is planned within years 2012 to 2014. During the outages in 2013 two impeller wheels were replaced at both units. Nowadays Unit 4 is operated with all 6 new impeller wheels and Unit 3 with four new impeller wheels. Modification of last two impeller wheels at Unit 3 will be performed during the outage in 2014. On account of impeller wheels modification, non-standard measurement of PS hydraulic

  10. Safety enhancement in NPP Bohunice

    International Nuclear Information System (INIS)

    Lipar, M.; Mihalik, M.

    1997-01-01

    The upgrading and safety enhancement of both the Bohunice V-1 and V-2 reactors is described in detail. The total estimated cost of the gradual reconstruction of these two units during 1996 to 1999 is 180 mil. US dollars. For the 1995 to 1997 period, the actions common for both units include a quality assurance programme, a personnel training programme, installation of a multifunction simulator, implementation of symptom-oriented operation procedures, installation of diagnostic systems, of a site security system, and of a teledosimetric system. At present, the main maintenance tasks are: to carry out major repair of units, to remedy service interruptions, to enhance equipment service availability, to enhance the technical level of corrective actions at equipment. Investment into maintenance level upgrade has grown from 7.5 mil. Slovak crowns in 1994 to estimated 32 mil. in 2000. The partners of international cooperation are mentioned. (M.D.)

  11. Results of physics start-up tests of Mochovce and Bohunice units with 2-nd generation Gd fuel (average enrichment 4.87 %)

    International Nuclear Information System (INIS)

    Polakovic, F.

    2015-01-01

    There are presented main features of the fuel and the list of experimental neutron-physical characteristics measured during physics start-up tests.All together there were carried out 14 physics start-ups at Bohunice and Mochovce Units with the new type of fuel. Differences between theoretical and experimental neutron-physical characteristics were statistically processed and compared with the tests acceptance criteria. There are summarized results of reactor physics start-ups with 2-nd generation Gd fuel usage [ru

  12. Risk-informed decision making during Bohunice NPP safety upgrading

    International Nuclear Information System (INIS)

    Lipar, M.; Muzikova, E.; Kubanyi, J.

    2001-01-01

    The paper summarizes some facts of risk-informed regulation developments within UJD regulatory environment. Based on national as well as international operating experience and indications resulted from PSA, Nuclear Regulatory Authority of the Slovak Republic (UJD) since its constituting in 1993 has devoted an effort to use PSA technology to support the regulatory policy in Slovakia. The PSA is considered a complement, not a substitute, to the deterministic approach. Suchlike integrated approach is used in decision making processes and the final decision on scope and priorities is based on it. The paper outlines risk insights used in the decision making process concerning Bohunice NPP safety upgrading and focuses on the role of PSA results in Gradual Reconstruction of Bohunice VI NPP. Besides, two other examples of the PSA results application to the decision making process are provided: the assessment of proposal of modifications to the main power supply diagram (incorporation of generator switches) and the assessment of licensee request for motor generator AOT (Allowable Outage Time) extension. As an example of improving support of Bohunice V-2 risk-informed operations, concept of AOT calculations and Bohunice V-2 Risk Monitor Project are briefly described. (author)

  13. Preliminary results of scoop samples analysis from reactor pressure vessels of Bohunice V-1 NPP

    International Nuclear Information System (INIS)

    Kupca, L.

    1997-01-01

    In the paper are presented the main goals and results from the scoop specimen analysis performed on the both RPVs WWER-440/230 in Jaslovske Bohunice V-1 NPPs. Main tasks of this complex activity were: model experiments for analysis procedures optimisation; chemical analysis; hardness measurements on the RPV and bulk samples; microstructure analysis; scanning electron microscope and microprobe analysis; gamma spectrometry; brittle fracture temperature evaluation; trends of brittle fracture temperature growth after annealing procedure. In conclusions and recommendations are discussed the planned activities in the field of both RPVs integrity evaluation for the future operation of the NPP Jaslovske Bohunice V-1. (author)

  14. The results of the surveillance specimen program performed in the RPVs NPP V-2 in Jaslovske Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L; Beno, P [Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia); Cepeek, S [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia); Tomasich, M [Slovak Nuclear Society, Bratislava (Slovakia)

    1994-12-31

    After a description of the mechanical and chemical characteristics of the materials (steels, welded joints) used in the pressure vessels of the WWER-440 V-213 type, the present status of the Bohunice NPP Unit 3 and 4 pressure vessel embrittlement assessment programme is presented: neutron flux monitoring and calculations, detector accuracy, irradiation temperature monitoring, reactor core fuel loading calculation, materials, number and types of surveillance specimens, specimen testing. Results are given for 5 years of irradiation: mechanical properties, transition temperatures, lifetime evaluation. 4 refs., 13 figs., 6 tabs.

  15. Internal communication at Bohunice NPPs

    International Nuclear Information System (INIS)

    Dobdk, Dobroslav

    1999-01-01

    Communication is the base of everyday existence of a modern person and every company. It is not easy to work in this area in a changing 'eastern' country. Many tools, which are used are in the mind of people connected with 'propaganda'. I would like to share our experience with you. The goal of an internal communication is to spread and provide continuous current of objective information between the management of Bohunice NPPs and its personnel and between the personnel itself. Communication with the Bohunice NPPs employees helps to get acquainted with their opinions and ideas concerning the subsidiary and nuclear power industry

  16. Seismic re-evaluation criteria for Bohunice V1 reconstruction

    International Nuclear Information System (INIS)

    Campbell, R.; Schlund, H.; Warnken, L.

    2001-01-01

    Bohunice V1 in Slovakia is a Russian designed two unit WWER 440, Model 230 Pressurized Water Reactor. The plant was not originally designed for earthquake. Subsequent and ongoing reassessments now confirm that the seismic hazard at the site is significant. EBO, the plant owner has contracted with a consortium lead by Siemens AG (REKON) to do major reconstruction of the plant to significantly enhance its safety systems by the addition of new systems and the upgrading of existing systems. As part of the reconstruction, a complete seismic assessment and upgrading is required for existing safety relevant structures, systems and components. It is not practical to conduct this reassessment and upgrading using criteria applied to new design of nuclear power plants. Alternate criteria may be used to achieve adequate safety goals. Utilities in the U.S. have faced several seismic issues with operating NPPs and to resolve these issues, alternate criteria have been developed which are much more cost effective than use of criteria for new design. These alternate criteria incorporate the knowledge obtained from investigation of the performance of equipment in major earthquakes and include provisions for structures and passive equipment to deform beyond the yield point, yet still provide their essential function. IAEA has incorporated features of these alternate criteria into draft Technical Guidelines for application to Bohunice V1 and V2. REKON has developed plant specific criteria and procedures for the Bohunice V1 reconstruction that incorporate major features of the U.S. developed alternate criteria, comply to local codes and which envelop the draft IAEA Technical Guidelines. Included in these criteria and procedures are comprehensive walkdown screening criteria for equipment, piping, HVAC and cable raceways, analytical criteria which include inelastic energy absorption factors defined on an element basis and testing criteria which include specific guidance on interpretation

  17. Bohunice NPPs - Part of the Slovak's economy (sustainable) development

    International Nuclear Information System (INIS)

    Dobak, Dobroslav

    2001-01-01

    Of the total consumption of electricity in Slovakia, 42% was generated in nuclear power plant units in 1999. Slovakia operates 6 units with a WWER 440 nuclear reactors, 4 of them are at Bohunice site and 2 at Mochovce. The Nuclear Regulatory Authority of SR is not the only regulatory body controlling nuclear activity. Both - the system of nuclear activities regulation in Slovakia as well as the approach to Nuclear Safety enhancement of the operator were positively judged by IAEA and WENRA. In 1993 -Slovakia has accepted the commitments of the UN Convention on Climate Changes, including a reduction of greenhouse gases to 1990 levels by the year 2000. Moreover, as an internal target Slovakia has set the reaching of the ,'Toronto Objective', i.e. 20% reduction in CO x emissions through the year 2005 as compared to 1988. Taking into account the actual situation as well as natural conditions for some renewable sources utilisation, the target won't be reached without nuclear energy. The nuclear energy is free of emissions, does not burn oxygen, and with the share of production in Slovakia will remain significant contributor. To the environment protection it contributes also by replacing fossil heat plants with heat delivery for the region. In case of radiological wastes the environment protection is ensured by very strict system of control, evidence, treatment and repository. To conclude, Bohunice NPPs were, are and will remain very important part of the Slovak's economy, creating conditions for its (sustainable) development

  18. Heat delivery from Bohunice NPP, Slovakia

    International Nuclear Information System (INIS)

    Paley, I.

    1998-01-01

    Experience with nuclear district heating in the Slovak Republic is reported. The heating system of the town of Trnava is supplied by the Bohunice NPP and conventional sources. Construction of the hot water heating system from the Bohunice NPP began in 1983. Commercial operation began on 10 December 1987. Heat delivery has gradually increased from 478 TJ in 1988, to 1,104 TJ in 1995. The heat cost is low, resulting in an increasing number of consumers. (author)

  19. Information letter 2. Information about operation of plants SE-NPP Bohunice and SE-VYZ during February 2005

    International Nuclear Information System (INIS)

    2005-03-01

    In this leaflet results of exploitation of four units of the Bohunice V-1 and V-2 NPPs are presented. The electricity and heat production in February 2005 are reviewed. Within a February 2005 the electricity was produced: 217 GWh (block 1), 281 GWh (block 2), 277 GWh (block 3), 282 GWh (block 4), totally 1057 GWh, and 2271 GWh within a January - February 2005. The heat production in February 2005 was 266 506 GJ, and within a January - February 2005 it was produced 531 849 GJ of heat. On February 17 Slovak minister of economy Pavol Rusko and general director of ENEL Paolo Scaroni signed the agreement on acquisition of 66 per cent of Slovenske elektrarne (SE) by Italian ENEL for 840 million Eur. SE has capacity of around 7 GW (83 per cent of total Slovakian capacity). In 2004 SE generated 26 TWh of electricity. Processing and storage of radioactive wastes in Decommissioning of Nuclear Installations and Spent Fuel and Rad-waste Management (SE-VYZ) is presented. Since beginning of this year 58 fibre-concrete containers have been filled up in Bohunice processing centre of radioactive wastes. Twenty-three pieces of fibre-concrete containers were processed into fibre-concrete containers in Bohunice processing centre of radioactive wastes (BSC RAO) in February 2005. Twenty fibre-concrete containers were stored into Republic storage of radioactive wastes (RU RAO). Total number in RU RAO reached 830 pieces of fibre-concrete containers, which represent 11.53 per cent of storage capacity (7200 containers). Bohunice processing centre of radioactive wastes was put into active operation just before five years

  20. Practical experience with the leaky-fuel monitoring at Bohunice NPP

    International Nuclear Information System (INIS)

    Kacmar, M.; Cizek, J.

    2001-01-01

    The first part of this paper describes practical experience with the fuel monitoring in operating reactors from point of view possible leakages. Summarized in the paper are numbers leaky fuel assemblies both for NPP and for particular units. Some failure causes are discussed for operational conditions of Bohunice NPP. In the second part of paper critical power ramps on hot fuel rod of leaky fuel assemblies are analysed to eliminate failures from PCI. The main aim of the paper is the need to understand the mechanism and causes of failures (Authors)

  1. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -2 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - December 1976; first controlled reactor power - 7 August 1984, 2 August 1985; connection to the grid - 20 August 1984, 9 August 1985; commercial operation - 14 February 1985, 18 December 1985. This leaflet contains: NPP V-2 construction; Major technological equipment [WWER 440 V230 type reactor; Nuclear Power plant operation safety (Safety barriers; Safety systems [Active safety systems, Passive safety systems]); Centralized heat supply system; Scheme of Bohunice V-2 NPP and technical data

  2. Radwaste Treatment Centre Jaslovske Bohunice

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the Bohunice Radwaste Treatment Centre (BSC RAO) is presented. BSC RAO is designed to process and treat liquid and solid radwaste, arising from the NPP A-1 decommissioning, from NPPs V-1, V-2, and Mochovce operations, as well as institutional radwaste of diverse institutional (hospitals, research institutes) in the Slovak Republic. Transport, sorting, incineration, compacting, concentration and cementation of radwaste as well as monitoring of emission are described

  3. Chemical composition determination of Bohunice 1 and 2 RPVs and hardness measurements of RPVs material

    International Nuclear Information System (INIS)

    Kupca, L.; Brezina, M.; Beno, P.; Kniz, I.

    1994-01-01

    The base informations of all activities concerning the material properties recovery performed before and after annealing procedure on the first two units V-230 type in NPP V-1, are the topic of this paper. The samples of weld and base metal from both RPVs NPP V-1 were prepared by special apparatus in the very narrow gap between the outside surface of the RPV and the reactor thermal shielding in the reactor cavity, from the critical circumferential weld joint no.4. The chemical composition of the samples was analyzed in Nuclear Power Plants Research Institute (VUJE) laboratories. Except these results achieved from the analysis of the irradiated samples are presented the evaluation results of the chemical composition influence on the RPVs materials brittle fracture temperatures. All these results which served as input data for the irradiation embrittlement recovery evaluation of the both RPV NPP V-1 in Jaslovske Bohunice, are presented in the form of the trend curves for both RPVs. (author). 10 refs, 7 figs, 1 tab

  4. Seismic evaluation and strengthening of Bohunice nuclear power plant structures

    International Nuclear Information System (INIS)

    Shipp, J.G.; Short, S.A.; Grief, T.; Borov, V.; Kuzma, J.

    2001-01-01

    A seismic assessment and strengthening investigation is being performed for selected structures at the Bohunice V1 Nuclear Power Plant in Slovakia. Structures covered in this paper include the reactor building complex and the emergency generator station. The emergency generator station is emphasized in the paper as work is nearly complete while work on the reactor building complex is ongoing at this time. Seismic evaluation and strengthening work is being performed by a cooperative effort of Siemens and EQE along with local contractors. Seismic input is the interim Review Level Earthquake (horizontal peak ground acceleration of 0.3 g). The Bohunice V1 reactor building complex is a WWER 4401230 nuclear power plant that was originally built in the mid-1970s but had extensive seismic upgrades in 1991. Siemens has performed three dimensional dynamic analyses of the reactor building complex to develop seismic demand in structural elements. EQE is assessing seismic capacities of structural elements and developing strengthening schemes, where needed. Based on recent seismic response analyses for the interim Review Level Earthquake which account for soil-structure interaction in a rigorous manner, the 1991 seismic upgrade has been found to be inadequate in both member/connection strength and in providing complete load paths to the foundation. Additional strengthening is being developed. The emergency generator station was built in the 1970s and is a two-story unreinforced brick masonry (URM) shear wall building above grade with a one story reinforced concrete shear wall basement below grade. Seismic analyses and testing of the URM walls has been performed to assess the need for building strengthening. Required structural strengthening for in-plane forces consists of revised and additional vertical steel framing and connections, stiffening of horizontal roof bracing, and steel connections between the roof and supporting walls and pointing of two interior transverse URM

  5. The Bohunice NPP V-1 units nuclear safety upgrading

    International Nuclear Information System (INIS)

    Mlcuch, M.

    2000-01-01

    Safety upgrading and operational reliability improvement was carried out by the Bohunice NPP V-1 staff continuously since the plant commissioning. By now, more than 1200 minor or major modifications have been implemented, either by the NPP maintenance staff or by the contractors. Based on findings of safety assessment missions invited by Bohunice NPP in 1990 - 1991, the Czecho-slovak Nuclear Regulatory Authority (CSKAE) issued the decision No. 5/91 of 81 safety upgrading measures to be taken in different areas. These improvements are referred to as the 'Small Reconstruction of the Bohunice V-1 NPP'. Realization of measures during Small reconstruction of the Bohunice NPP V-1 became a power plant, which further operation is acceptable from safety point of view, but it is also necessary further safety improvement. During the period of the Small Reconstruction the development of a Safety Report for the Gradual reconstruction has been completed. Based on this report the SR Nuclear Regulatory Authority issued the Decision No. 1/94, in which requires 59 upgrading measures in different areas to be addressed. The development of Basic Engineering of the Gradual Reconstruction has been contracted to the Siemens AG. Implementation of safety measures are provided through contract with the consortium REKON (which consists of Siemens AG company and Nuclear Power Plants Research Institute Trnava) and other Czech, Russian and Slovak companies. The Gradual Reconstruction of Bohunice NPP V-1 will be finished in 2000. By implementation of the measures carried out during Gradual Reconstruction achievement of an internationally acceptable nuclear safety level will be reached. (author)

  6. Slovak Electric, plc, Bohunice Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    A brief account of activities carried out by the Bohunice Nuclear Power Plant in 1998 is presented. These activities are reported under the headings: (1) Operation and electric power generation; (2) Nuclear and radiation safety; (3) Maintenance and scheduled refuelling out-gages; (4) Investment and WWER units upgrading; (5) Power Plants Personnel; (6) Public relations

  7. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-2 NPP is reviewed (beginning of construction December 1976; First controlled reactor power, Reactor Unit 1 (RU1): 7 August 1984, Reactor Unit 2 (RU2): 2 August 1985; Connection to the grid: RU1 20 August 1984, RU2 9 August 1985; Commercial operation: RU1 14 February 1985, RU2 18 December 1985. The scheme of the nuclear reactor WWER 440/V213 is depicted. The major technological equipment are described. Principles of nuclear power plant operation safety (safety barriers, active and passive safety systems, centralized heat supply system, as well as technical data of the Bohunice V-2 NPP are presented

  8. Irradiation temperature measurement of the reactor pressure vessel surveillance specimen in the programmes of radiation degradation monitoring

    International Nuclear Information System (INIS)

    Kupca, L.; Stanc, S.; Simor, S.

    2001-01-01

    The information's about the special system of irradiation temperature measurement, used for reactor pressure vessel surveillance specimen, which are placed in reactor thermal shielding canals are presented in the paper. The system was designed and realized in the frame of Extended Surveillance Specimen Programme for NPP V-2 Jaslovske Bohunice and Modern Surveillance Specimen Programme for NPP Mochovce. Base design aspects, technical parameters of realization and results of measurement on the two units in Bohunice and Mochovce NPPs are presented too. (Authors)

  9. Fuel leak testing performance at NPP Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Slugen, V.; Krnac, S.; Smiesko, I.

    1995-01-01

    The NPP Bohunice VVER-440 fuel leak testing experience are relatively extensive in comparison with other VVER-440 users. As the first Europe NPP was adapted Siemens (KWU) in core-sipping equipment to VVER-440 units and since this time were have done these tests also for NPP Paks (Hungary) and NPP Dukovany (Czech Republic). The occurrence of leaking fuel assemblies in NPP is in the last 5 years relatively stabilised and low. A significant difference can be observed between type V-230 (31 leaks) and type V-213 (1 leak). None of of the indicated leaking fuel assemblies has been investigated in the hot cell. Therefore cannot be confirm the effective causes of leak occurrence. Nevertheless, the fuel failure rate and the performance of leak testing in NPP Bohunice are comparable to the world standard at PWR's. 1 tab., 2 figs., 3 refs

  10. Fuel leak testing performance at NPP Jaslovske Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, V; Krnac, S [Slovak Technical Univ., Bratislava (Slovakia); Smiesko, I [Nuclear Powr Plant EBO, Jaslovske Bohuce (Slovakia)

    1996-12-31

    The NPP Bohunice VVER-440 fuel leak testing experience are relatively extensive in comparison with other VVER-440 users. As the first Europe NPP was adapted Siemens (KWU) in core-sipping equipment to VVER-440 units and since this time were have done these tests also for NPP Paks (Hungary) and NPP Dukovany (Czech Republic). The occurrence of leaking fuel assemblies in NPP is in the last 5 years relatively stabilised and low. A significant difference can be observed between type V-230 (31 leaks) and type V-213 (1 leak). None of of the indicated leaking fuel assemblies has been investigated in the hot cell. Therefore cannot be confirm the effective causes of leak occurrence. Nevertheless, the fuel failure rate and the performance of leak testing in NPP Bohunice are comparable to the world standard at PWR`s. 1 tab., 2 figs., 3 refs.

  11. Bohunice Simulator Data Collection Project

    International Nuclear Information System (INIS)

    Cillik, Ivan; Prochaska, Jan

    2002-01-01

    The paper describes the way and results of human reliability data analysis collected as a part of the Bohunice Simulator Data Collection Project (BSDCP), which was performed by VUJE Trnava, Inc. with funding support from the U.S. DOE, National Nuclear Security Administration. The goal of the project was to create a methodology for simulator data collection and analysis to support activities in probabilistic safety assessment (PSA) and human reliability assessment for Jaslovske Bohunice nuclear power plant consisting of two sets of twin units: two VVER 440/V-230 (V1) and two VVER 440/V-213 (V2) reactors. During the project training of V-2 control room crews was performed at VUJE-Trnava simulator. The simulator training and the data collection were done in parallel. The main goal of BSDCP was to collect suitable data of human errors under simulated conditions requiring the use of symptom-based emergency operating procedures (SBEOPs). The subjects of the data collection were scenario progress time data, operator errors, and real-time technological parameters. The paper contains three main parts. The first part presents preparatory work and semi-automatic computer-based methods used to collect data and to check technological parameters in order to find hidden errors of operators, to be able to retrace the course of each scenario for purposes of further analysis, and to document the whole training process. The first part gives also an overview of collected data scope, human error taxonomy, and state classifications for SBEOP instructions coding. The second part describes analytical work undertaken to describe time distribution necessary for execution of various kinds of instructions performed by operators according to the classification for coding of SBEOP instructions. It also presents the methods used for determination of probability distribution for different operator errors. Results from the data evaluation are presented in the last part of the paper. An overview of

  12. Bohunice Simulator Data Collection Project

    International Nuclear Information System (INIS)

    Cillik, I.; Prochaska, J.

    2002-01-01

    The paper describes the way and results of human reliability data analysis collected as a part of the Bohunice Simulator Data Collection Project (BSDCP), which was performed by VUJE Trnava, Inc. with funding support from the U.S. DOE, National Nuclear Security Administration. The goal of the project was to create a methodology for simulator data collection and analysis to support activities in probabilistic safety assessment (PSA) and human reliability assessment for Jaslovske Bohunice nuclear power plant consisting of two sets of twin units: two VVER 440/V-230 (V1) and two VVER 440/V-213 (V2) reactors. During the project, training of V-2 control room crews was performed at VUJE Trnava simulator. The simulator training and the data collection were done in parallel. The main goal of BSDCP was to collect suitable data of human errors under simulated conditions requiring the use of symptom-based emergency operating procedures (SBEOPs). The subjects of the data collection were scenario progress time data, operator errors, and real-time technological parameters. The paper contains three main parts. The first part presents preparatory work and semi-automatic computer-based methods used to collect data and to check technological parameters in order to find hidden errors of operators, to be able to retrace the course of each scenario for purposes of further analysis, and to document the whole training process. The first part gives also an overview of collected data scope, human error taxonomy, and state classifications for SBEOP instructions coding. The second part describes analytical work undertaken to describe time distribution necessary for execution of various kinds of instructions performed by operators according to the classification for coding of SBEOP instructions. It also presents the methods used for determination of probability distribution for various operator errors. Results from the data evaluation are presented in the last part of the paper. An overview of

  13. Experience in modernization of safety I and C in VVER 440 nuclear power plants Bohunice V1 and Paks

    International Nuclear Information System (INIS)

    Martin, M.

    2000-01-01

    For nuclear power plants which have been in operation for more than 15 years, backfitting or even complete replacement of the instrumentation and control (I and C) equipment becomes an increasingly attractive option, motivated not only by the objective to reduce the cost of I and C system maintenance and repair but also to prolong or at least to safeguard the plant life-time: optimized spare-part management through use of standard equipment; reduction of number and variety of different items of equipment by implementing functions stepwise in application software; adding new functionality in the application software which was not possible in the old technology due to lack of space; safeguarding of long-term After-Sales-Service. Some years ago Bohunice V1 NPP, Slovak Republic and Paks NPP, Hungary intended to replace parts of their Safety I and C, mainly the Reactor Trip System, the Reactor Limitation System and the Neutron Flux Excore Instrumentation and Monitoring Systems. After a Basic Engineering Phase in Bohunice V1 and a Feasibility Study in Paks both plants decided to use the Siemens' Digital Safety I and C System TELEPERM XS to modernize their plants. Both Bohunice, Unit 2 and Paks, Unit 1 have been back on line for over six months with the new Digital Safety I and C. At the present time Bohunice, Unit 1 and within the next few months Paks, Unit 2 will be replaced. Trouble-free start-ups and no major problems under operation in the first two plants were based on: thorough understanding of the VVER 440 technology; comprehensive planning together with the plant operators and authorities; the possibility to adapt TELEPERM XS to every plant type; the execution of extensive pre-operational tests. Regarding these modernization measures Siemens, as well as the above Operators, have gained considerable experience in the field of I and C Modernization in VVER 440 NPPs. Important aspects of this experience are: how to transfer the VVER technology to TELEPERM XS; how to

  14. Post-reconstruction full power and shut down level 2 PSA study for Unit 1 of Bohunice V1 NPP

    International Nuclear Information System (INIS)

    Kovacs, Z.

    2003-01-01

    The level 2 PSA model of the J. Bohunice V1 NPP was developed in the RISK SPECTRUM Professional code with the following objectives: to identify the ways in which radioactive releases from the plant can occur following the core damage; to calculate the magnitudes and frequency of the release; to provide insights into the plant behaviour during a severe accident; to provide a framework for understanding containment failure modes; the impact of the phenomena that could occur during and following core damage and have the potential to challenge the integrity of the confinement; to support the severe accident management and development of SAMGs. The magnitudes of release categories are calculated using: the MAAP4/VVER for reactor operation and shutdown mode with closed reactor vessel and the MELCOR code for shutdown mode with open reactor vessel. In this paper an overview of the Level 2 PSA methodology; description of the confinement; the interface between the level 1 and 2 PSA and accident progression analyses are presented. An evaluation of the confinement failure modes and construction of the confinement event trees as well as definition of release categories, source term analysis and sensitivity analyses are also discussed. The presented results indicate that: 1)for the full power operation - there is an 25% probability that the confinement will successfully maintain its integrity and prevent an uncontrolled fission product release; the most likely mode of release from the confinement is a confinement bypass after SGTM with conditional probability of 30%; the conditional probability for the confinement isolation failure probability without spray is 5%, for early confinement failure at the vessel failure is 4%, for other categories 1% or less; 2) for the shutdown operating modes - the shutdown risk is high for the open reactor vessel and open confinement; important severe accident sequences exists for release categories: RC5.1, RC5.2 and RC6.2

  15. Project Management Unit for decommissioning of NPP Bohunice VI (2003-2014)

    International Nuclear Information System (INIS)

    Gonzalez Fernandez-conde, A.; Brochet, I.; Ferreira, A.

    2015-01-01

    From October 2003 until december 2014 the Consortium consisting of Iberdrola Engineering and Construction (leader). Empresarios Agrupados Internacional, and Indra Sistemas has carried out the project Project Management Unit ((PMU) for the decommissioning of Bohunice V1 NPP (units 1 and 2), type VVER-440/V-230 in Slovakia. during the first phase (2003-2007) EdF was also part of the Consortium. The project is funded by the Bohunice International Decommissioning Support Fund (BIDSF) administered by the RBRD. The main objective of the project is to provide the necessary engineering and resources of project management for planning, execution, management, coordination and monitoring of all tasks in support of the decommissioning. (Author)

  16. NPP Bohunice experience with ASSET services

    Energy Technology Data Exchange (ETDEWEB)

    Klimo, J [Bohunice NPP (Slovakia)

    1997-12-31

    The general description of Bohunice NPP ASSET experience history was given at the last annual workshop in 1995. In my short presentation I would like to pay attention to the progress in this area which was achieved at our NPP during the last year. (author).

  17. NPP Bohunice experience with ASSET services

    International Nuclear Information System (INIS)

    Klimo, J.

    1996-01-01

    The general description of Bohunice NPP ASSET experience history was given at the last annual workshop in 1995. In my short presentation I would like to pay attention to the progress in this area which was achieved at our NPP during the last year. (author)

  18. Mitsubishi nuclear technologies and construction of new Bohunice

    International Nuclear Information System (INIS)

    Yoshizu, T.

    2009-01-01

    Mitsubishi Heavy Industries (MHI) has setup Generation III+ category power plant technologies both in large and middle size reactors as a key player in the global market of nuclear plant suppliers. MHI has developed 1,700 MWe class Advanced Pressurized Water Reactor for European utilities, EU-APWR, utilizing the APWR technology in Japan. The plant configuration is based on the proven technologies from MHI's ample experiences, but various advanced technologies are adopted to achieve enhanced safety, reliability, and economy. For the regions without large grid capacity, middle-sized nuclear power plant will be an attractive option for the utilities. Joint Venture ATMEA with AREVA NP will serve ATMEA1. The ATMEA1 will offer 1,100 MWe output with superior operation performance based on reliable and proven technologies. Mitsubishi has experience of half century for all of 26 PWR plants in Japan. The latest plant is Tomari Unit 3 of 1,000 MWe, which has completed the construction work and now in the final commissioning test. Tomari Unit 3 applies some advanced technologies such as all digital I and C, which are to be implemented in the EU-APWR. Based on this construction experience, Mitsubishi can contribute any kind of demands for New Bohunice 5 th unit project with the total engineering capability. (author)

  19. Welding electrode for peripheral welds of A-1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    1975-01-01

    The properties are outlined of the VUZ-AC1-52 welding electrode used in welding the Bohunice A-1 reactor pressure vessel. The mechanical properties of welded joints after the final thermal treatment are summed up. (J.K.)

  20. Twenty years of operation of WWER 440/230 units in Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Tomek, J.

    1998-01-01

    It is twenty years this year since the first unit WWER 440 of Slovak Nuclear Power Plant Jaslovske Bohunice was commissioned. There are four units WWER 440 in operation Jaslovske Bohunice site. First two units of older soviet PWR design V-230 (also known as V-1) and other two units of newer V-213 type (also known as V-2). The goal of this presentation is to summarize and evaluate the operation of Unit 1 and 2 for this period of time and mainly to describe what has been done and what is planned to be done to increase the nuclear safety and operational reliability of both units. The operating organization and regulatory authority assume that an internationally acceptable level of safety will be reached by accomplishing of the upgrading program.(author)

  1. KS-150 reactor control

    International Nuclear Information System (INIS)

    Wagner, K.

    1974-01-01

    A thorough description is presented of the control and protection system of the Bohunice A-1 reactor. The system including auxiliary facilities was developed, manufactured and installed at the reactor by the SKODA Works, Plzen. The system parameters are listed and a brief account is also given of the development efforts and of the physical and power start-up of the A-1 nuclear power plant. (L.O.)

  2. New Emergency control center of Slovenske Elektrarne Bohunice NPP

    International Nuclear Information System (INIS)

    Pecko, E.

    2012-01-01

    Emergency preparedness of nuclear power plant and operation assurance in case of a possible emergency calls to have devices for emergency response with equipment for rapid detection and continuous evaluation of anticipated events. Chief executive body designated to manage a nuclear power plant during major events is the emergency committee (EC). Emergency Committee is a part of the Emergency Response Organization (ERO). The following centers are on alert to ensure the activities of the ERO - Emergency Response office: - control room (CR) and emergency control room (ECR); - emergency management center (EMC); - Monitoring Centre (MC); - emergency backup control center (EBCC); - congregations of civil protection (CP) and CP shelters; - communications with warning and notification system (VARVYR). From a historical and practical point of view in the vicinity of Jaslovske Bohunice has been set up a joint emergency control center. The center was located on the territory of the former already inoperative V1 NPP. V1 NPP is currently integrated into the organizational structure of JAVYS. Operating Bohunice V2 NPP plant is a designated part of the Slovenske Elektrarne, a. s., whose majority owner is an Italian operator ENEL. In terms of various relevant factors, it was decided to build a new emergency management center on the territory of operating V2 NPP, meet the current standards.

  3. Foreword by the director of Bohunice NPPs

    International Nuclear Information System (INIS)

    1998-01-01

    In this foreword the director briefly describes activities of the NPP Bohunice in 1997. Main activities were: electric and heat production , the V-1 NPP Gradual Reconstruction Programme, nuclear safety programmes, environment protection, international co-operation as well as national and international public information

  4. Operational experiences feedback in Bohunice NPP

    Energy Technology Data Exchange (ETDEWEB)

    Betak, A [NPP Bohunice (Slovakia)

    1997-10-01

    The presentation reviews the following issues: OEF team in Bohunice NPP - structure; training and qualification: ASSET seminars on Prevention of incidents - INES manual handling, NRA-NRC the training on event investigation methods, NU - the training on HPES; legislation - documentation prepared in the frame of QA programme; results of OEF team activities; ASSET mission Dukovany - Experiences; the perspective activities.

  5. Fire fighting precautions at Bohunice Atomic Power Plants

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Some shortcomings are discussed of the project design of fire protection at the V-1 and V-2 nuclear power plants. The basic shortcoming of the system is insufficient division of the units for fire protection. Fire fighting measures are described for cable areas, switch houses and outside transformers, primary and secondary circuits and auxiliary units. Measures are presented for increasing fire safety in Jaslovske Bohunice proceedi.ng from experience gained with a fire which had occurred at a nuclear power plant in Armenia. (E.S.)

  6. The primary circuit materials properties results analysis performed on archive material used in NPP V-1 and Kola NPP Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L.; Beno, P. [Nuclear Power Plants Research Institute Inc., Trnava (Slovakia)

    1997-04-01

    A very brief summary is provided of a primary circuit piping material properties analysis. The analysis was performed for the Bohunice V-1 reactor and the Kola-1 and -2 reactors. Assessment was performed on Bohunice V-1 archive materials and primary piping material cut from the Kola units after 100,000 hours of operation. Main research program tasks included analysis of mechanical properties, corrosion stability, and microstructural properties. Analysis results are not provided.

  7. Lessons from feedback of safety operating experience for reactor physics

    International Nuclear Information System (INIS)

    Suchomel, J.; Rapavy, S.

    1999-01-01

    Analyses of events in WWER operations as a part of safety experience feedback provide a valuable source of lessons for reactor physics. Examples of events from Bohunice operation will be shown such as events with inadequate approach to criticality, positive reactivity insertions, expulsion of a control rod from shut-down reactor, problems with reactor protection system and control rods. (Authors)

  8. Planning for environmental restoration of the contaminated banks near NPP Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Slavik, O; Moravek, J [Nuclear Power Plants Research Institute, a.s., Trnava (Slovakia); Vladar, M [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    The 18 km long banks of the Bohunice NPP waste water recipient are contaminated by cesium-137 as a result of two accidents on the CO{sub 2} cooled NPP A{sub 1} unit in 1976 and 1977. Since 1992, all he contaminated waste waters dumping from NPP Bohunice has been carried out directly to the Vah River through a specially constructed 15 km long pipeline. The final extent of contamination in the Bohunice site is represented. The overall contaminated area in this site with cesium-137 activity above 1 Bq/g of soil is about 67000 m{sup 2} and thus, the corresponding volume of top 20 cm thick soil layer is about 13000 m{sup 3}. For optimizing less costly remedial measures (warning signs...) an agreed scenario with a pre-estimated factor factor collective dose 2.10{sup -7} man.Sv.y{sup -1}/(m{sup 2}.Bq{sup 137}Cs.g{sup -1}) was applied. Limitation of individual effective doses according to a site specific stay scenario was also considered for this purposes with a limiting value of 0.25 mSv/y. Cost analysis of available remedial techniques were carried out, too. Two techniques have been selected for the contaminated banks restoration project: 1) removing/disposal of 20 cm soil top layer from steep and unengineered banks, and 2) mechanical dilution/fixation of contamination by clean 15 cm soil cover for the contaminated flat areas. Two-fold reduction of anticipated potential radiation risk were accepted, maximally, for the lastly mentioned technique, however cost saving is considerable (about 10-time lower the cost comparing to removing/disposal technique one). The basic acceptance limits AL for {sup 137}Cs in soil and criteria size of continuously contaminated bank areas were derived as: AL{sub 200} = 6.0 Bq/g and 800 m{sup 2} (300 m) or AL{sub 50} 8.0 Bq/g and 200 m{sup 2} (80 m) for removing/disposal of the soil on steep unengineered banks. For clean soil covering technique the resulting limits are in an interval AL{sub 50C} = 8 up to 16 Bq/g. (Abstract Truncated)

  9. Material properties of Bohunice 1 and 2 reactor pressure vessel materials before and after annealing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Novosad, P.; Vacek, M.

    1994-01-01

    Six types of experimental RPV materials were studied before and after irradiation in host nuclear power and research reactors. Recovery of RPV materials from radiation hardening and embrittlement after annealing was evaluated including a rate of radiation damage after reirradiation used. (author). 3 refs, 4 figs, 2 tabs

  10. Planning for environmental restoration of the contaminated banks near NPP Bohunice

    International Nuclear Information System (INIS)

    Slavik, O.; Moravek, J.; Vladar, M.

    1995-01-01

    The 18 km long banks of the Bohunice NPP waste water recipient are contaminated by cesium-137 as a result of two accidents on the CO 2 cooled NPP A 1 unit in 1976 and 1977. Since 1992, all he contaminated waste waters dumping from NPP Bohunice has been carried out directly to the Vah River through a specially constructed 15 km long pipeline. The final extent of contamination in the Bohunice site is represented. The overall contaminated area in this site with cesium-137 activity above 1 Bq/g of soil is about 67000 m 2 and thus, the corresponding volume of top 20 cm thick soil layer is about 13000 m 3 . For optimizing less costly remedial measures (warning signs...) an agreed scenario with a pre-estimated factor factor collective dose 2.10 -7 man.Sv.y -1 /(m 2 .Bq 137 Cs.g -1 ) was applied. Limitation of individual effective doses according to a site specific stay scenario was also considered for this purposes with a limiting value of 0.25 mSv/y. Cost analysis of available remedial techniques were carried out, too. Two techniques have been selected for the contaminated banks restoration project: 1) removing/disposal of 20 cm soil top layer from steep and unengineered banks, and 2) mechanical dilution/fixation of contamination by clean 15 cm soil cover for the contaminated flat areas. Two-fold reduction of anticipated potential radiation risk were accepted, maximally, for the lastly mentioned technique, however cost saving is considerable (about 10-time lower the cost comparing to removing/disposal technique one). The basic acceptance limits AL for 137 Cs in soil and criteria size of continuously contaminated bank areas were derived as: AL 200 = 6.0 Bq/g and 800 m 2 (300 m) or AL 50 8.0 Bq/g and 200 m 2 (80 m) for removing/disposal of the soil on steep unengineered banks. For clean soil covering technique the resulting limits are in an interval AL 50C = 8 up to 16 Bq/g. According to the criteria developed, it is necessary to subject to restoration about 11000 m 2 of

  11. Information letter 12. Information about operation of Jadrova vyradovacia spolocnost, a.s. and plants SE-NPP Bohunice during December 2006

    International Nuclear Information System (INIS)

    2007-01-01

    In this leaflet results of exploitation of four units of the Bohunice V1 and V2 NPPs are presented. The electricity and heat production in December 2006 are reviewed. Within a December 2006 the electricity was produced in NPP V1: 301.221 GWh (block 1), 281.125 GWh (block 2), totally 582.346 GWh, and 6179.205 GWh within a January - December 2006. Within a November 2006 the NPP V2: the block 3 and block 4 has worked in stabile regime according to needs of regulation. Processing and storage of radioactive wastes in Jadrova vyradovacia spolocnost (JAVYS) is presented. Twenty pieces of fibre-concrete containers were processed into fibre-concrete containers in Bohunice processing centre of radioactive wastes (BSC RAO) in December 2006. Eight fibre-concrete containers were stored into Republic storage of radioactive wastes (RU RAO). Total number in RU RAO reached 1260 pieces of fibre-concrete containers, which represent 17.50 per cent of storage capacity (7200 containers)

  12. Information letter 10. Information about operation of Jadrova vyradovacia spolocnost, a.s. and plants SE-NPP Bohunice during October 2006

    International Nuclear Information System (INIS)

    2006-11-01

    In this leaflet results of exploitation of four units of the Bohunice V1 and V2 NPPs are presented. The electricity and heat production in October 2006 are reviewed. Within a October 2006 the electricity was produced in NPP V1: 313.778 GWh (block 1), 209.838 GWh (block 2), totally 523.616 GWh, and 5125.651 GWh within a January - October 2006. Within a October 2006 the NPP V2: blocks 3 and 4 has worked on nominal power. Processing and storage of radioactive wastes in Jadrova vyradovacia spolocnost (JAVYS) is presented. Seventeen pieces of fibre-concrete containers were processed into fibre-concrete containers in Bohunice processing centre of radioactive wastes (BSC RAO) in October 2006. Thirty-eight fibre-concrete containers were stored into Republic storage of radioactive wastes (RU RAO). Total number in RU RAO reached 1234 pieces of fibre-concrete containers, which represent 17.14 percent of storage capacity (7200 containers)

  13. National Report

    International Nuclear Information System (INIS)

    Lipar, M.

