WorldWideScience

Sample records for bohrium

  1. Graphs for Isotopes of 107-Bh (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides a graphic representation of nucleon separation energies and residual interaction parameters for isotopes of the chemical element 107-Bh (Bohrium, atomic number Z = 107).

  2. Chemical characterization of bohrium (element 107)

    Science.gov (United States)

    Eichler; Bruchle; Dressler; Dullmann; Eichler; Gaggeler; Gregorich; Hoffman; Hubener; Jost; Kirbach; Laue; Lavanchy; Nitsche; Patin; Piguet; Schadel; Shaughnessy; Strellis; Taut; Tobler; Tsyganov; Turler; Vahle; Wilk; Yakushev

    2000-09-01

    The arrangement of the chemical elements in the periodic table highlights resemblances in chemical properties, which reflect the elements' electronic structure. For the heaviest elements, however, deviations in the periodicity of chemical properties are expected: electrons in orbitals with a high probability density near the nucleus are accelerated by the large nuclear charges to relativistic velocities, which increase their binding energies and cause orbital contraction. This leads to more efficient screening of the nuclear charge and corresponding destabilization of the outer d and f orbitals: it is these changes that can give rise to unexpected chemical properties. The synthesis of increasingly heavy elements, now including that of elements 114, 116 and 118, allows the investigation of this effect, provided sufficiently long-lived isotopes for chemical characterization are available. In the case of elements 104 and 105, for example, relativistic effects interrupt characteristic trends in the chemical properties of the elements constituting the corresponding columns of the periodic table, whereas element 106 behaves in accordance with the expected periodicity. Here we report the chemical separation and characterization of six atoms of element 107 (bohrium, Bh), in the form of its oxychloride. We find that this compound is less volatile than the oxychlorides of the lighter elements of group VII, thus confirming relativistic calculations that predict the behaviour of bohrium, like that of element 106, to coincide with that expected on the basis of its position in the periodic table. PMID:10993071

  3. Chemical characterization of bohrium (element 107)

    Science.gov (United States)

    Eichler, R.; Brüchle, W.; Dressler, R.; Düllmann, Ch. E.; Eichler, B.; Gäggeler, H. W.; Gregorich, K. E.; Hoffman, D. C.; Hübener, S.; Jost, D. T.; Kirbach, U. W.; Laue, C. A.; Lavanchy, V. M.; Nitsche, H.; Patin, J. B.; Piguet, D.; Schädel, M.; Shaughnessy, D. A.; Strellis, D. A.; Taut, S.; Tobler, L.; Tsyganov, Y. S.; Türler, A.; Vahle, A.; WiIk, P. A.; Yakushev, A. B.

    2000-09-01

    The arrangement of the chemical elements in the periodic table highlights resemblances in chemical properties, which reflect the elements' electronic structure. For the heaviest elements, however, deviations in the periodicity of chemical properties are expected: electrons in orbitals with a high probability density near the nucleus are accelerated by the large nuclear charges to relativistic velocities, which increase their binding energies and cause orbital contraction. This leads to more efficient screening of the nuclear charge and corresponding destabilization of the outer d and f orbitals: it is these changes that can give rise to unexpected chemical properties. The synthesis of increasingly heavy elements, now including that of elements 114, 116 and 118, allows the investigation of this effect, provided sufficiently long-lived isotopes for chemical characterization are available. In the case of elements 104 and 105, for example, relativistic effects interrupt characteristic trends in the chemical properties of the elements constituting the corresponding columns of the periodic table, whereas element 106 behaves in accordance with the expected periodicity. Here we report the chemical separation and characterization of six atoms of element 107 (bohrium, Bh), in the form of its oxychloride. We find that this compound is less volatile than the oxychlorides of the lighter elements of group VII, thus confirming relativistic calculations that predict the behaviour of bohrium, like that of element 106, to coincide with that expected on the basis of its position in the periodic table.

  4. Chemical separation procedure proposed for studies of bohrium

    International Nuclear Information System (INIS)

    Off-line and on-line studies have been performed with radioactive tracers of various elements to develop a chemical separation procedure for bohrium (element 107). The proposed procedure is intended for use in the fast solvent extraction system SISAK. The homologs technetium and rhenium were used to model the chemical behavior of bohrium. The results show that high decontamination factors can be obtained for technetium and rhenium with respect to unwanted contaminants like trivalent actinides, polonium and the Group 5 elements. (author)

  5. From bohrium to copernicium and beyond SHE research at SHIP

    Science.gov (United States)

    Münzenberg, G.

    2015-12-01

    Heavy-element research with SHIP at GSI is reviewed including the discovery of the chemical elements bohrium to copernicium, experimental developments, cold fusion of heavy ions, and the discovery of a shell region around hassium. Elements bohrium and heavier are located beyond the limit of liquid-drop stability. They exist by shell stabilization. A universal, sensitive, and fast method: in-flight separation and identification of single atomic nuclei has been developed with the velocity filter SHIP and the detector system to measure decay sequences of individual atoms. Research with single atomic nuclei including detection methods, identification, and physics results will be discussed. Experiments with actinide targets as well as prospects with NUSTAR at FAIR will be addressed.

  6. Atomic Mass and Nuclear Binding Energy for Bh-318 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-318 (Bohrium, atomic number Z = 107, mass number A = 318).

  7. Atomic Mass and Nuclear Binding Energy for Bh-356 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-356 (Bohrium, atomic number Z = 107, mass number A = 356).

  8. Atomic Mass and Nuclear Binding Energy for Bh-322 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-322 (Bohrium, atomic number Z = 107, mass number A = 322).

  9. Atomic Mass and Nuclear Binding Energy for Bh-351 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-351 (Bohrium, atomic number Z = 107, mass number A = 351).

  10. Atomic Mass and Nuclear Binding Energy for Bh-310 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-310 (Bohrium, atomic number Z = 107, mass number A = 310).

  11. Atomic Mass and Nuclear Binding Energy for Bh-336 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-336 (Bohrium, atomic number Z = 107, mass number A = 336).

  12. Atomic Mass and Nuclear Binding Energy for Bh-299 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-299 (Bohrium, atomic number Z = 107, mass number A = 299).

  13. Atomic Mass and Nuclear Binding Energy for Bh-288 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-288 (Bohrium, atomic number Z = 107, mass number A = 288).

  14. Atomic Mass and Nuclear Binding Energy for Bh-359 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-359 (Bohrium, atomic number Z = 107, mass number A = 359).

  15. Atomic Mass and Nuclear Binding Energy for Bh-343 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-343 (Bohrium, atomic number Z = 107, mass number A = 343).

  16. Atomic Mass and Nuclear Binding Energy for Bh-304 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-304 (Bohrium, atomic number Z = 107, mass number A = 304).

  17. Atomic Mass and Nuclear Binding Energy for Bh-280 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-280 (Bohrium, atomic number Z = 107, mass number A = 280).

  18. Atomic Mass and Nuclear Binding Energy for Bh-349 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-349 (Bohrium, atomic number Z = 107, mass number A = 349).

  19. Atomic Mass and Nuclear Binding Energy for Bh-325 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-325 (Bohrium, atomic number Z = 107, mass number A = 325).

  20. Atomic Mass and Nuclear Binding Energy for Bh-332 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-332 (Bohrium, atomic number Z = 107, mass number A = 332).

  1. Atomic Mass and Nuclear Binding Energy for Bh-306 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-306 (Bohrium, atomic number Z = 107, mass number A = 306).

  2. Atomic Mass and Nuclear Binding Energy for Bh-324 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-324 (Bohrium, atomic number Z = 107, mass number A = 324).

  3. Atomic Mass and Nuclear Binding Energy for Bh-293 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-293 (Bohrium, atomic number Z = 107, mass number A = 293).

  4. Atomic Mass and Nuclear Binding Energy for Bh-327 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-327 (Bohrium, atomic number Z = 107, mass number A = 327).

  5. Atomic Mass and Nuclear Binding Energy for Bh-350 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-350 (Bohrium, atomic number Z = 107, mass number A = 350).

  6. Atomic Mass and Nuclear Binding Energy for Bh-308 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-308 (Bohrium, atomic number Z = 107, mass number A = 308).

  7. Atomic Mass and Nuclear Binding Energy for Bh-358 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-358 (Bohrium, atomic number Z = 107, mass number A = 358).

  8. Atomic Mass and Nuclear Binding Energy for Bh-321 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-321 (Bohrium, atomic number Z = 107, mass number A = 321).

  9. Atomic Mass and Nuclear Binding Energy for Bh-345 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-345 (Bohrium, atomic number Z = 107, mass number A = 345).

  10. Atomic Mass and Nuclear Binding Energy for Bh-286 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-286 (Bohrium, atomic number Z = 107, mass number A = 286).

  11. Atomic Mass and Nuclear Binding Energy for Bh-307 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-307 (Bohrium, atomic number Z = 107, mass number A = 307).

  12. Atomic Mass and Nuclear Binding Energy for Bh-303 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-303 (Bohrium, atomic number Z = 107, mass number A = 303).

  13. Atomic Mass and Nuclear Binding Energy for Bh-312 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-312 (Bohrium, atomic number Z = 107, mass number A = 312).

  14. Atomic Mass and Nuclear Binding Energy for Bh-294 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-294 (Bohrium, atomic number Z = 107, mass number A = 294).

  15. Atomic Mass and Nuclear Binding Energy for Bh-326 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-326 (Bohrium, atomic number Z = 107, mass number A = 326).

  16. Atomic Mass and Nuclear Binding Energy for Bh-273 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-273 (Bohrium, atomic number Z = 107, mass number A = 273).

  17. Atomic Mass and Nuclear Binding Energy for Bh-284 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-284 (Bohrium, atomic number Z = 107, mass number A = 284).

  18. Atomic Mass and Nuclear Binding Energy for Bh-315 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-315 (Bohrium, atomic number Z = 107, mass number A = 315).

