WorldWideScience

Sample records for body temperature water

  1. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (pinsulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (pinsulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (pinsulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  2. Effects of Body Weight and Water Temperature on Maximum Food Consumption of Juvenile Sebastodes fuscescens (Houttuyn)

    Institute of Scientific and Technical Information of China (English)

    谢松光; 杨红生; 周毅; 张福绥

    2004-01-01

    Maximum rate of food consumption (Cmax) was determined for juvenile Sebastodes fuscescens (Houttuyn) at water temperature of 10, 15, 20 and 25℃. The relationships of Cmax to the body weight (W) at each temperature were described by a power equation: lnCmax = a + b lnW. Covariance analysis revealed significant interaction of the temperature and body weight. The relationship of adjusted Cmax to water temperature (T) was described by a quadratic equation: Cmax =-0.369 + 0.456T - 0.0117T2. The optimal feeding temperature calculated from this equation was 19.5℃. The coefficients of the multiple regression estimation relating Cmax to body weight (W) and water temperature (T) were given in the Table 2.

  3. The effect of water temperature on the human body and the swimming effort

    Directory of Open Access Journals (Sweden)

    SERAFEIM ALEXIOU

    2014-10-01

    Full Text Available Although many research papers have dealt with the influence of environmental temperature on the various Human body functions during exercise in land, a few only informations exist for the equivalent alterations in water temperatures during immersion and swimming. The present preview research paper is referred on this subject. During swimming in the normal water temperature 26° ± 1° C (63, the functions of the human body respond regularly and the performance of swimmers tends to be improved. However, during swimming in cold water critical differences appear in human functions, such as bradycardia, angiospasm, hyperventilation and adaptations of thermoregulatory mechanism which influence the swimming performance and the life itself. Especially in very cold water temperature the disturbances of the cardiovascular system may lead in critical arrhythmia or sudden death. The cold water temperature, however, influences the kinetic and energy behavior related to the reduction of swimmers performance because of its possible influence on the neuromuscular function. In the increased water temperature up to 28° C appears tachycardia, vasodilation and other alternations which aim to better thermoregulation. The swimmers records are possibly equivalent with a tendency to be improved, to the records in normal temperature of championships 26° C and the increased temperature mainly in the speed events (3. Therefore, there is a differentiation on swimmers performances due to water temperature declination from normal. Also, body functions change during water immersion.

  4. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    Science.gov (United States)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  5. Effects of body mass and water temperature on routine metabolism of American paddlefish Polyodon spathula.

    Science.gov (United States)

    Patterson, J T; Mims, S D; Wright, R A

    2013-04-01

    This study quantified the effects of temperature and fish mass on routine metabolism of the American paddlefish Polyodon spathula. Thermal sensitivity, as measured by Q(10) value, was low in P. spathula. Mean Q(10) was 1·78 while poikilotherms are generally expected to have Q(10) values in the 2·00-2·50 range. Mass-specific metabolism did not decrease with increased fish size to the extent that this phenomenon is observed in teleosts, as evidenced by a mass exponent (β) value of 0·92 for P. spathula compared with 0·79 in a review of teleost species. Other Acipenseriformes have exhibited relatively high β values for mass-specific respiration. Overall P. spathula metabolism appears to be more dependent on body mass and less dependent on temperature than for many other fishes. An equation utilizing temperature and fish mass to estimate gross respiration for P. spathula was derived and this equation was applied to respiratory data from other Acipenseriformes to assess inter-species variation. Polyodon spathula respiration rates across water temperature and fish mass appear most similar to those of Atlantic sturgeon Acipenser naccarii and white sturgeon Acipenser transmontanus. PMID:23557305

  6. About Body Water

    Science.gov (United States)

    ... Insulin Delivery Additional Content Medical News About Body Water By James L. Lewis, III, MD NOTE: This ... Version. DOCTORS: Click here for the Professional Version Water Balance About Body Water Dehydration Overhydration Water accounts ...

  7. Intracerebral implantation of carbachol in the rat: Its effect on water intake and body temperature

    NARCIS (Netherlands)

    Hulst, S.G.Th.

    1972-01-01

    Intracerebral carbachol produces a fall in body temperature as well as drinking in the rat when implanted in various subcortical structures, related to the emotion-motivation limbic circuit. These effects are due to a central cholinergic stimulation since they can be prevented by the systemic admini

  8. The effects of floor heating on body temperature, water consumption, stress response and immune competence around parturition in loose-housed sows

    DEFF Research Database (Denmark)

    Damgaard, B M; Malmkvist, J; Pedersen, L J;

    2009-01-01

    ). In conclusion, the present results indicate that floor heating for a limited period around parturition did not compromise physiological and immunological parameters, water intake and body temperature in loose-housed sows. The water intake peaked the day before parturition and the body temperature peaked......The aim of the present study was to study whether floor heating from 12 h after onset of nest building until 48 h after birth of the first piglet had any effect on measures related to body temperature, water consumption, stress response and immune competence in loose-housed sows (n = 23...

  9. Bursting bodies of water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    A silent threat is growing below receding glaciers: lakes are formed as the tongues of the glaciers draw back up the mountain, and huge and growing bodies of water beneath them are contained only be weak moraine walls.......A silent threat is growing below receding glaciers: lakes are formed as the tongues of the glaciers draw back up the mountain, and huge and growing bodies of water beneath them are contained only be weak moraine walls....

  10. Central control of body temperature.

    Science.gov (United States)

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  11. Impact of water temperature and stressor controllability on swim stress-induced changes in body temperature, serum corticosterone, and immobility in rats.

    Science.gov (United States)

    Drugan, Robert C; Eren, Senem; Hazi, Agnes; Silva, Jennifer; Christianson, John P; Kent, Stephen

    2005-10-01

    The present study compared the effects of three different water temperatures (20, 25, and 30 degrees C) and stressor controllability on several physiological and behavioral endpoints in an intermittent swim stress paradigm. The escape latency of rats in the 20 and 25 degrees C water was less than that observed for the 30 degrees C group. Both escape and yoked groups at 20 and 25 degrees C exhibited moderate to severe hypothermia following the swim stress session that returned to prestress levels 30-40 min post-stress. At 30 degrees C core body temperature (Tb) only decreased by 1 degree C for either swim group. Following swim, serum corticosterone (CORT) levels were significantly elevated in both escape and yoked groups in comparison to confined and home cage controls. The confined control group showed a significant elevation that was approximately halfway between the home cage control and the swim stress groups. At 30 degrees C, there was still a significant elevation of serum CORT in both swim groups in comparison to confined and home cage controls. Therefore, 30 degrees C appears to be the optimal water temperature to evaluate stress controllability effects in the current paradigm. In a final experiment, swim stressor controllability effects were examined in a 5 min forced swim test (FST) 24 h following the initial stress exposure. Rats exposed to yoked-inescapable swim stress at 30 degrees C exhibited more immobility than their escapable swim stress and confined counterparts, while the escape and confined controls did not differ. These results demonstrate that the behavioral deficits observed in the FST are attributable to the stress of inescapable swim and not swim stress per se.

  12. The Relation of Standard Metabolic Rate to Water Temperature and Body Weight of Schlegels Black Rockfish (Sebastodes Fuscescens)

    Institute of Scientific and Technical Information of China (English)

    马志敏; 孙耀; 张波; 唐启升

    2004-01-01

    Standard metabolic rates of Schlegels black rockfish with different body weights are determined in laboratory by using the flow-through respirometer at 11.2 ℃, 14.7 ℃, 18.0℃ and 23.6 ℃. The results indicate that the standard metabolic rates increase with the increase of body weight at different temperatures. Relationship between them could be described as Rs = a InW b. The mean of standard metabolic rate is significantly different among groups, but the b values are not. The standard metabolic rates of amended standard body weights decrease with the increase of temperature, and the mean of standard metabolic rate is also significantly different among groups when the standard body weights are 48.6 g, 147.9 g, and 243.1 g.Relationship between them could be described as Rsw = me-bT . The relations of standard metabolic rate ( Rs ) or relative metabolic rate ( Rs ) to body weight and temperature yield the following equations: Rs = 1.160 W0.752 e-9.494/7 and Rs1= 1.160 W0.254e-9.494/7.

  13. The water hexamer: three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature.

    Science.gov (United States)

    Tainter, C J; Skinner, J L

    2012-09-14

    Using a newly developed and recently parameterized classical empirical simulation model for water that involves explicit three-body interactions, we determine the eleven most stable isomers of the water hexamer. We find that the lowest energy isomer is one of the cage structures, in agreement with far-IR and microwave experiments. The energy ordering for the binding energies is cage > glove > book > bag > chair > boat > chaise, and energies relative to the cage are in good agreement with CCSD(T) calculations. The three-body contributions to the cage, book, and chair are also in reasonable agreement with CCSD(T) results. The energy of each isomer results from a delicate balance involving the number of hydrogen bonds, the strain of these hydrogen bonds, and cooperative and anti-cooperative three-body interactions, whose contribution we can understand simply from the form of the three-body interactions in the simulation model. Oxygen-oxygen distances in the cage and book isomers are in good agreement with microwave experiments. Hydrogen-bond distances depend on both donor and acceptor, which can again be understood from the three-body model. Fully anharmonic OH-stretch spectra are calculated for these low-energy structures, and compared with shifted harmonic results from ab initio and density functional theory calculations. Replica-exchange molecular dynamics simulations were performed from 40 to 194 K, which show that the cage isomer has the lowest free energy from 0 to 70 K, and the book isomer has the lowest free energy from 70 to 194 K. OH-stretch spectra were calculated between 40 and 194 K, and results at 40, 63, and 79 K were compared to recent experiments, leading to re-assignment of the peaks in the experimental spectra. We calculate local OH-stretch cumulative spectral densities for different donor-acceptor types and compare to analogous results for liquid water.

  14. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    Science.gov (United States)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  15. From skin to bulk: An adjustment technique for assimilation of satellite-derived temperature observations in numerical models of small inland water bodies

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Miller, Robert N.

    2016-06-01

    Data Assimilation (DA) has been proposed for multiple water resources studies that require rapid employment of incoming observations to update and improve accuracy of operational prediction models. The usefulness of DA approaches in assimilating water temperature observations from different types of monitoring technologies (e.g., remote sensing and in-situ sensors) into numerical models of in-land water bodies (e.g., lakes and reservoirs) has, however, received limited attention. In contrast to in-situ temperature sensors, remote sensing technologies (e.g., satellites) provide the benefit of collecting measurements with better X-Y spatial coverage. However, assimilating water temperature measurements from satellites can introduce biases in the updated numerical model of water bodies because the physical region represented by these measurements do not directly correspond with the numerical model's representation of the water column. This study proposes a novel approach to address this representation challenge by coupling a skin temperature adjustment technique based on available air and in-situ water temperature observations, with an ensemble Kalman filter based data assimilation technique. Additionally, the proposed approach used in this study for four-dimensional analysis of a reservoir provides reasonably accurate surface layer and water column temperature forecasts, in spite of the use of a fairly small ensemble. Application of the methodology on a test site - Eagle Creek Reservoir - in Central Indiana demonstrated that assimilation of remotely sensed skin temperature data using the proposed approach improved the overall root mean square difference between modeled surface layer temperatures and the adjusted remotely sensed skin temperature observations from 5.6°C to 0.51°C (i.e., 91% improvement). In addition, the overall error in the water column temperature predictions when compared with in-situ observations also decreased from 1.95°C (before assimilation

  16. Recent Inland Water Temperature Trends

    Science.gov (United States)

    Hook, Simon; Healey, Nathan; Lenters, John; O'Reilly, Catherine

    2016-04-01

    We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America and the rest of the world for potential use as climate indicator. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our work we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 169 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades, approximately 268 lakes. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes. We will discuss the available datasets and processing methodologies together with the patterns they reveal based on recent changes in the global warming, with a particular focus on the inland waters of the southwestern USA.

  17. Body temperature stability achieved by the large body mass of sea turtles.

    Science.gov (United States)

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses.

  18. Stratification in Natural Water Bodies

    DEFF Research Database (Denmark)

    Møller, Jacob Steen

    2004-01-01

    Density stratification of natural water bodies plays an important role for a number of civil engineering problems. The origin of stratification in natural water is discussed and the Black Sea, the Gulf of Katchch, and Maarmorilik Fiord in Greenland are described and used as examples. Stratification...... has a number of civil engineering implications. The lock exchange problem is used as a canonical example, and implications for water exchange and sedimentation is discussed by means of examples: Sedimentation in locks and estuaries, salt transport into fresh water reservoirs, water exchange...

  19. Lower body temperature in sleeping supine infants.

    OpenAIRE

    R. G. North; Petersen, S A; Wailoo, M P

    1995-01-01

    Night time rectal temperature recordings were made from 103 infants sleeping in their own home in different sleeping positions. In most cases sleeping position was verified by video monitoring throughout the night. In the period before an adult-like night time body temperature pattern appeared there was no significant effect of sleeping position upon night time body temperature, in line with previous reports. Once an adult-like night time temperature pattern appeared, infants sleeping supine ...

  20. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven;

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  1. Body temperature regulation in diabetes

    OpenAIRE

    Kenny, Glen P.; Sigal, Ronald J.; McGinn, Ryan

    2016-01-01

    ABSTRACT The effects of type 1 and type 2 diabetes on the body's physiological response to thermal stress is a relatively new topic in research. Diabetes tends to place individuals at greater risk for heat-related illness during heat waves and physical activity due to an impaired capacity to dissipate heat. Specifically, individuals with diabetes have been reported to have lower skin blood flow and sweating responses during heat exposure and this can have important consequences on cardiovascu...

  2. Body temperature set-point and the conscious perception of skin temperature in obese women.

    Science.gov (United States)

    Zahorska-Markiewicz, B; Staszkiewicz, M

    1987-01-01

    Obese and control women were immersed in a bath of water kept at 37 degrees C. Oral temperature was measured. The subjects left hand was placed outside the bath for the local application of thermal stimuli between 20 degrees and 45 degrees C, subjects reporting the most pleasant temperature. The lower oral temperatures and lower levels of skin temperature rated as pleasant by obese women as compared with women of normal body weight or less suggests that in obesity the set-point of body temperature is lowered.

  3. Body temperature influence on time perception.

    Science.gov (United States)

    Hancock, P A

    1993-07-01

    The chemical clock hypothesis implies a causal link between body temperature and the perception of duration. A strict interpretation of this construct requires a common slope value in an Arrhenius plot that relates time to temperature for every individual tested. Previous studies testing this proposition have confirmed a general relationship for data summed across multiple subjects. However, the same studies raise doubts as to whether this relationship holds for each and every individual tested. Unfortunately, these investigations have been limited by methodological constraints, thus, one could argue that the strong isomorphism intrinsic to the chemical clock hypothesis has yet to be fairly tested. In the present experiment, I sought to distinguish the effects of selective head temperature changes on the estimation of duration. Nonlinear decreases in estimated duration were observed with ascending deep auditory canal temperature. These findings support the contention of a thermally stable region of temporal perception bounded by conditions in which temporal estimates directly depend on body temperature. In contradicting physiological adequacy as an explanatory construct, the present results suggest a direct relationship between time perception and the homeothermic platform. I compare these results with earlier findings concerning the chemical clock concept and examine respective discrepancies as a basis for a fuller understanding of a temporal phenomenon that is frequently referred to as the internal clock.

  4. Body water, extracellular water, body potassium, and exchangeable sodium in body builders using anabolic steroids

    International Nuclear Information System (INIS)

    Nine competitive male body builders aged 21 to 34 who were determined to take anabolic steroids were studied before and 6 to 10 weeks after a training cycle which included steroid administration. A control group of nine subjects matched in age and duration of competitive career, but using only natural training methods were studied on a single occasion while in training. Total body potassium (TBK) by 40K, total body water (TBW) by 3H2O dilution, extracellular water (ECW) by 35SO4 dilution and zero time extrapolation, and exchangeable sodium by 24Na dilution were measured before and after training. Intracellular water (ICW) was calculated from TBW - ECW. Initially steroid users had a greater skeletal muscle mass than control subjects, and obtained a further weight gain on steroids, all in skeletal muscle, based on parallel increases in TBK and ICW. Other body composition measurements did not change significantly. A single steroid user became ill taking steroids, decreased potassium by 5%, and increased extracellular water, changes which may represent the effects of hepatic dysfunction which occurred while on anabolic steroids

  5. A thermosensory pathway that controls body temperature.

    Science.gov (United States)

    Nakamura, Kazuhiro; Morrison, Shaun F

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

  6. Water and electrolytes. [in human bodies

    Science.gov (United States)

    Greenleaf, J. E.; Harrison, M. H.

    1986-01-01

    It has been found that the performance of the strongest and fittest people will deteriorate rapidly with dehydration. The present paper is concerned with the anatomy of the fluid spaces in the body, taking into account also the fluid shifts and losses during exercise and their effects on performance. Total body water is arbitrarily divided into that contained within cells (cellular) and that located outside the cells (extracellular). The anatomy of body fluid compartments is considered along with the effects of exercise on body water, fluid shifts with exercise, the consequences of sweating, dehydration and exercise, heat acclimatization and endurance training, the adverse effects of dehydration, thirst and drinking during exercise, stimuli for drinking, and water, electrolyte, and carbohydrate replacement during exercise. It is found that the deterioration of physical exercise performance due to dehydration begins when body weight decreases by about 1 percent.

  7. Temperature distribution in the human body under various conditions of induced hyperthermia

    Science.gov (United States)

    Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.

    1977-01-01

    A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.

  8. Remote sensing of ephemeral water bodies in western Niger

    Science.gov (United States)

    Verdin, J.P.

    1996-01-01

    Research was undertaken to evaluate the feasibility of monitoring the small ephemeral water bodies of the Sahel with the 1.1 km resolution data of the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Twenty-one lakes of western Niger with good ground observation records were selected for examination. Thematic Mapper images from 1988 were first analysed to determine surface areas and temperature differences between water and adjacent land. Six AVHRR scenes from the 1988-89 dry season were then studied. It was found that a lake can be monitored until its surface area drops below 10 ha, in most cases. Furthermore, with prior knowledge of the location and shape of a water body, its surface area can be estimated from AVHRR band 5 data to within about 10 ha. These results are explained by the sharp temperature contrast between water and land, on the order of 13?? C.

  9. Total body water and total body potassium in anorexia nervosa

    International Nuclear Information System (INIS)

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation

  10. Total body water and total body potassium in anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.; Oberlander, J.L.; Pertschuk, M.J.; Mullen, J.L.

    1984-08-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation.

  11. Water Conversations: Water Bodies and Spirits. India 2011

    OpenAIRE

    MacLeod, Anna

    2011-01-01

    Water Conversations: Water Bodies and Spirits India 2011 Buddha Enlightened 2-be International Artist project. Bodh Gaya, Bihar, India. Curated by Sanjeev Sinha, New Delhi and Diane Hagen, Amsterdam. 2011. Participation in this event was funded by the Arts Council of Ireland & Dublin Institute of Technology. In Bodh Gaya, Bihar, India a spiritual site for the global Buddhist community, Water Conversations seeks to discover some of the commonalities of how water is viewed spiritually ...

  12. Microchip-based body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Nielsen, Jens; Lohse, Louise

    In the present study, we tested whether an electronic identification and body temperature monitorring technology presently applied in small experimental animals could be transferred for use in pigs....

  13. Effect of temperature on body temperature and resting metabolic rate in pups of Eothenomys miletus

    OpenAIRE

    Zhu, Wan-long; Mu, Yuan; Zhang, Lin; Wang, Zheng-Kun

    2013-01-01

    In order to investigate the ability of ambient temperature and thermoregulation in Eothenomys miletus, body temperature and resting metabolic rate (RMR) were measured during postnatal development (1-49 day) when E. miletus exposed different ambient temperature. The result showed that: body temperature and RMR of pups in E. miletus increased according to the increase of ambient temperature during 1 day to 7 day, showed character of poikilotherms; body temperature of pups were lower in low tem...

  14. Water temperature constraint on Sonoluminescence

    CERN Document Server

    Rahvar, S

    1999-01-01

    It is proposed that shock wave dynamics within the gas of a small bubble explain sonoluminescence, the emission of visible radiation. As the bubble radius oscillates, shock waves develop from spherical sound waves created inside the gas bubble. As any such shock propagates toward the center, it strengthens and, upon convergence and subsequent reflection, temperature of gas inside bubble increases dramatically in such a way that it can produce plasma. Since main radiation product in exploding epoch, nonadiabatic condition for imploding shock wave cool plasma and cause exploding shock wave can not sufficiently rise temperature to produce radiation. In this work we compare cooling time for plasma by bermsstrahlung radiation with collapsing time for the imploding shock wave . We find a constraint on radius of bubble with respect to temperature of water. This constraint condition explains experimental results as to, why the cold water is fine for SL.

  15. Central control of body temperature [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Shaun F. Morrison

    2016-05-01

    Full Text Available Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  16. TECHNOLOGICAL POSSIBILITIES OF CONTACTLESS MEASURING THE BODY SURFACE TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Kateřina Švejdová

    2013-05-01

    Full Text Available The regular measuring of the body surface temperature can help to evaluate health condition of animals and react immediately on the first symptoms of illness. There are many of technological possibilities of contactless measuring the body surface temperature. It is important to find the right part of the body which the temperature will show the first possible symptoms of illness. This experiment with dairy cows and heifers was realized at the farm in Petrovice. The body surface temperature and rectal temperature of animals were observed in dairy cows and heifers. It was rated 3 different groups of dairy cows and heifers in 2 stables. The body temperature was obtained by the thermocamera. The temperatures were shot from the 3 different parts of body of animals (the body core, the eyes and the udder. The relative humidity, temperature, cooling value environment and flow rate in stable were measured as further independent variables. The aim of this study was finding how body temperature correlate together with health of animals, reproduction, milk quality, vital signs and productivity of dairy cows and heifers.

  17. Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats.

    Science.gov (United States)

    Torrao, N A; Hetem, R S; Meyer, L C R; Fick, L G

    2011-03-26

    Body temperature was measured at five different body sites (retroperitoneum, groin, semimembranosus muscle, flank and shoulder) using temperature-sensitive microchips implanted in five female goats, and compared with the core body and rectal temperatures. Body temperature was measured while the goats were kept in different ambient temperatures, with and without radiant heat, as well as during a fever induced experimentally by injection of bacterial lipopolysaccharide. Bland-Altman limit of agreement analysis was used to compare the temperature measurements at the different body sites during the different interventions. Temperatures measured by the microchip implanted in the retroperitoneum showed the closest agreement (mean 0.2 °C lower) with core and rectal temperatures during all interventions, whereas temperatures measured by the microchips implanted in the groin, muscle, flank and shoulder differed from core body temperature by up to 3.5 °C during the various interventions.

  18. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperatur...... accurate measurements of occupant's thermal microenvironment....

  19. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  20. Water Loss Under Hot Ambient Temperatures

    Directory of Open Access Journals (Sweden)

    S. K. Basu

    1978-07-01

    Full Text Available Male 4 rates were ambient temperature (40 degree,42 degree, and 44 degree calcius for different durations of time upto a maximum of 3 hours. It was observed that there was a rapid loss in body weight accompanied by considerable increase in body temperature of the animals during the first hour of exposure. Thereafter the rate of body weight loss and increase in body temperature were slow till the end of observation period. Intolerance to heat appears to be more correlated with critical body temperature rather than the extent of dehydration.

  1. Experiment of surface thermal features of wake behind a going body underwater in a temperature stratification water tank%温度分层水槽中水下航行体尾流水面热特征实验

    Institute of Scientific and Technical Information of China (English)

    吴猛猛; 陈伯义; 张修峰; 杨立; 袁宝吉

    2011-01-01

    The surface thermal features caused by the wake behind a going body underwater in the temperature stratification ocean are the key topic to the development of infrared anti-submarine technology. The buoyant process of the thermal wake and its interaction with the surface were displayed and measured in a water tank with the vertical negative temperature gradient. The variation laws of the surface temperature caused by the wake behind a going body underwater, as well as the buoyancy image and surface infrared image of the thermal wake were obtained. Based on these research, the effects of sail depths, temperature gradients, surface wave and sun radiation on the surface thermal features were discussed. The present results may provide a certain theoretical basis and important reference value for the infrared detection of a going body underwater.%温度分层海洋中水下航行体尾流引起的水面热特征是发展红外反潜技术的关键课题.在具有垂直负温度梯度的水槽中,对水下航行体热尾流的浮升过程及其与自由表面的相互作用进行了显示和测量,得到了水下航行体尾流引起的自由表面温度变化规律以及热尾流的浮升图像和其自由表面的红外图像,并在此基础上讨论了航行深度、温度梯度、水面波浪和太阳辐射等对自由表面热特征的影响.研究结果可为水下航行体的红外探测提供一定的理论基础和重要参考价值.

  2. Being cool: how body temperature influences ageing and longevity.

    Science.gov (United States)

    Keil, Gerald; Cummings, Elizabeth; de Magalhães, João Pedro

    2015-08-01

    Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifespans both in wild populations and in laboratory conditions. Many life-extending manipulations in rodents, such as caloric restriction, also decrease core body temperature. Nonetheless, an inverse relationship between temperature and lifespan can be obscured or reversed, especially when the range of body temperatures is small as in homeotherms. An example is observed in humans: women appear to have a slightly higher body temperature and yet live longer than men. The mechanisms involved in the relationship between temperature and longevity also appear to be less direct than once thought with neuroendocrine processes possibly mediating complex physiological responses to temperature changes. Lastly, we discuss species differences in longevity in mammals and how this relates to body temperature and argue that the low temperature of the long-lived naked mole-rat possibly contributes to its exceptional longevity. PMID:25832892

  3. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature

    Science.gov (United States)

    Lee, C. N.; Gebremedhin, K. G.; Parkhurst, A.; Hillman, P. E.

    2015-09-01

    There has been increasing interest to measure core-body temperature in cattle using internal probes. This study examined the placement of HOBO water temperature probe with an anchor, referred to as the "sensor pack" (Hillman et al. Appl Eng Agric ASAE 25(2):291-296, 2009) in the vagina of multiparous Holstein cows under grazing conditions. Two types of anchors were used: (a) long "fingers" (4.5-6 cm), and (b) short "fingers" (3.5 cm). The long-finger anchors stayed in one position while the short-finger anchors were not stable in one position (rotate) within the vagina canal and in some cases came out. Vaginal temperatures were recorded every minute and the data collected were then analyzed using exponential mixed model regression for non-linear data. The results showed that the core-body temperatures for the short-finger anchors were lower than the long-finger anchors. This implied that the placement of the temperature sensor within the vagina cavity may affect the data collected.

  4. Assessment of body composition by air-displacement plethysmography: influence of body temperature and moisture.

    Science.gov (United States)

    Fields, David A; Higgins, Paul B; Hunter, Gary R

    2004-04-01

    BACKGROUND: To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). METHODS: %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 +/- 11, weight (kg) 64 +/- 14, height (cm) 167 +/- 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. RESULTS: BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P BOD PODBH %fat (28.9%), body volume (61.7 L), and body density (1.0341 g/cm3). A significant increase in body temperature (~0.6 degrees C; P BOD PODBH and BOD PODFH. Body surface area was positively associated with the difference in %fat independent of changes in body temperature and moisture, r = 0.30, P BOD POD, however, the precise mechanism remains unidentified.

  5. Diurnal Temperature Cycles in Shallow Water Pools

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Paaijmans, K.P.; Heusinkveld, B.G.

    2006-01-01

    Larvas of malaria mosquito species live close to the water surface in shallow waters, and are exposed to water temperatures which differ considerably from the air or bulk water temperature. The present research aims to obtain a sound physical insight into processes which determine the water temperat

  6. Circadian Rhythms of Body Temperature, Metabolic Rates and Evaporative Water Loss in Tupaia belangeri%中缅树鼩体温、代谢率和蒸发失水日节律

    Institute of Scientific and Technical Information of China (English)

    黄春梅; 胡黎娅; 杨盛昌; 朱万龙; 李晓婷; 蔡金红; 王政昆

    2012-01-01

    To study daily rhythms of body temperature, metabolic rates and evaporative water loss of Tupaia belangeri, we took measurements on body temperature ( Tb) for 24 h by implanting thermometer into their body. We also measured rest metabolic rate (RMR) , nonshivering thermogenesis (NST) and evaporative water loss (EWL) in 4 periods of 05:00-07:00, 11:00-13:00, 17 :00 - 19 :00 and 23 :00-01 :00 within 24 h. The body temperature showed a change in circadian rhythm with a maximum and minimum value of 39. 45 ± 0. 26t and 36. 34 ±0. 241: at 11:00 and 03 :00, respectively. The value of NST, RMR and EWL taken in the four periods within 24 h also significantly varied and exhibited a circadian rhythm. The minimum value of RMRTNZ was 2. 28 ± 0. 09 ml/( g · h) at 11 : 00 - 13 : 00 and maximum value was 2. 58 ± 0. 04 ml/( g · h ) occurred at 23 :00 -01 :00; the highest value of NST occurred at 05:00 -07:00 valued at 3.08 ±0. 14 ml/ ( g · h) and the lowest value was 2. 69 ± 0. 06 ml/ ( g · h) exhibited at period of 11 :00 - 13 :00; The maximum value of EWL was taken at 17 :00 - 19 :00 with 3. 60 ± 0. 31 mg/( g- h) . The body temperature variation was varied with change of ambient temperature and with the activeness of the animal in the different period in the 24 h rhythm. The RMR and NST was increase in the night when the ambient temperature was decrease. The animal adjusted their body temperature by increasing EWL in the day.%为研究中缅树鼩(Tupaia belangeri)体温、代谢率和蒸发失水的日节律变化,采用植入式体温计测定了中缅树鼩24 h的体温,以及24 h中4个时间段(05:00 ~ 07:00时、11:00~13:00时、17:00 ~ 19:00时和23:00~ 01:00时)热中性区(30℃)的静止代谢率(RMR)、非颤抖性产热(NST)和蒸发失水(EWL).结果显示,中缅树鼩的体温具有日节律变化,最高值和最低值分别出现在11:00时和03:00时,各为(39.45±0.26)℃和(36.34 ±0.24)℃;静止代谢率、非颤

  7. Universal temperature and body-mass scaling of feeding rates

    OpenAIRE

    Rall, Björn C.; Brose, Ulrich; Hartvig, Martin; Kalinkat, Gregor; Schwarzmüller, Florian; Vucic-Pestic, Olivera; Petchey, Owen L

    2012-01-01

    Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of fun...

  8. Hypercoagulability in response to elevated body temperature and central hypovolemia

    DEFF Research Database (Denmark)

    Meyer, Martin; Ostrowski, Sisse R; Overgaard, Flemming Anders;

    2013-01-01

    Coagulation abnormalities contribute to poor outcomes in critically ill patients. In trauma patients exposed to a hot environment, a systemic inflammatory response syndrome, elevated body temperature, and reduced central blood volume occur in parallel with changes in hemostasis and endothelial...... damage. The objective of this study was to evaluate whether experimentally elevated body temperature and reduced central blood volume (CBV) per se affects hemostasis and endothelial activation....

  9. Water Temperature Affects Susceptibility to Ranavirus.

    Science.gov (United States)

    Brand, Mabre D; Hill, Rachel D; Brenes, Roberto; Chaney, Jordan C; Wilkes, Rebecca P; Grayfer, Leon; Miller, Debra L; Gray, Matthew J

    2016-06-01

    The occurrence of emerging infectious diseases in wildlife populations is increasing, and changes in environmental conditions have been hypothesized as a potential driver. For example, warmer ambient temperatures might favor pathogens by providing more ideal conditions for propagation or by stressing hosts. Our objective was to determine if water temperature played a role in the pathogenicity of an emerging pathogen (ranavirus) that infects ectothermic vertebrate species. We exposed larvae of four amphibian species to a Frog Virus 3 (FV3)-like ranavirus at two temperatures (10 and 25°C). We found that FV3 copies in tissues and mortality due to ranaviral disease were greater at 25°C than at 10°C for all species. In a second experiment with wood frogs (Lithobates sylvaticus), we found that a 2°C change (10 vs. 12°C) affected ranaviral disease outcomes, with greater infection and mortality at 12°C. There was evidence that 10°C stressed Cope's gray tree frog (Hyla chrysoscelis) larvae, which is a species that breeds during summer-all individuals died at this temperature, but only 10% tested positive for FV3 infection. The greater pathogenicity of FV3 at 25°C might be related to faster viral replication, which in vitro studies have reported previously. Colder temperatures also may decrease systemic infection by reducing blood circulation and the proportion of phagocytes, which are known to disseminate FV3 through the body. Collectively, our results indicate that water temperature during larval development may play a role in the emergence of ranaviruses. PMID:27283058

  10. Mechanisms of temperature-dependent swimming: the importance of physics, physiology and body size in determining protist swimming speed

    OpenAIRE

    Beveridge, Oliver S; Petchey, Owen L; Humphries, Stuart

    2010-01-01

    Body temperatures and thus physiological rates of poikilothermic organisms are determined by environmental temperature. The power an organism has available for swimming is largely dependent on physiological rates and thus body temperature. However, retarding forces such as drag are contingent on the temperature-dependent physical properties of water and on an organism’s size. Consequently, the swimming ability of poikilotherms is highly temperature dependent. The importance of the te...

  11. Inland Water Temperature and the recent Global Warming Hiatus

    Science.gov (United States)

    Hook, S. J.; Healey, N.; Lenters, J. D.; O'Reilly, C.

    2015-12-01

    We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America and the rest of the world for potential use as climate indicator. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 169 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades, approximately 268 lakes. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes. We will discuss the available datasets and processing methodologies together with the patterns they reveal based on recent changes in the global warming, with a particular focus on the inland waters of the southwestern USA.

  12. Shallow Water Body Data Processing Based on the Seismic Oceanography

    Institute of Scientific and Technical Information of China (English)

    LIU Huaishan; HU Yi; YIN Yanxin; WANG Linfei; TONG Siyou; MA Hai

    2013-01-01

    Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.

  13. Effects of MDMA on body temperature in humans

    Science.gov (United States)

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation.

  14. Method and apparatus for recovering oil from an oil spill on the surface of a body of water

    International Nuclear Information System (INIS)

    This patent describes a method of recovering a hydrophobic hydrocarbon oil from the surface of a body of water, the body of water having a water temperature, the oil having a specific gravity which is less than the specific gravity of the water in the body of water and a viscosity which is greater than approximately 80 centipoise at the water temperature. It comprises continuously withdrawing a feed oil-water mixture from the surface of the body of water; continuously adjusting the viscosity of the oil in the feed oil-water mixture to a level below approximately 80 centipoise to form an adjusted oil-water mixture; and continuously passing the adjusted oil-water mixture through an oil-water coalescer to separate the oil in the adjusted oil-water mixture from the water in the adjusted oil-water mixture

  15. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  16. Water Transport and the Evolution of CM Parent Bodies

    Science.gov (United States)

    Coker, R.; Cohen, B.

    2014-01-01

    Extraterrestrial water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. Asteroids are the primary source of meteorites, many of which show evidence of an early heating episode and varying degrees of aqueous alteration. The origin and characterization of hydrated minerals (minerals containing H2O or OH) among both the main-belt and near-earth asteroids is important for understanding a wide range of solar system formation and evolutionary processes, as well as for planning for human exploration. Current hypotheses postulate asteroids began as mixtures of water ice and anhydrous silicates. A heating event early in solar system history was then responsible for melting the ice and driving aqueous alteration. The link between asteroids and meteorites is forged by reflectance spectra, which show 3-µm bands indicative of bound OH or H2O on the C-class asteroids, which are believed to be the parent bodies of the carbonaceous chondrites in our collections. The conditions at which aqueous alteration occurred in the parent bodies of carbonaceous chondrites are thought to be well-constrained: at 0-25 C for less than 15 Myr after asteroid formation. In previous models, many scenarios exhibit peak temperatures of the rock and co-existing liquid water in more than 75 percent of the asteroid's volume rising to 150 C and higher, due to the exothermic hydration reactions triggering a thermal runaway effect. However, even in a high porosity, water-saturated asteroid very limited liquid water flow is predicted (distances of 100's nm at most). This contradiction has yet to be resolved. Still, it may be possible for water to become liquid even in the near-surface environment, for a long enough time to drive aqueous alteration before vaporizing or freezing then subliming. Thus, we are using physics- and chemistry-based models that include thermal and fluid transport as well

  17. Machine-learning methods in the classification of water bodies

    Directory of Open Access Journals (Sweden)

    Sołtysiak Marek

    2016-06-01

    Full Text Available Amphibian species have been considered as useful ecological indicators. They are used as indicators of environmental contamination, ecosystem health and habitat quality., Amphibian species are sensitive to changes in the aquatic environment and therefore, may form the basis for the classification of water bodies. Water bodies in which there are a large number of amphibian species are especially valuable even if they are located in urban areas. The automation of the classification process allows for a faster evaluation of the presence of amphibian species in the water bodies. Three machine-learning methods (artificial neural networks, decision trees and the k-nearest neighbours algorithm have been used to classify water bodies in Chorzów – one of 19 cities in the Upper Silesia Agglomeration. In this case, classification is a supervised data mining method consisting of several stages such as building the model, the testing phase and the prediction. Seven natural and anthropogenic features of water bodies (e.g. the type of water body, aquatic plants, the purpose of the water body (destination, position of the water body in relation to any possible buildings, condition of the water body, the degree of littering, the shore type and fishing activities have been taken into account in the classification. The data set used in this study involved information about 71 different water bodies and 9 amphibian species living in them. The results showed that the best average classification accuracy was obtained with the multilayer perceptron neural network.

  18. A Novel Intra-body Sensor for Vaginal Temperature Monitoring

    OpenAIRE

    Binod Vaidya; João Caldeira; Rodrigues, Joel J. P. C.

    2009-01-01

    Over the years some medical studies have tried to better understand the internal behavior of human beings. Many researchers in this domain have been striving to find relationships between intra-vaginal temperature and certain female health conditions, such as ovulation and fertile period since woman’s intra-vaginal temperature is one of the body parameters most preferred in such studies. However, due to lack of a appropriate technology, medical research devoted to studying correlations of suc...

  19. Modelling global fresh surface water temperature

    OpenAIRE

    Beek, L.P.H. van; Eikelboom, T.; van Vliet, M.T.H.; M. F. P. Bierkens

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentration and transport, water quality parameters (e.g. pH, nitrogen, phosphor, dissolved oxygen), chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathoge...

  20. Influence of body temperature on the development of fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    1999-01-01

    the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40.1-40.2°C, muscle...... (all P muscle temperature (40.1-40.3 and 40.7-40.9°C, respectively), but with significantly different skin temperature (38.4 ± 0.4 vs. 35.6 ± 0.2°C during high vs. low rate of heat storage......We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature...

  1. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    Science.gov (United States)

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. PMID:25965013

  2. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    Science.gov (United States)

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-01

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations. PMID:26779953

  3. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    Science.gov (United States)

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-01

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  4. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  5. Cardiovascular and metabolic responses to tap water ingestion in young humans: does the water temperature matter?

    OpenAIRE

    Girona, M.; Grasser, Erik Konrad; Abdul G Dulloo; Montani, Jean-Pierre

    2014-01-01

    Aim: Drinking water induces short-term cardiovascular and metabolic changes. These effects are considered to be triggered by gastric distension and osmotic factors, but little is known about the influence of water temperature.Methods: We determined, in a randomized crossover study, the acute cardiovascular and metabolic responses to 500 mL of tap water at 3 °C (cold), 22 °C (room) and 37 °C (body) in 12 young humans to ascertain an effect of water temperature. We measured continuous beat-to-b...

  6. A simple method to predict body temperature of small reptiles from environmental temperature.

    Science.gov (United States)

    Vickers, Mathew; Schwarzkopf, Lin

    2016-05-01

    To study behavioral thermoregulation, it is useful to use thermal sensors and physical models to collect environmental temperatures that are used to predict organism body temperature. Many techniques involve expensive or numerous types of sensors (cast copper models, or temperature, humidity, radiation, and wind speed sensors) to collect the microhabitat data necessary to predict body temperatures. Expense and diversity of requisite sensors can limit sampling resolution and accessibility of these methods. We compare body temperature predictions of small lizards from iButtons, DS18B20 sensors, and simple copper models, in both laboratory and natural conditions. Our aim was to develop an inexpensive yet accurate method for body temperature prediction. Either method was applicable given appropriate parameterization of the heat transfer equation used. The simplest and cheapest method was DS18B20 sensors attached to a small recording computer. There was little if any deficit in precision or accuracy compared to other published methods. We show how the heat transfer equation can be parameterized, and it can also be used to predict body temperature from historically collected data, allowing strong comparisons between current and previous environmental temperatures using the most modern techniques. Our simple method uses very cheap sensors and loggers to extensively sample habitat temperature, improving our understanding of microhabitat structure and thermal variability with respect to small ectotherms. While our method was quite precise, we feel any potential loss in accuracy is offset by the increase in sample resolution, important as it is increasingly apparent that, particularly for small ectotherms, habitat thermal heterogeneity is the strongest influence on transient body temperature. PMID:27252829

  7. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    SUN ShuFen; YAN JinFeng; XIA Nan; LI Qian

    2008-01-01

    Based on a one-dimensional eddy diffusion model, a model to study the water mass and energy exchange between the water body (such as lake and wetland) and the atmosphere is developed, which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of en-ergy caused by temperature stratification into consideration. The model uses en-thalpy instead of temperature as predictive variable, which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model pre-sented here is capable of describing the physical process of water mass and en-ergy between the water body (lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing condi-tions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  8. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on a one-dimensional eddy diffusion model,a model to study the water mass and energy exchange between the water body(such as lake and wetland) and the atmosphere is developed,which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of energy caused by temperature stratification into consideration. The model uses enthalpy instead of temperature as predictive variable,which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model presented here is capable of describing the physical process of water mass and energy between the water body(lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing conditions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  9. Introduction to landscape design elements - water body beauty

    Institute of Scientific and Technical Information of China (English)

    田海蓉

    2014-01-01

    both in classical gardens of piled mountain water or the water in the modern city landscape, is almost no water is not a scene, as an essential element in landscape water body, not only has the aesthetic value, and has the ecological value. This article through to the water landscape characteristics and the importance of this paper, analyzes the form of waterscape, water landscape design in landscape design provides sufficient theoretical basis and the reference material.

  10. Perioperative core body temperatures effect on outcome after colorectal resections.

    Science.gov (United States)

    Geiger, Timothy M; Horst, Sara; Muldoon, Roberta; Wise, Paul E; Enrenfeld, Jesse; Poulose, Ben; Herline, Alan J

    2012-05-01

    The World Health Organization has set a standard of maintaining a core body temperature above 36°C in the perioperative period. The purpose of this study was to examine the relationship between both intraoperative temperature (IOT) and immediate postop core body temperature as it relates to postop complications. A retrospective analysis of a prospective database of patients who underwent an elective segmental colectomy without a stoma, for 3 diagnoses was performed. Six postoperative outcomes were examined: length of stay (LOS), placement of a nasogastric tube, return to the operating room, placement of an interventional drain, diagnosed leak, and surgical site infection (SSI). Statistics were calculated using a two-sample Wilcoxon rank-sum (Mann-Whitney) test. Seventy-nine patients met the inclusion criteria and there were no preoperative differences between the groups (those with a postop complication vs without). LOS > 9 days (36.64°C vs 35.98°C; P = 0.011) and clinical leak (37.06°C vs 35.99°C; P = 0.005) both had a statistically higher average IOT than those who did not. Patients with SSI trended to a higher IOT (36.44°C vs 35.99°C; P = 0.062). When the last IOT recorded was compared with the six outcomes, again length of stay and leak both were statistically significant (P = 0.018, P = 0.012) showing a higher temperature related to a higher complication rate. No other complications were related to IOT, nor did postop temperature relate to complication. In our data, relatively lower IOTs were protective for LOS and clinical leaks, with a trend of lower SSI rates. Further research is needed to fully endorse or refute the absolute recommendations for core body temperature.

  11. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal batt

  12. A comparison of technologies used for estimation of body temperature

    International Nuclear Information System (INIS)

    Body temperature measurement is an important clinical parameter. The performance of a number of non-invasive thermometers was measured by comparing intra- and inter-operator variability (n = 100) and clinical accuracy (n = 61). Variability was elevated in febrile compared to normothermic subjects for axillary and oral electronic contact thermometer measures and a temporal artery thermometer (p < 0.001 for both). Temporal artery thermometry and one mode of an infrared tympanic thermometer demonstrated significant clinical inaccuracy (p < 0.001 for both). Electronic contact thermometer repeatability and reproducibility are highly variable in febrile adults both in the axilla and oral cavity. Infrared thermometry of the skin over the superficial temporal artery is unreliable for measuring core body temperature, particularly in febrile subjects and patients in theatre. The infrared tympanic thermometers tested are acceptable for clinical practice; however, care should be exercised with the different modes of operation offered

  13. Effect of temperature on body temperature and resting metabolic rate in pups of Eothenomys miletus

    Directory of Open Access Journals (Sweden)

    Zhu, Wan-Long

    2013-02-01

    Full Text Available In order to investigate the ability of ambient temperature and thermoregulation in Eothenomys miletus, body temperature and resting metabolic rate (RMR were measured during postnatal development (1-49 day when E. miletus exposed different ambient temperature. The result showed that: body temperature and RMR of pups in E. miletus increased according to the increase of ambient temperature during 1 day to 7 day, showed character of poikilotherms; body temperature of pups were lower in low temperature (5 oC, 10 oC, relatively and RMR increased significantly when day age is 14 day, it indicated that the pups showed a certain degree of thermoregulation in this phase. Its thermoregulation ability developed quickly during 7 day to 14 day. RMR of pups was extreme significantly higher in low temperature than that in other temperature when day age was 21 day, it showed that the pups had some thermoregulation to low temperature stimulation. The RMR of pups was showed increasing trend in high temperature (35 oC when 28 day; on 35 day and 42 day, the thermal neutral zone were 22.5 to 30 oC and approaching its adult level. All of these results indicated that pups of E. miletus in the different growing period had different thermogenesis and energy allocation to maintain stable to body temperature, thermogenesis was weaker in the early phase of postnatal development, most of energy is used to its growth. After pups were weaned, the ability of constant temperature and thermoregulation developed quickly to adjust variations of environment during postnatal development.

  14. Primate body temperature and sleep responses to lower body positive pressure

    Science.gov (United States)

    Edgar, D. M.; Fuller, C. A.

    1984-01-01

    Cephalic fluid shifts, induced by lower body positive pressure (LBPP) are known to influence various physiological systems (i.e., cardiovascular and renal). In earlier experiments, an apparent change in the arousal state of primates in such LBPP conditions was observed. This study was designed to examine the effects of LBPP on arousal state and body temperature level which is normally correlated with sleep. Chair-restrained male squirrel monkeys were exposed to 40 mmHg LBPP for 90-100 minutes between the daytime hours of 13:00-15:00. Each monkey was placed in a specially modified restraint chair to which they were highly trained. Deep body temperature (DBT) was collected from 10 animals. Sleep parameters were obtained from six animals chronically implanted for sleep recording. A video camera was used to observe each animal's apparent state of arousal. LBPP resulted in an approximate 0.9 C decrease in DBT. During video observation, some animals appeared drowsy during LBPP; however, sleep recording revealed no significant changes in the state of arousal. Thus, LBPP is capable of inducing a mild hyperthermia. Further, the mechanisms underlying the observed lowering of body temperature appear to be independent of arousal state.

  15. The Impact Analysis of Water Body Landscape Pattern on Urban Heat Island: A Case Study of Wuhan City

    Directory of Open Access Journals (Sweden)

    Bohan Yang

    2015-01-01

    Full Text Available Based on the LST and the landscape metrics of water body with remote sensing technique and spatial analysis, the relationship between the mean LST and the attributes of water body was revealed via Pearson’s correlation analysis and multiple stepwise regression analysis. Result showed that, in 32 class-based metrics we selected, the proportion of water body, average water body size, the isolation and fragmentation of water body, and other eight metrics have high correlation with the LST. As a resultant force, the quantity, shape, and spatial distribution of water body affect the forming of temperature. We found that the quantity and spatial pattern of city water body could be allocated reasonably to maximize its cooling effect.