    2001-01-01

    Power production in Slovak Republic is presented. The safety at the NPPs Bohunice V-1, V-2 and Mochovce is discussed. The events - Automatic Reactor Scram at Bohunice 1 and Power Reduction - Home Load at Bohunice 2 due to short circuit in the external grid on 22 May 2001 and Manual Reactor Scram at Mochovce 2 NPP due to Loss of Offsite Power on 30 May 2001 are described

  14. Resin intrusion into the primary circuit of NPP Jaslovske Bohunice V-1

    International Nuclear Information System (INIS)

    Grezdo, O.; Mraz, V.

    2005-01-01

    During the refueling at the first unit of Bohunice NPP in 2005 a lot of sediment was found on the upper storage rack. This sediment was identification as a filter resin. Resin was found in most of the fuel assemblies, pipes and tanks of the primary circuit and his auxiliary systems. Resin producer and WANO network was contacted in order to get information about similar events. Management of Bohunice NPP made a decision that primary circuit, fuel assemblies and auxiliary systems have to be cleaned. Subsequent cleaning extended outage by 31 days. This paper summarizes causes, existing consequences and corrective actions. Accent was put on the hydraulic characteristics of the primary circuit measurement, power distribution core monitoring and the primary circuit water quality verification (Authors)

  15. Personnel education and training at Bohunice NPP

    International Nuclear Information System (INIS)

    Malovec, J.

    1998-01-01

    Procedure for education and training of all the personnel employed at Bohunice Nuclear power plant is presented in detail describing the training system structure, kinds of training, staff members qualification development, short term and long term tasks needed to assure attaining the training objectives. The proposed Staff Members Lifetime education implementation project contains basic starting points, measures to be implemented by 1998. It was prepared on the basis of a primary analysis which confirmed the existing need for implementing the lifetime education system

  16. Computer modelling the potential benefits of amines in NPP Bohunice secondary circuit

    International Nuclear Information System (INIS)

    Fountain, M.J.; Smiesko, I.

    1998-01-01

    The use of computer modelling of PWR and WWER secondary circuit chemistry was already demonstrated in the past. The model was used to illustrate the technical and economic advantages, compared with ammonia, of using an 'advanced', high basicity, low volatility amines to raise the liquid phase pH(T) in the moisture separator and other areas swept by wet steam. Since the 1995, this technique has been successfully applied to a number of power plants and the computer model has been progressively developed. This paper describes the preliminary results of an ongoing assessment being carried out for the VVER 440 plants at Bohunice. The work for Bohunice is being funded by the 'Know How Fund', a department in the British Government's Foreign and Commonwealth Office. (J.P.N.)

  17. Analysis of the mortality development of the population in the surroundings of Bohunice NPP using Fuzzy logic methods

    International Nuclear Information System (INIS)

    Letkovicova, M.; Durov, M.; Stehlikova, B.

    2001-01-01

    We pursue the vicinity of Bohunice NPP. The vicinity has cyclic form with radius of 30 km, what represents an area approximately 2 800 km 2 . This area of pursued vicinity is requisite by the security report of Bohunice NPP. To the presumptive calculations we used the complete databases of Register of death, Register of municipalities and of Register of age structure of the inhabitants of the Slovak republic from 1993 to 1999, fully-fashioned in Statistical authority of the Slovak republic. We work with databases, which don't contain personal identifications. We pursue the evolution of the mortality by the indicators of the mortality, calculated by the WHO. By the literary sources and by our experience is necessary the sum at least of three years to calculation of stable demographic and epidemiological parameters. Therefore we work with the method of short time series. The basic observed unit, which is represented by one value of the indicator, is one municipality. All our assessing analyses are calculated from triennial sums of all indicators, so we work with man-years. Advanced report is the adjusted extract from Complex report on situation of environment and health of the inhabitants in vicinity of Bohunice NPP in 1999, which was advanced by our society in March 2001. (authors)

  18. Final results of the gradual reconstruction of Bohunice VI in Slovakia and evaluation of the reconstruction by international missions

    International Nuclear Information System (INIS)

    Ferenc, M.

    2001-01-01

    The gradual reconstruction of the Bohunice V1 nuclear power plant (Slovakia) represents the most extensive reconstruction of a nuclear power plant in operation as implemented worldwide up to now. Extensive reconstruction works in both civil construction and process parts, in instrumentation and control part, and in electric part enhanced both nuclear safety and operational reliability of Bohunice V1 in a significant way.(author)

  19. Information letter 1. Information about operation of plants SE-NPP Bohunice and SE-VYZ during January 2006

    International Nuclear Information System (INIS)

    2006-02-01

    In this leaflet results of exploitation of four units of the Bohunice V-1 and V-2 NPPs are presented. The electricity and heat production in January 2006 are reviewed. Within a January 2006 the electricity was produced: 249.149 GWh (block 1), 293.272 GWh (block 2), 305.479 GWh (block 3), 308.378 GWh (block 4), totally 1156 GWh. The heat production in January 2006 was 354 397 GJ. Processing and storage of radioactive wastes in Decommissioning of Nuclear Installations and Spent Fuel and Rad-waste Management (SE-VYZ) is presented. Twenty-two pieces of fibre-concrete containers were processed into fibre-concrete containers in Bohunice processing centre of radioactive wastes (BSC RAO) in January 2006. Sixteen fibre-concrete containers were stored into Republic storage of radioactive wastes (RU RAO). Total number in RU RAO reached 1048 pieces of fibre-concrete containers, which represent 14.55 per cent of storage capacity (7200 containers)

  20. Information letter 6. Information about operation of GovCo, a.s. and plant SE-NPP Bohunice during June 2006

    International Nuclear Information System (INIS)

    2006-07-01

    In this leaflet results of exploitation of four units of the Bohunice V-1 and V-2 NPPs are presented. The electricity and heat production in June 2006 are reviewed. Within a June 2006 the electricity was produced in GovCo, a.s.: 289.150 GWh (block 1), 262.103 GWh (block 2), totally 551.253 GWh, and 321.515 GWh within a January - June 2006 and in SE-EBO, NPP V2: 278.896 GWh (block 3), 0 GWh (block 4), totally 278.896 GWh, and 2778.249 GWh within a January - June 2006. The heat production in June 2006 was 38 212 GJ, and within a January - June 2006 it was produced 1 098 605 GJ of heat. Processing and storage of radioactive wastes in GovCo, a.s. - Decommissioning of Nuclear Installations and Spent Fuel and Rad-waste Management (VYZ) is presented. Thirty-two pieces of fibre-concrete containers were processed into fibre-concrete containers in Bohunice processing centre of radioactive wastes (BSC RAO) in January 2006. Sixteen fibre-concrete containers were stored into Republic storage of radioactive wastes (RU RAO). Total number in RU RAO reached 1132 pieces of fibre-concrete containers, which represent 15.72 per cent of storage capacity (7200 containers). The technique of SE-VYZ in decommissioning of A1 NPP is described

  1. Fuel utilization experience in Bohunice NPP and regulatory requirements for implementation of progressive fuel management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Patenyi, V [Nuclear Regulatory Authority, Bratislava (Slovakia); Darilek, P; Majercik, J [Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia)

    1994-12-31

    The experience gained in fuel utilization and the basic requirements for fuel licensing in the Slovak NPPs is described. The original project of WWER-440 reactors supposes 3-year fuel cycle with cycle length of about 320 full power days (FPD). Since 1984 it was reduced to 290 FPD. Based on the experience of other countries, a 4-year fuel cycle utilization started in 1987. It is illustrated with data from the Bohunice NPP units. Among 504 fuel assemblies left for the fourth burnup cycle no leakage was observed. The mean burnup achieved in the different units varied from 33.1 to 38.5 Mwd/kg U. The new fuel assemblies used are different from the recent ones in construction, thermohydraulics, water-uranium ratio, enrichment and material design. To meet the safety criteria, regulatory requirements for exploitation of new fuel in WWER-440 were formulated by the Nuclear Regulatory Authority of Slovak Republic. 1 tab., 5 refs.

  2. Information letter 3. Information about operation of plants SE-NPP Bohunice and SE-VYZ during March 2006

    International Nuclear Information System (INIS)

    2006-04-01

    In this leaflet results of exploitation of four units of the Bohunice V-1 and V-2 NPPs are presented. The electricity and heat production in March 2006 are reviewed. Within a March 2006 the electricity was produced: 294.020 GWh (block 1), 287.684 GWh (block 2), 292.636 GWh (block 3), 237.806 GWh (block 4), totally 1112 GWh, and 3330 GWh within a January - March 2005. The heat production in January 2006 was 253 057 GJ, and within a January - March 2006 it was produced 896 226 GJ of heat. Processing and storage of radioactive wastes in Decommissioning of Nuclear Installations and Spent Fuel and Rad-waste Management (SE-VYZ) is presented. Twenty-one pieces of fibre-concrete containers were processed into fibre-concrete containers in Bohunice processing centre of radioactive wastes (BSC RAO) in March 2006. Sixteen fibre-concrete containers were stored into Republic storage of radioactive wastes (RU RAO). Total number in RU RAO reached 1080 pieces of fibre-concrete containers, which represent 15.00 per cent of storage capacity (7200 containers). Celebration of ten years operation of SE-VYZ is described

  3. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-1 NPP is reviewed (beginning of construction 24 April 1972; First controlled reactor power, Reactor Unit 1 (RU1): 27 November 1978, Reactor Unit 2 (RU2): 15 March 1980; Connection to the grid: RU1 17 December 1978, RU2 26 March 1980; Commercial operation: RU1 1 April 1980, RU2 7 January 1981. The scheme of the nuclear reactor WWER 440/V230 is depicted. The major technological equipment (primary circuit, nuclear reactor, steam generators, reactor coolant pumps, primary circuit auxiliary systems, secondary circuit, turbine generators, NPP electrical equipment, and power plant control) are described. Technical data of the Bohunice V-1 NPP are presented

  4. Increasing of leak-tightness of hermetic zone and other important components in NPPs

    International Nuclear Information System (INIS)

    Murani, J.

    2001-01-01

    The performed by VUEZ resealing works in the hermetic compartments/containment of WWER 440 and WWER 1000 NPPs in Slovakia (Jaslovske Bohunice V-1 NPP, Jaslovske Bohunice V-2 NPP, Mochovce NPP), the Czech Republic (Dukovany NPP, Temelin NPP) and Hungary (Pask NPP) are presented. The leakage rate from hermetic compartments at individual NPP reactor units are shown.The VUEZ activities in field of resealing of weld joints in pools and tanks in the Jaslovske Bohunice V-1 NPP and innovation of the seal of reactor pit protective hood (kolpak) are described. The principle of operation and practical experience of the SMU-V system implemented in the Jaslovske Bohunice V-1 NPP (WWER 440 - V 230) for NPP primary circuit leakage monitoring are also given

  5. Monitoring of activity of the persons and vehicles at the exit from the NPP Bohunice

    International Nuclear Information System (INIS)

    Dobis, L.; Kaizer, J.; Svitek, J.

    1998-01-01

    In this paper the technical description of the monitoring of activity of the persons and vehicles at the exit from the NPP Bohunice as well as the results of monitoring during last six months are described

  6. Progress in Investigation of WWER-440 Reactor Pressure Vessel Steel by Gamma and Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Hascik, J.; Slugen, V.; Lipka, J.; Hinca, R.; Toth, I.; Groene, R.; Uvacik, P.; Kupca, L.

    1998-01-01

    Gamma spectroscopic analyse and first experimental results of original irradiated reactor pressure vessel surveillance specimens are discussed in. In 1994, the new ''Extended Surveillance Specimen Program for nuclear Reactor Material Study'' was started in collaboration with the nuclear power plants (NPP) V-2 Bohunice (Slovakia). The first batch of MS samples (after 1 year, which is equivalent to 5 years of loading RPV-steel) was measured and interpreted using the new four components approach with the aim to observe microstructural changes due to thermal and neutron treatment resulting from operating conditions in NPP. The systematic changes in the relative areas of Moessbauer spectra components were observed. (author)

  7. IAEA Operational Safety Team Review Bohunice Nuclear Power Plant, Slovak Republic

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: An international team of nuclear installation safety experts, led by the International Atomic Energy Agency (IAEA), has reviewed Slovakia's Bohunice Nuclear Power Plant (BNPP) for its safety practices and has noted a series of good practices as well as recommendations to reinforce them. The IAEA assembled an international team of experts at the request of the Government of Slovak Republic to conduct an Operational Safety Review (OSART) of Bohunice NPP. Under the leadership of the IAEA's Division of Nuclear Installation Safety, the OSART team performed an in-depth operational safety review from 1 to 18 November 2010. The team was made up of experts from Belgium, Canada, China, the Czech Republic, France, Sweden, the United Kingdom and the IAEA. An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the plant's overall safety status. The team at BNPP conducted an in-depth review of the aspects essential to the safe operation of the NPP, which largely is under the control of the site management. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The review covered the areas of Management, Organization and Administration; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry and Emergency Planning and Preparedness. Long Term Operation assessment has been requested by the plant in addition to the standard OSART program. The OSART team has identified good plant practices which will be shared with the rest of the nuclear industry for consideration of their application. Examples include: BNPP has implemented a comprehensive set of technical and organizational measures which have significantly reduced the production of liquid radioactive waste; BNPP has developed an automatic transfer of dosimetry data

  8. The most extensive reconstruction of nuclear power plant with VVER 440/V230 reactor

    International Nuclear Information System (INIS)

    Ferenc, M.

    2000-01-01

    The nuclear power plant V-1 Bohunice consists of two VVER-440 units with V-230 reactors. Unit 1 was commissioned in 1978 and Unit 2 in 1980. Large experience and knowledge from the operation of previous units with V-230 reactors were incorporated into the V-1 design, which resulted in a higher level of safety and operational reliability of these units. The Siemens company which won an international bidding process developed these basic goals for the Gradual Upgrading into the so called Basic Engineering (BE). For the implementation of the Gradual Upgrading in line with the BE, Rekon consortium was established consisting of Siemens and VUJE. The implementation of the Gradual Upgrading is scheduled for the time period of 1996 - 2000. Siemens was responsible for the upgrading strategy - based on the approved results of the basic engineering phase and the PSAR, the engineering and realization of all I and C improvements, and also for the seismic upgrade. VUJE's responsibility covered the detailed engineering and implementation of mechanical, electrical and civil part of upgrading measures as well as overall organisation and evaluation of verification tests. The consortium awarded contracts for final planning and design, installation services and commissioning to other Slovakian subcontractors in order to ensure the largest possible local content. The gradual reconstruction of the V-1 Bohunice with V230 reactors represents a comprehensive reconstruction of safety-related systems and equipment. Following its completion, the units will be operated with a safety level accepted internationally. (author)

  9. Chapter No.3. Assessment and inspection of nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The assessment activity of UJD in relation to nuclear installation lies in assessment of safety documentation for constructions realised as nuclear installations, or construction through which changes on nuclear installations are realised. The assessment activity of UJD in 2001 was focused on National Repository of Radwaste in Mochovce, on Radwaste conditioning and treatment technology in Jaslovske Bohunice and on the assessment of documentation for the project of modernisation of Bohunice V-2 NPPs which is under preparation. The assessment of the technical condition of equipment, important in terms of nuclear safety, primarily based on results of in-service inspections and surveillance testing of safety related components and systems, is also a part of the safety assessment of nuclear installation operation. The inspectors take part in training courses and participate in other technical meetings and workshops organised by the IAEA and also take part in special training courses organised by the Nuclear Authorities of European countries, USA and Japan. Bohunice V-1 NPP is equipped with two reactors of WWER 440 type V-230 and was put into operation in 1978-1980 as one of the last nuclear power plants with this type of reactor. Both units of NPP V-1 Bohunice operated in 2001 according to the requirements of energy dispatching at nominal power, or in a regime of tertiary regulation. November 2000, a mission of experts invited by UJD and delegated by IAEA took place at the Bohunice NPPs. The mission members together with experts of the plant operator assessed the safety of the units of WWER-440/V-230 of Bohunice V-1 NPP after the reconstruction. The members of the mission prepared the report on the current status of safety of these units for the IAEA. In 2001, UJD by its decision, issued the approval for further operation of both reactor units of Bohunice V-1 NPP. In sense of the relevant decree on operational events, 20 events have been recorded, at Bohunice V-1 NPP in

  10. Programmes design for Bohunice NPP personnel other than control room operators

    International Nuclear Information System (INIS)

    Kalincik, L.

    2002-01-01

    This paper deals with project development of training programmes for non-licenced NPP personnel-masters, field operators, maintenance and technical supporting personnel. The programme development focuses on the part stage and on the job training at NPP. Bohunice NPP belongs to plants with higher specific number of personnel per installed power capacity. This factor also influenced the choice of programmes design. Undermentioned procedure is one of various approaches to SAT exploitation for training programmes design. (author)

  11. Statistical analysis of the vibration loading of the reactor internals and fuel assemblies of reactor units type WWER-440 from deferent projects

    International Nuclear Information System (INIS)

    Ovcharov, O.; Pavelko, V.; Usanov, A.; Arkadov, G.; Dolgov, A.; Molchanov, V.; Anikeev, J.; Pljush, A.

    2006-01-01

    In this paper the following items have been presented: 1) Vibration noise instrument channels; 2) Vibration loading characteristics of control assemblies, internals and design peculiarities of internals of WWER-440 deferent projects; 3) Coolant flow rate through the reactor, reactor core, fuel assemblies and control assemblies for different projects WWER-440 and 4) Noise measurements of coolant speed per channel. The change of auto power spectrum density of absolute displacement detector signal for the last 12 years of SUS monitoring of the Kola NPP unit 2; the coherence functions groups between two SPND of the same level for the Kola NPP unit 1; the measured coolant flow rate at Paks NPP and the auto power spectrum density group of SPND signals from 11 neutron measuring channels of the Kola NPP unit 1 are given. The main factors of vibration loading of internals and fuel assemblies for Kola NPP units 1-4, Bohunice NPP units 1 and 2 and Novovoronezh NPP units 3 and 4 are also discussed

  12. Principles and criteria for environmental restoration of the contaminated banks near NPP Bohunice

    International Nuclear Information System (INIS)

    Slavik, O.; Moravek, J.

    1995-01-01

    The 18 km long banks of the Bohunice NPP waste water recipient are contaminated by 137 Cs as a result of two accidents on the CO 2 cooled NPP-A1 unit in 1976 and 1977. Contamination acceptance limits 6 or 8 Bq 137 Cslg of soil, depending on contaminated area size, were derived on the basis of developed principles, and approved by the authorities. Removing and safe burial of 1,100 m 3 of contaminated soil from steep area and 15 cm thick clean soil covering on about 1ha of flat area of the contaminated banks is planned in frame of the re-considered restoration project implementation in 1995/96. (author)

  13. SEJV2 software package for radiation monitoring system of WWER 440 NPP

    International Nuclear Information System (INIS)

    Kapisovsky, V.; Jancik, O.; Kubik, I.; Bena, J.

    1993-01-01

    The main part of the radiation monitoring system at a WWER-440 (213 reactor type) nuclear power plant is the centralized 400-channel monitoring system 'SEJVAL' servicing twin reactor units. The SEJV2 software package is described developed to run on a PC with an IFS2 interface to the SEJVAL radiation monitoring system. It provides enhanced data presentation, record keeping and report generation, thus improving the efficiency of the health physics shift. The system was for the first time implemented at the Jaslovske Bohunice V-2 nuclear power plant with encouraging results. (Z.S.) 3 refs

  14. Assessment of the integrity of WWER type reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1995-01-01

    Procedures are given for the assessment of the residual lifetime of reactor pressure vessels with respect to a sudden failure, the lifetime of vessels with defects disclosed during in-service inspections, and the fatigue or corrosion-mechanical lifetime. Also outlined are the ways of assessing the effects of major degradation mechanisms, i.e. radiation embrittlement, thermal aging, and fatigue damage, including the use of calculated values and experimental examination, by means of surveillance specimens in particular. All results of assessment performed so far indicate that the life of reactor pressure vessels at the Dukovany, Jaslovske Bohunice, and Temelin nuclear power plants is well secured. 7 figs., 3 refs

  15. Environment monitoring and residents health condition monitoring of nuclear power plant Bohunice region

    International Nuclear Information System (INIS)

    Letkovicova, M.; Rehak, R.; Stehlikova, B.; Celko, M.; Hraska, S.; Klocok, L.; Kostial, J.; Prikazsky, V.; Vidovic, J.; Zirko, M.; Beno, T.; Mitosinka, J.

    1998-01-01

    The report contents final environment evaluation and selected characteristic of residents health physics of nuclear power plant Bohunice region. Evaluated data were elaborated during analytical period 1993-1997.Task solving which results are documented in this final report was going on between 1996- 1998. The report deals in individual stages with the following: Information obtaining and completing which characterize demographic situation of the area for the 1993-1997 period; Datum obtaining and completing which contain selected health physics characteristics of the area residents; Database structures for individual data archiving from monitoring and collection; Brief description of geographic information system for graphic presentation of evaluation results based on topographic base; Digital mapping structure description; Results and evaluation of radionuclide monitoring in environment performed by Environmental radiation measurements laboratory by the nuclear power plant Bohunice for the 1993-1997 period. Demographic situation evaluation and selected health physics characteristics of the area of nuclear power plant residents for the 1993-1997 period are summarized in the final part of the document. Monitoring results and their evaluation is processed in graph, table, text description and map output forms. Map outputs are processed in the geographic information system Arc View GIS 3.0a environment

  16. The common project for completion of Bubbler Condenser Qualification (Bohunice, Mochovce, Dukovany and Paks NPPs)

    International Nuclear Information System (INIS)

    Jaroslav, H.; Pavol, B.

    2003-01-01

    Described is the common project for completion of bubbler condenser qualification for nuclear power plants in Bohunice, Mochovice, Dukovany and Paks. Functionality of the bubbler condenser was elaborated during the simulation of the main steam line brake, medium break and small break LOCA. On this basis the appropriate operation of bubbler condenser containment under accident conditions can be positively confirmed

  17. Experiences from start-up and use of fail-safe reactor level meter with KNITU probes

    International Nuclear Information System (INIS)

    Badiar, S.; Sipka, J.; Vanco, P.; Slanina, Marek; Liska, L.; Gavora, D.

    2001-01-01

    Within the framework of the reconstruction of both V1 Bohunice units with WWER-440/V-230 reactors, the VUJE-SIEMENS consortium implemented measurement systems for coolant level monitoring in reactor pressure vessels with 1E qualification, resp. with the qualification of category 1 according to NUSS RG1.97. The solution uses KNITU 11 probes made by Russian POZIT company. In operating plants, the installation causes problems in relation to the existing technology and quality assurance system. In the phase of implementation, the most important tasks were to resolve component quality, to commission the system, and to check its performance. (Authors)

  18. Current status of LTO licensing programme for Bohunice nuclear power plant

    International Nuclear Information System (INIS)

    Borak, J.; Kupca, L.

    2012-01-01

    The objective of long term operation (LTO) licensing programme for Bohunice nuclear power plant is to demonstrate that the relevant structures and components shall perform their functions throughout the entire LTO period during which they shall meet all the relevant safety requirements. All the activities-which should result in utility's request to obtain the licence for LTO-must be performed in line with the relevant legal basis. As of May 2012, the anticipated duration of currently running programme is thirteen months. All relevant documentation, required by the established legal basis, shall be submitted to the licensing authority one year before the Unit 3 design life expiry. (author)

  19. Evaluation of an external exposure of a worker during manipulation with waste packages stored in Bohunice radioactive waste treatment centre

    International Nuclear Information System (INIS)

    Slimak, A.; Hrncir, T.; Necas, V.

    2012-01-01

    The paper briefly describes current state of radioactive waste management as well as radioactive waste treatment and conditioning technologies used in Bohunice Radioactive Waste Treatment Centre. Radioactive Waste management includes pretreatment, treatment, conditioning, storage, transport and disposal of radioactive waste. Presented paper deals with the evaluation of an external exposure of a worker during manipulation with fibre-reinforced concrete container stored under shelter object. The external exposure of a worker was evaluated using VISIPLAN 3D ALARA code. (Authors)

  20. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L [VUJE Inc. (Slovakia)

    2012-07-01

    In the Slovak Republic are under operation 6 units (4 in the Jaslovske Bohunice site, and 2 in the Mochovce), 2 units are under construction in Mochovce site. All units are WWER-440 type. The fresh fuel is imported from the Russian Federation. The spent fuel assemblies are stored in wet conditions in Bohunice Interim Storage Spent Fuel Facility (SFIS). By 15 July 2008, there were 8413 assemblies in SFIS. The objectives are: 1) Wet AR storage of spent fuel from the NPP Bohunice and Mochovce: Surveillance of conditions for spent fuel storage in the at-reactor (AR) storage pools of both NPP's (characteristics of pool water, corrosion product data); Visual control of storage pool components; Evaluation of storage conditions with respect to long-term stability (corrosion of fuel cladding, structural materials); 2) Wet SFIS storage at Bohunice: Measurement of spent fuel conditions during the long-term wet storage, activity data in the storage casks and amount of crud; Surveillance program for SFIS structural materials.

  1. Report of the IPERS (International Peer Review Service) review mission for the Bohunice-V2 nuclear power plant Level 1 probabilistic safety assessment in the Slovak Republic 17 to 28 January 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report presents the results of the IAEA International Peer Review Services (IPERS) review of the probabilistic safety assessment (PSA) for the Bohunice-V2 NPP. The review was based on the PSA documentation available and on intensive communications with the analysis team and representatives from the utility and the plant operator. The results presented herein reflect the views of the international experts carrying out the review. They are provided for consideration by the responsible authorities of the Slovak Republic. 12 refs, 4 tabs

  2. Monitoring of Persons at the Exit from Bohunice NPP

    International Nuclear Information System (INIS)

    Kaizer, J.; Svitek, J.

    2001-01-01

    Full text: IAEA defines the principal requirement 'defence in depth' as a multilayer system in its authorised document - International Basic Safety Standards for Protection against Ionising Radiation, Safety Series No. 115. The principle of the multilayer system is: a failure at one zone is compensated or corrected at subsequent zones. The main argument why Bohunice NPP modernised its monitoring system at the exit from NPP was the implementation of the principle 'defence in depth'. Several instruments PM7 (Eberline) equipped with the plastic scintillation detectors had been bought because of the modernisation. The instruments had to be integrated into overall security system NPP without any restriction to the number of passing people. The supplier had to modify the basic instrument operation. NPP required a 'dynamic' monitoring version, this means the operation without stopping of a person within the instrument. After the modification the value of the RDA (Reliable Detectable Activity) of the instruments PM7 was within the interval 9.25-10.4 kBq for 137 Cs (dotted source in the middle of the instrument). RDA for the mix of activation products was 2-3 times lower. In conclusion of our paper the results of the monitoring are presented within tree years as well as a discussion about these results. Maximum values of contaminations measured were very low (several kBq) that represented very low risk from potential exposure. (author)

  3. The preliminary results of the thermal annealing processes performed on the RPVs NPP V-1 in Jaslovske Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L; Brezina, M; Beno, P [Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia)

    1994-12-31

    Samples of weld and base metal above and below the weld were taken from RPV material in the V-230 type NPP V-1 in Bohunice; hardness measurements were carried out across the weld on the external surface of the RPV under the thermal shielding, before and after annealing. Results are presented and the annealing procedure efficiency is discussed. (authors). 13 refs., 5 figs.

  4. Eco information 2. Influence of operation of the plants Jadrova vyradovacia spolocnost, a.s., on the environment, locality of Bohunice, within February 2016

    International Nuclear Information System (INIS)

    2016-03-01

    In this leaflet the results of monitoring of chemical gaseous and liquid effluents into the rivers Vah and Dudvah as well as of radiation monitoring of Bohunice V1 NPP, Interim Spent Fuel Storage (MSVP), Bohunice Radioactive Waste Processing Centre (VK808 - BSC), The Main Production Unit (VK 46A - HVB) and Bitumenation Lines (VK 46B - BL) are presented. The alpha radioactive effluents into atmosphere within January - February 2016 (for NPP V1, MSVP, BSC, HVB and BL, respectively) were: 0.100 MBq (0.001 of AL) for V1, 0.013 MBq (0.004% of AL) for MSVP, 0.017 MBq (0.012% of AL) for BSC, 0.048 MBq (0.007% of AL) for HVB and 0.005 MBq (0.003% of AL) for BL of aero-soles. The radioactive effluents into atmosphere and hydrosphere within a February 2016 for NPP V1, MSVP, and VK 808 BSC, respectively, were: 0.049 MBq (V1), 0.007 MBq (VK MSVP), 0.011 MBq (VK 808 BSC), 0.020 MBq (VK 46A) and 0.002 MBq (VK 46B) of aero-soles into atmosphere; 0.706 MBq (V1 and MSVP) and 0.738 MBq (TSU RAO and NPP A1) of corrosive and fission products, and 0.419 GBq (V1 and MSVP) and 7.479 GBq (TSU RAO and NPP A1) of tritium into the Vah River and 0.000 GBq (V1 and MSVP) and 0.000 MBq (TSU RAO and NPP A1) of corrosive and fission products and 0.000 GBq of tritium (V1) and 0.000 GBq of tritium (TSU RAO and NPP A1) into the Dudvah River). For the period January - February 2016 these radioactive effluents into recipient of Vah River represent for corrosive and fission products 0.898 MBq (0.0069% of AL for V1 and MSVP) and 1.084 MBq (0.009% of AL for TSU RAO and MSVP); and for tritium it is 0.420 GBq (0.02098% of AL) for V1 and MSVP, and 18.470 GBq (0.185% of AL) for TSU RAO and NPP A1 (into the Vah River) and for corrosive and fission products 0.000 MBq (V1 and MSVP) and 0.000 MBq (TSU RAO and NPP A1) (0.0000 of AL) of tritium (into the Dudvah River). Chemical effluents are reported, too.

  5. Chemistry monitoring and diagnostic system at NPP Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Smiesko, Ivan; Figedy, Stefan

    2012-09-01

    This paper provides a description of water chemistry monitoring and diagnostic system installed at Slovak NPP Jaslovske Bohunice. System has complex architecture and covers laboratory data, chemistry and radiochemistry on-line monitoring data, process data acquisition and processing and diagnostics. Pre-filtered data from process computer and chemistry on-line monitors are recorded together with laboratory data in the ORACLE-based information system CHEMIS with many presentation and processing features. Brief information is given about the basic features of a newly developed diagnostic system for early detection and identification of anomalies incoming in the water chemistry regime of the primary and secondary circuit of VVER-440 type unit. This system, called SACHER (System of Analysis of Chemical Regime) has been installed within the major modernization project at the NPP Bohunice in the Slovak Republic. System SACHER has been developed fully in MATLAB environment. Diagnostic system works exclusively with available on-line data as an operation personnel support application allowing effective response to adverse chemistry events/trends. The availability of prompt information about the chemical conditions of the primary and secondary circuit is very important in order to prevent the undue corrosion and deposit build-up processes within the plant systems. The typical chemical information systems that exist and work at the NPPs give the user values of the measured quantities together with their time trends and other derived values. It is then the experienced user's role to recognize the situation the monitored process is in and make the subsequent decisions and take the measures. The SACHER system, based on the computational intelligence techniques, inserts the elements of intelligence into the overall chemical information system. It has the modular structure with the following most important modules: - normality module- its aim is to recognize that the process

  6. Cooperation of nuclear reactor controller ARM-5S and turbine TVER-02

    International Nuclear Information System (INIS)

    Wagner, K.; Lnenicka, B.; Pokorny, F.; Prochazka, F.

    1985-01-01

    Turbines of Czechoslovak make provided with controllers TVER-02 are installed in WWER-440 nuclear power plants under construction in Czechoslovakia. Reactor output is controlled using Soviet-made controllers ARM-5S which already comprise turbine controllers. The problems are analyzed of cooperation of both controllers, especially their parameters and transient processes in typical operating situations. The analysis uses the results of measurements performed during the power start-up of Unit 1 of the V-2 nuclear power plant at Jaslovske Bohunice. The results show that two types of control modes can be selected for the operation of the entire unit: the control to constant unit output, and control of unit output varying with turbine load selected on the TVER-02 controller or given by the demand of the power network. (Z.M.)

  7. Monitoring of primary circuit and reactor of NPP A-1

    International Nuclear Information System (INIS)

    Prazska, M.; Majersky, M.; Rezbarik, J.; Sekely, S.; Vozarik, P.; Walthery, R.; Stuller, P.

    2005-01-01

    Nuclear Power Plant A-1 in Jaslovske Bohunice was commissioned in 1972. Heavy water moderated, carbon dioxide cooled channel type reactor was shut down after two accidents in 1977. During more serious second accident, the reduced coolant flow caused local overheating of the fuel and consequent damage/melting of the fuel channel. Both accidents had led to the damage of several fuel assemblies with extensive local damage of fuel claddings. As a consequence, the main cooling circuit was significantly contaminated by fission products and long-life alpha nuclides. The detailed monitoring of dose rates, smearable contamination and sampling of contamination was performed. Extended monitoring in reacto vessel, primary circuit pipes, turbo-compressors, steam generators, main valves, gas tanks and also heavy water system with collectors, coolers, distilling and purification station, pumps and valves was done. Appropriate devices and procedures for the monitoring and examination of the installations were prepared and applied. Obtained results will serve for the future planning of the decontamination and decommissioning works. The 3-D model of the reactor that had been developed as part of this Project proved invaluable for orientation, visualisation, planning and analysis of results. Dose rates were measured in the technological channels from the reactor hall floor to the bottom of the hot gas chamber in decrements of 1 m and 0.5 m. The highest absolute values of dose rates were found in channels located in the middle of the reactor (up to 1900 mGy/h in the active zone region). It is estimated that the total contaminated area of primary circuit equipment (pipework, steam generators and turbo-compressors) is some 48 000 m 2 . It follows that the total gamma contamination is of the order of 10 14 to 10 15 Bq and total alpha contamination 10 11 to 10 13 Bq. The total amount of deposits in the gas circuit is about 14.3 tons. (authors)

  8. Nuclear safety in Slovak Republic. Safety analysis reports for WWER 440 reactors

    International Nuclear Information System (INIS)

    Rohar, S.

    1999-01-01

    Implementation of nuclear power program is connected to establishment of regulatory body for safe regulation of siting, construction, operation and decommissioning of nuclear installations. Licensing being one of the most important regulatory surveillance activity is based on independent regulatory review and assessment of information on nuclear safety for particular nuclear facility. Documents required to be submitted to the regulatory body by the licensee in Slovakia for the review and assessment usually named Safety Analysis Report (SAR) are presented in detail in this paper. Current status of Safety Analysis Reports for Bohunice V-1, Bohunice V-2 and Mochovce NPP is shown

  9. Existing and near future practices of spent fuel storage in Slovak Republic

    International Nuclear Information System (INIS)

    Mizov, J.

    1999-01-01

    In this paper existing and near future practices of spent fuel storage in Slovak Republic are discussed: (1) Reactor operation and spent fuel production; (2) Past policy in spent fuel storage; (3) Away-from-reactor (AFR) storage facility at Bohunice NPP site; (4) Present policy in spent fuel storage; (5) Final disposal of spent fuel

  10. NPP Mochovce - a project of extraordinay significance

    International Nuclear Information System (INIS)

    Chwolik, I.; Debru, M.

    2000-01-01

    In this paper and in this presentation the reactor safety upgrading of two blocks of the NPP V-1 Bohunice, some results of participation on safety upgrading by the German-French consortium EUCOM (Framatome and Siemens-KWU) are presented. (author)

  11. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  12. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  13. Radioactive waste management at WWER type reactors

    International Nuclear Information System (INIS)

    1993-05-01

    This report was prepared within the framework of the Technical Assistance Regional Project on Advice on Waste Management at WWER Type Reactors, which was initiated by the IAEA in 1991. The Regional Project is an integral part of the IAEA's activities directed towards improvement of the safety and reliability of nuclear power plants with WWER type reactors (Soviet designed PWRs). Forty-five WWER type units are currently in operation and twenty-five are under construction in Bulgaria, Czechoslovakia, Finland, Hungary and the former USSR. The idea of regional collaboration between eastern European countries under the auspices of the IAEA was discussed for the first time during the last meeting of the Council for Mutual Economic Assistance (CMEA) on spent fuel and radioactive waste management, held in Rez, Czechoslovakia, in October 1990. Since then, the CMEA and some of its former Member States have ceased to exist. However, there are many reasons for eastern European countries to continue their regional collaboration at a higher level. The USSR, the designer and supplier of WWER type reactors in eastern European countries, participated in the first phase of the project. The majority of WWER type reactors are situated in States of the former USSR (Russia and Ukraine). The main results of the first phase of the Regional Project are: (i) Re-establishment of communication channels among eastern European countries operating WWER type reactors by incorporating the IAEA's technical assistance; (ii) Identification of common waste management problems (administrative and technical) requiring resolution; (iii) Familiarization with radioactive waste management systems at nuclear power plants with WWER type reactors - Paks (Hungary), Loviisa (Finland), Jaslovske Bohunice (Czechoslovakia) and Novovoronezh (Russian Federation). Tabs

  14. Metamorphosis of NPP A1, V1, V2

    International Nuclear Information System (INIS)

    Dobak, D.; Moncekova, M.

    2005-01-01

    In this book the history of construction, commissioning and exploitation of NPP A1, NPP V1 and NPP V2 in Jaslovske Bohunice is presented on documentary photos. Vicinity around of these NPPs is presented, too

  15. Proceedings of the 9th NUSIM 2000 Conference. Joint Slovak, Czech and German Seminar on Nuclear Power

    International Nuclear Information System (INIS)

    2000-01-01

    Scientific conference deals with problems of reactor safety upgrading, mainly of two blocks of the NPP V-1 Bohunice as well as decomissioning of the NPP A-1 Bohunice. Other problems of the nuclear engineering were discussed. Totally, 201 participants from the Slovak Republic, Czech Republic and Germany and from other countries took part in the conference. The Conference included the following sessions: (i): Survey on the situation of nuclear power in the partner countries; (ii) Mochovce design safety enhacement and operational experience; (iii) Bohunice V-1 safety upgrading and operational experience; (iv) Decomissioning, spent fuel and radwaste management; (v) Young Generation Presentation. Proceedings contains thirty one papers dealing with the scope of INIS

  16. SIEMENS

    International Nuclear Information System (INIS)

    2001-01-01

    This CD is multimedia presentation of programme safety upgrading of Bohunice V1 NPP. This chapter contains information about Siemens and it participation on reconstruction of Bohunice V1 and V1 NPPs. It consists of next parts: (1) FRAMATOME ANP - worldwide activities of the FRAMATOME are presented; (2) Nuclear power engineering - present activities focus on: Upgrading and Backfitting (Siemens WWER activities since 1971); Electrical instrumentation and control systems; Fuel assemblies and related services; Reactor development and construction of new plants; (3) Safety improvement; (4) Siemens in Slovakia (activities of Siemens in Slovakia during 1993-2000 are presented); (5) More than 150-year history

  17. Reconstruction of instrumentation and control system (SKR)

    International Nuclear Information System (INIS)

    Wiening, K.-H.

    2001-01-01

    For the first time extensive upgrades have been performed in all safety related areas of units with WWER 440/230 reactors. One of the most important actions was the replacement of the safety and safety related instrumentation and control. The state of the art digital safety instrumentation and control system TELEPERM XS has been implemented in units 1 and 2 of the Bohunice V1 power plant. The requirements as deduced from safety assessments conducted by commissions of international experts have been fulfilled, so that Bohunice V1 after this gradual reconstruction has been upgraded to an internationally accepted safety level for the remainder of its service life. (author)

  18. PARR-2: reactor description and experiments

    International Nuclear Information System (INIS)

    Wyne, M.F.; Meghji, J.H.

    1990-12-01

    PARR-2 is a miniature neutron source reactor (MNSR) research reactor has been designed at the rate of 27 kW. Reactor assembly comprises of peaking characteristics with a self limiting flux. In this report reactor description with its assembly and instrumentation control system has been explained. The reactor engineering and physics experiments which can be performed on this reactor are explained in this report. PARR-2 is fueled with HEU fuel pins which are about 90% enriched in U-235. Specific requirements for the safety of the reactor, its building and the personnel, normal instrumentation as required in an industrial environment is sufficient. (A.B.)