  19. Atomic Mass and Nuclear Binding Energy for Bh-328 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-328 (Bohrium, atomic number Z = 107, mass number A = 328).

  20. Atomic Mass and Nuclear Binding Energy for Bh-311 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-311 (Bohrium, atomic number Z = 107, mass number A = 311).

  1. Atomic Mass and Nuclear Binding Energy for Bh-353 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-353 (Bohrium, atomic number Z = 107, mass number A = 353).

  2. Atomic Mass and Nuclear Binding Energy for Bh-348 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-348 (Bohrium, atomic number Z = 107, mass number A = 348).

  3. Atomic Mass and Nuclear Binding Energy for Bh-360 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-360 (Bohrium, atomic number Z = 107, mass number A = 360).

  4. Atomic Mass and Nuclear Binding Energy for Bh-347 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-347 (Bohrium, atomic number Z = 107, mass number A = 347).

  5. Atomic Mass and Nuclear Binding Energy for Bh-277 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-277 (Bohrium, atomic number Z = 107, mass number A = 277).

  6. Atomic Mass and Nuclear Binding Energy for Bh-309 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-309 (Bohrium, atomic number Z = 107, mass number A = 309).

  7. Atomic Mass and Nuclear Binding Energy for Bh-340 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-340 (Bohrium, atomic number Z = 107, mass number A = 340).

  8. Atomic Mass and Nuclear Binding Energy for Bh-285 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-285 (Bohrium, atomic number Z = 107, mass number A = 285).

  9. Atomic Mass and Nuclear Binding Energy for Bh-341 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-341 (Bohrium, atomic number Z = 107, mass number A = 341).

  10. Atomic Mass and Nuclear Binding Energy for Bh-283 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-283 (Bohrium, atomic number Z = 107, mass number A = 283).

  11. Atomic Mass and Nuclear Binding Energy for Bh-305 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-305 (Bohrium, atomic number Z = 107, mass number A = 305).

  12. Atomic Mass and Nuclear Binding Energy for Bh-331 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-331 (Bohrium, atomic number Z = 107, mass number A = 331).

  13. Atomic Mass and Nuclear Binding Energy for Bh-342 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-342 (Bohrium, atomic number Z = 107, mass number A = 342).

  14. Atomic Mass and Nuclear Binding Energy for Bh-300 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-300 (Bohrium, atomic number Z = 107, mass number A = 300).

  15. Atomic Mass and Nuclear Binding Energy for Bh-330 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-330 (Bohrium, atomic number Z = 107, mass number A = 330).

  16. Atomic Mass and Nuclear Binding Energy for Bh-296 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-296 (Bohrium, atomic number Z = 107, mass number A = 296).

  17. Atomic Mass and Nuclear Binding Energy for Bh-338 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-338 (Bohrium, atomic number Z = 107, mass number A = 338).

  18. Atomic Mass and Nuclear Binding Energy for Bh-270 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-270 (Bohrium, atomic number Z = 107, mass number A = 270).

  19. Atomic Mass and Nuclear Binding Energy for Bh-320 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-320 (Bohrium, atomic number Z = 107, mass number A = 320).

  20. Atomic Mass and Nuclear Binding Energy for Bh-346 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-346 (Bohrium, atomic number Z = 107, mass number A = 346).

  1. Atomic Mass and Nuclear Binding Energy for Bh-274 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-274 (Bohrium, atomic number Z = 107, mass number A = 274).

  2. Atomic Mass and Nuclear Binding Energy for Bh-357 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-357 (Bohrium, atomic number Z = 107, mass number A = 357).

  3. Atomic Mass and Nuclear Binding Energy for Bh-319 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-319 (Bohrium, atomic number Z = 107, mass number A = 319).

  4. Atomic Mass and Nuclear Binding Energy for Bh-337 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-337 (Bohrium, atomic number Z = 107, mass number A = 337).

  5. Atomic Mass and Nuclear Binding Energy for Bh-329 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-329 (Bohrium, atomic number Z = 107, mass number A = 329).

  6. Atomic Mass and Nuclear Binding Energy for Bh-276 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-276 (Bohrium, atomic number Z = 107, mass number A = 276).

  7. Atomic Mass and Nuclear Binding Energy for Bh-335 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-335 (Bohrium, atomic number Z = 107, mass number A = 335).

  8. Atomic Mass and Nuclear Binding Energy for Bh-314 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-314 (Bohrium, atomic number Z = 107, mass number A = 314).

  9. Atomic Mass and Nuclear Binding Energy for Bh-281 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-281 (Bohrium, atomic number Z = 107, mass number A = 281).

  10. Atomic Mass and Nuclear Binding Energy for Bh-282 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-282 (Bohrium, atomic number Z = 107, mass number A = 282).

  11. Atomic Mass and Nuclear Binding Energy for Bh-339 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-339 (Bohrium, atomic number Z = 107, mass number A = 339).

  12. Atomic Mass and Nuclear Binding Energy for Bh-275 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-275 (Bohrium, atomic number Z = 107, mass number A = 275).

  13. Atomic Mass and Nuclear Binding Energy for Bh-289 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-289 (Bohrium, atomic number Z = 107, mass number A = 289).

  14. Atomic Mass and Nuclear Binding Energy for Bh-316 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-316 (Bohrium, atomic number Z = 107, mass number A = 316).

  15. Atomic Mass and Nuclear Binding Energy for Bh-354 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-354 (Bohrium, atomic number Z = 107, mass number A = 354).

  16. Atomic Mass and Nuclear Binding Energy for Bh-355 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-355 (Bohrium, atomic number Z = 107, mass number A = 355).

  17. Atomic Mass and Nuclear Binding Energy for Bh-295 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-295 (Bohrium, atomic number Z = 107, mass number A = 295).

  18. Atomic Mass and Nuclear Binding Energy for Bh-272 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-272 (Bohrium, atomic number Z = 107, mass number A = 272).

  19. Atomic Mass and Nuclear Binding Energy for Bh-334 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-334 (Bohrium, atomic number Z = 107, mass number A = 334).

  20. Atomic Mass and Nuclear Binding Energy for Bh-279 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-279 (Bohrium, atomic number Z = 107, mass number A = 279).

  1. Atomic Mass and Nuclear Binding Energy for Bh-323 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-323 (Bohrium, atomic number Z = 107, mass number A = 323).

  2. Atomic Mass and Nuclear Binding Energy for Bh-352 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-352 (Bohrium, atomic number Z = 107, mass number A = 352).

  3. Atomic Mass and Nuclear Binding Energy for Bh-298 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-298 (Bohrium, atomic number Z = 107, mass number A = 298).

  4. Atomic Mass and Nuclear Binding Energy for Bh-317 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-317 (Bohrium, atomic number Z = 107, mass number A = 317).

  5. Atomic Mass and Nuclear Binding Energy for Bh-344 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-344 (Bohrium, atomic number Z = 107, mass number A = 344).

  6. Atomic Mass and Nuclear Binding Energy for Bh-302 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-302 (Bohrium, atomic number Z = 107, mass number A = 302).

  7. Atomic Mass and Nuclear Binding Energy for Bh-292 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-292 (Bohrium, atomic number Z = 107, mass number A = 292).

  8. Atomic Mass and Nuclear Binding Energy for Bh-287 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-287 (Bohrium, atomic number Z = 107, mass number A = 287).

  9. Atomic Mass and Nuclear Binding Energy for Bh-301 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-301 (Bohrium, atomic number Z = 107, mass number A = 301).

  10. Atomic Mass and Nuclear Binding Energy for Bh-291 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-291 (Bohrium, atomic number Z = 107, mass number A = 291).

  11. Atomic Mass and Nuclear Binding Energy for Bh-278 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-278 (Bohrium, atomic number Z = 107, mass number A = 278).

  12. Atomic Mass and Nuclear Binding Energy for Bh-290 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-290 (Bohrium, atomic number Z = 107, mass number A = 290).

  13. Atomic Mass and Nuclear Binding Energy for Bh-333 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-333 (Bohrium, atomic number Z = 107, mass number A = 333).

  14. Atomic Mass and Nuclear Binding Energy for Bh-268 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-268 (Bohrium, atomic number Z = 107, mass number A = 268).

  15. Atomic Mass and Nuclear Binding Energy for Bh-313 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-313 (Bohrium, atomic number Z = 107, mass number A = 313).

  16. Atomic Mass and Nuclear Binding Energy for Bh-271 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-271 (Bohrium, atomic number Z = 107, mass number A = 271).

  17. Atomic Mass and Nuclear Binding Energy for Bh-269 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-269 (Bohrium, atomic number Z = 107, mass number A = 269).

  18. Atomic Mass and Nuclear Binding Energy for Bh-297 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-297 (Bohrium, atomic number Z = 107, mass number A = 297).

  19. Theoretical predictions on the low-lying excitation structure of super-heavy element bohrium (Z=107)

    International Nuclear Information System (INIS)

    The success of theoretical and experimental study of fermium (Z=100) enlightened authors to perform further investigation of heavy elements. The authors studied some low-lying absorption spectroscopy and the resonant absorption probability of bohrium (Z=107) by using MCDF method which included the correlation effects and relativistic effects systematically. The authors hope the results will be useful for the further experiments

  20. Theoretical predications on the low-lying excitation structure of super-heavy element bohrium (Z=107)

    International Nuclear Information System (INIS)

    The success of theoretical and experimental study of fermium (z=100) enlightened us to perform further investigation of heavy elements. We studied some low-lying absorption spectroscopy and the resonant absorption probability of bohrium (Z=107) by using MCDF method which considered the correlation effects and relativistic effects systematically. We hope our results will be useful for the further experiments. (authors)

  1. Properties of an $\\alpha$ particle in a Bohrium $270$ Nucleus under the Generalized Symmetric Woods-Saxon Potential

    CERN Document Server

    Lütfüoğlu, B C

    2016-01-01

    The energy eigenvalues and the wave functions of an $\\alpha$ particle in a Bohrium $270$ nucleus were calculated by solving Schr\\"odinger equation for Generalized Symmetric Woods-Saxon potential. Using the energy spectrum by excluding and including the quasi-bound eigenvalues, entropy, internal energy, Helmholtz energy, and specific heat, as functions of reduced temperature were calculated. Stability and emission characteristics are interpreted in terms of the wave and thermodynamic functions. The kinetic energy of a decayed $\\alpha$ particle was calculated using the quasi-bound states, which is found close to the experimental value.

