WorldWideScience

Sample records for body temperature water

  1. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (pinsulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (pinsulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (pinsulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  2. The effect of water temperature on the human body and the swimming effort

    Directory of Open Access Journals (Sweden)

    SERAFEIM ALEXIOU

    2014-10-01

    Full Text Available Although many research papers have dealt with the influence of environmental temperature on the various Human body functions during exercise in land, a few only informations exist for the equivalent alterations in water temperatures during immersion and swimming. The present preview research paper is referred on this subject. During swimming in the normal water temperature 26° ± 1° C (63, the functions of the human body respond regularly and the performance of swimmers tends to be improved. However, during swimming in cold water critical differences appear in human functions, such as bradycardia, angiospasm, hyperventilation and adaptations of thermoregulatory mechanism which influence the swimming performance and the life itself. Especially in very cold water temperature the disturbances of the cardiovascular system may lead in critical arrhythmia or sudden death. The cold water temperature, however, influences the kinetic and energy behavior related to the reduction of swimmers performance because of its possible influence on the neuromuscular function. In the increased water temperature up to 28° C appears tachycardia, vasodilation and other alternations which aim to better thermoregulation. The swimmers records are possibly equivalent with a tendency to be improved, to the records in normal temperature of championships 26° C and the increased temperature mainly in the speed events (3. Therefore, there is a differentiation on swimmers performances due to water temperature declination from normal. Also, body functions change during water immersion.

  3. Effects of Body Weight and Water Temperature on Maximum Food Consumption of Juvenile Sebastodes fuscescens (Houttuyn)

    Institute of Scientific and Technical Information of China (English)

    谢松光; 杨红生; 周毅; 张福绥

    2004-01-01

    Maximum rate of food consumption (Cmax) was determined for juvenile Sebastodes fuscescens (Houttuyn) at water temperature of 10, 15, 20 and 25℃. The relationships of Cmax to the body weight (W) at each temperature were described by a power equation: lnCmax = a + b lnW. Covariance analysis revealed significant interaction of the temperature and body weight. The relationship of adjusted Cmax to water temperature (T) was described by a quadratic equation: Cmax =-0.369 + 0.456T - 0.0117T2. The optimal feeding temperature calculated from this equation was 19.5℃. The coefficients of the multiple regression estimation relating Cmax to body weight (W) and water temperature (T) were given in the Table 2.

  4. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    Science.gov (United States)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  5. About Body Water

    Science.gov (United States)

    ... Diabetes Epidemic Additional Content Medical News About Body Water By James L. Lewis, III, MD NOTE: This ... Version. DOCTORS: Click here for the Professional Version Water Balance About Body Water Dehydration Overhydration Water accounts ...

  6. Intracerebral implantation of carbachol in the rat: Its effect on water intake and body temperature

    NARCIS (Netherlands)

    Hulst, S.G.Th.

    1972-01-01

    Intracerebral carbachol produces a fall in body temperature as well as drinking in the rat when implanted in various subcortical structures, related to the emotion-motivation limbic circuit. These effects are due to a central cholinergic stimulation since they can be prevented by the systemic admini

  7. Body Temperature and Mood

    Institute of Scientific and Technical Information of China (English)

    李冬

    2007-01-01

    Body temperature can affect how happy or unhappy we are when we wake up in the morning.During a day,our body temperature rises and falls at regular times.Although we don’t notice the change,it does affect our sleeping patterns.We grow tired and,in the end,we sleep.As a result,anyone who has a fast-rising temperature cycle is a"morning person"and can get out of bed quickly.And an"evening person", on the other hand,has a body temperature that rises slowly.It doesn’t reach its high point until mid-afternoon,when this person feels best.

  8. Effects of water vapor density on cutaneous resistance to evaporative water loss and body temperature in green tree frogs (Hyla cinerea).

    Science.gov (United States)

    Wygoda, Mark L; Kersten, Constance A

    2013-01-01

    Increased cutaneous resistance to evaporative water loss (Rc) in tree frogs results in decreased water loss rate and increased body temperature. We examined sensitivity of Rc to water vapor density (WVD) in Hyla cinerea by exposing individual frogs and agar models to four different WVD environments and measuring cutaneous evaporative water loss rate and body temperature simultaneously using a gravimetric wind tunnel measuring system. We found that water loss rate varied inversely and body temperature directly with WVD but that models were affected to a greater extent than were animals. Mean Rc was significantly different between the highest WVD environment and each of the three drier environments but did not differ among the drier environments, indicating that Rc initially increases and then reaches a plateau in response to decreasing WVD. Rc was equivalent when calculated using either WVD difference or WVD deficit as the driving force for evaporation. We also directly observed secretions from cutaneous glands while measuring body temperature and tested secretions and skin samples for the presence of lipids. We found that irregular transient body temperature depressions observed during wind tunnel trials occur due to evaporative cooling from intermittent skin secretions containing lipids, although we were unable to identify lipid-secreting glands.

  9. Bursting bodies of water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    A silent threat is growing below receding glaciers: lakes are formed as the tongues of the glaciers draw back up the mountain, and huge and growing bodies of water beneath them are contained only be weak moraine walls.......A silent threat is growing below receding glaciers: lakes are formed as the tongues of the glaciers draw back up the mountain, and huge and growing bodies of water beneath them are contained only be weak moraine walls....

  10. Dinosaur fossils predict body temperatures.

    Directory of Open Access Journals (Sweden)

    James F Gillooly

    2006-07-01

    Full Text Available Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.

  11. Impact of water temperature and stressor controllability on swim stress-induced changes in body temperature, serum corticosterone, and immobility in rats.

    Science.gov (United States)

    Drugan, Robert C; Eren, Senem; Hazi, Agnes; Silva, Jennifer; Christianson, John P; Kent, Stephen

    2005-10-01

    The present study compared the effects of three different water temperatures (20, 25, and 30 degrees C) and stressor controllability on several physiological and behavioral endpoints in an intermittent swim stress paradigm. The escape latency of rats in the 20 and 25 degrees C water was less than that observed for the 30 degrees C group. Both escape and yoked groups at 20 and 25 degrees C exhibited moderate to severe hypothermia following the swim stress session that returned to prestress levels 30-40 min post-stress. At 30 degrees C core body temperature (Tb) only decreased by 1 degree C for either swim group. Following swim, serum corticosterone (CORT) levels were significantly elevated in both escape and yoked groups in comparison to confined and home cage controls. The confined control group showed a significant elevation that was approximately halfway between the home cage control and the swim stress groups. At 30 degrees C, there was still a significant elevation of serum CORT in both swim groups in comparison to confined and home cage controls. Therefore, 30 degrees C appears to be the optimal water temperature to evaluate stress controllability effects in the current paradigm. In a final experiment, swim stressor controllability effects were examined in a 5 min forced swim test (FST) 24 h following the initial stress exposure. Rats exposed to yoked-inescapable swim stress at 30 degrees C exhibited more immobility than their escapable swim stress and confined counterparts, while the escape and confined controls did not differ. These results demonstrate that the behavioral deficits observed in the FST are attributable to the stress of inescapable swim and not swim stress per se.

  12. The Relation of Standard Metabolic Rate to Water Temperature and Body Weight of Schlegels Black Rockfish (Sebastodes Fuscescens)

    Institute of Scientific and Technical Information of China (English)

    马志敏; 孙耀; 张波; 唐启升

    2004-01-01

    Standard metabolic rates of Schlegels black rockfish with different body weights are determined in laboratory by using the flow-through respirometer at 11.2 ℃, 14.7 ℃, 18.0℃ and 23.6 ℃. The results indicate that the standard metabolic rates increase with the increase of body weight at different temperatures. Relationship between them could be described as Rs = a InW b. The mean of standard metabolic rate is significantly different among groups, but the b values are not. The standard metabolic rates of amended standard body weights decrease with the increase of temperature, and the mean of standard metabolic rate is also significantly different among groups when the standard body weights are 48.6 g, 147.9 g, and 243.1 g.Relationship between them could be described as Rsw = me-bT . The relations of standard metabolic rate ( Rs ) or relative metabolic rate ( Rs ) to body weight and temperature yield the following equations: Rs = 1.160 W0.752 e-9.494/7 and Rs1= 1.160 W0.254e-9.494/7.

  13. The water hexamer: three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature.

    Science.gov (United States)

    Tainter, C J; Skinner, J L

    2012-09-14

    Using a newly developed and recently parameterized classical empirical simulation model for water that involves explicit three-body interactions, we determine the eleven most stable isomers of the water hexamer. We find that the lowest energy isomer is one of the cage structures, in agreement with far-IR and microwave experiments. The energy ordering for the binding energies is cage > glove > book > bag > chair > boat > chaise, and energies relative to the cage are in good agreement with CCSD(T) calculations. The three-body contributions to the cage, book, and chair are also in reasonable agreement with CCSD(T) results. The energy of each isomer results from a delicate balance involving the number of hydrogen bonds, the strain of these hydrogen bonds, and cooperative and anti-cooperative three-body interactions, whose contribution we can understand simply from the form of the three-body interactions in the simulation model. Oxygen-oxygen distances in the cage and book isomers are in good agreement with microwave experiments. Hydrogen-bond distances depend on both donor and acceptor, which can again be understood from the three-body model. Fully anharmonic OH-stretch spectra are calculated for these low-energy structures, and compared with shifted harmonic results from ab initio and density functional theory calculations. Replica-exchange molecular dynamics simulations were performed from 40 to 194 K, which show that the cage isomer has the lowest free energy from 0 to 70 K, and the book isomer has the lowest free energy from 70 to 194 K. OH-stretch spectra were calculated between 40 and 194 K, and results at 40, 63, and 79 K were compared to recent experiments, leading to re-assignment of the peaks in the experimental spectra. We calculate local OH-stretch cumulative spectral densities for different donor-acceptor types and compare to analogous results for liquid water.

  14. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    Science.gov (United States)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  15. From skin to bulk: An adjustment technique for assimilation of satellite-derived temperature observations in numerical models of small inland water bodies

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Miller, Robert N.

    2016-06-01

    Data Assimilation (DA) has been proposed for multiple water resources studies that require rapid employment of incoming observations to update and improve accuracy of operational prediction models. The usefulness of DA approaches in assimilating water temperature observations from different types of monitoring technologies (e.g., remote sensing and in-situ sensors) into numerical models of in-land water bodies (e.g., lakes and reservoirs) has, however, received limited attention. In contrast to in-situ temperature sensors, remote sensing technologies (e.g., satellites) provide the benefit of collecting measurements with better X-Y spatial coverage. However, assimilating water temperature measurements from satellites can introduce biases in the updated numerical model of water bodies because the physical region represented by these measurements do not directly correspond with the numerical model's representation of the water column. This study proposes a novel approach to address this representation challenge by coupling a skin temperature adjustment technique based on available air and in-situ water temperature observations, with an ensemble Kalman filter based data assimilation technique. Additionally, the proposed approach used in this study for four-dimensional analysis of a reservoir provides reasonably accurate surface layer and water column temperature forecasts, in spite of the use of a fairly small ensemble. Application of the methodology on a test site - Eagle Creek Reservoir - in Central Indiana demonstrated that assimilation of remotely sensed skin temperature data using the proposed approach improved the overall root mean square difference between modeled surface layer temperatures and the adjusted remotely sensed skin temperature observations from 5.6°C to 0.51°C (i.e., 91% improvement). In addition, the overall error in the water column temperature predictions when compared with in-situ observations also decreased from 1.95°C (before assimilation

  16. Recent Inland Water Temperature Trends

    Science.gov (United States)

    Hook, Simon; Healey, Nathan; Lenters, John; O'Reilly, Catherine

    2016-04-01

    We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America and the rest of the world for potential use as climate indicator. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our work we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 169 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades, approximately 268 lakes. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes. We will discuss the available datasets and processing methodologies together with the patterns they reveal based on recent changes in the global warming, with a particular focus on the inland waters of the southwestern USA.

  17. The effect of firing temperature on the irreversible expansion, water absorption and pore structure of a brick body during freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2013-12-01

    Full Text Available The paper deals with the monitoring of brick body in the process of volumetric freezing and thawing. The samples were fired at temperatures of 900, 1000 and 1060 °C. Attention is focused on monitoring of the irreversible expansion, water absorption and pore structure of a brick body. We found that in all cases the endpoints take place continuously, where the amount firing temperature plays a crucial role. The greatest influence of freeze/thaw cycles on the change of the pore structure was also observed at the lowest temperature. The change of the pore system during the freeze-thaw cycles occurs in such a way, that the pore volume of small pores further decreases and conversely, the pore volume of large pores increases. The knowledge gained can be used not only in the production of new but also in predicting the remaining durability of older clay roofing tiles. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2741

  18. Body temperature stability achieved by the large body mass of sea turtles.

    Science.gov (United States)

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses.