  19. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  20. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2001-01-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  1. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  2. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  3. EBR-2 [Experimental Breeder Reactor-2], IFR [Integral Fast Reactor] prototype testing programs

    International Nuclear Information System (INIS)

    Lehto, W.K.; Sackett, J.I.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  4. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  5. Active species in a large volume N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Kutasi, K; Pintassilgo, C D; Loureiro, J; Coelho, P J

    2007-01-01

    A large volume post-discharge reactor placed downstream from a flowing N 2 -O 2 microwave discharge is modelled using a three-dimensional hydrodynamic model. The density distributions of the most populated active species present in the reactor-O( 3 P), O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ), NO(X 2 Π), NO(A 2 Σ + ), NO(B 2 Π), NO 2 (X), O 3 , O 2 (X 3 Σ g - ) and N( 4 S)-are calculated and the main source and loss processes for each species are identified for two discharge conditions: (i) p = 2 Torr, f = 2450 MHz, and (ii) p = 8 Torr, f = 915 MHz; in the case of a N 2 -2%O 2 mixture composition and gas flow rate of 2 x 10 3 sccm. The modification of the species relative densities by changing the oxygen percentage in the initial gas mixture composition, in the 0.2%-5% range, are presented. The possible tuning of the species concentrations in the reactor by changing the size of the connecting afterglow tube between the active discharge and the large post-discharge reactor is investigated as well

  6. G 2 reactor project; Projet de pile a double fin: G 2

    Energy Technology Data Exchange (ETDEWEB)

    Ailleret, [Electricite de France (EDF), Dir. General des Etudes de Recherches, 75 - Paris (France); Taranger, P; Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The CEA actually constructs the G-2 reactor core working with natural uranium, which will use graphite as moderator, and gas under pressure as cooling fluid. This report presents the specificity of the new reactor: - the different elements of the reactor core, - the control and the security of the reactor, - the renewal of the fuel, - the biologic surrounding wall, - and the cooling circuit. (M.B.) [French] le Commissariat a l'Energie Atomique construit actuellement la pile G-2 a Uranium naturel, qui utilisera le graphite comme moderateur, et le gaz sous pression comme fluide de refroidissement. Ce rapport presente les specificite du nouveau reacteur: - les differents elements de la pile, - le controle et la securite du reacteur, - le renouvellement du combustible, - l'enceinte biologique, - et le circuit de refroidissement. (M.B.)

  7. Safety features of TR-2 reactor

    International Nuclear Information System (INIS)

    Tuerker, T.

    2001-01-01

    TR-2 is a swimming pool type research reactor with 5 MW thermal power and uses standard MTR plate type fuel elements. Each standard fuel element consist of 23 fuel plates with a meat + cladding thickness of 0.127 cm, coolant channel clearance is 0.21 cm. Originally TR-2 is designed for %93 enriched U-Al. Alloy fuel meat.This work is based on the preparation of the Final Safety Analyses Report (FSAR) of the TR-2 reactor. The main aspect is to investigate the behaviour of TR-2 reactor under the accident and abnormal operating conditions, which cowers the accident spectrum unique for the TR-2 reactor. This presentation covers some selected transient analyses which are important for the safety aspects of the TR-2 reactor like reactivity induced startup accidents, pump coast down (Loss of Flow Accident, LOFA) and other accidents which are charecteristic to the TR-2

  8. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2002-01-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system

  9. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  10. System Design of a Supercritical CO_2 cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Cho, Seongkuk; Yu, Hwanyeal; Kim, Yonghee; Jeong, Yong Hoon; Lee, Jeong Ik

    2014-01-01

    Small modular reactor (SMR) systems that have advantages of little initial capital cost and small restriction on construction site are being developed by many research organizations around the world. Existing SMR concepts have the same objective: to achieve compact size and a long life core. Most of small modular reactors have much smaller size than the large nuclear power plant. However, existing SMR concepts are not fully modularized. This paper suggests a complete modular reactor with an innovative concept for reactor cooling by using a supercritical carbon dioxide. The authors propose the supercritical CO_2 Brayton cycle (S-CO_2 cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the reactor core and PCU in one vessel. A conceptual design of the proposed small modular reactor was developed, which is named as KAIST Micro Modular Reactor (MMR). The supercritical CO_2 Brayton cycle for the S-CO_2 cooled reactor core was optimized and the size of turbomachinery and heat exchanger were estimated preliminary. The nuclear fuel composed with UN was proposed and the core lifetime was obtained from a burnup versus reactivity calculation. Furthermore, a system layout with fully passive safety systems for both normal operation and emergency operation was proposed. (author)

  11. Eco information 4 Influence of operation of the plants Jadrova vyradovacia spolocnost, a.s., on the environment, locality of Bohunice, within April 2016

    International Nuclear Information System (INIS)

    2016-05-01

    In this leaflet the results of monitoring of chemical gaseous and liquid effluents into the rivers Vah and Dudvah as well as of radiation monitoring of Bohunice V1 NPP, Interim Spent Fuel Storage (MSVP), Bohunice Radioactive Waste Processing Centre (VK808 - BSC), The Main Production Unit (VK 46A - HVB) and Bitumenation Lines (VK 46B - BL) are presented. The alpha radioactive effluents into atmosphere within January - April 2016 (for NPP V1, MSVP, BSC, HVB and BL, respectively) were: 0.141 MBq (0.0002 of AL) for V1, 0.027 MBq (0.006% of AL) for MSVP, 0.029 MBq (0.016% of AL) for BSC, 0.127 MBq (0.015% of AL) for HVB and 0.009 MBq (0.006% of AL) for BL of aero-soles. The radioactive effluents into atmosphere and hydrosphere within a April 2016 for NPP V1, MSVP, and VK 808 BSC, respectively, were: 0.017 MBq (V1), 0.008 MBq (VK MSVP), 0.006 MBq (VK 808 BSC), 0.029 MBq (VK 46A) and 0.003 MBq (VK 46B) of aero-soles into atmosphere; 0.880 MBq (V1 and MSVP) and 0.397 MBq (TSU RAO and NPP A1) of corrosive and fission products, and 0.315 GBq (V1 and MSVP) and 7.163 GBq (TSU RAO and NPP A1) of tritium into the Vah River and 0.000 GBq (V1 and MSVP) and 0.000 MBq (TSU RAO and NPP A1) of corrosive and fission products and 0.000 GBq of tritium (V1) and 0.000 GBq of tritium (TSU RAO and NPP A1) into the Dudvah River). For the period January - April 2016 these radioactive effluents into recipient of Vah River represent for corrosive and fission products 2.658 MBq (0.0204% of AL for V1 and MSVP) and 1.744 MBq (0.015% of AL for TSU RAO and MSVP); and for tritium it is 0.736 GBq (0.03679% of AL) for V1 and MSVP, and 31.833 GBq (0.318% of AL) for TSU RAO and NPP A1 (into the Vah River) and for corrosive and fission products 0.000 MBq (V1 and MSVP) and 0.000 MBq (TSU RAO and NPP A1) (0.0000 of AL) of tritium (into the Dudvah River). Chemical effluents are reported, too.

  12. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  13. SIRIUS 2: A versatile medium power research reactor

    International Nuclear Information System (INIS)

    Rousselle, P.

    1992-01-01

    Most of the Research Reactors in the world have been critical in the Sixties and operated for twenty to thirty years. Some of them have been completely shut down, modified, or simply refurbished; the total number of RR in operation has decreased but there is still an important need for medium power research reactors in order: - to sustain a power program with fuel and material testing for NPP or fusion reactors; - to produce radioisotopes for industrial or medical purposes, doped silicon, NAA or neutron radiography; - to investigate further the condensed matter, with cold neutrons routed through neutron guides to improved equipment; - to develop new technologies and applications such as medical alphatherapy. Hence, taking advantage of nearly hundred reactor x years operation and backed up by the CEA experience, TECHNICATOME assisted by FRAMATOME has designed a new versatile multipurpose Research Reactor (20-30 Mw) SIRIUS 2 taking into account: - more stringent safety rules; - the lifetime; - the flexibility enabling a wide range of experiments and, - the future dismantling of the facility according to the ALARA criteria

  14. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  15. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  16. Calculational experimental examination and ensuring of equipment and pipelines seismic resistance at starting and operating water-cooled and moderated reactor WWER-type NPPs. Final report

    International Nuclear Information System (INIS)

    1999-01-01

    The results of testing of equipment at Bohunice NPP and pipeline systems at Unit 3 of Kozloduy NPP (WWER-440 type reactors) are presented in this Final Report. These results side by side with experimental values of natural frequencies and decrements also include experimental data about vibration modes of tested equipment and pipelines. For the first time the results of new calculational-experimental examination of equipment seismic resistance at Unit 2 of Armenian NPP are presented. At Kozloduy NPP direction's request the planed additional tests of some selected items were put off on 1997. Instead of postponed tests we carried out detailed analysis of our past inspections of numerous equipment seismic resistance at the Unit 5 of Kozloduy NPP. Experimental data with results of additional analysis are presented

  17. Application of MCNPX 2.7.D for reactor core management at the research reactor BR2

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, Edgar

    2011-01-01

    The paper discusses application of the Monte Carlo burn up code MCNPX 2.7.D for whole core criticality and depletion analysis of the Material Testing Research Reactor BR2 at SCK-CEN in Mol, Belgium. Two different approaches in the use of MCNPX 2.7.D are presented. The first methodology couples the evolution of fuel depletion, evaluated by MCNPX 2.7.D in an infinite lattice with a steady-state 3-D power distribution in the full core model. The second method represents fully automatic whole core depletion and criticality calculations in the detailed 3-D heterogeneous geometry model of the BR2 reactor. The accuracy of the method and computational time as function of the number of used unique burn up materials in the model are being studied. The depletion capabilities of MCNPX 2.7.D are compared vs. the developed at the BR2 reactor department MCNPX & ORIGEN-S combined method. Testing of MCNPX 2.7.D on the criticality measurements at the BR2 reactor is presented. (author)

  18. Contributions of Modranska potrubni a.s. to the safety improvement of piping systems and valves of NPS type VVER 440 and VVER 1000

    International Nuclear Information System (INIS)

    Slach, J.

    2004-01-01

    The following activities are described: (i) Installation of pipe whip restraints on piping for high pressure and temperature steam and feed piping; (ii) Installation of air receivers for quick-acting valves with air actuator on VVER 440 units at the Jaslovske Bohunice V2 NPP; (iii) Replacement of the technical water distribution system material in the reactor hall of the Temelin VVER 1000 units; Installation of measuring nozzles on main steam piping DN 600 at the Temelin VVER 1000 units. (P.A.)

  19. Core monitoring at the WNP-2 reactor

    International Nuclear Information System (INIS)

    Skeen, D.R.; Torres, R.H.; Burke, W.J.; Jenkins, I.; Jones, S.W.

    1992-01-01

    The WNP-2 reactor is a 3,323-MW(thermal) boiling water reactor (BWR) that is operated by the Washington Public Power Supply System. The WNP-2 reactor began commercial operation in 1984 and is currently in its eighth cycle. The core monitoring system used for the first cycle of operation was supplied by the reactor vendor. Cycles 2 through 6 were monitored with the POWERPLEX Core Monitoring Software System (CMSS) using the XTGBWR simulation code. In 1991, the supply system upgraded the core monitoring system by installing the POWERPLEX 2 CMSS prior to the seventh cycle of operation for WNP-2. The POWERPLEX 2 CMSS was developed by Siemens Power Corporation (SPC) and is based on SPC's advanced state-of-the-art reactor simulator code MICROBURN-B. The improvements in the POWERPLEX 2 system are possible as a result of advances in minicomputer hardware

  20. Physics design of advanced steady-state tokamak reactor A-SSTR2

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Ushigusa, Kenkichi

    2000-10-01

    Based on design studies on the fusion power reactor such as the DEMO reactor SSTR, the compact power reactor A-SSTR and the DREAM reactor with a high environmental safety and high availability, a new concept of compact and economic fusion power reactor (A-SSTR2) with high safety and high availability is proposed. Employing high temperature superconductor, the toroidal filed coils supplies the maximum field of 23T on conductor which corresponds to 11T at the magnetic axis. A-SSTR2 (R p =6.2m, a p =1.5m, I p =12MA) has a fusion power of 4GW with β N =4. For an easy maintenance and for an enough support against a strong electromagnetic force on coils, a poloidal coils system has no center solenoid coils and consists of 6 coils located on top and bottom of the machine. Physics studies on the plasma equilibrium, controllability of the configuration, the plasma initiation and non-inductive current ramp-up, fusion power controllability and the diverter have shown the validity of the A-SSTR2 concept. (author)

  1. Seismic strengthening of nuclear power plants V1-V2 structures in Slovak Republic

    International Nuclear Information System (INIS)

    David, M.

    1993-01-01

    The structural upgrading of main buildings of Bohunice NPP units V1 and V2 is described in this presentation. Design criteria for structural upgrading are included. Since the seismic upgrading of the existing NPP is usually very complicated and expensive task, designer is obliged to find the optimal solution between the economics and reliability of the upgrading. The assistance of IAEA missions during the process of Bohunice seismic upgrading is considered very fruitful

  2. Keeping research reactors relevant: A pro-active approach for SLOWPOKE-2

    International Nuclear Information System (INIS)

    Cosby, L.R.; Bennett, L.G.I.; Nielsen, K.; Weir, R.

    2010-01-01

    The SLOWPOKE is a small, inherently safe, pool-type research reactor that was engineered and marketed by Atomic Energy of Canada Limited (AECL) in the 1970s and 80s. The original reactor, SLOWPOKE-1, was moved from Chalk River to the University of Toronto in 1970 and was operated until upgraded to the SLOWPOKE-2 reactor in 1973. In all, eight reactors in the two versions were produced and five are still in operation today, three having been decommissioned. All of the remaining reactors are designated as SLOWPOKE-2 reactors. These research reactors are prone to two major issues: aging components and lack of relevance to a younger audience. In order to combat these problems, one SLOWPOKE -2 facility has embraced a strategy that involves modernizing their reactor in order to keep the reactor up to date and relevant. In 2001, this facility replaced its aging analogue reactor control system with a digital control system. The system was successfully commissioned and has provided a renewed platform for student learning and research. The digital control system provides a better interface and allows flexibility in data storage and retrieval that was never possible with the analogue control system. This facility has started work on another upgrade to the digital control and instrumentation system that will be installed in 2010. The upgrade includes new computer hardware, updated software and a web-based simulation and training system that will allow licensed operators, students and researchers to use an online simulation tool for training, education and research. The tool consists of: 1) A dynamic simulation for reactor kinetics (e.g., core flux, power, core temperatures, etc). This tool is useful for operator training and student education; 2) Dynamic mapping of the reactor and pool container gamma and neutron fluxes as well as the vertical neutron beam tube flux. This research planning tool is used for various researchers who wish to do irradiations (e.g., neutron

  3. EBR-2 [Experimental Breeder Reactor-2] test programs

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.; Hill, D.J.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development, (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development, advanced control system development, plant diagnostics development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  4. Evaluation of seismic resistance of low voltage switchgear, NPP V1 Jaslovske Bohunice, Slovakia

    International Nuclear Information System (INIS)

    Zeman, P.

    1999-01-01

    During this year, company Stevenson and Associates took part in the project of evaluation of seismic resistance of NPP V-1 Jaslovske Bohunice in Slovakia. It was responsible for a part of electrical equipment, mainly for the evaluation of low voltage switchgears. There were four steps of the evaluation: Detailed Walkdown; Application of GIP-WWER Methodology; Developing, of In Cabinet Response Spectra; and Evaluation of Acceptance of Formerly Performed Relay Tests According to the Russian Standard OEG l-330.00-3). Tests performed according to the Russian Standard OAG are acceptable only if the tested subject shows just one dominant natural frequency in the significant energy frequency range. If there is no knowledge of modal properties of the tested subject (that is a frequent situation because test reports usually contain only generalized Fourier loading spectrum) the enveloping of In Cabinet Response Spectra (ICRS) in all significant energy frequency ranges by Response Spectra (RS) of harmonic signal on one arbitrary frequency. This criteria is usually not satisfied because the shake tables used for the tests are not able to produce the sufficient level of excitation in the low frequency range. It may lead to the demand for test repeating

  5. Dalhousie SLOWPOKE-2 reactor: A nuclear analytical chemistry facility

    International Nuclear Information System (INIS)

    Chatt, A.; Holzbecher, J.

    1990-01-01

    SLOWPOKE is an acronym for Safe Low POwer Kritical Experiment. The SOWPOKE-2 is a compact, inherently safe, swimming-pool-type reactor designed by the Atomic Energy of Canada Limited for neutron activation analysis (NAA) and isotope production. The Dalhousie University SLOWPOKE-2 reactor (DUSR) has been operating since 1976; a large beryllium reflector was added in 1986 to extend its lifetime by another 8 to 10 yr. The DUSR is generally operated at half-power with a maximum thermal flux of 1.1 x 10 12 n/cm 2 ·s in the inner pneumatic sites and that of 5.4 x 10 11 n/cm 2 ·s in the outer sites. Despite this comparatively low flux, SLOWPOKE-2 reactors have many beneficial features that are continuously being exploited at the DUSR facility for developing nuclear analytical methods for fundamental as well as applied studies. Although NAA is a well-established analytical technique, much of the activation analysis being performed in most facilities has been limited to methods using fairly long-lived nuclides. The approach at the DUSR facility has been to utilize the highly homogeneous, stable, and reproducible neutron flux to develop NAA methods based on short-lived nuclides. SLOWPOKE reactors have a fairly high epithermal neutron flux, which is being advantageously used for determining several trace elements in complex matrices. Radiochemical NAA (RNAA) methods using coprecipitation, distillation, and ion-exchange separations have been used for the determination of very low levels of several elements in biological materials

  6. Ageing management of the BR2 research reactor

    International Nuclear Information System (INIS)

    Verpoortem, J. R.; Van Dyck, S.

    2014-01-01

    At the Belgian nuclear research centre (SCK.CEN) several test reactors are operated. Among these, Belgian Reactor 2 (BR2) is the largest Material Test Reactor (MTR). This water-cooled, beryllium moderated reactor with a maximum thermal power of 100 MW became operational in 1962. Except for two major refurbishment campaigns of one year each, this reactor has been operated continuously over the past 50 years, with a frequency of 5-12 cycles per year. At present, BR2 is used for different research activities, the production of medical isotopes, the production of n-doped silicon and various training and education activities. (Author)

  7. A theoretical analysis of methanol synthesis from CO2 and H2 in a ceramic membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2007-01-01

    In this theoretical work the CO2 conversion into methanol in both a traditional reactor (TR) and a membrane reactor (MR) is considered. The purpose of this study was to investigate the possibility of increasing CO2 conversion into methanol with respect to a TR. A zeolite MR, able to combine

  8. A conceptual design of LIB fusion reactor: UTLIF(2)

    International Nuclear Information System (INIS)

    Madarame, Haruki; Kondo, Shunsuke; Iwata, Shuichi; Oka, Yoshiaki; Miya, Kenzo.

    1984-01-01

    UTLIF(2) is a conceptual design study on a light ion beam driven fusion reactor based on a concept of rod-bundle blanket. Survivability and maintainability of the first wall and the blanket are regarded as of major importance in the design. The blanket rod is composed of a thick tube which has enough stiffness, a thin wrapping wall which receives high heat flux, and liquid lithium which breeds tritium and removes generated heat. The rod can be pulled out from the outside of the reactor vessel, hence the replacement is very easy. Nuclear and thermal analysis have been made and the performance of the reactor has been shown to be satisfactory. (author)

  9. PCU arrangement of a supercritical CO{sub 2} cooled micro modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Baik, Seungjoon; Cho, Seong Kuk; Oh, Bong Seong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    As part of the SMR(Small Modular Reactor)s development effort, the authors propose a concept of supercritical CO{sub 2} (S-CO{sub 2}) cooled fast reactor combined with the S-CO{sub 2} Brayton cycle. The reactor concept is named as KAIST Micro Modular Reactor (MMR). The S-CO{sub 2} Brayton cycle has many strong points when it is used for SMR's power conversion unit. It occupies small footprints due to the compact cycle components and simple layout. Thus, a concept of one module containing the S-CO{sub 2} cooled fast reactor and power conversion system is possible. This module can be shipped via ground transportation (by trailer) or marine transportation. In this study, the authors propose a new conceptual layout for the S-CO{sub 2} cooled direct cycle while considering various issues for arranging cycle components. The new design has an improved cycle efficiency (from 31% to 34%) than the earlier version of MMR by reducing pressure drops in the heat exchangers. As a more efficient option, a recompression recuperated cycle was also designed. It improves 5% of thermal efficiency while 18tons of mass can be added in comparison to the simple recuperated cycle. Even if we adopt recompression cycle as a PCU, the weight of module (152tons) is less than the ground transportable limit (260tons)

  10. A successful approach for the implementation of symptom-based emergency operating procedures for VVER reactors

    International Nuclear Information System (INIS)

    Lhoest, V.; Prior, R.; Pascal, G.

    2000-01-01

    The paper provides an overview of the organization, the progress and the results of the various Emergence Operating Procedure (EOP) development programs for VVER type reactors conducted by Westinghouse so far. The detailed working process is presented through the solutions to some major plant issues. The EOPs have been developed for the Temelin, Dukovany, Bohunice, Mochovce and Paks VVER nuclear power plants. The procedures are developed in working teams of experts from the utility and Westinghouse. The completion of the programs constitute an indication of the overall success of this approach. This is further reinforced by the general acceptance of the new procedures by the plant personnel, together with the good results obtained so far from procedure testing. This is also confirmed by a new PSA-level 1 analysis for Dukovany plant, which shows a significant improvement in the overall plant safety. This means a 20% reduction in the Core Damage Frequency due to the introduction of the new EOPs. The fact that some modifications have been implemented to the plants to solve design weaknesses identified in the course of this programs also constitute a positive result

  11. Irradiation Embrittlement Monitoring Programs of RPV's in the Slovak Republic NPP's

    International Nuclear Information System (INIS)

    Kupca, Ludovik

    2006-01-01

    Four types of surveillance programs were (are) realized in Slovak NPP's: 'Standard Surveillance Specimen Program' (SSSP) was finished in Jaslovske Bohunice V-2 Nuclear Power Plant (NPP) Units 3 and 4, 'Extended Surveillance Specimen Program' (ESSP), was prepared for Jaslovske Bohunice NPP V-2 with aim to validate the SSSP results, For the Mochovce NPP Unit 1 and 2 was prepared completely new surveillance program 'Modern Surveillance Specimen Program' (MSSP), based on the philosophy that the results of MSSP must be available during all NPP service life, For the Bohunice V-1 NPP was finished 'New Surveillance Specimen Program' (NSSP) coordinated by IAEA, which gave arguments for prolongation of service life these units for minimum 20 years, New Advanced Surveillance Specimen Program (ASSP) for Bohunice V-2 NPP (units 3 and 4) and Mochovce NPP (units 1, 2) is approved now. ASSP is dealing with the irradiation embrittlement of heat affected zone (HAZ) and RPV's austenitic cladding, which were not evaluated till this time in surveillance programs. SSSP started in 1979 and was finished in 1990. ESSP program started in 1995 and will be finished in 2007, was prepared with aim of: increasing of neutron fluence measurement accuracy, substantial improvement the irradiation temperature measurement, fixed orientation of samples to the centre of the reactor core, minimum differences of neutron dose for all the Charpy-V notch and COD specimens, the dose rate effect evaluation. In the year 1996 was started the new surveillance specimen program for the Mochovce RPV's unit-1 and 2, based on the fundamental postulate - to provide the irradiation embrittlement monitoring till the end of units operation. The 'New Surveillance Specimen Program' (NSSP) prepared in the year 1999 for the Bohunice V-1 NPP was finished in the year 2004. Main goal of this program was to evaluate the weld material properties degradation due to the irradiation and recovery efficiency by annealing too. The

  12. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  13. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  14. Sterilization of E. coli bacterium in a flowing N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Villeger, S; Cousty, S; Ricard, A; Sixou, M

    2003-01-01

    Effective destruction of Escherichia coli (E. coli) bacteria has been obtained in a flowing N 2 -O 2 microwave post-discharge reactor. The sterilizing agents are the O atoms and the UV emissions of NOβ which are produced by N and O atoms recombination in the reactor. In the following plasma conditions: pressure 5 Torr, flow rate 1 L n min -1 , microwave power of 100 W in a quartz tube of 5 mm, an O atom density of 2.5x10 15 cm -3 is measured by NO titration in the post-discharge reactor with UV emission in a N 2 -(5%)O 2 gas mixture. Full destruction of 10 13 cfu ml -1 E. coli is observed after a treatment time of 25 min. (rapid communication)

  15. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  16. Cronos 2: a neutronic simulation software for reactor core calculations

    International Nuclear Information System (INIS)

    Lautard, J.J.; Magnaud, C.; Moreau, F.; Baudron, A.M.

    1999-01-01

    The CRONOS2 software is that part of the SAPHYR code system dedicated to neutronic core calculations. CRONOS2 is a powerful tool for reactor design, fuel management and safety studies. Its modular structure and great flexibility make CRONOS2 an unique simulation tool for research and development for a wide variety of reactor systems. CRONOS2 is a versatile tool that covers a large range of applications from very fast calculations used in training simulators to time and memory consuming reference calculations needed to understand complex physical phenomena. CRONOS2 has a procedure library named CPROC that allows the user to create its own application environment fitted to a specific industrial use. (authors)

  17. Pressurized water reactor simulator. Workshop material. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development. And the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21, 2nd edition, 'WWER-1000 Reactor Simulator' (2005). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23, 2nd edition, 'Boiling Water Reactor Simulator' (2005). This report consists of course material for workshops using a pressurized water reactor simulator

  18. Eco information 9. Influence of operation of the plants Jadrova vyradovacia spolocnost, a.s., on the environment, locality of Bohunice, within September 2014

    International Nuclear Information System (INIS)

    2014-10-01

    In this leaflet the results of monitoring of chemical gaseous and liquid effluents into the rivers Vah and Dudvah as well as of radiation monitoring of Bohunice V1 NPP, Interim Spent Fuel Storage (MSVP), Bohunice Radioactive Waste Processing Centre (VK808 - BSC), The Main Production Unit (VK 46A - HVB) and Bitumenation Lines (VK 46B - BL) are presented. The radioactive effluents into atmosphere within January - September 2014 (for NPP V1, MSVP, BSC, HVB and BL, respectively) were: 1.483 MBq (0.002 of AL) for V1, 0.087 MBq (0.029% of AL) for MSVP, 0.084 MBq (0.060% of AL) for BSC, 0.400 MBq (0.061% of AL) for HVB and 0.028 MBq (0.020% of AL) for BL of aero-soles. The radioactive effluents into atmosphere and hydrosphere within a September 2014 for NPP V1, MSVP, and VK 808 BSC, respectively, were: 0.258 MBq (V1), 0.007 MBq (VK MSVP), 0.018 MBq (VK 808 BSC), 0.005 MBq (VK 46A) and 0.002 MBq (VK 46B) of aero-soles into atmosphere; 1.169 MBq (V1 and MSVP) and 0.522 MBq (TSU RAO and NPP A1) of corrosive and fission products, and 0.002 GBq (V1 and MSVP) and 16.740 GBq (TSU RAO and NPP A1) of tritium into the Vah River and 0.000 GBq (V1 and MSVP) and 0.000 MBq (TSU RAO and NPP A1) of corrosive and fission products and 0.000 GBq of tritium (V1) and 0.000 GBq of tritium (TSU RAO and NPP A1) into the Dudvah River). For the period January - September 2014 these radioactive effluents into recipient of Vah River represent for corrosive and fission products 12.402 MBq (0.095% of AL for V1 and MSVP) and 5.010 MBq (0.042% of AL for TSU RAO and MSVP); and for tritium it is 8.382 GBq (0.419% of AL) for V1 and MSVP, and 98.415 GBq (0.984% of AL) for TSU RAO and NPP A1 (into the Vah River) and for corrosive and fission products 0.000 MBq (V1 and MSVP) and 0.000 MBq (TSU RAO and NPP A1) (0.0000 of AL) of tritium (into the Dudvah River). Chemical effluents are reported, too.

  19. Eco information 1. Influence of operation of the plants Jadrova vyradovacia spolocnost, a.s., on the environment, locality of Bohunice, within January 2016

    International Nuclear Information System (INIS)

    2016-02-01

    In this leaflet the results of monitoring of chemical gaseous and liquid effluents into the rivers Vah and Dudvah as well as of radiation monitoring of Bohunice V1 NPP, Interim Spent Fuel Storage (MSVP), Bohunice Radioactive Waste Processing Centre (VK808 - BSC), The Main Production Unit (VK 46A - HVB) and Bitumenation Lines (VK 46B - BL) are presented. The alpha radioactive effluents into atmosphere within January 2016 (for NPP V1, MSVP, BSC, HVB and BL, respectively) were: 0.051 MBq (0.0001 of AL) for V1, 0.006 MBq (0.002% of AL) for MSVP, 0.007 MBq (0.005% of AL) for BSC, 0.027 MBq (0.004% of AL) for HVB and 0.003 MBq (0.002% of AL) for BL of aero-soles. The radioactive effluents into atmosphere and hydrosphere within a January 2016 for NPP V1, MSVP, and VK 808 BSC, respectively, were: 0.051 MBq (V1), 0.006 MBq (VK MSVP), 0.007 MBq (VK 808 BSC), 0.027 MBq (VK 46A) and 0.003 MBq (VK 46B) of aero-soles into atmosphere; 0.192 MBq (V1 and MSVP) and 0.346 MBq (TSU RAO and NPP A1) of corrosive and fission products, and 0.001 GBq (V1 and MSVP) and 10.991 GBq (TSU RAO and NPP A1) of tritium into the Vah River and 0.000 GBq (V1 and MSVP) and 0.000 MBq (TSU RAO and NPP A1) of corrosive and fission products and 0.000 GBq of tritium (V1) and 0.000 GBq of tritium (TSU RAO and NPP A1) into the Dudvah River). For the period January - January 2016 these radioactive effluents into recipient of Vah River represent for corrosive and fission products 0.192 MBq (0.0015% of AL for V1 and MSVP) and 0.346 MBq (0.003% of AL for TSU RAO and MSVP); and for tritium it is 0.001 GBq (0.00003% of AL) for V1 and MSVP, and 10.991 GBq (0.110% of AL) for TSU RAO and NPP A1 (into the Vah River) and for corrosive and fission products 0.000 MBq (V1 and MSVP) and 0.000 MBq (TSU RAO and NPP A1) (0.0000 of AL) of tritium (into the Dudvah River). Chemical effluents are reported, too.

  20. Nuclear energetics as environmentally affable source - present and and future

    International Nuclear Information System (INIS)

    Suchomel, J.

    2002-01-01

    In this paper the situation in nuclear energetics in the world in 2000 year is presented. Climatic changes initiated by burning of the fossil fuels an influence of nuclear energetics are discussed. Author informs that European Union and U.S.A. supports developing of nuclear energetics. Nuclear phobia from radiation risk of some inhabitants is compared with risks of other man activities. Possibilities of the electricity production by alternative sources are compared. Liability of the Slovak Republic for decommissioning of two reactor of the V-1 Jaslovske Bohunice NPP in 2006 and 2008, which is compared with the Program of safety improvement of these reactors are discussed. Author and Slovak Nuclear Society accept gladly the suggestion of government of the Slovak Republic that they reassess this liability. The best alternative for decommissioned Jaslovske Bohunice NPP will be the completion of the 3 rd and 4 th blocks of the Mochovce NPP

  1. Proceedings of the 14th International Meeting NUSIM 2006. Joint Slovak, Czech and German Seminar on Nuclear Power

    International Nuclear Information System (INIS)

    2006-01-01

    During April 26-28, 2006 was carried out The 14 th Annual Nuclear Safety Information Meeting, NUSIM 2006. Scientific conference deals with problems of reactor safety upgrading, mainly of two blocks of the NPP V-1 Bohunice as well as decommissioning of the NPP A-1 Bohunice. Other problems of the nuclear engineering were discussed. The Conference proceeded in the following sessions: (I) Survey on the Situation of Nuclear Power in the Partner Countries; (II) Experiences with WWER operation. Almost 100 participants from the Slovak Republic, Austria, Serbia and Montenegro, Czech Republic and Germany took part in the conference. Thirty-three scientific lectures and three papers were presented.

  2. A Conceptual Study on a Supercritical CO_2-cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Yu, Hwanyeal; Hartanto, Donny; Kim, Yonghee

    2014-01-01

    A Micro Modular Reactor (MMR) using Supercritical-CO_2 (S-CO_2) as coolant has been investigated from the neutronics perspective. The MMR is designed to be transportable so it can reach the remote areas. The thermal power of the reactor is 36.2 M Wth. The size of the active core is limited to 1.2 m length and 93.16 cm width. The size of whole core is 2.8 m length and 166.9 cm width. The reactor lifetime design target is 20 years. To maximize the fuel volume fraction in the core, high density uranium nitride UN"1"5 was used. The PbO/MgO reflector was also utilized to improve the neutron economy. The S-CO_2 is chosen as the coolant because it offers a higher thermal efficiency. In this study, neutronics calculations and depletion using McCARD Monte Carlo code has been done to determine the lifetime and behavior of the core. Several important safety parameters such as Control Rod worth, Doppler reactivity coefficients and coolant void reactivity coefficient have also been analyzed. (author)

  3. Development of a TiO2-coated optical fiber reactor for water decontamination

    International Nuclear Information System (INIS)

    Danion, A.

    2004-09-01

    The objective of this study was to built and to study a photo-reactor composed by TiO 2 -coated optical fibers for water decontamination. The physico-chemical characteristics and the optical properties of the TiO 2 coating were first studied. Then, the influences of different parameters as the coating thickness, the coating length and the coating volume were investigated both on the light transmission in the TiO 2 - coated fiber and on the photo-catalytic activity of the fiber for a model compound (malic acid). The photo-catalytic degradation of malic acid was optimized using the experimental design methodology allowing to build a multi-fiber reactor comprising 57 optical fibers. The photo-degradation of malic acid was conducted in the multi-fiber reactor and it was demonstrated that the multi-fiber reactor was more efficient than the single-fiber reactor at the same fibers density. Finally, the multi-fiber reactor was applied to the photo-degradation of a fungicide, called fenamidone, and a degradation pathway was proposed. (author)

  4. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  5. Analysis of events significant with regard to safety of Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Suchomel, J.; Maron, V.; Kmosena, J.

    1986-01-01

    An analysis was made of operating safety of the V-1 nuclear power plant in Jaslovske Bohunice for the years 1980 - 1983. Of the total number of 676 reported failures only three were events with special safety significance, namely a complete loss of power supply for own consumption from the power grid, a failure of pins on the collectors of steam generators, and a failure of the heads of heat technology inspection channels. The failures were categorized according to the systems used in the USSR and in the USA and compared with data on failures in nuclear power plants in the two countries. The conclusions show that the operation of the V-1 nuclear power plant achieves results which are fully comparable with those recorded in 9 WWER-440 power plants operating in various countries. The average coefficient of availability is 0.72 and ranks the power plant in the fourth place among the said 9 plants. A comparison of the individual power plant units showed that of the total number of 22, the first unit of the V-1 plant ranks fifth with a coefficient of 0.78 and the second unit with a coefficient of 0.69 ranks 15th. (Z.M.)

  6. RHTF 2, a 1200 MWe high temperature reactor

    International Nuclear Information System (INIS)

    Brisbois, Jacques

    1978-01-01

    After having adapted to French conditions the 1160 MWe G.A.C. reactor, Commissariat a l'Energie Atomique and French Industry have decided to design an High Temperature Reactor 1200 MWe based on the G.A.C. technology and taking into account the point of view of Electricite de France and the experience of C.E.A. and industry on the gas cooled reactor technology. The main objective of this work is to produce a reactor design having a low technical risk, good operability, with an emphasis on the safety aspects easing the licensing problems

  7. VUJE experience with large scale projects and their applicability to the future of the Slovak energy system

    International Nuclear Information System (INIS)

    Ferenc, M.

    2004-01-01

    In this presentation author deals with participation of VUJE Trnava, Inc. on the reconstruction of the Bohunice V1 NPP, on modernisation of the Bohunice V2 NPP, and on of the projects in nuclear energy industry including of decommissioning of the Bohunice A1 NPP

  8. Selection of a new nuclear unit for Slovakia: possibilities and key technical issues

    International Nuclear Information System (INIS)

    Misak, J.

    2009-01-01

    Plans for construction of new nuclear unit at Jaslovske Bohunice brings forward the issue of selection of reactor design. This paper compares technical characteristics (safety and operational) of pressurized water reactors that are at present available in the market, such as AP 1000 (WEC), EPR (AREVA), AES 2006 (ASE), APWR 1700 (Mitsubishi) and APR 1400 (Korea Hydro and Nuclear). Selected parameters that require close attention in future negotiations with potential suppliers are discussed in detail. Compared are parameters as type of the reactor, reactor output power, quantified level of safety, compliance with national legislature and international safety requirements, operational flexibility in meeting requirements of the grid, using of verified technology, measures for coping with severe accidents, resistance against extreme external conditions etc. (authors)

  9. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  10. Digital, remote control system for a 2-MW research reactor

    International Nuclear Information System (INIS)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs

  11. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  12. Chapter 9. Personnel qualification and training

    International Nuclear Information System (INIS)

    2000-01-01

    In 1999 the Nuclear Regulatory Authority of the Slovak Republic (UJD) focused on the overall training system and on developing programmes for individual categories for NPP V-1 Bohunice, NPP V-2 Bohunice, NPP Mochovce and SE-VYZ. The fundamental theoretical and periodical training for both Bohunice and Mochovce NPPs personnel, simulator training for NPP Bohunice, and periodical simulator training for Bohunice personnel is carried out by the VUJE Training center in Trnava, whereas the simulator training and periodical training for NPP Mochovce is carried at Mochovce plant. Based on a successful passing of examination before the examining committee, UJD issues, a certificate on special professional skills of selected staff of nuclear installations for specific activity for the given type of nuclear installation and for the following positions: (a)Shift manager for scientific start up with the right of manipulation; (b) Shift supervisor; (c) Unit supervisor; (d) Primary circuit operator; (e) Secondary circuit operator; (f) Reactor physicist; (g) Shift manager for scientific start up without the right of manipulation. Examination of selected personnel is described. Last year the examining committee held twelve session for oral theoretical examination. The number of licenses issued in 1999 and the total number of valid licenses is given.Conclusions from inspections carried out by UJD and inspections and tests carried out by the NPP operators in 1999, as well as results from operation and start up of nuclear units confirm that the standard of professional skills of the staff at nuclear installations a high standard of operational safety is being achieved on a permanent basis. Increasing the qualification of UJD staff was done in a form of training and courses scheduled in the plan of training for the staff for 1999. These training, composed of specialized qualification study, functional study, as well as study aimed at maintaining qualification. Training courses organized

  13. Treatment and conditioning of solid and liquid raw

    International Nuclear Information System (INIS)

    Jakubec, R.

    2015-01-01

    Jadrova a vyradovacia spolocnost, a.s. (JAVYS) implements activities within the processes of treatment and conditioning of radioactive waste (RAW) at two nuclear facilities, one of them located in Bohunice - Technologies for treatment and conditioning of RAW. This nuclear facility includes: Bohunice RAW treatment centre, bituminization lines, waste water purification station and technologies for sorting, fragmentation and decontamination of metallic RAW. The Bohunice RAW treatment centre (BRTC) in Bohunice processes and conditions liquid and solid radioactive waste produced during the A1 NPP and V1 NPP decommissioning, waste from the operation of V2 NPP in Bohunice as well as from the operation of NPP EMO 1,2 in Mochovce. The BRTC includes the following technological facilities: sorting, high-pressure compaction, incineration, concentration and cementation. Treatment of radioactive wastes in the BRTC is described. (authors)

  14. A Conceptual Study of a Supercritical CO2-Cooled Micro Modular Reactor

    Directory of Open Access Journals (Sweden)

    Hwanyeal Yu

    2015-12-01

    Full Text Available A neutronics conceptual study of a supercritical CO2-cooled micro modular reactor (MMR has been performed in this work. The suggested MMR is an extremely compact and truck-transportable nuclear reactor. The thermal power of the MMR is 36.2 MWth and it is designed to have a 20-year lifetime without refueling. A salient feature of the MMR is that all the components including the generator are integrated in a small reactor vessel. For a minimal volume and long lifetime of the MMR core, a fast neutron spectrum is utilized in this work. To enhance neutron economy and maximize the fuel volume fraction in the core, a high-density uranium mono-nitride U15N fuel is used in the fast-spectrum MMR. Unlike the conventional supercritical CO2-cooled fast reactors, a replaceable fixed absorber (RFA is introduced in a unique way to minimize the excess reactivity and the power peaking factor of the core. For a compact core design, the drum-type control absorber is adopted as the primary reactivity control mechanism. In this study, the neutronics analyses and depletions have been performed by using the continuous energy Monte Carlo Serpent code with the evaluated nuclear data file ENDF/B-VII.1 Library. The MMR core is characterized in view of several important safety parameters such as control system worth, fuel temperature coefficient (FTC and coolant void reactivity (CVR, etc. In addition, a preliminary thermal-hydraulic analysis has also been performed for the hottest channel of the Korea Advanced Institute of Science and Technology (KAIST MMR.