  2. The Discoveries of Bohrium, Hassium, Meitnerium, and the new Region of Deformed Shell Nuclei

    CERN Document Server

    Münzenberg, G

    2003-01-01

    The investigation of the light trans-actinide elements was not only exciting as it included the discovery of a number of new chemical elements. It led also to the discovery of a new region of shell nuclei existing beyond the macroscopic stability limit. Theory explained this in terms of a new shell region of deformed nuclei which bridge the trans-uranium nuclei and the predicted superheavy elements. This contribution will give a brief historic overview over these discoveries, experimental developments, and the impact on ongoing and future superheavy-element research.

  3. The Discoveries of Bohrium, Hassium, Meitnerium, and the new Region of Deformed Shell Nuclei

    International Nuclear Information System (INIS)

    The investigation of the light trans-actinide elements was not only exciting as it included the discovery of a number of new chemical elements. It led also to the discovery of a new region of shell nuclei existing beyond the macroscopic stability limit. Theory explained this in terms of a new shell region of deformed nuclei which bridge the trans-uranium nuclei and the predicted superheavy elements. This contribution will give a brief historic overview over these discoveries, experimental developments, and the impact on ongoing and future superheavy-element research. (author)

  4. The Discoveries of Bohrium, Hassium, Meitnerium, and the New Region of Deformed Shell Nuclei

    Science.gov (United States)

    Muenzenberg, Gottfried

    2003-03-01

    The investigation of the light trans-actinide elements was not only exciting as it included the discovery of a number of new chemical elements. It led also to the discovery of a new region of shell nuclei existing beyond the macroscopic stability limit. Theory explained this in terms of a new shell region of deformed nuclei which bridge the trans-uranium nuclei and the predicted superheavy elements. This contribution will give a brief historic overview over these discoveries, experimental developments, and the impact on ongoing and future superheavy-element research.

  5. Investigation of elements 107, bohrium (Bh) and 108, hassium (Hs) in sulfuric acid solutions according to the test experiments with their homologs

    International Nuclear Information System (INIS)

    Ion-exchange behavior of Re and Os as homologs of Bh and Hs, respectively, has been studied in the sulfuric acid media. The distribution coefficients of 183Re and 185Os as well as of other radionuclides between Dowex-50 and H2SO4 solutions were determined as a function of the acid concentration. It was shown, that cation-exchange column may be used for the separation of Os, Re and W from elements of III group, whereas anion-exchange column for their concentration from diluted sulfuric acid solutions. The 0.05M H2SO4 was used for continuous on-line separation of short-lived Os isotopes produced in the nuclear reactions: nat.Dy(20Ne, xn)Os. Radionuclides of Os, Re and W were strongly sorbed on anion-exchange column only. (author)

  6. Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations

    Science.gov (United States)

    Johnson, E.; Fricke, B.; Jacob, T.; Dong, C. Z.; Fritzsche, S.; Pershina, V.

    2002-02-01

    Large multiconfiguration Dirac-Fock calculations were performed for all neutral and up to 7 and 8 times ionized species of elements 107 and 108, respectively, as well as all the homologous elements Mn, Tc, Re, Fe, Ru, and Os for a number of different total angular momenta. Comparison of the resulting ionization potentials to the known values of the homologues allow an extrapolation and thus a prediction of the chemically important seven or eight ionization potentials of elements 107 or 108 as well as a prediction of some ionic radii.

  7. NUCLEAR CHEMISTRY: Element 107 Leaves the Table Unturned.

    Science.gov (United States)

    Service, R F

    2000-08-25

    This week, an international team of chemists reported on the first successful analysis of the chemical properties of bohrium, element 107. The results matched predictions, postponing scientists' hopes of seeing interesting deviations from theory among ultraheavy elements. PMID:17772986

  8. Mendeleev's principle against Einstein's relativity: news from the chemistry of superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, Heinz W [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland)

    2009-12-31

    The review briefly considers the problems of synthesis and chemical identification of superheavy elements. The specific features of their properties are determined by the relativistic effects. The synthesis and chemical investigations into bohrium and element 112 are discussed as examples.

  9. Mendeleev's principle against Einstein's relativity: news from the chemistry of superheavy elements

    International Nuclear Information System (INIS)

    The review briefly considers the problems of synthesis and chemical identification of superheavy elements. The specific features of their properties are determined by the relativistic effects. The synthesis and chemical investigations into bohrium and element 112 are discussed as examples.

  10. Mendeleev's principle against Einstein's relativity: news from the chemistry of superheavy elements

    Science.gov (United States)

    Gäggeler, Heinz W.

    2009-12-01

    The review briefly considers the problems of synthesis and chemical identification of superheavy elements. The specific features of their properties are determined by the relativistic effects. The synthesis and chemical investigations into bohrium and element 112 are discussed as examples.

  11. Chemical properties of transactinides

    Science.gov (United States)

    Gäggeler, H. W.

    2005-09-01

    First investigations of chemical properties of bohrium (Z = 107) and hassium (Z = 108) showed an expected behaviour as ordinary members of groups 7 and 8 of the periodic table. Two attempts to study element 112 yielded some indication for a behaviour like a very volatile noble metal. However, a very recent experiment to confirm this preliminary observation failed. Two examples are described how chemical studies may help to support element discovery claims from purely physics experiments. The two examples are the discovery claims of the elements 112 and 115, respectively, where the progenies hassium and dubnium were chemically identified.

  12. Chemical properties of transactinides

    International Nuclear Information System (INIS)

    First investigations of chemical properties of bohrium (Z = 107) and hassium (Z = 108) showed an expected behaviour as ordinary members of groups 7 and 8 of the periodic table. Two attempts to study element 112 yielded some indication for a behaviour like a very volatile noble metal. However, a very recent experiment to confirm this preliminary observation failed. Two examples are described how chemical studies may help to support element discovery claims from purely physics experiments. The two examples are the discovery claims of the elements 112 and 115, respectively, where the progenies hassium and dubnium were chemically identified. (orig.)

  13. Chemical properties of transactinides

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W. [Paul Scherrer Institut, Villigen (Switzerland); University of Bern, Bern (Switzerland)

    2005-09-01

    First investigations of chemical properties of bohrium (Z = 107) and hassium (Z = 108) showed an expected behaviour as ordinary members of groups 7 and 8 of the periodic table. Two attempts to study element 112 yielded some indication for a behaviour like a very volatile noble metal. However, a very recent experiment to confirm this preliminary observation failed. Two examples are described how chemical studies may help to support element discovery claims from purely physics experiments. The two examples are the discovery claims of the elements 112 and 115, respectively, where the progenies hassium and dubnium were chemically identified. (orig.)

  14. Chemistry of Transactinides

    Science.gov (United States)

    Kratz, J. V.

    In this chapter, the chemical properties of the man-made transactinide elements rutherfordium, Rf (element 104), dubnium, Db (element 105), seaborgium, Sg (element 106), bohrium, Bh (element 107), hassium, Hs (element 108), and copernicium, Cn (element 112) are reviewed, and prospects for chemical characterizations of even heavier elements are discussed. The experimental methods to perform rapid chemical separations on the time scale of seconds are presented and comments are given on the special situation with the transactinides where chemistry has to be studied with single atoms. It follows a description of theoretical predictions and selected experimental results on the chemistry of elements 104 through 108, and element 112.

  15. Systematic study of Bh isotopes in a relativistic mean field formalism

    Science.gov (United States)

    Mehta, M. S.; Raj, B. K.; Patra, S. K.; Gupta, Raj K.

    2002-10-01

    The binding energy, charge radius, and quadrupole deformation parameter for the isotopic chain of the superheavy element bohrium (107Bh), from proton to neutron drip line, are calculated by using an axially deformed relativistic mean field model. The potential energy surfaces for some of the selected nuclei are plotted and the various possible shapes are investigated. The rms radii, density distributions, and two-neutron separation energies are also evaluated and the single-particle energies for some illustrative cases are analyzed to see the magic structures. Furthermore, the α-decay rates are calculated and compared with the available experimental data for the recently observed new isotopes 266,267Bh.

  16. Systematic study of Bh isotopes in a relativistic mean field formalism

    International Nuclear Information System (INIS)

    The binding energy, charge radius, and quadrupole deformation parameter for the isotopic chain of the superheavy element bohrium (107Bh), from proton to neutron drip line, are calculated by using an axially deformed relativistic mean field model. The potential energy surfaces for some of the selected nuclei are plotted and the various possible shapes are investigated. The rms radii, density distributions, and two-neutron separation energies are also evaluated and the single-particle energies for some illustrative cases are analyzed to see the magic structures. Furthermore, the α-decay rates are calculated and compared with the available experimental data for the recently observed new isotopes 266,267Bh

  17. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Although originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element 107 Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided

  18. Gas phase chemistry of the transactinides

    Science.gov (United States)

    Türler, A.

    1999-01-01

    In the past few years the gas phase chemistry of the first three transactinide elements rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) has been studied experimentally using OLGA, the On-line Gas chemistry Apparatus, developed at Paul Scherrer Institute. In each experiment, the investigated transactinide element was identified by measuring the characteristic decay properties of its isotopes. In the chemistry of rutherfordium and dubnium evidence for relativistic effects were found, as predicted previously in theoretical calculations. For the first time, the volatility of Sg oxychlorides in comparison to its lighter homologues W and Mo was measured. Also, the half-lives and SF-branches of the nuclides 265Sg and 266Sg were determined. Finally, prospects for a chemical separation of bohrium (element 107) and hassium (element 108) using gas phase chemistry will be discussed.