  19. Stratification in Natural Water Bodies

    DEFF Research Database (Denmark)

    Møller, Jacob Steen

    2004-01-01

    Density stratification of natural water bodies plays an important role for a number of civil engineering problems. The origin of stratification in natural water is discussed and the Black Sea, the Gulf of Katchch, and Maarmorilik Fiord in Greenland are described and used as examples. Stratification...... has a number of civil engineering implications. The lock exchange problem is used as a canonical example, and implications for water exchange and sedimentation is discussed by means of examples: Sedimentation in locks and estuaries, salt transport into fresh water reservoirs, water exchange...

  20. FDA Throws Cold Water on Whole Body Cryotherapy

    Science.gov (United States)

    ... html FDA Throws Cold Water on Whole Body Cryotherapy Exposure to ultra-low temperatures shows no benefits ... evidence that a growing trend called whole body cryotherapy is effective, but it does pose a number ...

  1. Body temperatures of selected amphibian and reptile species.

    Science.gov (United States)

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  2. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  3. Body temperature set-point and the conscious perception of skin temperature in obese women.

    Science.gov (United States)

    Zahorska-Markiewicz, B; Staszkiewicz, M

    1987-01-01

    Obese and control women were immersed in a bath of water kept at 37 degrees C. Oral temperature was measured. The subjects left hand was placed outside the bath for the local application of thermal stimuli between 20 degrees and 45 degrees C, subjects reporting the most pleasant temperature. The lower oral temperatures and lower levels of skin temperature rated as pleasant by obese women as compared with women of normal body weight or less suggests that in obesity the set-point of body temperature is lowered.

  4. Direct Measuring Methods of Water Vapor Content and Air Velocity at High Temperature using ZrO2-MgO Gas Chemisorption Type Ceramic Body

    Science.gov (United States)

    Nomura, Tomohiro; Nishimura, Nobuya; Shiba, Tooru; Hyodo, Tsutomu

    The control of humidity or air velocity as well as temperature is imperative for industrial process equipment such as air conditioners, dryers. At present, much about humidity sensors has been reported, and recently, ceramic sensors have been used with improved results. However, the effective operating temperature of these sensors for a direct measurement of the humidity is about 423 K at the highest. From the various ceramic sensors so far investigated, the authors selected composite ceramics ZrO2-MgO with porous structure and n-type semiconductor for humidity sensing at high temperature. This is because, when the working temperature of the ceramic sensor is between 673 and 973K, the sensor detects the presence of water vapor and gas velocity by the variations in the electronic condition caused by the reversible of the water vapor. From the test, the sensor that use a single sensing ceramic element can detect directly both the water vapor content in a mixed gas of air and superheated vapor in the temperature range 373-773 K and the air velocity(O.5-4m/s) in the range 373-573K.

  5. Body temperature influence on time perception.

    Science.gov (United States)

    Hancock, P A

    1993-07-01

    The chemical clock hypothesis implies a causal link between body temperature and the perception of duration. A strict interpretation of this construct requires a common slope value in an Arrhenius plot that relates time to temperature for every individual tested. Previous studies testing this proposition have confirmed a general relationship for data summed across multiple subjects. However, the same studies raise doubts as to whether this relationship holds for each and every individual tested. Unfortunately, these investigations have been limited by methodological constraints, thus, one could argue that the strong isomorphism intrinsic to the chemical clock hypothesis has yet to be fairly tested. In the present experiment, I sought to distinguish the effects of selective head temperature changes on the estimation of duration. Nonlinear decreases in estimated duration were observed with ascending deep auditory canal temperature. These findings support the contention of a thermally stable region of temporal perception bounded by conditions in which temporal estimates directly depend on body temperature. In contradicting physiological adequacy as an explanatory construct, the present results suggest a direct relationship between time perception and the homeothermic platform. I compare these results with earlier findings concerning the chemical clock concept and examine respective discrepancies as a basis for a fuller understanding of a temporal phenomenon that is frequently referred to as the internal clock.

  6. A thermosensory pathway that controls body temperature.

    Science.gov (United States)

    Nakamura, Kazuhiro; Morrison, Shaun F

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

  7. Basal body temperature recordings in spontaneous abortion.

    Science.gov (United States)

    Cohen, J; Iffy, L; Keyser, H H

    1976-01-01

    Basal body temperature (BBT) charts taken during the cycle of conception in cases that resulted in spontaneous abortion appear to provide the best available information concerning events associated with time of fertilization in doomed gestations. This study is based on a series of 227 patients who had early spontaneous abortion occurring between January 1967 and December 1974. A diagnosis of pregnancy initiated regular assays of urinary estrogen and pregnanediol excretion. Patients were instructed to report any bleeding episode which might occur, and to preserve all tissues that might be expelled. A total of 11 basal body temperature charts were obtained from patients who had subsequent early spontaneous abortion. Chromosome studies and histologic investigations were conducted. Another group of 11 consecutive BBT records were obtained from patients who had normal deliveries. The study shows that women with normal cycles experience a midcycle temperature rise requiring 1 to 3 days. In subsequent patients, this time limit was exceeded in 7 out of 11 cases of early abortion, and in 4 of 11 fertilization that resulted in an apparently normal gestation and infant. As temperature rise resulted from vigorous progesterone secretion by the corpus luteum, subnormal levels indicate inadequate steroidogenesis in the early luteal phase, and falling estrogen and progesterone levels predicted fetal demise in all cases. These findings are useful in the management of early pregnancy that follows repeated spontaneous first trimester abortions or a prolonged period of infertility. They also confirm experimental and clinical evidence regarding the role of ovulation defects in the occurrence of various types of reproductive wastage, including early abortion, anatomic and chromosome defects of the embryo and others. Prospective studies of cycles of conception through BBT recordings/hormone assays may shed light in the understanding of defects of human reproduction.

  8. Water and electrolytes. [in human bodies

    Science.gov (United States)

    Greenleaf, J. E.; Harrison, M. H.

    1986-01-01

    It has been found that the performance of the strongest and fittest people will deteriorate rapidly with dehydration. The present paper is concerned with the anatomy of the fluid spaces in the body, taking into account also the fluid shifts and losses during exercise and their effects on performance. Total body water is arbitrarily divided into that contained within cells (cellular) and that located outside the cells (extracellular). The anatomy of body fluid compartments is considered along with the effects of exercise on body water, fluid shifts with exercise, the consequences of sweating, dehydration and exercise, heat acclimatization and endurance training, the adverse effects of dehydration, thirst and drinking during exercise, stimuli for drinking, and water, electrolyte, and carbohydrate replacement during exercise. It is found that the deterioration of physical exercise performance due to dehydration begins when body weight decreases by about 1 percent.

  9. Energetic consequences of field body temperatures in the green iguana

    NARCIS (Netherlands)

    Lichtenbelt, WDVM; Wesselingh, RA

    1997-01-01

    We investigated body temperatures of free-ranging green iguanas (Iguana iguana) on Curacao (Netherlands Antilles), and how metabolic costs and benefits of food processing affect body temperatures. Body temperatures of free-living iguanas were measured by radio telemetry. We also used a model, with a

  10. Temperature distribution in the human body under various conditions of induced hyperthermia

    Science.gov (United States)

    Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.

    1977-01-01

    A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.

  11. Body temperatures and behavior of American alligators during cold winter weather

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, I.L., Jr.; Standora, E.A.; Vargo, M.J.

    1982-04-01

    Data from two large (188 and 135 kg) male alligators (Alligator mississippiensis) indicated that 4-5 C seemed to be the lowest body temperatures that they could endure with subsequent recovery. Although one animal in shallow water managed to keep a breathing hole open for several days, in ice that was 1.5 cm thick, it later died following a decrease of its body temperature to 4.0 C. The second alligator which was located in a deeper portion of the reservoir used both terrestrial and aquatic basking behavior to raise its body temperature and level of activity. Except in the case of basking events, there was not clear evidence of significant evaluations of the body temperatures of either the live or dead alligators above those of their adjacent water. When located side-by-side, diurnal cycles of deep body temperatures exceeding adjacent water temperatures to a maximum extent near dawn and usually falling below water temperatures during the afternoon and early evening hours. The physical properties and thermal inertia of the bodies of such large alligators, when placed in appropriate microclimates, may be sufficient in themselves to explain the general patterns and levels of body temperature changes observed at these low temperatures.

  12. A Microwave Radiometer for Internal Body Temperature Measurement

    Science.gov (United States)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  13. Total body water and total body potassium in anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.; Oberlander, J.L.; Pertschuk, M.J.; Mullen, J.L.

    1984-08-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation.

  14. Seasonal changes in total body water; body composition and water turnover in reindeer

    Directory of Open Access Journals (Sweden)

    Terje S. Larsen

    1985-05-01

    Full Text Available Total body water and water turnover were measured at different times throughout the year in 3 captive Norwegian reindeer, using a tritiated water dilution method (Holleman et al. 1982. Total body water (percent of body weight increased during late autumn and winter, from 59.1 ± 1.5 % in October to 72.5 ± 2.0 % in April. Using the equatation by Pace and Rathbun (1945 for predicting total body fat (% fat = 100 - % water/0.732, this increase in total body water indicates a concomitant reduction in body fat, from a maximum value of 18.9 ± 2.6 % (of body weight in October to a minimum of 0.9 ± 2.7 % in April. During summer, on the other hand, fat content increased at the expense of a reduced percentage of body water. Water turnover was low in winter (December - April, ranging between 30.8 ± 5.2and43.6 ± 13.5ml.d-'. kg-1, but increased nearly fourfold during summer (June-August with a maximum of 117.7 ± 5.9 ml.d-1. kg-1 in August. Positive correlations between water turnover and food intake and between water turnover and ambient temperature were found, the latter probably resulting from an incidental correlation between food intake and ambient temperature.Sesongmessige forandringer i totalt kroppsvann, kropps-sammensetning og vannomsetning hos reinsdyr.Abstract in Norwegian / Sammendrag: Totalt kroppsvann og vannomsetning av vann ble målt til forskjellige årstider i 3 norske reinsdyr ved hjelp av utvasking av tritiert vann (Holleman et al. 1982. Totalt kroppsvann (prosent av kroppsvekt økte utover høsten og vinteren, fra 59.1 ± 1.5 % i oktober til 72.5 ± 2.0 % i april. Ved hjelp av en ligning som er gitt av Pace og Rathbun (1945 for beregning av totalt kroppsfett (% fett = 100 - % vann/0.732, fant en at denne økningen i vanninnhold tilsvarte en samtidig reduksjon i fettinnhold, fra en maksimums-verdi på 18.9 ± 2.6 % av kroppsvekt i oktober til et minimum på 0.9 ± 2.7 % i april. Utover sommeren økte derimot innholdet av fett p

  15. Diet and body temperature in mammals and birds

    OpenAIRE

    Clarke, Andrew; O'Connor, Mary I.

    2014-01-01

    Aim We test the hypothesis that endotherm body temperature varies with diet. Location Global terrestrial ecosystems. Methods We compile data from the literature on diet and body temperature in mammals and birds. We analyse these and demonstrate global macrophysiological patterns. Results In mammals, carnivores overall have a lower mean body temperature (Tb) than either herbivores or omnivores. However, within carnivores, those taking vertebrate prey have a h...

  16. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  17. Microchip-based body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Nielsen, Jens; Lohse, Louise

    In the present study, we tested whether an electronic identification and body temperature monitorring technology presently applied in small experimental animals could be transferred for use in pigs....

  18. Water Loss Under Hot Ambient Temperatures

    Directory of Open Access Journals (Sweden)

    S. K. Basu

    1978-07-01

    Full Text Available Male 4 rates were ambient temperature (40 degree,42 degree, and 44 degree calcius for different durations of time upto a maximum of 3 hours. It was observed that there was a rapid loss in body weight accompanied by considerable increase in body temperature of the animals during the first hour of exposure. Thereafter the rate of body weight loss and increase in body temperature were slow till the end of observation period. Intolerance to heat appears to be more correlated with critical body temperature rather than the extent of dehydration.