  15. Vessel annealing. Will it become a routine procedure?

    International Nuclear Information System (INIS)

    Davies, M.

    1995-01-01

    The effect of neutron radiation on the reactor pressure vessel and the influence of annealing performed to eliminate this effect are explained. Some practical examples are given. A simple heat treatment at 450 degC for 168 h is sufficient to eliminate a major fraction of the radiation effect in the displacement of the transition temperature from the brittle state to the tough state. Some observations indicate that at this temperature, excessive energy recovery takes place at the upper toughness limit in the Charpy diagram. The annealing furnace manufactured by the SKODA company is described. The furnace consists of heating elements in 13 zones and 5 heating sections. The maximum power of each element is 75 kW, the total power of the furnace is 975 kW. The annealing procedure and its results are briefly outlined for the reactor pressure vessel at unit 2 of the Jaslovske Bohunice NPP. Reactor pressure vessel annealing is proposed for the Marble Hill NPP which has been shut down. Preparatory activities for annealing are also under way at the Loviisa NPP. (J.B.)

  16. Reactor building integrity testing: A novel approach at Gentilly 2 - principles and methodology

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1991-01-01

    In 1987, Hydro-Quebec embarked on an ambitious development program to provide the Gentilly 2 nuclear power station with an effective, yet practical reactor building Integrity Test. The Gentilly 2 Integrity Test employs an innovative approach based on the reference volume concept. It is identified as the Temperature Compensation Method (TCM) System. This configuration has been demonstrated at both high and low test pressure and has achieved extraordinary precision in the leak rate measurement. The Gentilly 2 design allows the Integrity Test to be performed at a nominal 3 kPa(g) test pressure during an (11) hour period with the reactor at full power. The reactor building Pressure Test by comparison, is typically performed at high pressure 124 kPa(g)) in a 7 day window during an annual outage. The Integrity Test was developed with the goal of demonstrating containment availability. Specifically it was purported to detect a leak or hole in the 'bottled-up' reactor building greater in magnitude than an equivalent pipe of 25 mm diameter. However it is considered feasible that the high precision of the Gentilly 2 TCM System Integrity Test and a stable reactor building leak characteristic will constitute sufficient grounds for the reduction of the Pressure Test frequency. It is noted that only the TCM System has, to this date, allowed a relevant determination of the reactor building leak rate at a nominal test pressure of 3 kPa(g). Classical method tests at low pressure have lead to inconclusive results due to the high lack of precision

  17. Once-through CANDU reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.

    1980-11-01

    Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % 235 U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given

  18. Advances in Reactor Physics, Mathematics and Computation. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, Volume 2, are divided into 7 sessions bearing on: - session 7: Deterministic transport methods 1 (7 conferences), - session 8: Interpretation and analysis of reactor instrumentation (6 conferences), - session 9: High speed computing applied to reactor operations (5 conferences), - session 10: Diffusion theory and kinetics (7 conferences), - session 11: Fast reactor design, validation and operating experience (8 conferences), - session 12: Deterministic transport methods 2 (7 conferences), - session 13: Application of expert systems to physical aspects of reactor design and operation.

  19. TPDWR2: thermal power determination for Westinghouse reactors, Version 2. User's guide

    International Nuclear Information System (INIS)

    Kaczynski, G.M.; Woodruff, R.W.

    1985-12-01

    TPDWR2 is a computer program which was developed to determine the amount of thermal power generated by any Westinghouse nuclear power plant. From system conditions, TPDWR2 calculates enthalpies of water and steam and the power transferred to or from various components in the reactor coolant system and to or from the chemical and volume control system. From these results and assuming that the reactor core is operating at constant power and is at thermal equilibrium, TPDWR2 calculates the thermal power generated by the reactor core. TPDWR2 runs on the IBM PC and XT computers when IBM Personal Computer DOS, Version 2.00 or 2.10, and IBM Personal Computer Basic, Version D2.00 or D2.10, are stored on the same diskette with TPDWR2

  20. Irradiation effects on Zr-2.5Nb in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Song, C., E-mail: Carol.Song@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Zirconium alloys are widely used as structural materials in nuclear applications because of their attractive properties such as a low absorption cross-section for thermal neutrons, excellent corrosion resistance in water, and good mechanical properties at reactor operating temperatures. Zr-2.5Nb is one of the most commonly used zirconium alloys and has been used for pressure tube materials in CANDU (Canada Deuterium Uranium) and RBMK (Reaktor Bolshoy Moshchnosti Kanalnyy, 'High Power Channel-type Reactor') reactors for over 40 years. In a recent report from the Electric Power Research Institute, Zr-2.5Nb was identified as one of the candidate materials for use in normal structural applications in light-water reactors owing to its increased resistance to irradiation-induced degradation as compared with currently used materials. Historically, the largest program of in-reactor tests on zirconium alloys was performed by Atomic Energy of Canada Limited. Over many years of in-reactor testing and CANDU operating experience with Zr- 2.5Nb, extensive research has been conducted on the irradiation effects on its microstructures, mechanical properties, deformation behaviours, fracture toughness, delayed hydride cracking, and corrosion. Most of the results on Zr-2.5Nb obtained from CANDU experience could be used to predict the material performance under light water reactors. This paper reviews the irradiation effects on Zr-2.5Nb in power reactors (including heavy-water and light-water reactors) and summarizes the current state of knowledge. (author)

  1. Reactor handbook. 2. rev. ed.

    International Nuclear Information System (INIS)

    Lederer, B.J.; Wildberg, D.W.

    1992-01-01

    On the basis of the guidelines on expert knowledge, the book discusses the subjects of atomic physics, heat transfer, nuclear power plants, reactor materials, radiation protection, reactor safety, reactor instrumentation, and reactor operation, with special regard to nuclear power plants with LWR-type reactors. The book is intended for shift personnel, especially gang bosses, reactor operators, and control station operators: for this reason a practical and rather popular style has been chosen. However, the book will also be a manual for other operating personnel, personnel of producer companies, expert organisations, authorities, and students. It can be used as a textbook for staff training, a manual for the practice, and as accompanying book for teaching at nuclear engineering schools. (orig.) With 173 figs [de

  2. Report of the ASSET (Assessment of Safety Significant Events Team) follow-up mission to the Bohunice (units 1-2) nuclear power plant in Slovakia 5-9 July 1993. Root cause analysis of operational events with a view to enhancing the prevention of accidents

    International Nuclear Information System (INIS)

    1993-01-01

    This Report of the IAEA Assessment of Safety Significant Events Team (ASSET) presents the results of the team's review of the status of implementation of the recommendations made by the 1988 ASSET mission to Bohunice nuclear power plant in Slovakia, and of progress made by plant management in prevention of incidents. The findings, conclusions and suggestions presented herein reflect the views of the ASSET experts. They are provided for consideration by the responsible Slovakian authorities. The ASSET team's views presented in this report are based on review of the documentation made available and on the discussions with plant staff. The report includes the official response of the operating and regulatory organizations of Slovakia to the ASSET findings and conclusions. Figs, tabs

  3. Radiation protection at the RA Reactor in 1998, RA reactor annual report, Part -2

    International Nuclear Information System (INIS)

    Ninkovic, M.; Pavlovic, R.; Mandic, M.; Pavlovic, S.; Grsic, Z.

    1998-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Collecting and treatment of fluid effluents; and (4) radioactive wastes, decontamination and actions. Each of the category is described as a separate annex of this report [sr

  4. Direct In Situ Quantification of HO2 from a Flow Reactor.

    Science.gov (United States)

    Brumfield, Brian; Sun, Wenting; Ju, Yiguang; Wysocki, Gerard

    2013-03-21

    The first direct in situ measurements of hydroperoxyl radical (HO2) at atmospheric pressure from the exit of a laminar flow reactor have been carried out using mid-infrared Faraday rotation spectroscopy. HO2 was generated by oxidation of dimethyl ether, a potential renewable biofuel with a simple molecular structure but rich low-temperature oxidation chemistry. On the basis of the results of nonlinear fitting of the experimental data to a theoretical spectroscopic model, the technique offers an estimated sensitivity of reactor exit temperature range of 398-673 K. Accurate in situ measurement of this species will aid in quantitative modeling of low-temperature and high-pressure combustion kinetics.

  5. Evaluation of fatigue crack growth in the primary circuit pipeline of a WWER 440/213c type nuclear power plant

    International Nuclear Information System (INIS)

    Samohyl, P.

    1993-07-01

    The fatigue damage of the primary circuit of WWER-440/213c reactors was evaluated proceeding from actual and design operating data of units 3 and 4 of the Bohunice V-2 nuclear power plant. A complex computation model was set up, encompassing the main circulation pipeline, pressurizer pipeline, emergency core aftercooling system pipeline, steam pipeline, and feedwater pipeline. The standardized STATIC code was applied to the stress analysis, and the FATLBB code was used to determine the crack increment for all operating states and primary circuit sections. The probability of fatigue failure of the pipelines was found to be low. (J.B.). 55 tabs., 3 figs., 9 refs

  6. The NPPR Trnava participation in the NPP V-2 modernisation and safety improvement project

    International Nuclear Information System (INIS)

    Michal, V.; Losonsky, B.; Magdolen, J.

    1999-01-01

    The presented contribution deals with form, present state and results of Nuclear Power Plants Research Inst.e participation in the NPP V-2 Jaslovske Bohunice Modernization and Safety Improvement Project.(author)

  7. Microflow photochemistry: UVC-induced [2 + 2]-photoadditions to furanone in a microcapillary reactor

    Directory of Open Access Journals (Sweden)

    Sylvestre Bachollet

    2013-10-01

    Full Text Available [2 + 2]-Cycloadditions of cyclopentene and 2,3-dimethylbut-2-ene to furanone were investigated under continuous-flow conditions. Irradiations were conducted in a FEP-microcapillary module which was placed in a Rayonet chamber photoreactor equipped with low wattage UVC-lamps. Conversion rates and isolated yields were compared to analogue batch reactions in a quartz test tube. In all cases examined, the microcapillary reactor furnished faster conversions and improved product qualities.

  8. Upgrading of the research reactors FRG-1 and FRG-2

    International Nuclear Information System (INIS)

    Krull, W.

    1981-01-01

    In 1972 for the research reactor FRG-2 we applied for a license to increase the power from 15 MW to 21 MW. During this procedure a public laying out of the safety report and an upgrading procedure for both research reactors - FRG-1 (5 MW) and FRG-2 - were required by the licensing authorities. After discussing the legal background for licensing procedures in the Federal Republic of Germany the upgrading for both research reactors is described. The present status and future licensing aspects for changes of our research reactors are discussed, too. (orig.) [de

  9. A regression approach for Zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to Zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor Zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) When there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets. (2) Regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections. Multiple regression analysis performed on a set of carefully selected Zircaloy-2 in-reactor creep data leads to a model which provides excellent correlations for the data. (Auth.)

  10. Radiation supervision - NPPs A-1, V-1, V-2

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the radiation supervision of the nuclear power plants A-1, V-1, V-2 is presented. Off-site radiation supervision laboratory is a part of monitoring scheme of the NPPs. More than 1150 samples are taken from the environment annually. The tele-dosimetric system was constructed to improve the quality of the Bohunice NPPs operation impacts supervision. It has been running in a continuous operation from 1992 and providing supervision of the nuclear power plant off-site area within 25 kilometres. The tele-dosimetric system is described

  11. SCORPIO-VVER core monitoring and surveillance system with advanced capabilities

    International Nuclear Information System (INIS)

    Molnar, J.; Vocka, R.

    2010-01-01

    In this work authors present 12 years of operation experience of core monitoring and surveillance system with advanced capabilities on nuclear power plants on 6 unit of VVER-440 type of reactors at two different NPPs. The original version of the SCORPIO (Surveillance of reactor CORe by PIcture On-line display) system was developed for the western type of PWR reactors. The first version of the SCORPIO-VVER Core Monitoring System for Dukovany NPP (VVER-440 type of reactor, Czech Republic) was developed in 1998. For SCORPIO-VVER implementation at Bohunice NPP in Slovakia (2001) the system was enhanced with startup module KRITEX.

  12. Radiation protection at the RA Reactor in 1988, Part -2, RA reactor annual report

    International Nuclear Information System (INIS)

    Ninkovic, M.; Ajdacic, N.; Zaric, M.; Vukovic, Z.

    1988-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor and radiation protection; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Decontamination and relevant actions, collecting and treatment of fluid effluents; and and solid radioactive wastes [sr

  13. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  14. Computation code TEP 1 for automated evaluation of technical and economic parameters of operation of WWER-440 nuclear power plant units

    International Nuclear Information System (INIS)

    Zadrazil, J.; Cvan, M.; Strimelsky, V.

    1987-01-01

    The TEP 1 program is used for automated evaluation of the technical and economic parameters of nuclear power plant units with WWER-440 reactors. This is an application program developed by the Research Institute for Nuclear Power Plants in Jaslovske Bohunice for the KOMPLEX-URAN 2M information system, delivered by the USSR to the V-2 nuclear power plants in Jaslovske Bohunice and in Dukovany. The TEP 1 program is written in FORTRAN IV and its operation has two parts. First the evaluation of technical and economic parameters of operation for a calculation interval of 10 mins and second, the control of the calculation procedure, follow-up on input data, determination of technical and economic parameters for a lengthy time interval, and data printout and storage. The TEP 1 program was tested at the first unit of the V-2 power plant and no serious faults appeared in the process of the evaluation of technical and economic parameters. A modification of the TEP 1 programme for the Dukovany nuclear power plant is now being tested on the first unit of the plant. (Z.M.)

  15. Operation of the SLOWPOKE-2 reactor in Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C.N.; Lalor, G.C.; Vuchkov, M.K. [University of the West Indies, Kingston (Jamaica)

    2001-07-01

    Over the past sixteen years lCENS has operated a SLOWPOKE 2 nuclear reactor almost exclusively for the purpose of neutron activation analysis. During this period we have adopted a strategy of minimum irradiation times while optimizing our output in an effort to increase the lifetime of the reactor core and to maintaining fuel integrity. An inter-comparison study with results obtained with a much larger reactor at IPEN has validated this approach. The parameters routinely monitored at ICENS are also discussed and the method used to predict the next shim adjustment. (author)

  16. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1.

  17. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1

  18. Optimized Control Rods of the BR2 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalcheva, Silva; Koonen, E.

    2007-09-15

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  19. Optimized Control Rods of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, E.

    2007-01-01

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  20. Thermal design of heat-exchangeable reactors using a dry-sorbent CO2 capture multi-step process

    International Nuclear Information System (INIS)

    Moon, Hokyu; Yoo, Hoanju; Seo, Hwimin; Park, Yong-Ki; Cho, Hyung Hee

    2015-01-01

    The present study proposes a multi-stage CO 2 capture process that incorporates heat-exchangeable fluidized-bed reactors. For continuous multi-stage heat exchange, three dry regenerable sorbents: K 2 CO 3 , MgO, and CaO, were used to create a three-stage temperature-dependent reaction chain for CO 2 capture, corresponding to low (50–150 °C), middle (350–650 °C), and high (750–900 °C) temperature stages, respectively. Heat from carbonation in the high and middle temperature stages was used for regeneration for the middle and low temperature stages. The feasibility of this process is depending on the heat-transfer performance of the heat-exchangeable fluidized bed reactors as the focus of this study. The three-stage CO 2 capture process for a 60 Nm 3 /h CO 2 flow rate required a reactor area of 0.129 and 0.130 m 2 for heat exchange between the mid-temperature carbonation and low-temperature regeneration stages and between the high-temperature carbonation and mid-temperature regeneration stages, respectively. The reactor diameter was selected to provide dense fluidization conditions for each bed with respect to the desired flow rate. The flow characteristics and energy balance of the reactors were confirmed using computational fluid dynamics and thermodynamic analysis, respectively. - Highlights: • CO 2 capture process is proposed using a multi-stage process. • Reactor design is conducted considering heat exchangeable scheme. • Reactor surface is designed by heat transfer characteristics of fluidized bed

  1. Irradiation techniques at BR2 reactor

    International Nuclear Information System (INIS)

    Hebel, W.

    1978-01-01

    Since 1963 the material testing reactor BR2 at Mol is operated for the realisation of numerous research programs and experiments on the behavior of materials under nuclear radiation and in particular under intensive neutron exposure. During this period special irradiation techniques and experimental devices were developed according to the desiderata of the different experiments and to the irradiation possibilities offered at BR2. The design and the operating characteristics of quite a number of those irradiation rigs of proven reliability may be used or can be made available for new irradiation experiments. A brief description is given of some typical irradiation devices designed and constructed by CEN/SCK, Technology and Energy Dpt. They are compiled according to their main use for the different research and development programs realized at BR2. Their eventual application however for different objectives could be possible. A final chapter summarizes the principal irradiation conditions offered by BR2 reactor. (author)

  2. VUJE Trnava, Inc. - Engineering, Design and Research Organisation

    International Nuclear Information System (INIS)

    2001-01-01

    This CD is multimedia presentation of programme safety upgrading of Bohunice V1 NPP. This chapter contains information about VUJE: It consists of next parts: (1) From VUJE history (1977-2001); (2) Human resources (Development of staff; Structure of employees 1999); (3) VUJE activities: (Diagnostics; Nuclear safety; Radiation safety; Commissioning and operation; Personnel training; Information technology; Electric grids; Conventional power); (4) Significant projects of VUJE are presented: Gradual reconstruction with safety upgrading of the V1 Bohunice nuclear power plant; Modernization of the V2 Bohunice NPP; Completion of the Republic Repository of Radioactive Wastes in Mochovce; Decommissioning of the A1 NPP Bohunice; Development of simulators; Physical and power commissioning of NPPs; Construction of high voltage line Varin - Sucany

  3. Refurbishment programme for the BR2-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koonen, E [Centre d' Etude de l' Energie Nucleaire, Studiecentrum voor Kernenergie, BR2 Department, Boeretang, Mol (Belgium)

    1992-07-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  4. Refurbishment programme for the BR2-reactor

    International Nuclear Information System (INIS)

    Koonen, E.

    1992-01-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  5. Validation of SCALE4.4a for Calculation of Xe-Sm Transients After a Scram of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2007-01-01

    The aim of this report is to validate the computational modules system SCALE4.4a for evaluation of reactivity changes, macroscopic absorption cross sections and calculations of the positions of the Control Rods during their motion in Xe-Sm transient after a scram of the BR-2 reactor. The rapid shutting down of the reactor by inserting of negative reactivity by the Control Rods is known as a reactor scram. Following reactor scram, a large xenon and samarium buildup occur in the reactor, which may appreciably affect the multiplication factor of the core due to enormous neutron absorption. The validation of the calculations of Xe-Sm transients by SCALE4.4a has been performed on the measurements of the positions of the Control Rods during their motion in Xe-Sm transients of the BR-2 reactor and on comparison with the calculations by the standard procedure XESM, developed at the BR-2 reactor. A final conclusion is made that the SCALE4.4a modules system can be used for evaluation of Xe-Sm transients of the BR-2 reactor. The utilization of the code is simple, the computational time takes from few seconds.

  6. Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

    1981-05-01

    The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O 2 , N 2 , etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized

  7. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  8. TMI-2 reactor vessel plenum final lift

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1986-01-01

    Removal of the plenum assembly from the TMI-2 reactor vessel was necessary to gain access to the core region for defueling. The plenum was lifted from the reactor vessel by the polar crane using three specially designed pendant assemblies. It was then transferred in air to the flooded deep end of the refueling canal and lowered onto a storage stand where it will remain throughout the defueling effort. The lift and transfer were successfully accomplished on May 15, 1985 in just under three hours by a lift team located in a shielded area within the reactor building. The success of the program is attributed to extensive mockup and training activities plus thorough preparations to address potential problems. 54 refs

  9. Operational inspections

    International Nuclear Information System (INIS)

    Bystersky, M.

    1997-01-01

    Special equipment is described, designed for inspection of reactor pressure vessels performed from the inside. Central shaft manipulator ZMM-5 is available for crack detection control using ultrasound and eddy currents, for visual check of surfaces, repair works at the reactor pressure vessel, and hardness measurements. The manipulator consists of the manipulator bridge, a cable container, shaft segments, a control mechanism and auxiliary parts. Eight inspections were performed at the Bohunice nuclear power plant and two at the Paks nuclear power plant. (M.D.)

  10. TMI-2 reactor vessel head removal

    International Nuclear Information System (INIS)

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1985-09-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 (TMI-2) reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training, the head was safely removed and stored; and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities

  11. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    Science.gov (United States)

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  12. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  13. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  14. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  15. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  16. Annual report on JEN-1 and JEN-2 Reactors; Informe periodico de Reactores JEN-1 y JEN-2 correpondiente al ano 1972

    Energy Technology Data Exchange (ETDEWEB)

    Montes Ponce de Leon, J.

    1974-07-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  17. Monitoring program of surrounding of the NPP SE-EBO

    International Nuclear Information System (INIS)

    Dobis, L.; Kostial, J.

    1997-01-01

    The paper dealt with monitoring program of radiation control of surrounding of the NPP Bohunice, which has the aim: (1) to ensure the control of influence of work of the NPP Bohunice on the environment in their surrounding; (2) to ensure the back-ground for regular brief of control and supervisory organs about condition of the environment in surrounding of the NPP Bohunice; (3) to maintain the expected technical level of control of the NPP Bohunice and to exploit optimally the technical means; (4) to solicit permanently the data about the radioactivity of environment in surrounding of the NPP Bohunice for forming of files of the data; (5) to exploit purposefully the technical equipment, technical workers and to maintain their in permanent emergency and technical eligibility for the case of the breakdown; (6) to obtain permanently the files of the values for qualification of the reference levels. This program of monitoring includes the radiation control of surrounding of the NPP Bohunice, in the time of normal work of power-station's blocks, inclusively of all types of trouble-shooting and repairer works in surrounding of the NPP Bohunice, up to distance 20 km from power-station. The monitoring includes: outlets from the NPP Bohunice, monitoring of radiation characteristics in surrounding of the NPP Bohunice, (aerosols, fall-outs, soil), the links of food chains: (grass and fodder, milk, agriculture products), hydrosphere in surrounding (surface waters, drink water, bores of radiation control in complex of the NPP Bohunice, components of the hydrosphere), measurement of radiation from external sources (measurement of the dose rates, measurement of the doses [sk

  18. A review of the probabilistic safety assessment application to the TR-2 research reactor

    International Nuclear Information System (INIS)

    Goektepe, G.; Adalioglu, U.; Anac, H.; Sevdik, B.; Menteseoglu, S.

    2001-01-01

    A review of the Probabilistic Safety Assessment (PSA) to the TR-2 Research Reactor is presented. The level 1 PSA application involved: selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development, dependent failure analysis. Each of the steps of the analysis given above is reviewed briefly with highlights from the selected results. PSA application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. Insights gained from the application of PSA methodology to the TR-2 research reactor led to a significant safety review of the system

  19. OTUS - Reactor inventory management system based on ORIGEN2

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R; Toivonen, H; Lahtinen, J; Ilander, T

    1995-10-01

    ORIGEN2 is a computer code that calculates nuclide composition and other characteristics of nuclear fuel. The use of ORIGEN2 requires good knowledge in reactor physics. However, once the input has been defined for a particular reactor type, the calculations can be easily repeated for any burnup and decay time. This procedure produces large output files that are difficult to handle manually. A new computer code, known as OTUS, was designed to facilitate the postprocessing of the data. OTUS makes use of the inventory files precalculated with ORIGEN2 in a way that enables their versatile treatment for different safety analysis purposes. A data base is created containing a comprehensive set of ORIGEN2 calculations as a function of fuel burnup and decay time. OTUS is a reactor inventory management system for a microcomputer with Windows interface. Four major data operations are available: (1) Build data modifies ORIGEN2 output data into a suitable format, (2) View data enables flexible presentation of the data as such, (3) Different calculations, such as nuclide ratios and hot particle characteristics, can be performed for severe accident analyses, consequence analyses and research purposes, (4) Summary files contain both burnup dependent and decay time dependent inventory information related to the nuclide and the reactor specified. These files can be used for safeguards, radiation monitoring and safety assessment. (orig.) (22 refs., 29 figs.).

  20. Proceedings of 2. Yugoslav symposium on reactor physics, Part 2, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 2 of the Proceedings of 2. Yugoslav symposium on reactor physics includes eight papers dealing with the following topics: method for measuring high anti reactivities of a reactor system; integration method for thermal reaction rate calculation; Determination of initial core configuration for BHWR-200 MWe; safety shutdowns and failures of the RA reactor equipment; determining the reactivity of absorption rods; measurements of thermal and fast neutron fluxes at the TRIGA reactor and other measurements during operation of the TRIGA reactor; mathematical modelling of the reactor safety; review of problems and methods for radiation risk assessment in the environment of a nuclear power plant

  1. The 2nd reactor core of the NS Otto Hahn

    International Nuclear Information System (INIS)

    Manthey, H.J.; Kracht, H.

    1979-01-01

    Details of the design of the 2nd reactor core are given, followed by a brief report summarising the operating experience gained with this 2nd core, as well as by an evaluation of measured data and statements concerning the usefulness of the knowledge gained for the development of future reactor cores. Quite a number of these data have been used to improve the concept and thus the specifications for the fuel elements of the 3rd core of the reactor of the NS Otto Hahn. (orig./HP) [de

  2. A gas-phase reactor powered by solar energy and ethanol for H2 production

    International Nuclear Information System (INIS)

    Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Perathoner, Siglinda; Centi, Gabriele

    2014-01-01

    In the view of H 2 as the future energy vector, we presented here the development of a homemade photo-reactor working in gas phase and easily interfacing with fuel cell devices, for H 2 production by ethanol dehydrogenation. The process generates acetaldehyde as the main co-product, which is more economically advantageous with respect to the low valuable CO 2 produced in the alternative pathway of ethanol photoreforming. The materials adopted as photocatalysts are based on TiO 2 substrates but properly modified with noble (Au) and not-noble (Cu) metals to enhance light harvesting in the visible region. The samples were characterized by BET surface area analysis, Transmission Electron Microscopy (TEM) and UV–visible Diffusive Reflectance Spectroscopy, and finally tested in our homemade photo-reactor by simulated solar irradiation. We discussed about the benefits of operating in gas phase with respect to a conventional slurry photo-reactor (minimization of scattering phenomena, no metal leaching, easy product recovery, etc.). Results showed that high H 2 productivity can be obtained in gas phase conditions, also irradiating titania photocatalysts doped with not-noble metals. - Highlights: • A gas-phase photoreactor for H 2 production by ethanol dehydrogenation was developed. • The photocatalytic behaviours of Au and Cu metal-doped TiO 2 thin layers are compared. • Benefits of operating in gas phase with respect to a slurry reactor are presented. • Gas phase conditions and use of not-noble metals are the best economic solution

  3. Annual report on JEN-1 and JEN-2 Reactors

    International Nuclear Information System (INIS)

    Montes Ponce de Leon, J.

    1974-01-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  4. Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Cho, C.H.; Shin, D.H. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Hong, Y.C., E-mail: ychong@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Shin, Y.W. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); School of Advanced Green Energy and Environments, Handong Global University, Heunghae-eup, Buk-gu, Pohang-city, Gyeongbuk (Korea, Republic of)

    2015-08-30

    Highlights: • We developed a microwave plasma torch with reverse vortex reactor (RVR). • We calculated a volume fraction and temperature distribution of discharge gas and waste. • The performance of reverse vortex reactor increased from 29% to 43% than conventional vortex reactor. - Abstract: Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45 GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF{sub 6}, NF{sub 3} by varying plasma power and N{sub 2} flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF{sub 3} and SF{sub 6} in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF{sub 3} was achieved without an additive gas at the N{sub 2} flow rate of 150 liter per minute (L/min) by applying a microwave power of 6 kW with RVR. Also, a DRE of SF{sub 6} was 99.99% at the N{sub 2} flow rate of 60 L/min using an applied microwave power of 6 kW. The performance of reverse vortex reactor increased about 43% of NF{sub 3} and 29% of SF{sub 6} abatements results definition by decomposition energy per liter more than conventional vortex reactor.

  5. Selective Leaching of aerosol particles collected by cascade impactor in the ventilation stack of NPP V1 in Jaslovske Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Rulik, P; Beckova, V; Bucina, I; Foltanova, S; Poliak, R [National Radiation Protection Institute, Prague (Czech Republic)

    1996-12-31

    The study was apart of investigation of the size distribution of aerosol in air effluents from NPP V1 Jaslovske Bohunice. The evaluation the possible relationship between aerodynamic diameter of aerosol particles and chemical forms of radionuclides attached to the discharged aerosol was tried. Selective leaching was used for speciation of radionuclides present in the aerosol particles and for the estimation of their behaviour in the environment and absorption in gastro-intestinal tract. Activity concentrations of the radionuclides in the air, collected on collection substrates taken from individual impact stages and on back-up filter, were determined by sensitive gamma-spectrometric analysis using high purity Ge detectors. For the individual groups seven leaching steps were used. Following 12 radionuclides: silver-110m, cobalt-58, cobalt-60, cesium-134, cesium-137, manganese-54, ruthenium-103, antimony-124, antimony-125, tin-113, zinc-65, zirconium-95. Result shows that the leached fraction of the of the activity concentration does not depend on the size of the aerosol particles. (J.K.) 3 tabs., 3 figs.

  6. FORE-2, Thermohydraulics and Space-Independent Reactor Kinetics for Transients

    International Nuclear Information System (INIS)

    Fox, J.N.; Lawler, B.E.; Butz, H.R.; Heames, T.J.

    1984-01-01

    1 - Description of problem or function: FORE2 is a coupled thermal hydraulics-point kinetics digital computer code designed to calculate significant reactor parameters under steady-state conditions, or as functions of time during transients. The transients may result from a programmed reactivity insertion or a power change. Variable inlet coolant flow rate and temperature are considered. The code calculates the reactor power, the individual reactivity feedbacks, and the temperature of coolant, cladding, fuel, structure, and additional material for up to seven axial positions in three channel types which represent radial zones of the reactor. The heat of fusion, accompanying fuel melting, the liquid metal voiding reactivity, and the spatial and the time variation of the fuel cladding gap coefficient due to changes in gap size are considered. 2 - Method of solution: FORE2 input consists of property data, geometry, power and flow distribution factors, external time varying functions, experimental coefficients, and termination data. The differential equations for fluid flow, heat transfer, and point neutronics are solved by explicit finite-difference procedures. 3 - Restrictions on the complexity of the problem: Reactor excursions which can be calculated are restricted to those transients in which the reactor is not substantially destroyed. As a general rule, changes in reactor geometry and composition during an excursion are limited to those cases in which the reactivity effects of the changes may be considered as small perturbations of the initial system. Thus, accidents involving large-scale disassembly and bulk meltdown of a core are not covered by FORE2. FORE2 is valid only while the core retains its initial geometry

  7. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  8. EL-2 reactor: Thermal neutron flux distribution

    International Nuclear Information System (INIS)

    Rousseau, A.; Genthon, J.P.

    1958-01-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  9. Recent events at Bohunice NPP Slovak Republic

    International Nuclear Information System (INIS)

    Lipar, M.

    1996-01-01

    During a filter regeneration in the steam generators (SG) blow down purification system at full power, approximately 900 litres of NaOH penetrated through a condensate collection tank into the main turbine condenser and subsequently into three SGs. The penetration occurred because of a valve left open during the filter regeneration due to a valve configuration error. The water in the tree SGs foamed, causing unexpected behaviour in SG level indicators which led to a reactor scram. By exceeding the pH value of feedwater for 7 minutes, the technical specification were violated, until the unit was brought into hot shut-down mode. Figs

  10. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    Science.gov (United States)

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  11. Farewell to a reactor

    International Nuclear Information System (INIS)

    Skanborg, P.

    1976-01-01

    Denmark's second reactor, DR 2, whose first criticality took place the night of 18/19 December 1958 was shut down for the last time on 31 October 1975. It was a light-water moderrated and cooled reactor of swimming-pool type with a thermal power of 5 MW, using 90% enriched uranium. The operation is described. The reactor and auxiliary equipment are now being put 'in store' - all fuel elements sent for reprocessing, the reactor tank and cooling circuits emptied, and a lead shielding placed over the tank opening. The rest of the equipment will remain in place. (B.P.)

  12. Modernized accurate methods for processing of in-core measurement signals in WWER reactors

    International Nuclear Information System (INIS)

    Polak, T.

    1996-01-01

    Utilization of the new accurate WIMS-KAERI library (WIMKAL-88) to generate the following characteristics for Rhodium SPND: Sensitivity depletion law by high (approx= 75%) burnup of emitter; influence of burnup-history on depletion law course; influence of neutron spectrum change on Rh-SPND sensitivity caused by change of fuel enrichment, fuel burnup, moderator temperature, concentration of boracid, central pin power rate and concentration of Xe 135 ; generating and experimental testing of Rh-SPND signal to linear pin power rate and signal to neutron flux conversion factors. Rh-SPND instrumentation optimization (reduction) related to safety and operational aspects as needed for 3D power surveillance in WWER-1000 reactors. Analysis of SPND reduction from 64x7 to 46x7 by method of Shannon information entropy optimization. Influence of reduction on accuracy of 3D power distribution reconstruction. Physical methods of 3D power distribution unfolding in new modernized on-line I and C system in NPP J. Bohunice with in-core measurements according to 210 thermocouples and 36x7 Rh-SPNDs. Program system TOPRE under QNX operating system network in FORTRAN 77, neutronic background calculations by macrocode MOBY-DICK. (author). 10 refs, 6 figs, 7 tabs

  13. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Guigon, B.; Vacelet, H.; Dornbusch, D.

    2000-01-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs from activation analysis to power reactor fuel qualification. In this paper the main characteristics of the Jules Horowitz Reactor are presented. Safety criteria are explained. Finally, merits and disadvantages of UMo compared to the standard U 3 Si 2 fuel are discussed. (author)

  14. Introducing a European Partnership. First issue of 'European Nuclear Features'. A joint publication of atw, Nuclear Espana, Revue Generale Nucleare (2004)

    International Nuclear Information System (INIS)

    2004-01-01

    'European Nuclear Features' is a joint publication of the three specialized technical journals, Nuclear Espana (Spain), Revue Generale Nucleaire (France), and atw - International Journal for Nuclear Power (Germany), planned for six issues annually. ENF is to further greatly the international European exchange of information and news about energy and nuclear power. News items, comments, and scientific and technical contributions will cover important aspects of the field. The first issue of ENF contains contributions about these topics, among others: - European Nuclear Society and Foratom: Strengthening the Nuclear Network. - Report: EPR - the European Pressurized Water Reactor. - Finland: Starting Construction of the Fifth Nuclear Power Plant. - Czech Republic: Nuclear Power Report for 2003/2004. - The Decommissioning Project of the Bohunice-1 and -2 Units. - FRM-II: TUM Research Neutron Source Generates Its First Neutrons. (orig.)

  15. ASAMPSA2 best-practices guidelines for L2 PSA development and applications. Volume 3 - Extension to Gen IV reactors

    International Nuclear Information System (INIS)

    Bassi, C.; Bonneville, H.; Brinkman, H.; Burgazzi, L.; Polidoro, F.; Vincon, L.; Jouve, S.

    2010-01-01

    The main objective assigned to the Work Package 4 (WP4) of the 'ASAMPSA2' project (EC 7. FPRD) consist in the verification of the potential compliance of L2PSA guidelines based on PWR/BWR reactors (which are specific tasks of WP2 and WP3) with Generation IV representative concepts. Therefore, in order to exhibit potential discrepancies between LWRs and new reactor types, the following work was based on the up-to-date designs of: - The European Fast Reactor (EFR) which will be considered as prototypical of a pool-type Sodium-cooled Fast Reactor (SFR); - The ELSY design for the Lead-cooled Fast Reactor (LFR) technology; - The ANTARES project which could be representative of a Very-High Temperature Reactor (VHTR); - The CEA 2400 MWth Gas-cooled Fast Reactor (GFR). (authors)

  16. Safe dismantling of the SVAFO research reactors R2 and R2-0 in Sweden

    International Nuclear Information System (INIS)

    ARNOLD, Hans-Uwe; BROY, Yvonne; Dirk Schneider

    2017-01-01

    The R2 and R2-0 reactors were part of the Swedish government's research program on nuclear power from the early 1960's. Both reactors were shut down in 2005 following a decision by former operator Studsvik Nuclear AB. The decommissioning of the R2 and R2-0 reactors is divided into three phases. The first phase - awarded to AREVA - involved dismantling of the reactors and associated systems in the reactor pool, treatment of the disassembled components as well as draining, cleaning and emptying the pool. In the second phase, the pool structure itself will be dismantled, while removal of remaining reactor systems, treatment and disposal of materials and clean-up will be carried out in the third stage. The entire work is planned to be completed before the end of this decade. The paper describes the several steps of phase 1 - starting with the team building, followed by the dismantling operations and covers challenges encountered and lessons learned as well. The reactors consist of 5.400 kg aluminum, 6.000 kg stainless steel restraint structures as well as, connection elements of the mostly flanged components (1.000 kg). The most demanding - from a radiological point of view - was the R2-0 reactor that was limited to ∼ 1 m"3 construction volumes but with an extremely heterogeneous activation profile. Based on the calculated radiological entrance data and later sampling, nuclide vectors for both reactors depending on the real placement of the single component and on the material (aluminum and stainless steel) were created. Finally, for the highest activated component from R2 reactor, 85 Sv/h were measured. The dismantling principles - adopted on a safety point of view - were the following: The always protected base area of the ponds served as a flexible buffer area for waste components and packaging. Specific protections were also installed on the walls to protect them from mechanical stress which may occur during dismantling work. A specific work platform was

  17. WWER-1000 reactor simulator. Material for training courses and workshops. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No.12, Reactor Simulator Development (2001). Course material for workshops using a pressurized water reactor (PWR) simulator developed for the IAEA by Cassiopeia Technologies Inc. of Canada is presented in the IAEA publication, Training Course Series No. 22, 2nd edition, Pressurized Water Reactor Simulator (2005) and Training Course Series No.23, 2nd edition, Boiling Water Reactor Simulator (2005). This report consists of course material for workshops using the WWER-1000 Reactor Department Simulator from the Moscow Engineering and Physics Institute, Russian Federation

  18. Calculations of reactor-accident consequences, Version 2. CRAC2: computer code user's guide

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    1983-02-01

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems

  19. Thermal reactor benchmark tests on JENDL-2

    International Nuclear Information System (INIS)

    Takano, Hideki; Tsuchihashi, Keichiro; Yamane, Tsuyoshi; Akino, Fujiyoshi; Ishiguro, Yukio; Ido, Masaru.

    1983-11-01

    A group constant library for the thermal reactor standard nuclear design code system SRAC was produced by using the evaluated nuclear data JENDL-2. Furthermore, the group constants for 235 U were calculated also from ENDF/B-V. Thermal reactor benchmark calculations were performed using the produced group constant library. The selected benchmark cores are two water-moderated lattices (TRX-1 and 2), two heavy water-moderated cores (DCA and ETA-1), two graphite-moderated cores (SHE-8 and 13) and eight critical experiments for critical safety. The effective multiplication factors and lattice cell parameters were calculated and compared with the experimental values. The results are summarized as follows. (1) Effective multiplication factors: The results by JENDL-2 are considerably improved in comparison with ones by ENDF/B-IV. The best agreement is obtained by using JENDL-2 and ENDF/B-V (only 235 U) data. (2) Lattice cell parameters: For the rho 28 (the ratio of epithermal to thermal 238 U captures) and C* (the ratio of 238 U captures to 235 U fissions), the values calculated by JENDL-2 are in good agreement with the experimental values. The rho 28 (the ratio of 238 U to 235 U fissions) are overestimated as found also for the fast reactor benchmarks. The rho 02 (the ratio of epithermal to thermal 232 Th captures) calculated by JENDL-2 or ENDF/B-IV are considerably underestimated. The functions of the SRAC system have been continued to be extended according to the needs of its users. A brief description will be given, in Appendix B, to the extended parts of the SRAC system together with the input specification. (author)

  20. Refurbishing the BR2 materials testing reactor

    International Nuclear Information System (INIS)

    Baugnet, J.M.; Dekeyser, J.; Gubel, P.