  19. Gas phase chemistry of the transactinides

    International Nuclear Information System (INIS)

    In the past few years the gas phase chemistry of the first three transactinide elements Rutherfordium (element 104), Dubnium (element 105) and Seaborgium (element 106) has been studied experimentally using OLGA, the On-line Gas chemistry Apparatus, developed at Paul Scherrer Institute. In each experiment, the investigated transactinide element was identified by measuring the characteristic decay properties of its isotopes. In the chemistry of Rutherfordium and Dubnium evidence for relativistic effects were found, as predicted previously in theoretical calculations. For the first time, the volatility of Sg oxychlorides in comparison to its lighter homologues W and Mo was measured. Also, the half-lives and SF-branches of the nuclides 265Sg and 266Sg were determined. Finally, prospects for a chemical separation of Bohrium (element 107) and Hassium (108) using gas phase chemistry will be discussed. (author)

  20. Heavy-element chemistry - Status and perspectives

    International Nuclear Information System (INIS)

    In the past ten years, nuclear chemists have made considerable progress in developing fast on-line separation techniques, which allowed to chemically characterize the first four transactinide elements Rf (rutherfordium, Z=104), Db (dubnium, Z=105), Sg (seaborgium, Z=106), and recently also Bh (bohrium, Z=107). In all cases the isolated nuclides were unambiguously identified by observing genetically linked decay chains. Nuclides with production cross-sections of less than 100 pb and half-lives as short as a few seconds have been chemically isolated. Thus, chemists have discovered or significantly contributed to the characterization of the nuclear-decay properties of a number of transactinide nuclei. New techniques with greatly improved overall efficiencies should allow chemists to extend their studies to even heavier elements such as Hs (hassium, Z=108) and to the recently discovered superheavy elements with Z=112 and 114, which can be produced only with picobarn cross-sections. (orig.)

  1. Heavy-element chemistry --Status and perspectives

    Science.gov (United States)

    Türler, A.

    In the past ten years, nuclear chemists have made considerable progress in developing fast on-line separation techniques, which allowed to chemically characterize the first four transactinide elements Rf (rutherfordium, Z = 104), Db (dubnium, Z = 105), Sg (seaborgium, Z = 106), and recently also Bh (bohrium, Z = 107). In all cases the isolated nuclides were unambiguously identified by observing genetically linked decay chains. Nuclides with production cross-sections of less than 100 pb and half-lives as short as a few seconds have been chemically isolated. Thus, chemists have discovered or significantly contributed to the characterization of the nuclear-decay properties of a number of transactinide nuclei. New techniques with greatly improved overall efficiencies should allow chemists to extend their studies to even heavier elements such as Hs (hassium, Z = 108) and to the recently discovered superheavy elements with Z = 112 and 114, which can be produced only with picobarn cross-sections.

  2. Gas phase chemistry of the transactinides

    International Nuclear Information System (INIS)

    In the past few years the gas phase chemistry of the first three transactinide elements rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) has been studied experimentally using OLGA, the On-line Gas chemistry Apparatus, developed at Paul Scherrer Institute. In each experiment, the investigated transactinide element was identified by measuring the characteristic decay properties of its isotopes. In the chemistry of rutherfordium and dubnium evidence for relativistic effects were found, as predicted previously in theoretical calculations. For the first time, the volatility of Sg oxychlorides in comparison to its lighter homologues W and Mo was measured. Also, the half-lives and SF-branches of the nuclides 265Sg and 266Sg were determined. Finally, prospects for a chemical separation of bohrium (element 107) and hassium (element 108) using gas phase chemistry will be discussed. (author)

  3. Heavy-element chemistry - Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Tuerler, A. [Paul Scherrer Institut, Villigen (Switzerland); Bern univ. (Switzerland)

    2002-10-01

    In the past ten years, nuclear chemists have made considerable progress in developing fast on-line separation techniques, which allowed to chemically characterize the first four transactinide elements Rf (rutherfordium, Z=104), Db (dubnium, Z=105), Sg (seaborgium, Z=106), and recently also Bh (bohrium, Z=107). In all cases the isolated nuclides were unambiguously identified by observing genetically linked decay chains. Nuclides with production cross-sections of less than 100 pb and half-lives as short as a few seconds have been chemically isolated. Thus, chemists have discovered or significantly contributed to the characterization of the nuclear-decay properties of a number of transactinide nuclei. New techniques with greatly improved overall efficiencies should allow chemists to extend their studies to even heavier elements such as Hs (hassium, Z=108) and to the recently discovered superheavy elements with Z=112 and 114, which can be produced only with picobarn cross-sections. (orig.)

  4. Production and chemistry of transactinide elements

    International Nuclear Information System (INIS)

    Recent progress in production and chemistry of the transactinide elements, element 107 bohrium (Bh) and element 104 rutherfordium (Rf), is reviewed. First information on chemical properties of Bh was obtained in gas chromatographic experiments on an atom-at-a-time basis. Chemical separation and characterization of 6 atoms of 267Bh produced in the bombardment of a 249Bk target with 22Ne beams are outlined. Aqueous chemistry of Rf being performed at JAERI (Japan Atomic Energy Research Institute) is briefly summarized. On-line anion-exchange experiments in acidic solutions on 261Rf produced in the 248Cm(18O,5n) reaction were conducted with a rapid ion-exchange separation apparatus. Characteristic anion-exchange behavior of Rf is discussed. (author)

  5. Transition metals and their carbides and nitrides: Trends in electronic and structural properties

    International Nuclear Information System (INIS)

    A study of the structural and electronic properties of selected transition metals and their carbides and nitrides is presented. We focus on assessing trends of possible importance for understanding their hardness. Lattice constants, bulk moduli (Bo), and charge densities are calculated using the local density approximation with a pseudopotential plane wave approach. An fcc lattice is employed for the transition metal elements in order to make comparisons and study trends relateable to their carbides and nitrides. Our results show that both increasing the number of valence d electrons and the presence of f electrons in the core lead to larger (Bo). Charge density plots and histograms enable us to explain the nature of the charge distribution in the interstitial region for the different compounds considered. In addition, we include the heavier elements seaborgium, bohrium, and hasnium in order to test further trends. Surprisingly, the calculated Bo for Hs is comparable to that of diamond. copyright 1999 The American Physical Society

  6. Transition metals and their carbides and nitrides: Trends in electronic and structural properties

    Science.gov (United States)

    Grossman, Jeffrey C.; Mizel, Ari; Côté, Michel; Cohen, Marvin L.; Louie, Steven G.

    1999-09-01

    A study of the structural and electronic properties of selected transition metals and their carbides and nitrides is presented. We focus on assessing trends of possible importance for understanding their hardness. Lattice constants, bulk moduli (Bo), and charge densities are calculated using the local density approximation with a pseudopotential plane wave approach. An fcc lattice is employed for the transition metal elements in order to make comparisons and study trends relateable to their carbides and nitrides. Our results show that both increasing the number of valence d electrons and the presence of f electrons in the core lead to larger (Bo). Charge density plots and histograms enable us to explain the nature of the charge distribution in the interstitial region for the different compounds considered. In addition, we include the heavier elements seaborgium, bohrium, and hasnium in order to test further trends. Surprisingly, the calculated Bo for Hs is comparable to that of diamond.

  7. Gas phase chemistry of technetium and rhenium oxychlorides

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, R. [Bern Univ. (Switzerland). Abt. fuer Chemie und Biochemie; Eichler, B.; Jost, D.T.; Piguet, D.; Tuerler, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Gaeggeler, H.W. [Bern Univ. (Switzerland). Abt. fuer Chemie und Biochemie; Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2000-07-01

    The chloride and oxychloride chemistry of the group 7 elements TC and Re was investigated in order to develop an experimental approach to a gas chemical characterisation of bohrium (Bh, element 107). In thermochromatography experiments with trace amounts of {sup 101,104}Tc and {sup 183,184}Re the formation of one volatile compound was observed in O{sub 2}/HCl containing carrier gas, which was attributed to MO{sub 3}Cl (M=Tc, Re). From the measured deposition temperatures the adsorption enthalpies on quartz surfaces {delta}H{sub ads}(TcO{sub 3}Cl)=-51{+-}3 kJ/mol and {delta}H{sub ads}(ReO{sub 3}Cl)=-62{+-}3 kJ/mol were evaluated. The sublimation enthalpies were derived using an empirical correlation between {delta}H{sub ads} and {delta}H{sub subl}: {delta}H{sub subl}(TcO{sub 3}Cl)=49{+-}10 kJ/mol and {delta}H{sub subl}(ReO{sub 3}Cl)=67{+-}10 kJ/mol. A fast gas chemical separation technique for highly volatile compounds of short-lived isotopes based on isothermal gas solid adsorption chromatography (OLGA-principle) was developed. With a modified OLGA device, model studies with the short-lived nuclides {sup 106,107,108}Tc and {sup 169,170,174,176}Re were carried out in preparation of an experimental gas chemical investigation of bohrium (Bh, element 107). Separation times of less than 3 s were achieved. A good separation of the oxychlorides of group 7 elements from chloride and oxychloride compounds of {sup 152-155}Er, {sup 151-154}Ho (as models for actinide elements), {sup 98-101}Nb, {sup 99-102}Zr (as models for light transactinide elements), {sup 218}Po, and {sup 214}Bi was accomplished in this chemical system. (orig.)