  16. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs

    Directory of Open Access Journals (Sweden)

    K.R. Thompson

    2013-10-01

    Full Text Available This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT while dogs in group W received warmed (W irrigation fluid (36oC. A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1 pre-anaesthetic examination, (T2 arrival into theatre, (T3 end of surgery and (T4 arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1 and return to the recovery suite (T4 was significant in both groups, with a fall of 1.06±0.58oC (p<0.001 in group RT and 1.53±0.76oC (p<0.001 group W. There was no significant difference between the groups. At the end of surgery (T3 4/19 (21.1% of dogs were hypothermic (<37oC. The addition of warmed irrigation fluids to a temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses.

  17. Development of a Model for Water and Heat Exchange Between the Atmosphere and a Water Body

    Institute of Scientific and Technical Information of China (English)

    SUN Shufen; YAN Jinfeng; XIA Nan; SUN Changhai

    2007-01-01

    A model for studying the heat and mass exchange between the atmosphere and a water body is developed,in which the phase change process of water freezing in winter and melting in summer and the function of the convective mixing process are taken into consideration. The model uses enthalpy rather than temperature as the predictive variable. It helps to set up governing equations more concisely, to deal with the phase change process more easily, and make the numerical scheme simpler. The model is verified by observed data from Lake Kinneret for a non-frozen lake in summer time, and Lake Lower Two Medicine for a frozen lake in winter time. Reasonably good agreements between the model simulations and observed data indicate that the model can serve as a component for a water body in a land surface model. In order to more efficiently apply the scheme in a climate system model, a sensitivity study of various division schemes with less layers in the vertical direction in the water body is conducted. The results of the study show that the division with around 10 vertical layers could produce a prediction accuracy that is comparable to the fine division with around 40 layers.

  18. EFFECT OF AMBIENT TEMPERATURE ON BODY TEMPERATURE AND REST METABOLIC RATE IN APODEMUS CHEVRIERI DURING POSTNATAL DEVELOPMENT

    OpenAIRE

    Zhu Wan-long; Sun Shu-ran; Ge Fang; Sun Cong-nan; Zhang Lin; Wang Zheng-kun

    2014-01-01

    In order to investigate the ability of constant temperature and thermoregulation in Apodemus chevrieri, body temperature and rest metabolic rate (RMR) were measured during postnatal development (1~42 day) when the A. chevrieri exposed different ambient temperature. The result showed that: body temperature and RMR of pups in A. chevrieri increased according to the increase of ambient temperature during 1 day to 7 day, showed character of poikilotherms; body temperature of pups were lower in lo...

  19. Effective body water and body mass changes during summer ultra-endurance road cycling.

    Science.gov (United States)

    Armstrong, Lawrence E; Johnson, Evan C; Ganio, Matthew S; Judelson, Daniel A; Vingren, Jakob L; Kupchak, Brian R; Kunces, Laura J; Muñoz, Colleen X; McKenzie, Amy L; Williamson, Keith H

    2015-01-01

    Because body mass change (ΔMb) does not represent all water losses and gains, the present field investigation determined if (a) ΔMb equalled the net effective body water change during ultra-endurance exercise and (b) ground speed and exercise duration influenced these variables. Thirty-two male cyclists (age range, 35-52 years) completed a 164-km event in a hot environment, were retrospectively triplet matched and placed into one of three groups based on exercise duration (4.8, 6.3, 9.6 h). Net effective body water loss was computed from measurements (body mass, total fluid intake and urine excreted) and calculations (water evolved and mass loss due to substrate oxidation, solid food mass and sweat loss), including (ΔEBWgly) and excluding (ΔEBW) water bound to glycogen. With all cyclists combined, the mean ΔMb (i.e. loss) was greater than that of ΔEBWgly by 1200 ± 200 g (P = 1.4 × 10(-18)), was similar to ΔEBW (difference, 0 ± 200 g; P = .21) and was strongly correlated with both (R(2) = .98). Analysis of equivalence indicated that ΔMb was not equivalent to ΔEBWgly, but was equivalent to ΔEBW. Due to measurement complexity, we concluded that (a) athletes will not calculate the effective body water calculations routinely and (b) body mass change remains a useful field-expedient estimate of net effective body water change.

  20. NOAA NDBC SOS - sea_water_temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_temperature data. Because of the nature of SOS requests,...

  1. NOAA NOS SOS, EXPERIMENTAL - Water Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water temperature data. *These services are for testing and...

  2. Prediction of Core Body Temperature from Multiple Variables.

    Science.gov (United States)

    Richmond, Victoria L; Davey, Sarah; Griggs, Katy; Havenith, George

    2015-11-01

    This paper aims to improve the prediction of rectal temperature (T re) from insulated skin temperature (T is) and micro-climate temperature (T mc) previously reported (Richmond et al., Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing. Physiol Meas 2013; 34:1531-43.) using additional physiological and/or environmental variables, under several clothing and climatic conditions. Twelve male (25.8±5.1 years; 73.6±11.5kg; 178±6cm) and nine female (24.2±5.1 years; 62.4±11.5kg; 169±3cm) volunteers completed six trials, each consisting of two 40-min periods of treadmill walking separated by a 20-min rest, wearing permeable or impermeable clothing, under neutral (25°C, 50%), moderate (35°C, 35%), and hot (40°C, 25%) conditions, with and without solar radiation (600W m(-2)). Participants were measured for heart rate (HR) (Polar, Finland), skin temperature (T s) at 11 sites, T is (Grant, Cambridge, UK), and breathing rate (f) (Hidalgo, Cambridge, UK). T mc and relative humidity were measured within the clothing. T re was monitored as the 'gold standard' measure of T c for industrial or military applications using a 10cm flexible probe (Grant, Cambridge, UK). A stepwise multiple regression analysis was run to determine which of 30 variables (T is, T s at 11 sites, HR, f, T mc, temperature, and humidity inside the clothing front and back, body mass, age, body fat, sex, clothing, Thermal comfort, sensation and perception, and sweat rate) were the strongest on which to base the model. Using a bootstrap methodology to develop the equation, the best model in terms of practicality and validity included T is, T mc, HR, and 'work' (0 = rest; 1 = exercise), predicting T re with a standard error of the estimate of 0.27°C and adjusted r (2) of 0.86. The sensitivity and specificity for predicting individuals who reached 39°C was 97 and 85%, respectively. Insulated skin temperature was the most important individual

  3. Implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes;

    thermometer. This work, however, can be quite time consuming and laborious, and further compromising the immediate well-fare of the pig, when restraining of the individual animal is necessary. Therefore, an electronic body monitoring system using implantable microchip transponders for measuring peripheral...... body temperature was tested, in order to evaluate the utility and reliability of this tool, in domestic pigs. The system is presently used and well optimized in small laboratory animals [1, 2]. We tested the microchip transponders during experimental infection of pigs with classical swine fever virus...... microchip transponder was injected deep subcutaneously by the left ear base of each individual. The transponder was before insertion programmed with ID identical to the individual pig’s ear tag number. The pigs were randomly divided into 3 groups: one group placebo-infected and two groups virus...

  4. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  5. Importance of body-water circulation for body-heat dissipation in hot-humid climates: a distinctive body-water circulation in swamp buffaloes

    Directory of Open Access Journals (Sweden)

    S. Chanpongsang

    2010-02-01

    Full Text Available Thermo-regulation in swamp buffaloes has been investigated as an adaptive system to hot-humid climates, and several distinctive physiological responses were noted. When rectal temperature increased in hot conditions, blood volume, blood flow to the skin surface and skin temperature markedly increased in buffaloes relatively to cattle. On the other hand, the correlation between blood volume and plasma concentration of arginine vasopressin (AVP was compared between buffaloes and cattle under dehydration. Although plasma AVP in cattle increased immediately for reducing urine volume against a decrease in blood volume as well as the response observed in most animal species, the increase in plasma AVP was delayed in buffaloes, even after a large decrease in blood volume. In buffaloes, a marked increase in blood volume facilitated the dissipation of excess heat from the skin surface during wallowing. In addition, the change in plasma AVP observed in buffaloes was consistent with that of other animals living in habitats with the high availability of water. These results suggest that the thermo-regulatory system in buffaloes accelerates body-water circulation internally and externally. This system may be adaptive for heat dissipation in hot-humid climates, where an abundance of water is common.

  6. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    OpenAIRE

    A. P. Nesenchuk; T. V. Ryzhova; O. F. Kraetskaya; S. S. Коvaliov; A. V. Begliak

    2014-01-01

    The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace) makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  7. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2011-01-01

    Full Text Available The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  8. Dust Ejection from Planetary Bodies by Temperature Gradients: Laboratory Experiments

    CERN Document Server

    Kelling, Thorben; Kocifaj, Miroslav; Klacka, Jozef; Reiss, Dennis

    2011-01-01

    Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/(m*m) and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edges or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg/s for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which ...

  9. Influence of body temperature on the development of fatigue during prolonged exercise in the heat.

    Science.gov (United States)

    González-Alonso, J; Teller, C; Andersen, S L; Jensen, F B; Hyldig, T; Nielsen, B

    1999-03-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in

  10. Validation of Geoland2 small water bodies product: methodological overview

    Science.gov (United States)

    Schlaffer, S.; Kidd, R. A.; Haas, E. M.; Wagner, W.

    2012-04-01

    Remote sensing products covering the dynamics of small water bodies are important for diverse applications such as hydrology, monitoring of endangered wetlands and natural resources management. The goal of this study is to provide a scientific validation of the BioPar Water Bodies demonstration product derived from SPOT-VEGETATION data within the framework of the EU-funded project GMES-Geoland2. The demonstration product covers Africa during a time span of 1.5 years with a spatial resolution of 1 km and a temporal resolution of 10 days. A description of the product and the underlying algorithms is given in this paper. The validation effort described here is in agreement with level 1 of the validation methodology proposed by the CEOS (Committee on Earth Observation Satellites) Working Group on Calibration and Validation. In order to provide an independent dataset for validation, time series from the Advanced Synthetic Aperture Radar (ASAR) onboard ESA's ENVISAT are processed and analysed. Radar data offer a data source which is fundamentally different from the optical data acquired by SPOT-VEGETATION. Time series acquired by ASAR in Wide Swath (WS) mode with a resolution of 150 m have been successfully used to estimate flood extent in boreal and arctic regions. Water bodies cause incoming microwave radiation to be reflected away from the sensor so that they show up as dark areas in the resulting imagery. In a first step, a synthesis map is produced showing water bodies which persisted at least during half of the validation period. The ability of the BioPar product to detect these water bodies is then tested on a number of sites scattered throughout Sub-Saharan Africa. The original approach for water bodies detection with ASAR, a simple thresholding, proved insufficient due to the sparse coverage of ASAR WS data at low latitudes and the occurrence of very dry soil surfaces in semi-arid climates which can be confused with water bodies when using such a simple

  11. Downscaling MODIS Surface Reflectance to Improve Water Body Extraction

    Directory of Open Access Journals (Sweden)

    Xianghong Che

    2015-01-01

    Full Text Available Inland surface water is essential to terrestrial ecosystems and human civilization. Accurate mapping of surface water dynamic is vital for both scientific research and policy-driven applications. MODIS provides twice observation per day, making it perfect for monitoring temporal water dynamic. Although MODIS provides two bands at 250 m resolution, accurately deriving water area always depends on observations from the spectral bands with 500 m resolution, which limits its discrimination ability over small lakes and rivers. The paper presents an automated method for downscaling the 500 m MODIS surface reflectance (SR to 250 m to improve the spatial discrimination of water body extraction. The method has been tested at Co Ngoin and Co Bangkog in Qinghai-Tibet plateau. The downscaled SR and the derived water bodies were compared to SR and water body mapped from Landsat-7 ETM+ images were acquired on the same date. Consistency metrics were calculated to measure their agreement and disagreement. The comparisons indicated that the downscaled MODIS SR showed significant improvement over the original 500 m observations when compared with Landsat-7 ETM+ SR, and both commission and omission errors were reduced in the derived 250 m water bodies.

  12. Keratinophilic fungi in various types of water bodies

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available The keratinophilic fungi in various types of water bodies (slough. pond. beach pool. two lakes and two rivers were studied. Samples of water were collected every other month for bydrochemical analysis and once a month (1989-1990 in order to determine the fungus content. Human hair, snippings of finger-nails, chips of hoofs, feathers and snake exuviae were used as bait. Twenty-five species of keratinophilic fungi were found in various types of water bodies. Hyphochytrium catenoides, Aphanomyces stellatus, Leptolegniella caudala and Achlya oligacantha represent new records as koratinophilic fungi.

  13. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    International Nuclear Information System (INIS)

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water

  14. Low body temperature governs the decline of circulating lymphocytes during hibernation through sphingosine-1-phosphate

    NARCIS (Netherlands)

    Bouma, Hjalmar R.; Kroese, Frans G. M.; Kok, Jan Willem; Talaei, Fatimeh; Boerema, Ate S.; Herwig, Annika; Draghiciu, Oana; van Buiten, Azuwerus; Epema, Anne H.; van Dam, Annie; Strijkstra, Arjen M.; Henning, Robert H.

    2011-01-01

    Hibernation is an energy-conserving behavior consisting of periods of inhibited metabolism ('torpor') with lowered body temperature. Torpor bouts are interspersed by arousal periods, in which metabolism increases and body temperature returns to euthermia. In deep torpor, the body temperature typical

  15. The effect of stress on core and peripheral body temperature in humans

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; Penning, Renske; Hellhammer, Juliane; Verster, Joris C.; Klaessens, John H. G. M.; Olivier, Berend; Kalkman, Cor J.

    2013-01-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature u

  16. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  17. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  18. On autumn zooplankton of Semipalatinsk test site water-bodies

    International Nuclear Information System (INIS)

    The autumn zooplankton in six water-bodies with mineralization diapason from 0.27 to 343.0 g/l was investigated. The species composition and number of structural characteristics were determined. The state of the zooplankton community by biodiversity and development indices is determined as normal. The observed increase of body dimensions in some species of Rotatoria and Microcrustacea requires the additional research. (author)

  19. Relationship between the Water Body Chlorophyll-a and Water Quality Factors of Wetlands Baiguishan Reservoir

    Institute of Scientific and Technical Information of China (English)

    SHE Oiu-sheng; TIAN Xun; WANG Guo-zhen; JI Xiao-cun; LI Jiu-xuan; ZHAO Zhen

    2011-01-01

    [ Objective] The aim was to explore the relationship between water body Chlorophyll-a and water quality factors of wetlands Baiguishan reservoir. [ Method] Chlorophyll-a and water quality factors of water quality of Wetlands BaiGuishan Reservoir was studied, the analysis of the relationship on water quality of Wetlands Baiguishan Reservoir was made by use of trophic status indices and SPSS17.0 statistical analysis.[ Result] Total phosphorus was an irnportant factor of influence Chlorophyll-a in reservoir, water body had slight eutrophication phenomenon in reservoir of July to October in 2010. [ Conclusion] Comprehensive management should be strengthened so as to improve the water quality of Baiguishan wetland.

  20. Evolution and plasticity of body size of Drosophila in response to temperature.

    OpenAIRE

    Calboli, F. C. F.

    2004-01-01

    Ectotherm body size is positively correlated with latitude, giving rise to body size clines, found in different continents. Ectotherm body size also shows a developmental response to temperature, increasing at lower developmental temperatures. To investigate the effects of temperature in the evolution and plasticity of body size dines, I used two species of the genus Drosophila as model organisms. To investigate the cellular mechanism underlying the evolution of wing size clines the two newly...

  1. Lidar point density analysis: implications for identifying water bodies

    Science.gov (United States)

    Worstell, Bruce B.; Poppenga, Sandra; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  2. Electrocatalysts for medium temperature PEM water electrolysis

    OpenAIRE

    Zlotorowicz, Agnieszka

    2013-01-01

    The main subject of this PhD thesis is the fabrication and investigation the electrochemical behavior of anode catalysts appropriate for medium- temperature proton exchange membrane (PEM) water electrolysis (WE) operating in the range 100 oC through 200 oC. These catalysts were based on metal oxides, primarily IrO2 and its mixtures with some other oxides, and investigated as oxygen evolution electrocatalysts. A central research challenge in this project has been to understand the interaction ...

  3. Critical body temperature profile as indicator of heat stress vulnerability.

    Science.gov (United States)

    Nag, P K; Dutta, Priya; Nag, Anjali

    2013-01-01

    Extreme climatic heat is a major health concern among workers in different occupational pursuits. People in the regions of western India confront frequent heat emergencies, with great risk of mortality and morbidity. Taking account of informal occupational groups (foundry and sheet metal, FSM, N=587; ceramic and pottery, CP, N=426; stone quarry, SQ, N=934) in different seasons, the study examined the body temperature profiling as indicator of vulnerability to environmental warmth. About 3/4th of 1947 workers had habitual exposure at 30.1-35.5°C WBGT and ~10% of them were exposed to 38.2-41.6°C WBGT. The responses of FSM, CP and SQ workers indicated prevailing high heat load during summer and post-monsoon months. Local skin temperatures (T(sk)) varied significantly in different seasons, with consistently high level in summer, followed by post-monsoon and winter months. The mean difference of T(cr) and T(sk) was ~5.2°C up to 26.7°C WBGT, and ~2.5°C beyond 30°C WBGT. Nearly 90% of the workers had T(cr) within 38°C, suggesting their self-adjustment strategy in pacing work and regulating T(cr). In extreme heat, the limit of peripheral adjustability (35-36°C T(sk)) and the narrowing down of the difference between T(cr) and T(sk) might indicate the limit of one's ability to withstand heat exposure. PMID:23411761

  4. Model for the movement and distribution of fish in a body of water

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.

    1978-06-01

    A Monte Carlo mathematical model tracks the movement of fish in a body of water (e.g., a pond or reservoir) which is represented by a two-dimensional grid. For the case of a long, narrow reservoir, depth and length along the reservoir are the logical choices for coordinate axes. In the model, it is assumed that the movement of fish is influenced by gradients of temperature and dissolved oxygen, as well as food availability and habitat preference. The fish takes one spatial ''step'' at a time, the direction being randomly selected, but also biased by the above factors. In trial simulations, a large number of simulated fish were allowed to distribute themselves in a hypothetical body of water. Assuming only temperature was influencing the movements of the fish, the resultant distributions are compared with experimental data on temperature preferences.

  5. Water Temperature Controls in Arctic Basins

    Science.gov (United States)

    Neilson, B. T.; King, T.; Schmadel, N. M.; Heavilin, J.; Overbeck, L. D.; Kane, D. L.

    2015-12-01

    Understanding the dynamics of heat transfer mechanisms in arctic rivers is critical for forecasting the effects of climate change on river temperatures. Building on the collection of key data and a dynamic river temperature model that accounts for heat fluxes found important in temperate climates, we were able to identify portions of an arctic basin and hydrologic conditions for which heat flux dynamics differ from those found in temperate systems. During the open water season, similarities in heat flux influences include dominant shortwave radiation, greater surface exchanges than bed exchanges and greater influences of lateral inflows in the lower order portions of the basin. Differing from temperate systems, the heat flux contribution of net longwave radiation is consistently negative and both latent heat and bed friction are negligible. Despite these differences, accounting for the bulk lateral inflows from the basin resulted in accurate predictions during higher flows. Under lower flow conditions, however, lateral inflows were limited and resulting temperature predictions were poor. Work in a temperate system demonstrated that spatial variability in hydraulics influencing stream residence times are necessary for accurate river temperature predictions. Because heat fluxes at the air-water interface become increasingly dominant at low flows and these fluxes are sensitive to parameters representing the water surface area to volume ratio, similar to temperate systems, we expect that high-resolution representations of stream geometry and hydraulics are important both for accurate flux and residence time estimates. Furthermore, given the highly dynamic nature of flows in arctic basins, we anticipate that detailed information regarding spatially variable hydraulic characteristics (e.g., channel width, depth, and velocity) is critical for accurate predictions in low arctic rivers through a large range of flow conditions. Upon identifying key processes controlling

  6. Oblique water entry of a three dimensional body

    Directory of Open Access Journals (Sweden)

    Scolan Yves-Marie

    2014-12-01

    Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.

  7. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  8. 21 CFR 880.5560 - Temperature regulated water mattress.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature... heating and water circulating components, and an optional cooling component. The temperature control...

  9. Computer program to plot isotherms in bodies of water. Environmental Sciences Division publication No. 1199

    International Nuclear Information System (INIS)

    For purposes of graphic display it is convenient to represent temperature versus depth data in bodies of water in the form of isotherms (lines of equal temperature). Because it can be tedious to draw such lines by hand from raw data, a computer code has been devised to plot these lines automatically. The procedure assumes that the temperature can be linearly interpolated between the points at which measurements are taken. Details of the code are explained by means of examples. With minor changes, the program can be used to plot isoclines of other environmental parameters

  10. Computer program to plot isotherms in bodies of water. Environmental Sciences Division publication No. 1199

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.

    1978-06-01

    For purposes of graphic display it is convenient to represent temperature versus depth data in bodies of water in the form of isotherms (lines of equal temperature). Because it can be tedious to draw such lines by hand from raw data, a computer code has been devised to plot these lines automatically. The procedure assumes that the temperature can be linearly interpolated between the points at which measurements are taken. Details of the code are explained by means of examples. With minor changes, the program can be used to plot isoclines of other environmental parameters.

  11. Estimation of the temperature of a radiating body by measuring the stationary temperatures of a thermometer placed at different distances

    Science.gov (United States)

    Barragán, V. M.; Villaluenga, J. P. G.; Izquierdo-Gil, M. A.; Pérez-Cordón, R.

    2016-07-01

    This paper presents a novel method for determining the temperature of a radiating body. The experimental method requires only very common instrumentation. It is based on the measurement of the stationary temperature of an object placed at different distances from the body and on the application of the energy balance equation in a stationary state. The method allows one to obtain the temperature of an inaccessible radiating body when radiation measurements are not available. The method has been applied to the determination of the filament temperature of incandescent lamps of different powers.

  12. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  13. Study of physico-chemical characteristics of water bodies around Jaipur.

    Science.gov (United States)

    Srivastava, Neera; Agrawal, Meena; Tyagi, Anupama

    2003-04-01

    The present study has been undertaken to evaluate physico-chemical parameters (pH, temperature, dissolved oxygen, free carbon dioxide, alkalinity and hardness) and zinc concentration in water bodies in and around Jaipur. Water samples from Jalmachal Lake, Nevta Lake, Amer Lake and Ramgarh Lake were analysed. Results reveal that the water of Jalmahal Lake is most polluted due to high pH, hardness, alkalinity, free carbon dioxide, zinc content, and a low level of dissolved oxygen. Contrarily Ramgarh Lake is least polluted, as it has high dissolved oxygen and low pH, alkalinity, free carbon dioxide, hardness and zinc content.

  14. Mechanisms of temperature-dependent swimming: the importance of physics, physiology and body size in determining protist swimming speed.

    Science.gov (United States)

    Beveridge, Oliver S; Petchey, Owen L; Humphries, Stuart

    2010-12-15

    Body temperatures and thus physiological rates of poikilothermic organisms are determined by environmental temperature. The power an organism has available for swimming is largely dependent on physiological rates and thus body temperature. However, retarding forces such as drag are contingent on the temperature-dependent physical properties of water and on an organism's size. Consequently, the swimming ability of poikilotherms is highly temperature dependent. The importance of the temperature-dependent physical properties of water (e.g. viscosity) in determining swimming speed is poorly understood. Here we propose a semi-mechanistic model to describe how biological rates, size and the physics of the environment contribute to the temperature dependency of microbial swimming speed. Data on the swimming speed and size of a predatory protist and its protist prey were collected and used to test our model. Data were collected by manipulating both the temperature and the viscosity (independently of temperature) of the organism's environment. Protists were either cultured in their test environment (for several generations) or rapidly exposed to their test environment to assess their ability to adapt or acclimate to treatments. Both biological rates and the physics of the environment were predicted to and observed to contribute to the swimming speed of protists. Body size was not temperature dependent, and protists expressed some ability to acclimate to changes in either temperature or viscosity. Overall, using our parameter estimates and novel model, we are able to suggest that 30 to 40% (depending on species) of the response in swimming speed associated with a reduction in temperature from 20 to 5°C is due to viscosity. Because encounter rates between protist predators and their prey are determined by swimming speed, temperature- and viscosity-dependent swimming speeds are likely to result in temperature- and viscosity-dependent trophic interactions. PMID:21113003

  15. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    Science.gov (United States)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  16. Being cool: how body temperature influences ageing and longevity

    OpenAIRE

    Keil, Gerald; Cummings, Elizabeth; de Magalhães, João Pedro

    2015-01-01

    Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifes...

  17. HYDRODYNAMIC BEHAVIOR OF AN UNDERWATER MOVING BODY AFTER WATER ENTRY

    Institute of Scientific and Technical Information of China (English)

    施红辉; 高见卓也

    2001-01-01

    An experimental study was conducted to investigate the vater entry phenomenon. A facility was designed to carry out the tests with the entry velocities of around 352 m/s. Visualization, pressure measurement, velocity measurement and underwater impact test were performed to investigate the hydroballistic behavior of the underwater moving body, the underwater flow field, the supercavitation,etc.. This study shows that the motion of a high-speed underwater body is strongly three-dimensional and chaotic. Furthermore, it is found that the distribution of the trajectory deflection of the underwater projectile depends on the depth of water. It is also found by measuring the deformation on a witness plate submerged in water,that the impact energy of an underwater projectile is reduced as it penetrates deeper into vater.

  18. Modeling of highly brines transport in large water bodies

    Science.gov (United States)

    Lyubimova, T. P.; Lepikhin, A. P.; Parshakova, Y. N.; Tiunov, A. A.

    2010-05-01

    The paper deals with the numerical modeling of a dilution and transport of highly brines in large water bodies taking into account the density stratification effects. This problem has an exceptional importance for the guarantee of ecological security of the Kama Reservoir in the conditions of extending exploitation of Verhnekamsk deposit of potassium and magnesium salts - one of the largest in the world. The output of million of tones of the potassium fertilizer is accompanied by the producing of the same quantity of highly brines demanding utilization. With the existing technologies the desalination of such quantity of brines is extremely energy-capacious and almost inapplicable. That is why main way for the brine utilization is the release into the surface water bodies or underground water-bearing horizons. Since the uncertainty level in the parameter setting for underground water-bearing horizons is higher than that for the surface water bodies, under the same or close conditions the release into the surface water bodies is considerably less dangerous. The main water body able to assimilate such huge amount of the removed brines is the upper part of the Kama Reservoir located within the Solikamsk-Berezniki industrial centre. The wastewater arriving from this centre make a decisive contribution to the formation of hydrochemical regime of Kama river. We suggested two-dimensional imitational hydrodynamical model allowing to determine the possible pollution zones depending on the flow rate and concentration of pollutant, flow rate and water level in the Kama river and wind characteristics in the zone of pollutant discharge. This model allows not only to calculate the distribution of pollution zones for various pollutant sources but also to estimate the consequences of emergencies. The Kama river near the Solikamsk-Berezniki industrial centre has complex morphometry. For the complete and efficient accounting for the morphometry peculiarities the non-linear orthogonal

  19. Elevation Contour Analysis and Water body Extraction for Finding Water Scarcity Locations using DEM

    OpenAIRE

    Kodge, B. G.; P.S Hiremath

    2014-01-01

    The presents study was aimed to create new methods for extraction and analysis of land elevation contour lines, automatic extraction of water bodies (river basins and lakes), from the digital elevation models (DEM) of a test area. And extraction of villages which are fell under critical water scarcity regions for agriculture and drinking water with respect to their elevation data and available natural water resources.

  20. GFR normalized to total body water allows comparisons across genders and body sizes.

    Science.gov (United States)

    Eriksen, Bjørn O; Melsom, Toralf; Mathisen, Ulla D; Jenssen, Trond G; Solbu, Marit D; Toft, Ingrid

    2011-08-01

    The normalization of GFR to a standardized body-surface area of 1.73 m(2) impedes comparison of GFR across individuals of different genders, heights, or weights. Ideally, GFR should be normalized to a parameter that best explains variation in GFR. Here, we measured true GFR by iohexol clearance in a representative sample of 1627 individuals from the general population who did not have diabetes, cardiovascular disease, or kidney disease. We also estimated total body water (TBW), extracellular fluid volume, lean body mass, liver volume, metabolic rate, and body-surface area. We compared two methods of normalizing GFR to these physiologic variables: (1) the conventional method of scaling GFR to each physiologic variable by simple division and (2) a method based on regression of the GFR on each variable. TBW explained a higher proportion of the variation in GFR than the other physiologic variables. GFR adjusted for TBW by the regression method exhibited less dependence on gender, height, and weight compared with the other physiologic variables. Thus, adjusting GFR for TBW by the regression method allows direct comparisons between individuals of different genders, weights, and heights. We propose that regression-based normalization of GFR to a standardized TBW of 40 L should replace the current practice of normalizing GFR to 1.73 m(2) of body-surface area.

  1. Simulation of water temperature distribution in Fenhe Reservoir

    Institute of Scientific and Technical Information of China (English)

    Shu-fang FAN; Min-quan FENG; Zhao LIU

    2009-01-01

    In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.

  2. 21 CFR 1250.42 - Water systems; constant temperature bottles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water systems; constant temperature bottles. 1250...; constant temperature bottles. (a) The water system, whether of the pressure or gravity type, shall be... at all times as to prevent contamination of the water. (e) Constant temperature bottles and...

  3. The effect of lower body cooling on the changes in three core temperature indices

    International Nuclear Information System (INIS)

    Rectal (Tre), ear canal (Tear) and esophageal (Tes) temperatures have been used in the literature as core temperature indices in humans. The aim of the study was to investigate if localized lower body cooling would have a different effect on each of these measurements. We hypothesized that prolonged lower body surface cooling will result in a localized cooling effect for the rectal temperature not reflected in the other core measurement sites. Twelve participants (mean ± SD; 26.8 ± 6.0 years; 82.6 ± 13.9 kg; 179 ± 10 cm, BSA = 2.00 ± 0.21 m2) attended one experimental session consisting of sitting on a rubberized raft floor surface suspended in 5 °C water in a thermoneutral air environment (∼21.5 ± 0.5 °C). Experimental conditions were (a) a baseline phase during which participants were seated for 15 min in an upright position on an insulated pad (1.408 K . m2 . W−1); (b) a cooling phase during which participants were exposed to the cooling surface for 2 h, and (c) an insulation phase during which the baseline condition was repeated for 1 h. Temperature data were collected at 1 Hz, reduced to 1 min averages, and transformed from absolute values to a change in temperature from baseline (15 min average). Metabolic data were collected breath-by-breath and integrated over the same temperature epoch. Within the baseline phase no significant change was found between the three indices of core temperature. By the end of the cooling phase, Tre was significantly lower (Δ = −1.0 ± 0.4 °C) from baseline values than from Tear (Δ = −0.3 ± 0.3 °C) and Tes (Δ = −0.1 ± 0.3 °C). Tre continued to decrease during the insulation phase from Δ −1.0 ± 0.4 °C to as low as Δ −1.4 ± 0.5 °C. By the end of the insulation phase Tre had slightly risen back to Δ −1.3 ± 0.4 °C but remained significantly different from baseline values and from the other two core measures. Metabolic data showed no variation throughout the experiment. In conclusion, the local

  4. Hydrologic, water-quality, and biological data for three water bodies, Texas Gulf Coastal Plain, 2000-2002

    Science.gov (United States)

    East, Jeffery W.; Hogan, Jennifer L.

    2003-01-01

    During July 2000?September 2002, the U.S. Geological Survey collected and analyzed site-specific hydrologic, water-quality, and biological data in Dickinson Bayou, Armand Bayou, and the San Bernard River in the Gulf Coastal Plain of Texas. Segments of the three water bodies are on the State 303(d) list. Continuous monitoring showed that seasonal variations in water temperature, specific conductance, pH, and dissolved oxygen in all three water bodies were similar to those observed at U.S. Geological Survey stations along the Texas Gulf Coast. In particular, water temperature and dissolved oxygen are inversely related. Periods of smallest dissolved oxygen concentrations generally occurred in the summer months when water temperatures were highest. Water-quality monitors were deployed at three depths in Dickinson Bayou. For periodically collected nutrients, the median concentration of ammonia nitrogen was largest in Dickinson Bayou and smallest in the San Bernard River. Median concentrations of ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, and orthophosphorus were largest in Armand Bayou. The median concentration of each of the four nutrients was larger for high-flow samples than for low-flow samples. The largest individual nutrient concentrations occurred during spring and summer. Both median and individual concentrations of chlorophyll-a were largest for Armand Bayou; median concentrations of pheophyton were similar for all three water bodies, and individual concentrations were largest for Armand Bayou. Median densities of fecal coliform bacteria and E. coli bacteria were similar for all three water bodies. Flow conditions had minimal effect on concentrations of chlorophyll-a and pheophytin, but the largest bacteria densities were in samples collected during high flow. Yields of most nutrients tended to increase with distance downstream. Yields in the San Bernard River and tributaries were less than yields in Dickinson and Armand Bayous. For Dickinson

  5. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    Science.gov (United States)

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  6. Veterinary Forensic Pathology: Drowning and Bodies Recovered From Water.

    Science.gov (United States)

    McEwen, B J; Gerdin, J

    2016-09-01

    Determining the cause of death in animals recovered from bodies of water, swimming pools, or other water-containing vessels is challenging. Animals recovered from water may or may not have drowned. The diagnosis of drowning is usually one of exclusion, requiring information from the crime scene, recovery scene, the medical history or reliable witness accounts. While there are characteristic macroscopic and microscopic lesions of drowning, none are specific and are dependent on the volume and tonicity of the drowning medium. Beyond interpreting the postmortem findings, the court may ask pathologists to comment on the behavioral and welfare implications of drowning. This requires an understanding of the drowning process, which is a complex series of sequential, concurrent, and overlapping cardiorespiratory reflexes, electrolyte and blood gas abnormalities, aspiration, physical exhaustion, and breathlessness eventually culminating in death. This review addresses the mechanisms, lesions, and diagnostic issues associated with drowning in nonaquatic companion animals. PMID:26926081

  7. Using Landsat image time series to study a small water body in Northern Spain.

    Science.gov (United States)

    Chao Rodríguez, Y; el Anjoumi, A; Domínguez Gómez, J A; Rodríguez Pérez, D; Rico, E

    2014-06-01

    Ramsar Convention and EU Water Framework Directive are two international agreements focused on the conservation and achievement of good ecological and chemical status of wetlands. Wetlands are important ecosystems holding many plant and animal communities. Their environmental status can be characterised by the quality of their water bodies. Water quality can be assessed from biophysical parameters (such as Chlorophyll-a concentration ([Chla]), water surface temperature and transparency) in the deeper or lacustrine zone, or from bioindicators (as submerged aquatic vegetation) in the shallow or palustrine zone. This paper proves the use of Landsat time series to measure the evolution of water quality parameters and the environmental dynamics of a small water body (6.57 ha) in a Ramsar wetland (Arreo Lake in the North of Spain). Our results show that Landsat TM images can be used to describe periodic behaviours such as the water surface temperature or the phenologic state of the submerged vegetation (through normalized difference vegetation index, NDVI) and thus detect anomalous events. We also show how [Chla] and transparency can be measured in the lacustrine zone using Landsat TM images and an algorithm adjusted for mesotrophic Spanish lakes, and the resulting values vary in time in accordance with field measurements (although these were not synchronous with the images). The availability of this algorithm also highlights anomalies in the field data series that are found to be related with the concentration of suspended matter. All this potential of Landsat imagery to monitor small water bodies in wetlands can be used for hindcasting of past evolution of these wetlands (dating back to 1970s) and will be also useful in the future thanks to the Landsat continuity mission and the Operational Land Imager.

  8. Spectral-based inferential measurement of grey-body's temperature

    Science.gov (United States)

    Zheng, Feng; Liu, Liying; Zhu, Lingxi; Huan, Kewei; Li, Ye; Shi, Xiaoguang

    2015-11-01

    Aiming at the problems of temperature measurement and the defects of radiance thermometry theory, one method of spectral-based inferential measurement is proposed, which adopts the Empirical Risk Minimization (ERM) functional model as the temperature measurement model. Then, the radiance thermometry theory and inferential measurement technology are discussed comparatively. Temperatures of some targets, such and tungsten lamp and solar surface, are measured by spectral-based inferential measurement.

  9. Re-designating water bodies in Denmark bypasses the Water Framework Directive objectives

    DEFF Research Database (Denmark)

    Baaner, Lasse

    2015-01-01

    Despite the initially ambitious provisions of the Water Framework Directive (WFD) when it first entered into force, thousands of kilometres of Danish watercourses have now lost their legal protection through the application of the WFD’s provisions concerning the designation of water bodies...

  10. Influence of the Environment on Body Temperature of Racing Greyhounds

    Science.gov (United States)

    McNicholl, Jane; Howarth, Gordon S.; Hazel, Susan J.

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1–3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r2 = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38oC, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures

  11. Influence of the Environment on Body Temperature of Racing Greyhounds.

    Science.gov (United States)

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal

  12. Influence of the Environment on Body Temperature of Racing Greyhounds.

    Science.gov (United States)

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal

  13. On the variability of the Priestley-Taylor coefficient over water bodies

    Science.gov (United States)

    Assouline, Shmuel; Li, Dan; Tyler, Scott; Tanny, Josef; Cohen, Shabtai; Bou-Zeid, Elie; Parlange, Marc; Katul, Gabriel G.

    2016-01-01

    Deviations in the Priestley-Taylor (PT) coefficient αPT from its accepted 1.26 value are analyzed over large lakes, reservoirs, and wetlands where stomatal or soil controls are minimal or absent. The data sets feature wide variations in water body sizes and climatic conditions. Neither surface temperature nor sensible heat flux variations alone, which proved successful in characterizing αPT variations over some crops, explain measured deviations in αPT over water. It is shown that the relative transport efficiency of turbulent heat and water vapor is key to explaining variations in αPT over water surfaces, thereby offering a new perspective over the concept of minimal advection or entrainment introduced by PT. Methods that allow the determination of αPT based on low-frequency sampling (i.e., 0.1 Hz) are then developed and tested, which are usable with standard meteorological sensors that filter some but not all turbulent fluctuations. Using approximations to the Gram determinant inequality, the relative transport efficiency is derived as a function of the correlation coefficient between temperature and water vapor concentration fluctuations (RTq). The proposed approach reasonably explains the measured deviations from the conventional αPT = 1.26 value even when RTq is determined from air temperature and water vapor concentration time series that are Gaussian-filtered and subsampled to a cutoff frequency of 0.1 Hz. Because over water bodies, RTq deviations from unity are often associated with advection and/or entrainment, linkages between αPT and RTq offer both a diagnostic approach to assess their significance and a prognostic approach to correct the 1.26 value when using routine meteorological measurements of temperature and humidity.

  14. Research: Testing of a Novel Portable Body Temperature Conditioner Using a Thermal Manikin.

    Science.gov (United States)

    Heller, Daniel; Heller, Alex; Moujaes, Samir; Williams, Shelley J; Hoffmann, Ryan; Sarkisian, Paul; Khalili, Kaveh; Rockenfeller, Uwe; Browder, Timothy D; Kuhls, Deborah A; Fildes, John J

    2016-01-01

    A battery-operated active cooling/heating device was developed to maintain thermoregulation of trauma victims in austere environments while awaiting evacuation to a hospital for further treatment. The use of a thermal manikin was adopted for this study in order to simulate load testing and evaluate the performance of this novel portable active cooling/heating device for both continuous (external power source) and battery power. The performance of the portable body temperature conditioner (PBTC) was evaluated through cooling/heating fraction tests to analyze the heat transfer between a thermal manikin and circulating water blanket to show consistent performance while operating under battery power. For the cooling/heating fraction tests, the ambient temperature was set to 15°C ± 1°C (heating) and 30°C ± 1°C (cooling). The PBTC water temperature was set to 37°C for the heating mode tests and 15°C for the cooling mode tests. The results showed consistent performance of the PBTC in terms of cooling/heating capacity while operating under both continuous and battery power. The PBTC functioned as intended and shows promise as a portable warming/cooling device for operation in the field. PMID:27632039

  15. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  16. Body temperature measurements in pigs during general anaesthesia.

    Science.gov (United States)

    Musk, G C; Costa, R S; Tuke, J

    2016-04-01

    The aim was to compare rectal, pharyngeal and oesophageal temperature measurements in anaesthetized pigs. Data were compared using the Bland-Altman method, and correlation coefficients and error measures were calculated. Sixty-six sets of data were collected from 16 pigs weighing 16.2 ± 4.2 kg. The bias (and 95% limit of agreement) for rectal and pharyngeal compared with oesophageal temperature were 0.69 (-1.18 to 2.57) ℃ and 0.22 (-0.84 to 1.28) ℃, respectively. The correlation coefficients for rectal and pharyngeal compared with oesophageal temperature were 0.47 and 0.87, respectively. The absolute error for rectal and pharyngeal compared with oesophageal temperature was 0.7 ± 0.9℃ and 0.2 ± 0.5℃, respectively. Pharyngeal temperature measurement may be more suitable than rectal temperature measurement for estimation of oesophageal temperature during general anaesthesia of pigs.

  17. Sleeping body temperatures in 3-4 month old infants.

    OpenAIRE

    Wailoo, M P; Petersen, S A; Whittaker, H.; Goodenough, P

    1989-01-01

    Rectal, skin, and ambient temperatures were continuously recorded overnight from 3-4 month old normal infants in their home cots under conditions of room temperature and wrapping chosen freely by parents. It was found that rectal temperature was above 37 degrees C when infants were put down, but fell rapidly to 36.4 degrees C within one and a half hours, then stabilised for a few hours before rising steadily. This pattern was tied more closely to the time of putting down than time of day. The...

  18. New insulating material in maintenance of body temperature.

    OpenAIRE

    Holland, B M; Bates, A R; Gray, O. P.; Pearson, J F; Wardrop, C. A.

    1985-01-01

    Flectalon, web of aluminised polyvinylchloride fibres, has been formulated to minimise radiant heat losses and to provide conventional insulation. Critical temperature determinations were used to assess the insulating efficacy of this and other swaddling materials in infants. The critical temperature for a baby 2 to 10 days old was 31 degrees C when naked and 23 degrees C when wrapped in a Silver Swaddler or a sheet and two blankets. The use of a quilt made with Thinsulate or Hollofil with a ...

  19. [Pollution hazard for water bodies at oil production].

    Science.gov (United States)

    Zholdakova, Z I; Beliaeva, N I

    2015-01-01

    In the paper there have been summarizes the concepts of the danger of the pollution ofwater bodies in oil production (the most dangerous are reagents used in the drilling, drilling waste, oil and petrochemicals, oil biodestructors. There was shown the danger of the spread of oil pollution. New indices, presenting a hazard during drilling and oil production have been substantiated The tasks aimed to the improvement of the standards and methods of the control of the water pollution by oil, as well as of the documents regulating the conditions of environmental protection during the drilling have been conceived.

  20. Sprectroradiometric characteristics of inland water bodies infestated by Oscillatoria rubescens algae

    Science.gov (United States)

    Ciraolo, Giuseppe; La Loggia, Goffredo; Maltese, Antonino

    2010-10-01

    In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 μgl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in

  1. How to survive and persist in ephemeral water bodies?: the case of sponges (Porifera: Spongillina)

    OpenAIRE

    Manconi,Renata; Cadeddu, Barbara; Padiglia, Andrea; Demurtas, Daniela; Stocchino, Giacinta Angela; Pronzato, Roberto

    2015-01-01

    Ephemeral water bodies are subjected to unforeseeable and extreme fluctuations of environmental conditions constraining biodiversity values. Although data are fragmentary and scattered in the literature sponges are known to be able to colonize temporary/intermittent water bodies.

  2. Integrated Evaluation of Urban Water Bodies for Pollution Abatement Based on Fuzzy Multicriteria Decision Approach

    Directory of Open Access Journals (Sweden)

    Sarfraz Hashim

    2015-01-01

    Full Text Available Today’s ecology is erected with miscellaneous framework. However, numerous sources deteriorate it, such as urban rivers that directly cause the environmental pollution. For chemical pollution abatement from urban water bodies, many techniques were introduced to rehabilitate the water quality of these water bodies. In this research, Bacterial Technology (BT was applied to urban rivers escalating the necessity to control the water pollution in different places (Xuxi River (XXU; Gankeng River (GKS; Xia Zhang River (XZY; Fenghu and Song Yang Rivers (FSR; Jiu Haogang River (JHH in China. For data analysis, the physiochemical parameters such as temperature, chemical oxygen demand (COD, dissolved oxygen (DO, total phosphorus (TP, and ammonia nitrogen (NH3N were determined before and after the treatment. Multicriteria Decision Making (MCDM method was used for relative significance of different water quality on each station, based on fuzzy analytical hierarchy process (FAHP. The overall results revealed that the pollution is exceeding at “JHH” due to the limit of “COD” as critical water quality parameter and after treatment, an abrupt recovery of the rivers compared with the average improved efficiency of nutrients was 79%, 74%, 68%, and 70% of COD, DO, TP, and NH3N, respectively. The color of the river’s water changed to its original form and aquatic living organism appeared with clear effluents from them.

  3. Integrated Evaluation of Urban Water Bodies for Pollution Abatement Based on Fuzzy Multicriteria Decision Approach.

    Science.gov (United States)

    Hashim, Sarfraz; Yuebo, Xie; Saifullah, Muhammad; Nabi Jan, Ramila; Muhetaer, Adila

    2015-01-01

    Today's ecology is erected with miscellaneous framework. However, numerous sources deteriorate it, such as urban rivers that directly cause the environmental pollution. For chemical pollution abatement from urban water bodies, many techniques were introduced to rehabilitate the water quality of these water bodies. In this research, Bacterial Technology (BT) was applied to urban rivers escalating the necessity to control the water pollution in different places (Xuxi River (XXU); Gankeng River (GKS); Xia Zhang River (XZY); Fenghu and Song Yang Rivers (FSR); Jiu Haogang River (JHH)) in China. For data analysis, the physiochemical parameters such as temperature, chemical oxygen demand (COD), dissolved oxygen (DO), total phosphorus (TP), and ammonia nitrogen (NH3N) were determined before and after the treatment. Multicriteria Decision Making (MCDM) method was used for relative significance of different water quality on each station, based on fuzzy analytical hierarchy process (FAHP). The overall results revealed that the pollution is exceeding at "JHH" due to the limit of "COD" as critical water quality parameter and after treatment, an abrupt recovery of the rivers compared with the average improved efficiency of nutrients was 79%, 74%, 68%, and 70% of COD, DO, TP, and NH3N, respectively. The color of the river's water changed to its original form and aquatic living organism appeared with clear effluents from them. PMID:26516623

  4. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Science.gov (United States)

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  5. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  6. Bromide space, total body water, and sick cell syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Schober, O.; Hundeshagen, H.; Lehr, L.

    1982-01-01

    Displacements of the bromide space (Br-82-C, as a marker for the extracellular fluid compartment) are caused by an enhanced anatomical space and/or increased permeability of cells to bromide. The ratio Br-82-C: total body water (TBW) was evaluated to be 0.83 +- 0.17 in critically ill patients (n = 38) compared with the normal value of 0.46 +- 0.04 (n = 10). Because of normal TBW in critically ill patients (TBW = 505 +- 68 ml/kg), an increased bromide penetration into cells seems to be responsible for the enlarged ratio Br-82-C: TBW. Taking into consideration measurements in patients with malabsorption (Br-82-C: TBW = 0.56 +- 0.13; n = 13) and carcinoma of the rectum and colon (Br-82-C: TBW = 0.66 +- 0.24; n = 18) we think that the bromide space is a good measurement of the effective extracellular water.