    1995-01-01

    SCK/CEN is refurbishing its BR2 reactor to allow its further operation during the next 15 years; in doing so, it chooses to keep BR2 available for future scientific and technological irradiation programs within an international context. (author) 2 figs

  1. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  2. Neutronic study using oxide and nitride fuels for the Super Phenix 2 reactor

    International Nuclear Information System (INIS)

    Batista, J.L.; Renke, C.A.C.

    1991-11-01

    This report presents a neutronic analysis and a description of the Super Phenix 2 reactor, taken as reference. We present the methodology and results for cell and global reactor calculations for oxide (U O 2 - Pu O 2 ) and nitride (U N - Pu N) fuels. To conclude we compare the performance of oxide and nitride fuels for the reference reactor. (author)

  3. Complex nuclear safety evaluation of the Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kriz, Z.

    1991-01-01

    The safety concept of V-230 type reactor units dates back to the late 1960s. The units fail to be sufficiently dimensioned for emergency cooling of the reactor core and are fitted with no containment. So far, operating experience is good. The availability factor is 71.5% for unit 1 and 77.8% for unit 2. There occur 1 to 3 unscheduled shutdowns annually. The quality of steam generator tubes is very good. A complex safety assessment of the plant was accomplished in 1990. It concerned the concept and criteria of safety assessment, the earthquake situation, the condition of the primary coolant circuit equipment, the control system, the effect of the human factor, and preparedness of emergency plans. OSART and ASSET missions were accomplished at the plant. Based on the results of the missions as well as of inspections by the State Surveillance over Nuclear Safety, the decision has been adopted to operate the plant not longer than till 1995; the further fate of the plant will be decided on according to a future technical and economic analysis. (M.D.)

  4. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan

    2004-01-01

    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  5. Experience with quality of training of personnel in start-up, operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ziman, V.; Alaxin, E.

    1983-01-01

    The theoretical education of personnel takes place in the branch training centre in Jaslovske Bohunice and in the concern training centre of the Slovak Power Plants. Practical training takes place in the Bohunice V-1 power plant. Selected specialists are trained in the training centre of the Novo Voronezh nuclear power plant, at the Paks nuclear plant and in the training centre of the Tusimice power plant. The recruitment, selection, schooling, practical training and placement of personnel and their assignment to posts is done in such a manner as to make sure that the complexly trained personnel is available 6 months to 3 years prior to the physical start-up of the nuclear power plant. The training of university graduates for the post of reactor operator takes 18 months or more. Trained personnel attend in-service training courses in form of complementary courses whose content includes such problems as the elimination of typified possible accidents, on the basis of the analysis of all failures which occurred in the previous period. The rising quality of personnel training at the Bohunice V-1 nuclear power plant is reflected in the decreasing number of failures caused by the human factor and in the increased availability of the power units. (M.D.)

  6. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'Joyo'. 2-2

    International Nuclear Information System (INIS)

    Okuda, Eiji; Ito, Hiromichi; Yoshihara, Shizuya

    2014-01-01

    An accident occurred in experimental fast reactor 'Joyo' in 2007 which is obstruction of fuel change equipment caused by contacting rotating plug and MARICO-2. In addition, we confirmed two happenings in the reactor vessel that (1) Deformation of MARICO-2 subassembly on the in vessel storage rack together with a transfer pot, (2) Deformation of the Upper core structure of 'Joyo' caused by contacting MARICO-2 subassembly and the UCS. We do the restoration work for restoring it. This time, we describe current status of Replacement work of the UCS. (author)

  7. Tests of Neutron Spectrum Calculations with the Help of Foil Measurements in a D{sub 2}O and in an H{sub 2}O-Moderated Reactor and in Reactor Shields of Concrete an Iron

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, R; Aalto, E

    1964-09-15

    Foil measurements covering the fast, epithermal and thermal neutron energy regions have been made in the centre of the Swedish D{sub 2}O-moderated reactor R1, in the pool reactor R2-0, and in different positions in reactor shields of iron, magnetite concrete and ordinary concrete. Neutron spectra have also been calculated for most of these positions, often with the help of a numerical integration of the Boltzmann equation. The measurements and the calculated spectra are presented.

  8. TMI-2 reactor vessel head removal

    International Nuclear Information System (INIS)

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1984-12-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training the head was safely removed and stored and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities

  9. Radionuclide distribution in TMI-2 reactor building basement liquids and solids

    International Nuclear Information System (INIS)

    Horan, J.T.; McIsaac, C.V.; Keefer, D.G.

    1984-01-01

    As a result of the TMI-2 accident, approximately 2.46 x 10 6 L of contaminated water were released to the Reactor Building basement. The principal fission product release pathway from the damaged core was through the reactor coolant system (RCS) to the pressurizer, through the pressure-operated relief valve (PORV) on the pressurizer to the Reactor Coolant Drain Tank (RCDT), and then through the RCDT rupture disk to the Reactor Building basement. Since August 1979, a number of efforts have been made to determine the location, quantity, and composition of fission products released to the Reactor Building basement. These efforts have included sampling of the basement water and solids, the basement sump pump recirculation line, the RCDT, and visual surveys using a closed circuit television (CCTV) system. The analysis of basement samples has provided data on the physical and radioisotopic characteristics of the liquids and solids. This paper describes the sample collection techniques and discusses radiochemical analyses results

  10. An experimental investigation of fission product release in SLOWPOKE-2 reactors

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    Increasing radiation fields due to a release of fission products in the reactor container of several SLOWPOKE-2 reactors fuelled with a highly-enriched uranium (HEU) alloy core have been observed. It is believed that these increases are associated with the fuel fabrication where a small amount of uranium-bearing material is exposed to the coolant at the end-welds of the fuel element. To investigate this phenomenon samples of reactor water and gas from the headspace above the water have been obtained and examined by gamma spectrometry methods for reactors of various burnups at the University of Toronto, Ecole Polytechnique and Kanata Isotope Production Facility. An underwater visual examination of the fuel core at Ecole Polytechnique has also provided information on the condition of the core. This report (Volume 1) summarizes the equipment, analysis techniques and results of tests conducted at the various reactor sites. The data report is published as Volume 2. (author). 30 refs., 9 tabs., 20 figs

  11. Benchmark tests of JENDL-3.2 for thermal and fast reactors

    International Nuclear Information System (INIS)

    Takano, Hideki

    1995-01-01

    Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k eff and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k eff , reactivity worth of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments. (author)

  12. Shadow corrosion evaluation in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Sanders, Ch.; Lysell, G.

    2000-01-01

    Post-irradiation examination has shown that increased corrosion occurs when zirconium alloys are in contact with or in proximity to other metallic objects. The observations indicate an influence of irradiation from the adjacent component as the enhanced corrosion occurs as a 'shadow' of the metallic object on the zirconium surface. This phenomenon could ultimately limit the lifetime of certain zirconium alloy components in the reactor. The Studsvik R2 materials test reactor has an In-Core Autoclave (INCA) test facility especially designed for water chemistry and materials research. The INCA facility has been evaluated and found suitable for shadow corrosion studies. The R2 reactor core containing the INCA facility was modeled with the Monte Carlo N-Particle (MCNP) code in order to evaluate the electron deposition in various materials and to develop a hypothesis of the shadow corrosion mechanism. (authors)

  13. Dynamic simulation of the 2 MWt slowpoke heating reactor

    International Nuclear Information System (INIS)

    Tseng, C.M.; Lepp, R.M.

    1982-04-01

    A 2 MWt SLOWPOKE reactor, intended for commercial space heating, is being developed at the Chalk River Nuclear Laboratories. A small-signal dynamic simulation of this reactor, without closed-loop control, was developed. Basic equations were used to describe the physical phenomena in each kf the eight reactor subsystems. These equations were then linearized about the normal operation conditions and rearranged in a dimensionless form for implementation. The overall simulation is non-linear. Slow transient responses (minutes to days) of the simulation to both reactivity and temperature perturbations were measured at full power. In all cases the system reached a new steady state in times varying from 12 h to 250 h. These results illustrate the benefits of the inherent negative reactivity feedback of this reactor concept. The addition of closed-loop control using core outlet temperature as the controlled variable to move a beryllium reflector is also examined

  14. A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy

    NARCIS (Netherlands)

    Bos, Martin Johan; Brilman, Derk Willem Frederik

    2015-01-01

    A novel reactor design for the conversion of CO2 and H2 to methanol is developed. The conversion limitations because of thermodynamic equilibrium are bypassed via in situ condensation of a water/methanol mixture. Two temperatures zones inside the reactor ensure optimal catalyst activity (high

  15. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  16. A study of UO2 wafer fuel for very high-power research reactors

    International Nuclear Information System (INIS)

    Hsieh, T.C.; Jankus, V.Z.; Rest, J.; Billone, M.C.

    1983-01-01

    The Reduced Enrichment Research and Test Reactor Program is aimed at reducing fuel enrichment to 2 caramel fuel is one of the most promising new types of reduced-enrichment fuel for use in research reactors with very high power density. Parametric studies have been carried out to determine the maximum specific power attainable without significant fission-gas release for UO 2 wafers ranging from 0.75 to 1.50 mm in thickness. The results indicate that (1) all the fuel designs considered in this study are predicted not to fail under full power operation up to a burnup, of 1.9x10 21 fis/cm 3 ; (2) for all fuel designs, failure is predicted at approximately the same fuel centerline temperature for a given burnup; (3) the thinner the wafer, the wider the margin for fuel specific power between normal operation and increased-power operation leading to fuel failure; (4) increasing the coolant pressure in the reactor core could improve fuel performance by maintaining the fuel at a higher power level without failure for a given burnup; and (5) for a given power level, fuel failure will occur earlier at a higher cladding surface temperature and/or under power-cycling conditions. (author)

  17. FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative

    International Nuclear Information System (INIS)

    Greene, S.R.; Spellman, D.J.; Bevard, B.B.

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative

  18. FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative

    Energy Technology Data Exchange (ETDEWEB)

    Greene, S.R.; Spellman, D.J.; Bevard, B.B. [and others

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative.

  19. A thermal hydraulic analysis in PWR reactors with UO2 or (U-Th)O2 fuel rods employing a simplified code

    International Nuclear Information System (INIS)

    Santos, Thiago A. dos; Maiorino, José R.; Stefanni, Giovanni L. de

    2017-01-01

    In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O 2 . For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O 2 .The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO 2 was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)

  20. Slovak Chernobyl /1976/

    International Nuclear Information System (INIS)

    Sveda, R.

    2007-01-01

    In this video-film history of Bohunice A-1 NPP is presented. The A-1 reactor was an experimental reactor, which during 1973 - 1977 this NPP produced electricity. In January 5, 1976 during refuelling of fuel elements one of them was hurled and carbon dioxide leaks into reactor hall. The operator Viliam Paces packed the hole with refuelling machine. In this film process of refuelling and this reactor accident are reconstructed and reasons are analysed. Two workers were killed outside the premises of the reactor hall. Direct participants as well as one son of the victim recall about this accident. After repairing of the reactor this nuclear power plant was again put into operation. But in February 22, 1977 the second accident (level 4 of the INES scale) occurred after which the nuclear power plant has been closed.

  1. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    Science.gov (United States)

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  2. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Jin, Yoon-Su; Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2014-09-15

    Highlights: • The authors designed and fabricated a D-shape coil based toroid-type HTS DC reactor using 2G GdBCO HTS wires. • The toroid-type magnet consisted of 30 D-shape double pancake coil (DDC)s. The total length of the wire was 2.32 km. • The conduction cooling method was adopted for reactor magnet cooling. • The maximum cooling temperature of reactor magnet is 5.5 K. • The inductance was 408 mH in the steady-state condition (300 A operating). - Abstract: This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  3. Ethanol production by immobilized yeast and its CO2 gas effects on a packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, G M; Choi, C Y; Choi, Y D; Han, M H

    1982-10-01

    Immobilised yeast trapped in an alginate matrix demonstrated maximum activity at 30 degrees C and showed no pH effect between 3 and 7. Substrate inhibition was observed at glucose concentrations above 8% but the immobilised cells retained 70% of their maximum activity at 20% glucose concentration. The operation stability of immobilised cells was lower in simple glucose solution than in the activation medium in which only 20% of the activity was lost after 10 days operation. Inactivated immobilised yeast beads were reactivated by incubation in activation medium without a significant increase in cell numbers in a bead. During the operation of the immobilised yeast in a packed bed reactor, CO/sub 2/ gas accumulation adversely affected the reactor performance. An ideal plus flow reactor, not taking into account the formation of CO/sub 2/ gas bubbles and the presence of mass trasnfer resistance, was simulated using a kinetic model for the production of ethanol and the simulation results were compared with the actual reactor performance to determine the CO/sub 2/ gas effect, quantitatively. Up to 45% of the substrate conversion was lost due to the accumulation of CO/sub 2/ gas bubbles in all cases. (Refs. 21).

  4. Experience with construction and assembly of V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Prochazka, J.; Stepanek, S.; Drahy, J.

    1981-01-01

    The model is discussed of the constructions of the V-1 nuclear power plant at Jaslovske Bohunice with SKODA Trust fulfilling the role of the general supplier of the secondary part technology and the chief and special assembly contractor. The SKODA Trust mediated the Soviet supplies of technology, Soviet assembly and special assembly, and the mounting of the primary part according to Soviet projects. Plant start-up was safeguarded by the investor through Bohunice power plant staff and Soviet experts. The assembly of the primary circuit and the test assembly of reactor parts are described and the experience gained is discussed. The technological requirements are illustrated by the most important characteristics of the individual parts of the primary circuit. Also described are the design specifications of the 220 MW saturated steam turbine and the experience with its assembly and start-up. (B.S.)

  5. TiO2 Solar Photocatalytic Reactor Systems: Selection of Reactor Design for Scale-up and Commercialization—Analytical Review

    Directory of Open Access Journals (Sweden)

    Yasmine Abdel-Maksoud

    2016-09-01

    Full Text Available For the last four decades, viability of photocatalytic degradation of organic compounds in water streams has been demonstrated. Different configurations for solar TiO2 photocatalytic reactors have been used, however pilot and demonstration plants are still countable. Degradation efficiency reported as a function of treatment time does not answer the question: which of these reactor configurations is the most suitable for photocatalytic process and optimum for scale-up and commercialization? Degradation efficiency expressed as a function of the reactor throughput and ease of catalyst removal from treated effluent are used for comparing performance of different reactor configurations to select the optimum for scale-up. Comparison included parabolic trough, flat plate, double skin sheet, shallow ponds, shallow tanks, thin-film fixed-bed, thin film cascade, step, compound parabolic concentrators, fountain, slurry bubble column, pebble bed and packed bed reactors. Degradation efficiency as a function of system throughput is a powerful indicator for comparing the performance of photocatalytic reactors of different types and geometries, at different development scales. Shallow ponds, shallow tanks and fountain reactors have the potential of meeting all the process requirements and a relatively high throughput are suitable for developing into continuous industrial-scale treatment units given that an efficient immobilized or supported photocatalyst is used.

  6. Equipment for thermal neutron flux measurements in reactor R2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E; Nilsson, T; Claeson, S

    1960-04-15

    For most of the thermal neutron flux measurements in reactor R2 cobalt wires will be used. The loading and removal of these wires from the reactor core will be performed by means of a long aluminium tube and electromagnets. After irradiation the wires will be scanned in a semi-automatic device.

  7. Research reactor FR2 - 20 years chemical and radiochemical measurements

    International Nuclear Information System (INIS)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Hoffmann, W.; Beyer, J.

    1986-09-01

    The FR2 has been a D 2 O cooled and moderated research reactor with a thermal output of 44 MW. It was in operation from 1961 to 1981. Because of the operating conditions of the reactor, only a small number of routine measurements were performed. For these however special techniques had to be developed. During the 20 years of operation a number of special events occured or have been observed, sometimes with very amazing results, e.g. the 'aceton effect'. This report describes the chemical and radiochemical conditions of the reactor systems, as well as the results of the surveilance work. Not described are measurements for the many experiments. The last chapter gives in a short form a description of the most unusual events and observations. (orig.) [de

  8. COOLOD-N2: a computer code, for the analyses of steady-state thermal-hydraulics in research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1994-03-01

    The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode as well as COOLOD-N code. In the COOLOD-N2 code, a 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. (author)

  9. Thermal-deformation effect of welding on A 1 reactor pressure vessel weld joints properties and state of stress

    International Nuclear Information System (INIS)

    Becka, J.; Kupka, I.

    1976-01-01

    The methods are compared of electroslag welding and of arc welding with a view to their possible application in welding the Bohunice A-1 reactor pressure vessel. Considered are the thermal deformation effects of welding on the physical properties and the stress present in welded joints. For testing, plates were used having the dimensions of 1100x2300x200 mm and rings with 4820 mm outer diameter, 1800 mm height and 170 mm thickness made of steel CSN 413O30 modified with Ni, Al+Ti. The deformation effect of welding on the residual surface and triaxial stress, the specific stored energy, the initiation temperature of brittle crack and the critical size of the initiation defect corresponding to the thermal deformation effect of welding were determined. It was found that for electroslag welding, there is a low probability of crack formation in the joints, a low level of residual stress and a low level of specific stored energy in a relatively wide joint zone. For arc welding there is a considerable probability of defect formation in the vicinity of the sharp boundary of the joint, a high level of the triaxial state of stress in the tensile region, and a high level of specific stored energy concentrated in the narrow zone of weld joints. The recommended thermal process is given for welding pressure vessels made of the CSN 413030 steel modified with Ni, Al+Ti, and 150 to 200 mm in thickness. (J.P.)

  10. A method of reactor power decrease by 2DOF control system during BWR power oscillation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1998-09-01

    Occurrence of power oscillation events caused by void feedback effects in BWRs operated at low-flow and high-power condition has been reported. After thoroughly examining these events, BWRs have been equipped with the SRI (Selected Rod Insertion) system to avoid the power oscillation by decreasing the power under such reactor condition. This report presents a power control method for decreasing the reactor power stably by a two degree of freedom (2DOF) control. Performing a numerical simulation by utilizing a simple reactor dynamics model, it is found that the control system designed attains a satisfactory control performance of power decrease from a viewpoint of setting time and oscillation. (author)

  11. VUEZ. Annual report 2004

    International Nuclear Information System (INIS)

    2005-01-01

    A brief account of activities carried out by the Vyskumny ustav energetickych zariadeni, a.s. (VUEZ) in 2004 is presented. These activities are reported under the headings: (1) Introductory address by the Chairman of the Board of Directors; (2) Mission and vision; (3) Basic data; (4) Product portfolio and customer services; (5) VUEZ - Quality policy; (6) Human resources; (7) Economic data; (8) Auditor's certificate; (8) Adving, s.r.o.; (9) Contact persons and addresses. In 2004, the decisive domestic market capacities of VUEZ were focused on its main business partner SE, a.s., particularly on the Jaslovske Bohunice NPP. VUEZ was one of the major contractors participating in investment projects such as the Upgrading of the Jaslovske Bohunice V2 NPP. In addition, sealing work and periodical integrated leakage rate tests in nuclear power plants were resumed. In the field of fossil-fuel power plants, a substantial increase in services provided by VUEZ Emission Measurement Laboratory was recorded. In the field of experimental research, another bilateral project was implemented with IRSN Paris - an extensive programme aimed at verifying the operational reliability of emergency core cooling systems for PWR reactors. In 2004, experimental tests in this field were performed also for Westinghouse. In the process of preparation for the Jaslovske Bohunice V1 NPP decommissioning, intensive work was performed for the Project Management Unit Consultant - an international consortium consisting of Electricite de France, Empresarios Agrupados Internacional S.A., Iberdrola Ingenieria y Consultoria S.A., and Soluziona Ingenieria S.A. In the field of leak-tightness improvement in nuclear power plants, work was executed in foreign plants such as the Dukovany NPP, Czech Republic, and the Paks NPP, Hungary. In the field of investment deliveries, hermetic doors designed for the RAW Repository in the Paks NPP were manufactured for and delivered to OLAJTERV R.t. Company, Budapest, Hungary

  12. Planned Scientific programs around the Triga Mark 2 Reactor

    International Nuclear Information System (INIS)

    Majah, M Ibn.

    2007-01-01

    Full text: Nuclear techniques have been introduced to Morocco since the sixties. After the energy crisis of 1973, Morocco decides to create the National Center for Energy Sciences and Nuclear Techniques (CNESTEN) under the supervision of the Ministry of high Education and Research, with a research commercial and support vocation. CNESTEN is in charge of promoting nuclear application, to act as technical support for the authorities and to prepare the technological basis for nuclear power option. In 1998, CNESTEN started the construction of Nuclear Research Centre. The on going activities cover many sectors : earth and environmental sciences, high energy physics, safety and security, waste management. In 2001, CNESTEN started the construction of a 2MW TRiga Mark 2 Reactor, with the possibility to increase the power to 3 MW. The construction was achieved in January 2007. The operation of the reactor is expected for April 2007. The program of the utilization of the reactor was established with th contribution of the university and with the assistance of IAEA. Some of the experimental set-up installed around the reactor have been designed. CNESTEN has developed cooperation with Nuclear research centres from other countries and is receiving visitors and trainees mainly through the IAEA [fr

  13. Study of the obtainment of Mo_2C by gas-solid reaction in a fixed and rotary bed reactor

    International Nuclear Information System (INIS)

    Araujo, C.P.B. de; Souza, C.P. de; Souto, M.V.M.; Barbosa, C.M.; Frota, A.V.V.M.

    2016-01-01

    Carbides' synthesis via gas-solid reaction overcomes many of the difficulties found in other processes, requiring lower temperatures and reaction times than traditional metallurgic routes, for example. In carbides' synthesis in fixed bed reactors (FB) the solid precursor is permeated by the reducing/carburizing gas stream forming a packed bed without mobility. The use of a rotary kiln reactor (RK) adds a mixing character to this process, changing its fluid-particle dynamics. In this work ammonium molybdate was subjected to carbo-reduction reaction (CH4 / H2) in both reactors under the same gas flow (15L / h) and temperature (660 ° C) for 180 minutes. Complete conversion was observed Mo2C (dp = 18.9nm modal particles sizes' distribution) in the fixed bed reactor. In the RK reactor this conversion was only partial (∼ 40%) and Mo2C and MoO3 (34nm dp = bimodal) could be observed on the produced XRD pattern. Partial conversion was attributed to the need to use higher solids loading in the reactor CR (50% higher) to avoid solids to centrifuge. (author)

  14. Calculation of radiation dose rate above water layer of Interim Spent Fuel Storage Jaslovske Bohunice by the point Kernels (VISIPLAN) and Monte Carlo (MCNP4C) methods

    International Nuclear Information System (INIS)

    Slavik, O.; Kucharova, D.; Listjak, M.; Fueloep, M.

    2008-01-01

    The aim of this paper is to evaluate maximal dose rate (DR) of gamma radiation above different configurations of reservoirs with spent nuclear fuel with cooling period 1.8 year and to compare by buildup factor method (Visiplan) and Monte Carlo simulations and to appreciate influence of scattered photons in the case of calculation of fully filled fuel transfer storage (FTS). On the ground of performed accounts it was shown, that relative contributions of photons from adjacent reservoirs are in the case buildup factor method (Visiplan) similar to Monte Carlo simulations. It means, that Visiplan can be used also for valuation of contributions of of dose rates from neighbouring reservoirs. It was shown, that calculations of DR by Visiplan are conservatively overestimated for this source of radiation and thickness of shielding approximately 2.6 - 3 times. Also following these calculations resulted, that by storage of reservoirs with cooling period 1.8 years in FTS is not needed any additional protection measures for workers against primal safety report. Calculated DR also above fully filled FTS by these reservoirs in Jaslovske Bohunice is very low on the level 0.03 μSv/h. (authors)

  15. Calculation of radiation dose rate above water layer of Interim Spent Fuel Storage Jaslovske Bohunice by the point Kernels (VISIPLAN) and Monte Carlo (MCNP4C) methods

    International Nuclear Information System (INIS)

    Slavik, O.; Kucharova, D.; Listjak, M.; Fueloep, M.

    2009-01-01

    The aim of this paper is to evaluate maximal dose rate (DR) of gamma radiation above different configurations of reservoirs with spent nuclear fuel with cooling period 1.8 year and to compare by buildup factor method (Visiplan) and Monte Carlo simulations and to appreciate influence of scattered photons in the case of calculation of fully filled fuel transfer storage (FTS). On the ground of performed accounts it was shown, that relative contributions of photons from adjacent reservoirs are in the case buildup factor method (Visiplan) similar to Monte Carlo simulations. It means, that Visiplan can be used also for valuation of contributions of of dose rates from neighbouring reservoirs. It was shown, that calculations of DR by Visiplan are conservatively overestimated for this source of radiation and thickness of shielding approximately 2.6 - 3 times. Also following these calculations resulted, that by storage of reservoirs with cooling period 1.8 years in FTS is not needed any additional protection measures for workers against primal safety report. Calculated DR also above fully filled FTS by these reservoirs in Jaslovske Bohunice is very low on the level 0.03 μSv/h. (authors)

  16. A novel auto-thermal reforming membrane reactor for high purity H2

    International Nuclear Information System (INIS)

    Tony Boyd; Grace, J.R.; Lim, C.J.; Adris, A.M.

    2006-01-01

    A novel hydrogen reactor based on steam reforming of natural gas has been developed and tested. The reactor produces high purity hydrogen using in-situ perm-selective membranes installed in a fluidized catalyst bed, thus shifting the thermodynamic equilibrium of the SMR reaction and eliminating the need for downstream hydrogen purification. The reactor is particularly suited to auto-thermal reforming, where air is added to the reformer to provide the endothermic reaction heat, thus eliminating the need to indirectly heat the reactor. The gas flow pattern within the fluidized bed induces an internal circulation of catalyst particles between the central SMR reaction (permeation) zone and an outer annulus. The circulating hot catalyst particles from the oxidation zone carry the required endothermic heat of reaction for the reforming, while ensuring that the palladium membranes are not exposed to excessive temperatures or to oxygen. Another beneficial characteristic of the reactor is that very little of the nitrogen present in the oxidation air reaches the reaction zone, thus maintaining the hydrogen driving force for the perm-selective membranes. Pilot plant results carried out in a semi-industrial scale reactor will be presented. The reactor was operated up to 650 C and 14 bar. Pure hydrogen (99.999+%) was initially obtained from the reactor and an equilibrium shift was demonstrated. (authors)

  17. Utilization of research reactors - A global perspective

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1988-01-01

    This paper presents 1) a worldwide picture of research reactors, operable, shutdown, under construction and planned, 2) statistics on utilization of research reactors including TRIGA reactors, and 3) some results of a survey conducted during 1988 on the utilization of research reactors in developing Member States in the Asia-Pacific Region

  18. The BR2 materials testing reactor. Past, ongoing and under-study upgradings

    Energy Technology Data Exchange (ETDEWEB)

    Baugnet, J M; Roedt, Ch de; Gubel, P; Koonen, E [Centre d' Etude de I' Energie Nucleaire, Studiecentrum voor Kernenergie, C.E.N./S.C.K., Mol (Belgium)

    1990-05-01

    The BR2 reactor (Mol, Belgium) is a high-flux materials testing reactor. The fuel is 93% {sup 235}U enriched uranium. The nominal power ranges from 60 to 100 MW. The main features of the design are the following: 1) maximum neutron flux, thermal: 1.2 x 10{sup 15} n/cm{sup 2} s; fast (E > 0.1 MeV) : 8.4 x 10{sup 14} n /cm{sup 2} s; 2) great flexibility of utilization: the core configuration and operation mode can be adapted to the experimental loading; 3) neutron spectrum tailoring; 4) availability of five 200 mm diameter channels besides the standard channels (84 mm diameter); 5) access to the top and bottom covers of the reactor authorizing the irradiation of loops. The reactor is used to study the behaviour of fuel elements and structural materials intended for future nuclear power stations of several types (fission and fusion). Irradiations are carried out in connection with performance tests up to very high burn-up or neutron fluence as well as for safety experiments, power cycling experiments, and generally speaking, tests under off-normal conditions. Irradiations for nuclear transmutation (production of high specific activity radio-isotopes and transplutonium elements), neutron-radiography, use of beam tubes for physics studies, and gamma irradiations are also carried out. The BR2 is used in support of Belgian programs, at the request of utilities, industry and universities and in the framework of international agreements. The paper reviews the past and ongoing upgrading and enhancement of reactor capabilities as well as those under study or consideration, namely with regard to: reactor equipment, fuel elements, irradiation facilities, reactor operation conditions and long-term strategy. (author)

  19. Venting krypton-85 from the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Burton, H.M.

    1981-01-01

    To permit the less restricted access to the reactor building necessary to maintain instrumentation and equipment, and to proceed towad the total decontamination of the facility, General Public Utilities, operators of the facility referred to hereafter as GPU, asked the United States Nuclear Regulatory Commission, or NRC, for permission to remove the 85 Kr from the reactor building by venting it to the environment. GPU supported their request with the Safety Analysis and Environmental Assessment Report on the proposed reactor building venting plan. On June 12, 1980, after seven months of licensing deliberations and numerous public hearings, the NRC granted GPU's request. The actual venting took place between June 28 and July 11, 1980. This report presents an overview of the detailed effort involved in the TMI-2 reactor building venting program. The findings reported here are condensed from a published report entitled TMI-2 Reactor Building Purge--Kr-85 Venting

  20. TMI-2 reactor-vessel head removal and damaged-core-removal planning

    International Nuclear Information System (INIS)

    Logan, J.A.; Hultman, C.W.; Lewis, T.J.

    1982-01-01

    A major milestone in the cleanup and recovery effort at TMI-2 will be the removal of the reactor vessel closure head, planum, and damaged core fuel material. The data collected during these operations will provide the nuclear power industry with valuable information on the effects of high-temperature-dissociated coolant on fuel cladding, fuel materials, fuel support structural materials, neutron absorber material, and other materials used in reactor structural support components and drive mechanisms. In addition, examination of these materials will also be used to determine accident time-temperature histories in various regions of the core. Procedures for removing the reactor vessel head and reactor core are presented

  1. Power noise spectrum classification in the problem of the IBR-2 reactor

    International Nuclear Information System (INIS)

    Bargel, M.; Kitowski, J.; Pepelyshev, Yu.N.

    1988-01-01

    The classification spectrum results of random fluctuations in the IBR-2 energy pulse are presented. The work is performed for the application of the obtained results to the reactor diagnostics and the study of its noise uncontrolled states. For classification of the spectra the method of pattern recognition based upon the ISODATA heuristic algorithm is used. It is shown that a set of noise uncontrolled reactor states, registered during the reactor operation period at power of 0.4-2 MVt with the first variant of moving reflector (1983-1986) is formed into 4(5) most typical states. Each of the states corresponds to the general conditions of the reactor core cooling and provides the normal work of the moving reflector. However, these states differ in coolant flow, power level and peculiarities of the moving reflector rotation regime. One type of anomal power noise, connected with some disorder in the moving reflctor work, is isolated. This work also presents the possibility of control over the state of moving reflectors according to the change in the amplitude of power oscillations at some frequences. The reactor noise classification results can be used as the data bank for the IBR-2 reactor diagnostic system

  2. Nuclear safety in Slovak Republic. Status of safety improvements

    International Nuclear Information System (INIS)

    Toth, A.

    1999-01-01

    Status of the safety improvements at Bohunice V-1 units concerning WWER-440/V-230 design upgrading were as follows: supplementing of steam generator super-emergency feed water system; higher capacity of emergency core cooling system; supplementing of automatic links between primary and secondary circuit systems; higher level of secondary system automation. The goal of the modernization program for Bohunice V-1 units WWER-440/V-230 was to increase nuclear safety to the level of the proposals and IAEA recommendations and to reach probability goals of the reactor concerning active zone damage, leak of radioactive materials, failures of safety systems and damage shields. Upgrading program for Mochovce NPP - WWER-440/V-213 is concerned with improving the integrity of the reactor pressure vessel, steam generators 'leak before break' methods applied for the NPP, instrumentation and control of safety systems, diagnostic systems, replacement of in-core monitoring system, emergency analyses, pressurizers safety relief valves, hydrogen removal system, seismic evaluations, non-destructive testing, fire protection. Implementation of quality assurance has a special role in improvement of operational safety activities as well as safety management and safety culture, radiation protection, decommissioning and waste management and training. The Year 2000 problem is mentioned as well

  3. The Oak Ridge Research Reactor: safety analysis: Volume 2, supplement 2

    International Nuclear Information System (INIS)

    Hurt, S.S.

    1986-11-01

    The Oak Ridge Research Reactor Safety Analysis was last updated via ORNL-4169, Vol. 2, Supplement 1, in May of 1978. Since that date, several changes have been effected through the change-memo system described below. While these changes have involved the cooling system, the electrical system, and the reactor instrumentation and controls, they have not, for the most part, presented new or unreviewed safety questions. However, some of the changes have been based on questions or recommendations stemming from safety reviews or from reactor events at other sites. This paper discusses those changes which were judged to be safety related and which include revisions to the syphon-break system and changes related to seismic considerations which were very recently completed. The maximum hypothetical accident postulated in the original safety analysis requires dynamic containment and filtered flow for compliance with 10CFR100 limits at the site boundary

  4. Cronos 2: a neutronic simulation software for reactor core calculations; Cronos 2: un logiciel de simulation neutronique des coeurs de reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lautard, J J; Magnaud, C; Moreau, F; Baudron, A M [CEA Saclay, Dept. de Mecanique et de Technologie (DMT/SERMA), 91 - Gif-sur-Yvette (France)

    1999-07-01

    The CRONOS2 software is that part of the SAPHYR code system dedicated to neutronic core calculations. CRONOS2 is a powerful tool for reactor design, fuel management and safety studies. Its modular structure and great flexibility make CRONOS2 an unique simulation tool for research and development for a wide variety of reactor systems. CRONOS2 is a versatile tool that covers a large range of applications from very fast calculations used in training simulators to time and memory consuming reference calculations needed to understand complex physical phenomena. CRONOS2 has a procedure library named CPROC that allows the user to create its own application environment fitted to a specific industrial use. (authors)

  5. Apollo-L2, an advanced fuel tokamak reactor utilizing direct conversion

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Blanchard, J.P.; El-Guebaly, L.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.E.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Witt, R.J.

    1989-01-01

    A scoping study of a tokamak reactor fueled by a D- 3 He plasma is presented. The Apollo D- 3 He tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The low neutron wall loading (0.1 MW/m 2 ) permits a first wall lasting the life of the plant and enables the reactor to be classified as inherently safe. The cost of electricity is less than that from a similar power level DT reactor. 10 refs., 1 fig., 4 tabs

  6. Safety assessments relating to the use of new fuels in research reactors: application to the case of FRM 2 reactor fuel

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Bars, G.; Tran Dai

    2001-01-01

    After giving a brief reminder of the procedure applied in France for the licensing of the use of a new fuel type or design in a research reactor, we outline the main safety aspects associated with such a modification. Finally, by way of an example, we focus on the safety assessment relating to the IRIS irradiation device used in SILOE reactor, in particular for the qualification of the fuel dedicated to FRM II reactor of the Technical University of Munich. This qualification was carried out on a U 3 Si 2 fuel plate enriched to about 90 % in weight of 235 U and containing 1.5 g of uranium per cm 3 . The evaluation performed by the IPSN for GRS did not call into question the choice of U 3 Si 2 fuel plates for the FRM-II reactor. (authors)

  7. Factors affecting biological reduction of CO{sub 2} into CH{sub 4} using a hydrogenotrophic methanogen in a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyung; Pak, Daewon [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Chang, Won Seok [Korea District Heating Corp, Seongnam (Korea, Republic of)

    2015-10-15

    Biological conversion of CO{sub 2} was examined in a fixed bed reactor inoculated with anaerobic mixed culture to investigate influencing factors, the type of packing material and the composition of the feeding gas mixture. During the operation of the fixed bed reactor by feeding the gas mixture (80% H{sub 2} and 20% CO{sub 2} based on volume basis), the volumetric CO{sub 2} conversion rate was higher in the fixed bed reactor packed with sponge due to its large surface area and high mass transfer from gas to liquid phase compared with PS ball. Carbon dioxide loaded into the fixed bed reactor was not completely converted because some of H{sub 2} was used for biomass growth. When a mole ratio of H{sub 2} to CO{sub 2} in the feeding gas mixture increased from 4 to 5, CO{sub 2} was completely converted into CH{sub 4}. The packing material with large surface area is effective in treating gaseous substrate such as CO{sub 2} and H{sub 2}. H{sub 2}, electron donor, should be providing more than required according to stoichiometry because some of it is used for biomass growth.

  8. Homogeneous fast reactor benchmark testing of CENDL-2 and ENDF/B-6

    International Nuclear Information System (INIS)

    Liu Guisheng

    1995-01-01

    How to choose correct weighting spectrum has been studied to produce multigroup constants for fast reactor benchmark calculations. A correct weighting option makes us obtain satisfying results of K eff and central reaction rate ratios for nine fast reactor benchmark testings of CENDL-2 and ENDF/B-6. (4 tabs., 2 figs.)

  9. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  10. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  11. Rapid data acquisition from the safety system of the FRJ-2 reactor

    International Nuclear Information System (INIS)

    Inhoven, H.

    1980-06-01

    The central department for research reactors (ZFR) of the Juelich Nuclear Research Centre (KFA) is operating the reactors FRJ-1 (MERLIN) and FRJ-2 (DIDO) since 1962. In 1976, a Siemens 330 computer has been put into operation especially for the processing of data from the DIDO reactor, followed by another computer of the same type for the purpose of processing data from the ZFR department in general. The present report is a result of the work investigating 'Data acquisition and data processing in the FRJ-2' and primarily discusses the complex of 'fast analog and binary signals'. The activities in this field of work have been and still are mainly concerned with general problems encountered in adapting a currently 14-year-old reactor system to a digital computer, namely problems such as data decoupling in the safety system of the reactor, data acquisition using the CAMAC system, data transfer via an 'extended branch', data acquisition software as core-resident programs, temporary storage as common data, interpreting software as peripheral - storage - resident programs. (orig./WB) [de

  12. Homogeneous fast reactor benchmark testing of CENDL-2 and ENDF/B-6

    International Nuclear Information System (INIS)

    Liu Guisheng

    1995-11-01

    How to choose correct weighting spectrum has been studied to produce multigroup constants for fast reactor benchmark calculations. A correct weighting option makes us obtain satisfying results of K eff and central reaction rate ratios for nine fast reactor benchmark testing of CENDL-2 and ENDF/B-6. (author). 8 refs, 2 figs, 4 tabs

  13. Distribution of energy of impulses of the modernized IBR-2 REACTOR

    International Nuclear Information System (INIS)

    Tayibov, L.A; Mehtiyeva, R.N.; )

    2011-01-01

    Full text: For the modernized IBR-2 reactor there are two main reasons causing fluctuations of energy of impulses [1,3] on low power of stochastic fluctuations, on the nominal - giving rise to fluctuations of external reactance. The fluctuations of pulse energy is quite significant (20%). They affect the dynamics of the reactor, the process of regulation, starting, as well as the work of the experimental apparatus, etc. It is clear that research of fluctuation of energy of impulses has special value for the IBR-2 type reactor. Sufficient information about the statistical properties of the reactor noise gives the density distribution of the energy pulse power. We used the usual procedure of statistical analysis of time series. Calculated pulse energy of density and the parameters of this distribution.

  14. Fissile fuel production and usage of thermal reactor waste fueled with UO2 by means of hybrid reactor system

    International Nuclear Information System (INIS)

    Ipek, O.