  8. Gas phase chemistry of technetium and rhenium oxychlorides

    International Nuclear Information System (INIS)

    The chloride and oxychloride chemistry of the group 7 elements TC and Re was investigated in order to develop an experimental approach to a gas chemical characterisation of bohrium (Bh, element 107). In thermochromatography experiments with trace amounts of 101,104Tc and 183,184Re the formation of one volatile compound was observed in O2/HCl containing carrier gas, which was attributed to MO3Cl (M=Tc, Re). From the measured deposition temperatures the adsorption enthalpies on quartz surfaces ΔHads(TcO3Cl)=-51±3 kJ/mol and ΔHads(ReO3Cl)=-62±3 kJ/mol were evaluated. The sublimation enthalpies were derived using an empirical correlation between ΔHads and ΔHsubl: ΔHsubl(TcO3Cl)=49±10 kJ/mol and ΔHsubl(ReO3Cl)=67±10 kJ/mol. A fast gas chemical separation technique for highly volatile compounds of short-lived isotopes based on isothermal gas solid adsorption chromatography (OLGA-principle) was developed. With a modified OLGA device, model studies with the short-lived nuclides 106,107,108Tc and 169,170,174,176Re were carried out in preparation of an experimental gas chemical investigation of bohrium (Bh, element 107). Separation times of less than 3 s were achieved. A good separation of the oxychlorides of group 7 elements from chloride and oxychloride compounds of 152-155Er, 151-154Ho (as models for actinide elements), 98-101Nb, 99-102Zr (as models for light transactinide elements), 218Po, and 214Bi was accomplished in this chemical system. (orig.)

  9. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A. [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  10. Experiments with Superheavy Nuclei

    Science.gov (United States)

    Hofmann, S.

    1999-03-01

    In two series of experiments at SHIP, six new elements (Z=107-112) were synthesized via fusion reactions using lead or bismuth targets and 1n-deexcitation channels. The isotopes were unambiguously identified by means of α -α correlations. Not fission, but alpha decay is the dominant decay mode. Cross-sections decrease by two orders of magnitude from bohrium (Z=107) to element 112, for which a cross-section of 1 pb was measured. Based on these results, it is likely that the production of isotopes of element 114 close to the island of spherical SuperHeavy Elements (SHE) could be achieved by fusion reactions using 208Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed.

  11. The gas phase oxide and oxyhydroxide chemistry of trace amounts of rhenium

    International Nuclear Information System (INIS)

    In preparation of experiments to investigate the chemical properties of bohrium (Bh, element 107) the behaviour of Re, its lighter homologue in group 7, was studied in different oxidizing chemical systems. The adsorption data of Re oxide and oxyhydroxide compounds on quartz surfaces were evaluated from results of thermochromatography experiments and confirmed in isothermal gas chromatography experiments applying 1 cm as standard state for the simple gas adsorption process: X(g) ↔ X(ads) (X = ReO3, HReO4) ΔHads(ReO3) = -190 ± 10 kJ/mol; ΔSads(ReO3) = -179±30 J/mol K; ΔHads(HReO4) = -77 ± 5 kJ/mol; ΔSads(HReO4) = -187±50 J/mol K. An on-line separation method for oxides and oxyhydroxides of short lived Re isotopes using isothermal high temperature gas-solid adsorption chromatography was developed. Separation yields and times of group 7 elements from lanthanides (model for actinides), polonium and bismuth were determined using the model isotopes 169,170,174,176Re, 152-155Er, 151-154Ho, 218Po, and 214Bi. An updated correlation function between the microscopic adsorption enthalpy and the macroscopic sublimation enthalpy was calculated from the experimental adsorption data of this work and literature data. (orig.)

  12. Experiments with superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)

    1999-03-01

    In two series of experiments at SHIP, six new elements (Z =107-112) were synthesized via fusion reactions using lead or bismuth targets and 1n-deexcitation channels. The isotopes were unambiguously identified by means of {alpha}-{alpha} correlations. Not fission, but alpha decay is the dominant= decay mode. Cross-sections decrease by two orders of magnitude from bohrium (Z = 107) to element 112, for which a cross-section of 1 pb was measured. Based on these results, it is likely that the production of isotopes of element 114 close to the island of spherical Super Heavy Elements (SHE) could be achieved by fusion reactions using {sup 208}Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed. (author) 34 refs, 7 figs

  13. Chemistry of superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Schaedel, M. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan). Advanced Science Research Center; GSI Helmholtz Center for Heavy Ion Research, Darmstadt (Germany)

    2012-07-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  14. New elements produced at GSI

    Science.gov (United States)

    Hofmann, Sigurd

    1998-12-01

    In two series of experiments at SHIP, six new elements (Z=107-112) were synthesized via fusion reactions using lead or bismuth targets and 1n-deexcitation channels. The isotopes were unambiguously identified by means of α-α correlations. Not fission, but alpha decay is the dominant decay mode. Cross-sections decrease by two orders of magnitude from bohrium (Z=107) to element 112, for which a cross-section of 1 pb was measured. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical SuperHeavy Elements (SHE) could be achieved by fusion reactions using 208Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed.

  15. The gas phase oxide and oxyhydroxide chemistry of trace amounts of rhenium

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, R. [Dept. of Chemistry and Biochemistry, Univ. of Bern (Switzerland); Eichler, B.; Jost, D.T.; Dressler, R.; Tuerler, A. [Paul-Scherrer-Inst., Villigen (Switzerland); Gaeggeler, H.W. [Dept. of Chemistry and Biochemistry, Univ. of Bern (Switzerland); Paul-Scherrer-Inst., Villigen (Switzerland)

    1999-07-01

    In preparation of experiments to investigate the chemical properties of bohrium (Bh, element 107) the behaviour of Re, its lighter homologue in group 7, was studied in different oxidizing chemical systems. The adsorption data of Re oxide and oxyhydroxide compounds on quartz surfaces were evaluated from results of thermochromatography experiments and confirmed in isothermal gas chromatography experiments applying 1 cm as standard state for the simple gas adsorption process: X(g) {r_reversible} X(ads) (X = ReO{sub 3}, HReO{sub 4}) {delta}H{sub ads}(ReO{sub 3}) = -190 {+-} 10 kJ/mol; {delta}S{sub ads}(ReO{sub 3}) = -179{+-}30 J/mol K; {delta}H{sub ads}(HReO{sub 4}) = -77 {+-} 5 kJ/mol; {delta}S{sub ads}(HReO{sub 4}) = -187{+-}50 J/mol K. An on-line separation method for oxides and oxyhydroxides of short lived Re isotopes using isothermal high temperature gas-solid adsorption chromatography was developed. Separation yields and times of group 7 elements from lanthanides (model for actinides), polonium and bismuth were determined using the model isotopes {sup 169,170,174,176}Re, {sup 152-155}Er, {sup 151-154}Ho, {sup 218}Po, and {sup 214}Bi. An updated correlation function between the microscopic adsorption enthalpy and the macroscopic sublimation enthalpy was calculated from the experimental adsorption data of this work and literature data. (orig.)

  16. Transition metals and their carbides and nitrides: Trends in electronic and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, J.C.; Mizel, A.; Cote, M.; Cohen, M.L.; Louie, S.G. (Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States) Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States))

    1999-09-01

    A study of the structural and electronic properties of selected transition metals and their carbides and nitrides is presented. We focus on assessing trends of possible importance for understanding their hardness. Lattice constants, bulk moduli (B[sub o]), and charge densities are calculated using the local density approximation with a pseudopotential plane wave approach. An fcc lattice is employed for the transition metal elements in order to make comparisons and study trends relateable to their carbides and nitrides. Our results show that both increasing the number of valence d electrons and the presence of f electrons in the core lead to larger (B[sub o]). Charge density plots and histograms enable us to explain the nature of the charge distribution in the interstitial region for the different compounds considered. In addition, we include the heavier elements seaborgium, bohrium, and hasnium in order to test further trends. Surprisingly, the calculated B[sub o] for Hs is comparable to that of diamond. [copyright] [ital 1999] [ital The American Physical Society

  17. Chemistry of superheavy elements

    International Nuclear Information System (INIS)

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  18. Experiments with superheavy nuclei

    International Nuclear Information System (INIS)

    In two series of experiments at SHIP, six new elements (Z =107-112) were synthesized via fusion reactions using lead or bismuth targets and 1n-deexcitation channels. The isotopes were unambiguously identified by means of α-α correlations. Not fission, but alpha decay is the dominant= decay mode. Cross-sections decrease by two orders of magnitude from bohrium (Z = 107) to element 112, for which a cross-section of 1 pb was measured. Based on these results, it is likely that the production of isotopes of element 114 close to the island of spherical Super Heavy Elements (SHE) could be achieved by fusion reactions using 208Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed. (author)

  19. Synthesis of heavy and superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. (Gesellschaft fur Schwerionenforshung (GSI), Darmstadt (Germany))

    In two series of experiments at SHIP, six new elements (Z=107-112) were synthesized via fusion reactions using lead or bismuth targets and 1n-de-excitation channels. The isotopes were ambiguously identified by means of [alpha]-[alpha] correlations. Not fission, but alpha decay is the dominant decay mode. Cross-sections decrease by two orders of magnitude from bohrium (Z=107) to element 112, for which a cross-section of 1 pb was measured. Based on this results, it is likely that the production of isotopes of element 114 close to the island of spherical SuperHeavy Elements (SHE) could be achieved by fusion reaction using [sup 208]Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use the neutron deficient projectile isotopes and use of actinide targets is discussed.