  19. 体重、温度和饥饿对口虾蛄呼吸和排泄的影响%STUDIES ON EFFECTS OF BODY WEIGHT, WATER TEMPERATURE AND STARVATION ON RESPIRATION AND EXCRETION OFMANTIS SHRIMP (ORATOSQUILLA ORATORIA)

    Institute of Scientific and Technical Information of China (English)

    姜祖辉; 王俊; 唐启升

    2000-01-01

    Effects of body weight, temperature and starvation on oxygen consumption rate and ammonia excretion rate of Oratosquilla oratoria were studied under experimental conditions in laboratory. The experimental results indicate that the oxygen consumption rate and ammonia excretion rate are all correlated positively with water temperature and negatively with the body weight. The relationship of oxygen consumption rate and ammonia excretion rate with the body weight of Oratosquilla oratoria can be both expressed by the model of Y=aXb. The oxygen consumption rate and ammonia excretion rate of Oratosquilla oratoria obriously decreased with starvation days increasing, and decreased by 47% and 50% respectively after 16 days.%在室内实验条件下,测定了体重、温度和饥饿对口虾蛄耗氧率和排氨率的影响。实验结果表明,随个体重量的增加,口虾蛄单位体重的耗氧率和排氨率均减小,呈负相关的幂指数关系,均符合Y=aWb模式。随温度增加,口虾蛄的耗氧率、排氨率均增加。饥饿对口虾蛄的代谢有明显的影响。随饥饿天数增加口虾蛄的耗氧率和排氨率明显下降,16d后分别下降约47%和50%,且大个体下降幅度较大。

  20. Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats.

    Science.gov (United States)

    Torrao, N A; Hetem, R S; Meyer, L C R; Fick, L G

    2011-03-26

    Body temperature was measured at five different body sites (retroperitoneum, groin, semimembranosus muscle, flank and shoulder) using temperature-sensitive microchips implanted in five female goats, and compared with the core body and rectal temperatures. Body temperature was measured while the goats were kept in different ambient temperatures, with and without radiant heat, as well as during a fever induced experimentally by injection of bacterial lipopolysaccharide. Bland-Altman limit of agreement analysis was used to compare the temperature measurements at the different body sites during the different interventions. Temperatures measured by the microchip implanted in the retroperitoneum showed the closest agreement (mean 0.2 °C lower) with core and rectal temperatures during all interventions, whereas temperatures measured by the microchips implanted in the groin, muscle, flank and shoulder differed from core body temperature by up to 3.5 °C during the various interventions.

  1. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  2. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  3. Impact of intake water temperatures on reticular temperatures of lactating dairy cows.

    Science.gov (United States)

    Bewley, J M; Grott, M W; Einstein, M E; Schutz, M M

    2008-10-01

    Automatic temperature recording may allow early detection of disease, estrus, heat stress, and the onset of calving. The phase IV Cattle Temperature Monitoring System (MaGiiX Inc., Post Falls, ID) utilizes a passive bolus equipped with a temperature sensor, a stationary panel reader to query the bolus, and software to collect, analyze, and display data. One potential limitation to collection of reticular temperatures is the effect of water temperature and consumption on recorded temperatures. Two replicated 3 x 3 Latin square experiments were conducted at the Purdue Dairy Research and Education Center to assess the impact of water intake on reticular temperatures using the Cattle Temperature Monitoring System. Nine high-producing, mid-lactation, second-parity cows with low somatic cell counts were selected. Before administering a water treatment, access to feed and water was restricted for at least 2 h. Baseline reticular temperatures were established from measurements before water intake. In experiment 1, treatments were 25.2 kg of hot water (34.3 degrees C +/- 1.0), warm water (18.2 degrees C +/- 0.4), or cold water (7.6 degrees C +/- 0.4). In experiment 2, treatments were 18.9 kg of body-temperature water (38.9 degrees C +/- 0.2), cold water (5.1 degrees C +/- 0.4), or control (no water). Following water intake, reticular temperatures were collected for 3 h. In experiment 1, an initial dramatic decrease in reticular temperature was observed followed by a gradual increase toward baseline. Least squares means for maximum drop in temperature were 8.5 +/- 0.5, 6.9 +/- 0.5, and 2.2 +/- 0.5 degrees C for cold, warm, and hot water treatments, respectively. Yet at 3 h, reticular temperatures did not return to the baseline. In experiment 2, control cows remained within the baseline confidence interval through the observation period, and cows receiving body temperature water experienced an initial decrease in temperature (0.4 +/- 0.2 degrees C) with a return to within the

  4. Assessment of body composition by air-displacement plethysmography: influence of body temperature and moisture.

    Science.gov (United States)

    Fields, David A; Higgins, Paul B; Hunter, Gary R

    2004-04-01

    BACKGROUND: To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). METHODS: %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 +/- 11, weight (kg) 64 +/- 14, height (cm) 167 +/- 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. RESULTS: BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P BOD PODBH %fat (28.9%), body volume (61.7 L), and body density (1.0341 g/cm3). A significant increase in body temperature (~0.6 degrees C; P BOD PODBH and BOD PODFH. Body surface area was positively associated with the difference in %fat independent of changes in body temperature and moisture, r = 0.30, P BOD POD, however, the precise mechanism remains unidentified.

  5. Influence of elevated body temperature on circulating immunoglobulin-secreting cells

    DEFF Research Database (Denmark)

    Kappel, M; Barington, T; Gyhrs, A;

    1995-01-01

    . On another occasion they served as their own controls, being immersed into thermoneutral water (water temperature 34.5 degrees C) for 2 h. Blood samples were drawn before immersion, at body temperatures of 38, 39 and 39.5 degrees C, as well as 2 h after WI when their body temperatures were normalized....... In the control experiments, blood samples were drawn at identical time points. A significant increase in the number of IgM-secreting cells per fixed number of blood mononuclear cells (BMNC) occurred 2 h after WI, whereas the number of IgA-secreting cells per fixed number of BMNC did not change. When the possible...

  6. Inland Water Temperature and the recent Global Warming Hiatus

    Science.gov (United States)

    Hook, S. J.; Healey, N.; Lenters, J. D.; O'Reilly, C.

    2015-12-01

    We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America and the rest of the world for potential use as climate indicator. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 169 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades, approximately 268 lakes. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes. We will discuss the available datasets and processing methodologies together with the patterns they reveal based on recent changes in the global warming, with a particular focus on the inland waters of the southwestern USA.

  7. Hypercoagulability in response to elevated body temperature and central hypovolemia

    DEFF Research Database (Denmark)

    Meyer, Martin; Ostrowski, Sisse R; Overgaard, Flemming Anders;

    2013-01-01

    Coagulation abnormalities contribute to poor outcomes in critically ill patients. In trauma patients exposed to a hot environment, a systemic inflammatory response syndrome, elevated body temperature, and reduced central blood volume occur in parallel with changes in hemostasis and endothelial...... damage. The objective of this study was to evaluate whether experimentally elevated body temperature and reduced central blood volume (CBV) per se affects hemostasis and endothelial activation....

  8. Shallow Water Body Data Processing Based on the Seismic Oceanography

    Institute of Scientific and Technical Information of China (English)

    LIU Huaishan; HU Yi; YIN Yanxin; WANG Linfei; TONG Siyou; MA Hai

    2013-01-01

    Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.

  9. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  10. Similarity Theory of Withdrawn Water Temperature Experiment

    Directory of Open Access Journals (Sweden)

    Yunpeng Han

    2015-01-01

    Full Text Available Selective withdrawal from a thermal stratified reservoir has been widely utilized in managing reservoir water withdrawal. Besides theoretical analysis and numerical simulation, model test was also necessary in studying the temperature of withdrawn water. However, information on the similarity theory of the withdrawn water temperature model remains lacking. Considering flow features of selective withdrawal, the similarity theory of the withdrawn water temperature model was analyzed theoretically based on the modification of governing equations, the Boussinesq approximation, and some simplifications. The similarity conditions between the model and the prototype were suggested. The conversion of withdrawn water temperature between the model and the prototype was proposed. Meanwhile, the fundamental theory of temperature distribution conversion was firstly proposed, which could significantly improve the experiment efficiency when the basic temperature of the model was different from the prototype. Based on the similarity theory, an experiment was performed on the withdrawn water temperature which was verified by numerical method.

  11. Effect of methergoline on body temperature in mice.

    Science.gov (United States)

    Cardano, C; Strocchi, P; Gonni, D; Walsh, M; Agnati, L F

    1977-03-01

    Serotonin (5-HT) involvement in body temperature regulation has been studied in mice by means of a 5-HT-selective blocking agent (methergoline). This drug causes an effect on body temperature which is dependent on environmental temperature. At environmental temperatures of 25 degrees C and 11 degrees C methergoline has a hypothermic effect, while at 36 degrees C environmental temperature, methergoline has a hyperthermic effect. At 25 degrees C environmental temperature, the hypothermic effect induced by 125 mug/kg i.p. of methergoline could be antagonized by low doses of LAE-32 (80 mug/kg s.c.), while there was not such an antagonism using higher doses of LAE-32 (100 and 300 mug/kg s.c.). This has been explained using Jalfre's hypothesis of the existence of 5-HT inhibitory and excitatory receptors.

  12. Water Transport and the Evolution of CM Parent Bodies

    Science.gov (United States)

    Coker, R.; Cohen, B.

    2014-01-01

    Extraterrestrial water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. Asteroids are the primary source of meteorites, many of which show evidence of an early heating episode and varying degrees of aqueous alteration. The origin and characterization of hydrated minerals (minerals containing H2O or OH) among both the main-belt and near-earth asteroids is important for understanding a wide range of solar system formation and evolutionary processes, as well as for planning for human exploration. Current hypotheses postulate asteroids began as mixtures of water ice and anhydrous silicates. A heating event early in solar system history was then responsible for melting the ice and driving aqueous alteration. The link between asteroids and meteorites is forged by reflectance spectra, which show 3-µm bands indicative of bound OH or H2O on the C-class asteroids, which are believed to be the parent bodies of the carbonaceous chondrites in our collections. The conditions at which aqueous alteration occurred in the parent bodies of carbonaceous chondrites are thought to be well-constrained: at 0-25 C for less than 15 Myr after asteroid formation. In previous models, many scenarios exhibit peak temperatures of the rock and co-existing liquid water in more than 75 percent of the asteroid's volume rising to 150 C and higher, due to the exothermic hydration reactions triggering a thermal runaway effect. However, even in a high porosity, water-saturated asteroid very limited liquid water flow is predicted (distances of 100's nm at most). This contradiction has yet to be resolved. Still, it may be possible for water to become liquid even in the near-surface environment, for a long enough time to drive aqueous alteration before vaporizing or freezing then subliming. Thus, we are using physics- and chemistry-based models that include thermal and fluid transport as well

  13. Machine-learning methods in the classification of water bodies

    Directory of Open Access Journals (Sweden)

    Sołtysiak Marek

    2016-06-01

    Full Text Available Amphibian species have been considered as useful ecological indicators. They are used as indicators of environmental contamination, ecosystem health and habitat quality., Amphibian species are sensitive to changes in the aquatic environment and therefore, may form the basis for the classification of water bodies. Water bodies in which there are a large number of amphibian species are especially valuable even if they are located in urban areas. The automation of the classification process allows for a faster evaluation of the presence of amphibian species in the water bodies. Three machine-learning methods (artificial neural networks, decision trees and the k-nearest neighbours algorithm have been used to classify water bodies in Chorzów – one of 19 cities in the Upper Silesia Agglomeration. In this case, classification is a supervised data mining method consisting of several stages such as building the model, the testing phase and the prediction. Seven natural and anthropogenic features of water bodies (e.g. the type of water body, aquatic plants, the purpose of the water body (destination, position of the water body in relation to any possible buildings, condition of the water body, the degree of littering, the shore type and fishing activities have been taken into account in the classification. The data set used in this study involved information about 71 different water bodies and 9 amphibian species living in them. The results showed that the best average classification accuracy was obtained with the multilayer perceptron neural network.

  14. Regulation of body temperature by some Mesozoic marine reptiles.

    Science.gov (United States)

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  15. [Body composition at menarche. Estimation of total body weight, total body water, lean and fat body weight].