  7. Effect of Ambient Temperature on Body Temperature and Rest Metabolic Rate in Apodemus chevrieri During Postnatal Development

    Directory of Open Access Journals (Sweden)

    Zhu Wan-long

    2014-05-01

    Full Text Available In order to investigate the ability of constant temperature and thermoregulation in Apodemus chevrieri, body temperature and rest metabolic rate (RMR were measured during postnatal development (1~42 day when the A. chevrieri exposed different ambient temperature. The result showed that: body temperature and RMR of pups in A. chevrieri increased according to the increase of ambient temperature during 1 day to 7 day, showed character of poikilotherms; body temperature of pups were lower in low temperature(5oC and 10oC, relatively and RMR significant increased when day age is 14 day, it indicated that the pups showed a certain degree of thermoregulation in this phase. Its thermoregulation ability developed quickly during 7 day to 14 day. RMR of pups was extreme significantly higher in low temperature than that in other temperature when day age was 21 day, it showed that the pups had some thermoregulation to low temperature stimulation. The RMR of pups was showed increasing trend in high temperature(35oC when 28 day; when day age was 35 day and 42 day, the thermal neutral zone were 22.5 to 30oC and approaching its adult level. All of these results indicated that pups of A. chevrieri in the different growing period had different thermogenesis and energy allocation to maintain stable to body temperature, thermogenesis was weaker in the early phase of postnatal development, most of energy is used to its growth. After pups were weaned, the ability of constant temperature and thermoregulation developed quickly to adjust variations of environment during postnatal development.

  8. Refined Modeling of Water Temperature and Salinity in Coastal Areas

    Institute of Scientific and Technical Information of China (English)

    SHEN Yongming; ZHENG Yonghong; QIU Dahong

    2000-01-01

    The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k- turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperatureand salinity in coastal areas has been developed to simulate the seasonal variations of water temperatureand salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety ofhydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay,Japan.

  9. Radiation chemistry of high temperature and supercritical water

    International Nuclear Information System (INIS)

    The progresses of the studies on water radiolysis at elevated temperatures and supercritical water are reviewed, with the emphasis on the temperature and density effects on the radiolytic yields of water decomposition products, the reaction rate constants and the spectral properties of hydrated electron. (author)

  10. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    Science.gov (United States)

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors

  11. Association between body water status and acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    Hannes Gatterer

    Full Text Available PURPOSE: The present study determined the association between body fluid variation and the development of acute mountain sickness (AMS in adults. METHODS: Forty-three healthy participants (26 males and 17 females, age: 26 ± 6 yr, height: 174 ± 9 cm, weight: 68 ± 12 kg were passively exposed at a FiO2 of 12.6% (simulated altitude hypoxia of 4500 m, PiO2 = 83.9 mmHg for 12-h. AMS severity was assessed using the Lake Louise Score (LLS. Food and drink intakes were consumed ad libitum and measured; all urine was collected. Before and after the 12-h exposure, body weight and plasma osmolality were measured and whole-body bioimpedance analysis was performed. RESULTS: The overall AMS incidence was 43% (38% males, 50% females. Participants who developed AMS showed lower fluid losses (3.0 ± 0.9 vs. 4.5 ± 2.0 ml/kg/h, p = 0.002, a higher fluid retention (1.9 ± 1.5 vs. 0.6 ± 0.8 ml/kg/h, p = 0.022, greater plasma osmolality decreases (-7 ± 7 vs. -2 ± 5 mOsm/kg, p = 0.028 and a larger plasma volume expansion (11 ± 10 vs. 1 ± 15%, p = 0.041 compared to participants not developing AMS. Net water balance (fluid intake--fluid loss and the amount of fluid loss were strong predictors whether getting sick or not (Nagelkerkes r(2 = 0.532. The LLS score was related to net water balance (r = 0.358, p = 0.018, changes in plasma osmolality (r = -0.325, p = 0.033 and sodium concentration (r = -0.305, p = 0.047. Changes in the impedance vector length were related to weight changes (r = -0.550, p<0.001, fluid intake (r = -0.533, p<0.001 and net water balance (r = -0.590, p<0.001. CONCLUSIONS: Participants developing AMS within 12 hours showed a positive net water balance due to low fluid loss. Thus measures to avoid excess fluid retention are likely to reduce AMS symptoms.

  12. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  13. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    Science.gov (United States)

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. PMID:26724197

  14. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    Science.gov (United States)

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures.

  15. Impact of domestic sewage on fresh water body.

    Science.gov (United States)

    Shiddamallayya, N; Pratima, M

    2008-05-01

    In the present study various (physico-chemical) factors were assessed over a period of two years (from February 2002 to January 2004) to note the chemistry and quality of tank water in Bhalki town of Bidar. Physico-chemical factors like pH, dissolved oxygen, magnesium, chlorine, nitrite, sulphates and chemical oxygen demand were found with maximum concentration during summer season. Similarly, during monsoon season free carbon dioxide, alkalinity hardness, calcium, phosphate, silicon, total solids and biological oxygen demand; and in winter season organic matter were recorded. The concentrations viz., pH, hardness and nitrite were more compared to the potable water standard of WHO. The correlation matrix and dendrogram of physico-chemical factors have been computed and analysed. The positive co-relation coefficient observed between pH and magnesium, dissolved oxygen and hardness, free carbondioxide and calcium, alkalinity and nitrite, alkalinityand phosphate, alkalinity and biological oxygen demand, hardness and calcium, hardness and magnesium, magnesium and chlorine, nitrate and phosphate, nitrite and biological oxygen demand, phosphate and organic matter; and silicon and chemical oxygen demand. The dendrogram confirms chlorine, pH, hardness, silicon, total solids and sulphates are the key factors of the change in the chemistry of water body

  16. Thermal infrared remote sensing of water temperature in riverine landscapes

    Science.gov (United States)

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  17. Utilization of Landsat Data for Water Quality Observation in Small Inland Water Bodies

    Science.gov (United States)

    Pásler, M.; Komárková, J.

    2016-06-01

    Many studies deal with water quality evaluation using remotely sensed data. In the field of remote sensing, there have been proposed several procedures how to observe selected parameters of water quality and conditions. The majority of works use methods and procedures based on satellite data but they usually do not deal with suitability and practicability of the satellite data. This paper provides summary of determinants and limitations of satellite data utilization for water quality evaluation. Cloud cover and its influence on size of visible water surfaces is the most deeply evaluated determinants. Temporal resolution, spatial resolution and some other technical factors are discussed as next determinants. The case study demonstrates evaluation of the determinants for Landsat 7 and Landsat 8 data (level 1) and for area of small ponds in part of Pardubice region in the Czech Republic. It clearly demonstrates several limitations of Landsat data for evaluation of selected parameters of water quality and changes of small water bodies.

  18. Effect of water temperature on exercise-induced maternal hyperthermia on fetal development in rats.

    Science.gov (United States)

    Mottola, M F; Fitzgerald, H M; Wilson, N C; Taylor, A W

    1993-07-01

    The objective of this study was to determine if water temperature influenced exercise-induced hyperthermia in swim-trained pregnant rats and the resulting fetal development. Pregnant Sprague-Dawley rats with 6 weeks pre-pregnancy training were exercised daily from day 1 to day 18 of gestation in water that was 34.6 +/- 0.4 degrees C (Cool Water Swimmers--CWS) or 37.6 +/- 0.1 degrees C (Warm Water Swimmers--WWS), for one hour/day. During this time period another group of pregnant rats was immersed to the neck in warm water (37.6 +/- 0.2 degrees C) (Warm Water Controls--WWC). On day 19 of gestation all animals were sacrificed and fetal development assessed. Maternal exercise in warm water elevated maternal body core temperature by 2.3 +/- 0.1 degrees C above resting values, with an increase in fetal abnormalities compared to the same exercise intensity in cool water. Fifty-eight percent of the abnormal fetuses and 60% of the resorption sites were found in the WWS group. Of the abnormalities determined, 65% were from the WWS group and 45% of these fetuses showed micrencephaly. Results suggest cool water may regulate maternal body temperature during swimming exercise and that swimming in warm water should be avoided during gestation because of potential teratogenic effects.

  19. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.

    Science.gov (United States)

    Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob

    2008-08-01

    Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants. PMID:18594510

  20. Influence of body temperatures and hypercapnia on pulmonary ventilation during hyperthermia

    OpenAIRE

    Greiner, Jesse Gordon

    2010-01-01

    Static and dynamic body temperatures, hypercapnia, and exercise state were assessed for their influence on human pulmonary ventilation. METHODS: In study 1, each participant exercised with normothermic and hyperthermic core temperatures, in ambient temperatures of 25, 30 and 35°C, and were subjected to hypercapnic challenges of +4 and +8 mmHg in each condition. In study 2 before and after sub-maximal exercise, radiant heating was employed to assess the influence of dynamic skin temperature on...

  1. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    Directory of Open Access Journals (Sweden)

    Enøe Claes

    2010-05-01

    Full Text Available Abstract Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV. Subcutaneous tissue temperatures obtained by the implantable transponders were compared with rectal temperatures, recorded by a conventional digital thermometer. Methods In a preliminary study, transponders were inserted subcutaneously at 6 different positions of the body of 5 pigs. The transponders positioned by the ear base provided the best correlation to rectal temperature. To test the stability of the monitoring system in a larger group of pigs, transponders were therefore inserted by the left ear base in a subsequent infection experiment with 30 pigs. Results Generally, the microchip transponders measured a subcutaneous tissue temperature, which was about 1°C lower than the rectal temperature. However, a simple linear relationship between the measures of the two methods was found. Conclusions Our study showed that the tested body monitoring system may represent a promising tool to obtain an approximate correlate of body temperatures in groups of pigs. In contrast, however, the tested system did not constitute a suitable tool to measure body temperatures of individual animals in the present pig infection experiment.

  2. Prediction of extracellular water and total body water by multifrequency bio-electrical impedance in a Southeast Asian population

    NARCIS (Netherlands)

    Guricci, S.; Hatriyanti, Y.; Hautvast, J.G.A.J.; Deurenberg, P.

    1999-01-01

    Three different adult Indonesian population groups living on Sumatra (Palembang), Java (Depok) and Sulawesi (Makale) participated in a study on body composition. Body weight, body height and multifrequency bioelectrical impedance (1, 5, 50 and 100 kHz) were measured and in addition total body water

  3. Revisiting a many-body model for water based on a single polarizable site: From gas phase clusters to liquid and air/liquid water systems

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-01

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  4. Temperature dependence of the water retention curve for dry soils

    Science.gov (United States)

    Schneider, M.; Goss, K.-U.

    2011-03-01

    Water retention curves (WRCs) are equivalent to water adsorption isotherms that display the soil water content as a function of water activity in the pore space. The use of water activity implies that pure (unbound) water at the given temperature is considered to be a reference state. In this study we measured the temperature dependence of WRCs for nine European soils under dry conditions (i.e., water activity adsorption enthalpy of water, ?, which reflects this temperature dependence, increased with decreasing water content and thus deviated from the condensation enthalpy of a pure (unbound) water phase, ?. These results are explained by the following facts: under increasingly drier conditions the interactions between water molecules and the mineral surfaces become more and more dominant because the sorbed water film becomes very thin. These interactions between water and minerals are stronger than those between pure water molecules. The observed temperature dependence of WRCs varied only a little between the studied soils. Therefore, the average equation, ?, derived from our experimental data may serve as a good approximation of ? for soils in general and thus allow the temperature extrapolation of WRCs (in the dry region down to 30% RH) between 5°C and 40°C without the need for additional experimental information.

  5. Leptin actions on food intake and body temperature are mediated by IL-1

    OpenAIRE

    Luheshi, Giamal N; Gardner, Jason D.; Rushforth, David A.; Loudon, Andrew S.; Rothwell, Nancy J

    1999-01-01

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, inje...

  6. Surface water bodies according to the water framework directive 2000/60/EC

    International Nuclear Information System (INIS)

    The Water Frameworks Directive 2000/60/CE establishes quality objectives for water bodies and the monitoring and classification elements, leaving great space for the concrete application of specific criteria and methodologies to EC member States. The Directive gives strong importance to biological parameters, hydro morphological parameters and to chemical parameters, in particular priority and priority hazardous substances. The paper present the monitoring criteria for surface waters with specific reference to biological parameters and defines the shift to the new system, showing results of the monitoring activity already performed in Veneto region

  7. Worldwide Eutrophication of Water Bodies: Causes, Concerns, Controls

    Science.gov (United States)

    Prepas, E. E.; Charette, T.

    2003-12-01

    Eutrophication is the nutrient enrichment of waters that stimulates an array of symptomatic changes, that can include increased phytoplankton and rooted aquatic plant (macrophyte) production, fisheries and water quality deterioration, and other undesirable changes that interfere with water uses (Bartsch, 1972). The trophic state, or degree of fertility, of water bodies ranges from oligotrophic to mesotrophic to eutrophic with increasing supply of nutrients and organic matter ( Table 1). Eutrophication is most often the result of an elevated supply of nutrients, particularly nitrogen and phosphorus, to surface waters that results in enhanced production of primary producers, particularly phytoplankton and aquatic plants. Table 1. Mean annual values for the trophic classification system Total phosphorus (μg L-1)Chlorophyll a (μg L-1)Secchi disk depth (m) Ultra-oligotrophic12 Oligotrophic6 Mesotrophic10-352.5-86-3 Eutrophic35-1008-253-1.5 Hypertrophic>100>25OECD (1982). Phytoplankton are unpleasant at high densities. The sight and smell of clots or masses of decaying phytoplankton decreases the recreational value of most waters and usually generates concerns among the public. Furthermore, blooms of toxin-producing phytoplankton can cause widespread illness. A bloom is a conspicuous concentration of phytoplankton, often concentrated at or near the surface. It is difficult to quantify what constitutes a "bloom," but a rough estimate places it as a chlorophyll a concentration over 30 μg L-1. Toxins produced by dinoflagellates such as Pfiesteria in marine environments of the northeastern US and red tides in tropical waters have caused massive fish kills, millions of dollars in losses to seafood-related industries, human memory loss, paralysis, and even death (Van den Hoeck et al., 1995; Silbergeld et al., 2000). Bloom-forming species of cyanobacteria can produce potent hepato-(liver) toxins termed microcystins that have been implicated in poisonings of domestic

  8. Effect of paracetamol (acetaminophen) on body temperature in acute ischemic stroke: a double-blind, randomized phase II clinical trial

    NARCIS (Netherlands)

    D.W.J. Dippel (Diederik); E.J. van Breda (Eric); H.M.A. van Gemert (Maarten); H.B. van der Worp (Bart); R.J. Meijer (Ron); L.J. Kappelle (Jaap); P.J. Koudstaal (Peter Jan)

    2001-01-01

    textabstractBACKGROUND AND PURPOSE: Body temperature is a strong predictor of outcome in acute stroke. However, it is unknown whether antipyretic treatment leads to early and clinically worthwhile reduction of body temperature in patients with acute stroke, especially w

  9. Stream water temperature simulation models: a review

    International Nuclear Information System (INIS)

    Maximum and minimum daily temperatures can affect fish habitat, therefore, the prediction of temperature changes is needed to assess the impacts of potential watershed management decisions related with fish habitat, especially during low-flow periods. Prediction of temperature changes due to the variation in stream flow, groundwater flow and location along the stream, as well as anthropogenic changes, is frequently needed to assess the impacts of potential management decisions related with fish life in the stream. Although average daily temperatures are helpful, many times the diurnal changes are critical, including the maximum and minimum temperatures, creating the necessity to simulate temperatures along a stream. A number of existing models have been developed to predict stream temperatures, some of these are statistically based to predict average stream temperature based on parameters such as average air temperature of a corresponding interval of time. Other dynamic models such as physically-base, require extensive data inputs and calibration, and most were developed for large river systems to assess management alternatives such as reservoir release impacts

  10. Circadian rhythm of body temperature during prolonged undersea voyages.

    Science.gov (United States)

    Colquhoun, W P; Paine, M W; Fort, A

    1978-05-01

    Circadian rhythms of oral temperature were assessed in 12 watchkeepers during a prolonged submarine voyage and compared with a "standard" rhythm obtained from nonwatchkeepers ashore. Initially, the parameters of the rhythms were similar to those of the standard; however, among eight ratings working 4-h watches in a rapidly rotating cycle, considerable changes in the rhythms occurred as the voyage progressed, and concurrent alterations in sleep patterning were observed. The most characteristic change in the rhythm was a marked decline in its amplitude. In most subjects, the rhythm also tended to depart from its original circadian pattern; in at least one case, it effectively disintegrated. One subject's rhythm appeared to "free-run" with a period greater than 24 h. A strong circadian rhythm was maintained in only one of these eight subjects. In four officers whose watch times were at fixed hours, adaptation of the rhythm to unusual times of sleep occurred in 2 of 3 cases where the schedule demanded it. The results are discussed in relation to the design of optimal watchkeeping systems for submariners. PMID:655989

  11. [Hyperthermia. Modification of body temperature as clinical therapeutics].

    Science.gov (United States)

    Vicuña Urtasun, Berta; Villalgordo Ortin, Paola; Montes García, Yolanda; Marín, Fernández Blanca

    2011-04-01

    The application of heat or cold therapy is called thermotherapy Thermotherapy has been used since ancient times, Egyptians, Greeks and Romans used solar radiation or submersion in springs to apply heat and ice and snow for cold application. The first scientific references related to thermotherapy appear in late eighteenth century but the twentieth century when the introduction of new forms of deep heat therapy have expanded their capabilities and their operation with media surface more comfortable and effective. Thermotherapy although they require more experimentation to obtain a solid scientific proof that their use is raising great expectations in various fields such as oncology treatment, surgery neurology etc. In the surgical field thermal ablation has been used successfully in the treatment of various diseases, benign prostatic hyperplasia, liver and gynecological tumors, among others. In the field of oncology has been shown to improve outcomes diathermy applied in conjunction with chemo and radiation therapy Based on the literature review describing the main uses of the change in temperature as a therapeutic, the main indications for these techniques, as applicable, evidence of its benefits and complications arising from their use.

  12. Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition

    Science.gov (United States)

    Crouch, Tia; Walker, Jonathan

    2013-04-01

    Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition Tia Crouch and Jonathan Walker (Moors for the Future Partnership) Upland locations are significant water supply sources providing over 70% of fresh water in Great Britain. However, the peatlands of the Peak District, Southern Pennines are highly contaminated with anthropogenically derived, atmospherically deposited pollutants, such as heavy metals. This is due to their location between the cities of Manchester and Sheffield, the centre of the 19th century English Industrial Revolution. These peatlands are also severely eroded; therefore erosion could be releasing these pollutants into the fluvial system, representing a threat to both aquatic ecosystems and drinking water supplies. These threats are regulated under the Water Framework Directive (WFD) and the Water Supply Regulations respectively. There are two aims of this project. The first aim is to identify spatial and temporal variability of water quality within the Bamford water treatment works (WTW) catchment. This was achieved by fortnightly spot sampling at eight of the tributaries into the reservoir system. The second aim is to assess the contribution of moorland condition to water quality within the Bamford WTW catchment. Similarly, this was achieved by fortnightly spot sampling at eight moorland streams, draining from a variety of peatland conditions (bare peat, restoration, intact and heather burn). Water samples were analysed for carbon (DOC, POC & TOC), pH, hardness and a suite of heavy metals, including copper, iron and zinc. In addition, stream temperature and stage height was recorded. Preliminary results highlight a number of issues within the Bamford WTW catchment: under the WFD streams are not achieving 'good' status for pH, copper and zinc, and under the Drinking Water Standards (DWS) streams are not achieving targets for aluminium, iron and colour. For example, the

  13. A study on the measurement of the core body temperature change after radiofrequency ablation (RFA) through MR temperature mapping

    Science.gov (United States)

    Kim, Chang-Bok; Dong, Kyung-Rae; Yu, Young; Chung, Woon-Kwan; Cho, Jae-Hwan; Joo, Kyu-Ji

    2013-09-01

    This study examined the change in the heat generated during radiofrequency ablation (RFA) using a self-manufactured phantom and used magnetic resonance imaging (MRI) to analyze the change in the temperature of the core body and the tissues surrounding the phantom. In this experiment, the image and the phase image were obtained simultaneously from a gradient echo-based sequence using 1.5-Tesla MRI equipment and a 12-channel head coil. The temperature mapping technique was used to calculate the change in temperature. The regions of interest (ROIs) (ROI 1 - ROI 6) were set with a focus on the area where the RFA was performed, according to the temperature distribution, before monitoring the temperature change for one hour in time intervals of five minutes. The results showed that the temperature change in the ROI with time was largest in the ROI 1 and smallest in the ROI 5. In addition, after the RFA procedure, the temperature decreased from the initial value to 0 °C in one hour. The temperature changes in the core body and the surrounding tissues were confirmed by MRI temperature mapping, which is a noninvasive method.

  14. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    Science.gov (United States)

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (pexercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. PMID:25479573

  15. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    DEFF Research Database (Denmark)

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David;

    2009-01-01

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design...

  16. Variations of body temperature and metabolism during entrance into cold lethargy in the bat Myotis myotis

    NARCIS (Netherlands)

    Heldmaier, Gerhard

    1970-01-01

    Bats of temperate zones which hibernate during winter become cold-lethargic during their diurnal rest time even in summer. At the end of their nocturnal activity period they show a drop in body temperature close to ambient temperature (M. myotis, cf. Pohl, 1961). This takes place periodically even i

  17. Agreement between auricular and rectal measurements of body temperature in healthy cats.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C

    2013-04-01

    Measurement of body temperature is a routine part of the clinical assessment of a patient. However, this procedure may be time-consuming and stressful to most animals because the standard site of temperature acquisition remains the rectal mucosa. Although an increasing number of clinicians have been using auricular temperature to estimate core body temperature, evidence is still lacking regarding agreement between these two methods in cats. In this investigation, we evaluated the agreement between temperatures measured in the rectum and ear in 29 healthy cats over a 2-week period. Temperatures were measured in the rectum (using digital and mercury-in-glass thermometers) and ear once a day for 14 consecutive days, producing 406 temperature readings for each thermometer. Mean temperature and confidence intervals were similar between methods, and Bland-Altman plots showed small biases and narrow limits of agreement acceptable for clinical purposes. The interobserver variability was also checked, which indicated a strong correlation between two near-simultaneous temperature readings. Results are consistent with auricular thermometry being a reliable alternative to rectal thermometry for assessing core body temperature in healthy cats.

  18. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature.

    Science.gov (United States)

    Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc

    2016-09-28

    This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting.

  19. Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions.

    Science.gov (United States)

    Ammer, Stefanie; Lambertz, Christian; Gauly, Matthias

    2016-05-01

    The aim of the research described here was to compare different methods of body temperature (BT) measurements in dairy cows. It was hypothesised that reticular temperature (RET) values reflect the physiological status of the animals in an equivalent way to rectal (RT) and vaginal (VT) measurements. RT, VT and RET temperatures of twelve lactating Holstein-Friesian cows were measured over five consecutive days in June and October 2013. While RT and VT were manually measured three times a day, RET was automatically recorded at 10 min intervals using a bolus in the reticulum. For comparison with RT and VT, different RET values were used: single values at the respective recording times (RET-SIN), and mean (RET-MEAN) and median (RET-MED) values of 2 h prior to RT and VT measurements. Overall, body temperatures averaged 38·1 ± 0·6, 38·2 ± 0·4, 38·7 ± 0·9, 38·5 ± 0·7 and 38·7 ± 0·5 °C for RT, VT, RET-SIN, RET-MEAN and RET-MED, respectively. RT and VT were lower than all RET measurements, while RET-SIN and RET-MED were higher than RET-MEAN (P < 0·001). RET-MEAN and RET-MED values were higher in the morning, whereas RT and VT were greatest in the evening (P < 0·001). Overall, records of RT and VT were strongly correlated (r = 0·75; P < 0·001). In contrast to RET-SIN and RET-MEAN, RET-MED was higher correlated to RT and VT. In June, coefficients were higher between all methods than in October. Relation of barn T to RT and VT was stronger when compared to RET measurements. RET-SIN was higher correlated to barn T than RET-MEAN or RET-MED. Correlation between VT and barn T was strongest (r = 0·48; P < 0·001). In summary, RET-MED showed highest correlation with VT and RT. However, single RET measurements (influenced by water or feed intake) can lead to extreme variations and differences to single VT and RT values.

  20. Perceived intensity of peripheral thermal stimuli is independent of internal body temperature.

    Science.gov (United States)

    Mower, G D

    1976-12-01

    Four adult male human subjects were tested under three conditions of internal body temperature: hypothermia, normal, and hyperthermia. Under each of these conditions, they judged the intensity (degree of warmness or coolness) and the hedonic quality (degree of pleasantness or unpleasantness) of a series of stimuli ranging from hot to cold. The results showed that whereas hedonic quality is greatly influenced by the value of internal body temperature, the perception of warmness or coolness is independent of internal temperature and dependent only on peripheral stimulation.

  1. Effect of water temperature on cohesive soil erosion

    OpenAIRE

    Parks, Olivia Waverly

    2013-01-01

    In light of increased stream temperatures due to urbanization and climate change, theeffect of water temperature on cohesive soil erosion should be explored. The objectives of this study are to: determine the effect of water temperature on the erosion rates of clay; determine how erosion rates vary with clay mineralogy; and, explore the relationship between zeta potential and erosion rate. Samples of kaolinite- and montmorillonite-sand mixtures, and vermiculite-dominated soil were placed in t...

  2. Effect of Water Vapour to Temperature Inside Sonoluminescing Bubble

    Institute of Scientific and Technical Information of China (English)

    安宇; 谢崇国; 应崇福

    2003-01-01

    Using the model based on the homo-pressure approximation, we explain why the maximum temperature is sensitive to the ambient temperature in the single bubble sonoluminescence. The numerical simulation shows that the maximum temperature inside a sonoluminescing bubble depends on how much water vapour evaporates or coagulates at the bubble wall during the bubble shrinking to its minimum size. While the amount of water vapour inside the bubble at the initial and the final state of the compression depends on the saturated water vapour pressure which is sensitive to the ambient temperature. The lower the saturated vapour pressure is, the higher the maximum temperature is. This may lead to more general conclusion that those liquids with lower saturated vapour pressure are more favourable for the single bubble sonoluminescence. We also compare those bubbles with different noble gases, the result shows that the maximum temperatures in the different gas bubbles are almost the same for those with the same ambient temperature.

  3. Dielectric constant of water at very high temperature and pressure

    OpenAIRE

    Pitzer, Kenneth S.

    1983-01-01

    Pertinent statistical mechanical theory is combined with the available measurements of the dielectric constant of water at high temperature and pressure to predict that property at still higher temperature. The dielectric constant is needed in connection with studies of electrolytes such as NaCl/H2O at very high temperature.

  4. Dopamine Signalling in Mushroom Bodies Regulates Temperature-Preference Behaviour in Drosophila

    OpenAIRE

    Sunhoe Bang; Seogang Hyun; Sung-Tae Hong; Jongkyun Kang; Kyunghwa Jeong; Joong-Jean Park; Joonho Choe; Jongkyeong Chung

    2011-01-01

    The ability to respond to environmental temperature variation is essential for survival in animals. Flies show robust temperature-preference behaviour (TPB) to find optimal temperatures. Recently, we have shown that Drosophila mushroom body (MB) functions as a center controlling TPB. However, neuromodulators that control the TPB in MB remain unknown. To identify the functions of dopamine in TPB, we have conducted various genetic studies in Drosophila. Inhibition of dopamine biosynthesis by ge...

  5. Electricity prices, river temperatures and cooling water scarcity

    OpenAIRE

    McDermott, Grant; Nilsen, Øivind Anti

    2012-01-01

    Thermal-based power stations rely on water for cooling purposes. These water sources may be subject to incidents of scarcity, environmental regulations and competing economic concerns. This paper analyses the effect of water scarcity and increased river temperatures on German electricity prices from 2002 to 2009. Having controlled for demand effects, the results indicate that the electricity price is significantly impacted by both a change in river temperatures and the relative abundance of r...

  6. The spectral signature analysis of inland and coastal water bodies acquired from field spectroradiometric measurements

    Science.gov (United States)

    Papoutsa, Christiana; Akylas, Evangelos; Hadjimitsis, Diofantos

    2013-08-01

    The main goal of this research is to examine the optical properties of different water bodies such as coastal water; oligotrophic and eutrophic inland water by observing their spectral signatures. Spectral profiles of sampling points, which correspond to water bodies with different water quality characteristics, are extracted and analyzed. Field spectroscopy is a very important tool giving critical information for the comprehension of spectral signatures of different water bodies. Field spectroradiometric measurements can assist to improve or develop new algorithms and methodology enables to classify several water bodies according to their water quality characteristics using remotely sensed data. Field spectroradiometric data presented at this study were obtained for inland water in Asprokremmos Dam, Paphos District/Cyprus; in Larnaca's Salt Lake, Larnaca District/Cyprus; and in Karla Lake, Volos District/Greece and for coastal water in Zugi-Vasilikos-Old Harbour, Limassol District/Cyprus.

  7. Theoretical study on the inverse modeling of deep body temperature measurement

    International Nuclear Information System (INIS)

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. (paper)

  8. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    Science.gov (United States)

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia. PMID:22604882

  9. Theoretical study on the inverse modeling of deep body temperature measurement.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2012-03-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation.

  10. Body temperature of the parasitic wasp Pimpla turionellae (Hymenoptera) during host location by vibrational sounding.

    Science.gov (United States)

    Kroder, Stefan; Samietz, Jörg; Stabentheiner, Anton; Dorn, Silvia

    2008-03-01

    The pupal parasitoid Pimpla turionellae (L.) uses self-produced vibrations transmitted on the plant substrate, so-called vibrational sounding, to locate immobile concealed pupal hosts. The wasps are able to use vibrational sounding reliably over a broad range of ambient temperatures and even show an increased signal frequency and intensity at low temperatures. The present study investigates how control of body temperature in the wasps by endothermic mechanisms may facilitate host location under changing thermal environments. Insect body temperature is measured with real-time IR thermography on plant-stem models at temperature treatments of 10, 18, 26 and 30 °C, whereas behaviour is recorded with respect to vibrational host location. The results reveal a low-level endothermy that likely interferes with vibrational sound production because it occurs only in nonsearching females. At the lowest temperature of 10 °C, the thoracic temperature is 1.15 °C warmer than the ambient surface temperature whereas, at the high temperatures of 26 and 30 ° C, the wasps cool down their thorax by 0.29 and 0.47 °C, respectively, and their head by 0.45 and 0.61 °C below ambient surface temperature. By contrast, regardless of ambient temperature, searching females always have a slightly elevated body temperature of at most 0.30 °C above the ambient surface temperature. Behavioural observations indicate that searching females interrupt host location more frequently at suboptimal temperatures, presumably due to the requirements of thermoregulation. It is assumed that both mechanisms, producing vibrations for host location and low-level endothermy, are located in the thorax. Endothermy by thoracic muscle work probably disturbs signal structure of vibrational sounding, so the processes cannot be used at the same time. PMID:22140295

  11. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.

    Science.gov (United States)

    Tsai, Yi-Chun; Li, Suming; Hu, Shiaw-Guang; Chang, Wen-Chi; Jeng, U-Ser; Hsu, Shan-hui

    2015-12-23

    Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and a second oligodiol containing amphiphilic blocks was synthesized in this study. The microstructure was characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and rheological measurement of the PU dispersion. The surface hydrophilicity measurement, infrared spectroscopy, wide-angle X-ray diffraction, mechanical and thermal analyses were conducted in solid state. It was observed that the presence of a small amount of amphiphilic blocks in the soft segment resulted in significant changes in microstructure. When 90 mol % PCL diol and 10 mol % amphiphilic blocks of poly(l-lactide)-poly(ethylene oxide) (PLLA-PEO) diol were used as the soft segment, the synthesized PU had a water contact angle of ∼24° and degree of crystallinity of ∼14%. The dispersion had a low viscosity below room temperature. As the temperature was raised to body temperature (37 °C), the dispersion rapidly (∼170 s) underwent sol-gel transition with excellent gel modulus (G' ≈ 6.5 kPa) in 20 min. PU dispersions with a solid content of 25-30% could be easily mixed with cells in sol state, extruded by a 3D printer, and deposited layer by layer as a gel. Cells remained alive and proliferating in the printed hydrogel scaffold. We expect that the development of novel thermoresponsive PU system can be used as smart injectable hydrogel and applied as a new type of bio-3D printing ink.

  12. Influence of winter temperature and simulated climate change on body mass and fat body depletion during diapause in adults of the solitary bee, Osmia rufa (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Fliszkiewicz, Monika; Giejdasz, Karol; Wasielewski, Oskar; Krishnan, Natraj

    2012-12-01

    The influence of simulated climate change on body weight and depletion of fat body reserves was studied during diapause in the European solitary bee Osmia rufa L. (Hymenoptera: Megachilidae). Insects (females) were reared and collected from outdoor nests from September to March. One cohort of females was weighed and dissected immediately for analyses, whereas another cohort was subjected to simulated warmer temperature (15°C for 7 d) before analyses. A gradual decline in body mass and fat body content was recorded with declining temperatures from September to January in female bees from natural conditions. Temperature increased gradually from January to March with a further decline in body mass and fat body content. The fat body development index dropped from five in September-October (≈ 89% individuals) to four for the period from November to February (≈ 84% individuals) and further to three in March (95% individuals) before emergence. Simulated warmer winter temperature also resulted in a similar decline in body weight and fat body content; however, body weight and fat body content declined faster. The fat body development index dropped to three in December in the majority of individuals and continued at this level until March just before emergence. Taken together, our data indicate an earlier depletion of fat body reserves under simulated climate change conditions that may impact ovarian development and reproductive fitness in O. rufa. PMID:23321111

  13. Metabolism of polychaete Neanthes japonica Izuka: relations to temperature, salinity and body weight

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; XIAN Weiwei; SUN Shichun

    2009-01-01

    Polychaete Neanthesjaponica is a species geographically specific in China and Japan with important scientific implication and commercial value. In this study, the relations of body weight, salinity and temperature to oxygen consumption and ammonia excretion of N. japonica were determined. Threedifferent groups in body weight (large: 2.34±0.36 g, middle: 1.50±0.21 g and small: 0.62±0.12 g) were set for all experiments. Results show that the body weight is negatively related to the rates of oxygen consumption and ammonia excretion; and the relationship is significant. The oxygen consumption and ammonia excretion at 24℃ decreased at salinity from 5 to 30 and increased above 30, indicating that both lower and higher salinity are adverse and certain degree of salinity stress is necessary for enhancing the energy demand. At salinity 30, rising temperature from 18℃ to 30℃, the oxygen consumption increased before 27℃ and then decreased. However, the relation of ammonia excretion and temperature seems more complex. Two-way ANOVA shows that salinity, temperature and body weight all have a significant effect on the oxygen consumption and ammonia excretion of the worm. Moreover, interaction between salinity/temperature and body weight is also significant. O:N (oxygen/nitrogen) ratio varies greatly in this case from 5.97 to 463.22, indicating that N. japonica can regulate the type of metabolic substrate against environment changes.

  14. [Pouring water over the body--hydrotherapy prescriptions in the late Middle Ages].

    Science.gov (United States)

    Jacoby, Joachim

    2002-01-01

    Once identified, an illness is met or fought against by an appropriate therapy. The diverse use of water holds a significant place among the therapeutic means which had been developed in Western medicine ever since antiquity. The essay deals with one particular form of application, namely, the gush of water. Focus is laid on the period around 1500. As the relevant medical treatises are based directly on Greek or Roman authors (Hippocrate, Galen, Celsus) or are even commentaries of Arabic handbooks in their Latin translations (Avicenna, Rhazes), antique medicine inevitably had also to be taken into account. The pouring of water, alone or in combination with other prescriptions, was applicable in a variety of illnesses as fevers, pains of the joints, psychic diseases, or even headaches. To counteract the causes (or symptoms) of a disease the water quality could be adjusted by changing its temperature, by adding certain substances (oils, herb extracts or decoctions) or by varying the way of application. The gush of water could serve many purposes and was prescribed to soothe, to refrigerate, to stop a swelling, to widen pores, to shock the patient and even, given the underlying humoural conception of men's nature, to draw away humours from one part of the body to another. The water gush, hence, was not restricted to be used in the case of one particular illness only but was considered an almost general therapeutic means. PMID:12168234

  15. FORECAST OF WATER TEMPERATURE IN RESERVOIR BASED ON ANALYTICAL SOLUTION

    Institute of Scientific and Technical Information of China (English)

    JI Shun-wen; ZHU Yue-ming; QIANG Sheng; ZENG Deng-feng

    2008-01-01

    The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduction-diffusion equations were converted into a system consisting of 2-D equations with the Fourier expansion and some hypotheses. Then the statistical model of forecasting the water temperature was developed based on the analytical solution to the 2-D thermal equations. The simplified statistical model can elucidate the main physical mechanism of the temperature variation much more clearly than the numerical simulation with the Navier-Stokes equations. Finally, with the presented statistical model, the distribution of water temperature in the Shangyoujiang reservoir was determined.

  16. Natural swimming speed of Dascyllus reticulatus increases with water temperature

    OpenAIRE

    Beyan, Cigdem; Boom, Bastian J.; Liefhebber, Jolanda M. P.; Shao, Kwang-Tsao; Fisher, Robert B.

    2015-01-01

    Recent research on the relationship between coral reef water temperature and fish swimming activity has stated that swimming speed is inversely correlated with temperature above a species' optimum temperature (Johansen, J. L., and Jones, G. P. 2011. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Global Change Biology, 17: 2971–2979; Johansen, J. L., Messmer,V., Coker, D. J., Hoey, A. S., and Pratchett, M. S. 2014. Increasing oce...

  17. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Science.gov (United States)

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  18. Water temperature controls in low arctic rivers

    Science.gov (United States)

    King, Tyler V.; Neilson, Bethany T.; Overbeck, Levi D.; Kane, Douglas L.

    2016-06-01

    Understanding the dynamics of heat transfer mechanisms is critical for forecasting the effects of climate change on arctic river temperatures. Climate influences on arctic river temperatures can be particularly important due to corresponding effects on nutrient dynamics and ecological responses. It was hypothesized that the same heat and mass fluxes affect arctic and temperate rivers, but that relative importance and variability over time and space differ. Through data collection and application of a river temperature model that accounts for the primary heat fluxes relevant in temperate climates, heat fluxes were estimated for a large arctic basin over wide ranges of hydrologic conditions. Heat flux influences similar to temperate systems included dominant shortwave radiation, shifts from positive to negative sensible heat flux with distance downstream, and greater influences of lateral inflows in the headwater region. Heat fluxes that differed from many temperate systems included consistently negative net longwave radiation and small average latent heat fluxes. Radiative heat fluxes comprised 88% of total absolute heat flux while all other heat fluxes contributed less than 5% on average. Periodic significance was seen for lateral inflows (up to 26%) and latent heat flux (up to 18%) in the lower and higher stream order portions of the watershed, respectively. Evenly distributed lateral inflows from large scale flow differencing and temperatures from representative tributaries provided a data efficient method for estimating the associated heat loads. Poor model performance under low flows demonstrated need for further testing and data collection to support the inclusion of additional heat fluxes.

  19. Physiological responses of Chinese longsnout catfish to water temperature

    Science.gov (United States)

    Han, Dong; Xie, Shouqi; Zhu, Xiaoming; Yang, Yunxia

    2011-05-01

    We evaluated the effect of water temperature on the growth and physiology of the Chinese longsnout catfish ( Leiocassis longirostris Günther). The fish were reared at four temperatures (20, 25, 30, and 35°C) and sampled on days 7, 20, and 30. We measured plasma levels of insulin, free thyroxine (FT4), free 3,5,3'-triiodothyronine (FT3), lysozyme and leukocyte phagocytic activity. The optimum water temperature for growth was 27.7°C. The plasma levels of insulin and FT4 declined significantly ( P<0.05) on day 30 at temperatures above 20°C. Lysozyme activity was significantly ( P<0.05) lower at 25°C than at other temperatures. We conclude that final weight, insulin, FT4, and lysozyme were significantly affected by water temperature.

  20. On the Linkage between Antarctic Surface Water Stratification and Global Deep-Water Temperature

    OpenAIRE

    Keeling, R.F.; Visbeck, Martin

    2011-01-01

    The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, thereby strengthening the inflow of Antarctic Bottom Water into the ocean interior and cooling the deep ocean. If deep waters are too cold, this promotes Antarctic stratification allowing the deep ocean to warm because of the input of North Atlantic D...

  1. PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    by a literature review of the field of water electrolysis (chapter 2), with a focus on proton exchange membrane (PEM) electrolysis. In chapter 3 a short description of the experimental techniques used for synthesis of catalyst and characterisation of the components in the electrolysis cell is given...

  2. Influence of temperature on the structure of liquid water

    Institute of Scientific and Technical Information of China (English)

    顾健德; 田安民; 鄢国森

    1996-01-01

    Molecular dynamics simulations have been carried out for liquid water at 7 different temperatures to understand the nature of hydrogen bonding at molecular level through the investigation of the effects of temperature on the geometry of water molecules. The changes in bond length and bond angle of water molecules from gaseous state to liquid state have been observed, and the change in the bond angle of water molecules in liquid against temperature has been revealed, which has not been seen in literature so far. The analysis of the radial distribution functions and the coordinate numbers shows that, on an average, each water molecule in liquid acts as both receptor and donor, and forms at least two hydrogen bonds with its neigbors. The analysis of the results also indicates that the water molecules form clusters in liquid.

  3. Response of chironomid species (Diptera, Chironomidae to water temperature: effects on species distribution in specific habitats

    Directory of Open Access Journals (Sweden)

    L. Marziali

    2013-09-01

    Full Text Available The response of 443 chironomid species to water temperature was analyzed, with the aim of defining their thermal optimum, tolerance limits and thermal habitat. The database included 4442 samples mainly from Italian river catchments collected from the 1950s up to date. Thermal preferences were calculated separately for larval and pupal specimens and for different habitats: high altitude and lowland lakes in the Alpine ecoregion; lowland lakes in the Mediterranean ecoregion; heavily modified water bodies; kryal, krenal, rhithral and potamal in running waters. Optimum response was calculated as mean water temperature, weighted by species abundances; tolerance as weighted standard deviation; skewness and kurtosis as 3rd and 4th moment statistics. The responses were fitted to normal uni- or plurimodal Gaussian models. Cold stenothermal species showed: i unimodal response, ii tolerance for a narrow temperature range, iii optima closed to their minimum temperature values, iv leptokurtic response. Thermophilous species showed: i optima at different temperature values, ii wider tolerance, iii optima near their maximum temperature values, iv platikurtic response, often fitting a plurimodal model. As expected, lower optima values and narrower tolerance were obtained for kryal and krenal, than for rhithral, potamal and lakes. Thermal response curves were produced for each species and were discussed according to species distribution (i.e. altitudinal range in running water and water depth in lakes, voltinism and phylogeny. Thermal optimum and tolerance limits and the definition of the thermal habitat of species can help predicting the impact of global warming on freshwater ecosystems.

  4. Carbon Budget of Bastard Halibut Paralichthys Oliva-eus in Relation to Body Weight and Temperature

    Institute of Scientific and Technical Information of China (English)

    线薇薇; 刘瑞玉; 朱鑫华

    2003-01-01

    The effects of body weight and temperature on the carbon budget of the juvenile bastard halibut, Paralichthys olivaceus , were studied at temperature 13.5, 18, 21.5 and 24 ℃, respectively. The carbon intake, faecal and growth carbon were measured, and the carbon respiration was calculated using the carbon budget equation(CC=GC+FC+RC). The combined relationship between different components of the carbon budget, body weight and temperature could be described by regression equations: CC =1.0206 W 0.8126 e 0.1483 T; G=0.0042 W 1.4096 (-5.11 T 3+285.90 T2-5173.72 T +30314.03); FC =0.0485 W0.7711e 0.1624 T ; UC = 1.4333 W 0.6715e 0.1487 T. Body weight had no significant ffect on the carbon absorption efficiency and the conversion efficiency.

  5. Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments

    OpenAIRE

    F. Miesner; Lechleiter, A.; Müller, C.(Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 , Bamberg, Germany)

    2015-01-01

    Continuous monitoring of oceanic bottom water temperatures is a complicated task, even in relatively easy-to-access basins like the North or Baltic seas. Here, a method to determine annual bottom water temperature variations from inverse modeling of instantaneous measurements of temperatures and sediment thermal properties is presented. This concept is similar to climate reconstructions over several thousand years from deep borehole data. However, in contrast, the presented ...

  6. Effects of temperature change on fatigue life of carbon steel in high temperature water

    International Nuclear Information System (INIS)

    Strain controlled fatigue tests of a carbon steel in oxygenated high temperature water were carried out under the condition of combined and synchronized mechanical and thermal strain cycling. The effects of temperature change on environmental fatigue life were investigated, showing basic conceptual data to evaluate the fatigue damage under the condition of transient temperature change of actual plant components

  7. Optical remote sensing of water temperature using Raman spectroscopy.

    Science.gov (United States)

    Artlett, C P; Pask, H M

    2015-12-14

    A detailed investigation into the use of Raman spectroscopy for determining water temperature is presented. The temperature dependence of unpolarized Raman spectra is evaluated numerically, and methods based on linear regression are used to determine the accuracy with which temperature can be obtained from Raman spectra. These methods were also used to inform the design and predict the performance of a two-channel Raman spectrometer, which can predict the temperature of mains supply water to an accuracy of ± 0.5 °C. PMID:26698976

  8. Primary processes in the radiolysis of water at high temperature

    International Nuclear Information System (INIS)

    A sharp increase of temperature as it is expected in the proximity of radioactive wastes (150 to 200 Celsius degrees) can modify the yields and kinetics of products from water radiolysis. We have used an experimental device based on an optical flow cell coupled to an electron accelerator able to deliver 9 MeV electron on 15 ps long pulses. The radiolysis of water has been studied in the 23 - 350 Celsius degrees temperature range. It is shown that the yield of the hydrated electron increases with temperature and that its kinetics in the 100 ps - 3 ns range is all the slower as the temperature increases. (A.C.)

  9. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes;

    2010-01-01

    Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV). Subcutaneous tissue temperatures obtained by the implantable...... temperature. To test the stability of the monitoring system in a larger group of pigs, transponders were therefore inserted by the left ear base in a subsequent infection experiment with 30 pigs. Results Generally, the microchip transponders measured a subcutaneous tissue temperature, which was about 1º...

  10. Temperature influence on water transport in hardened cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, Emeline [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Poyet, Stéphane, E-mail: stephane.poyet@cea.fr [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Torrenti, Jean-Michel [Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 Marne la Vallée cedex 2 (France)

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  11. Temperature influence on water transport in hardened cement pastes

    International Nuclear Information System (INIS)

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed

  12. Integration of body temperature into the analysis of energy expenditure in the mouse

    Directory of Open Access Journals (Sweden)

    Gustavo Abreu-Vieira

    2015-06-01

    Conclusions: At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  13. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV.

  14. Detection of pathogenic organisms in food, water, and body fluids

    Science.gov (United States)

    Wallace, William H.; Henley, Michael V.; Sayler, Gary S.

    2002-06-01

    The construction of specific bioluminescent bacteriophage for detection of pathogenic organism can be developed to overcome interferences in complex matrices such as food, water and body fluids. Detection and identification of bacteria often require several days and frequently weeks by standard methods of isolation, growth and biochemical test. Immunoassay detection often requires the expression of the bacterial toxin, which can lead to non-detection of cells that may express the toxin under conditions different from testing protocols. Immunoassays require production of a specific antibody to the agent for detection and interference by contaminants frequently affects results. PCR based detection may be inhibited by substances in complex matrices. Modified methods of the PCR technique, such as magnetic capture-hybridization PCR (MCH-PCR), appear to improve the technique by removing the DNA products away from the inhibitors. However, the techniques required for PCR-based detection are slow and the procedures require skilled personnel working with labile reagents. Our approach is based on transferring bioluminescence (lux) genes into a selected bacteriophage. Bacteriophages are bacterial viruses that are widespread in nature and often are genus and species specific. This specificity eliminates or reduces false positives in a bacteriophage assay. The phage recognizes a specific receptor molecule on the surface of a susceptible bacterium, attaches and then injects the viral nucleic acid into the cell. The injected viral genome is expressed and then replicated, generating numerous exact copies of the viral genetic material including the lux genes, often resulting in an increase in bioluminescence by several hundred fold.