  20. New elements produced at GSI

    International Nuclear Information System (INIS)

    In two series of experiments at SHIP, six new elements (Z=107-112) were synthesized via fusion reactions using lead or bismuth targets and 1n-deexcitation channels. The isotopes were unambiguously identified by means of α-α correlations. Not fission, but alpha decay is the dominant decay mode. Cross-sections decrease by two orders of magnitude from bohrium (Z=107) to element 112, for which a cross-section of 1 pb was measured. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical SuperHeavy Elements (SHE) could be achieved by fusion reactions using 208Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed

  1. Properties of Group Five and Group Seven transactinium elements

    International Nuclear Information System (INIS)

    The detection and positive identification of the short-lived, low cross section isotopes used in the chemical studies of the heaviest elements are usually accomplished by measuring their alpha-decay, thus the nuclear properties of the heaviest elements must be examined simultaneously with their chemical properties. The isotopes 224 Pa and 266,267 Bh have been studied extensively as an integral part of the investigation of the heaviest members of the groups five and seven of the periodic table. The half-life of 224 Pa was determined to be 855 plus/minus19 ms by measuring its alpha-decay using our rotating wheel, solid state detector system at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Protactinium was produced by bombardment of a bismuth target. New neutron rich isotopes, 267 Bh and 266 Bh, were produced in bombardments of a 249 Bk target and their decay was observed using the rotating wheel system. The 266 Bh that was produced decays with a half-life of approximately 1 s by emission of alpha particles with an average energy of 9.25 plus/minus 0.03 MeV. 267 Bh was observed to decay with a 17 s half-life by emission of alpha-particles with an average energy of 8.83 plus/minus 0.03 MeV. The chemical behavior of hafnium, Ha (element 105) was investigated using the fast on-line continuous liquid extraction and detection system SISAK-LISSY. Hafnium was not observed in this experiment following transport and extraction. Protactinium was used as on-line test of the apparatus to determine the experimental efficiency of the entire system. Unfortunately, the amount of protactinium observed after the extraction, compared to the amount produced, was extremely small, only 2.5%. The extraction of the protactinium isotope indicated the efficiency of the apparatus was too low to observe the extraction of hafnium. The chemical behavior of oxychloride compounds of bohrium was investigated by isothermal gas adsorption chromatography in a quartz column at 180, 150

  2. Properties of Group Five and Group Seven transactinium elements

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, Philip A.

    2001-05-01

    The detection and positive identification of the short-lived, low cross section isotopes used in the chemical studies of the heaviest elements are usually accomplished by measuring their alpha-decay, thus the nuclear properties of the heaviest elements must be examined simultaneously with their chemical properties. The isotopes 224 Pa and 266,267 Bh have been studied extensively as an integral part of the investigation of the heaviest members of the groups five and seven of the periodic table. The half-life of 224 Pa was determined to be 855 plus/minus19 ms by measuring its alpha-decay using our rotating wheel, solid state detector system at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Protactinium was produced by bombardment of a bismuth target. New neutron rich isotopes, 267 Bh and 266 Bh, were produced in bombardments of a 249 Bk target and their decay was observed using the rotating wheel system. The 266 Bh that was produced decays with a half-life of approximately 1 s by emission of alpha particles with an average energy of 9.25 plus/minus 0.03 MeV. 267 Bh was observed to decay with a 17 s half-life by emission of alpha-particles with an average energy of 8.83 plus/minus 0.03 MeV. The chemical behavior of hafnium, Ha (element 105) was investigated using the fast on-line continuous liquid extraction and detection system SISAK-LISSY. Hafnium was not observed in this experiment following transport and extraction. Protactinium was used as on-line test of the apparatus to determine the experimental efficiency of the entire system. Unfortunately, the amount of protactinium observed after the extraction, compared to the amount produced, was extremely small, only 2.5%. The extraction of the protactinium isotope indicated the efficiency of the apparatus was too low to observe the extraction of hafnium. The chemical behavior of oxychloride compounds of bohrium was investigated by isothermal gas adsorption chromatography in a quartz column at 180, 150

  3. Use of osteoplastic material to guide bone tissue regeneration deffect.

    Science.gov (United States)

    Machavariani, A; Mazmishvili, K; Grdzelidze, T; Menabde, G; Amiranashvili, I

    2011-12-01

    The goal of research was study of restoration processes in jaw-teeth bone defects by application of osteoplastic materials in the experiment. The experiment was performed over 32 white (6-12 month old) rats; the animals were divided into 2 groups; 16 animals were enrolled in the first group; the section was performed in the edge of lower jaw; the lower jaw body was revealed. Under the effect of the dental drilling machine and the # 1 cooling mean by the fissure bohrium (distilled water) the defect of the dimension of 2x2 mm was created; the defect was washed by 0/9% saline to remove the bone sawdust; the wound was sutured tightly, in layers. The second group of the experiment was staffed with 16 animals (main group); the similar bone defect of the size 2 x 2mm was created on the rat's jaw's body. After washing of modeled defect we inserted osteopathic materials PORESORB-TCP crystals with the size of 0,6-1.0 mm the wound was sutured tightly, in layers. After the 3-rd, 15-th, 30-th and 90-th days from the date of operation there was performed X-ray and morphological examination over the animals in the control as well as the main group. The analysis of the examination performed over the experimental materials showed that in the control group in samples taken at 90th day the defects were not completely restored. In the test group in samples taken at 90th day reparative regeneration is confirmed. This is stimulated by the factor that within the main group's animals the defect regeneration process is supported with the osteoplastic material PORESORB-TCP. PMID:22306506

  4. Chemical characterization of element 112.

    Science.gov (United States)

    Eichler, R; Aksenov, N V; Belozerov, A V; Bozhikov, G A; Chepigin, V I; Dmitriev, S N; Dressler, R; Gäggeler, H W; Gorshkov, V A; Haenssler, F; Itkis, M G; Laube, A; Lebedev, V Ya; Malyshev, O N; Oganessian, Yu Ts; Petrushkin, O V; Piguet, D; Rasmussen, P; Shishkin, S V; Shutov, A V; Svirikhin, A I; Tereshatov, E E; Vostokin, G K; Wegrzecki, M; Yeremin, A V

    2007-05-01

    The heaviest elements to have been chemically characterized are seaborgium (element 106), bohrium (element 107) and hassium (element 108). All three behave according to their respective positions in groups 6, 7 and 8 of the periodic table, which arranges elements according to their outermost electrons and hence their chemical properties. However, the chemical characterization results are not trivial: relativistic effects on the electronic structure of the heaviest elements can strongly influence chemical properties. The next heavy element targeted for chemical characterization is element 112; its closed-shell electronic structure with a filled outer s orbital suggests that it may be particularly susceptible to strong deviations from the chemical property trends expected within group 12. Indeed, first experiments concluded that element 112 does not behave like its lighter homologue mercury. However, the production and identification methods used cast doubt on the validity of this result. Here we report a more reliable chemical characterization of element 112, involving the production of two atoms of (283)112 through the alpha decay of the short-lived (287)114 (which itself forms in the nuclear fusion reaction of 48Ca with 242Pu) and the adsorption of the two atoms on a gold surface. By directly comparing the adsorption characteristics of (283)112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 as a typical element of group 12, and its successful production unambiguously establishes the approach to the island of stability of superheavy elements through 48Ca-induced nuclear fusion reactions with actinides. PMID:17476264

  5. Synthesis of the heaviest nuclei in cold fusion reactions

    Science.gov (United States)

    Münzenberg, G.; Morita, K.

    2015-12-01

    Cold fusion of heavy ions paved the way to superheavy elements. It was proposed by Yu.Ts. Oganessian more than forty years ago in 1974 [1,2]. First experiments were carried out at JINR Dubna, starting with the reaction 40Ar + 208Pb → 248Fm* where several hundreds to thousand atoms were produced on one day. The large production rate indicating an enhancement of the fusion cross section, especially for the evaporation of two or three neutrons, proved the concept of cold-fusion with the use of the doubly magic nucleus 208Pb as a target. The Dubna experiments were extended to the transactinide region beyond rutherfordium. The breakthrough came with the separation in-flight. Two different approaches were used: kinematic separation with the velocity filter SHIP [3] at GSI Darmstadt, and with the gasfilled separator GARIS [4,5] at RIKEN. With SHIP the concept of cold fusion of massive nuclear systems was convincingly confirmed by the observation of the one-neutron evaporation channel in the production of 247Rf in an irradiation of 208Pb with 50Ti [6] in 1981 which opened the way to the transactinide region. At SHIP the elements bohrium (107) to copernicium (112) were discovered [7]. A new closed shell region around hassium was found. The RIKEN experiments started in 2002. They confirmed the GSI results and in addition improved the data on structure and production of elements hassium to copernicium significantly. The heaviest element ever created in a cold fusion reaction, Z = 113, was observed at GARIS [8,9].

  6. New elements - approaching Z=114

    International Nuclear Information System (INIS)

    The search for new elements is part of the broader field of investigations of nuclei at the limits of stability. In two series of experiments at SHIP, six new elements (Z=107-112) were synthesized via fusion reactions using 1n-deexcitation channels and lead or bismuth targets. The isotopes were unambiguously identified by means of α-α correlations. Not fission, but alpha decay is the dominant decay mode. The collected decay data establish a means of comparison with theoretical data. This aids in the selection of appropriate models that describe the properties of known nuclei. Predictions based on these models are useful in the preparation of the next generation of experiments. Cross-sections decrease by two orders of magnitude from bohrium (Z=107) to element 112, for which a cross-section of 1 pb was measured. The development of intense beam currents and sensitive detection methods is essential for the production and identification of still heavier elements and new isotopes of already known elements, as well as the measurement of small α-, β- and fission-branching ratios. An equally sensitive set-up is needed for the measurement of excitation functions at low cross-sections. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical super heavy elements (SHE) could be achieved by fusion reactions using 208Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. (orig.)

  7. MicroSISAK for the chemistry of the heaviest elements; MikroSISAK fuer die Chemie der schwersten Elemente

    Energy Technology Data Exchange (ETDEWEB)

    Hild, Daniel

    2012-05-18

    This thesis describes experiments with an apparatus called MicroSISAK which is able to perform liquid-liquid-extraction on a microliter-scale. Two immiscible liquids are mixed in a microstructured mixer unit and separated again via a Teflon membrane. In the first experiments, different extraction systems were explored for elements of the groups 4 and 7 of the periodic table. Their results were compared with those from batch experiments. The initial achieved extraction yields were insufficient for the envisaged experiments, for which reason different modifications were arranged to obtain improvements. With the aid of a heating element, which was connected to the MicroSISAK apparatus, one was able to rise the temperature for the extraction inside. This led to the expected increasing of the extraction yield. Furthermore the MikroSISAK apparatus was modified by the Institut fuer Mikrotechnik Mainz, which had developed and constructed this apparatus. The contact time of the two phases between the mixer and the separation unit was extended. This also led to an increased yield. Now the performance appeared to be sufficient to connect the apparatus to the TRIGAreactor Mainz to perform online-experiments. Fission products (technetium) produced in a nuclear reaction were guided to the MicroSISAK apparatus to separate them and to detect their decay in a γ-ray detector. Apart from the successful separations, the experiments also proved the functionality of a new degasser system and that an adequate detection system can be coupled to MicroSISAK. With this, the prerequisites for the vision of an application of MicroSISAK are realised: The investigation of the chemical properties of short-lived superheavy elements (SHE) at a heavy-ion accelerator. It is obvious to plan such an experiment for the heavy homolog of technetium, element 107, bohrium.