    Science.gov (United States)

    Zurlo de Mirotti, S M; Lesa, A M; Barrón de Carbonetti, M; Roitter, H; Villagra de Lacuara, S

    1995-01-01

    Our aim was to confirm in our environment what has been observed and described by other writers about the importance of achieving a "critical body weight'' and an adequate "fat percentage'' -on the basis of the calculation of total body water- for the initiation and development of pubertal events. This study included 92 girls, healthy, well nourished, belonging to upper middle class from a high school of The National University of Cordoba. The longitudinal method of control was used every 6 months and at the precise moment of menarche. Out of 20 antropometrical variables observed height, weight and height, TBW as percentage of body weight, lean body and fat weight, fat percentage and skin folds ppercentiles for each girl at menarche. A regression between fat percentage and skin folds was done. Percentiles 5 to 95 of fat percentage in relation to body water percentage were estimated. At menarche the average for the different variables are: Heigth 155.6 cm +/- 0.469; Weight 45.8 Kg +/- 0,5; TBW 25.216 lit. +/- 0.318; lean body weigth 35.02 Kg (S.D.2.98); fat weigth 10.86 Kg (S. D. 3.17). The addition of skin folds was correlated fat percentage, thus, an equation was obtained for the average calculation of such percentage %F= 12.16 + (0.313 x fold addition). The minium percentage for the onset of menstrual cycles is 17.3% and corresponds to percentile 10. However, there is a 5% of girls who start to menstruate with a 15.5% of fat and none of them is below that value. The reasons mentioned above suggest that is necessary to obtain a "critical body weigth'' as well as a "fat percentage'' minimum for the onset and maintenance of menstrual cycles, among our girls, similar o what has been obtained by doctor Frisch.

  16. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  17. Development of fauna of water beetles (Coleoptera in waters bodies of a river valley – habitat factors, landscape and geomorphology

    Directory of Open Access Journals (Sweden)

    Pakulnicka Joanna

    2016-01-01

    Full Text Available The goal of the study was to identify the beetle fauna of a small lowland river valley against its spatial arrangement and the directions of beetle migrations between habitats, as well as to determine which environmental factors affect the characteristics of water beetle populations in a river valley's lentic water bodies. The field studies were carried out in various types of water bodies. 112 species of beetles with various ecological characteristics were identified. It was demonstrated that the diversity of water bodies in the valley is conducive to high local species richness. At the same time, the observed high degree of faunistic individualism may be regarded as a sign of poor symmetry in the directions of fauna propagation, particularly that of stagnobionts. The authors argue that high individualism is the consequence of poor hydrological contact between the water bodies due to topography and rare instances of high tide in the river, which, in turn, is the reason for active overflights remaining the main mean of migration between those water bodies. The factors restricting migration of fauna between the water bodies include certain landscape characteristics of the catchment which form topographical obstacles, mainly numerous and dense forest areas. The character of fauna in the respective types of water bodies is affected also by internal environmental factors, particularly the degree to which they are overgrown with macrophytes, type of bottom, type of mineral and organic matter as well as physical parameters of water, such as saturation, pH, temperature and biological oxygen demand.

  18. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    Science.gov (United States)

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  19. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    SUN ShuFen; YAN JinFeng; XIA Nan; LI Qian

    2008-01-01

    Based on a one-dimensional eddy diffusion model, a model to study the water mass and energy exchange between the water body (such as lake and wetland) and the atmosphere is developed, which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of en-ergy caused by temperature stratification into consideration. The model uses en-thalpy instead of temperature as predictive variable, which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model pre-sented here is capable of describing the physical process of water mass and en-ergy between the water body (lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing condi-tions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  20. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on a one-dimensional eddy diffusion model,a model to study the water mass and energy exchange between the water body(such as lake and wetland) and the atmosphere is developed,which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of energy caused by temperature stratification into consideration. The model uses enthalpy instead of temperature as predictive variable,which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model presented here is capable of describing the physical process of water mass and energy between the water body(lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing conditions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  1. Introduction to landscape design elements - water body beauty

    Institute of Scientific and Technical Information of China (English)

    田海蓉

    2014-01-01

    both in classical gardens of piled mountain water or the water in the modern city landscape, is almost no water is not a scene, as an essential element in landscape water body, not only has the aesthetic value, and has the ecological value. This article through to the water landscape characteristics and the importance of this paper, analyzes the form of waterscape, water landscape design in landscape design provides sufficient theoretical basis and the reference material.

  2. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  3. NOAA NOS SOS, EXPERIMENTAL - Water Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water temperature data. *These services are for testing and...

  4. NOAA NDBC SOS - sea_water_temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_temperature data. Because of the nature of SOS requests,...

  5. Temperature control of thermal radiation from composite bodies

    Science.gov (United States)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  6. Perioperative core body temperatures effect on outcome after colorectal resections.

    Science.gov (United States)

    Geiger, Timothy M; Horst, Sara; Muldoon, Roberta; Wise, Paul E; Enrenfeld, Jesse; Poulose, Ben; Herline, Alan J

    2012-05-01

    The World Health Organization has set a standard of maintaining a core body temperature above 36°C in the perioperative period. The purpose of this study was to examine the relationship between both intraoperative temperature (IOT) and immediate postop core body temperature as it relates to postop complications. A retrospective analysis of a prospective database of patients who underwent an elective segmental colectomy without a stoma, for 3 diagnoses was performed. Six postoperative outcomes were examined: length of stay (LOS), placement of a nasogastric tube, return to the operating room, placement of an interventional drain, diagnosed leak, and surgical site infection (SSI). Statistics were calculated using a two-sample Wilcoxon rank-sum (Mann-Whitney) test. Seventy-nine patients met the inclusion criteria and there were no preoperative differences between the groups (those with a postop complication vs without). LOS > 9 days (36.64°C vs 35.98°C; P = 0.011) and clinical leak (37.06°C vs 35.99°C; P = 0.005) both had a statistically higher average IOT than those who did not. Patients with SSI trended to a higher IOT (36.44°C vs 35.99°C; P = 0.062). When the last IOT recorded was compared with the six outcomes, again length of stay and leak both were statistically significant (P = 0.018, P = 0.012) showing a higher temperature related to a higher complication rate. No other complications were related to IOT, nor did postop temperature relate to complication. In our data, relatively lower IOTs were protective for LOS and clinical leaks, with a trend of lower SSI rates. Further research is needed to fully endorse or refute the absolute recommendations for core body temperature.

  7. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal batt

  8. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  9. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  10. Black-body anomaly: analysis of temperature offsets

    Science.gov (United States)

    Szopa, M.; Hofmann, R.; Giacosa, F.; Schwarz, M.

    2008-04-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale ˜10-4 eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-l suppression, it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature black-body precision experiment.

  11. Black Body Detector Temperature from Gall and Planck Perspectives

    Science.gov (United States)

    Gall, Clarence A.

    2009-05-01

    The laws of Gall (http://sites.google.com/site/purefieldphysics) and Planck are generally defined with zero intensity at 0 K. However actual measurements involve detectors above absolute zero. These detectors must also be treated as approximate black body radiators. The zero intensity reference point is thus defined by the radiated intensity at the detector temperature. Planck's law thus becomes ( IP=c1λ^51e^c2λT;-1-c1λ^51e^c2λTd;-1) where Td is the detector temperature. Provided that T>Td;;;IP;is;always>0. Thus from a Planck perspective, wavelength increase should not be a factor in defining detector temperature. The corresponding expression for Gall's law is ( IG=σT^6b^2λe^-λTb-σTd^6b^2λe^-λTdb) . Above the crossover wavelength (http://absimage.aps.org/image/MWSMAR09-2008-000004.pdf), even though T>Td;;;IG<0. From a Gall perspective, this sets a limit on the long wavelength range for a given detector temperature. Longer wavelength measurements require lower detector temperatures. For a 6000 K black body radiator, the long wavelength crossover limits for detectors at 300 K, 100 K and 4 K are 9.138, 12.066 and 21.206 microns respectively.

  12. The Impact Analysis of Water Body Landscape Pattern on Urban Heat Island: A Case Study of Wuhan City

    Directory of Open Access Journals (Sweden)

    Bohan Yang

    2015-01-01

    Full Text Available Based on the LST and the landscape metrics of water body with remote sensing technique and spatial analysis, the relationship between the mean LST and the attributes of water body was revealed via Pearson’s correlation analysis and multiple stepwise regression analysis. Result showed that, in 32 class-based metrics we selected, the proportion of water body, average water body size, the isolation and fragmentation of water body, and other eight metrics have high correlation with the LST. As a resultant force, the quantity, shape, and spatial distribution of water body affect the forming of temperature. We found that the quantity and spatial pattern of city water body could be allocated reasonably to maximize its cooling effect.

  13. Development of a Model for Water and Heat Exchange Between the Atmosphere and a Water Body

    Institute of Scientific and Technical Information of China (English)

    SUN Shufen; YAN Jinfeng; XIA Nan; SUN Changhai

    2007-01-01

    A model for studying the heat and mass exchange between the atmosphere and a water body is developed,in which the phase change process of water freezing in winter and melting in summer and the function of the convective mixing process are taken into consideration. The model uses enthalpy rather than temperature as the predictive variable. It helps to set up governing equations more concisely, to deal with the phase change process more easily, and make the numerical scheme simpler. The model is verified by observed data from Lake Kinneret for a non-frozen lake in summer time, and Lake Lower Two Medicine for a frozen lake in winter time. Reasonably good agreements between the model simulations and observed data indicate that the model can serve as a component for a water body in a land surface model. In order to more efficiently apply the scheme in a climate system model, a sensitivity study of various division schemes with less layers in the vertical direction in the water body is conducted. The results of the study show that the division with around 10 vertical layers could produce a prediction accuracy that is comparable to the fine division with around 40 layers.

  14. Pharmacological properties of traditional medicines. XXV. Effects of ephedrine, amygdalin, glycyrrhizin, gypsum and their combinations on body temperature and body fluid.

    Science.gov (United States)

    Yuan, D; Komatsu, K; Cui, Z; Kano, Y

    1999-02-01

    Effects of ephedrine, amygdalin, glycyrrhizin, gypsum and their combinations on body temperature and body fluid were studied in rats using the method developed in our previous reports. Ephedrine significantly increased respiratory evaporative water loss and heat loss in response to a marked elevation of body temperature. There was a small but significant increase in body temperature when amygdalin was orally given rats at a dose of 46.32 mg/kg. Glycyrrhizin and gypsum were unable to affect body temperature. However, gypsum was able to prevent the increased action of ephedrine on body temperature, amygdalin exhibited a preventive tendency to it, and glycyrrhizin did not affect it. The results are in good agreement with classical claims of Makyo-kanseki-to and the related crude drugs in traditional medicine. Moreover, a combination of the four components reproduced the effects of Makyo-kanseki-to on body temperature and body fluid. This report suggests that the co-administration of ephedrine and gypsum is physiologically more desirable than ephedrine alone for dry-type asthmatic patients with a fever. Also, it experimentally supports the clinical efficacy of Makyo-kanseki-to.

  15. Water transport and the evolution of CM parent bodies

    Science.gov (United States)

    Coker, R.; Cohen, B.

    2014-07-01

    Extraterrestrial water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. Asteroids are the primary source of meteorites, many of which show evidence of an early heating episode and varying degrees of aqueous alteration. The origin and characterization of hydrated minerals (minerals containing H_2O or OH) among both the main-belt and near-Earth asteroids is important for understanding a wide range of solar-system formation and evolutionary processes, as well as for planning for human exploration. Current hypotheses postulate asteroids began as mixtures of water ice and anhydrous silicates. A heating event early in solar-system history was then responsible for melting the ice and driving aqueous alteration. The link between asteroids and meteorites is forged by reflectance spectra, which show 3-μm bands indicative of bound OH or H_2O on the C-class asteroids, which are believed to be the parent bodies of the carbonaceous chondrites in our collections [1]. The conditions at which aqueous alteration occurred in the parent bodies of carbonaceous chondrites are thought to be well-constrained: at 0--25°C for less than 15 Myr after asteroid formation [2]. In previous models, many scenarios exhibit peak temperatures of the rock and co-existing liquid water in more than 75 % of the asteroid's volume rising to 150°C and higher[3,4], due to the exothermic hydration reactions triggering a thermal runaway effect. However, even in a high-porosity, water-saturated asteroid, very limited liquid water flow is predicted (distances of 100's μ m at most) [5]. This contradiction has yet to be resolved. Still, it may be possible for water to become liquid even in the near-surface environment, for a long enough time to drive aqueous alteration before vaporizing or freezing then subliming. Thus, we are using physics- and chemistry-based models that include thermal and

  16. Effective body water and body mass changes during summer ultra-endurance road cycling.

    Science.gov (United States)

    Armstrong, Lawrence E; Johnson, Evan C; Ganio, Matthew S; Judelson, Daniel A; Vingren, Jakob L; Kupchak, Brian R; Kunces, Laura J; Muñoz, Colleen X; McKenzie, Amy L; Williamson, Keith H

    2015-01-01

    Because body mass change (ΔMb) does not represent all water losses and gains, the present field investigation determined if (a) ΔMb equalled the net effective body water change during ultra-endurance exercise and (b) ground speed and exercise duration influenced these variables. Thirty-two male cyclists (age range, 35-52 years) completed a 164-km event in a hot environment, were retrospectively triplet matched and placed into one of three groups based on exercise duration (4.8, 6.3, 9.6 h). Net effective body water loss was computed from measurements (body mass, total fluid intake and urine excreted) and calculations (water evolved and mass loss due to substrate oxidation, solid food mass and sweat loss), including (ΔEBWgly) and excluding (ΔEBW) water bound to glycogen. With all cyclists combined, the mean ΔMb (i.e. loss) was greater than that of ΔEBWgly by 1200 ± 200 g (P = 1.4 × 10(-18)), was similar to ΔEBW (difference, 0 ± 200 g; P = .21) and was strongly correlated with both (R(2) = .98). Analysis of equivalence indicated that ΔMb was not equivalent to ΔEBWgly, but was equivalent to ΔEBW. Due to measurement complexity, we concluded that (a) athletes will not calculate the effective body water calculations routinely and (b) body mass change remains a useful field-expedient estimate of net effective body water change.