    1997-01-01

    The use of Fast Breeder Reactors to produce fissile fuel from nuclear waste and the operation of these reactors with a new neutron source are becoming today' topic. In the thermonuclear reactors, it is possible to use 2.45-14.1 MeV - neutrons which can be obtained by D-T, D-D Semicatalyzed (D-D) and other fusion reactions. To be able to do these, Hybrid Reactor System, which still has experimental and theoretical studies, have to be taken into consideration.In this study, neutronic analysis of hybrid blanket with grafit reflector, is performed. D-T driven fusion reaction is surrounded by UO 2 fuel layer and the production of ''2''3''9Pu fissile fuel from waste ''2''3''8U is analyzed. It is also compared to the other possible fusion reactions. The results show that 815.8 kg/year ''2''3''8Pu with D-T reaction and 1431.6 kg/year ''2''3''8Pu with semicatalyzed (D-D) reaction can be produced for 1000 MW fusion power. This means production of 2.8/ year and 4.94/ year LWR respectively. In addition, 1000 MW fusion flower is is multiplicated to 3415 MW and 4274 MW for D-T and semicatalyzed (D-D) reactions respectively. The system works subcritical and these values are 0.4115 and 0.312 in order. The calculations, ANISN-ORNL code, S 16 -P 3 approach and DLC36 data library are used

  15. A thermal hydraulic analysis in PWR reactors with UO{sub 2} or (U-Th)O{sub 2} fuel rods employing a simplified code

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thiago A. dos; Maiorino, José R., E-mail: thiago.santos@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil); Stefanni, Giovanni L. de, E-mail: giovanni.stefanni@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O{sub 2}. For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O{sub 2}.The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO{sub 2} was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)

  16. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  17. A Conceptual Study on a Supercritical CO2-cooled KAIST Micro Modular Reactor

    International Nuclear Information System (INIS)

    Yu, HwanYeal; Hartanto, Donny; Kim, Yonghee

    2015-01-01

    Small Modular Reactors (SMRs) are nuclear reactors that are completely built in a factory and shipped to the designated site for installation. As such, the SMR is especially advantageous as a flexible and cost-effective energy source for remote and isolated areas. Furthermore, the concept requires a relatively low capital cost, which makes it attractive for developing countries with limited electricity grid. In addition, the SMR concepts also generate more interest after the Fukushima accident since it can easily be designed with a passive decay heat removal system. One of the major advantages of a water-cooled SMR is its relatively small core size. Nonetheless, in spite of its small core size, the volume and area required for its steam-cycle power conversion unit is still significant. In this study, neutronics feasibility of a fully compact and transportable KAIST micro-modular reactor (MMR) was demonstrated. Rated thermal power of the core was 36.2 MWth with total weight of about 39.6 tons. The core was loaded with 15.5 w/o uranium mono-nitride U15N fuels in order to achieve a targeted lifetime of 20 EFPYs. To achieve targeted lifetime, initial excess reactivity of the core should be quite high, around 4,707 pcm. To reduce the high excess reactivity to about 2,500 pcm, a replaceable burnable absorber was utilized in the design. As a result, the MMR has a 20-year lifetime with a relatively small burnup reactivity swing. Several important safety parameters of the KAIST MMR core were also determined in this study. The Doppler reactivity coefficients and CVRs were demonstrated to negative. Worth of the primary control drums and secondary control rod were much higher than initial excess reactivity

  18. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  19. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    International Nuclear Information System (INIS)

    Richard P. Wells

    2007-01-01

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year

  20. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  1. Estimation of power feedback parameters of pulse reactor IBR-2M on transients

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Popov, A.K.

    2013-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) on a model of the reactor dynamics by mathematical treatment of two registered transients are estimated. Frequency characteristics and the pulse transient characteristics corresponding to these PFB parameters are calculated. PFB parameters received thus can be considered as their express tentative estimation as real measurements in this case occupy no more than 30 minutes. Total PFB is negative at 1 and 2 MW. At the received estimations of PFB parameters in a self-regulation mode it is possible to consider the stability margins of the IBR-2M reactor satisfactory

  2. Production of Sn-117m in the BR2 high-flux reactor.

    Science.gov (United States)

    Ponsard, B; Srivastava, S C; Mausner, L F; Russ Knapp, F F; Garland, M A; Mirzadeh, S

    2009-01-01

    The BR2 reactor is a 100MW(th) high-flux 'materials testing reactor', which produces a wide range of radioisotopes for various applications in nuclear medicine and industry. Tin-117m ((117m)Sn), a promising radionuclide for therapeutic applications, and its production have been validated in the BR2 reactor. In contrast to therapeutic beta emitters, (117m)Sn decays via isomeric transition with the emission of monoenergetic conversion electrons which are effective for metastatic bone pain palliation and radiosynovectomy with lesser damage to the bone marrow and the healthy tissues. Furthermore, the emitted gamma photons are ideal for imaging and dosimetry.

  3. Research and development of a super fast reactor (12). Considerations for the reactor characteristics

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishiwatari, Yuki; Oka, Yoshiaki

    2008-01-01

    A research program aimed at developing the Super Fast Reactor (Super FR) has been entrusted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan since December 2005. It includes the following three projects. (A) Development of the Super Fast Reactor concept. (B)Thermal-hydraulic experiments. (C) Materials development. Tokyo Electric Power Company (TEPCO) has joined this program and works on part (A) together with the University of Tokyo. From the utility's viewpoint, it is important to consider the most desirable characteristics for Super FR to have. Four issues were identified in project (A), (1) Fuel design, (2) Reactor core design, (3) Safety, and (4) Plant characteristics of Super FR. This report describes the desired characteristics of Super FR with respect to item (1) fuel design and item (2) Reactor core design, as compared with a boiling water reactor (BWR) plant. The other two issues will be discussed in this project, and will also be considered in the design process of Super FR. (author)

  4. analysis and implementation of reactor protection system circuits - case study Egypt's 2 nd research reactor-

    International Nuclear Information System (INIS)

    Elnokity, O.E.M.

    2006-01-01

    this work presents a way to design and implement the trip unit of a reactor protection system (RPS) using a field programmable gate arrays (FPGA). instead of the traditional embedded microprocessor based interface design method, a proposed tailor made FPGA based circuit is built to substitute the trip unit (TU), which is used in Egypt's 2 nd research reactor ETRR-2. the existing embedded system is built around the STD32 field computer bus which is used in industrial and process control applications. it is modular, rugged, reliable, and easy-to-use and is able to support a large mix of I/O cards and to easily change its configuration in the future. therefore, the same bus is still used in the proposed design. the state machine of this bus is designed based around its timing diagrams and implemented in VHDL to interface the designed TU circuit

  5. Comparative study between fluidized bed and fixed bed reactors in methane reforming with CO2 and O2 to produce syngas

    International Nuclear Information System (INIS)

    Jing Qiangshan; Lou Hui; Mo Liuye; Zheng Xiaoming

    2006-01-01

    Reforming of methane with carbon dioxide and oxygen was investigated over Ni/MgO-SiO 2 catalysts using fixed bed and fluidized bed reactors. The conversions of CH 4 and CO 2 in a fluidized bed reactor were close to thermodynamic equilibrium. The activity and stability of the catalyst in the fixed bed reactor were lower than that in the fluidized bed reactor due to carbon deposition and nickel sintering. TGA and TEM techniques were used to characterize the spent catalysts. The results showed that a lot of whisker carbon was found on the catalyst in the rear of the fixed bed reactor, and no deposited carbon was observed on the catalysts in the fluidized bed reactor after reaction. It is suggested that this phenomenon is related to a permanent circulation of catalyst particles between the oxygen rich and oxygen free zones. That is, fluidization of the catalysts in the fluidized bed reactor favors inhibiting deposited carbon and thermal uniformity in the reactor

  6. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    International Nuclear Information System (INIS)

    Bissani, M; O'Kelly, D S

    2006-01-01

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  7. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to

  8. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Sotiris Kaldis; Savas G. Topis; Dimitris Koutsonikolas; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Dept. of Chemical Engineering

    2006-07-01

    An alternative technology for the removal of gas pollutants at the intergrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and permselectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 9 refs., 6 figs., 1 tab.

  9. Studsvik's R2 reactor - Review of activities

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, Mikael; Tomani, Hans; Graeslund, Christian; Rundquist, Hans; Skoeld, Kurt [Studsvik Nuclear AB, Nykoeping (Sweden)

    1993-07-01

    A general description of the R2 reactor, its associated facilities and its history is given. The facilities and range of work are described for the following types of activities: fuel testing, materials testing, neutron transmutation doping of silicon, activation analysis, radioisotope production and basic research including thermal neutron scattering, nuclear chemistry and neutron capture radiography. (author)

  10. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor

    International Nuclear Information System (INIS)

    Dou Binlin; Song Yongchen; Liu Yingguang; Feng Cong

    2010-01-01

    The gas-solid reaction and breakthrough curve of CO 2 capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO 2 gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO 2 level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO 2 capture at 550 deg. C. Calcium oxide sorbent after reaction can be easily regenerated at 900 deg. C by pure N 2 flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO 2 were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  11. Core configuration of a gas-cooled reactor as a tritium production device for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, H., E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, H.; Nakao, Y. [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Shimakawa, S.; Goto, M.; Nakagawa, S. [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur 54100 (Malaysia)

    2014-05-01

    The performance of a high-temperature gas-cooled reactor as a tritium production device is examined, assuming the compound LiAlO{sub 2} as the tritium-producing material. A gas turbine high-temperature reactor of 300 MWe nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations are carried out. To load sufficient Li into the core, LiAlO{sub 2} is loaded into the removable reflectors that surround the ring-shaped fuel blocks in addition to the burnable poison insertion holes. It is shown that module high-temperature gas-cooled reactors with a total thermal output power of 3 GW can produce almost 8 kg of tritium in a year.

  12. Shadow corrosion testing in the INCA facility in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Nystrand, A.C.; Lassing, A.

    1999-01-01

    Shadow corrosion is a phenomenon which occurs when zirconium alloys are in contact with or in proximity to other metallic objects in a boiling water reactor environment (BWR, RBMK, SGHWR etc.). An enhanced corrosion occurs on the zirconium alloy with the appearance of a 'shadow' of the metallic object. The magnitude of the shadow corrosion can be significant, and is potentially limiting for the lifetime of certain zirconium alloy components in BWRs and other reactors with a similar water chemistry. In order to evaluate the suitability of the In-Core Autoclave (INCA) in the Studsvik R2 materials testing reactor as an experimental facility for studying shadow corrosion, a demonstration test has been performed. A number of test specimens consisting of Zircaloy-2 tubing in contact with Inconel were exposed in an oxidising water chemistry. Some of the specimens were placed within the reactor core and some above the core. The conclusion of this experiment after post irradiation examination is that it is possible to use the INCA facility in the Studsvik R2 reactor to develop a significant level of shadow corrosion after only 800 hours of irradiation. (author)

  13. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Topis, S.; Koutsonikolas, D.; Kaldis, S. (and others) [Aristotle University of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering

    2005-07-01

    An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and selectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 5 refs., 6 figs., 1 tab.

  14. A Novel Dual-Stage Hydrothermal Flow Reactor

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    2015-01-01

    The dual-stage reactor is a novel continuous flow reactor with two reactors connected in series. It is designed for hydrothermal flow synthesis of nanocomposites, in which a single particle consists of multiple materials. The secondary material may protect the core nanoparticle from oxidation....... The dual-stage reactor combines the ability to produce advanced materials with an upscaled capacity in excess of 10 g/hour (dry mass). TiO2 was synthesized in the primary reactor and reproduced previous results. The dual-stage capability was succesfully demonstrated with a series of nanocomposites incl. Ti...

  15. General outline of the operation and utilization of the BR2 reactor

    International Nuclear Information System (INIS)

    Baugnet, J.M.; Leonard, F.; Gandolfo, J.M.; Lenders, H.

    1978-01-01

    The BR2 reactor is a high-flux material testing reactor of the thermal heterogeneous type. The fuel is 93% 235 U enriched uranium in the form of plates clad in aluminium. The moderator consists of beryllium and light water, the water being pressurized (12.5kg/cm 2 )and acting also as coolant. The pressure vessel is of aluminium, and is placed in a pool of demineralized water. One should stress the following main features of the design: the experimental channels are skew, the tube bundle presenting the form of a hyperboloid of revolution (see figure 1)-this gives easy access at the top and bottom reactor covers allowing complex instrumented devices, while maintaining a very high neutron flux at the core; great flexibilty of utilization, due to the fact that it is possible to adapt the core configuration to the experimental loading as the fissile charge can be centred on different experimental channels; although BR2 is a thermal reactor, it is possible to achieve neutron spectra very similar to those obtained in a fast reactor, either by the use of absorbing screens or by the use of fissile material within the experimental device; five 200mm diameter channels are available for loading large experimental irradiation devices, as in-pile sodium, gas or water loops. (author)

  16. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 2

    International Nuclear Information System (INIS)

    Singh, B.N.; Johansen, B.S.; Taehtinen, S.; Moilanen, P.; Saarela, S.; Jacquet, P.; Dekeyser, J.; Stubbins, J.F.

    2008-01-01

    The main objective of the present work was to determine experimentally the mechanical response and resulting microstructural changes in CuCrZr (HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Using specially designed test facilities for this purpose, in-reactor creep-fatigue tests have been performed at strain amplitudes of 0.25 and 0.35 % with a holdtime of 10s in the BR-2 reactor at Mol (Belgium). These tests were performed at the ambient temperatures of 326K and 323K. For comparison purposes corresponding out-of-reactor creep-fatigue tests were also carried out. In the following we first describe the details of the creep-fatigue experiments. We then present the main results on the mechanical response of the material in the form of hysteresis loops and the maximum stress amplitude as a function of the number of creep-fatigue cycles during the out-of-reactor and the in-reactor tests carried out at different strain amplitudes. Finally, the dependence of the number of cycles to failure (i.e. creep-fatigue lifetime) on the strain amplitudes is shown. The details of microstructure of the specimens tested out-of-reactor as well as in the reactor were investigated using transmission electron microscopy. The main results on the mechanical response as well as changes in the microstructure are briefly discussed. The main conclusion emerging from the present work is that the lifetime of the in-reactor tested specimens is by a factor of about two longer than in the case of corresponding out-of-reactor tests. (au)

  17. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor

    DEFF Research Database (Denmark)

    Garcia-Robledo, Emilio; Ottosen, Lars Ditlev Mørck; Voigt, Niels Vinther

    2016-01-01

    Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activ......Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study...

  18. Research on economics and CO2 emission of magnetic and inertial fusion reactors

    International Nuclear Information System (INIS)

    Mori, Kenjiro; Yamazaki, Kozo; Oishi, Tetsutarou; Arimoto, Hideki; Shoji, Tatsuo

    2011-01-01

    An economical and environment-friendly fusion reactor system is needed for the realization of attractive power plants. Comparative system studies have been done for magnetic fusion energy (MFE) reactors, and been extended to include inertial fusion energy (IFE) reactors by Physics Engineering Cost (PEC) system code. In this study, we have evaluated both tokamak reactor (TR) and IFE reactor (IR). We clarify new scaling formulas for cost of electricity (COE) and CO 2 emission rate with respect to key design parameters. By the scaling formulas, it is clarified that the plant availability and operation year dependences are especially dominant for COE. On the other hand, the parameter dependences of CO 2 emission rate is rather weak than that of COE. This is because CO 2 emission percentage from manufacturing the fusion island is lower than COE percentage from that. Furthermore, the parameters dependences for IR are rather weak than those for TR. Because the CO 2 emission rate from manufacturing the laser system to be exchanged is very large in comparison with CO 2 emission rate from TR blanket exchanges. (author)

  19. Borate compound content reduction in liquid radioactive waste from nuclear power plants with VVER reactor

    International Nuclear Information System (INIS)

    Szalo, A.; Zatkulak, M.

    2000-01-01

    This paper describes the current status of liquid waste (evaporator concentrates) inventory at V-1 and V-2 NPPs in Jaslovske Bohunice and the intention to separate boron from them with respect to waste minimisation and improvement of physical and chemical properties for further waste treatment and conditioning. Preliminary results of laboratory experiments concerned to borate crystallisation after pH adjustment with nitric or formic acid performed in the 1998 are given. At the present time laboratory experiments continuing - next acids, coagulation with carbon oxide, electrolytic process, ion exchange resin, study of decontamination factors, immobilization of boric acid, decrease radioactivity, purification of boron-contained compounds. Slovenske Elektrarne have accumulated 7,000 m 3 of evaporator concentrates containing 100-180 g/l borate. In order to make more storage space available, it is proposed to remove some of the borate in the liquor by precipitation as sodium tetraborate and immobilise in either cement of bitumen. The supernate can be further volume reduced by evaporation and returned to the tanks. Slovenske Elektrarne are currently evaluating acid addition to the pH 12-13 concentrate to reduce the borate solubility. However, this adds to the salt burden of the waste through this chemical addition -thus creating future increases in conditioning and disposal costs. Boric acid is used in pressurized water as a soluble neutron poison to control reactivity and also to assure a safety margin in the spent fuel pool and during refuelling operations. Boric acid is also present in the water reserved for injection into the reactor in the event of postulated accidents. (author)

  20. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  1. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  2. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  3. Characterization of fuel distributions in the Three-Mile Island Unit 2 (TMI-2) reactor system by neutron and gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McNeece, J.P.; Kaiser, B.J.; McElroy, W.N.

    1984-04-01

    The resolution of technical issues generated by the accident at Three-Mile Island Unit 2 (TMI-2) will inevitably be of long range benefit. Determination of the fuel debris dispersal in the TMI-2 reactor system represents a major technical issue. In reactor recovery operations, such as for the safe handling and final disposal of TMI-2 waste, quantitative fuel assessments are being conducted throughout the reactor core and primary coolant system

  4. Reactor pressure vessel steels ASTM A533B and A508 Cl.2

    International Nuclear Information System (INIS)

    Pelli, R.; Kemppainen, M.; Toerroenen, K.

    1979-11-01

    This report presents the tensile test results of steels ASTM A533B and A508 Cl.2 obtained in connection with a programme initiated to gather and create information needed for the assessment of the structural integrity of the reactor pressure vessels. The tensile properties were studied between -196 and 300 degC varying austenitizing and tempering temperatures and having two different carbon contents for the heats of A533B. (author)

  5. PSA Level 2 activities for RBMK reactors

    International Nuclear Information System (INIS)

    Gubler, R.

    1998-01-01

    Probabilistic safety analyses (PSAs) of the boiling water graphite moderated pressure tube reactors (RBMKs) have been developed only recently and they are limited to Level 1. Activities at the IAEA were first motivated because of the difficulties to characterize core damage for RBMK reactors. Core damage probability is used in documents of the IAEA as a convenient single valued measure, for example for probabilistic safety criteria. The limited number of PSAs that have been completed for the RBMK reactors have shown that several special features of these channel type reactors necessitate revisiting of the characterization of core damage for these reactors. Furthermore, it has become increasingly evident that detailed deterministic analysis of DBAs and beyond design basis accidents reveal considerable insights into RBMK response to various accident conditions. These analyses can also help in better characterizing the outstanding phenomenological uncertainties, improved EOPs and AM strategies, including potential risk-beneficial accident negative backfits. The deterministic efforts should be focused first on elucidating accident progression processes and phenomena, and second on finding, qualifying and implementing procedures to minimize the risk of severe accident states The IAEA PSA procedures were mainly developed in New of vessel type LWRs, and would therefore require extensions to make them directly applicable. to channel type reactors. (author) (author)

  6. Benchmark testing of Canadol-2.1 for heavy water reactor

    International Nuclear Information System (INIS)

    Liu Ping

    1999-01-01

    The new version evaluated nuclear data library of ENDF-B 6.5 has been released recently. In order to compare the quality of evaluated nuclear data CENDL-2.1 with ENDF-B 6.5, it is necessary to do benchmarks testing for them. In this work, CENDL-2.1 and ENDF-B 6.5 were used to generated the WIMS-69 group library respectively, and benchmarks testing was done for the heavy water reactor, using WIMS5A code. It is obvious that data files of CENDL-2.1 is better than that of old WIMS library for the heavy water reactors calculations, and is in good agreement with those of ENDF-B 6.5

  7. Investigation of tritium and 233U breeding in a fission-fusion hybrid reactor fuelling with ThO2

    International Nuclear Information System (INIS)

    Yildiz, K.; Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Altinok, T.; Bayrak, M.; Alkan, M.; Durukan, O.

    2007-01-01

    In the world, thorium reserves are three times more than natural Uranium reserves. It is planned in the near future that nuclear reactors will use thorium as a fuel. Thorium is not a fissile isotope because it doesn't make fission with thermal neutrons so it could be converted to 2 33U isotope which has very high quality fission cross-section with thermal neutrons. 2 33U isotope can be used in present LWRs as an enrichment fuel. In the fusion reactors, tritium is the most important fossil fuel. Because tritium is not natural isotope, it has to be produced in the reactor. The purpose of this work is to investigate the tritium and 2 33U breeding in a fission-fusion hybrid reactor fuelling with ThO 2 for Δt=10 days during a reactor operation period in five years. The neutronic analysis is performed on an experimental hybrid blanket geometry. In the center of the hybrid blanket, there is a line neutron source in a cylindrical cavity, which simulates the fusion plasma chamber where high energy neutrons (14.1 MeV) are produced. The conventional fusion reaction delivers the external neutron source for blankets following, 2 D + 3 T →? 4 He (3.5 MeV) + n (14.1 MeV). (1) The fuel zone made up of natural-ThO 2 fuel and it is cooled with different coolants. In this work, five different moderator materials, which are Li 2 BeF 4 , LiF-NaF-BeF 2 , Li 2 0Sn 8 0, natural Lithium and Li 1 7Pb 8 3, are used as coolants. The radial reflector, called tritium breeding zones, is made of different Lithium compounds and graphite in sandwich structure. In the work, eight different Lithium compounds were used as tritium breeders in the tritium breeding zones, which are Li 3 N, Li 2 O, Li 2 O 2 , Li 2 TiO 3 , Li 4 SiO 3 , Li 2 ZrO 3 , LiBr and LiH. Neutron transport calculations are conducted in spherical geometry with the help of SCALE4.4A SYSTEM by solving the Boltzmann transport equation with code CSAS and XSDRNPM, under consideration of unresolved and resolved resonances, in S 8 -P 3

  8. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  9. Synthesis of the IRSN report related to severe accidents and to the probabilistic level-2 safety study for the Flamanville EPR reactor. Referral of the Permanent Group of Experts for nuclear reactors (GPR), examination of probabilistic level-2 safety studies (EPS 2) and severe accidents (AG) of the Flamanville reactor nr 3. Opinion related to severe accidents and to the probabilistic level-2 safety study for the Flamanville EPR reactor (FA3). Electronuclear reactors - EDF - Flamanville 3 EPR reactor. Severe accidents and probabilistic level 2 studies

    International Nuclear Information System (INIS)

    2015-01-01

    This document gathers several documents. The first one recalls the main arrangements implemented on the FA3 EPR reactor regarding accidents with core fusion, reports the analysis made by the IRSN about the sizing of these arrangements to reach a controlled status of the installation after a severe accident, regarding the probabilistic level-2 safety assessment, regarding the radiological impact of a severe accident on the population and on the environment, regarding those aimed at facing a total and long duration loss of electric power sources and cold sources, and about the situation of the reactor with respect to WENRA positions on severe accidents for new reactors. The second document is a letter sent by the ASN to the Permanent Group of Experts for nuclear reactors (GPR) to address probabilistic level-2 safety studies (EPS2) and severe accidents for the Flamanville 3 reactor. The third one reports the opinion of the GPR on these both issues and proposes a set of recommendations. The next document is a letter sent by the ASN to the Flamanville 3 project manager at EDF which recalls the related objectives, the ASN opinion on the implemented arrangements for severe accidents (de-pressurization of the primary circuit, management of hydrogen-related risks, corium recovery and cooling outside the vessel, limitation of vapour explosion risks outside the vessel, heat evacuation system, containment enclosure, management of the risk of a return to criticality), to face a total and long duration loss of electricity sources and cold sources, and other aspects addressed in the IRSN analysis. Requests and remarks formulated by the ASN are provided in an appendix to this last document

  10. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 2

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Johansen, Bjørn Sejr; Tähtinen, S.

    facilities for this purpose, in-reactor creep-fatigue tests have been performed at strain amplitudes of 0.25 and 0.35 % with a holdtime of 10s in the BR-2 reactor at Mol (Belgium). These tests were performed at the ambient temperatures of 326K and 323K. For comparison purposes corresponding out...

  11. Oxygen suppression in boiling water reactors. Phase 2. Annual report 1981, December 2, 1980-December 31, 1981

    International Nuclear Information System (INIS)

    Burley, E.L.

    1982-07-01

    A hydrogen addition test will be performed in the Dresden-2 reactor of Commonwealth Edison Company during 1982. Up to 2 ppM hydrogen will be added to and dissolved in the reactor feedwater to reverse the radiolysis reaction in the reactor core and suppress oxgen concentration in the primary coolant. At low oxygen levels the propensity of stressed and sensitized 304 stainless steel toward intergranular stress corrosion cracking is greatly reduced. The test will answer outstanding questions and uncertainties in the areas of water chemistry, equipment design and materials performance. Nine special sample facilities will be prepared in the primary coolant, main stream, feedwater/condensate, and offgas systems. Instrumentation will be available to measure hydrogen, oxygen, conductivity, pH, soluble and insoluble corrosion products, and electrochemical potentials. In addition, an autoclave in which confirming constant extension rate tests can be conducted in reactor water will be provided

  12. The Chernobyl reactor accident. Pt. 1 and 2

    International Nuclear Information System (INIS)

    1986-06-01

    The report first summarizes the available information on the various incidents of the whole accident scenario, and combines the information to present a first general outline and a basis for appraisal. The most significant incidents reported, namely power excursion, core meltdown, and fire, are discussed with a view to the reactor design and safety of reactors installed in the FRG. The main differences and advantages of German reactor designs are shown, as e.g.: Power excursions are mastered by inherent physical conditions; far better redundancy of engineered safety systems; enclosure of the complete reactor cooling system in a pressure-retaining steel containment; reactor buildings being made of reinforced concrete. The second part of the report deals with the radiological effects to be expected for our country. Data are given on the varying radiological exposure of the different regions. The fate and uptake of radioactivity in the human body are discussed. The conclusion drawn from the data presented is that the individual exposure due to the reactor accident will remain within the variations and limits of natural radioactivity and effects. (orig./HP) [de

  13. Advantages of viscodampers for NPPs upgrading

    International Nuclear Information System (INIS)

    Reinsch, K.H.; Schwahn, K.J.; Podrouzek, J.

    1993-01-01

    Viscodampers GERB are the ideal components for seismic upgrading of flexible pipework systems of the existing operating NPPs, of WWER-440 type, namely in primary reactor part. There are cheap, maintenance-free, simple and their installation minimizes the support forces to the structures. The quoted attests are enclosed in this paper. The references for application on Bohunice NPP upgrading are positive, and they are used in Mochovce and Temelin NPP as well

  14. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor

    International Nuclear Information System (INIS)

    Mozia, Sylwia; Toyoda, Masahiro; Inagaki, Michio; Tryba, Beata; Morawski, Antoni W.

    2007-01-01

    An application of carbon-coated TiO 2 for decomposition of methylene blue (MB) in a photocatalytic membrane reactor (PMR), coupling photocatalysis and direct contact membrane distillation (DCMD) was investigated. Moreover, photodegradation of a model pollutant in a batch reactor without membrane distillation (MD) was also examined. Carbon-modified TiO 2 catalysts containing different amount of carbon and commercially available TiO 2 (ST-01) were used in this study. The carbon-coated catalyst prepared from a mixture of ST-01 and polyvinyl alcohol in the mass ratio of 70/30 was the most effective in degradation of MB from all of the photocatalysts applied. Photodecomposition of MB on the recovered photocatalysts was lower than on the fresh ones. The photodegradation of MB in the PMR was slower than in the batch reactor, what probably resulted from shorter time of exposure of the catalyst particles to UV irradiation. The MD process could be successfully applied for separation of photocatalyst and by-products from the feed solution

  15. Comparison of the N Reactor and Ignalina Unit No. 2 Level 1 Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Coles, G.A.; McKay, S.L.

    1995-06-01

    A multilateral team recently completed a full-scope Level 1 Probabilistic Safety Assessment (PSA) on the Ignalina Unit No. 2 reactor plant in Lithuania. This allows comparison of results to those of the PSA for the U.S. Department of Energy's (DOE) N Reactor. The N Reactor, although unique as a Western design, has similarities to Eastern European and Soviet graphite block reactors

  16. Development of Zr-2.5Nb pressure tubes for Advanced CANDU Reactor

    International Nuclear Information System (INIS)

    Bickel, G.A.; Griffiths, M.; Douchant, A.; Douglas, S.; Woo, O.T.; Buyers, A.

    2010-01-01

    In an Advanced CANDU Reactor (ACR), pressure tubes of cold-worked Zr-2.5Nb materials will be used in the reactor core to contain the fuel bundles and the light water coolant. They will be subjected to higher temperature, pressure and flux than that in a CANDU reactor. In order to ensure that these tubes will perform acceptably over their 30-year design life in such an environment, a manufacturing process has been developed to produce 6.5 mm thick ACR pressure tubes with optimized chemical composition, improved mechanical properties and in-reactor behaviour. The test and examination results show that, when compared with current in-service pressure tubes, the mechanical properties of ACR pressure tubes are significantly improved. Based on previous experience with CANDU reactor pressure tubes an assessment of the grain structure and texture indicates that the in-reactor creep deformation will be improved also. Analysis of the distribution of texture parameters from a trial batch of 26 tubes shows that the variability is reduced relative to tubes fabricated in the past. This reduction in variability together with a shift to a coarser grain structure will result in a reduction in diametral creep design limits and thus a longer economic life for the fuel channels of the advanced CANDU reactor. (author)

  17. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  18. Set of rules SOR 2 reactor site criteria

    International Nuclear Information System (INIS)

    1976-06-01

    The purpose of this set of rules is to describe criteria which guide the Director in his evaluation of the suitability of proposed sites for stationary power and testing reactors subject to SOR 2. (B.G.)

  19. Preliminary Design of S-CO2 Brayton Cycle for KAIST Micro Modular Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Kim, Min Gil; Bae, Seong Jun; Lee, Jeong Ik

    2013-01-01

    This paper suggests a complete modular reactor with an innovative concept of reactor cooling by using a supercritical carbon dioxide directly. Authors propose the supercritical CO 2 Brayton cycle (S-CO 2 cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the core and PCU in one vessel for the full modularization. This study suggests a conceptual design of small modular reactor including PCU which is named as KAIST Micro Modular Reactor (MMR). As a part of ongoing research of conceptual design of KAIST MMR, preliminary design of power generation cycle was performed in this study. Since the targets of MMR are full modularization of a reactor system with S-CO 2 coolant, authors selected a simple recuperated S-CO 2 Brayton cycle as a power conversion system for KAIST MMR. The size of components of the S-CO 2 cycle is much smaller than existing helium Brayton cycle and steam Rankine cycle, and whole power conversion system can be contained with core and safety system in one containment vessel. From the investigation of the power conversion cycle, recompressing recuperated cycle showed higher efficiency than the simple recuperated cycle. However the volume of heat exchanger for recompressing cycle is too large so more space will be occupied by heat exchanger in the recompressing cycle than the simple recuperated cycle. Thus, authors consider that the simple recuperated cycle is more suitable for MMR. More research for the KAIST MMR will be followed in the future and detailed information of reactor core and safety system will be developed down the road. More refined cycle layout and design of turbomachinery and heat exchanger will be performed in the future study

  20. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual

    International Nuclear Information System (INIS)

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code

  1. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    International Nuclear Information System (INIS)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident that simulates a control-rod withdrawal at full power

  2. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  3. A multi-purpose reactor

    International Nuclear Information System (INIS)

    Changwen Ma

    2000-01-01

    An integrated natural circulation self pressurized reactor can be used for sea water desalination, electrogeneration, ship propulsion and district or process heating. The reactor can be used for ship propulsion because it has following advantages: it is a integrated reactor. Whole primary loop is included in a size limited pressure vessel. For a 200 MW reactor the diameter of the pressure vessel is about 5 m. It is convenient to arranged on a ship. Hydraulic driving facility of control rods is used on the reactor. It notably decreases the height of the reactor. For ship propulsion, smaller diameter and smaller height are important. Besides these, the operation reliability of the reactor is high enough, because there is no rotational machine (for example, circulating pump) in safety systems. Reactor systems are simple. There are no emergency water injection system and boron concentration regulating system. These features for ship propulsion reactor are valuable. Design of the reactor is based on existing demonstration district heating reactor design. The mechanic design principles are the same. But boiling is introduced in the reactor core. Several variants to use the reactor as a movable seawater desalination plant are presented in the paper. When the sea water desalination plant is working to produce fresh water, the reactor can supply electricity at the same time to the local electricity network. Some analyses for comprehensive application of the reactor have been done. Main features and parameters of the small (Thermopower 200 MW) reactor are given in the paper. (author)

  4. Summary of IEA-R1 research a reactor licensing related to its power increase from 2 to 10 MW

    International Nuclear Information System (INIS)

    1989-04-01

    This work is a summary of IEA-R1 research reactor licensing related to its power increase from 2 to 10 MW. It reports also safety requirements, fuel elements, and reactor control modifications inherent to power increase. (A.C.A.S.)

  5. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  6. Maximum credible accident analysis for TR-2 reactor conceptual design

    International Nuclear Information System (INIS)

    Manopulo, E.

    1981-01-01

    A new reactor, TR-2, of 5 MW, designed in cooperation with CEN/GRENOBLE is under construction in the open pool of TR-1 reactor of 1 MW set up by AMF atomics at the Cekmece Nuclear Research and Training Center. In this report the fission product inventory and doses released after the maximum credible accident have been studied. The diffusion of the gaseous fission products to the environment and the potential radiation risks to the population have been evaluated

  7. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  8. An improved thermal-hydraulic modeling of the Jules Horowitz Reactor using the CATHARE2 system code

    Energy Technology Data Exchange (ETDEWEB)

    Pegonen, R., E-mail: pegonen@kth.se [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Bourdon, S.; Gonnier, C. [CEA, DEN, DER, SRJH, CEA Cadarache, 13108 Saint-Paul-lez-Durance Cedex (France); Anglart, H. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2017-01-15

    Highlights: • An improved thermal-hydraulic modeling of the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during loss of flow accident. • The heat exchanger approach gives more realistic and less conservative results. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support current and future nuclear reactor designs. The reactor is under construction at the CEA Cadarache research center in southern France and is expected to achieve first criticality at the end of this decade. This paper presents an improved thermal-hydraulic modeling of the reactor using solely CATHARE2 system code. Up to now, the CATHARE2 code was simulating the full reactor with a simplified approach for the core and the boundary conditions were transferred into the three-dimensional FLICA4 core simulation. A new more realistic methodology is utilized to analyze the thermal-hydraulic simulation of the reactor during a loss of flow accident.

  9. Utilization of the SLOWPOKE-2 research reactor

    International Nuclear Information System (INIS)

    Lalor, G.C.

    2001-01-01

    SLOWPOKEs are typically low power research reactors that have a limited number of applications. However, a significant range of NAA can be performed with such reactors. This paper describes a SLOWPOKE-based NAA program that is performing a valuable series of studies in Jamaica, including geological mapping and pollution assessment. (author)

  10. A comparison of the electrochemical recovery of palladium using a parallel flat plate flow-by reactor and a rotating cylinder electrode reactor

    International Nuclear Information System (INIS)

    Terrazas-Rodriguez, J.E.; Gutierrez-Granados, S.; Alatorre-Ordaz, M.A.; Ponce de Leon, C.; Walsh, F.C.

    2011-01-01

    The production of catalytic converters generates large amounts of waste water containing Pd 2+ , Rh 3+ and Nd 3+ ions. The electrochemical treatment of these solutions offers an economic and effective alternative to recover the precious metals in comparison with other traditional metal recovery technologies. The separation of palladium from this mixture of metal ions by catalytic deposition was carried out using a rotating cylinder electrode reactor (RCER) and a parallel plate reactor (FM01-LC) with the same cathode area (64 cm 2 ) and electrolyte volume (300 cm 3 ). The study was carried out at mean linear flow velocities of 1.27 -1 (120 e /v -1 (7390 2+ ions in the parallel plate electrode reactor was 35% while the recovery of 97% of Pd 2+ in the RCER was 62%. The volumetric energy consumption during the electrolysis was 0.56 kW h m -3 and 2.1 kW h m -3 for the RCER and the FM01-LC reactors, respectively. Using a three-dimensional stainless steel electrode in the FM01-LC laboratory reactor, 99% of palladium ions were recovered after 30 min of electrolysis while in the RCER, 120 min were necessary.

  11. Proceedings of 2. Yugoslav symposium on reactor physics, Part 2, Herceg Novi (Yugoslavia), 27-29 Sep 1966; 2. Jugoslovenski simpozijum iz reaktorske fizike, Deo 2, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-07-01

    This Volume 2 of the Proceedings of 2. Yugoslav symposium on reactor physics includes eight papers dealing with the following topics: method for measuring high anti reactivities of a reactor system; integration method for thermal reaction rate calculation; Determination of initial core configuration for BHWR-200 MWe; safety shutdowns and failures of the RA reactor equipment; determining the reactivity of absorption rods; measurements of thermal and fast neutron fluxes at the TRIGA reactor and other measurements during operation of the TRIGA reactor; mathematical modelling of the reactor safety; review of problems and methods for radiation risk assessment in the environment of a nuclear power plant.

  12. UO{sub 2} and PuO{sub 2} utilization in high temperature engineering test reactor with helium coolant

    Energy Technology Data Exchange (ETDEWEB)

    Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra; Su’ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Aji, Indarta K. [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2016-03-11

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. The result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.

  13. A friendly Maple module for one and two group reactor model

    International Nuclear Information System (INIS)

    Baptista, Camila O.; Pavan, Guilherme A.; Braga, Kelmo L.; Silva, Marcelo V.; Pereira, P.G.S.; Werner, Rodrigo; Antunes, Valdir; Vellozo, Sergio O.

    2015-01-01

    The well known two energy groups core reactor design model is revisited. A simple and friendly Maple module was built to cover the steps calculations of a plate reactor in five situations: 1. one group bare reactor, 2. two groups bare reactor, 3. one group reflected reactor, 4. 1-1/2 groups reflected reactor and 5. two groups reflected reactor. The results show the convergent path of critical size, as it should be. (author)

  14. A friendly Maple module for one and two group reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Camila O.; Pavan, Guilherme A.; Braga, Kelmo L.; Silva, Marcelo V.; Pereira, P.G.S.; Werner, Rodrigo; Antunes, Valdir; Vellozo, Sergio O., E-mail: camila.oliv.baptista@gmail.com, E-mail: pavanguilherme@gmail.com, E-mail: kelmo.lins@gmail.com, E-mail: marcelovilelasilva@gmail.com, E-mail: rodrigowerner@hotmail.com, E-mail: neutron201566@yahoo.com, E-mail: vellozo@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The well known two energy groups core reactor design model is revisited. A simple and friendly Maple module was built to cover the steps calculations of a plate reactor in five situations: 1. one group bare reactor, 2. two groups bare reactor, 3. one group reflected reactor, 4. 1-1/2 groups reflected reactor and 5. two groups reflected reactor. The results show the convergent path of critical size, as it should be. (author)

  15. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  16. A Study of the Temperature Distribution in UO2 Reactor Fuel Elements

    International Nuclear Information System (INIS)

    Devold, I.

    1968-05-01

    Thermal conductivity is one of the most important properties of nuclear reactor fuels. Accurate knowledge of this property is vital because, among other things, it determines the maximum power that can be taken out of the fuel element per unit length of the material without exceeding the safety limits of the fuel elements. This report consists of a study of the thermal behaviour of uranium dioxide in the form of reactor fuel. The experimental part of the report describes measurements performed at the OECD Halden Reactor Project, Halden, Norway. The experiment was originally set up in order to measure the temperature at the center of a UO 2 fuel element as a function of element power, in order to determine the safe operation limit of the fuel assembly. However, in analysing the data obtained, very interesting thermal conductivity values were obtained and comparison with existing correlations could be performed. This comparison shows that a certain agreement is obtained between the measured data at Halden and a theory published by J.L. Bates in 1961, which predicts an increase in the thermal conductivity above 1500 deg C. The data obtained below 1300 deg C are also in good agreement with measurements performed by Vogt, Grandell and Runfors in 1964. The report contains a mathematical description of the heat transfer mechanisms in cylindrical fuel elements. The model is coded in FORTRAN IV-code and referred to as FUELTEMP

  17. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Yoder, John; Bessler, Nancy J.