  15. Effect of River Restoration on Ground Water Recharge: Investigation of Groundwater-Surface Water Interactions with Distributed Temperature Sensing (DTS)

    Science.gov (United States)

    Kurth, A.-M.; Schirmer, M.

    2012-04-01

    Following the EU Water Framework Directive 2000/60/EC (1) Switzerland passed the Water Protection Act 814.20 (2), obligating the cantons to restoring their surface water bodies to a near-natural state within the next 100 years. In case of rivers and streams this comprises the provision of extensive areas to allow for meandering, sufficient discharge to prevent drying-out of the river, as might be caused by hydropower production, and adequate water quality, e.g. by limiting waste water discharge. Hereby, the main aim lies in improving the ecological status of the surface water bodies, as well as flood protection and mitigation (2). However, apart from the enhancement of the water quality, river restoration has the potential to increase groundwater recharge due to improved connectivity between the surface water bodies and the underlying aquifers. A new method for the estimation of groundwater recharge in rivers is currently developed at Eawag in Switzerland, and will be employed to investigate if river restoration enhances groundwater recharge. This method comprises the use of distributed temperature sensing (DTS), as well as heatable glass-fibre optics cables. DTS is a fibre-optical method for temperature determination over long distances with high accuracy and precision (3), largely depending on the instrument settings and calibration, as well as the fibre-optics cables employed in the measurements (4). Temperature data will be used to distinguish between ground- and surface water, due to their different temperature signatures (5). By heating the glass-fibre optics cable the additional information on the cooling behaviour of the cable may be used to (i) distinguish between up- and downwelling water and to (ii) estimate the volume of water exchanged locally in the river bed. In order to separate the signal of horizontal flow from vertical flow over the cable, it will be buried 30-40 cm deep in the river bed; a control cable will be installed in 10-20 cm depth right

  16. NOS CO-OPS Meteorological Data, Water Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Water Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  17. A new approach to inventorying bodies of water, from local to global scale

    Directory of Open Access Journals (Sweden)

    Bartout, Pascal

    2015-12-01

    Full Text Available Having reliable estimates of the number of water bodies on different geographical scales is of great importance to better understand biogeochemical cycles and to tackle the social issues related to the economic and cultural use of water bodies. However, limnological research suffers from a lack of reliable inventories; the available scientific references are predominately based on water bodies of natural origin, large in size and preferentially located in previously glaciated areas. Artificial, small and randomly distributed water bodies, especially ponds, are usually not inventoried. Following Wetzel’s theory (1990, some authors included them in global inventories by using remote sensing or mathematical extrapolation, but fieldwork on the ground has been done on a very limited amount of territory. These studies have resulted in an explosive increase in the estimated number of water bodies, going from 8.44 million lakes (Meybeck 1995 to 3.5 billion water bodies (Downing 2010. These numbers raise several questions, especially about the methodology used for counting small-sized water bodies and the methodological treatment of spatial variables. In this study, we use inventories of water bodies for Sweden, Finland, Estonia and France to show incoherencies generated by the “global to local” approach. We demonstrate that one universal relationship does not suffice for generating the regional or global inventories of water bodies because local conditions vary greatly from one region to another and cannot be offset adequately by each other. The current paradigm for global estimates of water bodies in limnology, which is based on one representative model applied to different territories, does not produce sufficiently exact global inventories. The step-wise progression from the local to the global scale requires the development of many regional equations based on fieldwork; a specific equation that adequately reflects the actual relationship

  18. Titanium Dioxide Volatility in High Temperature Water Vapor

    Science.gov (United States)

    Nguyen, QynhGiao N.

    2008-01-01

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).

  19. An approximation for homogeneous freezing temperature of water droplets

    Science.gov (United States)

    O, K.-T.; Wood, R.

    2015-11-01

    In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived and proposed as a new approximation for homogeneous freezing temperature of water droplets. Without consideration of time dependence and stochastic nature of the ice nucleation process, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size and water activity of aqueous drops observed in a wide range of experimental studies. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may largely be explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that this approximation is useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.

  20. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton

    OpenAIRE

    Serena Rasconi; Andrea Gall; Katharina Winter; Martin J Kainz

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community compositi...

  1. Change in the body temperature of healthy term infant over the first 72 hours of life

    Institute of Scientific and Technical Information of China (English)

    李萌霞; 孙革; NEUBAUERHenning

    2004-01-01

    Objective:To determine the range of body temperature in a group of healthy Chinese term neonates over the first 72 hours of life and to assess the influence of body weight, gestational age and route of delivery.Method: All 200 consecutive cases of neonates delivered at our hospital from March to August 2001 were included in this retrospective study.Temperatures were measured immediately after delivery, after 30 minutes, 1 hour, 2 hours, 8 hours and 15 hours and on the 2nd and 3rd day. Axillary temperatures ranging from 36.5℃ to 37℃ were regarded as normal. No cases of maternal fever or systemic infection of the newborns were discovered. All infants were discharged in good general condition. Results:The mean rectal temperature at birth was 37.19℃. The lowest average temperature was reached at 1 hour after delivery (36.54℃) with a significant difference between natural delivery (36.48℃) and section (36.59℃) (P<0.05).Temperature subsequently rose to 36.70℃ at 8 hours and 36.78℃ at 15 hours (P<0.05).Hypothermia was seen in 51.8% and hypothermia in 42.5% of the patients.On the 3rd day after delivery, 96% of all temperatures were in the normal range. A significant relation was found between hypothermia and both low birth weight (P<0.001) and low gestational age (P<0.05).Conclusion: The reference range presently used did not include all physiological temperatures in the first 72 hours of life. Considering other factors,such as birth weight, route of delivery,gestational age and body temperature on the 2nd and 3rd day of life, may help to correctly assess the significance of temperatures beyond the reference range.

  2. Change in the body temperature of healthy term infant over the first 72 hours of life

    Institute of Scientific and Technical Information of China (English)

    LI Meng-xia (李萌霞); SUN Ge (孙革); NEUBAUER Henning

    2004-01-01

    Objective: To determine the range of body temperature in a group of healthy Chinese term neonates over the first 72 hours of life and to assess the influence of body weight, gestational age and route of delivery. Method: All 200 consecutive cases of neonates delivered at our hospital from March to August 2001 were included in this retrospective study. Temperatures were measured immediately after delivery, after 30 minutes, 1 hour, 2 hours, 8 hours and 15 hours and on the 2nd and 3rd day. Axillary temperatures ranging from 36.5 oC to 37 oC were regarded as normal. No cases of maternal fever or systemic infection of the newborns were discovered. All infants were discharged in good general condition. Results: The mean rectal temperature at birth was 37.19 ℃. The lowest average temperature was reached at 1 hour after delivery (36.54 ℃) with a significant difference between natural delivery (36.48 ℃) and section (36.59 ℃) (P<0.05). Temperature subsequently rose to 36.70 ℃ at 8 hours and 36.78 ℃ at 15 hours (P<0.05). Hypothermia was seen in 51.8% and hypothermia in 42.5% of the patients. On the 3rd day after delivery, 96% of all temperatures were in the normal range. A significant relation was found between hypothermia and both low birth weight (P<0.001) and low gestational age (P<0.05). Conclusion: The reference range presently used did not include all physiological temperatures in the first 72 hours of life. Considering other factors, such as birth weight, route of delivery, gestational age and body temperature on the 2nd and 3rd day of life, may help to correctly assess the significance of temperatures beyond the reference range.

  3. Human thermoregulation and measurement of body temperature in exercise and clinical settings.

    Science.gov (United States)

    Lim, Chin Leong; Byrne, Chris; Lee, Jason Kw

    2008-04-01

    This review discusses human thermoregulation during exercise and the measurement of body temperature in clinical and exercise settings. The thermoregulatory mechanisms play important roles in maintaining physiological homeostasis during rest and physical exercise. Physical exertion poses a challenge to thermoregulation by causing a substantial increase in metabolic heat production. However, within a non-thermolytic range, the thermoregulatory mechanisms are capable of adapting to sustain physiological functions under these conditions. The central nervous system may also rely on hyperthermia to protect the body from "overheating." Hyperthermia may serve as a self-limiting signal that triggers central inhibition of exercise performance when a temperature threshold is achieved. Exposure to sub-lethal heat stress may also confer tolerance against higher doses of heat stress by inducing the production of heat shock proteins, which protect cells against the thermolytic effects of heat. Advances in body temperature measurement also contribute to research in thermoregulation. Current evidence supports the use of oral temperature measurement in the clinical setting, although it may not be as convenient as tympanic temperature measurement using the infrared temperature scanner. Rectal and oesophagus temperatures are widely accepted surrogate measurements of core temperature (Tc), but they cause discomfort and are less likely to be accepted by users. Gastrointestinal temperature measurement using the ingestible temperature sensor provides an acceptable level of accuracy as a surrogate measure of Tc without causing discomfort to the user. This form of Tc measurement also allows Tc to be measured continuously in the field and has gained wider acceptance in the last decade.

  4. Body temperature control in patients with refractory septic shock:too much may be harmful

    Institute of Scientific and Technical Information of China (English)

    YANG Yan-li; LIU Da-wei; WANG Xiao-ting; LONG Yun; ZHOU Xiang; CHAI Wen-zao

    2013-01-01

    Background The lowering of body temperature is a common,almost reflexive step in the daily care of septic shock patient.However,the effect of different magnitudes of fever control on the outcome of refractory septic patients with a very poor outcome is controversial and has yet to be explored.Methods This prospective trial examined sixty-five refractory septic shock patients with a core temperature higher than 38.5℃.Patients were randomly assigned to a group achieving a "low temperature" range (LT group:36.0-37.5 ℃) or to a group achieving a "high temperature" range (HT group:37.5-38.3 ℃C) by physical methods including a water-flow cooling blanket and ice packs.A target core temperature was achieved in 1-2 hours post-treatment,and maintained for 72 hours.Averaged values of core temperature as well as hemodynamic,respiratory,and laboratory variables were analyzed at baseline and during the first 72 hours after fever control.Results Thirty-four (52.31%) patients were assigned to the LT group and thirty-one (47.69%) patients were assigned to the HT group.The mean core temperature was significantly lower in the LT group than in the HT group (36.61 vs.37.85 ℃,respectively; P < 0.0001).The average heart rate (HR) (75.5 vs.91.9 beats/min,respectively; P < 0.0001) and the mean cardiac output (CO) (5.35 vs.6.45 L/min,respectively; P =0.002) were also statistically significant lower in the LT group than in the HT group.The averaged serum lactate level was significantly higher in the LT group compared to the HT group (5.59 vs.2.82 mmol/L,respectively; P=-0.008).Fibrinogen and activated partial thromboplatin time were also different between the two groups.The 28 days mortality was significantly higher in the LT group than in the HT group (61.8vs.25.8%,respectively; P=0.003).A Cox-regression model analysis showed that mean core temperature during the 72 h period was an independent predictor of 28 days mortality (odds ratio (OR) =0.42,95%Cl 0

  5. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater.

    Science.gov (United States)

    Dowd, W Wesley; Somero, George N

    2013-02-01

    Coping with environmental stress may involve combinations of behavioral and physiological responses. We examined potential interactions between adult mussels' simple behavioral repertoire - opening/closing of the shell valves - and thermal stress physiology in common-gardened individuals of three Mytilus congeners found on the West Coast of North America: two native species (M. californianus and M. trossulus) and one invasive species from the Mediterranean (M. galloprovincialis). We first continuously monitored valve behavior over three consecutive days on which body temperatures were gradually increased, either in air or in seawater. A temperature threshold effect was evident between 25 and 33°C in several behavioral measures. Mussels tended to spend much less time with the valves in a sealed position following exposure to 33°C body temperature, especially when exposed in air. This behavior could not be explained by decreases in adductor muscle glycogen (stores of this metabolic fuel actually increased in some scenarios), impacts of forced valve sealing on long-term survival (none observed in a second experiment), or loss of contractile function in the adductor muscles (individuals exhibited as many or more valve adduction movements following elevated body temperature compared with controls). We hypothesize that this reduced propensity to seal the valves following thermal extremes represents avoidance of hypoxia-reoxygenation cycles and concomitant oxidative stress. We further conjecture that prolonged valve gaping following episodes of elevated body temperature may have important ecological consequences by affecting species interactions. We then examined survival over a 90 day period following exposure to elevated body temperature and/or emersion, observing ongoing mortality throughout this monitoring period. Survival varied significantly among species (M. trossulus had the lowest survival) and among experimental contexts (survival was lowest after experiencing

  6. Temperature inversion of the thermal polarization of water

    Science.gov (United States)

    Armstrong, Jeff; Bresme, Fernando

    2015-12-01

    Temperature gradients polarize water, a nonequilibrium effect that may result in significant electrostatic fields for strong thermal gradients. Using nonequilibrium molecular dynamics simulations, we show that the thermal polarization features a significant dependence with temperature that ultimately leads to an inversion phenomenon, whereby the polarization field reverses its sign at a specific temperature. Temperature inversion effects have been reported before in the Soret coefficient of aqueous solutions, where the solution changes from thermophobic to thermophilic at specific temperatures. We show that a similar inversion behavior is observed in pure water. Microscopically, the inversion is the result of a balance of dipolar and quadrupolar contributions and the strong temperature dependence of the quadrupolar contribution, which is determined by the thermal expansion of the liquid.

  7. Effect of climate change on water temperature and attainment of water temperature criteria in the Yaquina Estuary, Oregon (USA)

    Science.gov (United States)

    Brown, Cheryl A.; Sharp, Darrin; Mochon Collura, T. Chris

    2016-02-01

    There is increasing evidence that our planet is warming and this warming is also resulting in rising sea levels. Estuaries which are located at the interface between land and ocean are impacted by these changes. We used CE-QUAL-W2 water quality model to predict changes in water temperature as a function of increasing air temperatures and rising sea level for the Yaquina Estuary, Oregon (USA). Annual average air temperature in the Yaquina watershed is expected to increase about 0.3 °C per decade by 2040-2069. An air temperature increase of 3 °C in the Yaquina watershed is likely to result in estuarine water temperature increasing by 0.7-1.6 °C. Largest water temperature increases are expected in the upper portion of the estuary, while sea level rise may mitigate some of the warming in the lower portion of the estuary. Smallest changes in water temperature are predicted to occur in the summer, and maximum changes during the winter and spring. Increases in air temperature may result in an increase in the number of days per year that the 7-day maximum average temperature exceeds 18 °C (criterion for protection of rearing and migration of salmonids and trout) as well as other water quality concerns. In the upstream portion of the estuary, a 4 °C increase in air temperature is predicted to cause an increase of 40 days not meeting the temperature criterion, while in the lower estuary the increase will depend upon rate of sea level rise (ranging from 31 to 19 days).

  8. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based...

  9. Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study

    Directory of Open Access Journals (Sweden)

    Amanda L Brearley

    2015-10-01

    Full Text Available Question: What is the body temperature response of healthy pregnant women exercising at moderate intensity in an aqua-aerobics class where the water temperature is in the range of 28 to 33 degrees Celsius, as typically found in community swimming pools? Design: An observational study. Participants: One hundred and nine women in the second and third trimester of pregnancy who were enrolled in a standardised aqua-aerobics class. Outcome measures: Tympanic temperature was measured at rest pre-immersion (T1, after 35 minutes of moderate-intensity aqua-aerobic exercise (T2, after a further 10 minutes of light exercise while still in the water (T3 and finally on departure from the facility (T4. The range of water temperatures in seven indoor community pools was 28.8 to 33.4 degrees Celsius. Results: Body temperature increased by a mean of 0.16 degrees Celsius (SD 0.35, p < 0.001 at T2, was maintained at this level at T3 and had returned to pre-immersion resting values at T4. Regression analysis demonstrated that the temperature response was not related to the water temperature (T2 r = –0.01, p = 0.9; T3 r = –0.02, p = 0.9; T4 r = 0.03, p = 0.8. Analysis of variance demonstrated no difference in body temperature response between participants when grouped in the cooler, medium and warmer water temperatures (T2 F = 0.94, p = 0.40; T3 F = 0.93, p = 0.40; T4 F = 0.70, p = 0.50. Conclusions: Healthy pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic exercise conducted in pools heated up to 33 degrees Celsius. The study provides evidence to inform guidelines for safe water temperatures for aqua-aerobic exercise during pregnancy. [Brearley AL, Sherburn M, Galea MP, Clarke SJ, (2015 Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study. Journal of

  10. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues. PMID:26954265

  11. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  12. Fluids in human bodies and biomineralization – parallels to global water resources and reactions

    NARCIS (Netherlands)

    Skinner, H. Catherine W.; King, Helen

    2014-01-01

    The amount of surface freshwaters on Earth is remarkably small considering the human population needing drinking water to survive and to ensure water in their bodies is at that very important locale where cells operate, the transcellular fluid. Like the fluid in and on the planet, body fluid is high

  13. Reduction of body temperature governs neutrophil retention in hibernating and nonhibernating animals by margination

    NARCIS (Netherlands)

    Bouma, Hjalmar R.; Dugbartey, George J.; Boerema, Ate S.; Talaei, Fatemeh; Herwig, Annika; Goris, Maaike; van Buiten, Azuwerus; Strijkstra, Arjen M.; Carey, Hannah V.; Henning, Robert H.; Kroese, Frans G. M.

    2013-01-01

    Low body temperature leads to decrease of circulating neutrophils due to margination in hibernating and nonhibernating animals. Hibernation consists of periods of low metabolism, called torpor, interspersed by euthermic arousal periods. During deep and daily (shallow) torpor, the number of circulati

  14. Development of an Anti-Theft Device using Motion Detection and Body Temperature

    Directory of Open Access Journals (Sweden)

    Rhowel Dellosa

    2014-12-01

    Full Text Available –The researcher aimed to design, assemble and determine the performance of the anti-theft device using motion detection and body temperature. The study utilized developmental design to observe the functionality of the device. Study showed that the anti-theft device can detect motion from a moving object for those with body temperature like human being, animals. A signal from the sensor circuits will trigger the receiver circuit to produce an audible sound that served as alarm. It was also found out that the output of the study is accurate in terms of detecting moving objects with body temperature during day and night times. The researchers formulated an evaluation instrument to determine its performance. Results showed that the device had a good performance and acceptable in terms of functionality. It is strongly recommended that further studies be conducted to enrich the anti-theft device using motion detection and body temperature in a controlled environment like museum and banks to determine the effectiveness of the integration of the anti-theft device.

  15. Selective SWS suppression does not affect the time course of core body temperature in men

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Dijk, Derk-Jan

    1992-01-01

    In eight healthy middle-aged men, sleep and core body temperature were recorded under baseline conditions, during all-night SWS suppression by acoustic stimulation, and during undisturbed recovery sleep. SWS suppression resulted in a marked reduction of sleep stages 3 and 4 but did not affect the ti

  16. A body temperature model for lizards as estimated from the thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.

    2012-01-01

    A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and re

  17. Orexin-a regulates body temperature in coordination with control of arousal state

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Orexins, hypothalamic neuropeptieds, are involved in modulation of food intake and arousal state. To examine further physiological roles of orexin in brain function, the effects of centrally administered orexin- A on body temperature was investigated in rats. Assessed by a telemetry-sensor system implanted into the abdominal cavity, infusion of orexin-A into the third cerebroventricle increased body temperature in a dose-responsive manner. Cumulative ambulatory activity was concomitantly increased during 6 h but not 12 h after administration of orexin-A. Expression of uncoupling protein 1 (UCP1) mRNA in brown adipose tissue, as a marker for peripheal thermogenesis which affects body temperature, failed to increase after orexin-A administration. Expression of UCP3 mRNA in skeletal muscle but not UCP 2 in white adipose tissue was upregulated by infusion of orexin-A. The resulting information indicates that orexin neuron regulates body temperature in coordination with control of arousal system independently of peripheral thermogenesis through the BAT UCP1.

  18. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    1997-01-01

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7 +/

  19. Differences in oral temperature and body shape in two populations with different propensities for obesity

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Bogardus, C;

    2002-01-01

    Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is...

  20. Simultaneous collection of body temperature and activity data in burrowing mammals : a new technique

    NARCIS (Netherlands)

    Long, Ryan A.; Hut, Roelof A.; Barnes, Brian M.

    2007-01-01

    Integrating physiological and behavioral observations into ecological field studies of animals can provide novel insights into relationships among animal behavior, physiology, and ecology. We describe and evaluate a new technique for simultaneously collecting body temperature (T-b) and burrow use da

  1. A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangman Moh

    2013-08-01

    Full Text Available The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node’s circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  2. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    CERN Document Server

    Molaro, Jamie L; Langer, Steve A

    2015-01-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

  3. CARACTERISTICS OF THE LOWER DANUBE WATER BODIES BETWEEN PORTILE DE FIER

    Directory of Open Access Journals (Sweden)

    Elena ŢUCHIU

    2010-12-01

    Full Text Available The main goal of the Water Framework Directive (2000/60/EC Directive is the achievement of the “good status” of the water bodies, environmental objective which can be reached through elaboration and implementation of the River Basin Management Plan. According to the legal requirements, at the 22nd of December 2009, Romania has elaborated the first National Management Plan – synthesis of the River Basin Management Plans. This process assumes the types identification and water bodies delineation on the basis of some abiotic and biotic parameters, such: water category, abiotic and biotic typology, physical features, water status, pressures and their impacts, as well as protected areas. Therefore, for the lower Danube sector between Bazias and Isaccea 4 water bodies have been delineated: 2 reservoirs (Portile de Fier/Iron Gates and Ostrov and 2 river sectors (Ostrov – Chiciu, Chiciu – Isaccea. The procedure for assessment of the environmental objectives risk failing (on the basis of pressures and impacts has shown that all 4 water bodies have been identified at risk from the point of view of organic substances, nutrients, hazardous substances and hydro-morphological alterations. The Water Framework Directive defines the surface water status through: the ecological status - 5 classes (based on biological, hydro-morphological and physic-chemical elements and chemical status – 2 classes (based on priority substances. In present, the 4 water bodies identified on the lower Danube sector do not reach the good status, being designated as heavily modified water bodies.

  4. Body core temperature of rats subjected to daily exercise limited to a fixed time

    Science.gov (United States)

    Shido, O.; Sugimoto, Naotoshi; Sakurada, Sotaro; Kaneko, Yoshiko; Nagasaka, Tetsuo

    Several timed daily environmental cues alter the pattern of nycthemeral variations in body core temperature in rodents. The present study investigated the effect of timed exercise on variations of daily body core temperature. Male rats were housed in cages with a running wheel at an ambient temperature of 24° C with a 12:12 h light/dark cycle. Timed daily exercise rats (TEX) were allowed access to the wheel for 6 h in the last half of the dark phase, freely exercising rats (FEX) could run at any time, and sedentary rats (NEX) were not allowed to run. After a 3-week exercise period, all animals were denied access to the wheel. The intraabdominal temperatures (Tab) and spontaneous activities of rats were measured for 6 days after the exercise period. The Tab values of the TEX rats were significantly higher than those of the other two groups only in the last half of the dark phase, while Tab in the FEX and NEX rats showed no significant difference. The specific Tab changes in the TEX rats lasted for 2 days after the exercise period. Spontaneous activity levels were higher in the TEX rats than the FEX and NEX rats in the last half of the dark phase for 1 day after the exercise period. The results suggest that daily exercise limited to a fixed time per day modifies nycthemeral variations of body core temperature in rats so that the temperature increases during the period when the animals had previously exercised. Such a rise in body core temperature is partly attributed to an increase in the spontaneous activity level.

  5. Infrared thermoimages display of body surface temperature reaction in experimental cholecystitis

    Institute of Scientific and Technical Information of China (English)

    Dong Zhang; Yuan-Gen Zhu; Shu-You Wang; Hui-Min Ma; Yan-Yan Ye; Wei-Xing Fu; Wei-Guo Hu

    2002-01-01

    AIM: To display the thermoirnages of the body surface inexperimental cholecystitis, to observe the body surfacetemperature reaction in visceral disorders, and to study if the theory of body surface-viscera correlation is true and the mechanism of temperature changes along the meridians. METHODS: By injecting bacteria ssuspension into the stricturebile duct and gallbladder, 21 rabbits were prepared as acutepyogenic cholangiocholecystitis models, with another 8rabbits prepared by the same process except withoutinjection of bacteria suspension as control. The body surfaceinfrared thermoimages were continuously observed on thehair shaven rabbit skin with AGA-782 thermovision 24 hbefore, 1-11 d after and (2,3 wk) 4 wk after the operation witha total of over 10 records of thermoimages.RESULTS: Twelve cases out of 21 rabbits with cholecystitisrevealed bi-lsteral longitudinal high temperature lines in itstrunk; with negative findings in the control group. The high-temperature line appeared on d l-d2, first in the right trunk,after the preparation of the model, about 7 d after the modelpreparation, the lines appeared at the left side too,persisting for 4 wk. The hyper-temperature line revealed 1.1-2.7 ℃ higher than before the model preparation, 0.7-2.5 ℃higher than the surrounding skin. The length of the hightemperature line might reach a half length of the body trunk,or as long as the whole body itself.CONCLUSION: The appearance of the longitudinal hightemperature lines st the lateral aspects of the trunk in theexperimental group is directly bound up with theexperimental animals pyogenic cholecystitis, with itsrunning course quite similar to that of the GallbladderChannel of Foot Shaoyang, but different to the zones ofhyperalgesia and site of referred pain in cholecystitis.

  6. Interaction of temperature and an environmental stressor: Moina macrocopa responds with increased body size, increased lifespan, and increased offspring numbers slightly above its temperature optimum.

    Science.gov (United States)

    Engert, Antonia; Chakrabarti, Shumon; Saul, Nadine; Bittner, Michal; Menzel, Ralph; Steinberg, Christian E W

    2013-02-01

    For organisms, temperature is one of the most important environmental factors and gains increasing importance due to global warming, since increasing temperatures may pose organisms close to their environmental tolerance limits and, thus, they may become more vulnerable to environmental stressors. We analyzed the temperature-dependence of the water-soluble antioxidant capacity of the cladoceran Moina macrocopa and evaluated its life trait variables with temperature (15, 20, 25, 30°C) and humic substance (HS) concentrations (0, 0.18, 0.36, 0.90, 1.79 mM DOC) as stressors. Temperatures below and above the apparent optimum (20°C) reduced the antioxidative capacity. Additions of HSs increased body length, but decreased mean lifespan at 15 and 20°C. There was no clear HS-effect on offspring numbers at 15, 20, and 30°C. At 25°C with increasing HS-concentration, lifespan was extended and offspring numbers increased tremendously, reaching 250% of the control. Although the applied HS preparation possesses estrogenic and antiandrogenic activities, a xenohormone mechanism does not seem plausible for the reproductive increase, because comparable effects did not occur at other temperatures. A more convincing explanation appears to be the mitohormesis hypothesis which states that a certain increase of reactive oxygen production leads to improved health and longevity and, with Moina, also to increased offspring numbers. Our results suggest that at least with the eurythermic M. macrocopa, a temperature above the optimum can be beneficial for several life trait variables, even when combined with a chemical stressor. Temperatures approximately 10°C above its optimum appear to adversely affect the lifespan and reproduction of M. macrocopa. This indicates that this cladoceran species seems to be able to utilize temperature as an ecological resource in a range slightly above its thermal optimum. PMID:23211326

  7. The Analysis of Fiber Sensor of Temperature Field Disturbance by Human Body Part Access

    Directory of Open Access Journals (Sweden)

    Filip Dvorak

    2014-01-01

    Full Text Available The principle of this sensor function is based on polarization maintaining fiber (PMF sensitivity during excitation of both two polarization modes. This excitation is caused by temperature change, when absorbing thermal radiation. This mechanism is used for detection of temperature field disturbance as an indicator. In the case described below, attention was devoted to temperature field disturbance on a part of the human body. Thus this sensor system could be used for protection of some entity. The aim of this study was to determine the sensitivity of PMF to radiating heat, the space configuration and time response.

  8. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  9. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  10. Downscaling MODIS Surface Reflectance to Improve Water Body Extraction

    OpenAIRE

    Xianghong Che; Min Feng; Hao Jiang; Jia Song; Bei Jia

    2015-01-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. Accurate mapping of surface water dynamic is vital for both scientific research and policy-driven applications. MODIS provides twice observation per day, making it perfect for monitoring temporal water dynamic. Although MODIS provides two bands at 250 m resolution, accurately deriving water area always depends on observations from the spectral bands with 500 m resolution, which limits its discrimination abilit...

  11. Ultra-compact photonic crystal based water temperature sensor

    Science.gov (United States)

    Nikoufard, Mahmoud; Kazemi Alamouti, Masoud; Adel, Alireza

    2016-09-01

    We design an ultra-compact water temperature sensor by using the photonic crystal technology on the InP substrate at the 1.55-μm wavelength window. The photonic crystal consists of rods in a hexagonal lattice and a polymethyl methacrylate (PMMA) background. By using the plane wave expansion (PWE) method, the lattice constant and radius of rods are obtained, 520 nm and 80.6 nm, respectively. With a nanocavity placed in the waveguide, a resonance peak is observed at the 1.55-μm wavelength window. Any change of the water temperature inside the nanocavity results in the shift of the resonance wavelength. Our simulations show a shift of about 11 nm for a temperature change of 22.5 ℃. The resonance wavelength has a linear relation with the water temperature.

  12. Influence of ambient temperature on whole body and segmental bioimpedance spectroscopy measurements

    Science.gov (United States)

    Medrano, G.; Bausch, R.; Ismail, A. H.; Cordes, A.; Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Bioimpedance spectroscopy (BIS) measurements are easy to implement and could be used for continuous monitoring. However, several factors (e.g. environment temperature) influence the measurements limiting the accuracy of the technology. Changes in skin temperature produced by changes in ambient temperature are related with changes in skin blood flow and skin impedance. It is assumed that skin impedance change is responsible for the error observed in whole body and segmental measurements. Measurements including body parts more distant from the torso seem to be more affected. In the present article skin and segment impedance have been performed on healthy subjects under extreme changes in environment temperature (13-39 °C). A commercial BIS device with a range between 5 kHz and 1 MHz has been used for the measurements. The results indicate that not only skin impedance, but also impedance of deeper tissue (e.g. muscle) may be responsible for the influence of environment temperature on BIS measurements. Segmental (knee-to-knee) BIS measurements show a relative change of only 2 %, while forearm and whole body impedance changed 14 % and 8 % respectively.

  13. Do fentanyl and morphine influence body temperature after severe burn injury?

    Science.gov (United States)

    Kahn, Steven Alexander; Beers, Ryan J; Lentz, Christopher W

    2011-01-01

    Fentanyl lacks the antiinflammatory properties of morphine. Morphine attenuates the inflammatory response through differential stimulation of μ-receptor subtypes. Patients who receive morphine during coronary artery bypass graft have been shown to experience less postoperative fever than those who receive fentanyl. Patients who receive continuous fentanyl infusions in increased room temperatures after thermal injury may be at increased risk to experience higher body temperature than those who receive morphine. The records of 28 patients with >20%TBSA burn in 30 intensive care unit rooms (13 received fentanyl and 15 received morphine or hydromorphone) and 12 trauma patients who received fentanyl in 22°C intensive care unit rooms were reviewed. Mean maximum core temperature and percentage of temperature recordings > 39°C in the first 48 hours of admission were compared between burn patients who received fentanyl, those who did not, and with trauma patients. Burn patients exposed to fentanyl experienced significantly higher temperatures (40.1 ± 0.9°C) compared with those given morphine (38.7 ± 0.8°C) and compared with trauma patients (37.5 ± 2.4°C), P Burn patients on fentanyl had temperatures > 39°C for a higher percentage of time (33 ± 27%) than those without fentanyl (7.2 ± 13%) and trauma patients (1 ± 2.8%), P Burn patients who receive fentanyl in 30°C rooms experience higher body temperatures and are febrile for a higher percentage of time than those receiving morphine only. Morphine has well-established antiinflammatory properties and likely attenuates the postburn inflammatory response more than fentanyl, resulting in lower body temperatures. This phenomenon needs to be further investigated in additional studies.

  14. Research and application of multi-angle polarization characteristics of water body mirror reflection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of the multi-angle polarized reflection spectrum of the water samples,the water body mirror reflection polarization characteristics and mechanism are described systematically. By altering such influential factors as the angle of incidence,detecting angle,detecting azimuth angle and polari-zation angle,ubiquitous laws for the multi-angle polarized reflection spectrum of the water samples are obtained. Combining multi-angle remote sensing with polarized light,the multi-angle polarized reflec-tion method about eliminating the water body mirror reflection and the suitable time of the polarized remote sensing of the water body are proposed. This study provides technical references for the ap-plication of multi-angle polarization technology on water body remote sensing.

  15. Research and application of multi-angle polarization characteristics of water body mirror reflection

    Institute of Scientific and Technical Information of China (English)

    LUO YangJie; ZHAO YunSheng; LI XiaoWen; WU TaiXia; ZHAO LiLi

    2007-01-01

    On the basis of the multi-angle polarized reflection spectrum of the water samples, the water body mirror reflection polarization characteristics and mechanism are described systematically. By altering such influential factors as the angle of incidence, detecting angle, detecting azimuth angle and polarization angle, ubiquitous laws for the multi-angle polarized reflection spectrum of the water samples are obtained. Combining multi-angle remote sensing with polarized light, the multi-angle polarized reflection method about eliminating the water body mirror reflection and the suitable time of the polarized remote sensing of the water body are proposed. This study provides technical references for the application of multi-angle polarization technology on water body remote sensing.

  16. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    Science.gov (United States)

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions.

  17. Surface wetting and its effect on body and surface temperatures of domestic laying hens at different thermal conditions.

    Science.gov (United States)

    Mutaf, S; Kahraman, N Seber; Firat, M Z

    2008-12-01

    This study investigated the efficacy of surface wetting at different thermal conditions on core body, head, and dorsal surface temperatures in laying hens. Hens were sprinkled on the head and dorsal surface by releasing a sprinkling dosage of 10 mL.bird(-1). The first measurement was taken presprinkling, and the second was taken immediately postsprinkling and then repeated every 5 min for 20 min. The cooling water needs for intermittent partial surface wetting to relieve acute heat stress in the laying hens were quantified for 48 domestic laying hens under 4 experimental thermal conditions. The hens were kept at 4 thermal conditions at average dry-bulb temperatures of 31.30 +/- 0.03, 33.20 +/- 0.08, 36.01 +/- 0.12, and 40.24 +/- 0.08 degrees C; RH of 67.68 +/- 0.37, 51.78 +/- 1.98, 24.59 +/- 0.90, and 16.12 +/- 1.55%; and air velocities of 0.09 +/- 0.00, 0.07 +/- 0.00, 0.08 +/- 0.00, and 0.09 +/- 0.00 m.s(-1), respectively. The differences in core body, head, and dorsal surface temperatures among the 4 thermal groups were 0.15, 0.18, 0.23, and 0.22 degrees C for core body temperature; 1.63, 1.44, 2.51, and 0.97 degrees C for core head temperature; and 1.23, 1.37, 1.41, and 0.64 degrees C for core dorsal temperature at thermal conditions 1, 2, 3, and 4, respectively. There were significant differences in core body, head, and dorsal surface temperatures among the 4 thermal condition groups. It was concluded that the spraying interval was directly proportional to the product of the vapor pressure deficit and the thermal resistance of convective mass transfer of the wetted hens, because there were no significant differences in the air velocity among the 4 thermal condition groups and the air velocity was very low. PMID:19038798

  18. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  19. [Body thermal status under low-temperature conditions in brewing production].

    Science.gov (United States)

    Vasileva-Todorova, L; Dimitrova-Toneva, I

    1992-01-01

    The purpose of the present study is to trace the thermal state of workers exposed to low temperatures in brewery production, establishing the heat loss and the stress of thermoregulation. The investigations are performed in the departments for fermentation, deposit, cask washing and filling of 3 brewery plants. In order to characterize the microclimate methods of thermometry, psychometry and catathermometry are used. The heat state is controlled by methods of subjective heat perception, skin temperature, average skin temperature, temperature gradients, oral, rectal and average body temperature and the thermal content. The results of the physiological examinations point out to significant loss, which affects not only the periphery but also the deep tissues. There is an expressed risk of supercooling of the organism. The data of the heat deficit impose a correction of the working clothes and limitation of the exposure.

  20. Water-Body Area Extraction from High Resolution Satellite Images-An Introduction, Review, and Comparison

    Directory of Open Access Journals (Sweden)

    Rajiv Kumar Nath

    2010-01-01

    Full Text Available Water resources play an important role in environmental, transportation andregion planning, natural disaster, industrial and agricultural production and so on.Surveying of water-bodies and delineate its features properly is very first stepfor any planning, especially for places like India, where the land-cover isdominated by water-bodies. Recording images, such as from satellite, sometimesdoes not reflect the distinguished characteristics of water with non-waterfeatures, e.g. shadows of super structures. Image of water body is confusedeasily with the shadow of skyscraper, since calm water surface induces mirrorreflection when it gives birth to echo wave. Water transport is cheapest.Developing/poor countries like India will be benifitted if water transport isencouraged. In water transport, the link should be made between various landmasses, including building blocks, through proper navigational system. Hencethere should be clear distinction between calm water and the shadows ofbuildings. Over the past decade, a significant amount of research beenconducted to extract the water body information from various multi-resolutionsatellite images. The objective of this paper is to review methodologies appliedfor water body extraction using satellite remote sensing. The GeographicInformation System (GIS and the Global Positioning System (GPS have alsobeen discussed as they are closely linked with Remote Sensing. Initially, studieson water body detection are treated. Methodological issues related to the use ofthese methods were analysed followed by summaries. Results from empiricalstudies, applying water-body extraction techniques are collected and discussed.Important issues for future research are also identified and discussed.

  1. Relationship of anthropometric measurements to body fat as determined by densitometry 40K and body water

    International Nuclear Information System (INIS)

    A variety of anthropometric measurements were made on 223 male and 36 female military personnel for whom total body fat was estimated by density, 40K counting, and D2O dilution. Simple correlations with body fat estimates indicated that for the male population, waist, weight and buttocks circumferences were most highly correlated with fat estimate ( r = 0.70 to 0.85). In the female population skinfold thicknesses were the measurements most highly correlated with weight of body fat (r = 0.66 to 0.87). Stepwise multiple regression analysis showed that five of the variables could account for 60 to 70 percent of the variation in fat in males and up to 90 percent in females. Correlations of measurements were higher with fat as estimated by density than with estimates derived from potassium-40 counting or D2O dilution in males. (U.S.)

  2. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  3. Germination rates of Solanum sisymbriifolium: temperature response models, effects of temperature fluctuations and soil water potential

    NARCIS (Netherlands)

    Timmermans, B.G.H.; Vos, J.; Nieuwburg, van J.G.W.; Stomph, T.J.; Putten, van der P.E.L.

    2007-01-01

    Four temperature response models were compared describing the emergence rate of Solanum sisymbriifolium (L.) over a broad range of suboptimal temperatures and at different soil water potentials. In the laboratory, the effects were tested on germination rates at constant (9.1-21.8 degrees C) and diur

  4. In vitro study of the effects of cooling water temperature during the use of Er:YAG laser on dentin

    International Nuclear Information System (INIS)

    This study measured the pulp chamber and the target surface with 2 thermocouples, in order to determine whether cooling with water spray, with Er:YAG laser (Kavo Key 2), was overcooling the tooth, much beyond the necessary, during laser irradiation, within variation limits of 2.2 deg C of body temperature. The parameters used were: Ep=250 mJ per pulse, with frequency ranging between 2 to 4 Hz, for a total DE of 80.20 J/cm2, at an angle of incidence of approximately 90 deg, during an exposure period of 1 minute, totaling 120 to 240 pulses. In the first 40 seconds, the spray cooled the tooth rapidly, from 36.5 deg C to below 30 deg C. It was impossible to control the spray output temperature with a simple increase in reservoir temperature, for when water at temperatures ranging between 90 and 100 deg C is placed in the reservoir, the heat dissipates completely during the trajectory. The water jet does not present the same characteristics as a spray, which makes it impossible to conduct a perfect comparative analysis between them. The increase and maintenance of the spray output temperature, by reducing the temperature differential between that of the body and that of the spray of the Er:YAG laser, proved to be extremely promising. The pulp chamber temperature followed that of the spray or water jet, so that when a temperature that is lower than body temperature is used, the temperature of the pulp chamber is decreases, and when body temperature is surpassed, the temperature of the pulp chamber increases. (author)

  5. Prediction of River Water Temperature and its Dependence on Hydro-Meteorological Factors

    Directory of Open Access Journals (Sweden)

    Aldona Jurgelėnaitė

    2014-07-01

    Full Text Available Rivers will be among the most sensitive of all ecosystems to the effects of climate change as they are heated by processes similar to those warming the Earth's atmosphere. The river water and air temperatures follow each other closely. The life cycle of lotic biota is regulated by two major physical factors: water temperature and hydraulic conditions. Any change in hydraulic pattern that leads to an alteration of the established thermal regime of a lotic ecosystem will ultimately lead to a dramatic change in the composition and survival of lotic biota. In order to assess the impacts of potential climate change on thermal regime of water bodies, it is important to know the long range forecasts for various climatic parameters. For this purpose the modelling of water discharge and forecasting of future changes are performed. This paper provides the long-term changes in the Lithuanian river water temperature according to two models and emissions scenarios. This paper evaluates the changes of warm season (May-October water temperature and heat runoff of Lithuanian rivers (Nemunas, Merkys and Dubysa with different thermal regimes at the end of the 21st century (2071–2100 comparing to the climate normal period (1961-1990 using two climate change models (ECHAM5 and HadCM3 global climate models and the A2 and B1 emissions scenarios and hydrological modelling (HBV model. DOI: http://dx.doi.org/10.5755/j01.erem.68.2.6178

  6. Total Body Water, Electrolyte, and Thermoregulatory Responses to Ad Libitum Water Replacement Using Two Different Water Delivery Systems During a 19-km Route March.

    Science.gov (United States)

    Nolte, Heinrich W; Nolte, Kim; van der Meulen, Julia

    2015-11-01

    Hands-free hydration systems are often advocated for improved hydration and performance in military populations. The aim was to assess whether such systems indeed result in improved hydration in exercising soldiers. Subjects were required to complete a route march while consuming water ad libitum from either a hydration bladder (BG) or traditional canteen (CG). Water intakes of 538 ml·h⁻¹ (BG) and 533 ml·h⁻¹ (CG) resulted in no differences for changes in body mass, serum [Na], plasma osmolality, total body water, or time required to complete the march. There were no differences between peak exercise core temperature of the BG (38.9° C) and CG (38.7° C) groups. There were no differences between the groups for fluid balance, thermoregulation, or performance. This is a not a surprising finding because the amount of fluid consumed ad libitum is determined by changes in serum osmolality and not the fluid delivery system as often proposed. PMID:26506205

  7. Water consumption, body composition and cardiometabolic parameters in children

    OpenAIRE

    Milla Tobarra, Marta; García Hermoso,Antonio; Lahoz García, Noelia; García Meseguer, María José; Cañete García-Prieto, Jorge; Martínez Vizcaíno, Vicente

    2015-01-01

    Introduction: Beverage consumption and its possible association with the current obesity epidemic and metabolic syndrome is under investigation in recent years, but water intake is probably the most underestimated or poorly measured of all beverages. Water is essential for life and plain water instead of other caloric beverages is one approach to decrease energy intake and therefore could play an important role to fight against obesity and cardiovascular disease. Method: A cross sectional ...

  8. Soil Phosphorus Release to the Water Bodies in the Upland Fields of Yellow Soil Areas and Impacting Factor

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; LUO Hai-bo; SU Yin-ge; LIU Yuan-sheng; HE Teng-bin; LONG Jian

    2005-01-01

    Soil phosphorus release to the water bodies in the upland fields of yellow soil areas and impacting factor was studied in Guizhou province. The results showed that the content of dissolved active P of surface runoff from various upland fields of yellow-soil were significantly different, which the concentrations of dissolved active P of runoff correlated with the contents of available-P, amorphous oxides of Al, and organic matter in the soils. The amount of soil phosphorus release to the water bodies affected by the level of applying P fertilizer and the process of corn growth, which with fertilizing from 150 to 900 kg P2O5 ha-1 in the soil with high P level, the average contents of dissolved active P in the permeability-water of the soil increased from 0.020 mg L-1 to 0.137 mg L-1. The amount of soil phosphorus release to the water bodies also affected by environmental factor, which the amount of soil phosphorus release significantly increased under the conditions that temperature is 30℃-35 ℃, water/soil ratios is 15:1-25:1, submergence-time by water is 12-18 h and pH value of acid rains is 3.82-3.73.

  9. Level of activation, body temperature, and interpersonal conflict in family relationships.

    Science.gov (United States)

    Hoskins, C N

    1979-01-01

    The 24-hour variation in physiological and psychological functioning within the individual and interpersonal differences were investigated in relation to the nature of social interaction between individuals. Level of activation, body temperature, and interpersonal conflict were studied in a sample of 16 married couples for a period of six weekdays of routine activity. Homogeneity was a major factor in sample selection. Body temperature was measured every hour during the waking time by electronic thermometer, and level of activation was measured four times a day on alternate forms of a self-report adjective checklist. Interpersonal conflict, defined as perceived fulfillment of emotional and interaction needs, was measured in the morning and late day. The interpersonal Conflict Scale with established validity was constructed for the study and had two alternate forms of equal reliability. An index of desynchrony between partners for both temperature and activation was calculated for each day of data collection by the following method: The deviation score from the overall six-day mean was determined for each measurement time for each spouse and for each variable. Absolute values of the differences between deviation scores were added to obtain an index of desynchrony in that variable for the day. A daily mean of interpersonal conflict scores for both partners was also calculated. The hypotheses that a desynchrony between partners in body temperature rhythm and in level of activation rhythm would be positively related to conflict were tested by the Pearson product moment correlation. Obtained coefficient; were not significant at the .05 level. PMID:254897

  10. No relation between body temperature and arterial recanalization at three days in patients with acute ischaemic stroke

    NARCIS (Netherlands)

    M. Geurts (Marjolein); H.B. Van Der Worp (H. Bart); A.D. Horsch (Alexander D.); L.J. Kappelle (Jaap); G.J. Biessels (Geert Jan); B.K. Velthuis (Birgitta); C.B. Majoie (Charles); Y.B.W.E.M. Roos; L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); K.E. Droogh-De Greve; H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); J. Bot (Joseph); M.C. Visser (Marieke); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); T. van Seeters (Tom); A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels; L.J. Kappelle; J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2015-01-01

    textabstractBackground: Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods: We included 278 patients with acute ischaemic stroke within nine

  11. Urban impacts on the water quality of selected water bodies in the Three Gorges Reservoir, China

    Science.gov (United States)

    Reid, Lucas; Holbach, Andreas; Wei, Hu; Wang, Lijing; Chen, Hao; Zheng, Binghui; Norra, Stefan

    2013-04-01

    Urban systems belong to the major input sources for pollutants into aquatic systems. In China, the rising urbanisation and industrialisation causes a growing pressure on rivers, lakes and estuaries. With the recent impoundment of the Yangtze River by the Three Gorges Dam, the newly formed Three Gorges Reservoir is additionally experiencing drastic changes in the flow regime [1]. In the frame of the Sino-German "Yangtze-Project" [2] samples were taken from the water bodies in proximity to the Cities of Chongqing, Kaixian and Wushan during a field campaign in April 2011. Water samples were analysed for inorganic contents in suspended solids and the dissolved phase to assess the impact of these cities on the water quality of the reservoir. Results show that input from urban sources, together with the effects from the impoundment of the Yangtze River, deteriorates the quality of water and sediments in the Three Gorges Reservoir. Water in the Wushan Lake is trapped in by the Yangtze River flowing by, which leads to longer retention times of effluent water from the city. The chemical composition of the lake water is also measurable upstream in the Daninghe itself and might be due to the backwater effect. In the Xiaojiang River near Kaixian the low flow velocity from the backwater effect of the Yangtze, together with influences from the city have led to problems with algal blooms. High metal concentrations at Chongqing indicate a strong impact of this megacity on the water quality of the Three Gorges Reservoir and the sediments of the Yangtze River. Acknowledgements: Financial support by the Federal Ministry of Education and Research of Germany (BMBF), the Ministry of Science and Technology of the People's Republic of China (MOST) and the German Academic Exchange Service (DAAD). References: [1] Ministry of Environmental Protection of the People's Republic of China, 2010: Bulletin on the Ecological and Environmental Monitoring Results of the Three Gorges Project 2010 [2

  12. Effect of Surface Energy on Freezing Temperature of Water.

    Science.gov (United States)

    Zhang, Yu; Anim-Danso, Emmanuel; Bekele, Selemon; Dhinojwala, Ali

    2016-07-13

    Previous studies have found that superhydrophobic surfaces are effective in delaying freezing of water droplets. However, the freezing process of water droplets on superhydrophobic surfaces depends on factors such as droplet size, surface area, roughness, and cooling rate. The role of surface energy, independent of any other parameters, in delaying freezing of water is not understood. Here, we have used infrared-visible sum frequency generation spectroscopy (SFG) to study the freezing of water next to solid substrates with water contact angles varying from 5° to 110°. We find that the freezing temperature of water decreases with increasing surface hydrophobicity only when the sample volume is small (∼10 μL). For a larger volume of water (∼300 μL), the freezing temperature is independent of surface energy. For water next to the surfaces with contact angle ≥54°, we observe a strong SFG peak associated with highly coordinated water. This research sheds new light on understanding the key factors in designing new anti-icing coatings. PMID:27314147

  13. Ambient temperature influences core body temperature response in rat lines bred for differences in sensitivity to 8-hydroxy-dipropylaminotetralin.