  17. Nocturnal body temperature in wintering blue tits is affected by roost-site temperature and body reserves.

    Science.gov (United States)

    Nord, Andreas; Nilsson, Johan F; Nilsson, J-Å

    2011-09-01

    Birds commonly use rest-phase hypothermia, a controlled reduction of body temperature (T(b)), to conserve energy during times of high metabolic demands. We assessed the flexibility of this heterothermic strategy by increasing roost-site temperature and recording the subsequent T(b) changes in wintering blue tits (Cyanistes caeruleus L.), assuming that blue tits would respond to treatment by increasing T(b). We found that birds increased T(b) when roost-site temperature was increased, but only at low ambient temperatures. Moreover, birds with larger fat reserves regulated T(b) at higher levels than birds carrying less fat. This result implies that a roosting blue tit maintains its T(b) at the highest affordable level, as determined by the interacting effect of ecophysiological costs associated with rest-phase hypothermia and energy reserves, in order to minimize potential fitness costs associated with a low T(b).

  18. [Influence of weightlessness on water and electrolytes balance in body].

    Science.gov (United States)

    Shen, X Y

    2000-02-01

    The balance of water and electrolytes plays an important role in enabling the human body to adapt to spaceflight. This paper introduced the research methods, and changes in water and electrolytes balance during and after space flight. The mechanism and the hazard of the disorder of water and electrolytes caused by weightlessness were discussed.

  19. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  20. Prediction of Core Body Temperature from Multiple Variables.

    Science.gov (United States)

    Richmond, Victoria L; Davey, Sarah; Griggs, Katy; Havenith, George

    2015-11-01

    This paper aims to improve the prediction of rectal temperature (T re) from insulated skin temperature (T is) and micro-climate temperature (T mc) previously reported (Richmond et al., Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing. Physiol Meas 2013; 34:1531-43.) using additional physiological and/or environmental variables, under several clothing and climatic conditions. Twelve male (25.8±5.1 years; 73.6±11.5kg; 178±6cm) and nine female (24.2±5.1 years; 62.4±11.5kg; 169±3cm) volunteers completed six trials, each consisting of two 40-min periods of treadmill walking separated by a 20-min rest, wearing permeable or impermeable clothing, under neutral (25°C, 50%), moderate (35°C, 35%), and hot (40°C, 25%) conditions, with and without solar radiation (600W m(-2)). Participants were measured for heart rate (HR) (Polar, Finland), skin temperature (T s) at 11 sites, T is (Grant, Cambridge, UK), and breathing rate (f) (Hidalgo, Cambridge, UK). T mc and relative humidity were measured within the clothing. T re was monitored as the 'gold standard' measure of T c for industrial or military applications using a 10cm flexible probe (Grant, Cambridge, UK). A stepwise multiple regression analysis was run to determine which of 30 variables (T is, T s at 11 sites, HR, f, T mc, temperature, and humidity inside the clothing front and back, body mass, age, body fat, sex, clothing, Thermal comfort, sensation and perception, and sweat rate) were the strongest on which to base the model. Using a bootstrap methodology to develop the equation, the best model in terms of practicality and validity included T is, T mc, HR, and 'work' (0 = rest; 1 = exercise), predicting T re with a standard error of the estimate of 0.27°C and adjusted r (2) of 0.86. The sensitivity and specificity for predicting individuals who reached 39°C was 97 and 85%, respectively. Insulated skin temperature was the most important individual

  1. Importance of body-water circulation for body-heat dissipation in hot-humid climates: a distinctive body-water circulation in swamp buffaloes

    Directory of Open Access Journals (Sweden)

    S. Chanpongsang

    2010-02-01

    Full Text Available Thermo-regulation in swamp buffaloes has been investigated as an adaptive system to hot-humid climates, and several distinctive physiological responses were noted. When rectal temperature increased in hot conditions, blood volume, blood flow to the skin surface and skin temperature markedly increased in buffaloes relatively to cattle. On the other hand, the correlation between blood volume and plasma concentration of arginine vasopressin (AVP was compared between buffaloes and cattle under dehydration. Although plasma AVP in cattle increased immediately for reducing urine volume against a decrease in blood volume as well as the response observed in most animal species, the increase in plasma AVP was delayed in buffaloes, even after a large decrease in blood volume. In buffaloes, a marked increase in blood volume facilitated the dissipation of excess heat from the skin surface during wallowing. In addition, the change in plasma AVP observed in buffaloes was consistent with that of other animals living in habitats with the high availability of water. These results suggest that the thermo-regulatory system in buffaloes accelerates body-water circulation internally and externally. This system may be adaptive for heat dissipation in hot-humid climates, where an abundance of water is common.

  2. Implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    thermometer. This work, however, can be quite time consuming and laborious, and further compromising the immediate well-fare of the pig, when restraining of the individual animal is necessary. Therefore, an electronic body monitoring system using implantable microchip transponders for measuring peripheral...... body temperature was tested, in order to evaluate the utility and reliability of this tool, in domestic pigs. The system is presently used and well optimized in small laboratory animals [1, 2]. We tested the microchip transponders during experimental infection of pigs with classical swine fever virus...... microchip transponder was injected deep subcutaneously by the left ear base of each individual. The transponder was before insertion programmed with ID identical to the individual pig’s ear tag number. The pigs were randomly divided into 3 groups: one group placebo-infected and two groups virus...

  3. Black-Body Anomaly: Analysis of Temperature Offsets

    CERN Document Server

    Szopa, Michal; Giacosa, Francesco; Schwarz, Markus

    2007-01-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale $\\sim 10^{-4} $eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-$l$ suppression it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature...

  4. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain.

    Science.gov (United States)

    Granger, Jill I; Ratti, Pietro-Luca; Datta, Subhash C; Raymond, Richard M; Opp, Mark R

    2013-07-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24-48 h. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6h to 72 h post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for

  5. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2011-01-01

    Full Text Available The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  6. Dust Ejection from Planetary Bodies by Temperature Gradients: Laboratory Experiments

    CERN Document Server

    Kelling, Thorben; Kocifaj, Miroslav; Klacka, Jozef; Reiss, Dennis

    2011-01-01

    Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/(m*m) and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edges or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg/s for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which ...

  7. Validation of Geoland2 small water bodies product: methodological overview

    Science.gov (United States)

    Schlaffer, S.; Kidd, R. A.; Haas, E. M.; Wagner, W.

    2012-04-01

    Remote sensing products covering the dynamics of small water bodies are important for diverse applications such as hydrology, monitoring of endangered wetlands and natural resources management. The goal of this study is to provide a scientific validation of the BioPar Water Bodies demonstration product derived from SPOT-VEGETATION data within the framework of the EU-funded project GMES-Geoland2. The demonstration product covers Africa during a time span of 1.5 years with a spatial resolution of 1 km and a temporal resolution of 10 days. A description of the product and the underlying algorithms is given in this paper. The validation effort described here is in agreement with level 1 of the validation methodology proposed by the CEOS (Committee on Earth Observation Satellites) Working Group on Calibration and Validation. In order to provide an independent dataset for validation, time series from the Advanced Synthetic Aperture Radar (ASAR) onboard ESA's ENVISAT are processed and analysed. Radar data offer a data source which is fundamentally different from the optical data acquired by SPOT-VEGETATION. Time series acquired by ASAR in Wide Swath (WS) mode with a resolution of 150 m have been successfully used to estimate flood extent in boreal and arctic regions. Water bodies cause incoming microwave radiation to be reflected away from the sensor so that they show up as dark areas in the resulting imagery. In a first step, a synthesis map is produced showing water bodies which persisted at least during half of the validation period. The ability of the BioPar product to detect these water bodies is then tested on a number of sites scattered throughout Sub-Saharan Africa. The original approach for water bodies detection with ASAR, a simple thresholding, proved insufficient due to the sparse coverage of ASAR WS data at low latitudes and the occurrence of very dry soil surfaces in semi-arid climates which can be confused with water bodies when using such a simple

  8. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  9. E. coli survival in waters: temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important for evaluating microbial contamination and in making appropriate management decisions. E. coli survival rates are dependent on temperature; this dependency is routinely expressed using an analog of the Q10 model. This suggestion...

  10. Keratinophilic fungi in various types of water bodies

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available The keratinophilic fungi in various types of water bodies (slough. pond. beach pool. two lakes and two rivers were studied. Samples of water were collected every other month for bydrochemical analysis and once a month (1989-1990 in order to determine the fungus content. Human hair, snippings of finger-nails, chips of hoofs, feathers and snake exuviae were used as bait. Twenty-five species of keratinophilic fungi were found in various types of water bodies. Hyphochytrium catenoides, Aphanomyces stellatus, Leptolegniella caudala and Achlya oligacantha represent new records as koratinophilic fungi.

  11. Type I collagen is thermally unstable at body temperature.

    Science.gov (United States)

    Leikina, E; Mertts, M V; Kuznetsova, N; Leikin, S

    2002-02-05

    Measured by ultra-slow scanning calorimetry and isothermal circular dichroism, human lung collagen monomers denature at 37 degrees C within a couple of days. Their unfolding rate decreases exponentially at lower temperature, but complete unfolding is observed even below 36 degrees C. Refolding of full-length, native collagen triple helices does occur, but only below 30 degrees C. Thus, contrary to the widely held belief, the energetically preferred conformation of the main protein of bone and skin in physiological solution is a random coil rather than a triple helix. These observations suggest that once secreted from cells collagen helices would begin to unfold. We argue that initial microunfolding of their least stable domains would trigger self-assembly of fibers where the helices are protected from complete unfolding. Our data support an earlier hypothesis that in fibers collagen helices may melt and refold locally when needed, giving fibers their strength and elasticity. Apparently, Nature adjusts collagen hydroxyproline content to ensure that the melting temperature of triple helical monomers is several degrees below rather than above body temperature.

  12. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  13. The effect of stress on core and peripheral body temperature in humans

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; Penning, Renske; Hellhammer, Juliane; Verster, Joris C.; Klaessens, John H. G. M.; Olivier, Berend; Kalkman, Cor J.

    2013-01-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature u

  14. Relationship between the Water Body Chlorophyll-a and Water Quality Factors of Wetlands Baiguishan Reservoir

    Institute of Scientific and Technical Information of China (English)

    SHE Oiu-sheng; TIAN Xun; WANG Guo-zhen; JI Xiao-cun; LI Jiu-xuan; ZHAO Zhen

    2011-01-01

    [ Objective] The aim was to explore the relationship between water body Chlorophyll-a and water quality factors of wetlands Baiguishan reservoir. [ Method] Chlorophyll-a and water quality factors of water quality of Wetlands BaiGuishan Reservoir was studied, the analysis of the relationship on water quality of Wetlands Baiguishan Reservoir was made by use of trophic status indices and SPSS17.0 statistical analysis.[ Result] Total phosphorus was an irnportant factor of influence Chlorophyll-a in reservoir, water body had slight eutrophication phenomenon in reservoir of July to October in 2010. [ Conclusion] Comprehensive management should be strengthened so as to improve the water quality of Baiguishan wetland.