  8. New elements - approaching Z=114

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S.

    1998-03-01

    The search for new elements is part of the broader field of investigations of nuclei at the limits of stability. In two series of experiments at SHIP, six new elements (Z=107-112) were synthesized via fusion reactions using 1n-deexcitation channels and lead or bismuth targets. The isotopes were unambiguously identified by means of {alpha}-{alpha} correlations. Not fission, but alpha decay is the dominant decay mode. The collected decay data establish a means of comparison with theoretical data. This aids in the selection of appropriate models that describe the properties of known nuclei. Predictions based on these models are useful in the preparation of the next generation of experiments. Cross-sections decrease by two orders of magnitude from bohrium (Z=107) to element 112, for which a cross-section of 1 pb was measured. The development of intense beam currents and sensitive detection methods is essential for the production and identification of still heavier elements and new isotopes of already known elements, as well as the measurement of small {alpha}-, {beta}- and fission-branching ratios. An equally sensitive set-up is needed for the measurement of excitation functions at low cross-sections. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical super heavy elements (SHE) could be achieved by fusion reactions using {sup 208}Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. (orig.)

  9. New elements - approaching Z = 114

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)

    1998-06-01

    The search for new elements is part of the broader field of investigations of nuclei at the limits of stability. In two series of experiments at SHIP, six new elements (Z = 107-112) were synthesized via fusion reactions using 1n-deexcitation channels and lead or bismuth targets. The isotopes were unambiguously identified by means of {alpha}-{alpha} correlations. Alpha decay, not fission, is the dominant decay mode. The collected decay data establish a means of comparison with theoretical data. This aids in the selection of appropriate models that describe the properties of known nuclei. Predictions based on these models are useful in the preparation of the next generation of experiments. Cross sections decrease by two orders of magnitude from bohrium (Z = 107) to element 112, for which a cross section of 1 pb was measured. The development of intense beam currents and sensitive detection methods is essential for the production and identification of still heavierelements and new isotopes of already known elements, as well as the measurement of small {alpha}-, {beta}- and fission-branching ratios. An equally sensitive set-up is needed for the measurement of excitation functions at low cross sections. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical superheavy elements (SHEs) could be achieved by fusion reactions using {sup 208}Pb targets. Systematic studies of the reaction cross sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHEs using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed. (author)

  10. Chemical characterization of element 112

    Science.gov (United States)

    Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dmitriev, S. N.; Dressler, R.; Gäggeler, H. W.; Gorshkov, V. A.; Haenssler, F.; Itkis, M. G.; Laube, A.; Lebedev, V. Ya.; Malyshev, O. N.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Piguet, D.; Rasmussen, P.; Shishkin, S. V.; Shutov, A. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.; Wegrzecki, M.; Yeremin, A. V.

    2007-05-01

    The heaviest elements to have been chemically characterized are seaborgium (element 106), bohrium (element 107) and hassium (element 108). All three behave according to their respective positions in groups 6, 7 and 8 of the periodic table, which arranges elements according to their outermost electrons and hence their chemical properties. However, the chemical characterization results are not trivial: relativistic effects on the electronic structure of the heaviest elements can strongly influence chemical properties. The next heavy element targeted for chemical characterization is element 112; its closed-shell electronic structure with a filled outer s orbital suggests that it may be particularly susceptible to strong deviations from the chemical property trends expected within group 12. Indeed, first experiments concluded that element 112 does not behave like its lighter homologue mercury. However, the production and identification methods used cast doubt on the validity of this result. Here we report a more reliable chemical characterization of element 112, involving the production of two atoms of 283112 through the alpha decay of the short-lived 287114 (which itself forms in the nuclear fusion reaction of 48Ca with 242Pu) and the adsorption of the two atoms on a gold surface. By directly comparing the adsorption characteristics of 283112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 as a typical element of group 12, and its successful production unambiguously establishes the approach to the island of stability of superheavy elements through 48Ca-induced nuclear fusion reactions with actinides.

  11. MicroSISAK for the chemistry of the heaviest elements

    International Nuclear Information System (INIS)

    This thesis describes experiments with an apparatus called MicroSISAK which is able to perform liquid-liquid-extraction on a microliter-scale. Two immiscible liquids are mixed in a microstructured mixer unit and separated again via a Teflon membrane. In the first experiments, different extraction systems were explored for elements of the groups 4 and 7 of the periodic table. Their results were compared with those from batch experiments. The initial achieved extraction yields were insufficient for the envisaged experiments, for which reason different modifications were arranged to obtain improvements. With the aid of a heating element, which was connected to the MicroSISAK apparatus, one was able to rise the temperature for the extraction inside. This led to the expected increasing of the extraction yield. Furthermore the MikroSISAK apparatus was modified by the Institut fuer Mikrotechnik Mainz, which had developed and constructed this apparatus. The contact time of the two phases between the mixer and the separation unit was extended. This also led to an increased yield. Now the performance appeared to be sufficient to connect the apparatus to the TRIGAreactor Mainz to perform online-experiments. Fission products (technetium) produced in a nuclear reaction were guided to the MicroSISAK apparatus to separate them and to detect their decay in a γ-ray detector. Apart from the successful separations, the experiments also proved the functionality of a new degasser system and that an adequate detection system can be coupled to MicroSISAK. With this, the prerequisites for the vision of an application of MicroSISAK are realised: The investigation of the chemical properties of short-lived superheavy elements (SHE) at a heavy-ion accelerator. It is obvious to plan such an experiment for the heavy homolog of technetium, element 107, bohrium.

  12. New elements - approaching Z = 114

    International Nuclear Information System (INIS)

    The search for new elements is part of the broader field of investigations of nuclei at the limits of stability. In two series of experiments at SHIP, six new elements (Z = 107-112) were synthesized via fusion reactions using 1n-deexcitation channels and lead or bismuth targets. The isotopes were unambiguously identified by means of α-α correlations. Alpha decay, not fission, is the dominant decay mode. The collected decay data establish a means of comparison with theoretical data. This aids in the selection of appropriate models that describe the properties of known nuclei. Predictions based on these models are useful in the preparation of the next generation of experiments. Cross sections decrease by two orders of magnitude from bohrium (Z = 107) to element 112, for which a cross section of 1 pb was measured. The development of intense beam currents and sensitive detection methods is essential for the production and identification of still heavier elements and new isotopes of already known elements, as well as the measurement of small α-, β- and fission-branching ratios. An equally sensitive set-up is needed for the measurement of excitation functions at low cross sections. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical superheavy elements (SHEs) could be achieved by fusion reactions using 208Pb targets. Systematic studies of the reaction cross sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHEs using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed. (author)

  13. New elements - approaching ?

    Science.gov (United States)

    Hofmann, S.

    1998-06-01

    The search for new elements is part of the broader field of investigations of nuclei at the limits of stability. In two series of experiments at SHIP, six new elements 0034-4885/61/6/002/img2 were synthesized via fusion reactions using 1n-deexcitation channels and lead or bismuth targets. The isotopes were unambiguously identified by means of 0034-4885/61/6/002/img3 correlations. Alpha decay, not fission, is the dominant decay mode. The collected decay data establish a means of comparison with theoretical data. This aids in the selection of appropriate models that describe the properties of known nuclei. Predictions based on these models are useful in the preparation of the next generation of experiments. Cross sections decrease by two orders of magnitude from bohrium (Z = 107) to element 112, for which a cross section of 1 pb was measured. The development of intense beam currents and sensitive detection methods is essential for the production and identification of still heavier elements and new isotopes of already known elements, as well as the measurement of small 0034-4885/61/6/002/img4-, 0034-4885/61/6/002/img5- and fission-branching ratios. An equally sensitive set-up is needed for the measurement of excitation functions at low cross sections. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical superheavy elements (SHEs) could be achieved by fusion reactions using 0034-4885/61/6/002/img6 targets. Systematic studies of the reaction cross sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHEs using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed.

  14. An experimental paradigm opening the world of superheavy elements

    Science.gov (United States)

    Armbruster, P.; Münzenberg, Gottfried

    2012-07-01

    The history of the discovery of the six elements Z = 107 ∓ 112, bohrium, hassium, meitnerium, darmstadtium, roentgenium, and copernicium goes back to the early 1960s. An experimental method to separate and identify rare nuclear reaction products, the recoil separation, was developed and optimised for beams of fission products at European research reactors. Chemical elements beyond the then first transactinides ( Z = 104), which owe their stability to the internal structure of atomic nuclei, were predicted theoretically. A big brother of the shell-stabilised nucleus 208Pb, a spherical magic nucleus at Z = 114∓126 and N = 184, might reach lifetimes long enough to be detected. In the seventies, hunting superheavy elements (SHE) was on the agenda of nuclear chemistry. Could the Periodic Table of Elements be extended to Z = 120, and is the order of electrons in the atom still following the laws established for lighter elements? In Germany, the heavy ion accelerator (UNILAC) was built by Christoph Schmelzer and his team at GSI, Darmstadt. SHE and UNILAC met the recoil separators in 1968, and SHIP (Separator for Heavy Ion reaction Products) was ready together with the first UNILAC-beams in 1976. Recoil separation is orders of magnitude more sensitive, selective, and faster than earlier methods used to synthesise elements up to seaborgium, Z = 106. The experimental paradigm we introduced opened the world of SHEs. At SHIP we discovered and investigated the elements Z = 107∓112 in the years 1980-2000. Our laboratory was the world champion during this time. Today our experimental method is used worldwide in the search for SHEs, but the leadership went to the Russian laboratory JINR in Dubna, which extended the Periodic Table by 6 more elements to Z = 118, the candidate for the next rare gas.