    Science.gov (United States)

    Nicholas, Andrea C; Seiden, Lewis S

    2003-04-01

    Agonist-induced decrease in core body temperature has commonly been used as a measure of serotonin1A (5-HT(1A)) receptor sensitivity in mood disorder. The thermoregulatory basis for 5-HT(1A) receptor agonist-induced temperature responses in humans and rats remains unclear. Therefore, the influence of ambient temperature on 5-HT(1A) receptor-mediated decreases in core body temperature were measured in rat lines bred for high (HDS) or low (LDS) sensitivity to the selective 5-HT(1A) receptor agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT). HDS and LDS rats were injected with either saline, 0.25 or 0.50 mg/kg 8-OH-DPAT at ambient temperatures of 10.5, 24, 30, or 37.5 degrees C, and core temperature was measured by radiotelemetry. For both lines, the thermic response to acute 8-OH-DPAT was greatest at 10.5 degrees C and decreased in magnitude as ambient temperature increased to 30 degrees C, consistent with hypothermia. HDS rats displayed a greater hypothermic response than LDS rats at 10.5, 24, and 30 degrees C. At 37.5 degrees C, LDS rats showed a lethal elevation of temperature in response to 0.50 mg/kg 8-OH-DPAT. All thermic responses to 8-OH-DPAT, including the lethality, were effectively blocked by pretreatment with the 5-HT(1A) receptor antagonist WAY100635, suggesting line differences in thermoregulatory circuits that are influenced by 5-HT(1A) receptor activation. Following repeated injection of 8-OH-DPAT, the magnitude of the hypothermic response decreased in both lines at 10.5 degrees C, but increased in HDS rats treated with 0.50 mg/kg 8-OH-DPAT at 30 and 37.5 degrees C. This pattern was reversed in HDS rats following 8-OH-DPAT challenge at 24 degrees C, suggesting that a compensatory thermoregulatory response accounts for changes in the hypothermic response to chronic 8-OH-DPAT. PMID:12649391

  14. High temperature oxidation of molybdenum in water vapor environments

    International Nuclear Information System (INIS)

    Molybdenum has recently gained attention as a candidate cladding material for use in light water reactors. Its excellent high temperature mechanical properties and stability under irradiation suggest that it could offer benefits to performance under a wide range of reactor conditions, but little is known about its oxidation behavior in water vapor containing atmospheres. The current study was undertaken to elucidate the oxidation behavior of molybdenum in water vapor environments to 1200 °C in order to provide an initial assessment of its feasibility as a light water reactor cladding. Initial observations indicate that at temperatures below 1000 °C, the kinetics of mass loss in water vapor would not be detrimental to cladding integrity during an off-normal event. Above 1000 °C, degradation is more rapid but remains slower than observed for optimized zirconium cladding alloys. The effect of hydrogen–water vapor and oxygen–water vapor mixtures on material loss was also explored at elevated temperatures. Parts-per-million levels of either hydrogen or oxygen will minimally impact performance, but hydrogen contents in excess of 1000 ppm were observed to limit volatilization at 1000 °C

  15. High temperature oxidation of molybdenum in water vapor environments

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.T., E-mail: atnelson@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sooby, E.S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kim, Y.-J. [General Electric Global Research Center, Schenectady, NY 12309 (United States); Cheng, B. [Electric Power Research Institute, Palo Alto, CA 94304 (United States); Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-05-01

    Molybdenum has recently gained attention as a candidate cladding material for use in light water reactors. Its excellent high temperature mechanical properties and stability under irradiation suggest that it could offer benefits to performance under a wide range of reactor conditions, but little is known about its oxidation behavior in water vapor containing atmospheres. The current study was undertaken to elucidate the oxidation behavior of molybdenum in water vapor environments to 1200 °C in order to provide an initial assessment of its feasibility as a light water reactor cladding. Initial observations indicate that at temperatures below 1000 °C, the kinetics of mass loss in water vapor would not be detrimental to cladding integrity during an off-normal event. Above 1000 °C, degradation is more rapid but remains slower than observed for optimized zirconium cladding alloys. The effect of hydrogen–water vapor and oxygen–water vapor mixtures on material loss was also explored at elevated temperatures. Parts-per-million levels of either hydrogen or oxygen will minimally impact performance, but hydrogen contents in excess of 1000 ppm were observed to limit volatilization at 1000 °C.

  16. Decadal Variation in Microflora and Fauna in 10 Water Bodies of Bhopal, Madhya Pradesh

    Directory of Open Access Journals (Sweden)

    Subrata Pani

    2014-04-01

    Full Text Available Bhopal, the capital of Madhya Pradesh is gifted with number of water resources of multiple uses. However most of the water bodies have shrunken because of siltation, illegal land filling, conversion, and encroachment. The combination of all these factors ultimately resulted in deterioration of water quality and loss of species. The present study therefore was undertaken to evaluate the impact of urbanization on water quality and bio-diversity of the 10 lakes and wetlands situated within the municipal area of the city. A comparison of data generated over the years depicts considerable reduction in total number of species in the water bodies like Upper Lake, Hathaikheda and Sarangpani Lake.

  17. Remote sensing of subsurface water temperature by laser Raman spectroscopy

    Science.gov (United States)

    Leonard, D. A.; Caputo, B.; Guagliardo, J. L.; Hoge, F. E.

    1980-01-01

    This paper describes experimental remote sensing of subsurface water temperature using the Raman spectroscopic technique. By the use of a pulsed laser and range gating detection techniques, Raman scattering is analyzed as a function of depth in a radar-like echo mode, and thus subsurface profiles of temperature and transmission are obtained. Experiments are described in which Raman data using polarization spectroscopy has been obtained from a ship as a function of depth in ocean water near Grand Bahama Island. A spectral temperature accuracy of + or - 1 C has been obtained from this data in the first two optical attenuation lengths. Raman data obtained from ocean water using the NASA airborne oceanographic lidar is also presented.

  18. Canopy Temperature as a Crop Water Stress Indicator

    Science.gov (United States)

    Jackson, R. D.; Idso, S. B.; Reginato, R. J.; Pinter, P. J., Jr.

    1981-08-01

    Canopy temperatures, obtained by infrared thermometry, along with wet- and dry-bulb air temperatures and an estimate of net radiation were used in equations derived from energy balance considerations to calculate a crop water stress index (CWSI). Theoretical limits were developed for the canopy air temperature difference as related to the air vapor pressure deficit. The CWSI was shown to be equal to 1 - E/Ep, the ratio of actual to potential evapotranspiration obtained from the Penman-Monteith equation. Four experimental plots, planted to wheat, received postemergence irrigations at different times to create different degrees of water stress. Pertinent variables were measured between 1340 and 1400 each day (except some weekends). The CWSI, plotted as a function of time, closely paralleled a plot of the extractable soil water in the 0- to 1.1-m zone. The usefulness and limitations of the index are discussed.

  19. Trapping of air in impact between a body and shallow water

    OpenAIRE

    Korobkin, A. A.; Ellis, A. S.; Smith, F. T.

    2008-01-01

    Near-impact behaviour is investigated for a solid body approaching another solid body with two immiscible incompressible viscous fluids occupying the gap in between. The fluids have viscosity and density ratios which are extreme, the most notable combination being water and air, such that either or both of the bodies are covered by a thin film of water. Air-water interaction and the commonly observed phenomenon of air trapping are of concern in the presence of the two or three thin layers and...

  20. Water-Body types identification in urban areas from radarsat-2 fully polarimetric SAR data

    Science.gov (United States)

    Xie, Lei; Zhang, Hong; Wang, Chao; Chen, Fulong

    2016-08-01

    This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.

  1. Intraspecific scaling in frog calls: the interplay of temperature, body size and metabolic condition.

    Science.gov (United States)

    Ziegler, Lucia; Arim, Matías; Bozinovic, Francisco

    2016-07-01

    Understanding physiological and environmental determinants of strategies of reproductive allocation is a pivotal aim in biology. Because of their high metabolic cost, properties of sexual acoustic signals may correlate with body size, temperature, and an individual's energetic state. A quantitative theory of acoustic communication, based on the metabolic scaling with temperature and mass, was recently proposed, adding to the well-reported empirical patterns. It provides quantitative predictions for frequencies, call rate, and durations. Here, we analysed the mass, temperature, and body condition scaling of spectral and temporal attributes of the advertisement call of the treefrog Hypsiboas pulchellus. Mass dependence of call frequency followed metabolic expectations (f~M (-0.25), where f is frequency and M is mass) although non-metabolic allometry could also account for the observed pattern. Temporal variables scaled inversely with mass contradicting metabolic expectations (d~M (0.25), where d is duration), supporting instead empirical patterns reported to date. Temperature was positively associated with call rate and negatively with temporal variables, which is congruent with metabolic predictions. We found no significant association between temperature and frequencies, adding to the bulk of empirical evidence. Finally, a result of particular relevance was that body condition consistently determined call characteristics, in interaction with temperature or mass. Our intraspecific study highlights that even if proximate determinants of call variability are rather well understood, the mechanisms through which they operate are proving to be more complex than previously thought. The determinants of call characteristics emerge as a key topic of research in behavioural and physiological biology, with several clear points under debate which need to be analysed on theoretical and empirical grounds. PMID:26552381

  2. The Effects of Increased Body Temperature on Motor Control during Golf Putting

    Science.gov (United States)

    Mathers, John F.; Grealy, Madeleine A.

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed.

  3. Summer declines in activity and body temperature offer polar bears limited energy savings

    Science.gov (United States)

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  4. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. PMID:26185248

  5. Effects of Water Temperature during Foot Bath in Young Females

    OpenAIRE

    Nishimura, Masahiro; Saito, Tatsuya; Kato, Toshiaki; Onodera, Sho

    2013-01-01

    We examined the effects of environmental and water temperatures of foot baths on pulse rate, blood pressure, mean skin temperature, salivary amylase (SA) activity, relaxation level and thermal sensation during winter. Five females participated in the study. The subjects rested in a chair for 20 min and the above-noted physiological reactions during the last 5 min of the resting period were recorded as baseline (BASE) values. Next, the subjects received a 15-min foot bath in water at 40 °C (WT...

  6. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    Science.gov (United States)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  7. Swimming of pregnant rats at different water temperatures.

    Science.gov (United States)

    Osorio, R A L; Silveira, V L F; Maldjian, S; Morales, A; Christofani, J S; Russo, A K; Silva, A C; Piçarro, I C

    2003-08-01

    We studied the chronic effect of exercise during water immersion, associated with thermal stress (water temperature at 22, 35 and 40 degrees C) at an intensity of 80% of maximal work load supported in pregnant rats (P) and non-pregnant female rats (NP). P and NP were subdivided into three subgroups according to water temperature during exercise (P22 and NP22; P35 and NP35; P40 and NP40). The animals were submitted to daily swimming sessions of 10-15 min, for 19 days of pregnancy (P) or experimental conditions (NP). Plasma concentration of triglycerides, cholesterol, glucose, total protein, albumin and corticosterone were determined 24 h after the last exercise session. Weight gain and rectal temperature pre- and post-swimming session were also determined. The offspring were examined just after caesarian section on the 20th day of pregnancy to check weight, length and litter size. Pregnant rats showed an increase of triglycerides, reduction of glycemia, total protein and albumin and cholesterol (at 35 degrees C) when compared to non-pregnant animals. Such effects probably lead to an adequate delivery of substrate to the fetus and prepare the mother for lactation. Daily thermal stress did not modify metabolic responses to exercise in pregnant rats. Results also show a deleterious effect on offspring when the mother is exposed daily to extreme temperatures during swimming. These results suggest that water temperature (cold and hot) in swimming have to be considered to avoid damage in fetal development.

  8. Development of solid electrolytes for water electrolysis at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Kopitzke, R.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1995-09-01

    If an electrolyzer could operate at higher temperatures, several benefits would accrue. The first is that the thermodynamic electrical energy requirement to drive the reaction would be reduced. Supplying the total enthalpy of reaction at any temperature involves a combination of electrical and thermal energy inputs. Because of the positive entropy associated with water decomposition, the thermal contribution increases as temperature rises, allowing the free energy requirement to decrease. Thus the open circuit voltage, V{sub oc}, for water splitting drops as temperature rises. At room temperature, V{sub oc} for water decomposition is 1.229 V. At 400{degrees}C, voltage requirement has dropped to 1.1 V; at 1000{degrees}C, it is only 0.92 V. Since electricity is a more expensive form of energy on a btu basis, the more energy taken from the thermal surroundings the better. Moreover, this thermal energy content could be solar-derived. While the cost of solar thermal energy varies in the range of $360-900/peak kilowatt, the installed cost of photovoltaic electricity is in the range of $4,000-5,000/peak kilowatt. Thus if one is compelled to erect an array of photovoltaic panels to generate the e.m.f. necessary to split water, substituting as much area with thermal collectors as possible represents a substantial cost savings.

  9. Low body temperature affects associative processes in long-trace conditioned flavor aversion.

    Science.gov (United States)

    Misanin, J R; Wilson, H A; Schwarz, P R; Tuschak, J B; Hinderliter, C F

    1998-12-01

    A series of experiments examined the effect of low body temperature on the associative process in long-trace conditioned flavor aversion. Experiment 1 demonstrated that maintaining a low body temperature between conditioned stimulus (CS) and unconditioned stimulus (US) administration facilitates the associative process and allows a flavor aversion to be conditioned in young rats over an interval that would normally not support conditioning. Experiments 2 and 3 demonstrated that this was due neither to lingering systemic saccharin serving as a CS nor to a cold induced enhancement of US intensity. Experiment 4 demonstrated that inducing hypothermia at various times during a 3-h CS-US interval results in an apparent delay of reinforcement gradient. We propose that a cold induced decrease in metabolic rate slows the internal clock that governs the perception of time and that the CS-US association depends upon perceived contiguity rather than upon an external clock-referenced contiguity.

  10. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  11. Finite-temperature second-order many-body perturbation theory revisited

    CERN Document Server

    Santra, Robin

    2016-01-01

    We present an algebraic, nondiagrammatic derivation of finite-temperature second-order many-body perturbation theory [FT-MBPT(2)], using techniques and concepts accessible to theoretical chemical physicists. We give explicit expressions not just for the grand potential but particularly for the mean energy of an interacting many-electron system. The framework presented is suitable for computing the energy of a finite or infinite system in contact with a heat and particle bath at finite temperature and chemical potential. FT-MBPT(2) may be applied if the system, at zero temperature, may be described using standard (i.e., zero-temperature) second-order many-body perturbation theory [ZT-MBPT(2)] for the energy. We point out that in such a situation, FT-MBPT(2) reproduces, in the zero-temperature limit, the energy computed within ZT-MBPT(2). In other words, the difficulty that has been referred to as the Kohn--Luttinger conundrum, does not occur. We comment, in this context, on a "renormalization" scheme recently ...

  12. Temperature Dependency of Water Vapor Permeability of Shape Memory Polyurethane

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-min; HU Jin-lian; YAN Hao-jing

    2002-01-01

    Solution-cast films of shape memory polyurethane have beea investigated. Differential scanning calorimetry,DMA, tensile test, water vapor permeability and the shape merry effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S- shaped curve, and increases abruptly at Tm of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D)are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below Tg. The crystalline state hardsegment is necessary for the good shape memory effect.

  13. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    OpenAIRE

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Martin J Kelly

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric ac...

  14. Biphasic Effect of Melanocortin Agonists on Metabolic Rate and Body Temperature

    OpenAIRE

    Lute, Beth; Jou, William; Lateef, Dalya M.; Goldgof, Margalit; Xiao, Cuiying; Piñol, Ramón A.; Kravitz, Alexxai V.; Miller, Nicole R.; Huang, Yuning George; Girardet, Clemence; Butler, Andrew A.; Gavrilova, Oksana; Reitman, Marc L.

    2014-01-01

    The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r) mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia tha...

  15. Numerical Modeling of Thermal Pollution of Large Water Bodies from Thermal and Nuclear Power Plants

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Lyakhin, Yury; Parshakova, Yanina; Tiunov, Alexey

    2016-04-01

    Currently, the major manufacturers of electrical energy are the thermal and nuclear power plants including the cooling ponds in the processing chains. For a wide range of both environmental and technological problems, the evaluation of the temperature fields in the cooling ponds at certain critical values of hydrological and meteorological parameters is important. The present paper deals with the evaluation of the thermal effect of one of the largest thermal power plant in Europe - Perm GRES - to its cooling pond which is the Kama Reservoir. Since the area of the possible impact is rather large and the reservoir itself is characterized by a very complex morphometry, numerical modeling of thermal spot propagation in the Kama River due to the discharge of warm water by Perm GRES for the entire area in the 3D-formulation with the desired detail setting morphometric characteristics of the water body meets very serious difficulties. Because of that, to solve the problem, a combined scheme of calculations based on the combination of hydrodynamic models in 2D and 3D formulations was used. At the first stage of the combined scheme implementation, 2D hydrodynamical model was developed for all possible area, using software SMS v.11.1. The boundary and initial conditions for this model were formulated on the basis of calculations made using 1D hydrodynamical model developed and applied for the entire Kama Reservoir. Application of 2D hydrodynamical model for solving the problem under consideration was needed to obtain the necessary information for setting the boundary conditions for the 3D model. Software package ANSYS Fluent v.6.3 was used for the realization of 3D model. 3D modeling was performed for different wind speeds and directions and quantitative characteristics of the discharge of warm water. To verify the models, the data of the detailed field measurements in the zones of thermal pollution of the Kama reservoir due to impact of the Perm GRES were used. A

  16. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  17. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    Science.gov (United States)

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  18. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    Science.gov (United States)

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2016-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  19. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  20. Intramuscular Temperature of Rectus Femoris During Cold Water Immersion

    OpenAIRE

    Rech, Nicholas

    2013-01-01

    Purpose: To establish a protocol for cold water immersion (CWI) temperature and duration based on adipose tissue thickness and desired cooling at 2 cm sub-adipose tissue of rectus femoris (RF) after exercise. Methods: Sixteen participants received a CWI treatment (10 °C) until either intramuscular thigh temperature (2 cm sub-adipose) decreased 7 °C below pre-exercise level or 30 minutes was reached. Temperature was recorded every 30 seconds using skin and implantable fine-wire thermocouple...

  1. Experimental Research on the Application of Water Hyacinths to the Ecological Restoration of Water Bodies with Eutrophication

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Fa-kuo; SHAO; Xiao-long; SUN; Yi-chao; LIU; Hong-lei; YUAN; Min; XIE; Hua-sheng; LI; Li; YU; Dan; LIU; Xu

    2012-01-01

    [Objective] The study aims to discuss the application of water hyacinths to the ecological restoration of water bodies with eutrophication through simulation experiments. [Method] In this study, water hyacinths were used to restore the simulated eutrophic water with green algae as the dominant algae species, and then the restoration effect of the simulated eutrophic water by water hyacinths was analyzed. [Result] In the simulation test without sediment, the peak chlorophyll concentration was 434.6 mg/m3 in the tank without water hyacinths, which decreased to 285 and 119 mg/m3 respectively in the tanks with 1 and 4 water hyacinths. In the experiment with sediment, compared with the control tank without water hyacinths, a 58% reduction in chlorophyll concentration could be observed in the tank with 4 water hyacinths planted (with a coverage of 51%). The results showed that water hyacinths could inhibit alga growth notably, but there was likely a density threshold (51% coverage), and no significant eco-restoration effect was observed in the simulated eutrophic water with too few water hyacinths planted. [Conclusion] The research could provide scientific references for the ecological restoration of eutrophic water bodies.

  2. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  3. The acute and subchronic effect of 3,4-methylenedioxymethamphetamine on body temperature in rats

    Directory of Open Access Journals (Sweden)

    Simić Ivan

    2009-01-01

    Full Text Available Introduction. The consumption of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy is known to cause severe hyperthermia in humans. This is of extreme importance since ecstasy is often consumed at 'rave' parties, where dancing takes place in a warm environment, which may exacerbate the effect of MDMA on thermoregulation. The present study was performed in order to evaluate the effects of single and repeated administration of MDMA on body temperature in Wistar rats. Material and methods. The study included 72 male Wistar rats, housed in groups of four in cages at a room temperature of 222oC. They were divided in two groups. The rats in the first group were treated with oral solution of MDMA (5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg and their temperature was measured hourly until 8th hour. The rats in the second group were treated with oral solution of MDMA (5 mg/kg, 10 mg/kg, 20 mg/kg every day during 15 days and their temperature was measured daily at 0th, 1st, 3rd, 5th and 8th hour. Temperature was measured by inserting a thermocouple probe 2,5 cm into the rectum. Results. Both groups showed dose dependent increase of body temperature, determined by rectal temperature measurements. The magnitude of hyperthemic response caused by subchronic administration of MDMA was markedly diminished during the experiment. Conclusion. The hyperthermic effect of MDMA was dose-dependent. The magnitude of the hyperthermic response was markedly diminished in subchronic administration.

  4. Body water distribution and risk of cardiovascular morbidity and mortality in a healthy population

    DEFF Research Database (Denmark)

    Knudsen, Nikoline Nygård; Kjærulff, Thora Majlund; Ward, Leigh Cordwin;

    2014-01-01

    Early alterations in the cardiovascular structure and function may change normal body water distribution. The resulting fluid shifts may thus serve as an early marker for cardiovascular disease. However, studies examining this in healthy populations are absent....

  5. Freshwater Fish Survey of Mathews Brake Water Body - 1980 and 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A Freshwater Fish Survey of Mathews Brake water body including land not within Mathews Brake NWR. Methods included Electroshocker, creel census, and seine.

  6. Shuttle Radar Topography Mission Water Body Data - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The SRTM Water Body Data files are a by-product of the data editing performed by the National Geospatial-Intelligence Agency (NGA) to produce the finished SRTM...

  7. Reductions of aryl bromides in water at room temperature

    Science.gov (United States)

    Fennewald, James C.; Landstrom, Evan B.; Lipshutz, Bruce H.

    2015-01-01

    Micellar nanoreactors derived from commercially available ‘Nok’ (SPGS-550-M), in the presence of Fu’s catalyst and a mild hydride source (NaBH4), are useful for facile debromination of functionalized aromatic derivatives. This mild and environemntally responsible process is utlized in water at room temperature, and the reaction mixtures can be smoothly recycled. PMID:26273116

  8. Relationship between body condition of American alligators and water depth in the Everglades, Florida

    Science.gov (United States)

    Fujisaki, Ikuko; Rice, Kenneth G.; Pearlstine, Leonard G.; Mazzotti, Frank J.

    2009-01-01

    Feeding opportunities of American alligators (Alligator mississippiensis) in freshwater wetlands in south Florida are closely linked to hydrologic conditions. In the Everglades, seasonally and annually fluctuating surface water levels affect populations of aquatic organisms that alligators consume. Since prey becomes more concentrated when water depth decreases, we hypothesized an inverse relationship between body condition and water depth in the Everglades. On average, condition of adult alligators in the dry season was significantly higher than in the wet season, but this was not the case for juveniles/subadults. The correlation between body condition and measured water depth at capture locations was weak; however, there was a significant negative correlation between the condition and predicted water depth prior to capture for all animals except for spring juveniles/subadults which had a weak positive condition-water depth relationship. Overall, a relatively strong inverse correlation occurred at 10-49 days prior to the capture day, suggesting that current body condition of alligators may depend on feeding opportunities during that period. Fitted regression of body condition on water depth (mean depth of 10 days when condition-water depth correlation was greatest) resulted in a significantly negative slope, except for spring adult females and spring juveniles/subadults for which slopes were not significantly different from zero. Our results imply that water management practices may be critical for alligators in the Everglades since water depth can affect animal condition in a relatively short period of time.

  9. [Study on polarization spectral feature of suspended sediment in the water body].

    Science.gov (United States)

    Zhu, Jin; Wang, Xian-Hua; Pan, Bang-Long

    2012-07-01

    Remote sensing of lake water based on water-leaving radiance is to retrieve the concentrations of suspended sediment, phytoplankton and yellow substance which have great impacts on spectrum to assess the water quality. Howerver, because of the complexity of the lake water compositons and the interference between the different components, it is of great difficulty to get accurate results with the reflectance spectrum method developed recently. In the present paper, the authors firstly discussed the reflectance and polarization spectral feature of suspended sediment water body, found out the relations of the reflectance and the degree of polarization of water-leaving radiance and the concentration of suspended sediment at the sensitive bands. The authors also compared the effectiveness of the retrieval approaches based on reflectance and polarization in laboratory water body and Chaohu water body respectively. The results show that in the lake water body where the constituents are very complex, the polarization information has greater capacity of anti-jamming, therefore it will have great potential applictions in lake water quality remote sensing. PMID:23016352

  10. Bose–Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature

    International Nuclear Information System (INIS)

    The transition temperature, the depletion of the condensate atoms and the collective excitations of a Bose–Einstein condensation (BEC) with two- and three-body interactions in an anharmonic trap at finite temperature are studied in detail. By using the Popov version of the Hartree–Fock–Bogoliubov (HFB) approximation, an extended self-consistent model describing BEC with both two- and three-body interactions in a distorted harmonic potential at finite temperature is obtained and solved numerically. The results show that the transition temperature, the condensed atom number and the collective excitations are modified dramatically by the atomic three-body interactions and the distortion of the harmonic trap. (general)

  11. Landscape pattern dynamics of water body in Kaifeng city in the 20th century

    Institute of Scientific and Technical Information of China (English)

    CAOXinxiang; DINGShengyan

    2005-01-01

    Landscape spatial pattern mainly refers to the distribution of patches, which are different in size and shape in space owing to the interaction of various ecological activities. In landscape ecology study, landscape pattern has been one of the key study areas. Water body landscape plays an important role in the development history of a city, but at present city water body landscape in many cities has been destroyed, hence protecting water body in the city is becoming more and more important. In order to protect city water body landscape reasonably, the precondition is to probe the dynamics of water body landscape. Based on historical data and remote sensing data, six indexes including patch number, patch area, landscape dominance index, fractal dimension, patch density and connectivity index etc. were used to analyze landscape pattern dynamics of water body in Kaifeng city since the end of the Qing Dynasty (in the 20th century). The results showed: (1) Since the end of the Qing Dynasty, landscape area of water body in Kaifeng city increased first and then decreased from 1898 to 2002AD; the landscape dominant degree had the same changing tendency with the area. (2) Patch number of water body landscape in Kaifeng city had an increase from 1898 to 2002, but maximum area of patch, minimum area of patch and average area of patch decreased, which resulted in an increase in landscape fragment degree. (3) Connectivity index decreased and fractal dimension increased from 1898 to 2002. The reasons for these changes were the repeated overflows and flooding of the Yellow River and the influence of human activities.

  12. Sorbent biomaterials for cleaning up hydrocarbon spills on soil and bodies of water

    OpenAIRE

    Diana Paola Ortíz González; Fabio Andrade Fonseca; Gerardo Rodríguez Niño; Luis Carlos Montenegro Ruiz

    2010-01-01

    This study was aimed at identifying and evaluating natural organic materials which could be used as sorbents in clean-up operations following hydrocarbons spills on both soils and bodies of water. The sorption capacity of three materials (sugarcane fibre, coco fibre and water Eichornia crassipies was evaluated with three hydrocarbons (35°, 30° and 25°API) and two types of water (distilled and artificial marine water) adopting the ASTM F-726 standard and following the methodology suggested i...

  13. Dry body weight: Water and sodium removal targets in PD

    NARCIS (Netherlands)

    R.T. Krediet

    2006-01-01

    Background/Aims: Cardiovascular mortality is high in peritoneal dialysis patients. This may be due to the presence of hypertension and fluid overload. Dietary intake of water and sodium are likely to be important, especially in anuric patients. Methods: A review of the literature on assessment of fl

  14. The influence of increased temperature of waters from Cernavoda NPP on underground water sources

    International Nuclear Information System (INIS)

    The operation of Cernavoda NPP implies the change of thermal regime of waters in the Danube-Black Sea channel zone. The Danube water is used to cool the NPP systems before being delivered into channel and used in irrigations. The temperature increase of water in Cernavoda NPP installations is between 7 and 12 deg. C. The negative effects of this warming are: 1. limitation of water use for irrigations; 2. occurrence and persistence of fog in channel area; 3. thermal pollution of underground waters and limitation of underground potable water supply. The paper presents a general approach of thermal pollution problems of an aquifer and a mathematical model of forecasting the underground water temperature variation in Danube-Black Sea channel area. (authors)

  15. COMMUNICATION: The effects of elevated body temperature on the complexity of the diaphragm EMG signals during maturation

    Science.gov (United States)

    Akkurt, David; Akay, Yasemin M.; Akay, Metin

    2009-04-01

    In this paper, we examine the effect of elevated body temperature on the complexity of the diaphragm electromyography (EMGdia), the output of the respiratory neural network--using the approximate entropy method. The diaphragm EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) in chronically instrumented rats were recorded at two postnatal ages: 25-35 days age (juvenile, n = 5) and 36-44 days age (early adult, n = 6) groups during control (36-37 °C), mild elevated body temperature (38 °C) and severe elevated body temperature (39-40 °C). Three to five trials of the recordings were performed at normal body temperature before raising the animal's core temperature by 1-4 °C with an electric heating pad. At the elevated temperature, another 3-5 trials were performed. Finally, the animal was cooled to the original temperature, and trials were again repeated. Complexity values of the diaphragm EMG signal were estimated and evaluated using the approximate entropy method (ApEn) over the ten consecutive breaths. Our results suggested that the mean approximate entropy values for the juvenile age group were 1.01 ± 0.01 (standard error) during control, 0.91 ± 0.02 during mild elevated body temperature and 0.81 ± 0.02 during severe elevated body temperature. For the early adult age group, these values were 0.94 ± 0.01 during control, 0.93 ± 0.01 during mild elevated body temperature and 0.92 ± 0.01 during severe elevated body temperature. Our results show that the complexity values and the durations of the diaphragm EMG (EMGdia) were significantly decreased when the elevated body temperature was shifted from control or mild to severe body temperature (p < 0.05) for the juvenile age group. However, for the early adult age group, an increase in body temperature slightly reduced the complexity measures and the duration of the EMGdia. But, these changes were not statistically significant. These results furthermore

  16. Technologies for Upgrading Light Water Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  17. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    Science.gov (United States)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  18. Supraphysiological cyclic dosing of sustained release T3 in order to reset low basal body temperature.

    Science.gov (United States)

    Friedman, Michael; Miranda-Massari, Jorge R; Gonzalez, Michael J

    2006-03-01

    The use of sustained release tri-iodothyronine (SR-T3) in clinical practice, has gained popularity in the complementary and alternative medical community in the treatment of chronic fatigue with a protocol (WT3) pioneered by Dr. Denis Wilson. The WT3 protocol involves the use of SR-T3 taken orally by the patient every 12 hours according to a cyclic dose schedule determined by patient response. The patient is then weaned once a body temperature of 98.6 degrees F has been maintained for 3 consecutive weeks. The symptoms associated with this protocol have been given the name Wilson's Temperature Syndrome (WTS). There have been clinical studies using T3 in patients who are euthyroid based on normal TSH values. However, this treatment has created a controversy in the conventional medical community, especially with the American Thyroid Association, because it is not based on a measured deficiency of thyroid hormone. However, just as estrogen and progesterone are prescribed to regulate menstrual cycles in patients who have normal serum hormone levels, the WT3 therapy can be used to regulate metabolism despite normal serum thyroid hormone levels. SR-T3 prescription is based exclusively on low body temperature and presentation of symptoms. Decreased T3 function exerts widespread effects throughout the body. It can decrease serotonin and growth hormone levels and increase the number of adrenal hormone receptor sites. These effects may explain some of the symptoms observed in WTS. The dysregulation of neuroendocrine function may begin to explain such symptoms as alpha intrusion into slow wave sleep, decrease in blood flow to the brain, alterations in carbohydrate metabolism, fatigue, myalgia and arthralgia, depression and cognitive dysfunction. Despite all thermoregulatory control mechanisms of the body and the complex metabolic processes involved, WT3 therapy seems a valuable tool to re-establish normal body functions. We report the results of 11 patients who underwent the

  19. Autonomous profiling device to monitor remote water bodies

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Dabholkar, N.A.; Navelkar, G.S.; Desa, E.; Afzulpurkar, S.; Mascarenhas, A.A.M.Q.; Prabhudesai, S.P.

    reservoir as close to the bed while acquiring and storing data during its descent. The availability of new robust wet sensor technologies, low power embed- ded controllers, programmable motors and micro satellite transceivers has made sensor...- files of February 2011 present the picture of a stable ecosystem, well-oxygenated water column with constancy in mea- sured variables over a 5-day period. In contrast, the April 2011 experiment cap- tures the onset of increasing hypoxia from...

  20. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman; Risley, John C.; Rounds, Stewart A.

    2016-01-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered

  1. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.

    2016-04-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A

  2. Improving image quality by accounting for changes in water temperature during a photoacoustic tomography scan.

    Directory of Open Access Journals (Sweden)

    Dominique Van de Sompel

    Full Text Available The emerging field of photoacoustic tomography is rapidly evolving with many new system designs and reconstruction algorithms being published. Many systems use water as a coupling medium between the scanned object and the ultrasound transducers. Prior to a scan, the water is heated to body temperature to enable small animal imaging. During the scan, the water heating system of some systems is switched off to minimize the risk of bubble formation, which leads to a gradual decrease in water temperature and hence the speed of sound. In this work, we use a commercially available scanner that follows this procedure, and show that a failure to model intra-scan temperature decreases as small as 1.5°C leads to image artifacts that may be difficult to distinguish from true structures, particularly in complex scenes. We then improve image quality by continuously monitoring the water temperature during the scan and applying variable speed of sound corrections in the image reconstruction algorithm. While upgrading to an air bubble-free heating pump and keeping it running during the scan could also solve the changing temperature problem, we show that a software correction for the temperature changes provides a cost-effective alternative to a hardware upgrade. The efficacy of the software corrections was shown to be consistent across objects of widely varying appearances, namely physical phantoms, ex vivo tissue, and in vivo mouse imaging. To the best of our knowledge, this is the first study to demonstrate the efficacy of modeling temporal variations in the speed of sound during photoacoustic scans, as opposed to spatial variations as focused on by previous studies. Since air bubbles pose a common problem in ultrasonic and photoacoustic imaging systems, our results will be useful to future small animal imaging studies that use scanners with similarly limited heating units.

  3. Bioindicators of pollution in lentic water bodies of Nagpur city.

    Science.gov (United States)

    Kumari, Pramila; Dhadse, Sharda; Chaudhari, P R; Wate, S R

    2007-10-01

    The present study deals with assessment of water quality of four selected lakes in the Nagpur city using physicochemical and biological parameters especially phytoplankton and zooplankton community. Tropic level and pollution status of lakes were assessed on the basis of the Palmer's Pollution Index, Shannon Wiener Index and physico-chemical parameters. 57 genera belonging to 7 groups of phytoplankton and 10 genera belonging to 3 groups of zooplankton were identified from the lakes. Different patterns of dominance and sub-dominance of indicator plankton community and species along with physico-chemical quality observed confirm the pollution status of the lakes.

  4. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry.

    Science.gov (United States)

    Ott, David; Rall, Björn C; Brose, Ulrich

    2012-11-01

    Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO(2) concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator-prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates. PMID:23007091

  5. Ultrasonic vocalization and body temperature maintenance in infant voles of three species (Rodentia: Arvicolidae).

    Science.gov (United States)

    Blake, B H

    1992-12-01

    Infant voles thermoregulate poorly and produce ultrasonic vocalizations when cooled. Vocalizing and the ability to maintain body temperature in isolated pups cold-challenged at 5 degrees C or 22 degrees C were studied in nestling Clethrionomys glareolus, Microtus agrestis, and Arvicola terrestris. The tendency to vocalize varied with age, since pups vocalized more in their 2nd week than in their 1st or 3rd weeks. Rate of vocalizing was correlated with sound pressure level of vocalizations. Their was no apparent relation between vocalizing rate and deep body temperature. M. agrestis pups vocalized most and A. terrestris pups least, and all three species vocalized more at the lower temperature. Maximal vocalizing occurred in mid aged M. agrestis (at 5 degrees C) with mean of 1291 vocalizations/20 min and mean SPL of 80 dB (decibels re: 20 microN/m2). It is suggested that the vocalizing response is an adaptation related to risk from hypothermia in infant voles. PMID:1487083

  6. Quantum three-body calculation of the nonresonant triple-\\alpha reaction rate at low temperatures

    CERN Document Server

    Ogata, Kazuyuki; Kamimura, Masayasu

    2009-01-01

    The triple-\\alpha reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. Accurate description of the \\alpha-\\alpha nonresonant states significantly quenches the Coulomb barrier between the two-\\alpha's and the third \\alpha particle. Consequently, the \\alpha-\\alpha nonresonant continuum states below the resonance at 92.04 keV, i.e., the ground state of 8Be, give markedly larger contribution at low temperatures than in foregoing studies. We find about 20 orders-of-magnitude enhancement of the triple-\\alpha reaction rate around 10^7 K compared to the rate of the NACRE compilation.

  7. A simple lumped model to convert air temperature into surface water temperature in lakes

    Directory of Open Access Journals (Sweden)

    S. Piccolroaz

    2013-03-01

    Full Text Available Water temperature in lakes is governed by a complex heat budget, where the single fluxes are hardly assessable over long time periods in the absence of high accuracy data. In order to address this issue, we developed Air2Water, a simple physically-based model to relate the temperature of the lake superficial layer (epilimnion to air temperature only. The model accounts for the overall heat exchanges with the atmosphere and the deeper layer of the lake (hypolimnion by means of simplified relationships, which contain a few parameters (from four to eight in the different proposed formulations to be calibrated with the combined use of air and water temperature measurements. In particular, the calibration of the parameters in a given case study allows one to estimate, in a synthetic way, the influence of the main processes controlling the lake thermal dynamics, and to recognize the atmospheric temperature as the main factor driving the evolution of the system. In fact, the air temperature variation implicitly contains proper information about the variation of other major processes, and hence in our approach is considered as the only input variable of the model. Furthermore, the model can be easily used to predict the response of a lake to climate change, since projected air temperatures are usually available by large-scale global circulation models. In this paper, the model is applied to Lake Superior (USA – Canada considering a 27-yr record of measurements, among which 18 yr used for calibration and the remaining 9 yr for model validation. The results show a remarkable agreement with measurements, over the entire data period. The use of air temperature reconstructed by satellite imagery is also discussed.

  8. Dinosaur body temperatures determined from isotopic (¹³C-¹⁸O) ordering in fossil biominerals.

    Science.gov (United States)

    Eagle, Robert A; Tütken, Thomas; Martin, Taylor S; Tripati, Aradhna K; Fricke, Henry C; Connely, Melissa; Cifelli, Richard L; Eiler, John M

    2011-07-22

    The nature of the physiology and thermal regulation of the nonavian dinosaurs is the subject of debate. Previously, arguments have been made for both endothermic and ectothermic metabolisms on the basis of differing methodologies. We used clumped isotope thermometry to determine body temperatures from the fossilized teeth of large Jurassic sauropods. Our data indicate body temperatures of 36° to 38°C, which are similar to those of most modern mammals. This temperature range is 4° to 7°C lower than predicted by a model that showed scaling of dinosaur body temperature with mass, which could indicate that sauropods had mechanisms to prevent excessively high body temperatures being reached because of their gigantic size.

  9. Optimization of a pain model: effects of body temperature and anesthesia on bladder nociception in mice.

    Science.gov (United States)

    Sadler, Katelyn E; Stratton, Jarred M; DeBerry, Jennifer J; Kolber, Benedict J

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  10. Substrate induced crystallization of amorphous solid water at low temperatures

    International Nuclear Information System (INIS)

    We show that N2 monolayer desorption from ice surfaces is a quantitative, highly sensitive method for following the surface crystallization kinetics at low temperatures. Vapor deposited water films on a crystalline ice substrate exhibit amorphous growth at temperatures below ∼110 K. The rate of crystallization for these amorphous films is dramatically accelerated compared to the rate of crystallization observed for the amorphous films deposited directly on Pt(111). We find that the crystalline ice substrate acts as a two-dimensional nucleus for the growth of the crystalline phase, thereby accelerating the crystallization kinetics. copyright 1999 American Institute of Physics

  11. Limits to life at low temperatures and at reduced water contents and water activities

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1978-01-01

    Liquid water is generally considered an absolute requisite for functional terrestrial life; consequently, life is expected to function only over the range of temperatures that permit its existence. These limits, however, do not apply to cell survival. Some can survive the closest attainable approach to 0/sup 0/K and some can survive the loss of over 99% of their water. The author discusses various aspects of the phenomena of cell survival at low temperatures. Included are sections on events occurring during freezing and thawing of cells, the consequences of cell dehydration, limits to cell survival, and minimum temperatures for cell growth. (ACR)

  12. Formation of Iron Sulfide in Water-Body Sediment and Its Influence on Environment

    Institute of Scientific and Technical Information of China (English)

    YAN Lei; SUMI Katsuhiro

    2008-01-01

    Iron sulfide is an important reductive pollutant in aquatic sediment, so that increasing attentions have been paid to it in recent years. In this paper, the formation of iron sulfide in water-body sediment was introduced. Moreover, its adverse influences upon environment were summarized, including direct contribution to deficiency of dissolved oxygen in water, association with eutrophication in water-bodies and impact on geochemical sulfur cycle. Since conventional chemical analysis for iron sulfide has several disadvantages, new technique for rapid determination of iron sulfide on-line was prospected.

  13. Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation

    OpenAIRE

    MUNZ, M.; Oswald, S. E.; Schmidt, C.(Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany)

    2011-01-01

    Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the r...

  14. Prediction of thermal environment via revision of PMV index with body temperature

    Institute of Scientific and Technical Information of China (English)

    Mao Yan; Liu Jiaping; Kubota Hideki

    2007-01-01

    PMV (Predicted Mean Vote) is a widely used index for evaluating the thermal environment. However, few studies have been conducted to take physiological values directly as evaluating indices. This paper assumes a linear relation between body temperature and both sweating rate and heat produced by shivering, and introduces the linear relation into the human heat balance equation to revise the classic PMV. And the assumption of linear relation is subsequently proved. The revised PMV possesses the same characteristic of dependent heat load as that of the classic one, and moreover it is convenient to be calculated.

  15. The effect of direct heating and cooling of heat regulation centers on body temperature

    Science.gov (United States)

    Barbour, H. G.

    1978-01-01

    Experiments were done on 28 rabbits in which puncture instruments were left in the brain for 1-2 days until the calori-puncture hyperthermia had passed and the body temperature was again normal. The instrument remaining in the brain was then used as a galvanic electrode and a second fever was produced, this time due to the electrical stimulus. It was concluded that heat is a centrally acting antipyretic and that cold is a centrally acting stimulus which produces hyperpyrexia cold-induced fever.

  16. Benthic soft-bodied algae as bioindicators of stream water quality

    Directory of Open Access Journals (Sweden)

    Stancheva R.

    2016-01-01

    Full Text Available This review presents the state-of-the-art of benthic soft-bodied algae as biondicators of stream and river water quality, with emphasis on bioassessments set by the legislation (e.g., European Water Framework Directive, USA Clean Water Act to promote the restoration and ensure ecological sustainability of water resources. The advantages and shortcomings of a variety of bioassessment field and laboratory methods for algae are discussed. The increasing use of soft-bodied algae in biotic indices to assess individual anthropogenic stressors, and in multimetric indices of biotic integrity to evaluate ecological condition in streams is summarized. Rapid microscopic and molecular approaches for inferring nutrient supply with heterocystous cyanobacteria and other sensitive algae are proposed. The need of better understanding of soft-bodied algae as bioindicators is discussed and suggestions are made for obtaining meaningful bioassessment information with cost-efficient efforts.

  17. THE MONITORING OF SURFACE WATER BODIES (RIVERS FROM TISA CATCHMENT AREA - MARAMUREŞ COUNTY IN 2014

    Directory of Open Access Journals (Sweden)

    GABRIELA ANDREEA DESPESCU

    2016-03-01

    Full Text Available This study is focused on the monitoring and evaluation of river’s water bodies from Maramureş County, using the methodology associated with the EU Water Framework Directive 60/2000. Thus, in the first part are defined the theoretical terms of monitoring activities related to the water bodies’ quality and the specific features of those we can find in the studied area. There are presented the water bodies’ features, quality indicators and the monitoring frequencies for the rivers situated in the Tisa catchment area. The results have shown the actual ecological and chemical state of those water bodies, in relation with the standard values mentioned through the Water Framework Directive.