  15. [Temperature measurements during abrasive water jet osteotomy].

    Science.gov (United States)

    Schmolke, S; Pude, F; Kirsch, L; Honl, M; Schwieger, K; Krömer, S

    2004-01-01

    Working on bone is a major aspect of orthopaedic surgery. Despite its well-known appreciable thermal effects on the edges of the bone cut, the oscillating bone saw blade the oscillating saw remains the standard instrument both for cutting long bones and creating a bed for an endoprosthesis. The application of abrasive water jets offers the possibility of achieving an extremely precise curved cut in bone with no accompanying thermal effect. The thermographically measured absolute temperature increase at the cut edges seen with the water jet was 13 K maximum. The small process forces permit the application in automated handling systems.

  16. Influence of body temperature on the development of fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    1999-01-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature...... (Tes) = 35.9 ± 0.2, 37.4 ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40°C) until volitional exhaustion. To determine...... the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40.1-40.2°C, muscle...

  17. Water Temperature Controls in Arctic Basins

    Science.gov (United States)

    Neilson, B. T.; King, T.; Schmadel, N. M.; Heavilin, J.; Overbeck, L. D.; Kane, D. L.

    2015-12-01

    Understanding the dynamics of heat transfer mechanisms in arctic rivers is critical for forecasting the effects of climate change on river temperatures. Building on the collection of key data and a dynamic river temperature model that accounts for heat fluxes found important in temperate climates, we were able to identify portions of an arctic basin and hydrologic conditions for which heat flux dynamics differ from those found in temperate systems. During the open water season, similarities in heat flux influences include dominant shortwave radiation, greater surface exchanges than bed exchanges and greater influences of lateral inflows in the lower order portions of the basin. Differing from temperate systems, the heat flux contribution of net longwave radiation is consistently negative and both latent heat and bed friction are negligible. Despite these differences, accounting for the bulk lateral inflows from the basin resulted in accurate predictions during higher flows. Under lower flow conditions, however, lateral inflows were limited and resulting temperature predictions were poor. Work in a temperate system demonstrated that spatial variability in hydraulics influencing stream residence times are necessary for accurate river temperature predictions. Because heat fluxes at the air-water interface become increasingly dominant at low flows and these fluxes are sensitive to parameters representing the water surface area to volume ratio, similar to temperate systems, we expect that high-resolution representations of stream geometry and hydraulics are important both for accurate flux and residence time estimates. Furthermore, given the highly dynamic nature of flows in arctic basins, we anticipate that detailed information regarding spatially variable hydraulic characteristics (e.g., channel width, depth, and velocity) is critical for accurate predictions in low arctic rivers through a large range of flow conditions. Upon identifying key processes controlling

  18. Lidar point density analysis: implications for identifying water bodies

    Science.gov (United States)

    Worstell, Bruce B.; Poppenga, Sandra; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  19. Model for the movement and distribution of fish in a body of water

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.

    1978-06-01

    A Monte Carlo mathematical model tracks the movement of fish in a body of water (e.g., a pond or reservoir) which is represented by a two-dimensional grid. For the case of a long, narrow reservoir, depth and length along the reservoir are the logical choices for coordinate axes. In the model, it is assumed that the movement of fish is influenced by gradients of temperature and dissolved oxygen, as well as food availability and habitat preference. The fish takes one spatial ''step'' at a time, the direction being randomly selected, but also biased by the above factors. In trial simulations, a large number of simulated fish were allowed to distribute themselves in a hypothetical body of water. Assuming only temperature was influencing the movements of the fish, the resultant distributions are compared with experimental data on temperature preferences.

  20. Oblique water entry of a three dimensional body

    Directory of Open Access Journals (Sweden)

    Scolan Yves-Marie

    2014-12-01

    Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.

  1. Heavy metal distribution and water quality characterization of water bodies in Louisiana's Lake Pontchartrain Basin, USA.

    Science.gov (United States)

    Zhang, Zengqiang; Wang, Jim J; Ali, Amjad; DeLaune, Ronald D

    2016-11-01

    The seasonal variation in physico-chemical properties, anions, and the heavy metal (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) concentration was evaluated in water from nine different rivers in Lake Pontchartrain Basin, Louisiana, USA. The water quality parameters were compared with toxicity reference values (TRV), US Environmental Protection Agency (USEPA) drinking/aquatic life protection, and WHO standards. Among physico-chemical properties, pH, DO, and turbidity were high during spring, while, EC, temperature, and DOC were high during summer and vice versa. The anion study revealed that the concentrations of F(-), Cl(-), and NO3(-) were higher during summer and Br(-) and SO4(-) were higher during spring. Our research findings showed anion concentration decreased in the order of Cl(-) > SO4(-) > NO3(-) > Br(-) > F(-), in accordance with the global mean anion concentration. The dissolved heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb) except Zn were higher during spring than summer. None of the rivers showed any Cd pollution for both seasons. Co showed higher concentrations in Amite River, Mississippi River, Industrial Canal, and Lacombe Bayou during summer. The Cr concentration was higher than WHO drinking water standards, implicating water unsuitability for drinking purposes in all the rivers associated with the Lake Pontchartrain Basin. Cu showed no pollution risk for the study area. Mn and Co were similar to concentration in Lacombe Bayou, Liberty Bayou, Blind River, and Industrial Canal. Mn levels were greater than WHO standards for the Tickfaw River, Tangipahoa River, and Blind River in both seasons. Blind River, Tangipahoa River, Tickfaw River, and Amite River will require more monitoring for determining possible Mn pollution. Ni content in river water during both seasons showed low pollution risk. Liberty Bayou and Industrial Canal concentrations were closer to the WHO regulatory standards, indicating possible risk of Pb pollution in these water bodies. The Zn

  2. Water Hyacinth in the Rift Valley Water Bodies of Ethiopia: Its Distribution, Socioeconomic Importance and Management

    NARCIS (Netherlands)

    Firehun, Y.; Struik, P.C.; Lantinga, E.A.; Taye, T.

    2014-01-01

    A survey was conducted in the Rift Valley water bodies of Ethiopia from 2009 to 2011 to (i) determine the prevalence, agro-ecological distribution and sources of infestation of water hyacinth, (ii) investigate the socio-economic impact of water hyacinth, and (iii) assess changes in its agro-ecologic

  3. Computer program to plot isotherms in bodies of water. Environmental Sciences Division publication No. 1199

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.

    1978-06-01

    For purposes of graphic display it is convenient to represent temperature versus depth data in bodies of water in the form of isotherms (lines of equal temperature). Because it can be tedious to draw such lines by hand from raw data, a computer code has been devised to plot these lines automatically. The procedure assumes that the temperature can be linearly interpolated between the points at which measurements are taken. Details of the code are explained by means of examples. With minor changes, the program can be used to plot isoclines of other environmental parameters.

  4. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  5. Study of physico-chemical characteristics of water bodies around Jaipur.

    Science.gov (United States)

    Srivastava, Neera; Agrawal, Meena; Tyagi, Anupama

    2003-04-01

    The present study has been undertaken to evaluate physico-chemical parameters (pH, temperature, dissolved oxygen, free carbon dioxide, alkalinity and hardness) and zinc concentration in water bodies in and around Jaipur. Water samples from Jalmachal Lake, Nevta Lake, Amer Lake and Ramgarh Lake were analysed. Results reveal that the water of Jalmahal Lake is most polluted due to high pH, hardness, alkalinity, free carbon dioxide, zinc content, and a low level of dissolved oxygen. Contrarily Ramgarh Lake is least polluted, as it has high dissolved oxygen and low pH, alkalinity, free carbon dioxide, hardness and zinc content.

  6. Spectral measurements of underwater downwelling radiance of inland water bodies

    Directory of Open Access Journals (Sweden)

    Miguel Potes

    2013-11-01

    Full Text Available The apparatus exploited in this work is composed of an optical cable linked to a portable FieldSpec UV/VNIR that records the spectral downwelling radiance in underwater environment, allowing us to calculate the shortwave attenuation coefficient in water. Results for three inland water bodies are presented under different atmospheric conditions (sun zenith angle and wind speed and water composition (chlorophyll α concentration and turbidity. We show that the spectral downwelling zenith radiance profiles under high sun elevations present a positive slope in the upper layers due to relatively high scattering of direct sunlight compared to attenuation. For deeper layers, attenuation overcomes the scattering of sunlight leading to a constant negative logarithmic slope. For low sun elevations, a negative slope is observed in the entire water column since the scattering of direct sunlight is always lower than attenuation. Whenever a negative logarithmic constant slope is observed, the attenuation coefficient was computed. A relation was observed between attenuation coefficient in the photosynthetically active radiation (PAR spectral region and water turbidity, for the three water bodies under study.

  7. The effect of stress on core and peripheral body temperature in humans.

    Science.gov (United States)

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  8. The effect of myostatin genotype on body temperature during extreme temperature events.

    Science.gov (United States)

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L

    2013-07-01

    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P 0.05). The current study illustrated that a genotype × environment interaction exists for MG and 1-copy animals were more robust to environmental extremes in comparison with 0- or 2-copy animals.

  9. Simulation of water temperature distribution in Fenhe Reservoir

    Institute of Scientific and Technical Information of China (English)

    Shu-fang FAN; Min-quan FENG; Zhao LIU

    2009-01-01

    In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.

  10. PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    . This is followed in chapter 4 by a description of the electrolysis setups and electrolysis cells used during the work. Two different setups were used, one operating at atmospheric pressure and another that could operate at elevated pressure so that liquid water electrolysis could be performed at temperature above...... pressure, whereas the pressurised water electrolysis was performed at 120 °C and 3 bar. For the steam electrolysis three different electrolytes were used. Chapter 6 is divided into subchapters in which the results are presented and discussed before a comparison between them is given. First phosphoric acid...... running for approximately 760 hours (constant current density of 400 mA·cm-2) with a 0.023-0.04 mV·h-1 decline in performance over the last 660 hours. For the pressurised water electrolysis the best result obtained was for an Aquivion™ membrane with a current density of 2125 mA·cm-2 at 1.85 V. An attempt...

  11. 21 CFR 880.5560 - Temperature regulated water mattress.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature regulated water mattress is a device intended for medical purposes that consists of a mattress of...

  12. HYDRODYNAMIC BEHAVIOR OF AN UNDERWATER MOVING BODY AFTER WATER ENTRY

    Institute of Scientific and Technical Information of China (English)

    施红辉; 高见卓也

    2001-01-01

    An experimental study was conducted to investigate the vater entry phenomenon. A facility was designed to carry out the tests with the entry velocities of around 352 m/s. Visualization, pressure measurement, velocity measurement and underwater impact test were performed to investigate the hydroballistic behavior of the underwater moving body, the underwater flow field, the supercavitation,etc.. This study shows that the motion of a high-speed underwater body is strongly three-dimensional and chaotic. Furthermore, it is found that the distribution of the trajectory deflection of the underwater projectile depends on the depth of water. It is also found by measuring the deformation on a witness plate submerged in water,that the impact energy of an underwater projectile is reduced as it penetrates deeper into vater.

  13. Illegal fishing of inland water bodies of Nigeria: Kainji experience

    OpenAIRE

    RAJI, A.; Okaeme, A.N.; Omorinkoba, W.; Bwala, R.L.

    2012-01-01

    It is a common knowledge that illegal fishing which includes use of wrong gears, explosives, excessive exploitation of choice stocks, enhancement and stocking of water body and pollution has devastating effects on the critical biomass of fish biodiversity and livelihood activities associated with fishing. Efforts worldwide to arrest these menace are significant because it has been found that illegal fishing has made fishing non sustainable, resulted in poor fishermen catches, and exacerbated...

  14. GFR normalized to total body water allows comparisons across genders and body sizes.

    Science.gov (United States)

    Eriksen, Bjørn O; Melsom, Toralf; Mathisen, Ulla D; Jenssen, Trond G; Solbu, Marit D; Toft, Ingrid

    2011-08-01

    The normalization of GFR to a standardized body-surface area of 1.73 m(2) impedes comparison of GFR across individuals of different genders, heights, or weights. Ideally, GFR should be normalized to a parameter that best explains variation in GFR. Here, we measured true GFR by iohexol clearance in a representative sample of 1627 individuals from the general population who did not have diabetes, cardiovascular disease, or kidney disease. We also estimated total body water (TBW), extracellular fluid volume, lean body mass, liver volume, metabolic rate, and body-surface area. We compared two methods of normalizing GFR to these physiologic variables: (1) the conventional method of scaling GFR to each physiologic variable by simple division and (2) a method based on regression of the GFR on each variable. TBW explained a higher proportion of the variation in GFR than the other physiologic variables. GFR adjusted for TBW by the regression method exhibited less dependence on gender, height, and weight compared with the other physiologic variables. Thus, adjusting GFR for TBW by the regression method allows direct comparisons between individuals of different genders, weights, and heights. We propose that regression-based normalization of GFR to a standardized TBW of 40 L should replace the current practice of normalizing GFR to 1.73 m(2) of body-surface area.