    1988-01-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  18. Neutronic simulation of a research reactor core of (232Th, 235U)O2 fuel using MCNPX2.6 code

    International Nuclear Information System (INIS)

    Feghhi, Seyed Amir Hossein; Rezazadeh, Marzieh; Kadi, Yacine; ); Tenreiro, Claudio; Aref, Morteza; Gholamzadeh, Zohreh

    2013-01-01

    The small reactor design for the remote and less developed areas of the user countries should have simple features in view of the lack of infra-structure and resources. Many researchers consider long core life with no on-site refuelling activity as a primary feature for the small reactor design. Long core life can be achieved by enhancing internal conversion rate of fertile to fissile materials. For that purpose, thorium cycle can he adopted because a high fissile production rate of 233 U converted from 232 Th can be expected in the thermal energy region. A simple nuclear reactor core arranged 19 assemblies in hexagonal structure, using thorium-based fuel and heavy water as coolant and moderator was simulated using MCNPX2.6 code, aiming an optimized critical assembly. Optimized reflector thickness and gap between assemblies were determined to achieve minimum neutron leakage and void reactivity. The result was a more compact core, where assemblies were designed having 19-fuel pins in 1.25 pitch-to-diameter ratio. Optimum reflector thickness of 15 cm resulted in minimal neutron leakage in view of economic limitations. A 0.5 cm gap between assembles achieved more safety and 2.2 % enrichment requirements. The present feasibility study suggests a thermal core of acceptable neutronic parameters to achieve a simple and safe core. (author)

  19. Investigation of flow stabilization in a compact reactor vessel of a FBR. Flow visualization in a reactor vessel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Igarashi, Minoru; Kimura, Nobuyuki; Kamide, Hideki

    2002-01-01

    In the feasibility studies of Commercialized Fast Breeder Reactor Cycle System, a compact reactor vessel is considered from economical improvement point of a sodium cooled loop type fast reactor. The flow field was visualized by water experiment for a reactor vessel with 'a column type UIS (Upper Internal Structure)', which has a slit for fuel handling mechanism and is useful for a compact fast reactor. In this research, the 1/20 scale test equipment using water was made to understand coolant flow through a slit of a column type UIS' and fundamental behavior of reactor upper plenum flow. In the flow visualization tests, tracer particles were added in the water, and illuminated by the slit-shaped pulse laser. The flow visualization image was taken with a CCD camera. We obtained fluid velocity vectors from the visualization image using the Particle Imaging Velocimetry (PIV). The results are as follows. 1. Most of coolant flow through a slit of 'column type UIS' arrived the dip plate directly. In the opposite side of a slit, most of coolant flowed toward reactor vessel wall before it arrived the dip plate. 2. The PIV was useful to measure the flow field in the reactor vessel. The obtained velocity field was consistent with the flow visualization result. 3. The jet through the UIS slit was dependent on the UIS geometry. There is a possibility to control the jet by the UIS geometry. (author)

  20. Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, R.; Shen, L.H.; Zhang, M.Y.; Jin, B.S.; Xiong, Y.Q.; Duan, Y.F.; Zhong, Z.P.; Zhou, H.C.; Chen, X.P.; Huang, Y.J. [Southeast University, Nanjing (China)

    2007-01-15

    A 0.1 MWth lab-scale and 2 MWth pilot-scale experimental rigs were constructed to demonstrate the technical feasibility of a new process. The aim of the lab-scale study is to optimize coal partial gasification reactions operating conditions, which were applied in the pilot-scale tests. A comparison between the laboratory and pilot scale experimental results is presented in this paper in order to provide valuable information for scaling-up of the PFB coal partial reactor to industrial applications. The results show that trends and phenomena obtained in the laboratory reactor are confirmed in a pilot plant operating at similar conditions. However, many differences are observed in the two reactors. The higher heat loss in the lab-scale reactor is responsible for higher equivalence ratio (ER) and lower gas heating value at the similar reactor temperature. With respect to the pilot-scale reactor, mass transfer limitation between bubbles and emulsion phase may become important. Hence, longer contact time is required to achieve the same conversions as in the lab-scale reactor. This difference is explained by a significant change of the hydrodynamic conditions due to the formation of larger bubbles.

  1. Chapter No.8. Personnel qualification and training

    International Nuclear Information System (INIS)

    2002-01-01

    The overall training system and the development projects of training the staff of all categories from NPP V-1, NPP V-2 Bohunice, SE-VYZ and NPP Mochovce were the subject of UJD's attention. During 2001 following inspections were carried out on nuclear personnel training: - PP's Bohunice: an inspection focused on compliance with requirements for staff qualifications and compliance with the prescribed training of Bohunice plant staff; - Mochovce NPP: an inspection focused on compliance with the requirements for staff qualifications and compliance with the prescribed training of NPP Mochovce staff; - SE-VYZ: an inspection focused on compliance with the requirements for staff qualifications and compliance with the prescribed training of SE-VYZ staff. Training the staff of the NPP's Bohunice: - The fundamental and periodical theoretical training as sure as the fundamental and periodical simulator training is carried out by the VUJE Training centre in Trnava. - The fundamental practical training in the workplace and training for the change work- rank is carried at Bohunice plant. Training of the staff of the NPP Mochovce: - The fundamental and periodical theoretical training is carried out by the VUJE Training centre in Trnava. The fundamental practical training in the workplace and training for the change work- rank as well as the fundamental and periodical simulator training is carried at Mochovce plant. Based on a successful passing of examination before the examining committee, UJD issues a certificate on special professional skills of selected staff members of nuclear installations for specific activity for the given type of nuclear installation and for the following positions: 1. Scientific shift manager for start up with the right of manipulation; 2. Shift supervisor; 3. Unit supervisor; 4. Primary circuit operator; 5. Secondary circuit operator; 6. Reactor physicist; 7. Scientific shift manager for start up without the right of manipulation. Examinations of

  2. Independent CO2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels, Task 2.50.05

    International Nuclear Information System (INIS)

    Stojic, M.; Pavicevic, M.

    1964-01-01

    This report contains the following volumes V and VI of the Project 'Independent CO 2 loop for cooling the samples irradiated in RA reactor vertical experimental channels': Design project of the dosimetry control system in the independent CO 2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels, and Safety report for the Independent CO 2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels [sr

  3. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  4. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    Science.gov (United States)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  5. CO_2 capture with solid sorbent: CFD model of an innovative reactor concept

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.

    2016-01-01

    Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.

  6. Recent advances in the utilization and the irradiation technology of the refurbished BR2 reactor

    International Nuclear Information System (INIS)

    Dekeyser, J.; Benoit, P.; Decloedt, C.; Pouleur, Y.; Verwimp, A.; Weber, M.; Vankeerberghen, M.; Ponsard, B.

    1999-01-01

    Operation and utilization of the materials testing reactor BR2 at the Belgian Nuclear Research Centre (SCK·CEN) has since its start in 1963 always followed closely the needs and developments of nuclear technology. In particular, a multitude of irradiation experiments have been carried out for most types of nuclear power reactors, existing or under design. Since the early 1990s and increased focus was directed towards more specific irradiation testing needs for light water reactor fuels and materials, although other areas of utilization continued as well (e.g. fusion reactor materials, safety research, ...), including also the growing activities of radioisotope production and silicon doping. An important milestone was the decision in 1994 to implement a comprehensive refurbishment programme for the BR2 reactor and plant installations. The scope of this programme comprised very substantial studies and hardware interventions, which have been completed in early 1997 within planning and budget. Directly connected to this strategic decision for reactor refurbishment was the reinforcement of our efforts to requalify and upgrade the existing irradiation facilities and to develop advanced devices in BR2 to support emerging programs in the following fields: - LWR pressure vessel steel, - LWR irradiation assisted stress corrosion cracking (IASCC), - reliability and safety of high-burnup LWR fuel, - fusion reactor materials and blanket components, - fast neutron reactor fuels and actinide burning, - extension and diversification of radioisotope production. The paper highlights these advances in the areas of BR2 utilisation and the ongoing development activities for the required new generation of irradiations devices. (author)

  7. A three-dimensional transient calculation for the reactor model RAMONA using the COMMIX-2(V) code

    International Nuclear Information System (INIS)

    Weinberg, D.; Frey, H.H.; Tschoeke, H.

    1993-01-01

    The safety graded decay heat removal system of the European Fast Reactor needs a high availability. This system operates entirely under natural convection. To guarantee a proper design, experiments are carried out to verify thermal-hydraulic computer codes able to predict precisely local temperature loadings of the components and the reactor tank in the transition region from nominal operation under forced convection to the decay heat removal operation. - With the COMMIX-2 (V) code three-dimensional transient calculations have been performed to simulate experiments in the 360 deg. reactor model RAMONA, scaled 1:20 to the reality with water as simulant fluid for sodium. The computed average and local temperatures as well as the velocity distributions show a good agreement with the experimental results. Further efforts are necessary to reduce the computation time. (orig.)

  8. We should use nuclear power plants as good as possible

    International Nuclear Information System (INIS)

    Kaplanova, J.

    2004-01-01

    In this paper visit of Austrian journalist Christian Hunger (redactor of the Austrian broadcast OE1) on the Jaslovske Bohunice NPP and Mochovce NPP is described. Upgrade of the Jaslovske Bohunice NPP and finishing of a building of the Mochovce NPP as well as shut-down of the first and second blocks of the Jaslovske Bohunice NPP are discussed

  9. Nuclear installations in Slovakia accords to the convention definition

    International Nuclear Information System (INIS)

    1998-01-01

    In this part the nuclear power plants Bohunice - Units V-1 and V-2 and NPP Mochovce (description of units, safety reports and safety improvement programs) are described. Description of Bohunice A-1, history and current status of the NPP A-1 and NPP decommissioning program are included. In next parts interim spent fuel storage, technologies of Raw processing and treatment, and treated and solid Raw storage sites are described

  10. The Effect Of Beryllium Interaction With Fast Neutrons On the Reactivity Of ETRR-2 Research Reactor

    International Nuclear Information System (INIS)

    Aziz, M.; El Messiry, A.M.

    2000-01-01

    The effect of beryllium interactions with fast neutrons is studied for Etrr 2 research reactors. Isotope build up inside beryllium blocks is calculated under different irradiation times. a new model for the Etrr 2 research reactor is designed using MCNP code to calculate the reactivity and flux change of the reactor due to beryllium poison

  11. Reproduction of the PSBR reactor with Exterminator-2; Reproduccion del reactor PSBR con exterminador-2

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1983-08-15

    To reproduce the reactor PSBR reported in (1), with the available version of the Exterminator-II in the ININ, they took the dimensions, composition specifications, effective sections of the different compositions (excepting those of the central thimble and of the moderator), the K{sub eff} and the factors of power (FP) for the different burners. Based on the comparison of the K{sub eff} and of the FP obtained with those reported the precision it is determined before in the reproduction of the reactor mentioned. (Author)

  12. Reactor limitation system improves the safety and availability of the Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Souza Mendes, J.E. de

    1987-01-01

    Beyond the classic Reactor Protection System and Reactor Control System, nuclear plant Angra 2 has a third system called Reactor Limitation System which combines the intelligence features of the control systems with the high reliability of the protection systems. In determined events, which are not controlled by the control system (e.g.: load rejection, failure of one main reactor coolant pump), the Reactor Limitation System actuates automatically in order to lead the plant to a safe operating condition and so it avoids the actuation of the Reactor Protection System and consequently the reactor trip. This increases safety and availability of the plant and reduces component stresses. After the safe operating condition is reached, the process guidance automatically returns to the control systems. (Author) [pt

  13. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  14. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities

  15. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  16. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  17. Hybrid simulation of reactor kinetics in CANDU reactors using a modal approach

    International Nuclear Information System (INIS)

    Monaghan, B.M.; McDonnell, F.N.; Hinds, H.W.T.; m.

    1980-01-01

    A hybrid computer model for simulating the behaviour of large CANDU (Canada Deuterium Uranium) reactor cores is presented. The main dynamic variables are expressed in terms of weighted sums of a base set of spatial natural-mode functions with time-varying co-efficients. This technique, known as the modal or synthesis approach, permits good three-dimensional representation of reactor dynamics and is well suited to hybrid simulation. The hybrid model provides improved man-machine interaction and real-time capability. The model was used in two applications. The first studies the transient that follows a loss of primary coolant and reactor shutdown; the second is a simulation of the dynamics of xenon, a fission product which has a high absorption cross-section for neutrons and thus has an important effect on reactor behaviour. Comparison of the results of the hybrid computer simulation with those of an all-digital one is good, within 1% to 2%

  18. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  19. BR2 reactor: medical and industrial applications

    International Nuclear Information System (INIS)

    Ponsard, B.

    2005-01-01

    The radioisotopes are produced for various applications in the nuclear medicine (diagnostic, therapy, palliation of metastatic bone pain), industry (radiography of welds, ...), agriculture (radiotracers, ...) and basic research. Due to the availability of high neutron fluxes (thermal neutron flux up to 10 15 n/cm 2 .s), the BR2 reactor is considered as a major facility through its contribution for a continuous supply of products such 99 Mo ( 99 mTc), 131 I, 133 Xe, 192 Ir, 186 Re, 153 Sm, 90 Y, 32 P, 188 W ( 188 Re), 203 Hg, 82 Br, 41 Ar, 125 I, 177 Lu, 89 Sr, 60 Co, 169 Yb, 147 Nd, and others. Neutron Transmutation Doped (NTD) silicon is produced for the semiconductor industry in the SIDONIE (Silicon Doping by Neutron Irradiation Experiment) facility, which is designed to continuously rotate and traverse the silicon through the neutron flux. These combined movements produce exceptional dopant homogeneity in batches of silicon measuring 4 and 5-inches in diameter by up to 750 mm in length. The main objectives of work performed were to provide a reliable and qualitative supply of radioisotopes and NTD-silicon to the customers in accordance with a quality system that has been certified to the requirements of the EN ISO 9001: 2000. This new Quality System Certificate has been obtained in November 2003 for the Production of radioisotopes for medical and industrial applications and the Production of Neutron Transmutation Doped (NTD) Silicon in the BR2 reactor

  20. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.

  1. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  2. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  3. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  4. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    International Nuclear Information System (INIS)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions

  5. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  6. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  7. Low Enrichment Uranium (LEU)-fueled SLOWPOKE-2 nuclear reactor simulation with the Monte-Carlo based MCNP 4A code

    International Nuclear Information System (INIS)

    Pierre, J.R.M.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.

  8. Benchmark testing of CENDL-2 for U-fuel thermal reactors

    International Nuclear Information System (INIS)

    Zhang Baocheng; Liu Guisheng; Liu Ping

    1995-01-01

    Based on CENDL-2, NJOY-WIMS code system was used to generate 69-group constants, and do benchmark testing for TRX-1,2; BAPL-UO-2-1,2,3; ZEEP-1,2,3. All the results proved that CENDL-2 is reliable for thermal reactor calculations. (3 tabs.)

  9. Coolant radiolysis studies in the high temperature, fuelled U-2 loop in the NRU reactor

    International Nuclear Information System (INIS)

    Elliot, A.J.; Stuart, C.R.

    2008-06-01

    An understanding of the radiolysis-induced chemistry in the coolant water of nuclear reactors is an important key to the understanding of materials integrity issues in reactor coolant systems. Significant materials and chemistry issues have emerged in Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR) and CANDU reactors that have required a detailed understanding of the radiation chemistry of the coolant. For each reactor type, specific computer radiolysis models have been developed to gain insight into radiolysis processes and to make chemistry control adjustments to address the particular issue. In this respect, modelling the radiolysis chemistry has been successful enough to allow progress to be made. This report contains a description of the water radiolysis tests performed in the U-2 loop, NRU reactor in 1995, which measured the CHC under different physical conditions of the loop such as temperature, reactor power and steam quality. (author)

  10. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Directory of Open Access Journals (Sweden)

    Yoko eOhtomo

    2013-12-01

    Full Text Available Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in situ pressure (0–100 MPa and temperature (0–70°C conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to

  11. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Memmott, Matthew; Boy, Guy; Charit, Indrajit; Manera, Annalisa; Downar, Thomas; Lee, John; Muldrow, Lycurgus; Upadhyaya, Belle; Hines, Wesley; Haghighat, Alierza

    2017-01-01

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project ''Integral Inherently Safe Light Water Reactors (I 2 S-LWR)''. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  12. The 5th surveillance testing for Kori unit 2 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-03-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules V, R, P, T and N are 2.837E+18, 1.105E+19, 2.110E+19, 3.705E+19 and 4.831E+19n/cm{sup 2}, respectively. The bias factor, the ratio of measurement/calculation, was 0.918 for the 1st through 5th testing and the calculational uncertainty, 11.6% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.898E+19n/cm{sup 2} based on the end of 15th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 4.203E+19, 5.232E+19, 6.262E+19 and 7.291E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 49 refs., 35 figs., 48 tabs. (Author)

  13. Measurement of cold neutron spectra at a model of cryogenic moderator of the IBR-2M reactor

    International Nuclear Information System (INIS)

    Kulikov, S.A.; Chernikov, A.N.; Shabalin, E.P.; Kalinin, I.V.; Morozov, V.M.; Novikov, A.G.; Puchkov, A.V.

    2010-01-01

    The article is dedicated to methods and results of experimental determination of cold neutron spectra from solid mesitylene at neutron moderator temperatures 10-50 K. Experiments were fulfilled at the DIN-2PI spectrometer of the IBR-2 reactor. The main goals of this work were to examine a system of constants for Monte Carlo calculation of cryogenic moderators of the IBR-2M reactor and to determine the temperature dependence of cold neutron intensity from the moderator. A reasonable agreement of experimental and calculation results for mesitylene at 20 K has been obtained. The cold neutron intensity at temperature of moderator 10 K is about 1.8 times higher than at T=50 K

  14. Core design calculations of IRIS reactor using modified CORD-2 code package

    International Nuclear Information System (INIS)

    Pevec, D.; Grgic, D.; Jecmenica, R.; Petrovic, B.

    2002-01-01

    Core design calculations, with thermal-hydraulic feedback, for the first cycle of the IRIS reactor were performed using the modified CORD-2 code package. WIMSD-5B code is applied for cell and cluster calculations with two different 69-group data libraries (ENDF/BVI rev. 5 and JEF-2.2), while the nodal code GNOMER is used for diffusion calculations. The objective of the calculation was to address basic core design problems for innovative reactors with long fuel cycle. The results were compared to our results obtained with CORD-2 before the modification and to preliminary results obtained with CASMO code for a similar problem without thermal-hydraulic feedback.(author)

  15. Status and perspective of development of cold moderators at the IBR-2 reactor

    International Nuclear Information System (INIS)

    Kulikov, S; Shabalin, E

    2012-01-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams nos. 7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams nos. 2-3 and for beams nos. 1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (∼3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  16. Status and perspective of development of cold moderators at the IBR-2 reactor

    Science.gov (United States)

    Kulikov, S.; Shabalin, E.

    2012-03-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams #7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams #2-3 and for beams #1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (~3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  17. Gas-cooled reactor thermal-hydraulics using CAST3M and CRONOS2 codes

    International Nuclear Information System (INIS)

    Studer, E.; Coulon, N.; Stietel, A.; Damian, F.; Golfier, H.; Raepsaet, X.

    2003-01-01

    The CEA R and D program on advanced Gas Cooled Reactors (GCR) relies on different concepts: modular High Temperature Reactor (HTR), its evolution dedicated to hydrogen production (Very High Temperature Reactor) and Gas Cooled Fast Reactors (GCFR). Some key safety questions are related to decay heat removal during potential accident. This is strongly connected to passive natural convection (including gas injection of Helium, CO 2 , Nitrogen or Argon) or forced convection using active safety systems (gas blowers, heat exchangers). To support this effort, thermal-hydraulics computer codes will be necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Accurate and efficient modeling of heat transfer by conduction, convection or thermal radiation as well as energy storage are necessary requirements to obtain a high level of confidence in the thermal-hydraulic simulations. To achieve that goal a thorough validation process has to ve conducted. CEA's CAST3M code dedicated to GCR thermal-hydraulics has been validated against different test cases: academic interaction between natural convection and thermal radiation, small scale in-house THERCE experiments and large scale High Temperature Test Reactor benchmarks such as HTTR-VC benchmark. Coupling with neutronics is also an important modeling aspect for the determination of neutronic parameters such as neutronic coefficient (Doppler, moderator,...), critical position of control rods...CEA's CAST3M and CRONOS2 computer codes allow this coupling and a first example of coupled thermal-hydraulics/neutronics calculations has been performed. Comparison with experimental data will be the next step with High Temperature Test Reactor experimental results at nominal power

  18. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

    2005-09-30

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  19. Research reactor core conversion guidebook. V.2: Analysis (Appendices A-F)

    International Nuclear Information System (INIS)

    1992-04-01

    Volume 2 consists of detailed Appendices, covering safety analyses for generic 10 MW reactor, safety analysis - probabilistic methods, methods for preventing LOCA, radiological consequence analyses, examples of safety report amendments and safety specifications. Included in Volume 2 are example analyses for cores with with highly enriched uranium and low enriched uranium fuels showing differences that can be expected in the safety parameters and radiological consequences of postulated accidents. There are seven examples of licensing documents related to core conversion and two examples of methods for determining power limits for safety specifications in the document. Refs, figs, bibliographies and tabs

  20. Denitrification performance of Pseudomonas denitrificans in a fluidized-bed biofilm reactor and in a stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, C.; Nicolella, C.; Rovatti, M. [Department of Chemical and Process Engineering, Faculty of Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa (Italy)

    2003-04-09

    Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems - a fluidized-bed biofilm reactor (FBBR) and a stirred tank reactor (STR) - using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg {sub N} . m{sup -3} . d{sup -1}) was higher than in the STR, due to higher biomass concentration (10 kg {sub BM} . m{sup -3} vs 1.2 kg {sub BM} m{sup -3}). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    Science.gov (United States)

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Exergy analysis of a hydrogen fired combined cycle with natural gas reforming and membrane assisted shift reactors for CO2 capture

    International Nuclear Information System (INIS)

    Atsonios, K.; Panopoulos, K.D.; Doukelis, A.; Koumanakos, A.; Kakaras, Em.

    2012-01-01

    Highlights: ► Exergy analysis of NGCC with CCS. ► WGS-MR: exergetically efficient technology for CCS, less than 2% total exergy losses. ► 10% of total exergy dissipation in the ATR. ► Optimization of ATR operation and CO 2 stream treatment. - Abstract: Hydrogen production from fossil fuels together with carbon capture has been suggested as a means of providing a carbon free power. The paper presents a comparative exergetic analysis performed on the hydrogen production from natural gas with several combinations of reactor systems: (a) oxy or air fired autothermal reforming with subsequent water gas shift reactor and (b) membrane reactor assisted with shift catalysts. The influence of reactor temperature and pressure as well as operating parameter steam-to-carbon ratio, is also studied exergetically. The results indicate optimal power plant configurations with CO 2 capture, or hydrogen delivery for industrial applications.

  3. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  4. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  5. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  6. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  7. arXiv Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    CERN Document Server

    Abreu, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B.C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L.N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-03

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration so...

  8. Design and computational analysis of passive siphon breaker for 49-2 swimming pool reactor

    International Nuclear Information System (INIS)

    Yue Zhiting; Song Yunpeng; Liu Xingmin; Zou Yao; Wu Yuanyuan

    2014-01-01

    Based on safety considerations, a passive siphon breaker will be added to the primary cooling system of 49-2 Swimming Pool Reactor (SPR). With the breaker location determined, the capability of siphon breakers with diameters of 1.5 cm and 2.0 cm was calculated and analyzed respectively by RELAP5/MOD3.3 code. The results show that in the condition of large break loss of coolant accident these two sizes of siphon breakers are able to break the siphon phenomena, and maintain the pool water level above the reactor core when the reactor and the pump are shutdown. In the end, to be conservative, the siphon breaker with diameter of 2.0 cm is adopted. (authors)

  9. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  10. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A; Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  11. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  12. Possible future roles for fast breeder reactors Part 1 and 2

    International Nuclear Information System (INIS)

    1978-06-01

    Part 1. The Fast Breeder Reactor (in particular in its sodium cooled version) has been steadily developed in the Community. This report attempts to quantify the advantages of this system in terms of fossil energy and uranium savings in the medium/long term as well as to examine some long term economic implications. The methodology of comparing scenarios, not individual reactor systems is followed. These scenarios have been chosen taking into account a range of assumptions concerning Community energy demand growth, fossil energy and uranium availability and technological capabilities. Part 2. The fast breeder reactor (FBR), particularly its sodium-cooled form (LMFBR) has been under development in the Community for many years. Industrial enterprises dedicated to its commercialisation have been formed and long range plans for its industrial utilisation are being formulated. The value of breeder reactors from the point of view of minimising Community fuel requirements has been discussed in Part I of this report (1). In Part II the consequences of delaying their introduction, and the demands placed upon the recycle industry by the introduction of fast reactors of different characteristics, using the Community electricity demand scenarios developed for Part I, are discussed. In addition comments are provided upon the effect of FBR introduction on the size of plutonium stocks

  13. Characterization of fuel distribution in the Three Mile Island Unit 2 (TMI-2) reactor system by neutron and gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McNeece, J.P.; Kaiser, B.J.; McElroy, W.N.

    1984-01-01

    Neutron and gamma-ray dosimetry are being used for nondestructive assessment of the fuel distribution throughout the Three Mile Island Unit 2 (TMI-2) reactor core region and primary cooling system. The fuel content of TMI-2 makeup and purification Demineralizer A has been quantified with Si(Li) continuous gamma-ray spectrometry and solid-state track recorder (SSTR) neutron dosimetry. For fuel distribution characterization in the core region, results from SSTR neutron dosimetry exposures in the TMI-2 reactor cavity are presented. These SSTR results are consistent with the presence of a significant amount of fuel debris, equivalent to several fuel assemblies or more, lying at the bottom of the reactor vessel. (Auth.)

  14. Report on the operation in 1973 of the FR 2 research reactor

    International Nuclear Information System (INIS)

    Moeller, I.; Steiger, W.

    1975-04-01

    Also in 1973, the heavy-water moderated research and testing reactor FR 2 was operated to schedule at 44 MW nominal power. Again, the availability of the plant was slightly improved. Experimental utilization through instrumented irradiation capsules strongly increased as compared to the previous year. Up to 16 capsule test rigs at a time were inserted in the reactor. As to the beam tube experiments, up to 13 experiments covering a total of 18 test rigs were conducted simultaneously at the 12 reasonably usable beam holes. At the beginning of the year all of the positions available were occupied by 5 loop experiments. Isotope production reached its highest value with a total of 2,372 irradiated capsules (1.3% more than the year before). Some remarkable figures characterized the year 1973: On August 16, 1973 ten years of full power operation at a nominal power of 12 and 44 MW, respectively, had been reached. On July 24, 1973 the 50,000th isotope irradiation was performed in the reactor and on December 26, 1973 a total energy release of 100,000 MWd was recorded. Moreover, the 125,000th visitor of the reactor was welcomed on December 6, 1973. (orig./UA) [de

  15. Continuous backfitting measures for the FRG-1 and FRG-2 research reactors

    International Nuclear Information System (INIS)

    Blom, K.H.; Falck, K.; Krull, W.

    1990-01-01

    The GKSS-Research Centre Geesthacht GmbH has been operating the research reactors FRG-1 and FRG-2 with power levels of 5 MW and 15 MW for 31 and 26 years respectively. Safe operation at full power levels over so many years with an average utilization between 180 d to 250 d per year is possible only with great efforts in modernization and upgrading of the research reactors. Emphasis has been placed on backfitting since around 1975. At that time within the Federal Republic of Germany many new guidelines, rules, ordinances, and standards in the field of (power) reactor safety were published. Much work has been done on the modernization of the FRG-1 and FRG-2 research reactors therefore within the last ten years. Work done within the last two years and presently underway includes: measures against water leakage through the concrete and along the beam tubes; repair of both cooling towers; modernization of the ventilation system; measures for fire protection; activities in water chemistry and water quality; installation of a double tubing for parts of the primary piping of the FRG-1; replacement of instrumentation, process control systems (operation and monitoring system) and alarm system; renewal of the emergency power supply; installation of internal lightning protection; installation of a cold neutron source; enrichment reduction for FRG-1. These efforts will continue to allow safe operation of our research reactors over their whole operational life

  16. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  17. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  18. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  19. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  20. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  1. Development of a new control software package for Pakistan Research Reactor-2

    International Nuclear Information System (INIS)

    Qazi, M.K.

    1993-05-01

    The development of a new control software package for Pakistan Research Reactor-2 is presented. The software operates in different modes which comprises of surveillance, pre-operational self tests, operator, supervisor and robotic control. The control logic critically damp the system minimizing power overshoots. The software, handles multiple abnormal conditions, provides an elaborate access control and maintains startup/shutdown record. The report describes the functional details and covers the operational aspects of the new control software. (author)

  2. G2 and G3 reactors design; Description des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Herreng,; Ertaud,; Pasquet, [Societe Alsacienne de Constructions Mecaniques (France)

    1958-07-01

    'FRANCE ATOME' Manufacturers Party has been entrusted with the G2 and G3 reactors engineering by the french A.E.C., for the first-five-year french project. Although these reactors are essentially plutonium generators, everyone has been linked with a power station which is supposed to supply with 40 MW, 'Electricite de France' has taken the liability upon itself. The reactor core includes most of G1 reactor parts (central gap excluded): horizontal channels, graphite parallelepipedic bricks stacking, steel thermal shield. The cooling is provided with CO{sub 2} under a 15 atmospheres pressure. This pressure is kept steady in a press-stressed concrete packing-case which is a cylinder horizontally shaped. Steel strips tightened encircle the concrete cylinder; itself protected by sole-plates. The cylinder bottom has brought about unusual problems which have been solved by the choice of an hemispheric shape. Packing-case tightness is provided by a 30 mm iron-plate connected with the inner wall of concrete. One of the reactor's special characteristics is the possibility of loading and unloading while operating. On loading side, barrel locks, each weighting 50 tons, allow new cans, at a pressure of 15 atmospheres, to pass. The cans process almost in a steady way through the channel, and finally drop down through bent spouts, then through spiral toboggans into a new lock. The cooling CO{sub 2} flow is provided with 3 turbo-bellows, these are actuated by average pressure-steam, obtained from exchangers. Every reactor supplies 4 exchangers which have been very difficult to build and to set up. The secondary cycle is standard and contains 3 stages (pressure 10,3: 2 and 0,5 kg/cm{sup 2}). Steam can be condensed in the event of a group turbo-generator stopping, with no modifion for the normal operating conditions of the reactor. Auxiliary circuits have to assure the continuous purifying of cooling CO{sub 2}, its storage and drain. 49 boron carbide rods are used to control the

  3. Further study on parameterization of reactor NAA: Pt. 2

    International Nuclear Information System (INIS)

    Tian Weizhi; Zhang Shuxin

    1989-01-01

    In the last paper, Ik 0 method was proposed for fission interference corrections. Another important kind of interferences in reator NAA is due to threshold reaction induced by reactor fast neutrons. In view of the increasing importance of this kind of interferences, and difficulties encountered in using the relative comparison method, a parameterized method has been introduced. Typical channels in heavy water reflector and No.2 horizontal channel of Heavy Water Research Reactor in the Insitute of Atomic Energy have been shown to have fast neutron energy distributions (E>4 MeV) close to primary fission neutron spectrum, by using multi-threshold detectors. On this basis, Ti foil is used as an 'instant fast neutron flux monitor' in parameterized corrections for threshold reaction interferences in the long irradiations. Constant values of φ f /φ s = 0.70 ± 0.02% have been obtained for No.2 rabbit channel. This value can be directly used for threshold reaction inference correction in the short irradiations

  4. A Study of the Temperature Distribution in UO{sub 2} Reactor Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Devold, I

    1968-05-15

    Thermal conductivity is one of the most important properties of nuclear reactor fuels. Accurate knowledge of this property is vital because, among other things, it determines the maximum power that can be taken out of the fuel element per unit length of the material without exceeding the safety limits of the fuel elements. This report consists of a study of the thermal behaviour of uranium dioxide in the form of reactor fuel. The experimental part of the report describes measurements performed at the OECD Halden Reactor Project, Halden, Norway. The experiment was originally set up in order to measure the temperature at the center of a UO{sub 2} fuel element as a function of element power, in order to determine the safe operation limit of the fuel assembly. However, in analysing the data obtained, very interesting thermal conductivity values were obtained and comparison with existing correlations could be performed. This comparison shows that a certain agreement is obtained between the measured data at Halden and a theory published by J.L. Bates in 1961, which predicts an increase in the thermal conductivity above 1500 deg C. The data obtained below 1300 deg C are also in good agreement with measurements performed by Vogt, Grandell and Runfors in 1964. The report contains a mathematical description of the heat transfer mechanisms in cylindrical fuel elements. The model is coded in FORTRAN IV-code and referred to as FUELTEMP.

  5. Severe accident analysis for level 2 PSA of SMART reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Yong; Lee, Jeong Hun; Kim, Jong Uk; Yoo, Tae Geun; Chung, Soon Il; Kim, Min Gi [FNC Technology Co., Seoul (Korea, Republic of)

    2010-12-15

    The objectives of this study are to produce data for level 2 PSA and evaluation results of severe accident by analyzing severe accident sequence of transient events, producing fault tree of containment systems and evaluating direct containment heating of the SMART. In this project, severe accident analysis results were produced for general transient, loss of feedwater, station blackout, and steam line break events, and based on the results, design safety of SMART was verified. Also, direct containment heating phenomenon of the SMART was evaluated using TCE methodology. For level 2 PSA, fault tree of the containment isolation system, reactor cavity flooding system, plant chilled water system, and reactor containment building HVAC system was produced and analyzed

  6. A Pebble-Bed Breed-and-Burn Reactor

    International Nuclear Information System (INIS)

    Greenspan, Ehud

    2016-01-01

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  7. A Pebble-Bed Breed-and-Burn Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2016-03-31

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  8. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  9. Problems of WWER-440 dynamic changes

    International Nuclear Information System (INIS)

    Rydzi, S.

    1986-01-01

    The data processing capability of the DYNAMIKA program is presented and demonstrated for the calculation of coolant parameters and heat transfer variables of the WWER reactor in accident and transient modes of operation. An experimental outage is described of the TG 11 turbogenerator at the V-1 Jaslovske Bohunice nuclear power plant. The measured values were compared with values calculated using the DYNAMIKA program. The graphic representation makes it evident that the mathematical model comes very close to reality. (J.B.)

  10. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    Science.gov (United States)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  11. First results of the deployment of a SoLid detector module at the SCK•CEN BR2 reactor

    Science.gov (United States)

    Ryder, N.

    The SoLid experiment aims to resolve the reactor neutrino anomaly by searching for electron-to-sterile anti-neutrino oscillations. The search will be performed between 5.5 and 10 m from the highly enriched uranium core of the BR2 reactor at SCK-CEN. The experiment utilises a novel approach to anti-neutrino detection based on a highly segmented, composite scintillator detector design. High experimental sensitivity can be achieved using a combination of high neutron-gamma discrimination using 6 LiF:ZnS(Ag) and precise localisation of the inverse beta decay products. This compact detector system requires limited passive shielding as it relies on spacial topology to determine the different classes of backgrounds. The first full scale, 288 kg, detector module was deployed at the BR2 reactor in November 2014. A phased three tonne experimental deployment will begin in the second half of 2016, allowing a precise search for oscillations that will resolve the reactor anomaly using a three tonne detector running for three years. In this talk the novel detector design is explained and initial detector performance results from the module level deployment are presented along with an estimation of the physics reach of the next phase.

  12. Investigation of hydrogen-burn damage in the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Eidem, G.R.

    1982-06-01

    About 10 hours after the March 28, 1979 Loss-of-Coolant Accident began at Three Mile Island Unit 2, a hydrogen deflagration of undetermined extent occurred inside the reactor building. Examinations of photographic evidence, available from the first fifteen entries into the reactor building, yielded preliminary data on the possible extent and range of hydrogen burn damage. These data, although sparse, contributed to development of a possible damage path and to an estimate of the extent of damage to susceptible reactor building items. Further information gathered from analysis of additional photographs and samples can provide the means for estimating hydrogen source and production rate data crucial to developing a complete understanding of the TMI-2 hydrogen deflagration. 34 figures

  13. Operation and maintenance of the RA Reactor in 1985, Part 1, Annex A - Reactor applications

    International Nuclear Information System (INIS)

    Martinc, R.; Stanic, A.

    1985-01-01

    This document describes reactor operation from 1981 to 1985, including data about short term (shorter than 24 hours) and long term operation interruptions, as well as safety shutdown and reactor applications. During 1982, 1983 until July 1984 reactor was operated at 2 MW power according to the plan. Plan was not fulfilled in 1983 because deposits were noticed again, at the end of 1982, on the surface of fuel elements. Reactor was mainly used for neutron activation purposes and isotope production as source of neutrons for experimental purposes [sr

  14. Exxon nuclear neutronics design methods for pressurized water reactors. Supplement 2

    International Nuclear Information System (INIS)

    Skogen, F.B.; Stout, R.B.

    1977-01-01

    Modifications to the Exxon Nuclear PWR neutronic design calculational methods are presented as well as the results obtained when these improved methods are compared to reactor measurements. The basic PWR design tools remain unchanged; i.e., the XPOSE code is used for generating the basic nuclear parameters, the PDQ-7 code is used for calculating reactivity and x-y power distributions, and the XTG code is used for three-dimensional analysis. The recent start-up experiences at D. C. Cook Unit 1 and H. B. Robinson Unit 2 have provided a significant increase in the data base supporting the current ENC PWR neutronic methods. The verification comparisons contained in the supplement include reactor measurements from D. C. Cook Unit 1, Cycle 2; H. B. Robinson Unit 2, Cycles 4 and 5; Palisades Cycle 2, and R. E. Ginna, Cycle 7

  15. Guide for licensing evaluations using CRAC2: A computer program for calculating reactor accident consequences

    International Nuclear Information System (INIS)

    White, J.E.; Roussin, R.W.; Gilpin, H.

    1988-12-01

    A version of the CRAC2 computer code applicable for use in analyses of consequences and risks of reactor accidents in case work for environmental statements has been implemented for use on the Nuclear Regulatory Commission Data General MV/8000 computer system. Input preparation is facilitated through the use of an interactive computer program which operates on an IBM personal computer. The resulting CRAC2 input deck is transmitted to the MV/8000 by using an error-free file transfer mechanism. To facilitate the use of CRAC2 at NRC, relevant background material on input requirements and model descriptions has been extracted from four reports - ''Calculations of Reactor Accident Consequences,'' Version 2, NUREG/CR-2326 (SAND81-1994) and ''CRAC2 Model Descriptions,'' NUREG/CR-2552 (SAND82-0342), ''CRAC Calculations for Accident Sections of Environmental Statements, '' NUREG/CR-2901 (SAND82-1693), and ''Sensitivity and Uncertainty Studies of the CRAC2 Computer Code,'' NUREG/CR-4038 (ORNL-6114). When this background information is combined with instructions on the input processor, this report provides a self-contained guide for preparing CRAC2 input data with a specific orientation toward applications on the MV/8000. 8 refs., 11 figs., 10 tabs

  16. Degradation of gas-phase trichloroethylene over thin-film TiO2 photocatalyst in multi-modules reactor

    International Nuclear Information System (INIS)

    Kim, Sang Bum; Lee, Jun Yub; Kim, Gyung Soo; Hong, Sung Chang

    2009-01-01

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO 2 . A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  17. Radiation protection at the RA Reactor in 1986, Part -2, Annex 2a, Radioactivity control of the RA reactor environment (atmospheric precipitations, dust, water, soil, plants, fruit...)

    International Nuclear Information System (INIS)

    Ajdacic, N.; Martic, M.; Jovanovic, J.

    1986-01-01

    Control of radioactivity in the biosphere in the vicinity of the RA reactor is part of the radioactivity control done regularly for the whole territory of the Vinca institute (report by the same authors included in this Annex). During 1986 control was conducted according to the plan until May 1, 1986 when a dramatic increase of the precipitations and all other samples from the biosphere was recorded. According to the measured data no significant changes have been found in the surroundings of the RA reactor, until April 29 1986. Since then more detailed control was conducted, the number of samples was increased, apart from standard measuring procedure of total beta activity measurements, gamma spectrometry of all samples was applied. High activity level of the following nuclides was found: Iodine, cerium,cesium, tellurium, ruthenium, barium, lanthanum, etc. As an example activity of ?1?3?1 I in one sample was 564±5 kBq/m 2 [sr

  18. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors

    International Nuclear Information System (INIS)

    Kato, Yukitaka; Yamada, Mitsuteru; Kanie, Toshihiro; Yoshizawa, Yoshio

    2001-01-01

    The thermal performance of a chemical heat pump that uses a calcium oxide/carbon dioxide reaction system was discussed as a heat storage system for utilizing heat output from high temperature gas reactors (HTGR). Calcium oxide/carbon dioxide reactivity for the heat pump was measured using a packed bed reactor containing 1.0 kg of reactant. The reactor was capable of storing heat at 900 deg. C by decarbonation of calcium carbonate and generating up to 997 deg. C by carbonation of calcium oxide. The amount of stored heat in the reactor was 800-900 kJ kg -1 . The output temperature of the reactor could be controlled by regulating the carbonation pressure. The thermal storage performance of the reactor was superior to that of conventional sensible heat storage systems. A heat pump using this CaO/CO 2 reactor is expected to contribute to thermal load leveling and to realize highly efficient utilization of HTGR output due to the high heat storage density and high-quality temperature output of the heat pump

  19. Estimation of power feedback parameters of the IBR-2M reactor by square wave reactivity

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Popov, A.K.; Sumkhuu, D.