  15. Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh

    International Nuclear Information System (INIS)

    Several reactions producing odd-Z transactinide compound nuclei were studied with the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator at the Lawrence Berkeley National Laboratory. The goal was to produce the same compound nucleus at or near the same excitation energy with similar values of angular momentum via different nuclear reactions. In doing so, it can be determined if there is a preference in entrance channel, because under these experimental conditions the survival portion of Swiatecki, Siwek-Wilcznska, and Wilczynski's 'Fusion By Diffusion' model is nearly identical for the two reactions. Additionally, because the same compound nucleus is produced, the exit channel is the same. Four compound nuclei were examined in this study: 258Db, 262Bh, 266Mt, and 272Rg. These nuclei were produced by using very similar heavy-ion induced-fusion reactions which differ only by one proton in the projectile or target nucleus (e.g.: 50Ti + 209Bi vs. 51V + 208Pb). Peak 1n exit channel cross sections were determined for each reaction in each pair, and three of the four pairs; cross sections were identical within statistical uncertainties. This indicates there is not an obvious preference of entrance channel in these paired reactions. Charge equilibration immediately prior to fusion leading to a decreased fusion barrier is the likely cause of this phenomenon. In addition to this systematic study, the lightest isotope of element 107, bohrium, was discovered in the 209Bi(52Cr,n) reaction. 260Bh was found to decay by emission of a 10.16 MeV alpha particle with a half-life of 35 ms. The cross section is 59 pb at an excitation energy of 15.0 MeV. The effect of the N = 152 shell is also seen in this isotope's alpha particle energy, the first evidence of such an effect in Bh. All reactions studied are also compared to model predictions by Swiatecki, Siwek-Wilcznska, and Wilczynski's 'Fusion By Diffusion' theory

  16. Transactinide studies at U.C. Berkeley and the Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    Chemical studies of the heaviest elements have a long-standing history at Berkeley. The Heavy Element Nuclear and Radiochemistry Group at LBNL conducts heavy element nuclear physics as well as transactinide chemistry studies. The new capabilities of the Berkeley Gas-filled Separator (BGS) have added to a further vitalization of the heavy element studies at LBNL. This talk gives an overview of the recent collaborative first ever chemical studies of elements 107, bohrium, and 108, hassium. A recoil transfer chamber (RTC) connected to the back end of the BGS was constructed and tested. With the RTC, compound nucleus evaporation residues (EVR) pass through a thin Mylar window at the BGS focal plane and are stopped in a gas, for gas-jet transport to remote chemical experiments; the transport gas has a substantially higher pressure than the gas in the BGS. The efficiency of the transport was tested with various EVR's and different chemical detection systems, such as the SISAK centrifugal aqueous/organic phase extraction system and the novel Cryogenic Thermo-chromatographic Separator (CTS) were used. The CTS is based on the high volatility at near-ambient temperature of the heavy metal oxides such as Osmium tetroxide, OsO4, the homologue of hassium tetroxide. The CTS consists of an assembly of two rows of silicon PIN-diodes arranged opposite to each other, thus forming a narrow rectangular channel through which the reaction gas flows. A decreasing thermal gradient ranging from room temperature to about minus 120 deg C is applied to the PIN-diode assembly. This results in the deposition of the heavy metal oxide on one of the detectors, where it is identified by alpha counting. Separation factor of 107 - 109 for actinides from the combined BGS-CTS system can be achieved. The successful combination of the BGS with chemical separation systems is a true breakthrough. It opens a new possibility to study more effectively the chemical behaviour of the heaviest elements by

  17. MicroSISAK. Continuous liquid-liquid extractions of radionuclides at ≥ 0.2 mL/min

    International Nuclear Information System (INIS)

    both detectors was 76 ± 1%. With this experiment, it was demonstrated that MicroSISAK is in principle ready for an on-line experiment for the chemical characterization of the superheavy element bohrium, element 107. However, the detection of a-particle activities by liquid scintillation counting still needs to be worked out. (orig.)

  18. Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Sarah L. [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Several reactions producing odd-Z transactinide compound nuclei were studiedwith the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator at the Lawrence Berkeley National Laboratory. The goal was to produce the same compound nucleus ator near the same excitation energy with similar values of angular momentum via differentnuclear reactions. In doing so, it can be determined if there is a preference in entrancechannel, because under these experimental conditions the survival portion of Swiatecki, Siwek-Wilcznska, and Wilczynski's"Fusion By Diffusion" model is nearly identical forthe two reactions. Additionally, because the same compound nucleus is produced, theexit channel is the same. Four compound nuclei were examined in this study: 258Db, 262Bh, 266Mt, and 272Rg. These nuclei were produced by using very similar heavy-ion induced-fusion reactions which differ only by one proton in the projectile or target nucleus (e.g.: 50Ti + 209Bi vs. 51V + 208Pb). Peak 1n exit channel cross sections were determined for each reaction in each pair, and three of the four pairs' cross sections were identical within statistical uncertainties. This indicates there is not an obvious preference of entrancechannel in these paired reactions. Charge equilibration immediately prior to fusionleading to a decreased fusion barrier is the likely cause of this phenomenon. In addition to this systematic study, the lightest isotope of element 107, bohrium, was discovered in the 209Bi(52Cr,n) reaction. 260Bh was found to decay by emission of a 10.16 MeV alpha particle with a half-life of 35$+19\\atop{-9}$ ms. The cross section is 59 pb at an excitation energy of 15.0 MeV. The effect of the N = 152 shell is also seen in this isotope's alpha particle energy, the first evidence of such an effect in Bh. All reactions studied are also compared to model predictions by Swiatecki

  19. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    Energy Technology Data Exchange (ETDEWEB)

    Even, Julia

    2011-12-13

    synthesised carbonyl complexes were identified by nuclear decay spectroscopy. Some complexes were studied with isothermal chromatography or thermochromatography methods. The chromatograms were compared with Monte Carlo Simulations to determine the adsorption enthalpyrnon silicon dioxide and on gold. These simulations based on existing codes, that were modified for the different geometries of the chromatography channels. All observed adsorption enthalpies (on silcon oxide as well as on gold) are typical for physisorption. Additionally, the thermalstability of some of the carbonyl complexes was studied. This showed that at temperatures above 200 C therncomplexes start to decompose. It was demonstrated that carbonyl-complex chemistry is a suitable method to study rutherfordium, dubnium, seaborgium, bohrium, hassium, and meitnerium. Until now, only very simple, thermally stable compounds have been synthesized in the gas-phase chemistry of the transactindes. With the synthesis of transactinide-carbonyl complexes a new compound class would be discovered. Transactinide chemistry would reach the border between inorganic and metallorganic chemistry. Furthermore, the in-situ synthesised carbonyl complexes would allow nuclear spectroscopy studies under low background conditions making use of chemically prepared samples. [German] Die vorliegende Arbeit befasst sich mit der Entwicklung von Experimenten hinter dem gasgefuellten Separator TASCA (TransActinide Separator and Chemistry Apparatus) zur Studie des chemischen Verhaltens der Transactinide. Zum einen wurde die Moeglichkeit der elektrochemischen Abscheidung kurzlebiger Isotope der Elemente Ruthenium und Osmium auf Goldelektroden im Hinblick auf ein Experiment mit Hassium untersucht. Aus der Literatur ist bekannt, dass bei der elektrochemischen Abscheidung einzelner Atome das Abscheidepotential signifikant vom Nernst-Potential abweicht. Die Verschiebung des Potentials haengt von der Adsorptionsenthalpie des abzuscheidenden Elements

  20. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    synthesised carbonyl complexes were identified by nuclear decay spectroscopy. Some complexes were studied with isothermal chromatography or thermochromatography methods. The chromatograms were compared with Monte Carlo Simulations to determine the adsorption enthalpyrnon silicon dioxide and on gold. These simulations based on existing codes, that were modified for the different geometries of the chromatography channels. All observed adsorption enthalpies (on silcon oxide as well as on gold) are typical for physisorption. Additionally, the thermalstability of some of the carbonyl complexes was studied. This showed that at temperatures above 200 C therncomplexes start to decompose. It was demonstrated that carbonyl-complex chemistry is a suitable method to study rutherfordium, dubnium, seaborgium, bohrium, hassium, and meitnerium. Until now, only very simple, thermally stable compounds have been synthesized in the gas-phase chemistry of the transactindes. With the synthesis of transactinide-carbonyl complexes a new compound class would be discovered. Transactinide chemistry would reach the border between inorganic and metallorganic chemistry. Furthermore, the in-situ synthesised carbonyl complexes would allow nuclear spectroscopy studies under low background conditions making use of chemically prepared samples.

  1. MicroSISAK. Continuous liquid-liquid extractions of radionuclides at {>=} 0.2 mL/min

    Energy Technology Data Exchange (ETDEWEB)

    Hild, D.; Eberhardt, K.; Kratz, J.V.; Wiehl, N. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Even, J. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Helmholtz-Institut Mainz, Mainz (Germany); Loeb, P.; Werner, B.; Hofmann, C. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany)

    2013-07-01

    extraction yield determined as the ratio of the Tc {gamma}-ray activities in both detectors was 76 {+-} 1%. With this experiment, it was demonstrated that MicroSISAK is in principle ready for an on-line experiment for the chemical characterization of the superheavy element bohrium, element 107. However, the detection of a-particle activities by liquid scintillation counting still needs to be worked out. (orig.)