  15. Intracellular pH in lizard Dipsosaurus dorsalis in relation to changing body temperatures.

    Science.gov (United States)

    Bickler, P E

    1982-12-01

    Mean whole-body and tissue-specific intracellular pH values (pHi) were measured in Dipsosaurus dorsalis by the dimethyloxazolidinedione technique. pHi was measured in lizards at constant body temperatures (Tb) (18, 25, 35, and 42 degrees C) and in lizards undergoing changes in Tb between 18 and 42 degrees C. Constant Tb between 18 and 42 degrees C maintained for 24 h or more produced a delta pH/delta Tb of -0.015 for the mean whole-body, -0.012 for venous blood, -0.0104 for cardiac muscle, and -0.0098 for skeletal muscle. Within the preferred range of Tb values (35-42 degrees C), the delta pH/delta Tb patterns were closer to that expected to achieve constant dissociation of protein imidazole (approximately -0.017): mean whole-body -0.020, cardiac muscle -0.016, and skeletal muscle -0.018. Tissue water contents were independent of Tb. Whole-body pHi during gradual warming and cooling (approximately 2 h elapsed time for each direction) closely corresponded to steady-state values. Upon cooling to 18 degrees C, tissue-specific and whole-body pHi often fell 0.1-0.2 unit below that expected; in each case this was correlated with an extracellular acidosis. A gradual recovery of pHi occurred with the recovery of the extracellular acidosis. Over the normally experienced Tb range, adjustments in pHi apparently rapidly achieve steady-state values and are in accord with the imidazole alphastat hypothesis. These patterns are discussed in terms of the thermal ecology of Dipsosaurus.

  16. Low-temperature softening in body-centered cubic alloys

    Science.gov (United States)

    Pink, E.; Arsenault, R. J.

    1979-01-01

    In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.

  17. Using Landsat image time series to study a small water body in Northern Spain.

    Science.gov (United States)

    Chao Rodríguez, Y; el Anjoumi, A; Domínguez Gómez, J A; Rodríguez Pérez, D; Rico, E

    2014-06-01

    Ramsar Convention and EU Water Framework Directive are two international agreements focused on the conservation and achievement of good ecological and chemical status of wetlands. Wetlands are important ecosystems holding many plant and animal communities. Their environmental status can be characterised by the quality of their water bodies. Water quality can be assessed from biophysical parameters (such as Chlorophyll-a concentration ([Chla]), water surface temperature and transparency) in the deeper or lacustrine zone, or from bioindicators (as submerged aquatic vegetation) in the shallow or palustrine zone. This paper proves the use of Landsat time series to measure the evolution of water quality parameters and the environmental dynamics of a small water body (6.57 ha) in a Ramsar wetland (Arreo Lake in the North of Spain). Our results show that Landsat TM images can be used to describe periodic behaviours such as the water surface temperature or the phenologic state of the submerged vegetation (through normalized difference vegetation index, NDVI) and thus detect anomalous events. We also show how [Chla] and transparency can be measured in the lacustrine zone using Landsat TM images and an algorithm adjusted for mesotrophic Spanish lakes, and the resulting values vary in time in accordance with field measurements (although these were not synchronous with the images). The availability of this algorithm also highlights anomalies in the field data series that are found to be related with the concentration of suspended matter. All this potential of Landsat imagery to monitor small water bodies in wetlands can be used for hindcasting of past evolution of these wetlands (dating back to 1970s) and will be also useful in the future thanks to the Landsat continuity mission and the Operational Land Imager.

  18. Chitinophilic zoosporic fungi in various types of water bodies

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available Chitinophilic fungi in various types of water bodies (slough, pond, beach pool, two lakes and two rivers were studied. Samples of water were collected every other month for hydrochemical analysis and once a month ( 1992 - 1994 in order to determine the fungus content. The wings of dragonfly and flies, carapaces of crayfish and potato beetle and the fructification of two mushrooms were used as bait. Thirty species of chitinophilic fungi were found in various types of water bodiss. Cytriomyces annulatus, Entophlyctis crenata, Obelidium megarrhizum, Rhopalophlyctis sareoptoides, Achlya colorata, A. megasperma and Dictyuchus monosporus represent new records as chitinophilic fungi. However, Entophlyctis crenata, Obelidium megarrhizum and Podochytrium chitinophilum reported for the first time from Poland.

  19. Non-invasive, transient determination of the core temperature of a heat-generating solid body.

    Science.gov (United States)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-02

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  20. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    Science.gov (United States)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  1. Detection of Water Bodies from AVHRR Data—A TIMELINE Thematic Processor

    Directory of Open Access Journals (Sweden)

    Andreas J. Dietz

    2017-01-01

    Full Text Available The assessment of water body dynamics is not only in itself a topic of strong demand, but the presence of water bodies is important information when it comes to the derivation of products such as land surface temperature, leaf area index, or snow/ice cover mapping from satellite data. For the TIMELINE project, which aims to derive such products for a long time series of Advanced Very High Resolution Radiometer (AVHRR data for Europe, precise water masks are therefore not only an important stand-alone product themselves, they are also an essential interstage information layer, which has to be produced automatically after preprocessing of the raw satellite data. The respective orbit segments from AVHRR are usually more than 2000 km wide and several thousand km long, thus leading to fundamentally different observation geometries, including varying sea surface temperatures, wave patterns, and sediment and algae loads. The water detection algorithm has to be able to manage these conditions based on a limited amount of spectral channels and bandwidths. After reviewing and testing already available methods for water body detection, we concluded that they cannot fully overcome the existing challenges and limitations. Therefore an extended approach was implemented, which takes into account the variations of the reflectance properties of water surfaces on a local to regional scale; the dynamic local threshold determination will train itself automatically by extracting a coarse-scale classification threshold, which is refined successively while analyzing subsets of the orbit segment. The threshold is then interpolated by fitting a minimum curvature surface before additional steps also relying on the brightness temperature are included to reduce possible misclassifications. The classification results have been validated using Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS data and proven an overall accuracy of 93.4%, with the majority of

  2. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    Science.gov (United States)

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  3. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Science.gov (United States)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  4. Influence of the Environment on Body Temperature of Racing Greyhounds.

    Science.gov (United States)

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal

  5. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  6. Warming temperatures and smaller body sizes: synchronous changes in grwoth of North Sea fishes

    NARCIS (Netherlands)

    Baudron, A.; Needle, C.; Rijnsdorp, A.D.; Marshall, C.T.

    2014-01-01

    Decreasing body size has been proposed as a universal response to increasing temperatures. The physiology behind the response is well established for ectotherms inhabiting aquatic environments: as higher temperatures decrease the aerobic capacity, individuals with smaller body sizes have a reduced r

  7. Influence of body temperature on the evoked activity in mouse visual cortex.

    Science.gov (United States)

    Tang, Bin; Kalatsky, Valery A

    2013-06-01

    Optical imaging of intrinsic signals and conventional electrophysiological methods were used to investigate the correlation between the evoked activity in mouse visual cortex and core body temperature. The results show that hypothermia (25-36 °C) decreases the intensity of optical imaging in the visual cortex and the imaging signal reversibly disappears at 25 °C. Hyperthermia (39-41 °C) increases the intensity but decreases the quality of cortical imaging when body temperature is above 40 °C. The change of optical imaging was in line with that of neuronal activities and local field potentials (LFPs) directly recorded from the visual cortex at 25-39 °C. Hypothermia decreases neuron firing rate and LFPs amplitude. Most of the recorded neurons ceased firing to visual stimulation at 25 °C. Hyperthermia increases neuronal firing rate and LFPs amplitude. Both are reduced when body temperature is above 40 °C, though neither change was statistically significant. These results suggest: (1) Body temperature has an important impact on the visual cortical evoked activities and optical imaging generally reflects these effects when body temperature is between 25 and 39 °C; (2) Optical imaging may not properly reflect the neuronal activity when body temperature is over 40 °C. It is important to maintain core body temperature within 3 °C of the normal body temperature to obtain verifiable results.

  8. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Y. B W E M); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  9. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    Science.gov (United States)

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.

  10. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  11. Sprectroradiometric characteristics of inland water bodies infestated by Oscillatoria rubescens algae

    Science.gov (United States)

    Ciraolo, Giuseppe; La Loggia, Goffredo; Maltese, Antonino

    2010-10-01

    In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 μgl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in

  12. Refined Modeling of Water Temperature and Salinity in Coastal Areas

    Institute of Scientific and Technical Information of China (English)

    SHEN Yongming; ZHENG Yonghong; QIU Dahong

    2000-01-01

    The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k- turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperatureand salinity in coastal areas has been developed to simulate the seasonal variations of water temperatureand salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety ofhydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay,Japan.

  13. Integrated Evaluation of Urban Water Bodies for Pollution Abatement Based on Fuzzy Multicriteria Decision Approach.

    Science.gov (United States)

    Hashim, Sarfraz; Yuebo, Xie; Saifullah, Muhammad; Nabi Jan, Ramila; Muhetaer, Adila

    2015-01-01

    Today's ecology is erected with miscellaneous framework. However, numerous sources deteriorate it, such as urban rivers that directly cause the environmental pollution. For chemical pollution abatement from urban water bodies, many techniques were introduced to rehabilitate the water quality of these water bodies. In this research, Bacterial Technology (BT) was applied to urban rivers escalating the necessity to control the water pollution in different places (Xuxi River (XXU); Gankeng River (GKS); Xia Zhang River (XZY); Fenghu and Song Yang Rivers (FSR); Jiu Haogang River (JHH)) in China. For data analysis, the physiochemical parameters such as temperature, chemical oxygen demand (COD), dissolved oxygen (DO), total phosphorus (TP), and ammonia nitrogen (NH3N) were determined before and after the treatment. Multicriteria Decision Making (MCDM) method was used for relative significance of different water quality on each station, based on fuzzy analytical hierarchy process (FAHP). The overall results revealed that the pollution is exceeding at "JHH" due to the limit of "COD" as critical water quality parameter and after treatment, an abrupt recovery of the rivers compared with the average improved efficiency of nutrients was 79%, 74%, 68%, and 70% of COD, DO, TP, and NH3N, respectively. The color of the river's water changed to its original form and aquatic living organism appeared with clear effluents from them.

  14. Body temperature measurements in pigs during general anaesthesia.

    Science.gov (United States)

    Musk, G C; Costa, R S; Tuke, J

    2016-04-01

    The aim was to compare rectal, pharyngeal and oesophageal temperature measurements in anaesthetized pigs. Data were compared using the Bland-Altman method, and correlation coefficients and error measures were calculated. Sixty-six sets of data were collected from 16 pigs weighing 16.2 ± 4.2 kg. The bias (and 95% limit of agreement) for rectal and pharyngeal compared with oesophageal temperature were 0.69 (-1.18 to 2.57) ℃ and 0.22 (-0.84 to 1.28) ℃, respectively. The correlation coefficients for rectal and pharyngeal compared with oesophageal temperature were 0.47 and 0.87, respectively. The absolute error for rectal and pharyngeal compared with oesophageal temperature was 0.7 ± 0.9℃ and 0.2 ± 0.5℃, respectively. Pharyngeal temperature measurement may be more suitable than rectal temperature measurement for estimation of oesophageal temperature during general anaesthesia of pigs.

  15. [Pollution hazard for water bodies at oil production].

    Science.gov (United States)

    Zholdakova, Z I; Beliaeva, N I

    2015-01-01

    In the paper there have been summarizes the concepts of the danger of the pollution ofwater bodies in oil production (the most dangerous are reagents used in the drilling, drilling waste, oil and petrochemicals, oil biodestructors. There was shown the danger of the spread of oil pollution. New indices, presenting a hazard during drilling and oil production have been substantiated The tasks aimed to the improvement of the standards and methods of the control of the water pollution by oil, as well as of the documents regulating the conditions of environmental protection during the drilling have been conceived.