    2016-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) are estimated based on the analysis of power transients caused by deliberate square wave reactivity when the pulsed reactor operates in the self-regulation mode. The PFB of the IBR-2M is described by three linear first-order differential equations. Two components of the PFB are responsible for the negative feedback and one, for the positive. The overall feedback is negative, i.e., it has a stabilizing effect for the operation of the reactor. The slowest negative component of the PFB is probably caused by heating of the fuel. Periodically repeated in the process of exploitation, estimation of the PFB parameters is one of the methods to ensure safety operation of the reactor. [ru

  20. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor building decontamination. Summary status report. Volume 2

    International Nuclear Information System (INIS)

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information relating to decontamination of the Three Mile Island Unit 2 (TMI-2) reactor building. The report covers activities for the period of June 1, 1979 through March 29, 1985. The data collected from activity reports, reactor containment entry records, and other sources were entered into a computerized data system which permits extraction/manipulation of specific information which can be used in planning for recovery from an accident similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during decontamination of the reactor building. Support activities conducted outside of radiation areas are excluded from the scope of this report. Computerized reports included in this document are: a chronological summary listing work performed relating to reactor building decontamination for the period specified; and summary reports for each major task during the period. Each task summary is listed in chronological order for zone entry and subtotaled for the number of personnel entries, exposures, and man-hours. Manually-assembled table summaries are included for: labor and exposures by department and labor and exposures by major activity

  1. Problems of nuclear reactor safety. Vol. 2

    International Nuclear Information System (INIS)

    Goncharov, L.A.

    1995-01-01

    Theses of proceedings of the 9 Topical Meeting on problems of nuclear power plant safety are presented. Reports include results of neutron-physical experiments carried out for reactor safety justification. Concepts of advanced reactors with improved safety are considered. Results of researches on fuel cycles are given too

  2. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  3. Economics and utilization of thorium in nuclear reactors. Technical annexes 1 and 2

    International Nuclear Information System (INIS)

    1978-05-01

    An assessment of the impact of utilizing the 233 U/thorium fuel cycle in the U.S. nuclear economy is strongly dependent upon several decisions involving nuclear energy policy. These decisions include: (1) to recycle or not recycle fissile material; (2) if fissile material is recycled, to recycle plutonium, 233 U, or both; and (3) to deploy or not to deploy advanced reactor designs such as Fast Breeder Reactors (FBR's), High Temperature Gas Reactors (HTGR's), and Canadian Deuterium Uranium Reactors (CANDU's). This report examines the role of thorium in the context of the above policy decisions while focusing special attention on economics and resource utilization

  4. HERESY, 2-D Few-Group Static Eigenvalues Calculation for Thermal Reactor

    International Nuclear Information System (INIS)

    Finch, D.R.

    1965-01-01

    1 - Description of problem or function: HERESY3 solves the two- dimensional, few-group, static reactor eigenvalue problem using the heterogeneous (source-sink or Feinburg-Galanin) formalism. The solution yields the reactor k-effective and absorption reaction rates for each rod normalized to the most absorptive rod in the thermal level. Epithermal fissions are allowed at each resonance level, and lattice-averaged values of thermal utilization, resonance escape probability, thermal and resonance eta values, and the fast fission factor are calculated. Kernels in the calculation are based on age-diffusion theory. Both finite reactor lattices and infinitely repeating reactor super-cells may be calculated. Rod parameters may be calculated by several internal options, and a direct interface is provided to a HAMMER system (NESC Abstract 277) lattice library tape to obtain cell parameters. Criticality searches are provided on thermal utilization, thermal eta, and axial leakage buckling. 2 - Method of solution: Direct power iteration on matrix form of the heterogeneous critical equation is used. 3 - Restrictions on the complexity of the problem: Maxima of - 50 flux/geometry symmetry positions; 20 physically different assemblies; 9 resonance levels; 5000 rod coordinate positions

  5. Metallic sodium as a coolant of high speed nuclear reactors, (2)

    International Nuclear Information System (INIS)

    Atsumo, Hideo

    1975-01-01

    Tables are given on all the sodium loops in Japan and most of the sodium loops all over the world. Name and purpose of the loops, time of establishment, highest temperature, amount of sodium, flow rate, the materials used for the construction of the loops, and the diameter of the main pipings are given. Also, the problems related with these loops are discussed. For example, the high temperature sodium facility at HEDL-WADCO was made for the FFTF component test and instrument test, and uses 50,000 gallons of metallic sodium. The highest temperature is 590 0 C. The sodium flows at the rate of 60 g/m. The body is made of Type 304 stainless steel. Main data of existing sodium-cooled reactors in the world are also tabulated. The data include thermal output, electric output, the structure of the reactor cores, the dimensions of the cores, fuel used, the highest temperature in the reactors, the temperature of sodium at the inlet and outlet, the rate of multiplication, the amount of sodium used, number of control rods, number of heat exchangers, and the pressure of steam. The Monju type nuclear reactor in Japan uses 1,800 ton of sodium. (Fukutomi, T.)

  6. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  7. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    Energy Technology Data Exchange (ETDEWEB)

    Volant, Emmanuelle [CEA DAM, Bruyeres-le-Chatel (France); Garnier, Cedric [CEA DEN, Marcoule (France)

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise and its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of

  8. Solid-state track recorder neutron dosimetry in the Three-Mile Island Unit-2 reactor cavity

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McElroy, W.N.

    1985-04-01

    Solid-state track recorder (SSTR) neutron dosimetry has been conducted in the Three-Mile Island Unit (TMI-2) reactor cavity (i.e., the annular gap between the pressure vessel and the biological shield) for nondestructive assessment of the fuel distribution. Two axial stringers were deployed in the annular gap with 17 SSTR dosimeters located on each stringer. SSTR experimental results reveal that neutron streaming, upward from the bottom of the reactor cavity region, dominates the observed neutron intensity. These absolute thermal neutron flux observations are consistent with the presence of a significant amount of fuel debris lying at the bottom of the reactor vessel. A conservative lower bound estimated from these SSTR data implies that there are at least 2 tonnes of fuel, which is roughly 4 fuel assemblies, at the bottom of the vessel. The existence of significant neutron streaming also explains the high count rate observed with the source range monitors (SRMs) that are located in the TMI-2 reactor cavity

  9. System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2

    International Nuclear Information System (INIS)

    Ellis, R.J.

    2000-01-01

    The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors

  10. Measurements at the RA Reactor related to the VISA-2 project - Part 1, Start-up of the RA reactor and measurement of new RA reactor core parameters

    International Nuclear Information System (INIS)

    Markovic, H.

    1962-07-01

    The objective of the measurements was determining the neutron flux in the RA reactor core. Since the number of fuel channels is increased from 56 to 68 within the VISA-2 project, it was necessary to attain criticality of the RA reactor and measure the neutron flux properties. The 'program of RA reactor start-up' has been prepared separately and it is included in this report. Measurements were divided in two phases. First phase was measuring of the neutron flux after the criticality was achieved but at zero power. During phase two measurements were repeated at several power levels, at equilibrium xenon poisoning. This report includes experimental data of flux distributions and absolute values of the thermal and fast neutron flux in the RA reactor experimental channels and values of cadmium ratio for determining the neutron epithermal flux. Data related to calibration of regulatory rods for cold un poisoned core are included [sr

  11. Neutron dosimetry in the Three-Mile Island Unit 2 reactor cavity with solid-state track recorders

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McElroy, W.N.; Rao, S.V.; Greenborg, J.; Fricke, V.R.

    1986-01-01

    Solid-state track recorder (SSTR) neutron dosimetry has been conducted in the Three-Mile Island Unit 2 (TMI-2) reactor cavity, for nondestructive assessment of the fuel distribution. Two axial stringers were deployed in the annular gap with 17 SSTR dosimeters located on each stringer. SSTR experimental results reveal that neutron streaming, upward from the bottom of the reactor cavity region, dominates the observed neutron intensity. These absolute thermal neutron flux observations are consistent with the presence of a significant amount of fuel debris lying at the bottom of the reactor vessel. A conservative lower bound estimated from these SSTR data implies that at least 2 tonnes of fuel, which is roughly 4 fuel assemblies, is lying at the bottom of the vessel. This existence of significant neutron streaming also explains the high count rate observed with the source range monitors that are located in the TMI-2 reactor cavity. (author)

  12. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Zamonsky, G.

    1991-01-01

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author) [es

  13. BEACON/MOD2A analysis of the Arkansas-1 reactor cavity during a hypothetical hot leg break

    International Nuclear Information System (INIS)

    Ramsthaler, J.A.

    1979-01-01

    As part of the evaluation of the new MOD2A version of the BEACON code, the Arkansas-1 reactor cavity was modeled during a hypothetical loss-of-coolant accident. Results of the BEACON analysis were compared with results obtained previously with the COMPARE containment code. Studies were also made investigating some of the BEACON interphasic, timestep control, and wall heat transfer options to assure that these models were working properly and to observe their effects on the results. Descriptions of the Arkansas-1 reactor cavity, initial assumptions during the hypothetical LOCA, and methods of modeling with BEACON are presented. Some of the problems encountered in accurately modeling the penetrations surrounding the hot and cold leg pipes are also discussed

  14. Evaluation of tritium production rate in a gas-cooled reactor with continuous tritium recovery system for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Hideaki, E-mail: mat@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Nakaya, Hiroyuki; Nakao, Yasuyuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Shimakawa, Satoshi; Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki 311-1393 (Japan); Nishikawa, Masabumi [Graduate School of Engineering Science, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2013-10-15

    Highlights: • The performance of a gas-cooled reactor as a tritium production system was studied. • A continuous tritium recovery using helium gas was considered. • Gas-cooled reactors with 3 GW output in all can produce ∼6 kg of tritium in a year • Performance of the system was examined for Li{sub 4}SiO{sub 4}, Li{sub 2}TiO{sub 3} and LiAlO{sub 2} compounds. -- Abstract: The performance of a high-temperature gas-cooled reactor as a tritium production with continuous tritium recovery system is examined. A gas turbine high-temperature reactor of 300-MWe (600 MW) nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations for the three-dimensional entire-core region of the GTHTR300 were performed. A Li loading pattern for the continuous tritium recovery system in the gas-cooled reactor is presented. It is shown that module gas-cooled reactors with a total thermal output power of 3 GW in all can produce ∼6 kg of tritium maximum in a year.

  15. Economic assessment of nuclear power plant operation with regard to effective use of nuclear fuel

    International Nuclear Information System (INIS)

    Svec, P.; Raninec, S.; Mizov, J.

    1988-01-01

    The essential preconditions are discussed for the better utilization of fuel in nuclear power plants. The MORNAP program which models the operation of the reactor is used for assessing the consequences of various fuel utilization strategies on technical and economic parameters of WWER-440 nuclear power plant operation. Some results of model calculation are given for the third and fourth units of the Jaslovske Bohunice nuclear power plant. The calculations have served for the economic assessment of the transition of part of the nuclear fuel from a three-campaign to a four-campaign cycle. This transition reduces fuel costs by 1.7%. The implementation of this strategy on a larger scale is expected to save 7 to 9% of fuel costs. (Z.M.). 2 tabs., 7 refs

  16. Highly Selective Continuous Flow Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in a Pt/SiO2 Coated Tube Reactor

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-02-01

    Full Text Available A novel continuous flow process for selective hydrogenation of α, β-unsaturated aldehyde (cinnamaldehyde, CAL to the unsaturated alcohol (cinnamyl alcohol, COL has been reported in a tube reactor coated with a Pt/SiO2 catalyst. A 90% selectivity towards the unsaturated alcohol was obtained at the aldehyde conversion of 98.8%. This is a six-fold improvement in the selectivity compared to a batch process where acetals were the main reaction products. The increased selectivity in the tube reactor was caused by the suppression of acid sites responsible for the acetal formation after a short period on stream in the continuous process. In a fixed bed reactor, it had a similar acetal suppression phenomenon but showed lower product selectivity of about 47–72% due to mass transfer limitations. A minor change in selectivity and conversion caused by product inhibition was observed during the 110 h on stream with a turnover number (TON reaching 3000 and an alcohol production throughput of 0.36 kg gPt−1 day−1 in the single tube reactor. The catalysts performance after eight reaction cycles was fully restored by calcination in air at 400 °C. The tube reactors provide an opportunity for process intensification by increasing the reaction rates by a factor of 2.5 at the reaction temperature of 150 °C compared to 90 °C with no detrimental effects on catalyst stability or product selectivity.

  17. MULTI-LOOP CONTROL DESIGN IN MULTIVARIABLE (2X2 CONTINUOUS STIRRED TANK REACTOR

    Directory of Open Access Journals (Sweden)

    Abdul Wahid

    2015-06-01

    Full Text Available With this study, the design and tuning of multi-loop for multivariable (2x2 CSTR will be made in order to achieve optimum CSTR control performance. This study used Bequette model reactor and MATLAB software and is expected to be able to cope with disturbances in the reactor so that the reactor system is able to stabilize quickly despite the distractions. In this study, the design will be made using multi-loop approach, along with PI controller as the next step. Then, BLT and auto-tune tuning method will be used in PI controller and given disturbances to both of tuning method. The controller performances are then compared. Results of the study are then analyzed for discussions and conclusions. Results from this study have shown that in terms of disturbance rejection, BLT is better than auto-tune based on comparison between both of controller performances. For IAE for the case of temperature, BLT is 30% better than auto-tune, but it is almost the same for the case of concentration. For settling time for the case of concentration, BLT is 30% better than auto-tune, and for the case of temperature, BLT is 18% better than auto-tune. For rise time for the case of concentration and temperature, BLT is 30% better than auto-tune.

  18. RAP-2A Computer code for transients analysis in fast reactors

    International Nuclear Information System (INIS)

    Iftode, I.; Popescu, C.; Turcu, I.; Biro, L.

    1975-10-01

    The RAP-2A computer code is designed for analyzing thermohydraulic transients and/or steady state problems for large LMFBR cores. Physical and mathematical models, main input-output data, the flow chart of the code and a sample problem are given. RAP-2A calculates the power and the thermoydraulic transients initiated by a flow or reactivity changes, from a normal operating state of the reactor up to core disassembly. In this analysis a representative fuel pin is considered: a one-group space-independent (point) kinetics model to describe the neutron kinetics and a one-dimensional model describing the heat transfer (radial in the fuel and axial in the coolant) are used. Mechanical deformations due to temperature gradient, pressure losses, fuel melting, etc., are also calculated. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  19. Operating reactors licensing actions summary. Volume 5, No. 2

    International Nuclear Information System (INIS)

    1985-04-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the Operating Reactors Licensing Actions Program

  20. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, D.; Adams, J. W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation.

  1. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    International Nuclear Information System (INIS)

    Dougherty, D.; Adams, J.W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation

  2. Planning for Environmental Restoration in Slovak Republic

    International Nuclear Information System (INIS)

    Slavik, O.; Moravek, J.

    1995-01-01

    The restoration in the Slovak Republic concerns to the contaminated banks of the waste water recipient of the Bohunice Nuclear Power Plant. The identified contamination, consisting mainly of 137 Cs, is a result of two accidents on the CO 2 -cooled and heavy water moderated NPP Bohunice-A1 unit of NPP Bohunice complex. Two type of radiation risk scenarios, namely the bank use and contaminated soil (from bank) use scenario were investigated in relation to decision making on the planning for restoration of the contaminated banks. Results of dose assessments and the approach to planning for restoration of contaminated banks are summarized in the paper. Some details from the worked out technical design of the contaminated soil removal from the banks and its safe disposal in a near surface isolated basin are introduced in the paper too

  3. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor.

    Science.gov (United States)

    Cabrera-Díaz, A; Pereda-Reyes, I; Oliva-Merencio, D; Lebrero, R; Zaiat, M

    2017-12-01

    The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m -3 day -1 with averages of 0.289 m 3 CH 4  kg COD r -1 for the UASB reactor and 4.4 kg COD m -3 day -1 with 0.207 m 3 CH 4  kg COD r -1 for APBR. The OLR played a major role in the emission of H 2 S conducting to relatively stable quality of biogas emitted from the APBR, with H 2 S concentrations <10 mg L -1 . The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH 4 and a lower H 2 S content in biogas.

  4. Safety requirements in the design of research reactors: A Canadian perspective

    International Nuclear Information System (INIS)

    Lee, A.G.; Langman, V.J.

    2000-01-01

    In Canada, the formal development of safety requirements for the design of research reactors in general began under an inter-organizational Small Reactor Criteria Committee. This committee developed safety and licensing criteria for use by several small reactor projects in their licensing discussions with the Atomic Energy Control Board. The small reactor projects or facilities represented included the MAPLE-X10 reactor, the proposed SES-10 heating reactor and its prototype, the SDR reactor at the Whiteshell Laboratories, the Korea Multipurpose Research Reactor (a.k.a., HANARO) in Korea, the SCORE project, and the McMaster University Nuclear Reactor. The top level set of criteria which form a safety philosophy and serve as a framework for more detailed developments was presented at an IAEA Conference in 1989. AECL continued this work to develop safety principles and design criteria for new small reactors. The first major application of this work has been to the design, safety analysis and licensing of the MAPLE 1 and 2 reactors for the MDS Nordion Medical Isotope Reactor Project. This paper provides an overview of the safety principles and design criteria. Examples of an implementation of these safety principles and design criteria are drawn from the work to design the MAPLE 1 and 2 reactors. (author)

  5. Diagnostic and monitoring systems produced in Vuje, Okruzna 5, 918 64 Trnava, Slovak Republic

    International Nuclear Information System (INIS)

    Oksa, G.; Bahna, J.; Murin, V.; Kucharek, P.; Smutny, S.

    1996-01-01

    Based on the 20 years experience in on-line vibration diagnostics of mechanical components in the primary circuit of nuclear power plant PWR WWER-440, Vuje, Okruzna 5, 918 64 Trnava produces its own diagnostic and monitoring systems since 1990. The variety of diagnostic systems includes: loose part monitoring system (LPMS), monitoring system of main circulating pumps (MCPMS), vibration monitoring system (LVMS), leakage monitoring system (LMS). The emphasis in the hardware solution is put on the design modularity and versatility so that many subcomponents (circuit boards) are common or highly similar for all systems. Using exclusively digital data for processing enhances the reliability of the measurements and allows the easy data transportation from one computer to another (e.g., for more sophisticated analysis). Trends in the software development follow the similar path as for the hardware solution - namely, the modularity and versatility of software is the imperative goal. The modern operating systems also incorporate the ability of network communication, which is crucial for the integration of stand-alone diagnostic systems into nuclear power plants information system. So far a number of systems have been successfully installed: 6 LPMSs (Jaslovske Bohunice, Dukovany), 4 MCPMs (Jaslovske Bohunice) and 2 LVMSs (Jaslovske Bohunice), all systems operate in PWR WWER-440 environment. Another diagnostic systems are under construction: 2 LPMSs (Temelin, PWR WWER-1000), 2 MCMSs (Mochovce - PWR WWER-440) and 2 LMSs (Jaslovske Bohunice). (author). 1 fig

  6. Diagnostic and monitoring systems produced in Vuje, Okruzna 5, 918 64 Trnava, Slovak Republic

    Energy Technology Data Exchange (ETDEWEB)

    Oksa, G; Bahna, J; Murin, V; Kucharek, P; Smutny, S [Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia)

    1997-12-31

    Based on the 20 years experience in on-line vibration diagnostics of mechanical components in the primary circuit of nuclear power plant PWR WWER-440, Vuje, Okruzna 5, 918 64 Trnava produces its own diagnostic and monitoring systems since 1990. The variety of diagnostic systems includes: loose part monitoring system (LPMS), monitoring system of main circulating pumps (MCPMS), vibration monitoring system (LVMS), leakage monitoring system (LMS). The emphasis in the hardware solution is put on the design modularity and versatility so that many subcomponents (circuit boards) are common or highly similar for all systems. Using exclusively digital data for processing enhances the reliability of the measurements and allows the easy data transportation from one computer to another (e.g., for more sophisticated analysis). Trends in the software development follow the similar path as for the hardware solution - namely, the modularity and versatility of software is the imperative goal. The modern operating systems also incorporate the ability of network communication, which is crucial for the integration of stand-alone diagnostic systems into nuclear power plants information system. So far a number of systems have been successfully installed: 6 LPMSs (Jaslovske Bohunice, Dukovany), 4 MCPMs (Jaslovske Bohunice) and 2 LVMSs (Jaslovske Bohunice), all systems operate in PWR WWER-440 environment. Another diagnostic systems are under construction: 2 LPMSs (Temelin, PWR WWER-1000), 2 MCMSs (Mochovce - PWR WWER-440) and 2 LMSs (Jaslovske Bohunice). (author). 1 fig.

  7. Challenges in licensing a sodium-cooled advanced recycling reactor

    International Nuclear Information System (INIS)

    Levin, Alan E.

    2008-01-01

    As part of the Global Nuclear Energy Partnership (GNEP), the U.S. Department of Energy (DOE) has focused on the use of sodium-cooled fast reactors (SFRs) for the destruction of minor actinides derived from used reactor fuel. This approach engenders an array of challenges with respect to the licensing of the reactor: the U.S. Nuclear Regulatory Commission (NRC) has never completed the review of an application for an operating license for a sodium-cooled reactor. Moreover, the current U.S. regulatory structure has been developed to deal almost exclusively with light-water reactor (LWR) designs. Consequently, the NRC must either (1) develop a new regulatory process for SFRs, or (2) reinterpret the existing regulations to apply them, as appropriate, to SFR designs. During the 1980s and 1990s, the NRC conducted preliminary safety assessments of the Sodium Advanced Fast Reactor (SAFR) and the Power Reactor Innovative Small Module (PRISM) designs, and in that context, began to consider how to apply LWR-based regulations to SFR designs. This paper builds on that work to consider the challenges, from the reactor designer's point of view, associated with licensing an SFR today, considering (1) the evolution of SFR designs, (2) the particular requirements of reactor designs to meet GNEP objectives, and (3) the evolution of NRC regulations since the conclusion of the SAFR and PRISM reviews. (author)

  8. Fully coupled multiphysics modeling of enhanced thermal conductivity UO{sub 2}–BeO fuel performance in a light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Shen, P. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Prudil, A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Chan, P.K. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario (Canada)

    2015-12-15

    Highlights: • LWR fuel performance modeling capability developed. • Fully coupled multiphysics studies for enhanced thermal conductivity UO{sub 2}–BeO fuel. • UO{sub 2}–BeO fuel decreases fuel temperature and lessens thermal stresses. • UO{sub 2}–BeO fuel facilitates a reduction in PCMI. • Reactor safety can be improved for UO{sub 2}–BeO fuel. - Abstract: Commercial light water reactor fuel UO{sub 2} has a low thermal conductivity that leads to the development of a large temperature gradient across the fuel pellet, limiting the reactor operational performance due to the effects that include thermal stresses causing pellet cladding interaction and the release of fission product gases. This study presents the development of a modeling and simulation for enhanced thermal conductivity UO{sub 2}–BeO fuel behavior in a light water reactor, using self-defined multiple physics models fully coupled based on the framework of COMSOL Multiphysics. Almost all the related physical models are considered, including heat generation and conduction, species diffusion, thermomechanics (thermal expansion, elastic strain, densification, and fission product swelling strain), grain growth, fission gas production and release, gap heat transfer, mechanical contact, gap/plenum pressure with plenum volume, cladding thermal and irradiation creep and oxidation. All the phenomenal models and materials properties are implemented into COMSOL Multiphysics finite-element platform with a 2D axisymmetric geometry of a fuel pellet and cladding. UO{sub 2}–BeO enhanced thermal conductivity nuclear fuel would decrease fuel temperatures and facilitate a reduction in pellet cladding interaction from our simulation results through lessening thermal stresses that result in fuel cracking, relocation, and swelling, so that the safety of the reactor would be improved.

  9. Mo-99 production on a LEU solution reactor

    International Nuclear Information System (INIS)

    Brown, R.W.; Thome, L.A.; Khvostionov, V.Y.

    2005-01-01

    A pilot homogenous reactor utilizing LEU has been developed by the Kurchatov Institute in Moscow along with their commercial partner TCI Medical. This solution reactor operates at levels up to 50 kilowatts and has successfully produced high quality Mo-99 and Sr-89. Radiochemical extraction of medical radionuclides from the reactor solution is performed by passing the solution across a series of inorganic sorbents. This reactor has commercial potential for medical radionuclide production using LEU UO 2 SO 4 fuel. Additional development work is needed to optimize multiple 50 kilowatt cores while at the same time, optimizing production efficiency and capital expenditure. (author)

  10. SE-VYZ - Decommissioning of Nuclear Installations, Radioactive Waste and Spent Fuel Management

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    In this presentations processes of radioactive waste treatment in the Bohunice Radioactive Waste Processing Center (SE-VYZ), Jaslovske Bohunice are presented. Decommissioning of the A-1 NPP is also presented. Disposal of conditioned radioactive waste in fibre concrete containers (FCC) are transported to Mochovce from Jaslovske Bohunice by the transport truck where are reposited in the National radioactive waste repository Mochovce. The Interim spent fuel storage facility (ISFSF) is included into this presentation

  11. The Jules Horowitz Reactor project, a driver for revival of the research reactor community

    International Nuclear Information System (INIS)

    Pere, P.; Cavailler, C.; Pascal, C.

    2010-01-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first-rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10 14 n.cm -2 /sec -1 E>1 MeV in core and 3,6x10 14 n.cm -2 /sec -1 E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items:accommodation of a broad experimental domain; involvement by international partners making in-kind contributions to the project; ? development of components critical to safety and performance; the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and; tools to carry out the project, including computer codes

  12. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  13. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  14. On-line reactor building integrity testing at Gentilly-2 (summary of results 1987-1994)

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1994-01-01

    In 1987, Hydro-0uebec embarked on an ambitious development program to provide the Gentilly-2 Nuclear Power Station with an effective and practical Reactor Building Containment integrity Test (CIT). In October 1992, the inaugural low pressure (3 kPa(g) nominal) CIT at 100% F.P was performed. The test was conclusive and the CIT was declared In-Service for containment integrity verification on-line. Five subsequent CITs performed in 1993 and 1994 have demonstrated the expected leak rate results and good reliability. The outstanding feature of the CITs is the demonstrated accurary of better than 5% of the measured leak rate. The CIT was developed with the primary goal of demonstrating 'overall' containment availability. Specifically it was designed to detect a 25 mm. diameter leak or hole in the Reactor Building. However, the remarkable CIT accuracy allows reliable detection of a 2 mm. hole. The Gentilly-2 CIT is an innovative approach based on the Temperature Compensation Method (TCM) which uses a reference volume composed of an extensive tubular network of several different diameters. This eliminates the need to track numerous temperature points. A second independent tubular network includes numerous humidity sampling points, thereby enabling the mearurernent of minute pressure variations inside the Reactor Building, independant of the spatial and temporal humidity behaviour. This Gentilly-2 TOM System has been demonstrated to work at both high and low test pressures. The GentiIly-2 design allows the CIT to be performed at a nominal 3 kPa(g) test pressure during a 12-hour period (28 hours total with alignment time) with the reactor at full power. The traditional Reactor Building Pressure Test (RBPT) is typically performed at high pressure (124 kPa(g) in a 5-day critical path window (7 days total with alignment time) during an annual shutdown

  15. Neutron dosimetry in the Three-Mile Island Unit 2 reactor cavity with solid-state track recorders

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McElroy, W.N.; Rao, S.V.; Greenborg, J.; Fricke, V.R.

    1985-01-01

    Solid-state track recorder (SSTR) neutron dosimetry has been conducted in the Three-Mile Island Unit 2 (TMI-2) reactor cavity (i.e., the annular gap between the pressure vessel and the biological shield) for nondestructive assessment of the fuel distribution. Two axial stringers were deployed in the annular gap with 17 SSTR dosimeters located on each stringer. SSTR experimental results reveal that neutron streaming, upward from the bottom of the reactor cavity region, dominates the observed neutron intensity. These absolute thermal neutron flux observations are consistent with the presence of a significant amount of fuel debris lying at the bottom of the reactor vessel. A conservative lower bound estimated from these SSTR data implies that at least 2 tonnes of fuel, which is roughly 4 fuel assemblies, is lying at the bottom of the vessel. The existence of significant neutron streaming also explains the high count rate observed with the source range monitors (SRMs) that are located in the TMI-2 reactor cavity

  16. A regression approach for zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. From data analysis and model development point of views, both the assumption of independence and prior committment to specific model forms are unacceptable. One would desire means which can not only estimate the required parameters directly from data but also provide basis for model selections, viz., one model against others. Basic understanding of the physics of deformation is important in choosing the forms of starting physical model equations, but the justifications must rely on their abilities in correlating the overall data. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) when there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets, (2) regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections

  17. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized

  18. Evaluation of Pressure Changes in HANARO Reactor Hall after a Reactor Shutdown

    International Nuclear Information System (INIS)

    Han, Geeyang; Han, Jaesam; Ahn, Gukhoon; Jung, Hoansung

    2013-01-01

    The major objective of this work is intended to evaluate the characteristics of the thermal behavior regarding how the decay heat will be affected by the reactor hall pressure change and the increase of pool water temperature induced in the primary coolant after a reactor shutdown. The particular reactor pool water temperature at the surface where it is evaporated owing to the decay heat resulting in the local heat transfer rate is related to the pressure change response in the reactor hall associated with the primary cooling system because of the reduction of the heat exchanger to remove the heat. The increase in the pool water temperature is proportional to the heat transfer rate in the reactor pool. Consequently, any limit on the reactor pool water temperature imposes a corresponding limit on the reactor hall pressure. At HANARO, the decay heat after a reactor shutdown is mainly removed by the natural circulation cooling in the reactor pool. This paper is written for the safety feature of the pressure change related leakage rate from the reactor hall. The calculation results show that the increase of pressure in the reactor hall will not cause any serious problems to the safety limits although the reactor hall pressure is slightly increased. Therefore, it was concluded that the pool water temperature increase is not so rapid as to cause the pressure to vary significantly in the reactor hall. Furthermore, the mathematical model developed in this work can be a useful analytical tool for scoping and parametric studies in the area of thermal transient analysis, with its proper representation of the interaction between the temperature and pressure in the reactor hall

  19. Investigation of slightly forced buoyant flow in a training reactor

    International Nuclear Information System (INIS)

    Legradi, G.; Aszodi, A.; Por, G.

    2001-01-01

    A measurement based on the temperature noise analysis method was carried out in the Training Reactor of the Budapest University of Technology and Economics. The main goals were the estimation of the flow velocity immediately above the reactor core and investigation of the thermal-hydraulical conditions of the reactor, mainly in the core. Subsequently 2D and 3D computations were carried out with the aid of the code CFX- 4.3. The main objective of the 2D calculation was to clarify the thermal-hydraulical conditions of the whole reactor tank with a reasonable computing demand. It was also necessary to accomplish 3D numerical investigations of the reactor core and the space above since three dimensional effects of the flow could only be studied in this way. In addition, obtaining certain boundary conditions of the 3D computations was another significant aim of the 2D investigations. It is important that the results of the noise analysis and the operational measuring system of the reactor gave us a basis for verifying our computations.(author)

  20. Power Reactor Fuel Reprocessing Plant-2, Tarapur: a benchmark in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Power Reactor Fuel Reprocessing Plant-2 (PREFRE-2) is latest operating spent nuclear fuel reprocessing plant in India. This plant has improved design based on latest technology and feedback provided by the earlier plants. The design of PREFRE-2 plant is in five cycles of solvent extraction using TBP as extractant. The plant is commissioned in year 2011 after regulatory clearances

  1. VENUS-2, Reactor Kinetics with Feedback, 2-D LMFBR Disassembly Excursions

    International Nuclear Information System (INIS)

    Jackson, J.F.; Nicholson, R.B.; Weber, D.P.

    1980-01-01

    1 - Description of problem or function: VENUS-2 is an improved edition of the VENUS fast-reactor disassembly program. It is a two- dimensional (r-z) coupled neutronics-hydrodynamics code that calculates the dynamic behavior of an LMFBR during a prompt-critical disassembly excursion. It calculates the power history and fission energy release as well as the space-time histories of the fuel temperatures, core material pressures, and core material motions. Reactivity feedback effects due to Doppler broadening and reactor material motion are taken into account. 2 - Method of solution: The power and energy release are calculated using a point-kinetics formulation with up to six delayed neutron groups. The reactivity is a combination of an input driving function and feedback effects due to Doppler broadening and material motion. An adiabatic model is used to calculate the temperature increase throughout the reactor based on an initial temperature distribution and power profile provided as input data. These temperatures are, in turn, converted to fuel pressures through one of several equation of state options provided. The material motion that results from the pressure buildup is calculated by a direct finite difference solution of a set of two-dimensional (r-z) hydrodynamics equations. This is done in Lagrangian coordinates. The reactivity change associated with this motion is calculated by first-order perturbation theory. The displacements are also used to adjust the fuel densities as required for the density dependent equation-of- state option. An automatic time-step-size selection scheme is provided. 3 - Restrictions on the complexity of the problem: VENUS-2 is written so that the dimensions of the storage arrays can be readily changed to accommodate a broad range of problem sizes. In the base version, the total number of mesh intervals is restricted such that (NR+3)*(NZ+3) is less than 700, where NR and NZ are the total number of mesh intervals in the r and z

  2. Energy Multiplier Module (EM{sup 2}) - advanced small modular reactor for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, T.; Schleicher, R.; Choi, H.; Rawls, J., E-mail: timothy.bertch@ga.com [General Atomics, San Diego, California (United States)

    2013-07-01

    In order to provide cost effective nuclear energy in other than large reactor, large grid applications, fission technology needs to make further advances. 'Convert and burn' fast reactors offer long life cores, improved fuel utilization, reduced waste and other benefits while achieving cost effective energy production in a smaller reactor. General Atomics' Energy Multiplier Module (EM{sup 2}), a helium-cooled compact fast reactor that augments its fissile fuel load with either depleted uranium (DU) or used nuclear fuel (UNF). The convert and burn in-situ provides 250 MWe with a 30 year core life. High temperature provides a simple, high efficiency direct cycle gas turbine which along with modular construction, fewer systems, road shipment and minimum on site construction support cost effectiveness. Additional advantages in fuel cycle, non-proliferation and siting flexibility and its ability to meet all safety requirements make for an attractive power source, especially in remote and small grid regions. (author)

  3. Rotating reactors : a review

    NARCIS (Netherlands)

    Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

    2013-01-01

    This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

  4. Degradation of gas-phase trichloroethylene over thin-film TiO{sub 2} photocatalyst in multi-modules reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Lee, Jun Yub, E-mail: ljy02191@hanafos.com [Power Engineering Research Institute, Korea Power Engineering Company, Inc. (Korea, Republic of); Kim, Gyung Soo [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Hong, Sung Chang [Department of Environmental Engineering, Kyonggi University (Korea, Republic of)

    2009-07-30

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO{sub 2}. A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  5. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-08-01

    Full Text Available Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m3 H2 m-3 day-1 developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9.

  6. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  7. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  8. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  9. SoLid: Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor

    Science.gov (United States)

    Ban, G.; Beaumont, W.; Buhour, J. M.; Coupé, B.; Cucoanes, A. S.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Giot, L.; Guillon, B.; Guilloux, G.; Janssen, X.; Kalcheva, S.; Koonen, E.; Labare, M.; Moortgat, C.; Pronost, G.; Raes, L.; Ryckbosch, D.; Ryder, N.; Shitov, Y.; Vacheret, A.; Van Mulders, P.; Van Remortel, N.; Weber, A.; Yermia, F.

    2016-04-01

    Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (˜ 6- 8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK•CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported.

  10. Quality assurance in the project of RECH-2 research reactor

    International Nuclear Information System (INIS)

    Goycolea Donoso, C.; Nino de Zepeda Schele, A.

    1989-01-01

    The implantation of a Quality Assurance Program for the design, supply, construction, installation, and testing of the RECH-2 research reactor, is described in this paper. The obtained results, demonstrate that a Quality Assurance Program constitutes a suitable mean to assure that the installation complies with the safety and reliability requirements. (author)

  11. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  12. Proceedings of 2. Yugoslav symposium on reactor physics, Part 3, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 3 of the Proceedings of 2. Yugoslav symposium on reactor physics includes three papers describing the following: model for spatial synthesis of automated control system of the GCR type reactor; model for analysis of hydrodynamic processes at the BHWR type reactors; mathematical model for safety analysis of heavy water power reactor

  13. Development of the fast reactor group constant set JFS-3-J3.2R based on the JENDL-3.2

    CERN Document Server

    Chiba, G

    2002-01-01

    It is reported that the fast reactor group constant set JFS-3-J3.2 based on the newest evaluated nuclear data library JENDL3.2 has a serious error in the process of applying the weighting function. As the error affects greatly nuclear characteristics, and a corrected version of the reactor constant set, JFS-3-J3.2R, was developed, as well as lumped FP cross sections. The use of JFS-3-J3.2R improves the results of analyses especially on sample Doppler reactivity and reaction rate in the blanket region in comparison with those obtained using the JFS-3-J3.2.

  14. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    Maillard, M.L.

    1960-01-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [fr

  15. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  16. A study of reactor vessel integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Kim, Jong Kyung; Shin, Chang Ho; Seo, Bo Kyun [Hanyang Univ., Seoul (Korea, Republic of)

    1999-02-15

    The fast neutron fluence at the Reactor Pressure Vessel(RPV) of KNGR designed for 60 years lifetime was calculated by full-scope Monte Carlo simulation for reactor vessel integrity assessment. KNGR core geometry was modeled on a three-dimensional representation of the one-sixteenth of the reactor in-vessel component. Each fuel assemblies were modeled explicitly, and each fuel pins were axially divided into 5 segments. The maximum flux of 4.3 x 10{sup 10} neutrons/cm{sup 2}. sec at the RPV was obtained by tallying neutrons crossing the beltline of inner surface of the RPV.

  17. Requirements on fuel management for a safe and optimum operation of the German research reactor FRJ-2

    International Nuclear Information System (INIS)

    Nabbi, R.; Bormann, H.J.; Wolters, J.

    1997-01-01

    In case of a coarse control arm (CCAs) at FRJ-2, reactivity is added to the reactor. The amount of this reactivity depends on the efficiency of the individual CCAs which has been measured as 180% of the average reactivity of the six arms for the central arm. For this design basis accident, it is required that only 4 out of 5 residual arms must be capable of shutting down the reactor. This minimum shutdown reactivity is provided by an optimum fuel management including an experimental reactivity determination. Calculation of fuel burnup and material densities is performed by the depletion code SUSAN, which has been verified by separate calculations using ORIGEN. The difference in the reactivity values (between calculation and measurement) is mainly a consequence of the limitation of the inverse kinetic method, which is not capable of covering the effects of the flux deformation and interaction of the CCAs and core in the process of reactor scram. (author)

  18. Neutronics and mass transport in a chemical reactor associated with controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.; Lazareth, O.W.; Powell, J.R.

    1976-05-01

    The formation of ozone from oxygen and the dissociation carbon dioxide to carbon monoxide and oxygen is studied in a gamma-neutron chemical process blanket associated with a controlled thermonuclear reactor. Materials used for reactor tube wall will affect the efficiency of the energy absorption by the reactants and consequently the yield of reaction products. Three kinds of materials, aluminum, stainless steel and fiber (Al 2 O 3 )-aluminium are investigated for the tube wall material in the study

  19. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  20. Managing severe reactor accidents. A review and evaluation of our knowledge on reactor accidents and accident management

    International Nuclear Information System (INIS)

    Gustavsson, Veine

    2002-11-01

    The report gives a review of the results from the last years research on severe reactor accidents, and an opinion on the possibilities to refine the present strategies for accident management in Swedish and Finnish BWRs. The following aspect of reactor accidents are the major themes of the study: 1. Early pressure relief from hydrogen production; 2. Recriticality in re-flooded, degraded core; 3. Melt-through; 4. Steam explosion after melt-through; 5. Coolability of the melt after after melt-through; 6. Hydrogen fire in the reactor containment; 7. Leaking containment; 8. Hydrogen fire in the reactor building; 9. Long-time developments after a severe accident; 10. Accidents during shutdown for overhaul; 11. Information need for remedial actions. Possibilities for improving the strategies in each of these areas are discussed. The review shows that our knowledge is sufficient in the areas 1, 2, 4, 6, 8. For the other areas, more research is needed