  18. Moving towards adaptive management of cyanotoxin-impaired water bodies.

    Science.gov (United States)

    Paerl, Hans W; Otten, Timothy G; Joyner, Alan R

    2016-09-01

    The cyanobacteria are a phylum of bacteria that have played a key role in shaping the Earth's biosphere due to their pioneering ability to perform oxygenic photosynthesis. Throughout their history, cyanobacteria have experienced major biogeochemical changes accompanying Earth's geochemical evolution over the past 2.5+ billion years, including periods of extreme climatic change, hydrologic, nutrient and radiation stress. Today, they remain remarkably successful, exploiting human nutrient over-enrichment as nuisance "blooms." Cyanobacteria produce an array of unique metabolites, the functions and biotic ramifications of which are the subject of diverse ecophysiological studies. These metabolites are relevant from organismal and ecosystem function perspectives because some can be toxic and fatal to diverse biota, including zooplankton and fish consumers of algal biomass, and high-level consumers of aquatic food sources and drinking water, including humans. Given the long history of environmental extremes and selection pressures that cyanobacteria have experienced, it is likely that that these toxins serve ecophysiological functions aimed at optimizing growth and fitness during periods of environmental stress. Here, we explore the molecular and ecophysiological mechanisms underlying cyanotoxin production, with emphasis on key environmental conditions potentially controlling toxin production. Based on this information, we offer potential management strategies for reducing cyanotoxin potentials in natural waters; for cyanotoxins with no clear drivers yet elucidated, we highlight the data gaps and research questions that are still lacking. We focus on the four major classes of toxins (anatoxins, cylindrospermopsins, microcystins and saxitoxins) that have thus far been identified as relevant from environmental health perspectives, but caution there may be other harmful metabolites waiting to be elucidated. PMID:27418325

  19. Effects of Water Temperature during Foot Bath in Young Females.

    Science.gov (United States)

    Nishimura, Masahiro; Tatsuya Saito, Tatsuya Saito; Kato, Toshiaki; Onodera, Sho

    2013-09-01

    We examined the effects of environmental and water temperatures of foot baths on pulse rate, blood pressure, mean skin temperature, salivary amylase (SA) activity, relaxation level and thermal sensation during winter. Five females participated in the study. The subjects rested in a chair for 20 min and the above-noted physiological reactions during the last 5 min of the resting period were recorded as baseline (BASE) values. Next, the subjects received a 15-min foot bath in water at 40 °C (WT40) or 45 °C (WT45), with a 15-min recovery period. Although SA is thought to be an indicator of stress via the sympathetic nervous system, we did not find a correlation between SA activity and relaxation state. We considered the possible effect of seasonal variation on the physiological reaction to foot bathing. PMID:24174706

  20. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    CERN Document Server

    Holmes, M J; Povey, M J W

    2010-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 degrees Celsius. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  1. A new Self-learning Algorithm for Dynamic Classification of Water Bodies

    OpenAIRE

    Fichtelmann, Bernd; Borg, Erik

    2012-01-01

    In many applications of remote sensing data land-water masks play an important role. In this context they can be a helpful orientation to distinguish dark areas (e.g. cloud shadows, topographic shadows, burned areas, coniferous forests) and water areas. However, water bodies cannot always be classified exactly on basis of available remote sensing data. This fact can be caused by a variety of different physical and biological factors (e.g. chlorophyll, suspended particles, surface roughness, t...

  2. Perception of drinking water temperature and effects for humans after exercise.

    Science.gov (United States)

    Sandick, B L; Engell, D B; Maller, O

    1984-05-01

    Subjects rated the perceived temperature and hedonic values of four samples of drinking water (5 degrees, 16 degrees, 22 degrees, 38 degrees C) after exercise and on a control day. Ad lib drinking of any of the four samples was permitted for 20 minutes after exercise and intake was measured. Subjects completed questionnaires pertaining to their subjective states. Sensory thermal neutral water was found to be close to 22 degrees C which was also judged to be affectively neutral. Subjects rated 16 degrees C water higher on the hedonic scale after exercise than they did on a control day, despite the fact that no change in the perception of this temperature was observed. Responses to the symptoms questionnaire showed a marked effect of exercise on the perception of thirst, sweating, body warmth and dryness in the mouth. Sensations of stomach fullness could not account for the incomplete rehydration of most subjects in the time allotted. It was suggested that a rapid reduction in symptoms which initiate drinking was responsible for drinking termination. The role of water temperature in the reduction of thirst symptoms was discussed.

  3. Wavelet-based multiresolution analysis of Wivenhoe Dam water temperatures

    Science.gov (United States)

    Percival, D. B.; Lennox, S. M.; Wang, Y.-G.; Darnell, R. E.

    2011-05-01

    Water temperature measurements from Wivenhoe Dam offer a unique opportunity for studying fluctuations of temperatures in a subtropical dam as a function of time and depth. Cursory examination of the data indicate a complicated structure across both time and depth. We propose simplifying the task of describing these data by breaking the time series at each depth into physically meaningful components that individually capture daily, subannual, and annual (DSA) variations. Precise definitions for each component are formulated in terms of a wavelet-based multiresolution analysis. The DSA components are approximately pairwise uncorrelated within a given depth and between different depths. They also satisfy an additive property in that their sum is exactly equal to the original time series. Each component is based upon a set of coefficients that decomposes the sample variance of each time series exactly across time and that can be used to study both time-varying variances of water temperature at each depth and time-varying correlations between temperatures at different depths. Each DSA component is amenable for studying a certain aspect of the relationship between the series at different depths. The daily component in general is weakly correlated between depths, including those that are adjacent to one another. The subannual component quantifies seasonal effects and in particular isolates phenomena associated with the thermocline, thus simplifying its study across time. The annual component can be used for a trend analysis. The descriptive analysis provided by the DSA decomposition is a useful precursor to a more formal statistical analysis.

  4. Chemical composition of water hyacinth (Eichhronia Crassipes) a comparison indication of heavy metal pollution in egyptian water bodies. Vol. 4

    International Nuclear Information System (INIS)

    Water hyacinth is tested as an indicator for pollution in egyptian fresh surface waters. Chemical composition of water hyacinth as affected area of collection (water bodies) was studied and the suitability of this plant as a biological indicator for water pollution is discussed. Water hyacinth samples were collected three times per year for two years (1991-1993). Sample sites include one location in the river nile (at Helwan area), one site in Ismaillia canal, (at Mostrod industrial area), and one site in Abo-Zabal drain (at Abo-Zabal city). The concentration of 19 major major and trace elements in plant samples were determined by prompt gamma-ray neutron activation analysis. Results indicated that plant parts as well as location have a significant effect on elements content. Water hyacinth roots showed high affinity for accumulation of trace elements. 5 tabs

  5. The effect of heat stress and other factors on total body water and some blood constituents in lactating goats

    International Nuclear Information System (INIS)

    Goats mostly live in the desert or semidesert areas in egypt. Such areas are under adverse environmental conditions. They represent indispensable source of meat and milk for the natives of these areas . Few studies are carried out on goats in connection with their biochemical and physiological response to the high environmental temperature. The present investigation carried out was constructed to study the state of heat stress(35 C and 25% ) in nine Baladi lactating goats as compared with the reactions under mild conditions (15 C and 50% RH). Animals were Kept under each of these controlled conditions for 7 days - eight hours / day. The study included blood haemoglobin level, erythrocyte count, haematocrit value, serum activity of alkaline and acid phosphatases, creatinine, urea and prolactin. The effect of heat stress on body water content and water turnover rate using tritiated water diulation technique was studied

  6. Investigating aftergrowth potential of polymers in drinking water – the effect of water replacement and temperature

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    The aftergrowth potential of polymers used in drinking water distribution was investigated by a batch set-up, where test pieces were incubated in biostable, inorganic nutrient amended drinking water inoculated with surface water. Biomass production was measured as ATP and followed over 16 weeks...... in the water phase and on the material surface. Supplementary measurements of HPC and NVOC were applied when investigating the biostability within the test system, and the effect of water replacement and temperature. Addition of inorganic nutrients and inoculum to the biostable drinking water had...... no significant effect on the aftergrowth potential of the water. The background biomass production could be affected by the choice of caps for the test bottles, since ‘blue caps’ of polyethylene leached significant amounts of AOCP17 compared to ‘red caps’ containing teflon inlayers. There was no or only slightly...

  7. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Saito, Shigeyoshi; Nishiura, Motoko

    2013-12-01

    The purpose of this study was to develop a simple and inexpensive system for controlling body temperature in small animal experiments using magnetic resonance imaging (MRI) and to investigate the effect of body temperature on the kinetic behavior of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the liver. In our temperature-control system, body temperature was controlled using a feedback-regulated heated or cooled air flow generated by two Futon dryers. The switches of the two Futon dryers were controlled using a digital temperature controller, in which the rectal temperature of a mouse measured by an optical fiber thermometer was used as the input. In experimental studies, male ICR mice aged 8weeks old were used and allocated into 5 groups (39-, 36-, 33-, 30-, and 27-degree groups, n=10), in which the body temperature was maintained at 39 °C, 36 °C, 33 °C, 30 °C, and 27 °C, respectively, using our system. The dynamic contrast-enhanced MRI (DCE-MRI) data were acquired with an MRI system for animal experiments equipped with a 1.5-Tesla permanent magnet, for approximately 43min, after the injection of Gd-EOB-DTPA into the tail vein. After correction of the image shift due to the temperature-dependent drift of the Larmor frequency using the gradient-based image registration method with robust estimation of displacement parameters, the kinetic behavior of Gd-EOB-DTPA was analyzed using an empirical mathematical model. With the use of this approach, the upper limit of the relative enhancement (A), the rates of contrast uptake (α) and washout (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum relative enhancement (REmax), the time to REmax (Tmax), and the elimination half-life of the contrast agent (T1/2) were calculated. The body temperature of mice could be controlled well by use of our system. Although there were no significant differences in α, AUC, and q among groups, there

  8. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  9. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  10. Too hot to sleep? Sleep behaviour and surface body temperature of Wahlberg's Epauletted Fruit Bat.

    Directory of Open Access Journals (Sweden)

    Colleen T Downs

    Full Text Available The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg's epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed. Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%, compared with summer (15.6%. In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios.

  11. Pavement Sealcoat, PAHs, and Water Quality of Urban Water Bodies: An Overview

    Science.gov (United States)

    Mahler, B. J.; Van Metre, P. C.; Ingersoll, C.; Kunz, J. L.; Kienzler, A.; Devaux, A.; Bony, S.

    2014-12-01

    Coal-tar-based (CT) sealcoat is used to protect and beautify the asphalt pavement of driveways and parking lots primarily in the central, southern, and northeastern U.S. and in Canada. CT sealcoat typically is 20 to 35 percent crude coal tar or coal-tar pitch and contains from 50,000 to 100,000 mg/kg PAHs, about 1,000 times more than asphalt-based (AS) sealcoat or asphalt itself. Tires and snowplows abrade the friable sealcoat surface into fine particles—PAH concentrations in fine particles (dust) from CT-sealcoated pavement are about 1,000 times higher than in dust from AS-sealcoated pavement (median total PAH concentrations 2,200 and 2.1 mg/kg, respectively). Use of CT sealcoat has several implications for urban streams and lakes. Source apportionment modeling has indicated that, in regions where CT sealcoat is prevalent, particles from sealcoated pavement are contributing the majority of the PAHs to recently deposited lake sediment, with implications for ecological health. Acute 2-d toxicity of runoff from CT-sealcoated pavement to stream biota, demonstrated for a cladoceran (Ceriodaphnia dubia) and fathead minnows (Pimephales promelas), continues for samples collected as long as weeks or months following sealcoat application. Using the fish-liver cell line RGL-W1, runoff collected as much as 36 days following CT-sealcoat application has been demonstrated to cause DNA damage and impair DNA repair capacity. These results demonstrate that CT runoff is a potential hazard to aquatic ecosystems for at least several weeks after sealant application, and that exposure to sunlight can enhance toxicity and genetic damage. Recent research has provided direct evidence that restricting use of CT sealcoat in a watershed can lead to a substantial reduction in PAH concentrations in receiving water bodies.

  12. Effects of airflow on body temperatures and sleep stages in a warm humid climate

    Science.gov (United States)

    Tsuzuki, Kazuyo; Okamoto-Mizuno, Kazue; Mizuno, Koh; Iwaki, Tatsuya

    2008-03-01

    Airflow is an effective way to increase heat loss—an ongoing process during sleep and wakefulness in daily life. However, it is unclear whether airflow stimulates cutaneous sensation and disturbs sleep or reduces the heat load and facilitates sleep. In this study, 17 male subjects wearing short pyjamas slept on a bed with a cotton blanket under two of the following conditions: (1) air temperature (Ta) 26°C, relative humidity (RH) 50%, and air velocity (V) 0.2 m s-1; (2) Ta 32°C, RH 80%, V 1.7 m s-1; (3) Ta 32°C; RH 80%, V 0.2 m s-1 (hereafter referred to as 26/50, 32/80 with airflow, and 32/80 with still air, respectively). Electroencephalograms, electrooculograms, and mental electromyograms were obtained for all subjects. Rectal (Tre) and skin (Ts) temperatures were recorded continuously during the sleep session, and body-mass was measured before and after the sleep session. No significant differences were observed in the duration of sleep stages between subjects under the 26/50 and 32/80 with airflow conditions; however, the total duration of wakefulness decreased significantly in subjects under the 32/80 with airflow condition compared to that in subjects under the 32/80 with still air condition ( P < 0.05). Tre, Tsk, Ts, and body-mass loss under the 32/80 with airflow condition were significantly higher compared to those under the 26/50 condition, and significantly lower than those under the 32/80 with still air condition ( P < 0.05). An alleviated heat load due to increased airflow was considered to exist between the 32/80 with still air and the 26/50 conditions. Airflow reduces the duration of wakefulness by decreasing Tre, Tsk, Ts, and body-mass loss in a warm humid condition.

  13. Forestry and restoration of water bodies. Economic assessment on the basis of lake restoration costs

    International Nuclear Information System (INIS)

    Pollution load to water bodies deriving from forestry activities can regionally be a significant factor deteriorating the state of water bodies. Eutrophication, silting and acidification of water bodies eventually require restoration activities. Restoration of water bodies is expensive and often there is not enough financing available to implement the needed measures. The purpose of this study is to examine the relation between loading and costs of restoration. Restoration costs for different restoration alternatives are estimated using a cost per unit method based on the area and volume of the water body. The share of restoration costs depends on the used restoration method and ranges from 0,1 to 60 % of the total stumpage price that could be gathered from the target forestry area when assessing removal of phosphorus and sediment. The costs were below 1,0 % of the stumpage value when using the most inexpensive restoration methods, precipitation of phosphorus and removal of surface sediment. On the whole, it can be stated that even though restoration costs remain percentually low in comparison with the profit gained from wood production when using the most inexpensive methods, the costs do have significance when considering the water effects of forestry on a larger scale. It has to be observed that the calculated restoration costs are not total costs when estimating the economic significance of water pollution deriving from forestry, because the estimation was based on a cost per unit method, which means that only those components were taken into consideration for which a correlation between forestry-derived pollution and restoration costs could clearly be demonstrated. For example, the costs of brook restoration have not been assessed in this study, even though the pollution to water is heaviest in the brooks and lakes of the headwater region situated in the direct vicinity of the forestry area. In addition, the costs of restoration for fishery purposes are

  14. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.

    Science.gov (United States)

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-01-01

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size.

  15. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree

    Science.gov (United States)

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-01-01

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size. PMID:27420067

  16. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.

    Science.gov (United States)

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-01-01

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size. PMID:27420067

  17. An artificial water body provides habitat for an endangered estuarine seahorse species

    Science.gov (United States)

    Claassens, Louw

    2016-10-01

    Anthropogenic development, especially the transformation of natural habitats to artificial, is a growing concern within estuaries and coastal areas worldwide. Thesen Islands marina, an artificial water body, added 25 ha of new estuarine habitat to the Knysna Estuary in South Africa, home to the Knysna seahorse. This study aimed to answer: (I) Can an artificial water body provide suitable habitat for an endangered seahorse species? And if so (II) what characteristics of this new habitat are important in terms of seahorse utilization? Four major habitat types were identified within the marina canals: (I) artificial reno mattress (wire baskets filled with rocks); (II) Codium tenue beds; (III) mixed vegetation on sediment; and (IV) barren canal floor. Seahorses were found throughout the marina system with significantly higher densities within the reno mattress habitat. The artificial water body, therefore, has provided suitable habitat for Hippocampus capensis, a noteworthy finding in the current environment of coastal development and the increasing shift from natural to artificial.

  18. Water used to visualize and remove hidden foreign bodies from the external ear canal.

    Science.gov (United States)

    Peltola, T J; Saarento, R

    1992-02-01

    Small foreign bodies lodged anteriorly in the tympanic sulcus are usually not visible, due to the curve of the external ear canal. Such objects can be seen with the aid of an otomicroscope and micromirror or with an endoscope, and removed by irrigation. If irrigation fails, epithelial migration on the tympanic membrane may remove lodged foreign bodies, although this may take months. Our new method, which uses water to locate small objects lodged in the tympanic sulcus, includes irrigation of the ear, adjustment of the water level to the middle curve of the external ear canal, and use of the water surface as a concave lens, making the tympanic sulcus visible. With otomicroscopy a curved ear probe can then be used to remove lodged foreign bodies from behind the curve.

  19. Simulation model of pollution spreading in the water bodies affected by mining mill

    Directory of Open Access Journals (Sweden)

    Kalinkina Natalia Mikhailovna

    2015-09-01

    Full Text Available Water bodies of the northern Karelia are polluted by liquid wastes of Kostomukshsky iron ore-dressing mill. The main components of these wastes are potassium ions. The processes of the potassium spreading in lake-river system of the River Kenty were studied using simulation modeling. For water bodies, where chemical observations were not carried out, the reconstruction of data was realized. The parameters of the model (constants of potassium transfer for seven lakes were calculated. These constants reflect the hydrological regime of water bodies and characterize high-speed transfer of potassium in the upstream and downstream, and low transfer rate - in the middle stream. It is shown that the vast majority of potassium (70% is carried out of the system Kenty and enters the lake Srednee Kuito

  20. Seasonal and inter-annual temperature variability in the bottom waters over the Black Sea shelf

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    2011-02-01

    Full Text Available Long-term changes in the state of the Bottom Shelf Water (BSW on the Western shelf of the Black Sea are assessed using analysis of intra- and inter-annual variations of temperature as well as their relations to physical parameters of both shelf and deep-sea waters. First, large data sets of in-situ observations over the 20th century are compiled into high-resolution monthly climatology at different depth levels. Then, the temperature anomalies from the climatic mean are calculated and aggregated into spatial compartments and seasonal bins to reveal temporal evolution of the BSW. For the purpose of this study the BSW is defined as such shelf water body between the seabed and the upper mixed layer (bounded by the σθ = 14.2 isopycnal which has limited ability to mix vertically with oxygen-rich surface waters during the warm season (May–November due to the formation of a seasonal pycnocline. The effects of atmospheric processes at the surface on the BSW are hence suppressed as well as the action of the "biological pump". The vertical extent of the near- bottom waters is determined based on energy considerations and the structure of the seasonal pycnocline, whilst the horizontal extent is controlled by the shelf break, where strong along-slope currents hinder exchanges with the deep sea. The BSW is shown to occupy nearly half of the area of the shelf during the summer stratification period. The potential of the BSW to ventilate horizontally during the warm season with the deep-sea waters is assessed using isopycnic analysis of temperature variations. A long-term time series of temperature anomalies in the BSW is constructed from observations during the May–November period for the 2nd half of the 20th century. The results reveal a warm phase in the 1960s/70s, followed by cooling of the BSW during 1980–2001. The transition between the warm and cold periods coincides with a regime shift in the Black Sea ecosystem. While it was

  1. Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator.

    Directory of Open Access Journals (Sweden)

    Walter Arnold

    Full Text Available Polyunsaturated fatty acids (PUFA have a multitude of health effects. Their incorporation into membrane phospholipids (PL is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (T(b, whereas long chain (>C18 n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low T(b. Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of T(b and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic

  2. Heavy metals toxicity and bioaccumulation patterns in the body organs of four fresh water fish species

    Directory of Open Access Journals (Sweden)

    Safina Kousar and Muhammad Javed

    2014-04-01

    Full Text Available Various environmental pollutants, including metals can cause toxicological effects on aquatic animals especially fish species. Laboratory experiments were conducted to determine acute toxicity and bioaccumulation patterns of arsenic (As, nickel (Ni and zinc (Zn in 150-day old fish species (Labeo rohita, Cirrhina mrigala, Catla catla and Ctenopharyngodon idella, separately, in glass aquaria under constant water temperature (30oC, total hardness (300 mg L-1 and pH (7.5. Catla catla showed significantly (PNi>As. Among exposed fish species, Cirrhina mrigala exhibited significantly higher ability to amass Ni (146.8±149.1 μg g-1 and Zn (243.0±190.5 μg g-1, followed by Ctenopharyngodon idella, Labeo rohita and Catla catla at 96-h LC50. Liver showed higher tendency to accumulate Ni, followed by gills and kidney with significant differences while kidney showed higher tendency to accumulate As, followed by liver. Fins and scales exhibited significantly (P<0.05 least tendency to accumulate all the three metals. Accumulation of metals in different fish species is the function of their membrane permeability, which is highly species specific. Due to this reason different fish species showed different amount of metal accumulated in their bodies. This study also reveals that the metals, being conservative in nature have higher ability of biomagnifications.

  3. Determination of total body water by a simple and rapid mass spectrometric method.

    Science.gov (United States)

    Van Kreel, B K; Van der Vegt, F; Meers, M; Wagenmakers, T; Westerterp, K; Coward, A

    1996-01-01

    A rapid and inexpensive method was developed to determine deuterium enrichment in body fluids. This is achieved by converting water into acetylene. To vacutainer tubes a small amount of calcium carbide is added. The tubes are evacuated and 25 microliters of sample are injected through the stopper. The reaction takes place spontaneously at room temperature in a few seconds. Enrichment at mass 27 compared with mass 26 can be determined by continuous flow isotope ratio mass spectrometry without any interference from the carrier gas helium. A series of D2O samples diluted with increasing amounts of H2O is prepared at the time of measurement of the biological samples and the measured ratios are used to calculate the isotope dilution of the unknown. The relative error of the method is 1.6% when a dose of 25 ml kg-1 is administered to the patient. The method was compared with two different methods in use in other laboratories, by a published method The means of the differences were -0.1 and 0.08 1, respectively, with standard deviations of 0.63 and 3.0.

  4. Temperature effects studies in light water reactor lattices

    International Nuclear Information System (INIS)

    The CREOLE experiments performed in the EOLE critical facility located in the Nuclear Center of CADARACHE - CEA (UO2 and UO2-PuO2 lattice reactivity temperature coefficient continuous measurements between 200C and 3000C; integral measurements by boron equivalent effect in the moderator; water density effects measurements with the use of over cladding aluminium tubes to remove moderator) allow to get an interesting and complete information on the temperature effects in the light water reactor lattices. A very elaborated calcurated scheme using the transport theory and the APOLLO cross sections library, has been developed. The analysed results of the whole lot of experiments show that the discrepancy between theory and experiment strongly depends on the temperature range and on the type of lattices considered. The error is mainly linked with the thermal spectrum effects. A study on the temperature coefficient sensitivity to the different cell neutron parameters has shown that only the shapes of the 235U and 238U thermal cross sections have enough weight and uncertainty margins to explain the observed experimental/calculation bias. Instead of arbitrarily fitting the identified wrong data on the calculation of the reactivity temperature coefficient we have defined a procedure of modification of the cross sections based on the consideration of the basic nuclear data: resonance parameters and associated statistic laws. The implementation of this procedure has led to propose new thermal cross sections sets for 235U and 238U consistent with the uncertainty margins associated with the previously accepted values and with some experimental data

  5. Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination

    International Nuclear Information System (INIS)

    Comparative analysis of doses to the reference species of freshwater biota was performed for the following water bodies in Russia or former USSR: Chernobyl NPPs cooling pond, Lakes Uruskul and Berdenish located in the Eastern Urals Radioactive Trace, Techa River, Yenisei River. It was concluded that the doses to biota were considerably different in the acute and chronic periods of radioactive contamination. The most vulnerable part of all considered aquatic ecosystems was benthic trophic chain. A numerical scale on the “dose rate – effects” relationships for fish was formulated. Threshold dose rates above which radiation effects can be expected in fish were evaluated to be the following: 1 mGy d−1 for appearance of the first morbidity effects in fish; 5 mGy d−1 for the first negative effects on reproduction system; 10 mGy d−1 for the first effects on life shortening of fish. The results of dose assessment to biota were compared with the scale “dose rate – effects” and the literature data on the radiobiological effects observed in the considered water bodies. It was shown that in the most contaminated water bodies the dose rates were high enough to cause the radiobiological effects in fish. - Highlights: ► Comparative analysis of dose rates to biota in different water bodies was performed. ► A numerical scale on the dose rates – effects relationships for fish was formulated. ► Results of assessment of exposure to biota were compared with the dose rates – effects scale. ► In the most contaminated water bodies the doses were high enough to cause radiobiological effects in fish. ► Current dose rates to biota in all considered water bodies are below the safety level of 1 mGy/day.

  6. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions.

    Science.gov (United States)

    Cisneros, Gerardo Andrés; Wikfeldt, Kjartan Thor; Ojamäe, Lars; Lu, Jibao; Xu, Yao; Torabifard, Hedieh; Bartók, Albert P; Csányi, Gábor; Molinero, Valeria; Paesani, Francesco

    2016-07-13

    Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought "universal model" capable of describing the behavior of water under different conditions and in different environments. PMID:27186804

  7. Effects of temperature on SCC propagation in high temperature water injected with hydrogen peroxide

    International Nuclear Information System (INIS)

    To understand the stress corrosion cracking (SCC) behaviour of austenitic stainless steels (SSs) in the boiling water reactor (BWR) coolant environment, it is significant to investigate the effect of hydrogen peroxide (H2O2) produced by the radiolysis of water on SCC under the various water chemistry and operational conditions. At the start-up or shut-down periods, for example, the conditions of radiation and temperature on the structural materials are different from those during the plant normal operation, and may be influencing on SCC behaviour. Therefore, the effect of temperature on SCC in high temperature water injected with H2O2 was evaluated by SCC propagation test at the present study. Oxide films on the metal surface in crack were examined and the thermal equilibrium diagram was calculated to estimate the environmental situation in the crack. On the thermally sensitized type 304 SS, crack growth tests were conducted in high temperature water injected with H2O2 to simulate water radiolysis in the core. Small CT type specimens with a width of 15.5 mm and thickness of 6.2 mm were machined from the sensitized SS. SCC growth tests were conducted in high temperature water injected with 100 ppb H2O2 at 453 and 561 K. To minimize H2O2 decomposition by a contact with metal surface of autoclave, the CT specimen was isolated from inner surface of the autoclave by the inner modules made of polytetrafluoroethylene (PTFE), and PTFE lining was also used for the inner surface of inlet and sampling tubes. Base on the measurement of sampled water, it was confirmed that 80-90 % of injected H2O2 remained around the CT specimen in autoclave. Constant load at initial K levels of 11-20 MPam1/2 was applied to the CT specimens during crack growth tests. After crack growth tests, CT specimens were split into two pieces on the plane of crack propagation. Scanning electron microscope (SEM) examination and laser Raman spectroscopy for outer oxide layer of oxide film were performed on

  8. Soft-Sensing Method of Water Temperature Measurement for Controlled Cooling System

    Institute of Scientific and Technical Information of China (English)

    CAI Xiao-hui; ZHANG Dian-hua; WANG Guo-dong; LIU Xiang-hua; FAN Lei

    2003-01-01

    Aiming at the water temperature measuring problem for controlled cooling system of rolling plant, a new water temperature measuring method based on soft-sensing method with a water temperature model of on-line self correction parameter was built. A water temperature compensation factor model was also built to improve coiling temperature control precision. It was proved that the model meets production requirements. The soft-sensing technique has extensive applications in the field of metal forming.

  9. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers.

    Science.gov (United States)

    Lee, Y; Bok, J D; Lee, H J; Lee, H G; Kim, D; Lee, I; Kang, S K; Choi, Y J

    2016-02-01

    Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.

  10. THE MONITORING OF SURFACE WATER BODIES (RIVERS) FROM TISA CATCHMENT AREA - MARAMUREŞ COUNTY IN 2014

    OpenAIRE

    GABRIELA ANDREEA DESPESCU; S. NACU; BĂTINAŞ R

    2016-01-01

    This study is focused on the monitoring and evaluation of river’s water bodies from Maramureş County, using the methodology associated with the EU Water Framework Directive 60/2000. Thus, in the first part are defined the theoretical terms of monitoring activities related to the water bodies’ quality and the specific features of those we can find in the studied area. There are presented the water bodies’ features, quality indicators and the monitoring frequencies for the rivers situated in th...

  11. THE EFFECTS OF WATER TEMPERATURE REGIME FLUCTUATIONS ON THE EMBRYONIC DEVELOPMENT OF SILVER CARP (HYPOPHTHALMICHTHYS MOLITRIX

    Directory of Open Access Journals (Sweden)

    А. Vodyanitskyi

    2015-03-01

    Full Text Available Purpose. To determine the effect of temperature regime fluctuations on the development of silver carp embryos, as well as the activity of enzymatic reactions in fish eggs. Methodology. The studies were conducted at the experimental station of the Institute of Hydrobiology of Bila Tserkov, Ukrainian National Academy of Sciences, from June to July. The biological materials were silver carp eggs, embryos and larvae. The dissolved oxygen content was determined using the Winkler method at four o’clock in the morning. Alkalinity phosphatase and LDG activity were determined using a set of reagents «Alkalinity phosphatase» and «LDG» (Phyllis diagnosis, Ukraine. SDH activity was determined by Vexy. The activity of Na, K-Mg-dependent-activated ATPase was determined as growth of inorganic phosphorus in the incubation medium by Kindratova M.N. et al. Protease activity was determined using immune enzymatic method of Tyurina et al. The obtained results were processed statistically in Statistica 5.5, Epaprobit analysis was used for calculating LC/EC values (Version 1.5. Findings The results showed that a delay of embryonic stages of development occur, the number of abnormal embryos increases, and the reproduction efficiency of fish reduces with an increase in water temperature and decrease in the dissolved oxygen content in water. The temperature factor had a significant effect on the activity of key enzymes, in particular the energetic metabolism changed from aerobic to anaerobic. Originality. It was found a negative effect of abiotic factors of water medium and drastic fluctuations in water temperature and gas regime of water bodies on the course of embryogenesis of silver carp that is especially important in the conditions of climate change. Practical value. The obtained results showed that the level of optimum and unfavorable environmental factors during the change of embryonic stages in embryonic and larval fish can be established based on the

  12. Touch-free measurement of body temperature using close-up thermography of the ocular surface.

    Science.gov (United States)

    Vogel, Benjamin; Wagner, Heike; Gmoser, Johanna; Wörner, Anja; Löschberger, Anna; Peters, Laura; Frey, Anna; Hofmann, Ulrich; Frantz, Stefan

    2016-01-01

    In experimental animal research body temperature (BT) is measured for the objective determination of an animals' physiological condition. Invasive, probe-based measurements are stressful and can influence experimental outcome. Alternatively BT can be determined touch-free from the emitted heat of the organism at a single spot using infrared thermometers [1]. To get visual confirmation and find more appropriate surfaces for measurement a hand-held thermal imager was equipped with a self-made, cheap, 3D-printable close-up lens system that reproducibly creates eight-time magnified thermal images and improves sensitivity. This setup was used to establish ocular surface temperature (OST), representing the temperature of the brain-heart axis, as a touch-free alternative for measurement of BT in mice, rats, rabbits and humans.OST measurement after isoflurane exposure and myocardial infarction (MI) experiments in mice revealed high physiological relevance and sensitivity, the possibility to discriminate between MI and sham operations in one hour and even long-term outcome-predictive capabilities of OST after MI. Summarized here we present: •Self-made close-up lens for thermal imaging cameras for eight-time magnification•Establishment of OST for touch-free determination of BT in rodents and humans•Short- and long-term predictive capabilities of OST in experimental MI in mice. PMID:27284532

  13. An automatic water body area monitoring algorithm for satellite images based on Markov Random Fields

    Science.gov (United States)

    Elmi, Omid; Tourian, Mohammad J.; Sneeuw, Nico

    2016-04-01

    Our knowledge about spatial and temporal variation of hydrological parameters are surprisingly poor, because most of it is based on in situ stations and the number of stations have reduced dramatically during the past decades. On the other hand, remote sensing techniques have proven their ability to measure different parameters of Earth phenomena. Optical and SAR satellite imagery provide the opportunity to monitor the spatial change in coastline, which can serve as a way to determine the water extent repeatedly in an appropriate time interval. An appropriate classification technique to separate water and land is the backbone of each automatic water body monitoring. Due to changes in the water level, river and lake extent, atmosphere, sunlight radiation and onboard calibration of the satellite over time, most of the pixel-based classification techniques fail to determine accurate water masks. Beyond pixel intensity, spatial correlation between neighboring pixels is another source of information that should be used to decide the label of pixels. Water bodies have strong spatial correlation in satellite images. Therefore including contextual information as additional constraint into the procedure of water body monitoring improves the accuracy of the derived water masks significantly. In this study, we present an automatic algorithm for water body area monitoring based on maximum a posteriori (MAP) estimation of Markov Random Fields (MRF). First we collect all available images from selected case studies during the monitoring period. Then for each image separately we apply a k-means clustering to derive a primary water mask. After that we develop a MRF using pixel values and the primary water mask for each image. Then among the different realizations of the field we select the one that maximizes the posterior estimation. We solve this optimization problem using graph cut techniques. A graph with two terminals is constructed, after which the best labelling structure for

  14. Analysis of body water compartments after a short sauna bath using bioelectric impedance analysis.

    Science.gov (United States)

    Servidio, M-F; Mohamed, E I; Maiolo, C; Hereba, A T; Perrone, F; Garofano, P; Iacopino, L

    2003-10-01

    Studies have suggested that long-term sauna bathing may lower blood pressure in persons with hypertension by causing a direct loss of extracellular water and plasma minerals. The objective of the present study was to evaluate the effect of short-term sauna bathing on body water compartments as estimated by bioelectric impedance analysis (BIA). We recruited 15 men [mean age (+/-SD) of 23.93+/-5.12 years and mean body mass index (BMI) of 23.25+/-2.84 kg/m(2)] and 10 women matched for age and BMI. Total body resistance, reactance, and impedance were measured for all participants using BIA, at baseline, after a short sauna bath, and after a rest period. Total, extracellular, and intracellular water compartments were calculated using BIA formulae. There were no significant differences for any of the body water compartments when comparing the measurements taken before and after the sauna bath and after the rest period. However, it remains to be determined whether or not BIA is sensitive to rapid changes in water volume.

  15. A simple lumped model to convert air temperature into surface water temperature in lakes

    Directory of Open Access Journals (Sweden)

    S. Piccolroaz

    2013-08-01

    Full Text Available Water temperature in lakes is governed by a complex heat budget, where the estimation of the single fluxes requires the use of several hydro-meteorological variables that are not generally available. In order to address this issue, we developed Air2Water, a simple physically based model to relate the temperature of the lake superficial layer (epilimnion to air temperature only. The model has the form of an ordinary differential equation that accounts for the overall heat exchanges with the atmosphere and the deeper layer of the lake (hypolimnion by means of simplified relationships, which contain a few parameters (from four to eight in the different proposed formulations to be calibrated with the combined use of air and water temperature measurements. The calibration of the parameters in a given case study allows for one to estimate, in a synthetic way, the influence of the main processes controlling the lake thermal dynamics, and to recognize the atmospheric temperature as the main factor driving the evolution of the system. In fact, under certain hypotheses the air temperature variation implicitly contains proper information about the other major processes involved, and hence in our approach is considered as the only input variable of the model. In particular, the model is suitable to be applied over long timescales (from monthly to interannual, and can be easily used to predict the response of a lake to climate change, since projected air temperatures are usually available by large-scale global circulation models. In this paper, the model is applied to Lake Superior (USA–Canada considering a 27 yr record of measurements, among which 18 yr are used for calibration and the remaining 9 yr for model validation. The calibration of the model is obtained by using the generalized likelihood uncertainty estimation (GLUE methodology, which also allows for a sensitivity analysis of the parameters. The results show remarkable agreement with

  16. Climate Change and European Water Bodies, a Review of Existing Gaps and Future Research Needs: Findings of the ClimateWater Project

    Science.gov (United States)

    Garnier, Monica; Harper, David M.; Blaskovicova, Lotta; Hancz, Gabriella; Janauer, Georg A.; Jolánkai, Zsolt; Lanz, Eva; Porto, Antonio Lo; Mándoki, Monika; Pataki, Beata; Rahuel, Jean-Luc; Robinson, Victoria J.; Stoate, Chris; Tóth, Eszter; Jolánkai, Géza

    2015-08-01

    There is general agreement among scientists that global temperatures are rising and will continue to increase in the future. It is also agreed that human activities are the most important causes of these climatic variations, and that water resources are already suffering and will continue to be greatly impaired as a consequence of these changes. In particular, it is probable that areas with limited water resources will expand and that an increase of global water demand will occur, estimated to be around 35-60 % by 2025 as a consequence of population growth and the competing needs of water uses. This will cause a growing imbalance between water demand (including the needs of nature) and supply. This urgency demands that climate change impacts on water be evaluated in different sectors using a cross-cutting approach (Contestabile in Nat Clim Chang 3:11-12, 2013). These issues were examined by the EU FP7-funded Co-ordination and support action "ClimateWater" (bridging the gap between adaptation strategies of climate change impacts and European water policies). The project studied adaptation strategies to minimize the water-related consequences of climate change and assessed how these strategies should be taken into consideration by European policies. This article emphasizes that knowledge gaps still exist about the direct effects of climate change on water bodies and their indirect impacts on production areas that employ large amounts of water (e.g., agriculture). Some sectors, such as ecohydrology and alternative sewage treatment technologies, could represent a powerful tool to mitigate climate change impacts. Research needs in these still novel fields are summarized.

  17. The risk of river pollution due to washout from contaminated floodplain water bodies during high floods

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Parshakova, Yanina; Tiunov, Alexey

    2016-04-01

    Today, the potential impact of extremely high floods, which in the last years have become a rather frequent weather-related disaster, is the problem of primary concern. In studies of the potential impact of floods the emphasis is placed first of all on the estimation of possible flood zones and the analysis of the flow regimes in these zones. However, in some cases the hydrochemical parameters related to changes in the chemical composition of water are more important than the hydraulic parameters. It is generally believed that the higher is the flow rate, the more intensive is the process of dissolution, i.e. the lower is the concentration of limiting contaminants in water. However, this statement is valid provided that flooding does not activate new sources of water pollution such as contaminated floodplain water bodies located in the vicinity of water supply systems. Being quite reliable and safe at small and moderate discharges, in the case of extremely high level of river waters they become intensive sources of water pollution, essentially limiting the water consumption schedule for downstream water consumers. It should be noted that compared to the well-studied mechanisms of waste discharge due to failure of hydraulic engineering structures by flood waves, the mechanisms of pollutant washout from the contaminated floodplain water bodies by the flood waves is still poorly understood. We analyze the impacts of such weather-related events on the quality of water in the water intake system, taking as an example, the section of the Vyatka River located in the Prikamskaya lowland of the Russian Federation. The risk of river pollution due to washout from the contaminated floodplain water bodies during high floods is studied by hydrodynamical modeling in the framework of combined approach using one-, two- and three-dimensional hydrodynamic models are implemented and by in situ measurements. It is shown that during high floods the removal of pollutants from the

  18. Effects of body mass and temperature on routine metabolic rate of juvenile largemouth bronze gudgeon Coreius guichenoti.

    Science.gov (United States)

    Luo, Y P; Wang, Q Q

    2012-04-01

    The effects of body mass (M) and temperature (T) on routine metabolic rate (m(R) ) were assessed in the largemouth bronze gudgeon Coreius guichenoti, from Three Gorges Reservoir, Yangtze River, China. The m(R) increased with increasing M by factors (b-value in the equation m(R) = aM(b) ) of 0·843, 0·800, 0·767, 0·788 and 0·822 at 10, 15, 20, 25 and 30° C, respectively. A significant interaction between M and T on m(R) was observed. The variation in the b-value at different T suggests that the b-values were not consistent with the universal allometric exponent 0·75. After controlling for M, the relationship between the normalized standard metabolic rate (m(S), mg O(2) kg(-1) h(-1)) and T was described by an exponential equation: m(S) = 9·89e((0·093T)) . The results indicate that the effects of M on m(R) depend on T. The increased water temperature induced by dam construction on the Yangtze River may cause a marked increase in energy demand by this species, with potential ecological consequences. PMID:22471803

  19. Features of deformation of metal body surfaces under impact of a water jet

    Science.gov (United States)

    Aganin, A. A.; Khismatullina, N. A.

    2016-01-01

    The paper presents a mathematical model and computational results on dynamics of a perfect elastic-plastic body under the load arising during impact of a high-velocity liquid jet with the hemispherical end. The body is simulated by the isotropic linearly-elastic semi-space, its plastic state is described by the von Mises condition. The dependence of features of the body surface deformation on the body material is studied. The problem is considered in the axisymmetric statement. The axis of symmetry is that of the jet. The loaded domain is a circle with its radius rapidly growing from zero to the jet radius. The pressure in the loaded domain is non-uniform both in time and space. Three metal alloys (aluminium, copper-nickel and steel) are considered as the body material. The loading of the body surface in all the cases corresponds to the impact of a water jet with the radius 100 pm and the velocity 300 m/s. It has been shown that under such impact a nanometer pit arises on the body surface at the center of the domain of the jet action. The profile of the pit and its maximal depth depend on the body material.

  20. Environmental Evolution of the Water Body of Qinghai Lake since the Postglacial Age

    Institute of Scientific and Technical Information of China (English)

    张彭熹; 张保珍; 等

    1989-01-01

    Based on the data developed from various s natural waters in the Qinghai Lake area and ostracode shells present in drill core QH-16A of recent lake-floor sediments ,this paper discusses the distribution of stable isotopes in the modern water body of Qinghai Lake,and the initial isotopic composition of the lake water has been deduced ,Studies of δ18O,δ13C,Mg/Ca and Sr/Ca in ostracode shells provide the basis for the establishment of the model of climatic fluctuation in the Qinghai Lake area since the postaglacial age,as well as for the elucidation of the environmental evolution of the water body of Qinghai Lake since the postglacial age.

  1. Changes in body water distribution during treatment with inhaled steroid in pre-school children

    DEFF Research Database (Denmark)

    Heitmann, B L; Anhøj, Jacob; Bisgaard, A M;

    2004-01-01

    PRIMARY OBJECTIVE: The study aimed to examine the changes in water distribution in the soft tissue during systemic steroid activity. RESEARCH DESIGN: A three-way cross-over, randomized, placebo-controlled, double-blind trial was used, including 4 weeks of fluticasone propionate pMDI 200 microg b....... At the end of each treatment period body impedance and skin ultrasonography were measured. METHODS AND PROCEDURES: We measured changes in water content of the soft tissues by two methods. Skin ultrasonography was used to detect small changes in dermal water content, and bioelectrical impedance was...... used to assess body water content and distribution. MAIN OUTCOMES AND RESULTS: We found an increase in skin density of the shin from fluticasone as measured by ultrasonography (p = 0.01). There was a tendency for a consistent elevation of impedance parameters from active treatments compared to placebo...

  2. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  3. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  4. Flow and transport within a coastal aquifer adjacent to a stratified water body

    Science.gov (United States)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  5. Nitrile reaction in high-temperature water: Kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, B.; Harrell, C.L.; Klein, M.T. [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical Engineering

    1997-08-01

    The reaction pathways, kinetics and mechanisms underlying the hydrolysis of aliphatic and aromatic nitriles in high-temperature water (HTW) were investigated. The reaction products were the associated amides and carboxylic acids. Autocatalytic kinetics were observed and confirmed by experiment and analysis of the physical chemistry of the HTW reaction environment. A model incorporating two autocatalytic steps captured the observed kinetics well, and the associated optimized rate constants highlighted the key differences in the reaction chemistry of aliphatic and aromatic nitriles. The rate behavior of nitrile hydrolysis at these conditions has tangible consequences regarding optimal processing strategies.

  6. Enhanced Acid/Base Catalysis in High Temperature Liquid Water

    Institute of Scientific and Technical Information of China (English)

    Xiu Yang LU; Qi JING; Zhun LI; Lei YUAN; Fei GAO; Xin LIU

    2006-01-01

    Two novel and environmentally benign solvent systems, organic acids-enriched high temperature liquid water (HTLW) and NH3-enriched HTLW, were developed, which can enhance the reaction rate of acid/base-catalyzed organic reactions in HTLW. We investigated the decomposition of fructose in organic acids-enriched HTLW, hydrolysis of cinnamaldehyde and aldol condensation of phenylaldehyde with acetaldehyde in NH3-enriched HTLW. The experimental results demonstrated that organic acids-enriched or NH3-enriched HTLW can greatly accelerate acid/base-catalyzed organic reactions in HTLW.

  7. The effect of body temperature on the dynamic respiratory system compliance-breathing frequency relationship in the rat.

    Science.gov (United States)

    Rubini, Alessandro; Bosco, Gerardo

    2013-06-01

    The mechanical inhomogeneity of the respiratory system is frequently investigated by measuring the frequency dependence of dynamic compliance, but no data are currently available describing the effects of body temperature variations. The aim of the present report was to study those effects in vivo. Peak airway pressure was measured during positive pressure ventilation in eight anesthetized rats while breathing frequency (but not tidal volume) was altered. Dynamic compliance was calculated as the tidal volume/peak airway pressure, and measurements were taken in basal conditions (mean rectal temperature 37.3 °C) as well as after total body warming (mean rectal temperature 39.7 °C). Due to parenchymal mechanical inhomogeneity and stress relaxation-linked effects, the normal rat respiratory system exhibited frequency dependence of dynamic lung compliance. Even moderate body temperature increments significantly reduced the decrements in dynamic compliance linked to breathing rate increments. The results were analyzed using Student's and Wilcoxon's tests, which yielded the same results (p temperature variations are known to influence respiratory mechanics. The frequency dependence of dynamic compliance was found, in the experiments described, to be temperature-dependent as temperature variations affected parenchymal mechanical inhomogeneity and stress relaxation. These results suggest that body temperature variations should be taken into consideration when the dynamic compliance-breathing frequency relationship is being examined during clinical assessment of inhomogeneity of lung parenchyma in patients.

  8. Radioisotopic techniques in the study of pollutant effluents dispersion. Dispersing capacity of water bodies

    International Nuclear Information System (INIS)

    Isotopic techniques used for the determination of the dispersing characteristics of water bodies receiving domestic and industrial effluents are described. Studies of dilution in the sea, caused by oceanic mixing in the coastal waters of Maceio (Alagoas) and Fortaleza (Ceara) are related. The utilizations of 82Br as a tracer, in solution form, with 1.0 Ci activity, is also described, as well as the radioactivity measurements in seawater, with a NaI(Tl) crystal detecting probe and associated electronic equipment

  9. Tourette syndrome associated with body temperature dysregulation: possible involvement of an idiopathic hypothalamic disorder.

    Science.gov (United States)

    Kessler, Abraham R

    2002-10-01

    Tourette syndrome is a neuropsychiatric disorder that holds the potential to afflict the emotional, familial, social, or scholastic performances of patients with Tourette syndrome in day-to-day life functioning. The disorder is today characterized mainly and diagnosed by clinical observations, yet false-negative results obtained in the diagnosis of Tourette syndrome are numerous and well documented. There is still no laboratory or imaging technique available for the diagnosis of Tourette syndrome. This article reports on changes of the ambient thermal perception (38%) and a circadian dysregulation of the body-temperature profile present in Tourette syndrome probands, irrespective of their chronologic age, sex, or comorbid symptoms. An involvement of idiopathic hypothalamic dysfunctions associated with Tourette syndrome is proposed. Such a phenomenon, if substantiated, could lead to a better understanding of Tourette syndrome and the development of unbiased physical diagnostic criteria of Tourette syndrome and potentiate possible production of novel therapeutic possibilities.

  10. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior.

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  11. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  12. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior.

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  13. To use or not to use torpor? Activity and body temperature as predictors

    Science.gov (United States)

    Christian, Nereda; Geiser, Fritz

    2007-06-01

    When food is limited and/or environmental conditions are unfavourable, many mammals reduce activity and use torpor to save energy. Nevertheless, reliable predictors for torpor occurrence, especially in the wild, are currently not available. Interrelations between torpor use and other energy conserving strategies are also poorly understood. We tested the hypothesis that reductions in normothermic body temperature ( T b) and the period of activity before torpor events could be used as predictors for torpor occurrence in sugar gliders, Petaurus breviceps (body mass, ˜125 g), known to display daily torpor in the wild. Occurrence of torpor was preceded by significant (˜10-25%) reductions of the duration of the activity phase. Moreover, the normothermic resting T b fell by an average of 1.2°C over 3 days before a torpor event, relative to individuals that did not display torpor. Our new findings suggest that before entering torpor, sugar gliders, which appear to use torpor as an emergency measure rather than a routine energy saving strategy, systematically reduce activity times and normothermic resting T bs to lower energy expenditure and perhaps to avoid employing torpor. Thus, reduced activity and normothermic T b may provide a predictive tool for the occurrence of daily torpor in the wild.

  14. Methylphenidate alters flash-evoked potentials, body temperature, and behavior in Long-Evans rats.

    Science.gov (United States)

    Hetzler, Bruce E; Meckel, Katherine R; Stickle, Bruce A

    2014-01-01

    This experiment examined the effects of methylphenidate hydrochloride on flash-evoked potentials (FEPs) recorded from the visual cortex (VC) and superior colliculus (SC) of chronically implanted male Long-Evans rats, as well as on body temperature and open field behavior. FEPs were recorded at 10, 20 and 40 min following intraperitoneal injections of saline, and of doses of 0.7, 2.9, and 11.6 mg/kg methylphenidate on separate days. The 0.7 mg/kg dose did not produce significant effects. In the VC, following administration of the 11.6 mg/kg dose of methylphenidate the amplitude of components P83, N146, and P232 decreased, the amplitude of component N64 briefly increased and components P23, N30, N40, and P48 were unchanged in amplitude. In the SC, component P29 was unaffected, while components P38 and N51 were reduced in amplitude by the 11.6 mg/kg dose of methylphenidate. Peak latencies of components N40, P48, P83, and N146 in the VC and component P38 in the SC were increased by the 11.6 mg/kg dose of methylphenidate. When body temperature was recorded 45 min after drug administration, a mild dose-dependent hypothermia was found with the 2.9 and 11.6 mg/kg methylphenidate doses, suggesting that this may have contributed to the increased latencies. In subsequent open field observations, both line crossings and rearings were significantly increased by the 11.6 mg/kg dose. Increased movement into the center of the testing area was also observed, which could be a sign of increased exploration and reduced anxiety following methylphenidate.

  15. Pythium species in 13 various types of water bodies of N-E Poland

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-02-01

    Full Text Available Pythium species and environmental factors in various types of water bodies (2 springs, 2 rivers, 3 ponds and 6 different trophic lakes were studied. Samples of water were collected every two months (springs, rivers, ponds and every three months (lakes in the years 1996-1999 for hydrochemical analysis and in order to determine the Pythium species content. From springs rivers and ponds collected were also ice blocks for determinations of presence of Pythium species. Buckwheatand hemp-seeds, cellophane and snake exuviae were used as bait. Forty-five species of Pythium were found in various types of water bodies. Pythium acanthicum, P. complectens, P. complens, P. diameson, P. dissimile, P. elongatum, P. lucens, P. megalacanthum, P. nagae, P. oedochilum, P. oryzae, P. palingenes, P. periilum and P. polysporum were recorded for the first time in Poland. The largest mean number of species was observed in spring Cypisek, a bit fewer in spring Jaroszówka and lake Białe (oligotrophic-like waters. The lowest mean number of Pythium species was noted in pond Akcent and Pałacowy (polytrophic waters. In all types of water bodies the higest mean number of species was found in winter, and the lowest in summer.

  16. The ratio total body potassium/total body water as a measure of the mean intracellular potassium concentration

    International Nuclear Information System (INIS)

    The ratios total body potassium (TBK)/total body water (TBW) and TBK/(TBW-82Br-R) are compared as a measure of the mean intracellular potassium concentration. TBK (40K), THO-distribution volume (TBW) and 82Br space (82Br-R) were measured in 28 controls, in 15 patients with cirrhosis of the liver, and in 37 rsp. 42 mechanically ventilated patients of the intensive care unit. Effects of dehydration, hyperhydration and increased membraneous permeability concerning the ratios 82Br-R/TBW, TBK/TBW and TBK/(TBW-82Br-R) are discussed and evaluated by a theoretical model. In cirrhosis of the liver we found a significantly lowered TBK and simultaneously increased values of TBW and 82Br-R. In critically ill patients TBK was lowered whereas the TBW was normal and the bromide space was increased. We believe that this was due to an increased bromide penetration into cells and to a potassium depletion. It is concluded that: a) In homeostasis of water and electrolytes TBK/TBW is a better measure of the mean intracellular potassium concentration; this is because of a lower standard error and a lower radiation dose. b) In the case of isotonic hyperhydration TBK/(TBW-82Br-R) is a better measure of the mean intracellular potassium concentration than TBK/TBW; within the next 2 weeks it is not possible to make a TBK follow-up. c) In a pathophysiological state with an increased permeability of cells to tracers of the extracellular space TBK/TBW is the better measure for the mean intracellular potassium concentration in patients with normal TBW values. (orig.)

  17. Ratio total body potassium/total body water as a measure of the mean intracellular potassium concentration

    Energy Technology Data Exchange (ETDEWEB)

    Schober, O.; Ollech, J.; Lehr, L.; Hundeshagen, H.

    1981-10-01

    The ratios total body potassium (TBK)/total body water (TBW) and TBK/(TBW-/sup 82/Br-R) are compared as a measure of the mean intracellular potassium concentration. TBK (/sup 40/K), THO-distribution volume (TBW) and /sup 82/Br space (/sup 82/Br-R) were measured in 28 controls, in 15 patients with cirrhosis of the liver, and in 37 rsp. 42 mechanically ventilated patients of the intensive care unit. Effects of dehydration, hyperhydration and increased membraneous permeability concerning the ratios /sup 82/Br-R/TBW, TBK/TBW and TBK/(TBW-/sup 82/Br-R) are discussed and evaluated by a theoretical model. In cirrhosis of the liver we found a significantly lowered TBK and simultaneously increased values of TBW and /sup 82/Br-R. In critically ill patients TBK was lowered whereas the TBW was normal and the bromide space was increased. We believe that this was due to an increased bromide penetration into cells and to a potassium depletion. It is concluded that: a) In homeostasis of water and electrolytes TBK/TBW is a better measure of the mean intracellular potassium concentration; this is because of a lower standard error and a lower radiation dose. b) In the case of isotonic hyperhydration TBK/(TBW-/sup 82/Br-R) is a better measure of the mean intracellular potassium concentration than TBK/TBW; within the next 2 weeks it is not possible to make a TBK follow-up. c) In a pathophysiological state with an increased permeability of cells to tracers of the extracellular space TBK/TBW is the better measure for the mean intracellular potassium concentration in patients with normal TBW values.

  18. Development of a novel scheme for long-term body temperature monitoring: a review of benefits and applications.

    Science.gov (United States)

    Cuesta-Frau, David; Varela-Entrecanales, Manuel; Valor-Perez, Raul; Vargas, Borja

    2015-04-01

    Body temperature is a health or disease marker that has been in clinical use for centuries. The threshold currently applied to define fever, with small variations, is 38 °C. However, current approaches do not provide a full picture of the thermoregulation process and its correlation with disease. This paper describes a new non-invasive body temperature device that improves the understanding of the pathophysiology of diseases by integrating a variety of temperature data from different body locations. This device enables to gain a deeper insight into fever, endogenous rhythms, subject activity and ambient temperature to provide anticipatory and more efficient treatments. Its clinical use would be a big step in the overcoming of the anachronistic febrile/afebrile dichotomy and walking towards a system medicine approach to certain diseases. This device has already been used in some clinical applications successfully. Other possible applications based on the device features and clinical requirements are also described in this paper.

  19. Water-waves modes trapped in a canal by a body with the rough surface

    CERN Document Server

    Cardone, G; Nazarov, S A

    2009-01-01

    The problem about a body in a three dimensional infinite channel is considered in the framework of the theory of linear water-waves. The body has a rough surface characterized by a small parameter $\\epsilon>0$ while the distance of the body to the water surface is also of order $\\epsilon$. Under a certain symmetry assumption, the accumulation effect for trapped mode frequencies is established, namely, it is proved that, for any given $d>0$ and integer $N>0$, there exists $\\epsilon(d,N)>0$ such that the problem has at least $N$ eigenvalues in the interval $(0,d)$ of the continuous spectrum in the case $\\epsilon\\in(0,\\epsilon(d,N)) $. The corresponding eigenfunctions decay exponentially at infinity, have finite energy, and imply trapped modes.

  20. Gene expression in caged fish as indicators of contaminants exposure in tropical karstic water bodies.

    Science.gov (United States)

    Rodríguez-Fuentes, Gabriela; Luna-Ramírez, Karen S; Soto, Mélina; Richardson, Kristine L

    2012-04-01

    Karstic areas in Yucatan are very permeable, which allows contaminants to move rapidly into the aquifer. In the present study, we evaluated gene expression of vitellogenin (VTG) and cytochrome P-450 1A (CYP1A) in caged juvenile zebrafish deployed for 15 days in 13 different water bodies, cenotes and aguadas, throughout karstic region of the Yucatan peninsula. Gene expression was evaluated using qRT-PCR. Results indicated induction of VTG in 7 water bodies with respect to reference cage. The highest relative VTG expression, about 3000 times higher than reference cage, was found in an aguada close to a cattle farm. CYP1A induction with respect to reference cage was observed in 3 water bodies, all of them located near villages or used for tourist activities. Pollutants and biomarkers of effect should be monitored in these water bodies in order to have a better understanding of the actual levels of pollutants that are present at Yucatan's aquifer and the potential risk to human and environmental health. PMID:22014761

  1. a Probability-Based Statistical Method to Extract Water Body of TM Images with Missing Information

    Science.gov (United States)

    Lian, Shizhong; Chen, Jiangping; Luo, Minghai

    2016-06-01

    Water information cannot be accurately extracted using TM images because true information is lost in some images because of blocking clouds and missing data stripes, thereby water information cannot be accurately extracted. Water is continuously distributed in natural conditions; thus, this paper proposed a new method of water body extraction based on probability statistics to improve the accuracy of water information extraction of TM images with missing information. Different disturbing information of clouds and missing data stripes are simulated. Water information is extracted using global histogram matching, local histogram matching, and the probability-based statistical method in the simulated images. Experiments show that smaller Areal Error and higher Boundary Recall can be obtained using this method compared with the conventional methods.

  2. Development of a high temperature solar powered water chiller

    Science.gov (United States)

    English, R. A.

    1982-03-01

    The objectives of this program are: to develop a high temperature solar powered air cooled 25 ton chiller utilizing 250 to 300 F solar hot water suitable for commercial and multi-family applications; to study, design, and build a prototype Rankine powered vapor compression cycle; and to demonstrate and evaluate performance through steady state and dynamic laboratory testing. Cycle studies and preliminary turbo machine studies were completed under Phase I establishing the final conceptual approach and anticipated cost/performance. The evaluation of the working fluid thermal stability has satisfactorily shown that R-113 has excellent life potential in an oil-free steel boiler at the maximum expected temperature, 320 F, for this application. The detailed design of the turbo machine and the chiller has been completed. The turbomachine has been completed and has successfully passed its qualification tests on air. The chiller has been built in the water cooled configuration, has been installed in a test facility, instrumented and charged. A two stage boiler feed pump has been developed and successfully tested on R-113 in a separate loop.

  3. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    Science.gov (United States)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  4. Friction and Surface Temperature of Wet Hair Containing Water, Oil, or Oil-in-Water Emulsion.

    Science.gov (United States)

    Aita, Yuuki; Nonomura, Yoshimune

    2016-06-01

    The surface properties and the tactile texture of human hair are important in designing hair-care products. In this study, we evaluated the temporal changes of friction and temperature during the drying process of wet human hair containing water, silicone oil, or oil-in-water (O/W) emulsion. The wet human hair including water or O/W emulsion have a moist feel, which was caused by the temperature reduction of approximately 3-4°C. When human hair is treated with silicone oil, more than 60% of the subjects felt their hair to be slippery and smooth like untreated hair. Treating hair with O/W emulsion after drying made the subject perceive a slippery feeling because the surfactant reduced friction on the hair surface. These results indicated that both friction and thermal properties of the hair surface are important to control the tactile texture of the human hair. PMID:27181247

  5. Comparative study on body water dynamics in working and non workwing swamp buffalo

    International Nuclear Information System (INIS)

    Swamp buffaloes are mostly used by farmers in the wetter regions of Indonesia to prepare the land for planting rice. A study on the body water dynamics in non working and working swamp buffalo was conducted at BPT Ciawi. Eight non pregnan female swamp buffaloes aged 4 to 6 years given a diet of fresh field grasses and rice straw (1:1 fresh weight basis) were used in this study. Four of them followed a daily work program consisting of pulling a metal sledge with a mean draught force of about 100 kg for 3 h along a dirt track. The other four were not subjected to work and were confined in pens. They were denied accens to water and feed while the first group were working All animals were intra vena jugular injected with approx. 200 uCi of tritiated water in 10 ml of physiological NaCl. Blood samples were taken before the isotope injection and over the next three days after equilibration time. Total Body water (TBW), the half time of the tritiated water ( t 1/2) and the rate of water loss were determined. The result showed that the TBW of the non worker was significantly higher (p<0.01) than that of working buffaloes (264 vs 245 l), the t 1/2 the tritiated water was significantly shorter (p<0.01) in the worker then in the non worker (71 vs 84 h) the rate of water loss from the animal's body was not significantly different between non working and working buffaloes (53 vs 59 l/d). It seems that while buffaloes need frequent access to drinking water, their requirement are not significantly increased by the traditional routines of work. (authors). 3 refs, 1 fig, 1 tab

  6. Evolution of microstructure in flyash-containing porcelain body on heating at different temperatures

    Indian Academy of Sciences (India)

    Kausik Dana; Swapan Kumar Das

    2004-04-01

    15 wt% flyash (a calcined byproduct of thermal power plant) was incorporated in a normal triaxial kaolin–quartz–feldspar system by replacing equivalent amount of quartz. The differences in microstructural evolution on heating the compact mass of both normal and flyash-containing porcelain at different temperatures (1150–1300°C) were examined using scanning electron microscopy (SEM) operating in secondary electron image (SEI) mode. Microstructure of normal porcelain did not show the presence of mullite and quartz grains at 1200°C and the viscosity of silica-rich glass restricted the growth of mullite crystals at 1250°C. Flyash porcelain, on the other hand, shows the presence of primary mullite aggregates in the clay relict and a significant growth of mullite crystals in a low viscosity glassy matrix at 1200°C itself. At 1300°C, both the bodies show a larger region of more elongated (> 1 m) secondary mullite along with clusters of smaller sized primary mullite (< 1 m). Small primary mullite crystals in the clay relict can be distinguished from elongated secondary mullite crystals in the feldspar relict in their size. Primary mullite aggregates remain stable also at higher temperatures. XRD studies were carried out for quantitative estimation of quartz, mullite and glass, which supported the SEM observations. An attempt was also made to correlate their mechanical strength with the constituent phases.

  7. The historical distribution of main malaria foci in Spain as related to water bodies.

    Science.gov (United States)

    Sousa, Arturo; García-Barrón, Leoncio; Vetter, Mark; Morales, Julia

    2014-08-01

    The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO) in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS), using the Inverse Distance Weighted (IDW) interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura), the presence of another vector (Anopheles labranchiae) besides A. atroparvus (Levante) or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia). In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe. PMID:25101771

  8. The Historical Distribution of Main Malaria Foci in Spain as Related to Water Bodies

    Directory of Open Access Journals (Sweden)

    Arturo Sousa

    2014-08-01

    Full Text Available The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS, using the Inverse Distance Weighted (IDW interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura, the presence of another vector (Anopheles labranchiae besides A. atroparvus (Levante or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia. In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe.

  9. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation.

    Science.gov (United States)

    McCann, Michael J

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L(-1), 0.083 mg P L(-1)). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619

  10. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation.

    Science.gov (United States)

    McCann, Michael J

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L(-1), 0.083 mg P L(-1)). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions.

  11. Nonlinear mixed effects modelling for the analysis of longitudinal body core temperature data in healthy volunteers.

    Science.gov (United States)

    Seng, Kok-Yong; Chen, Ying; Wang, Ting; Ming Chai, Adam Kian; Yuen Fun, David Chiok; Teo, Ya Shi; Sze Tan, Pearl Min; Ang, Wee Hon; Wei Lee, Jason Kai

    2016-04-01

    Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N  =  18) or 15 km (N  =  16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models. PMID:26963194

  12. Accuracy of parents in measuring body temperature with a tympanic thermometer

    Directory of Open Access Journals (Sweden)

    Spady Donald W

    2005-01-01

    Full Text Available Abstract Background It is now common for parents to measure tympanic temperatures in children. The objective of this study was to assess the diagnostic accuracy of these measurements. Methods Parents and then nurses measured the temperature of 60 children with a tympanic thermometer designed for home use (home thermometer. The reference standard was a temperature measured by a nurse with a model of tympanic thermometer commonly used in hospitals (hospital thermometer. A difference of ≥ 0.5 °C was considered clinically significant. A fever was defined as a temperature ≥ 38.5 °C. Results The mean absolute difference between the readings done by the parent and the nurse with the home thermometer was 0.44 ± 0.61 °C, and 33% of the readings differed by ≥ 0.5 °C. The mean absolute difference between the readings done by the parent with the home thermometer and the nurse with the hospital thermometer was 0.51 ± 0.63 °C, and 72 % of the readings differed by ≥ 0.5 °C. Using the home thermometer, parents detected fever with a sensitivity of 76% (95% CI 50–93%, a specificity of 95% (95% CI 84–99%, a positive predictive value of 87% (95% CI 60–98%, and a negative predictive value of 91% (95% CI 79–98 %. In comparing the readings the nurse obtained from the two different tympanic thermometers, the mean absolute difference was 0.24 ± 0.22 °C. Nurses detected fever with a sensitivity of 94% (95 % CI 71–100 %, a specificity of 88% (95% CI 75–96 %, a positive predictive value of 76% (95% CI 53–92%, and a negative predictive value of 97% (95%CI 87–100 % using the home thermometer. The intraclass correlation coefficient for the three sets of readings was 0.80, and the consistency of readings was not affected by the body temperature. Conclusions The readings done by parents with a tympanic thermometer designed for home use differed a clinically significant amount from the reference standard (readings done by nurses with a model of

  13. Development and clinical application of a length-adjustable water phantom for total body irradiation.

    Science.gov (United States)

    Chen, Zhi-Wei; Yao, Sheng-Yu; Zhang, Tie-Ning; Zhu, Zhen-Hua; Hu, Zhe-Kai; Lu, Xun

    2012-08-01

    A new type of water phantom which would be specialised for the absorbed dose measurement in total body irradiation (TBI) treatment is developed. Ten millimetres of thick Plexiglas plates were arranged to form a square cube with 300 mm of edge length. An appropriate sleeve-type piston was installed on the side wall, and a tabular Plexiglas piston was positioned inside the sleeve. By pushing and pulling the piston, the length of the self-made water phantom could be varied to meet the required patients' physical sizes. To compare the international standard water phantom with the length-adjustable and the Plexiglas phantoms, absorbed dose for 6-MV X ray was measured by an ionisation chamber at different depths in three kinds of phantoms. In 70 cases with TBI, midplane doses were metered using the length-adjustable and the Plexiglas phantoms for simulating human dimensions, and dose validation was synchronously carried out. There were no significant statistical differences, p > 0.05, through statistical processing of data from the international standard water phantom and the self-designed one. There were significant statistical differences, p body width. Obviously, the difference had a positive correlation with the body width. The results proved that the new length-adjustable water phantom is more accurate for simulating human dimensions than Plexiglas phantom.

  14. Water Intake and Utilization in Mithun (Bos frontalis):Effect of Environmental Temperature, Rearing System and Concentrate Feed Supplement

    Institute of Scientific and Technical Information of China (English)

    D. T. Pal; A. Dhali; S. K. Mondal; C. Rajkhowa; K. M. Bujarbaruah

    2008-01-01

    Seasonal and sexual variations as well as the effect of dry feed supplement on total drinking water intake and its utilization were observed in mithun (Bos frontalis)-a semi-wild animal found in North Eastern Hill Region (NEHR) of India. In a completely randomized design, twelve adult mithuns (B. frontalis) as per their sex and body weight were assigned in two different rearing systems (free grazing and free grazing with dry concentrate feed supplementation), and ten growing male mithuns as per their body weight assigned in two different levels of dry concentrate feed supplementation (1.0 kg and 2.0 kg dry concentrate feeds on green forage based diet) and in two different seasons (summer and winter). It was observed that the environmental temperature had a significant effect on drinking water intake by mithuns. Drinking water consumption (per unit of body weight) was significantly (P < 0.05) higher in summer than in winter. Supplementation of concentrate feed on free grazing animals resulted in increase in water consumption. Total water consumption (drinking as well as performed water) was found to be 15.18 litres per 100 kg body weight by growing mithun. Feed dry matter and digestible nutrient intakes by growing mithun were observed to be increased with the increase of supplementation of dry concentrate feed. Roughage to concentrate ratio did not affect the nutrient digestibility. Mithun calves drank an average of 4.30 litres water for each kg of dry matter intake. Metabolic water was significantly (P<0.01) increased with the increase of supplementation of concentrate feed whereas water turn over, which depends upon the body weight of the animals, did not differ significantly on offering of lower or higher level of dry feed. Faecal water loss of growing mithun was decreased with the increase in intake of concentrate feed and was estimated to be 33~46% of total water intake. Excretion of water through faeces of mithun was about 3.8% of body weight. It could

  15. Fractionation mechanism of stable isotope in evaporating water body%水体蒸发过程中稳定同位素的分形机制

    Institute of Scientific and Technical Information of China (English)

    章新平; 田立德; 刘晶淼

    2005-01-01

    Under Rayleigh equilibrium condition, stable isotopic ratio in residual water increases with the decrease of the residual water proportion f exponentially, and the fractionation rate of stable isotopes is inversely proportional to temperature. However, under kinetic evaporation condition, the fractionation of stable isotopes is not only related to the phase temperature but also influenced by the atmospheric humidity and the mass exchange between liquid and vapor phases. The ratio δ in residual water will not change with f after undergoing evaporation of a long time for great relative humidity.The rate that the evaporating water body reaches isotopic steady state is mainly dependent on the relative humidity in atmosphere. The analysis shows that the actual mean linear variety rates, about -30.0, of the δ18O in residual water versus the residual water proportion at Nagqu and Amdo stations are consistent with the simulated process under temperature of 20 ℃ and relative humidity of 50%.The distillation line simulated under Rayleigh equilibrium condition is analogous to the global meteoric water line (MWL) as the temperature is about 20 ℃. Under non-equilibrium condition, the slope and constant values of distillation line are directly proportional to temperature and relative humidity.According to the basic data, the simulated distillation line is very consistent with the actual distillation line of Qinghai Lake.

  16. Assessment of molecular methods as a tool for detecting pathogenic protozoa isolated from water bodies.

    Science.gov (United States)

    Adamska, M; Sawczuk, M; Kolodziejczyk, L; Skotarczak, B

    2015-12-01

    Several species belong to the Cryptosporidium and Giardia genus, the main parasitic protozoa occurring in water, but only some of them are infectious to humans. We investigated the occurrence of Cryptosporidium and Giardia and identified their species in the water samples collected from natural water bodies in north-western Poland. A total of 600 samples from water bodies used for bathing, sewage discharge, as drinking water sources and watering places for animals were screened. The samples were collected during a 3-year period in each of the four seasons and filtered using Filta-Max (IDEXX Laboratories, USA). Genomic DNA was extracted from all samples and used as a target sequence for polymerase chain reaction (PCR) and TaqMan real-time PCR, as well as for reverse line blotting (RLB) methods. PCR methods seem to be more sensitive to detect Giardia and Cryptosporidium DNA in water samples than RLB methods. All PCR products were sequenced and three were identified as C. parvum and four as G. intestinalis. The overall prevalence of C. parvum (0.5%) and G. intestinalis (0.6%) in the samples suggests that the risk of Cryptosporidium and Giardia infections in north-western Poland is minimal.

  17. Aster Global dem Version 3, and New Aster Water Body Dataset

    Science.gov (United States)

    Abrams, M.

    2016-06-01

    In 2016, the US/Japan ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) project released Version 3 of the Global DEM (GDEM). This 30 m DEM covers the earth's surface from 82N to 82S, and improves on two earlier versions by correcting some artefacts and filling in areas of missing DEMs by the acquisition of additional data. The GDEM was produced by stereocorrelation of 2 million ASTER scenes and operation on a pixel-by-pixel basis: cloud screening; stacking data from overlapping scenes; removing outlier values, and averaging elevation values. As previously, the GDEM is packaged in ~ 23,000 1 x 1 degree tiles. Each tile has a DEM file, and a NUM file reporting the number of scenes used for each pixel, and identifying the source for fill-in data (where persistent clouds prevented computation of an elevation value). An additional data set was concurrently produced and released: the ASTER Water Body Dataset (AWBD). This is a 30 m raster product, which encodes every pixel as either lake, river, or ocean; thus providing a global inland and shore-line water body mask. Water was identified through spectral analysis algorithms and manual editing. This product was evaluated against the Shuttle Water Body Dataset (SWBD), and the Landsat-based Global Inland Water (GIW) product. The SWBD only covers the earth between about 60 degrees north and south, so it is not a global product. The GIW only delineates inland water bodies, and does not deal with ocean coastlines. All products are at 30 m postings.

  18. Measuring the mechanical efficiency of a working cardiac muscle sample at body temperature using a flow-through calorimeter.

    Science.gov (United States)

    Taberner, Andrew J; Johnston, Callum M; Pham, Toan; June-Chiew Han; Ruddy, Bryan P; Loiselle, Denis S; Nielsen, Poul M F

    2015-08-01

    We have developed a new `work-loop calorimeter' that is capable of measuring, simultaneously, the work-done and heat production of isolated cardiac muscle samples at body temperature. Through the innovative use of thermoelectric modules as temperature sensors, the development of a low-noise fluid-flow system, and implementation of precise temperature control, the heat resolution of this device is 10 nW, an improvement by a factor of ten over previous designs. These advances have allowed us to conduct the first flow-through measurements of work output and heat dissipation from cardiac tissue at body temperature. The mechanical efficiency is found to vary with peak stress, and reaches a peak value of approximately 15 %, a figure similar to that observed in cardiac muscle at lower temperatures.

  19. Improving SNMR data sensitivity to infiltrating water in the presence of large bodies of surface water

    Science.gov (United States)

    Falzone, S.; Keating, K.; Grunewald, E. D.; Walsh, D. O.

    2014-12-01

    Surface nuclear magnetic resonance (SNMR) is a geophysical method used to image water content with depth. Recently SNMR has been used to monitor infiltration events in the vadose zone; however, this application can be complicated by the presence of large signals associated with the ponded surface water. In this study, we develop algorithms to reduce this surface water signal for improved sensitivity to the infiltrated groundwater. Using synthetic models, we examine the accuracy of these algorithms. We then assess our approach using a field dataset collected from a five-week SNMR survey conducted during an infiltration event at the South Aura Valley Storage and Recovery Project (SAVSARP) site in Tucson, AZ. Three different algorithms were developed to remove the surface water from the SNMR data: (1) late time mono-exponential subtraction, in which signal from late in the measurement is used to model surface water signal; (2) model subtraction, in which the Earth's magnetic field subsurface conductive structure, and water layer thickness are used to model the surface water signal; and (3) late time inversion correction, in which model parameters in the relaxation time distributions corresponding to slower relaxation times are zeroed. We used two readily available SNMR inversion codes to verify the three approaches: the GMR Inversion software and the MRS Matlab toolkit. Synthetic models were recovered using both inversion codes by applying the late time mono-exponential subtraction and the model subtraction algorithms, while the late time inversion correction algorithm produced poorly resolved relaxation time distribution models. The corrected dataset from the start of the SAVSARP survey contained features in the relaxation time distribution and water content versus depth models that were consistent with observed features present in other datasets from the survey. We conclude that either the late time mono-exponential subtraction or the model subtraction algorithm are

  20. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    Science.gov (United States)

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction

  1. Effects of Intense Physical Activity with Free Water Replacement on Bioimpedance Parameters and Body Fluid Estimates

    International Nuclear Information System (INIS)

    Authors have emphasized the need for previous care in order to perform reliable bioimpedance acquisition. Despite of this need some authors have reported that intense physical training has little effect on Bioimpedance Analysis (BIA), while other ones have observed significant effects on bioimpedance parameters in the same condition, leading to body composition estimates considered incompatible with human physiology. The aim of this work was to quantify the changes in bioimpedance parameters, as well as in body fluids estimates by BIA, after four hours of intense physical activity with free water replacement in young males. Xitron Hydra 4200 equipment was used to acquire bioimpedance data before and immediately after the physical training. After data acquisition body fluids were estimates from bioimpedance parameters. Height and weight of all subjects were also acquired to the nearest 0.1 cm and 0.1 kg, respectively. Results point that among the bioimpedance parameter, extracellular resistance presented the most coherent behavior, leading to reliable estimates of the extracellular fluid and part of the total body water. Results also show decreases in height and weight of the participants, which were associated to the decrease in body hydration and in intervertebral discs.

  2. Effects of Intense Physical Activity with Free Water Replacement on Bioimpedance Parameters and Body Fluid Estimates

    Science.gov (United States)

    Neves, E. B.; Ulbricht, L.; Krueger, E.; Romaneli, E. F. R.; Souza, M. N.

    2012-12-01

    Authors have emphasized the need for previous care in order to perform reliable bioimpedance acquisition. Despite of this need some authors have reported that intense physical training has little effect on Bioimpedance Analysis (BIA), while other ones have observed significant effects on bioimpedance parameters in the same condition, leading to body composition estimates considered incompatible with human physiology. The aim of this work was to quantify the changes in bioimpedance parameters, as well as in body fluids estimates by BIA, after four hours of intense physical activity with free water replacement in young males. Xitron Hydra 4200 equipment was used to acquire bioimpedance data before and immediately after the physical training. After data acquisition body fluids were estimates from bioimpedance parameters. Height and weight of all subjects were also acquired to the nearest 0.1 cm and 0.1 kg, respectively. Results point that among the bioimpedance parameter, extracellular resistance presented the most coherent behavior, leading to reliable estimates of the extracellular fluid and part of the total body water. Results also show decreases in height and weight of the participants, which were associated to the decrease in body hydration and in intervertebral discs.

  3. Core temperature response to immersed bicycle ergometer exercise at water temperatures of 21 degrees, 25 degrees, and 29 degrees C.

    Science.gov (United States)

    Israel, D J; Heydon, K M; Edlich, R F; Pozos, R S; Wittmers, L E

    1989-01-01

    A bicycle ergometer modified for aquatic exercise was used to determine the effects of immersion on core temperature during submaximal exercise at different water temperatures. An exercise intensity (60% of maximal oxygen consumption) and duration (30 minutes) considered appropriate for cardiovascular conditioning were used. These data will be useful in cardiovascular and leg-strengthening hydrotherapy programs. Rectal temperature, skin temperature, and a rating of thermal comfort were studied in five normal men (14.8% +/- 5.6% fat) during headout immersion at water temperatures of 21.1 degrees, 25.3 degrees, and 29.4 degrees C and exercise in air of 21.1 degrees C. Subjects were immersed for 30 minutes during static and exercise (63% +/- 0.6% maximal oxygen consumption) conditions. Data were collected every 5 minutes and analyzed by repeated measured analysis of variance. At water temperatures, rectal temperature fell from control during static immersion (p less than or equal to 0.05) and was lower than control at the end of the 30-minute recovery period (p less than or equal to 0.05). During exercise there was no change in rectal temperature at water temperatures of 21.1 degrees and 25.3 degrees C; however, rectal temperature rose at water temperatures of 29.4 degrees (p less than or equal to 0.05) and air 21.1 degrees C (p less than or equal to 0.05). At the end of recovery rectal temperature was lower than control at water temperatures 21.1 degrees C (p less than or equal to 0.05) and greater than control at water temperatures 29.4 degrees C (p less than or equal to 0.05). There was no change from control in rectal temperatures at water temperatures 25.3 degrees C and air at 21.1 degrees C. These results indicate that immersion in 25.3 degrees and 21.1 degrees C water effectively attenuates the rise in rectal temperature during exercise at 63% of maximal oxygen consumption, whereas immersion in 29.4 degrees C water does not. In addition, both skin and rectal

  4. Heat release characteristics of landscape water body applied to surface-water ground-source heat pump systems%地表水地源热泵用景观水体散热特性研究

    Institute of Scientific and Technical Information of China (English)

    於仲义; 陈焰华; 雷建平

    2012-01-01

    Taking a real project in Wuhan as example in which the landscape water body with the fountain is the heat sink of the surface-water ground-source heat pump system, simulates and analyses the influence of water intake and drain positions and water intake volume on the water intake temperature, heat carrying capacity and water temperature recoverability. Makes some suggestions to ensure the surface-water ground-source heat pump system stable and reliable operation for long term, such as increasing the superficial area of the water body, decreasing the water intake volume, adopting intermittent operation mode and optimizing the water intake and drain positions.%以利用带喷泉的景观水体作为地表水地源热泵热汇的武汉市某实际工程为例,模拟分析了取排水口位置和取水量对景观水体取水口温度、热承载能力、水温恢复能力的影响.建议增大水域表面积,减小取水量,采用间歇运行方式,优化取排水口位置以保证地源热泵系统较长时间稳定可靠的运行.

  5. Psychoneuroendocrine immunology: perception of stress can alter body temperature and natural killer cell activity.

    Science.gov (United States)

    Hiramoto, R N; Solvason, H B; Hsueh, C M; Rogers, C F; Demissie, S; Hiramoto, N S; Gauthier, D K; Lorden, J F; Ghanta, V K

    1999-01-01

    Psychoimmunology has been credited with using the mind as a way to alter immunity. The problem with this concept is that many of the current psychoimmunology techniques in use are aimed at alleviating stress effects on the immune system rather than at direct augmentation of immunity by the brain. Studies in animals provide a model that permits us to approach the difficulties associated with gaining an understanding of the CNS-immune system connection. A particular advantage of using animals over humans is that psychological and social contributions play a less prominent role for animals than for human subjects, since the animals are all inbred and reared under identical controlled conditions. If the insightful information provided by animal studies is correct, then psychotherapy for the treatment of diseases might be made more effective if some aspect of this knowledge is included in the design of the treatment. We emphasize conditioning as a regimen and an acceptable way to train the brain to remember an output pathway to raise immunity. We propose that a specific drug or perception (mild stress, represented by rotation, total body heating or handling) could substitute and kindle the same output pathway without the need for conditioning. If this view is correct, then instead of using conditioning, it may be possible to use an antigen to activate desired immune cells, and substitute a drug or an external environmental sensory stimulus (perception) to energize the output pathway to these cells. Alternatively, monitoring alterations of body temperature in response to a drug or perception might allow us to follow how effectively the brain is performing in altering immunity. Studies with animals suggest that there are alternative ways to use the mind to raise natural or acquired immunity in man.

  6. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W

    2015-11-01

    There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of <0.4 °C when used to predict the temperature at the seat and skin interface 15 min ahead, but required 45 min data prior to give this accuracy. Although the 45 min front loading of data appears large (in proportion to the 15 min prediction), a relative strength derives from the fact that the same algorithm could be used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 min required to train the algorithm is transferable to other data from the same individual. This approach might be developed (along with incorporation of other measures such as movement and humidity) into a system that can give caregivers prior warning to help avoid

  7. Landscape Patterns of Streams & Lakes in Montane Watersheds Determine Water Temperatures & Nutrient Transport: Watershed Analyses and N Tracer Experiments

    OpenAIRE

    Wurtsbaugh, Wayne A.; Garrett, J.; Burkart, G.; Fleenor, W.; Nydick, K.; Hall, R; Baker, Michelle A.

    2005-01-01

    In glaciated mountains, lakes are interspersed through watersheds and connected by streams. Although lakes or streams are frequently studied as individual water bodies, studying them as integrated functional units provides considerable insight on temperature patterns, nutrient transport and other functions. In the Sawtooth Mountains (Idaho), inter-lake distance averages 2.8 km. In summer, lakes are solar collectors, and warm outflow streams as much as 10 C, thus increasing metabolic rates. Th...

  8. Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation

    Directory of Open Access Journals (Sweden)

    M. Munz

    2011-11-01

    Full Text Available Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of ±1.3 m d−1. Pass band filtering provided amplitude differences and phase shifts of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to temperature sensor spacing, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small sensor distances of all setups were found to be insensitive to vertical water flux.

  9. Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation

    Science.gov (United States)

    Munz, M.; Oswald, S. E.; Schmidt, C.

    2011-11-01

    Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of ±1.3 m d-1. Pass band filtering provided amplitude differences and phase shifts of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to temperature sensor spacing, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small sensor distances of all setups were found to be insensitive to vertical water flux.

  10. Body mass, energy intake, and water consumption of rats and humans during space flight

    Science.gov (United States)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  11. CHARACTERIZATION OF SALMONELLA SPECIES FROM WATER BODIES IN DAR-ES-SALAAM CITY, TANZANIA

    Directory of Open Access Journals (Sweden)

    Eliningaya Kweka

    2013-03-01

    Full Text Available Background: Water-borne diseases are the most common cause of illness and death among the poor population from developing countries. The majority of the people are inadequately aware that aquatic environment is a major source of salmonellosis. Dar es Salaam city is among the cities with most of its population live in squatter. Typhoid fever ranks second with 14.3% of all notifiable disease cases in the city. The city experience water scarcity which forces water wells and rivers to become the main sources of water for domestic use and livestock. This study therefore, characterized Salmonella strains from different water bodies of city as possible sources for enteric diseases endemicity. Methods: The Salmonella Chromogenic Agar (SC Agar and Kligler Iron Agar (KIA media were used for isolation and enumeration of the strains. The inoculated cultures were incubated at 370C for 24 hours. Salmonella colonies were confirmed by magenta colorations and hydrogen sulfide production on SC Agar and KIA Agar, respectively. The Analytical Profile Index 20 Enterobacteriaceae kit (API 20E kit was used to identify Salmonella species. Results: Based on the API 20E kit, the identified Salmonella species from different water bodies were Salmonella ser. paratyphi A (96.9%, Salmonella cholelaesuis spp choleraesuis (99.5% and Salmonella typhi (99.9%. Conclusion: This study shows that shallow wells and rivers which are mainly used by the city dwellers were highly contaminated with Salmonella and were more contaminated than deep wells and marine water bodies. This warrants further investigation on the disease mapping in the urban and peri-urban areas.

  12. Characterization of Salmonella species from water bodies in Dar-Es-Salaam city, Tanzania

    Directory of Open Access Journals (Sweden)

    Eliningaya Kweka

    2013-01-01

    Full Text Available Background: Water-borne diseases are the most common cause of illness and death among the poor population from developing countries. The majority of the people are inadequately aware that aquatic environment is a major source of salmonellosis. Dar es Salaam city is among the cities with most of its population live in squatter. Typhoid fever ranks second with 14.3% of all notifiable disease cases in the city. The city experience water scarcity which forces water wells and rivers to become the main sources of water for domestic use and livestock. This study therefore, characterized Salmonella strains from different water bodies of city as possible sources for enteric diseases endemicity. Methods: The Salmonella Chromogenic Agar (SC Agar and Kligler Iron Agar (KIA media were used for isolation and enumeration of the strains. The inoculated cultures were incubated at 370C for 24 hours. Salmonella colonies were confirmed by magenta colorations and hydrogen sulfide production on SC Agar and KIA Agar, respectively. The Analytical Profile Index 20 Enterobacteriaceae kit (API 20E kit was used to identify Salmonella species. Results: Based on the API 20E kit, the  identified Salmonella species from different water bodies were Salmonella ser. paratyphi A (96.9%, Salmonella cholelaesuis spp choleraesuis (99.5% and Salmonella typhi (99.9%. Conclusion: This study shows that shallow wells and rivers which are mainly used by the city dwellers were highly contaminated with Salmonella and were more contaminated than deep wells and marine water bodies. This warrants further investigation on the disease mapping in the urban and peri-urban areas.

  13. Electrochemical noise measurements of stainless steel in high temperature water

    International Nuclear Information System (INIS)

    Corrosion in a high purity aqueous environment simulating a boiling water reactor (BWR) is addressed in this work. This condition necessitates autoclave experiments under high pressure and temperature. Long-term electrochemical noise measurements were explored as a mean to detect and monitor stress corrosion cracking phenomenon. An experimental set up, designed to insulate the working electrode from external interference, made possible to detect and monitor stress corrosion cracking in slow strain rate tests for sensitized and solution annealed 304 stainless steel at 288 oC. Time-series analysis showed variations in the signature of the current density series due to transgranular stress corrosion cracking (TGSCC) and intergranular stress corrosion cracking (IGSCC)

  14. Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivity.

    Science.gov (United States)

    Sade, Sharon; Katzir, Abraham

    2004-03-20

    Infrared fiber optic radiometry was used for noncontact thermometry of gray bodies whose temperature was close to room temperature (40-70 degrees C). We selected three gray bodies, one with high emissivity (epsilon = 0.97), one with medium emissivity (epsilon = 0.71), and one with low emissivity (epsilon = 0.025). We carried out optimization calculations and measurements for a multiband fiber optic radiometer that consisted of a silver halide (AgClBr) infrared-transmitting fiber, a dual-band cooled infrared detector, and a set of 18 narrowband infrared filters that covered the 2-14-microm spectral range. We determined the optimal spectral range, the optimal number of filters to be used, and the optimal chopping scheme. Using these optimal conditions, we performed measurements of the three gray bodies and obtained an accuracy of better than 1 degrees C for body temperature and for room temperature. An accuracy of 0.03 was obtained for body emissivity.

  15. Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature.

    Science.gov (United States)

    Milani-Nejad, Nima; Xu, Ying; Davis, Jonathan P; Campbell, Kenneth S; Janssen, Paul M L

    2013-01-01

    Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank-Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (k(tr); which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K(+) contractures to induce a tonic level of force, we showed the k(tr) was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of k(tr) in rat muscle at optimal length (L(opt)) and 90% of optimal length (L(90)) revealed that k(tr) was significantly slower at L(opt) (27.7 ± 3.3 and 27.8 ± 3.0 s(-1) in duplicate analyses) than at L(90) (45.1 ± 7.6 and 47.5 ± 9.2 s(-1)). We therefore show that k(tr) can be measured in intact rat and rabbit cardiac trabeculae, and that the k(tr) decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank-Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.

  16. Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs

    Directory of Open Access Journals (Sweden)

    Fabien Pifferi

    2013-01-01

    Full Text Available In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly.

  17. Population-specific effects of developmental temperature on body condition and jumping performance of a widespread European frog.

    Science.gov (United States)

    Drakulić, Sanja; Feldhaar, Heike; Lisičić, Duje; Mioč, Mia; Cizelj, Ivan; Seiler, Michael; Spatz, Theresa; Rödel, Mark-Oliver

    2016-05-01

    All physiological processes of ectotherms depend on environmental temperature. Thus, adaptation of physiological mechanisms to the thermal environments is important for achieving optimal performance and fitness. The European Common Frog, Rana temporaria, is widely distributed across different thermal habitats. This makes it an exceptional model for studying the adaptations to different thermal conditions. We raised tadpoles from Germany and Croatia at two constant temperature treatments (15°C, 20°C), and under natural temperature fluctuations (in outdoor treatments), and tested how different developmental temperatures affected developmental traits, that is, length of larval development, morphometrics, and body condition, as well as jumping performance of metamorphs. Our results revealed population-specific differences in developmental time, body condition, and jumping performance. Croatian frogs developed faster in all treatments, were heavier, in better body condition, and had longer hind limbs and better jumping abilities than German metamorphs. The populations further differed in thermal sensitivity of jumping performance. While metamorphs from Croatia increased their jumping performance with higher temperatures, German metamorphs reached their performance maximum at lower temperatures. These population-specific differences in common environments indicate local genetic adaptation, with southern populations being better adapted to higher temperatures than those from north of the Alps. PMID:27092238

  18. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    CERN Document Server

    Reddy, Sandeep K; Bajaj, Pushp; Pham, C Huy; Riera, Marc; Moberg, Daniel R; Morales, Miguel A; Knight, Chris; Gotz, Andreas W; Paesani, Francesco

    2016-01-01

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly inc...

  19. Coiling Temperature Control Using Temperature Measurement Method for the Hot Rolled Strip in the Water Cooling Banks

    Science.gov (United States)

    Nakagawa, Shigemasa; Tachibana, Hisayoshi; Honda, Tatsuro; Uematsu, Chihiro

    In the hot strip mill, the quality of the strip greatly depends on the cooling process between the last stand in the finishing mill and the coilers. Therefore, it is important to carefully control the coiling temperature to regulate the mechanical properties of the strip. To realize high accuracy of coiling temperature, a new coiling temperature control using temperature measurement method for the hot rolled strip in the water cooling banks has been developed. The features of the new coiling temperature control are as follows: (i) New feedforward control adjusts ON/OFF swiching of cooling headers according to the strip temperature measured in the water cooling banks. (ii) New feedforward control is achieved by dynamic control function. This coiling temperature control has been in operation successfully since 2008 at Kashima Steel Works and improved the accuracy of coiling temperature of high strength steel considerably.

  20. Biphasic effect of melanocortin agonists on metabolic rate and body temperature.

    Science.gov (United States)

    Lute, Beth; Jou, William; Lateef, Dalya M; Goldgof, Margalit; Xiao, Cuiying; Piñol, Ramón A; Kravitz, Alexxai V; Miller, Nicole R; Huang, Yuning George; Girardet, Clemence; Butler, Andrew A; Gavrilova, Oksana; Reitman, Marc L

    2014-08-01

    The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r)-mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists, and MTII selectively activated arcuate nucleus dopaminergic neurons, suggesting that these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress.

  1. Psychogenic fever: how psychological stress affects body temperature in the clinical population.

    Science.gov (United States)

    Oka, Takakazu

    2015-01-01

    Psychogenic fever is a stress-related, psychosomatic disease especially seen in young women. Some patients develop extremely high core body temperature (Tc) (up to 41°C) when they are exposed to emotional events, whereas others show persistent low-grade high Tc (37-38°C) during situations of chronic stress. The mechanism for psychogenic fever is not yet fully understood. However, clinical case reports demonstrate that psychogenic fever is not attenuated by antipyretic drugs, but by psychotropic drugs that display anxiolytic and sedative properties, or by resolving patients' difficulties via natural means or psychotherapy. Animal studies have demonstrated that psychological stress increases Tc via mechanisms distinct from infectious fever (which requires proinflammatory mediators) and that the sympathetic nervous system, particularly β3-adrenoceptor-mediated non-shivering thermogenesis in brown adipose tissue, plays an important role in the development of psychological stress-induced hyperthermia. Acute psychological stress induces a transient, monophasic increase in Tc. In contrast, repeated stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Chronically stressed animals also display an enhanced hyperthermic response to a novel stress, while past fearful experiences induce conditioned hyperthermia to the fear context. The high Tc that psychogenic fever patients develop may be a complex of these diverse kinds of hyperthermic responses. PMID:27227051

  2. Inhaled vasopressin increases sociability and reduces body temperature and heart rate in rats.

    Science.gov (United States)

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; McGregor, Iain S

    2014-08-01

    The neuropeptides vasopressin (AVP) and oxytocin (OT) have therapeutic potential across a range of psychiatric disorders. However, there is uncertainty about the effectiveness of the intranasal route of administration that is often used to deliver these neuropeptides. Recent preclinical studies, typically involving anesthetized or restrained animals, have assessed intranasal AVP or OT effects, and have obtained somewhat inconsistent results. Here we obtained intranasal administration of AVP in rats by nebulizing the peptide (1ml of 5 or 10mg/ml solution) into a small enclosed chamber over a 2min period in which well-habituated, unanesthetized, unrestrained, rats were placed. Rats were immediately removed from the chamber and tested in the social interaction test, or assessed for changes in heart rate and body temperature using biotelemetry. Results showed that rats exposed to nebulized AVP (5 or 10mg/ml) showed increased social proximity (adjacent lying) and decreased anogenital sniffing in the social interaction test. Biotelemetry showed substantial and long lasting (>1h) hypothermic and bradycardic effects of nebulized AVP. These behavioral and physiological effects of nebulized AVP mimic those observed in recent studies with peripherally injected AVP. Plasma AVP concentrations were substantially increased 10min after nebulized AVP, producing levels above those seen with a behaviorally effective injected dose of AVP (0.005mg/kg intraperitoneal). This study thus provides a novel and effective method for neuropeptide administration to rodents.

  3. Post-warmup strategies to maintain body temperature and physical performance in professional rugby union players.

    Science.gov (United States)

    West, Daniel J; Russell, Mark; Bracken, Richard M; Cook, Christian J; Giroud, Tibault; Kilduff, Liam P

    2016-01-01

    We compared the effects of using passive-heat maintenance, explosive activity or a combination of both strategies during the post-warmup recovery time on physical performance. After a standardised warmup, 16 professional rugby union players, in a randomised design, completed a counter-movement jump (peak power output) before resting for 20 min and wearing normal-training attire (CON), wearing a passive heat maintenance (PHM) jacket, wearing normal attire and performing 3 × 5 CMJ (with a 20% body mass load) after 12 min of recovery (neuromuscular function, NMF), or combining PHM and NMF (COMB). After 20 min, participants completed further counter-movement jump and a repeated sprint protocol. Core temperature (Tcore) was measured at baseline, post-warmup and post-20 min. After 20 min of recovery, Tcore was significantly lower under CON and NMF, when compared with both PHM and COMB (P drop was less in COMB versus all other conditions (P < 0.05). Repeated sprint performance was significantly better under COMB when compared to all other conditions. Combining PHM with NMF priming attenuates the post-warmup decline in Tcore and can positively influence physical performance in professional rugby union players. PMID:25925751

  4. Numerical Investigation of Wave Slamming of Flat Bottom Body during Water Entry Process

    Directory of Open Access Journals (Sweden)

    Xiaozhou Hu

    2014-01-01

    Full Text Available A numerical wave load model based on two-phase (water-air Reynolds-averaged Navier-Stokes (RANS type equations is used to evaluate hydrodynamic forces exerted on flat bottom body while entering ocean waves of deploying process. The discretization of the RANS equations is achieved by a finite volume (FV approach. The volume of fluid (VOF method is employed to track the complicated free surface. A numerical wave tank is built to generate the ocean waves which are suitable for deploying offshore structures. A typical deploying condition is employed to reflect the process of flat bottom body impacting waves, and the pressure distribution of bottom is also presented. Four different lowering velocities are applied to obtain the relationship between slamming force and wave parameters. The numerical results clearly demonstrated the characteristics of flat bottom body impacting ocean waves.

  5. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  6. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W

    2015-11-01

    There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of seat and skin interface 15 min ahead, but required 45 min data prior to give this accuracy. Although the 45 min front loading of data appears large (in proportion to the 15 min prediction), a relative strength derives from the fact that the same algorithm could be used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 min required to train the algorithm is transferable to other data from the same individual. This approach might be developed (along with incorporation of other measures such as movement and humidity) into a system that can give caregivers prior warning to help avoid exacerbating the skin disorders of patients who suffer

  7. The effects of temperature and body mass on jump performance of the locust Locusta migratoria.

    Directory of Open Access Journals (Sweden)

    Edward P Snelling

    Full Text Available Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m scales with body mass (M; g according to the power equation D = 0.35M (0.17±0.08 (95% CI, jump take-off angle (A; degrees scales as A = 52.5M (0.00±0.06, and jump energy (E; mJ per jump scales as E = 1.91M (1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm of the femur and tibia of the hind leg, L f+t = 34.9M (0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12% legs and a relatively larger (11% femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.

  8. The effects of temperature and body mass on jump performance of the locust Locusta migratoria.

    Science.gov (United States)

    Snelling, Edward P; Becker, Christie L; Seymour, Roger S

    2013-01-01

    Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M (0.17±0.08 (95% CI)), jump take-off angle (A; degrees) scales as A = 52.5M (0.00±0.06), and jump energy (E; mJ per jump) scales as E = 1.91M (1.14±0.09). Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm) of the femur and tibia of the hind leg, L f+t = 34.9M (0.37±0.02). The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight. PMID:23967304

  9. Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation

    Directory of Open Access Journals (Sweden)

    M. Munz

    2011-06-01

    Full Text Available Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of ±1.3 m d−1. Pass band filtered time series provided amplitude and phase of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to probe distance, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small probe distances of all setups were found to be insensitive to vertical water flux.

  10. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    Science.gov (United States)

    Metz, Patricia A.

    2016-09-27

    in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward the coast. Multiple lines of evidence indicate that a source of warm groundwater to Warm Mineral Springs is likely the permeable zone of the Avon Park Formation within the Upper Floridan aquifer at a depth of about 1,400 to 1,600 feet, or deeper sources. The permeable zone contains saline groundwater with water temperatures of at least 95 degrees Fahrenheit.The water quality of Warm Mineral Springs, when compared with other springs in Florida had the highest temperature and the greatest mineralized content. Warm Mineral Springs water is

  11. Thermoregulatory responses to low-intensity prolonged swimming in water at various temperatures and treadmill walking on land.

    Science.gov (United States)

    Fujishima, K; Shimizu, T; Ogaki, T; Hotta, N; Kanaya, S; Shono, T; Ueda, T

    2001-05-01

    The purpose of the present study was to examine the effect of water temperature on the human body during low-intensity prolonged swimming. Six male college swimmers participated in this study. The experiments consisted of breast stroke swimming for 120 minutes in 23 degrees C, 28 degrees C and 33 degrees C water at a constant speed of 0.4 m.sec-1 in a swimming flume. The same subjects walked on a treadmill at a rate of approximately 50% of maximal oxygen uptake (VO2max) at the same relative intensity as the three swimming trials. Rectal temperature (Tre) in 33 degrees C water was unchanged during swimming for 120 minutes. Tre during treadmill walking increased significantly compared to the three different swimming trials. Tre, mean skin temperature (Tsk) and mean body temperature (Tb) in 23 degrees C and 28 degrees C water decreased significantly more than in both the 33 degrees C water and walking on land. VO2 during swimming in 23 degrees C water increased more than during swimming in the 28 degrees C and 33 degrees C trials; however, there were no significant differences in VO2 between the 23 degrees C swimming trial and treadmill walking. Heart rate (HR) during treadmill walking on land increased significantly compared with HR during the three swimming trials. Plasma adrenaline concentration at the end of the treadmill walking was higher than that at the end of each of the three swimming trials. Noradrenaline concentrations at the end of swimming in the 23 degrees C water and treadmill walking were higher than those during the other two swimming trials. Blood lactate concentration during swimming in 23 degrees C water was higher than that during the other two swimming trials and walking on land. These results suggest that the balance of heat loss and heat production is maintained in the warm water temperature. Therefore, a relatively warm water temperature may be desirable when prolonged swimming or other water exercise is performed at low intensity. PMID

  12. Low species richness of non-biting midges (Diptera: Chironomidae) in Neotropical artificial urban water bodies

    DEFF Research Database (Denmark)

    Hamerlik, Ladislav; Jacobsen, Dean; Brodersen, Klaus Peter

    2011-01-01

    Chironomid assemblages of 22 artificial water bodies, mainly fountains, in two South American cities were surveyed. We found surprisingly low diversities, with a total of 11 taxa, averaging two taxa per site. The typical fountain assemblages mainly consisted of common species that have a wide...... distribution pattern and are tolerant to organic pollution. Also taxa independent of the natural aquatic sources, such as tap-water and semi-terrestrial species were represented. There was no significant difference between the taxa richness of the two S. American regions, however, the assemblage structures...

  13. The languages spoken in the water body (or the biological role of cyanobacterial toxins).

    Science.gov (United States)

    Kaplan, Aaron; Harel, Moshe; Kaplan-Levy, Ruth N; Hadas, Ora; Sukenik, Assaf; Dittmann, Elke

    2012-01-01

    Although intensification of toxic cyanobacterial blooms over the last decade is a matter of growing concern due to bloom impact on water quality, the biological role of most of the toxins produced is not known. In this critical review we focus primarily on the biological role of two toxins, microcystins and cylindrospermopsin, in inter- and intra-species communication and in nutrient acquisition. We examine the experimental evidence supporting some of the dogmas in the field and raise several open questions to be dealt with in future research. We do not discuss the health and environmental implications of toxin presence in the water body.

  14. Radiative characteristics of ice-covered fresh- and brackish-water bodies

    OpenAIRE

    Leppäranta, Matti; Erm, Ants; Arst, Helgi; Reinart, Anu

    2006-01-01

    The structure and optics of ice and snow overlying bodies of water were studied in the years 2000–2003. The data were collected in the northern temperate region (nine Estonian and Finnish lakes and one brackish water site, Santala Bay, in the Gulf of Finland). In the present paper we describe the results concerning the radiative characteristics of the system “snow + ice cover on the water”: albedo, attenuation of light, and planar and scalar irradiances through the ice. The basic data consist...

  15. The seasonal abundance and size distributions of water bodies on the Yamal Peninsula

    Science.gov (United States)

    Trofaier, Anna Maria; Bartsch, Annett; Rees, William Gareth

    2014-05-01

    The significant role Arctic freshwater ecosystems play in the carbon cycle leads to a necessity to quantify these remote inland waters on the landscape-scale. A new approach to analysing size-frequency distributions of open surface water bodies is presented in this study. Geospatial data of water bodies over the Yamal peninsula (NW Siberia) in the form of binary (two classes: water and land) temporal composite classifications are analysed over the two summer months July and August in 2007, 2008 and 2009. The source of the temporal composite dataset is the European Space Agency's Envisat Advanced Synthetic Aperture Radar (ASAR) operating in Wide Swath Mode (WSM). These data are medium/low spatial resolution data with a pixel spacing of 75 m. However, their high temporal frequencies enable a seasonal analysis of water body abundance and size distributions. The emphasis is not only on quantifying Arctic lakes, but also on evaluating the distribution of spring floods throughout the active season. Size-frequency distributions are fit to a power-law model, conforming to be linear on a base 10 log-log scale. However, extrapolation of the myriad of smaller water bodies has in the past proven to be more complex than the current model would suggest. The apparent scale issues are investigated by additionally analysing active microwave data from the high spatial resolution TerraSAR-X satellite, and comparing the results to co-temporal ASAR WS data. With a total surface water area of around 606±50 km2 over the first two weeks of July in 2007, 2008 and 2009, a continuous decrease in water surface extent is determined over the course of the following six weeks. In 2009, high fragmentation of the early season classification is determined (1.6 and 1.4 times more polygons are found compared to the same period in 2007 and 2008). This is an artefact from weather affected data, resulting from high wind speeds over larger lakes and therefore showing a distinct wind bias in the

  16. Substituting sugar-sweetened beverages with water or milk is inversely associated with body fatness development from childhood to adolescence

    DEFF Research Database (Denmark)

    Zheng, Miaobing; Rangan, Anna; Olsen, Nanna Julie;

    2015-01-01

    participated in the Danish part of the European Youth Heart Study was followed for development of body fatness over 6 y. Multivariate linear regression was used to examine the associations between beverage intake at baseline and change in body fatness (body mass index z score [BMIz]), waist circumference (WC...... with water or milk, but not 100% fruit juice, is inversely associated with body fatness development....

  17. A printed bio-mimetic fish for the detection of chemical pollutants in water bodies

    OpenAIRE

    Fay, Cormac; Beirne, Stephen; Wallace, Gordon; Diamond, Dermot

    2014-01-01

    Monitoring of chemical contaminants within the Environment operates predominantly through manual gathering of samples, transportation to centralised laboratories, and analysed by means of sophisticated instruments. This process is expensive and therefore faces limitations under the demands of current and forthcoming bodies of legislation, e.g. the Water Framework Directive. Recent technological breakthroughs have allowed for the realisation of static analytical systems capable of autono...

  18. EFFECT OF KAPALBHATI ON BODY FAT PERCENTAGE AND WATER CONTENT AMONG UNIVERSITY YOGINIS

    OpenAIRE

    SATPAL Yadav; Phil, M.; A. S. SAJWAN; Baljinder, Singh Bal

    2010-01-01

    The present study aimed at assessing the effect of Kapalbhati on body fat percentage and water content among University Yoginis. The subjects for the study were selected on the basis of random group design. Thirty (N=30) female students were selected as subject for the present study from Lakshmibai National University ofPhysical Education (Deemed University), Gwalior (Madhya Pradesh) INDIA. The entire subject ranged between the chronological age of 17 to 22 years. Experiment treatment was the...

  19. Changes in water and sugar-containing beverage consumption and body weight outcomes in children.

    Science.gov (United States)

    Muckelbauer, Rebecca; Gortmaker, Steven L; Libuda, Lars; Kersting, Mathilde; Clausen, Kerstin; Adelberger, Bettina; Müller-Nordhorn, Jacqueline

    2016-06-01

    An intervention study showed that promoting water consumption in schoolchildren prevented overweight, but a mechanism linking water consumption to overweight was not substantiated. We investigated whether increased water consumption replaced sugar-containing beverages and whether changes in water or sugar-containing beverages influenced body weight outcomes. In a secondary analysis of the intervention study in Germany, we analysed combined longitudinal data from the intervention and control groups. Body weight and height were measured and beverage consumption was self-reported by a 24-h recall questionnaire at the beginning and end of the school year 2006/2007. The effect of a change in water consumption on change in sugar-containing beverage (soft drinks and juices) consumption, change in BMI (kg/m2) and prevalence of overweight and obesity at follow-up was analysed using regression analyses. Of 3220 enroled children, 1987 children (mean age 8·3 (sd 0·7) years) from thirty-two schools were analysed. Increased water consumption by 1 glass/d was associated with a reduced consumption of sugar-containing beverages by 0·12 glasses/d (95 % CI -0·16, -0·08) but was not associated with changes in BMI (P=0·63). Increased consumption of sugar-containing beverages by 1 glass/d was associated with an increased BMI by 0·02 (95 % CI 0·00, 0·03) kg/m2 and increased prevalence of obesity (OR 1·22; 95 % CI 1·04, 1·44) but not with overweight (P=0·83). In conclusion, an increase in water consumption can replace sugar-containing beverages. As sugar-containing beverages were associated with weight gain, this replacement might explain the prevention of obesity through the promotion of water consumption. PMID:27040694

  20. The use of biomarkers as integrative tools for transitional water bodies monitoring in the Water Framework Directive context - A holistic approach in Minho river transitional waters.

    Science.gov (United States)

    Capela, R; Raimundo, J; Santos, M M; Caetano, M; Micaelo, C; Vale, C; Guimarães, L; Reis-Henriques, M A

    2016-01-01

    The Water Framework Directive (WFD) provides an important legislative opportunity to promote and implement an integrated approach for the protection of inland surface waters, transitional waters, coastal waters and groundwaters. The transitional waters constitute a central piece as they are usually under high environmental pressure and by their inherent characteristics present monitoring challenges. Integrating water quality monitoring with biological monitoring can increase the cost-effectiveness of monitoring efforts. One way of doing this is with biomarkers, which effectively integrate physical-chemical status and biological quality elements, dealing holistically with adverse consequences on the health of water bodies. The new Marine Strategy Framework Directive (MSFD) already incorporates the biomarker approach. Given the recent activities of OSPAR and HELCOM to harmonize existing monitoring guidelines between MSFD and WFD the use of similar methodologies should be fostered. To illustrate the potential of the biomarker approach, juveniles of flounder (Platichthys flesus) were used to evaluate the quality of the Minho river-estuary water bodies. The use of juveniles instead of adults eliminates several confounding factors such changes on the biological responses associated with reproduction. Here, a panel of well-established biomarkers, EROD, AChE, SOD, CAT, GST, LPO, ENA and FACs (1-Hydroxyrene) were selected and measured along with a gradient of different physical conditions, and integrated with trace elements characterization on both biota and sediments. In general, a clear profile along the water bodies was found, with low seasonal and spatial variation, consistent with a low impacted area. Overall, the results support the use of both the battery of biomarkers and the use of juvenile flounders in the monitoring of the water quality status within the WFD. PMID:26356181

  1. Flume experiments on wind induced flow in static water bodies in the presence of protruding vegetation

    Science.gov (United States)

    Banerjee, Tirtha; Muste, Marian; Katul, Gabriel

    2015-02-01

    The problem of wind-induced flow in inland waters is drawing significant research attention given its relevance to a plethora of applications in wetlands including treatment designs, pollution reduction, and biogeochemical cycling. The present work addresses the role of wind induced turbulence and waves within an otherwise static water body in the presence of rigid and flexible emergent vegetation through flume experimentation and time series analysis. Because no prior example of Particle Imaging Velocimetry (PIV) experiments involving air-water and flexible oscillating components have been found in the literature, a spectral analysis framework is needed and proposed here to guide the analysis involving noise, wave and turbulence separation. The experiments reveal that wave and turbulence effects are simultaneously produced at the air-water interface and the nature of their coexistence is found to vary with different flow parameters including water level, mean wind speed, vegetation density and its flexibility. For deep water levels, signature of fine-scaled inertial turbulence is found at deeper layers of the water system. The wave action appears stronger close to the air-water interface and damped by the turbulence deeper inside the water system. As expected, wave action is found to be dominated in a certain frequency range driven by the wind forcing, while it is also diffused to lower frequencies by means of (wind-induced) oscillations in vegetation. Regarding the mean water velocity, existence of a counter-current flow and its switching to fully forward flow in the direction of the wind under certain combinations of flow parameters were studied. The relative importance of wave and turbulence to the overall energy, degree of anisotropy in the turbulent energy components, and turbulent momentum transport at different depths from the air-water interface and flow combinations were then quantified. The flume experiments reported here differ from previous laboratory

  2. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    Science.gov (United States)

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release.

  3. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...

  4. STUDY AND APPLICATION ABOUT COMPUTED SYSTEM FOR EXTERNAL CARDIAC MASSAGE,MONITOR OF HEART AND BODY TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To make and study computed system for external cardiac massage, monitor of heart and body temperature and observe its clinical effect. Method: The system was made and applied. Result: The effect of system was obvious. Conclusion: The system was an effective clinical equipment in treatment of patient with cardiac arrest.

  5. Impact of temperature and humidity on acceptability of indoor air quality during immediate and longer whole-body exposures

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1997-01-01

    Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18-28°C and 30-70%. The immediate acceptability after entering a chamber and the acceptability during a 20-minute whole-body exposure...

  6. Comparison of physical characteristics, body temperature and resting metabolic rate at 30‡C between subtropical and temperate natives

    Science.gov (United States)

    Hori, S.; Ihzuka, H.

    1986-06-01

    Anthropometric measurements, measurements of skin temperatures, rectal temperature, heart rate and metabolic rate at 30‡C were made on 25 young male residents of Okinawa who were born and raised in Okinawa (group O) and 25 young male residents of Okinawa who were born and raised on the Japan mainland but moved to Okinawa less than 2 years before the test (group M) in summer. Group O showed significantly shorter height, lighter body weight, and slender body shape than group M. Group O showed thinner skinfold thickness and smaller percentage of body fat content than group M. Skin temperatures for group O were higher than those for group M, and rectal temperature for group O was slightly lower than that for group M. Group O showed, less metabolic rate per body surface area and slower heart rate than group M. It is concluded that physical characteristics of subtropical natives is favorable for heat dissipation, and subtropical natives have superior capacity for non-evaporative heat dissipation than migrants of temperate natives to a subtropical zone.

  7. Sorbent biomaterials for cleaning up hydrocarbon spills on soil and bodies of water

    Directory of Open Access Journals (Sweden)

    Diana Paola Ortíz González

    2010-04-01

    Full Text Available This study was aimed at identifying and evaluating natural organic materials which could be used as sorbents in clean-up operations following hydrocarbons spills on both soils and bodies of water. The sorption capacity of three materials (sugarcane fibre, coco fibre and water Eichornia crassipies was evaluated with three hydrocarbons (35°, 30° and 25°API and two types of water (distilled and artificial marine water adopting the ASTM F-726 standard and following the methodology suggested in the “Oil spill sorbents: testing protocol and certification listing programme” Canadian protocol. It was found that the three materials being evaluated had a sorption capacity equal to or greater than that of the commercial material to which they were compared. It was observed that sorption capacity results depended on some variables such as hydrocarbon viscosity, granulometry (particle size in Tyler sieve and the structure of the material. Sugarcane fibre sorption in water showed the greatest hydrophobicity, different to Eichornia crassipies which is extremely hydrophilic. The materials’ sorption kinetics were determined and modelled with the three hydrocarbons (35°, 30° and 25°API. It was found that the materials became saturated in less than a minute, leading to a rapid alternative for cleaning-up and controlling hydrocarbon spills. Materials were also thermally treated for improving their hydrophobicity and behaviour during spills on bodies of water. Sugarcane fibre was the material which presented the best results with the thermal treatment, followed by water Eichornia crassipies. Coco fibre did not present any significant change in its hydrophobicity.

  8. Deposition of platinum-group metals in sediment and water bodies along the coastal belt of Ghana

    OpenAIRE

    David K. Essumang

    2011-01-01

    Water and sediment samples from seven water bodies along the coastal belt of Ghana were assessed for the deposition of platinum-group metals (PGM), i.e. platinum, palladium and rhodium. Source analysis of the results indicated probable anthropogenic origins which had a strong linkage to automobile and marine vessel emissions. In the sediment samples, pollution indicators revealed that all the seven water bodies along the coast had elevated levels of PGM above the background values. Significan...

  9. Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water

    Institute of Scientific and Technical Information of China (English)

    YAN JunJie; WU XinZhuang; CHONG DaoTong

    2009-01-01

    A low mass flux steam jet in subcooled water was experimentally investigated. The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature. The axial total pressures, the axial and radial temperature distributions were measured in the jet region. The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature. The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region, the results showed s good agreement between the predictions and experiments. Moreover, the self-similarity property of the radial temperature was obtained, which agreed well with Gauss distribution. In present work, all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.

  10. Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total pressures,the axial and radial temperature distributions were measured in the jet region.The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature.The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region,the results showed a good agreement between the predictions and experiments.Moreover,the self-similarity property of the radial temperature was obtained,which agreed well with Gauss distribution.In present work,all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.

  11. Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure

    Science.gov (United States)

    Unstad, Kody M.; Uden, Daniel R.; Allen, Craig R.; Chaine, Noelle M.; Haak, Danielle M.; Kill, Robert A.; Pope, Kevin L.; Stephen, Bruce J.; Wong, Alec

    2013-01-01

    Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water body drawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasive aquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability of B. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccation events. Individual B. chinensis specimens survived air exposure in a laboratory setting for > 9 weeks, and survivorship was greater among adults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate. Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork for future management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures, predation, or molluscicides.

  12. [A new method for the transcutaneous measurement of deep body temperature during anaesthesia and intensive care (author's transl)].

    Science.gov (United States)

    Jost, U; Hanf, K; Köhler, C O; Just, O H

    1978-04-01

    A new method for monitoring deep body temperature is described. It is based on the establishment, by means of electronic appliances, of a zone without heatflow from the deep tissues. The method is simple and the results compare favourably with those obtained by other procedures for measuring core temperature. The uses of this transcutaneous mehtod are discussed and its advantages and reliability in the operating theatre and intensive care unit are emphasized. It becomes less reliable if it is employed during and after extracorporeal circulation in hypothermia on account of the temperature gradient.

  13. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    Science.gov (United States)

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg

  14. Turnover of oxygen and hydrogen isotopes in the body water, CO 2, hair, and enamel of a small mammal

    Science.gov (United States)

    Podlesak, David W.; Torregrossa, Ann-Marie; Ehleringer, James R.; Dearing, M. Denise; Passey, Benjamin H.; Cerling, Thure E.

    2008-01-01

    Oxygen and hydrogen isotope signatures of animal tissues are strongly correlated with the isotope signature of local precipitation and as a result, isotope signatures of tissues are commonly used to study resource utilization and migration in animals and to reconstruct climate. To better understand the mechanisms behind these correlations, we manipulated the isotope composition of the drinking water and food supplied to captive woodrats to quantify the relationships between drinking water ( δdw), body water ( δbw), and tissue ( δt). Woodrats were fed an isotopically constant food but were supplied with isotopically depleted or enriched water. Some animals were switched between these waters, allowing simultaneous determination of body water turnover, isotope change recorded in teeth and hair, and fractional contributions of atmospheric O 2, drinking water, and food to the oxygen and hydrogen budgets of the animals. The half-life of the body water turnover was 3-6 days. A mass balance model estimated that drinking water, atmospheric O 2, and food were responsible for 56%, 30%, and 15% of the oxygen in the body water, respectively. Drinking water and food were responsible for 71% and 29% of the hydrogen in the body water, respectively. Published generalized models for lab rats and humans accurately estimated δbw, as did an updated version of a specific model for woodrats. The change in drinking water was clearly recorded in hair and tooth enamel, and multiple-pool and tooth enamel forward models closely predicted these changes in hair and enamel, respectively. Oxygen and hydrogen atoms in the drinking water strongly influence the composition of the body water and tissues such as hair and tooth enamel; however, food and atmospheric O 2 also contribute oxygen and/or hydrogen atoms to tissue. Controlled experiments allow researchers to validate models that estimate δt based on δdw and so will increase the reliability of estimates of resource utilization and climate

  15. Succession and biodiversity indices in eutrophication process of static landscaping water body in northern China

    Institute of Scientific and Technical Information of China (English)

    CONG Ke-ming; LIU Shu-yu; MA Fang; Chein-chi Chang; REN Nan-qi

    2008-01-01

    Many biodiversity indices were used to indicate the biological contamination degree in studies of lake water or seawater.Some were studied on biodiversity comparison for different areas at the same time,or initial structure succession of some aerial lake water systems.The phytoplankton changed with the development of various dominant species.In this study,the dominant species at these stages were Chlorophyta in the beginning stage,Cyanophyta in the second stage,and Xanthophyta in the last stage.Seven of nine biodiversity indices (Margalef's,IE,Shannon-Wiener,Simpson's,McNaughton's,Species and Odds Measure of Diversity)showed their failure to represent the eutrophication trend,and the other two indices(Menhinick's and Monk)exhibited good efficiency to indicate the eutrophication trend for the static landscaping water body.

  16. Effect of Water Temperature on Feeding Rhythm in Common Carp ( Cyprinus carpio haematopterus Temminck et Schlegel)

    Institute of Scientific and Technical Information of China (English)

    Chen Song-bo; Chen Wei-xing; Fan Zhao-ting

    2012-01-01

    Feeding rhythm of common carp was investigated from 4℃ to 34℃. The results indicated that there was a diel feeding rhythm for both adult (630-850 g) and youth (61-91 g) at all tested temperatures. There were two main activity peaks at 8:00-11:00 a.m. and 19:00-23:00 p.m., during which feeding quantities were 10.68%-32.53% and 16.25%-33.41% of the daily intake, respectively. When water temperature dropped to below 10℃, the feeding peak concentrated at 8:00-11:00 a.m. and 19:00 p.m. to 4:00 a.m. At 6℃, though both adult and youth would still feed, the feeding quantities were only 0.01% and 0.35% of body mass. Daily feeding rate of adult and youth reached 1.21% and 2.63% at 14℃, respectively. Both adult and youth carps reached the maximum daily feeding rate at 28℃, being 2.84% and 12.06% of body mass, respectively. The daily feeding rate of adult and youth reduced suddenly after at 34℃, and the daily feeding rate was only 0.74% and 9.45% of body mass, respectively. There was significant difference in daily feeding rate at different water temperatures (P〈0.05).

  17. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    Science.gov (United States)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  18. The effect of wind on long-term summer water temperature trends in Tokyo Bay, Japan

    Science.gov (United States)

    Lu, Li-Feng; Onishi, Ryo; Takahashi, Keiko

    2015-06-01

    The effect of wind on summer water temperature trends in a semi-closed bay (Tokyo Bay, Japan) is examined through several numerical experiments using a high-resolution three-dimensional ocean model. The model is executed under no-wind and uniform southerly/northerly wind conditions, and monthly mean currents and temperature distributions and heat transport in Tokyo Bay for July are calculated. The model results show that wind has a significant effect on heat transport and temperature distribution in the bay. (1) When a southerly wind prevails northward cool water transport intensifies while southward warm water transport declines, thus decreasing the water temperature in the central bay area while increasing temperature at the bay head. (2) A northerly wind has an opposing effect and decreases the water temperature in coastal bay head area while increase the temperature along the southwest coast. The results also suggest that the trend of increasing southerly wind amplitude may have affected water temperature trends in Tokyo Bay from 1979 to 1997. The model results demonstrated that the an intensified southerly wind lowers water temperatures in most areas of the bay by enhancing upwelling and open ocean-water intrusion near the bay mouth while increases temperatures in the bottom layer of the bay head by suppressing southward warm water transport.

  19. The effects of water flow and temperature on thermal regime around a culvert built on permafrost

    Institute of Scientific and Technical Information of China (English)

    Loriane Prier; Guy Dor; CR Burn

    2014-01-01

    Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek, Yukon, were measured at hourly intervals between June and October 2013. These data were used to simulate the effect of the culvert on the thermal regime of the road embankment and subjacent permafrost. A 2-D thermal model of the embankment and permafrost was developed with TEMP/W and calibrated using field observations. Empirical relations were obtained between water tem-peratures at the entrance to the culvert, flow into the culvert, and water temperatures inside the structure. Water temper-atures at the entrance and inside the culvert had a linear relation, while water temperatures inside the culvert and water flow were associated by a logarithmic relation. A multiple linear regression was used to summarize these relations. From this relationship, changes in the flow rate and water temperatures at the entrance of the culvert were simulated to obtain pre-dicted water temperatures in the culvert. The temperatures in the culvert were used in the thermal model to determine their effects on the ground thermal regime near the culvert. Variation of ±10%in water flow rate had no impact on the thermal regime underneath the culvert. Variation of water temperature at the entrance of the culvert had a noticeable influence on the thermal regime. A final simulation was conducted without insulation beneath the culvert. The thaw depth was 30 cm with insulation, and 120 cm without insulation, illustrating the importance of insulation to the ground thermal regime.

  20. Assessing the vulnerability of Dutch water bodies to exotic species: A new methodology

    Institute of Scientific and Technical Information of China (English)

    R.J. LEEWIS; A. GITTENBERGER

    2011-01-01

    Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently.The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types.This paper concentrates on the vulnerability of such water types to the introduction of exotic species.This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves.We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated).Numerical values used in the formula have been found by scoring a number of properties in different water types and species,which are specified in questionnaires.The results of the calculations are given as relative vulnerability scores (scale 1-10).By testing as many as 8 water types and 13 species,we demonstrate that this method is flexible and easy to use for water managers.Our results can be translated into classes of vulnerability,which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies.This readily corresponds to the way countries are required to report to the European Union in the context of the WFD.The method can also be generalized using functional groups of (exotic) species instead of particular species [Current Zoology 57 (6):863-873,2011].

  1. Time-resolved Tomographic PIV Measurements of Water Flea Hopping: Body Size Comparison

    Science.gov (United States)

    Skipper, A. N.; Murphy, D. W.; Webster, D. R.; Yen, J.

    2014-11-01

    The flow field of the freshwater crustacean Daphnia magna is quantified with time-resolved tomographic PIV. In the current work, we compare body kinematics and flow disturbance between organisms of small (body length = 1.8 mm) versus medium (2.3 mm) versus large (2.65 mm) size. These plankters are equipped with a pair of antennae that are biramous such that the protopodite splits or branches into an exopodite and an endopodite. They beat the antennae pair synchronously to impulsively propel themselves, or `hop,' through the water. The stroke cycle of Daphnia magna is roughly 80 ms in duration and this period is evenly split between the power and recovery strokes. A typical hop carries the daphniid one body length forward and is followed by a period of sinking. Unlike copepod escape motion, no body vortex is observed in front of the animal. Rather, the flow induced by each antennae consists of a viscous vortex ring that demonstrates a slow decay. The time-record of velocity (peak of 40 mm/s for the medium specimen) and hop acceleration (1.8 m/s2 for the medium specimen) are compared, as well as the strength, size, and decay of the induced viscous vortex rings. The viscous vortex ring analysis will be presented in the context of a double Stokeslet model consisting of two impulsively applied point forces separated by the animal width.

  2. Body Hygiene

    Science.gov (United States)

    ... Home Diaper-Changing Steps for Childcare Settings Body Hygiene Dental Hygiene Water Fluoridation Facial Cleanliness Fish Pedicures and ... spread of hygiene-related diseases . Topics for Body Hygiene Facial Cleanliness Dental Hygiene Water Fluoridation Fish Pedicures and Fish Spas ...

  3. Novel Algorithms for Retrieval of Hydrology and Ice Regimes of Middle-sized Inland Water Bodies from Satellite Altimetry

    Science.gov (United States)

    Troitskaya, Y. I.; Rybushkina, G. V.; Kuznetsova, A. M.; Baidakov, G. A.; Soustova, I.

    2014-12-01

    A novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. The algorithm includes four consecutive steps: a) constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; b) solving a direct problem by calculating the reflected waveforms within the framework of the model; c) imposing restrictions and validity criteria for the algorithm based on waveform modelling; d) solving the inverse problem by retrieving a tracking point by the improved threshold algorithm. The results obtained on the basis of standard algorithm and method for adaptive re-tracking at Rybinsk , Gorky, Kuibyshev, Saratov and Volgograd reservoirs and middle-sized lakes of Russia: Chany, Segozero, Hanko, Onego, Beloye are compared to each other and to the field data of hydrological stations in reservoirs and lakes. The possibility of determination of significant wave height (SWH) in the lakes through a two-step adaptive retracking is investigated. Comparing results of retracting of SGDR data and ground measurements shows, that retrieving wave parameters in medium sized water bodies still meets difficulties. The direction of improvement of the existing algorithm is associated with comprehensive use of altimetry data, field studies and numerical modeling of high resolution. A simple method for timing of water freezing and ice break-up in lakes based on analysis of along-track dependencies of brightness temperatures at 18.7 and 34 GHz registered by microwave radiometer of altimetry satellite Jason-2. Comparison with in situ data of Russian Register of hydraulic structures on the example of reservoirs of the Volga River and the Don River confirms ability of the proposed method to determine quantitatively the freezing and break-up times for middle-sized inland water bodies.

  4. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    OpenAIRE

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi Kumar

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a '...

  5. The Impact of Temperature on the Performance of Anaerobic Biological Treatment of Perchlorate in Drinking Water

    Science.gov (United States)

    A 20 month pilot-scale study was conducted to examine the impact of temperature on the performance of an anaerobic biological contactor used to treat perchlorate-contaminated water. The contactor was successfully acclimated with indigenous microorganisms. Influent temperatures ...

  6. CRED Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations in the Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  7. Possible Signs of Water and Differentiation in a Rocky Exoplanetary Body

    CERN Document Server

    Farihi, J; Gaensicke, B T; Marsh, T R; Girven, J; Hoard, D W; Klein, B; Koester, D

    2011-01-01

    Spitzer observations reveal the presence of warm debris from a tidally destroyed rocky and possibly icy planetary body orbiting the white dwarf GD61. Ultraviolet and optical spectroscopy of the metal-contaminated stellar photosphere reveal traces of hydrogen, oxygen, magnesium, silicon, iron, and calcium. The nominal ratios of these elements indicate an excess of oxygen relative to that expected from rock-forming metal oxides, and thus it is possible that water was accreted together with the terrestrial-like debris. Iron is found to be deficient relative to magnesium and silicon, suggesting the material may have originated as the outer layers of a differentiated parent body, as is widely accepted for the Moon. Subject

  8. Family Growth and Survival Response to Two Simulated Water Temperature Environments in the Sea Urchin Strongylocentrotus intermedius.

    Science.gov (United States)

    Chang, Yaqing; Tian, Xiaofei; Zhang, Weijie; Han, Fenjie; Chen, Shun; Zhou, Mi; Pang, Zhenguo; Qi, Shoubing; Feng, Wenping

    2016-01-01

    Heat tolerance is a target trait in the selective breeding of the sea urchin Strongylocentrotus intermedius, as it plays an important role in the survival and growth of cultured S. intermedius during summer. We investigated family growth and survival response to two temperature treatments to evaluate the genotype by temperature interaction (GEI) in the family selection of S. intermedius. Sea urchins from 11 families were exposed to two simulated water temperature environments-high temperature (HE) and control temperature (CE)-for 12 months, with each experiment divided into four periods (P1, stress-free period I; P2, stress-full high period; P3, stress-response period; and P4, stress-free period II) based on the temperature changes and the survival. Test diameter (TD), body weight (BW), and survival rate (SR) in HE and CE were measured monthly. Effects of family, temperature, and family-temperature interaction on TD, BW, SR, and specific growth rate (SGR) for BW were examined. In CE, BW differed significantly between families in P2, P3, and P4, while TD differed significantly between families in P3 and P4 (p intermedius under temperature pressure.

  9. [Optical properties and remote sensing retrieval model of diffuse attenuation coefficient of Taihu Lake water body].

    Science.gov (United States)

    Le, Cheng-Feng; Li, Yun-Mei; Zha, Yong; Sun, De-Yong; Wang, Li-Zhen

    2009-02-01

    The spectral and chemical analytical data of Taihu Lake water quality in Nov. 8-22, 2007 were used to analyze the spectral characteristics of diffuse attenuation coefficient (Kd) of the water body in autumn and related affecting factors. On the basis of this analysis, the Kd at band 490 nm, Kd (490), was used as a variable to build the relationship between Kd and remote sensing reflectance. The results indicated that within the scope of visible band, the Kd of the water body at most locations of Taihu Lake presented an exponent decreasing trend with the increase of wave length. Due to the higher concentration of phytoplankton in some locations, a peak value of Kd was presented at band 675 nm. Non-organic suspended particles, because of their higher content in suspended sediment, had larger effects on Kd than organic suspended ones. There was a good correlation between Kd and remote sensing reflectance. Taking Rrs (550), Rrs (675) and Rrs (731) as independent variables and doing regression analysis with Kd (490), a good linear relationship was found between Kd (490) and Rrs (731), and multi-variate linear regression analysis using variables Rrs (550), Rrs (675) and Rrs (731) could get better effect (R2 > 0.96) than the regression analysis using variable Rrs (731). PMID:19459373

  10. Rare and threatened pondweed communities in anthropogenic water bodies of Opole Silesia (SW Poland

    Directory of Open Access Journals (Sweden)

    Arkadiusz Nowak

    2011-04-01

    Full Text Available The paper presents results of geobotanic studies conducted in anthropogenic water bodies like excavation ponds, fish culture ponds, other ponds, dam reservoirs, ditches, channels and recreational pools incl. watering places in Opole Silesia and surroundings in the years 2002-2005. The research focused on occurrence of threatened and rare pondweed communities. As the result of the investigations of several dozen of water bodies, 28 localities of rare pondweed communities were documented by 75 phytosociological relevés. Associations of Potametum trichoidis J. et R Tx. in R. Tx. 1965, Potametum praelongi Sauer 1937, P. alpini Br.-Bl. 1949, P. acutifolii Segal 1961, P. obtusifolii (Carst. 1954 Segal 1965 and P. perfoliati W. Koch 1926 em. Pass. 1964 were found as well as communities formed by Potamogeton berchtoldii, P. nodosus and P. pusillus. The study confirms that anthropogenic reservoirs could serve as last refugees for many threatened pondweed communities, which decline or even extinct in their natural habitats. The results indicate that man-made habitats could shift the range limits of threatened species and support their dispersal. The authors conclude that habitats strongly transformed by man are important factors in the natural syntaxonomical diversity protection and should not be omitted in strategies of nature conservation.

  11. OVA-induced airway hyperresponsiveness alters murine heart rate variability and body temperature

    Directory of Open Access Journals (Sweden)

    Nicolle Jasmin Domnik

    2012-12-01

    Full Text Available Altered autonomic (ANS tone in chronic respiratory disease is implicated as a factor in cardiovascular co-morbidities, yet no studies address its impact on cardiovascular function in the presence of murine allergic airway (AW hyperresponsiveness (AHR. Since antigen (Ag-induced AHR is used to model allergic asthma (in which ANS alterations have been reported, we performed a pilot study to assess measurement feasibility of, as well as the impact of allergic sensitization to ovalbumin (OVA on, heart rate variability (HRV in a murine model. Heart rate (HR, body temperature (TB and time- and frequency-domain HRV analyses, a reflection of ANS control, were obtained in chronically instrumented mice (telemetry before, during and for 22 h after OVA or saline aerosolization in sensitized (OVA or Alum adjuvant control exposed animals. OVA mice diverged significantly from Alum mice with respect to change in HR during aerosol challenge (P < 0.001, two-way ANOVA; HR max change Ctrl = +80 ± 10 bpm vs. OVA = +1 ± 23 bpm, mean ± SEM, and displayed elevated HR during the subsequent dark cycle (P = 0.006. Sensitization decreased the TB during aerosol challenge (P < 0.001. Sensitized mice had decreased HRV prior to challenge (SDNN: P = 0.038; Low frequency (LF power: P = 0.021; Low/high Frequency (HF power: P = 0.042, and increased HRV during Ag challenge (RMSSD: P = 0.047; pNN6: P = 0.039. Sensitized mice displayed decreased HRV subsequent to OVA challenge, primarily in the dark cycle (RMSSD: P = 0.018; pNN6: P < 0.001; LF: P < 0.001; HF: P = 0.040; LF/HF: P < 0.001. We conclude that implanted telemetry technology is an effective method to assess the ANS impact of allergic sensitization. Preliminary results show mild sensitization is associated with reduced HRV and a suppression of the acute TB response to OVA challenge. This approach to assess altered ANS control in the acute OVA model may also be beneficial in chronic AHR models.

  12. The dependence of body weight in copepodite stages of Pseudocalanus spp. on variations of ambient temperature and food concentration

    Directory of Open Access Journals (Sweden)

    Lidia Dzierzbicka-Głowacka

    2004-03-01

    Full Text Available Quantitative expressions are presented describing the effects of temperature and food concentration on the mean body weight of copepodite stages of Pseudocalanus spp. The calculations were made on the basis of experimental data from the literature for three geographically separate populations of Pseudocalanus from Puget Sound (Washington, USA, from the southern North Sea and the Baltic Sea. Relationships were obtained between the coefficient of daily exponential growth of body weight of Pseudocalanus sp. from Puget Sound and temperature in the 8-15.5oC range and food concentrations from 10 mgC m-3 to excess, as well as for Pseudocalanus elongatus from the southern North Sea at high food concentrations and in the 4-15oC temperature range. Also computed was the mean body weight for stages CII to CV of P. elongatus from the southern Baltic Sea at 5oC. The empirical models presented here can be used with good precision in mathematical models of pelagic communities. The results presented here indicate that Pseudocalanus sp. from Puget Sound (a species resembling Pseudocalanus minutus is similar to P. elongatus from the southern North Sea and the English Channel with respect to growth parameters in the studied range of temperatures for excess food. P. elongatus collected in the Baltic Sea (Gulf of Gdańsk differs from P. elongatus from the southern North Sea.

  13. The predicting value of postoperative body temperature on long-term survival in patients with rectal cancer.

    Science.gov (United States)

    Yu, Huichuan; Luo, Yanxin; Peng, Hui; Kang, Liang; Huang, Meijin; Luo, Shuangling; Chen, Wenhao; Yang, Zihuan; Wang, Jianping

    2015-09-01

    This study aimed to assess the association between postoperative body temperature and prognosis in patients with rectal cancer. Five hundred and seven patients with stage I to III rectal cancers were enrolled in the current study. Basal body temperature (BBT, measured at 6 am) and maximal body temperature (MBT) on each day after surgery were analyzed retrospectively. Patients were divided into two equal groups according to the median of BBT and MBT at each day. The primary end points were disease-free survival (DFS) and overall survival (OS). The univariate and multivariate analyses showed that patients with low D0-MBT (37.4 °C). In the subset of 318 patients with T3 stage tumor and the subgroup of 458 patients without blood transfusion as well, low D0-MBT continues to be an independent predictor of DFS/OS with an adjusted HR equal to 1.48 (95 % CI 1.02-2.24, P = 0.046)/1.68 (95 % CI 1.04-2.99, P = 0.048) and 1.45 (95 % CI 1.02-2.13, P = 0.048)/1.59 (95 % CI 1.01-2.74, P = 0.049), respectively. In addition, we found that patients have higher risk of 1-year recurrence if those were exhibiting low preoperative BBT (temperature (D0-MBT rectal cancer.

  14. Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water...

  15. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies' Functions.

    Science.gov (United States)

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-22

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  16. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies' Functions.

    Science.gov (United States)

    Yao, Hong; You, Zhen; Liu, Bo

    2016-02-01

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole. PMID:26805869

  17. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  18. HYDRO BIOLOGICAL ASSESSMENT OF WATER BODIES FROM MIRAJ TAHSIL MAHARASHTRA: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    A. B. Sarwade

    2014-09-01

    Full Text Available Physicochemical features of freshwater bodies were regulated by number of factors. It includes temperature, turbidity, pH, total alkalinity, carbondioxide, dissolved oxygen, biological oxygen demand, chemical oxygen demand, phosphate, chloride and hardness. Present study focused on the determination of hydrobiological parameters during different seasons in January, 2011 – December, 2013 in three lakes of Miraj tahsil. The study indicated marked variation in some of the factors as turbidity, CO₂, DO, COD, Alkalinity etc. Obtained data showed, variations in pollution status of three lakes. As per observations and analysis contamination of lakes was Bharatnagar > Mhaishal > Brahmanath lake.

  19. Ancient Martian Deltas: Evidence for Shallow and Deep Standing Bodies of Water

    Science.gov (United States)

    Jew, C. L.; Kim, W.; Lim, Y.; Piliouras, A.

    2015-12-01

    Ancient deltas on Mars are indicative of a geologic history composed of complex fluvio-deltaic deposits. We focus on two morphologically different deltas preserved on Mars, one located in the Jezero crater and the other in the Shalbatana Valles canyon. The Jezero delta, formed during the Noachian age, is a large fluvial delta with strong channelization and a rigid shoreline resembling a terrestrial delta. In contrast, the Shalbatana Delta is a smaller scaled more briefly lived delta system, developed during the Hesperian, that is characterized by its smooth and simple planform. Evidence from previous studies on these Martian deltas such as the base level, mechanism to build sediment cohesion, estimated discharge, and time of formation offer support to ultimately discover why one delta drastically differs from the other. Based upon the observations from these two locations, we investigate through our physical experiments the conditions required to create these prograding deltas. We use carbonate precipitation in our experiments as a mechanism to increase bank stability, an alternative for any chemically driven precipitated deposits that potentially improve cohesion as vegetation does for terrestrial deltas. We found that there are differences in floodplain thickness, channelization, shoreline rugosity, and delta shape in the carbonate verse non-carbonate runs. Additionally, we conducted runs for isolating the influence that shallow and deep standing bodies of water have on prograding deltas. The experimental results suggested that the highly channelized delta (e.g., Jezero delta) rapidly prograded into a shallow body of water, covering a broader surface area and is dependent on a cohesive force for channel organization. On the contrary, Gilbert-type delta (e.g., Shalbatana delta) was best replicated when prograding into a deep standing body of water. Investigation using the experimental carbonate deltas suggests that cohesion results in better channelization (more

  20. Coupled daily streamflow and water temperature modelling in large river basins

    OpenAIRE

    Vliet, van, A.J.H.; J. R. Yearsley; Franssen, W. H. P.; Ludwig, F.; I. Haddeland; P. Kabat

    2012-01-01

    Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. for electricity and drinking water production) and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully applied to small catchments and short time periods, much less work has been done at large spatial and temporal scales. We present a physically based modelling framework for daily river discharge a...