  16. Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard

    Science.gov (United States)

    Ortega, Zaida; Pérez-Mellado, Valentín

    2016-11-01

    In temperate areas, seasonal changes entail a source of environmental variation potentially important for organisms. Temperate ectotherms may be adapted to the seasonal fluctuations in environmental traits. For lizards, behavioural adaptations regarding microhabitat selection could arise to improve thermoregulation during the different seasons. However, little is still known about which traits influence microhabitat selection of lizards and their adaptation to seasonality. Here we used Podarcis guadarramae to study the role of potential intrinsic (body size, sex, age) and environmental traits (air and substrate temperatures, wind speed, and sunlight) in the seasonal changes of body temperatures and microhabitat selection of lizards. We measured body temperatures of lizards in the same habitat during the four seasons and compared the climatic variables of the microhabitats selected by lizards with the mean climatic conditions available in their habitat. Body temperatures were similar for adult males, adult females, and juveniles within each season, being significantly higher in summer than in the other seasons, and in spring than in winter. The same pattern was found regarding substrate and air temperatures of the selected microhabitats. Wind speed and air temperature did not affect body temperatures, while body length was marginally significant and substrate temperatures and season did affect the body temperatures of lizards. Our results during the whole year support the idea that the seasonality could be the most important factor affecting body temperatures of these temperate species. Regarding microhabitat selection, environmental constraints, as environmental temperatures and wind speed, affected the seasonal changes on behavioural thermoregulation of lizards. This effect was similar between sexes and age classes, and was independent of body size. In addition, importance of sunlight exposure of the selected microhabitats (full sun, filtered sun, or shade) also

  17. State of bream populations in reconstructed water bodies of Moldova

    Directory of Open Access Journals (Sweden)

    Adrian USATYI

    2010-11-01

    Full Text Available Bream, Abramis brama L., is a key species in fish communities of Moldovian Rivers and a main component of bottom food chains of river and lake ecosystems. With the reconstruction of water bodies, mainly for hydroelectric power stations needs, the ecological conditions changed substantially, which results in modifications in population state of biota. The negative effects of water bodies’ reconstruction upon population status of bream in several Moldovian Rivers and reservoirs were studied. These effects manifest in detrimental changes in bream growth, age composition and reproductive success. The conclusion is made that the economical gain after the regulation of large and middle-size rivers is opposed by the negative impact upon fish community as a whole, as well as upon the ecology of individual species as applied to the indicator species Abramis brama.

  18. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    Science.gov (United States)

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits.

  19. Effect of Ambient Temperature on Body Temperature and Rest Metabolic Rate in Apodemus chevrieri During Postnatal Development

    Directory of Open Access Journals (Sweden)

    Zhu Wan-long

    2014-05-01

    Full Text Available In order to investigate the ability of constant temperature and thermoregulation in Apodemus chevrieri, body temperature and rest metabolic rate (RMR were measured during postnatal development (1~42 day when the A. chevrieri exposed different ambient temperature. The result showed that: body temperature and RMR of pups in A. chevrieri increased according to the increase of ambient temperature during 1 day to 7 day, showed character of poikilotherms; body temperature of pups were lower in low temperature(5oC and 10oC, relatively and RMR significant increased when day age is 14 day, it indicated that the pups showed a certain degree of thermoregulation in this phase. Its thermoregulation ability developed quickly during 7 day to 14 day. RMR of pups was extreme significantly higher in low temperature than that in other temperature when day age was 21 day, it showed that the pups had some thermoregulation to low temperature stimulation. The RMR of pups was showed increasing trend in high temperature(35oC when 28 day; when day age was 35 day and 42 day, the thermal neutral zone were 22.5 to 30oC and approaching its adult level. All of these results indicated that pups of A. chevrieri in the different growing period had different thermogenesis and energy allocation to maintain stable to body temperature, thermogenesis was weaker in the early phase of postnatal development, most of energy is used to its growth. After pups were weaned, the ability of constant temperature and thermoregulation developed quickly to adjust variations of environment during postnatal development.

  20. Quantifying body water kinetics and fecal and urinary water output from lactating Holstein dairy cows.

    Science.gov (United States)

    Appuhamy, J A D R N; Wagner-Riddle, C; Casper, D P; France, J; Kebreab, E

    2014-10-01

    Reliable estimates of fresh manure water output from dairy cows help to improve storage design, enhance efficiency of land application, quantify the water footprint, and predict nutrient transformations during manure storage. The objective of the study was to construct a mechanistic, dynamic, and deterministic mathematical model to quantify urinary and fecal water outputs (kg/d) from individual lactating dairy cows. The model contained 4 body water pools: reticulorumen (QRR), post-reticulorumen (QPR), extracellular (QEC), and intracellular (QIC). Dry matter (DM) intake, dietary forage, DM, crude protein, acid detergent fiber and ash contents, milk yield, and milk fat and protein contents, days in milk, and body weight were input variables to the model. A set of linear equations was constructed to determine drinking, feed, and saliva water inputs to QRR and fractional water passage from QRR to QPR. Water transfer via the rumen wall was subjected to changes in QEC and total water input to QRR. Post-reticulorumen water passage was adjusted for DM intake. Metabolic water production and respiratory cutaneous water losses were estimated with functions of heat production in the model. Water loss in urine was driven by absorbed N left after being removed via milk. Model parameters were estimated simultaneously using observed fecal and urinary water output data from lactating Holstein cows (n=670). The model was evaluated with data that were not used for model development and optimization (n=377). The observations in both data sets were related to thermoneutral conditions. The model predicted drinking water intake, fecal, urinary, and total fresh manure water output with root mean square prediction errors as a percentage of average values of 18.1, 15.6, 30.6, and 14.6%, respectively. In all cases, >97% of the prediction error was due to random variability of data. The model can also be used to determine saliva production, heat and metabolic water production, respiratory

  1. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Sira Maria Karvinen

    2016-07-01

    Full Text Available The production of heat , i.e. thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect body temperature. Here we use rat models that differ for maximal running capacity (Low capacity runners, LCR and High capacity Runners, HCR to study the connection between PA and body temperature. Ten HCR and ten LCR female rats were studied between 9 and 21 months of age. Rectal temperature of HCR and LCR rats was measured before and after one year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs 21 months of age. HCRs had on average 1.3C higher body temperature than LCRs (p < 0.001. Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a marked impact on the body temperature of HCRs (p < 0.001 allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c and OXPHOS contents in the skeletal muscle (p < 0.050. These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050, but not that of HCRs. In conclusion, rats born with high intrinsic aerobic capacity and better health have higher body temperature compared to rats born with low aerobic

  2. Selection does not favor larger body size at lower temperature in a seed-feeding beetle.

    Science.gov (United States)

    Stillwell, R Craig; Moya-Laraño, Jordi; Fox, Charles W

    2008-10-01

    Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,"Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.

  3. Effect of water temperature on exercise-induced maternal hyperthermia on fetal development in rats.

    Science.gov (United States)

    Mottola, M F; Fitzgerald, H M; Wilson, N C; Taylor, A W

    1993-07-01

    The objective of this study was to determine if water temperature influenced exercise-induced hyperthermia in swim-trained pregnant rats and the resulting fetal development. Pregnant Sprague-Dawley rats with 6 weeks pre-pregnancy training were exercised daily from day 1 to day 18 of gestation in water that was 34.6 +/- 0.4 degrees C (Cool Water Swimmers--CWS) or 37.6 +/- 0.1 degrees C (Warm Water Swimmers--WWS), for one hour/day. During this time period another group of pregnant rats was immersed to the neck in warm water (37.6 +/- 0.2 degrees C) (Warm Water Controls--WWC). On day 19 of gestation all animals were sacrificed and fetal development assessed. Maternal exercise in warm water elevated maternal body core temperature by 2.3 +/- 0.1 degrees C above resting values, with an increase in fetal abnormalities compared to the same exercise intensity in cool water. Fifty-eight percent of the abnormal fetuses and 60% of the resorption sites were found in the WWS group. Of the abnormalities determined, 65% were from the WWS group and 45% of these fetuses showed micrencephaly. Results suggest cool water may regulate maternal body temperature during swimming exercise and that swimming in warm water should be avoided during gestation because of potential teratogenic effects.

  4. Temperature and body weight affect fouling of pig pens

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Schrama, J.W.; Heetkamp, M.J.W.; Stefanowska, J.; Huynh, T.T.T.

    2006-01-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) w

  5. Prediction of human core body temperature using non-invasive measurement methods

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  6. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  7. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    Science.gov (United States)

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors

  8. Body temperatures and associated postures of the zebra-tailed lizard, Callisaurus draconoides

    Energy Technology Data Exchange (ETDEWEB)

    Muth, A.

    1977-01-01

    Body temperature and associated postures of the zebra-tailed lizard, Callisaurus draconoides, were examined in the field and laboratory. Three distinct postures are described: prostrate, tail-down and elevated. The mean body temperatures of the respective postures in the field were: 33.9, 40.5 and 42.7 C. In the laboratory, heating rates were greatest for the prostrate posture and least for the elevated posture. Body temperatures and heating rates are significantly correlated with posture. These correlations suggest that the postures are associated with behavioral thermoregulation in the field.

  9. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  10. Impact of domestic sewage on fresh water body.

    Science.gov (United States)

    Shiddamallayya, N; Pratima, M

    2008-05-01

    In the present study various (physico-chemical) factors were assessed over a period of two years (from February 2002 to January 2004) to note the chemistry and quality of tank water in Bhalki town of Bidar. Physico-chemical factors like pH, dissolved oxygen, magnesium, chlorine, nitrite, sulphates and chemical oxygen demand were found with maximum concentration during summer season. Similarly, during monsoon season free carbon dioxide, alkalinity hardness, calcium, phosphate, silicon, total solids and biological oxygen demand; and in winter season organic matter were recorded. The concentrations viz., pH, hardness and nitrite were more compared to the potable water standard of WHO. The correlation matrix and dendrogram of physico-chemical factors have been computed and analysed. The positive co-relation coefficient observed between pH and magnesium, dissolved oxygen and hardness, free carbondioxide and calcium, alkalinity and nitrite, alkalinityand phosphate, alkalinity and biological oxygen demand, hardness and calcium, hardness and magnesium, magnesium and chlorine, nitrate and phosphate, nitrite and biological oxygen demand, phosphate and organic matter; and silicon and chemical oxygen demand. The dendrogram confirms chlorine, pH, hardness, silicon, total solids and sulphates are the key factors of the change in the chemistry of water body

  11. Emperor penguin body surfaces cool below air temperature.

    Science.gov (United States)

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate.

  12. Diving behaviour of a reptile (Crocodylus johnstoni) in the wild: interactions with heart rate and body temperature.

    Science.gov (United States)

    Seebacher, Frank; Franklin, Craig E; Read, Mark

    2005-01-01

    The differences in physical properties of air and water pose unique behavioural and physiological demands on semiaquatic animals. The aim of this study was to describe the diving behaviour of the freshwater crocodile Crocodylus johnstoni in the wild and to assess the relationships between diving, body temperature, and heart rate. Time-depth recorders, temperature-sensitive radio transmitters, and heart rate transmitters were deployed on each of six C. johnstoni (4.0-26.5 kg), and data were obtained from five animals. Crocodiles showed the greatest diving activity in the morning (0600-1200 hours) and were least active at night, remaining at the water surface. Surprisingly, activity pattern was asynchronous with thermoregulation, and activity was correlated to light rather than to body temperature. Nonetheless, crocodiles thermoregulated and showed a typical heart rate hysteresis pattern (heart rate during heating greater than heart rate during cooling) in response to heating and cooling. Additionally, dive length decreased with increasing body temperature. Maximum diving length was 119.6 min, but the greatest proportion of diving time was spent on relatively short (<45 min) and shallow (<0.4 m) dives. A bradycardia was observed during diving, although heart rate during submergence was only 12% lower than when animals were at the surface.

  13. Low temperature barrier wellbores formed using water flushing

    Science.gov (United States)

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  14. Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition

    Science.gov (United States)

    Crouch, Tia; Walker, Jonathan

    2013-04-01

    Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition Tia Crouch and Jonathan Walker (Moors for the Future Partnership) Upland locations are significant water supply sources providing over 70% of fresh water in Great Britain. However, the peatlands of the Peak District, Southern Pennines are highly contaminated with anthropogenically derived, atmospherically deposited pollutants, such as heavy metals. This is due to their location between the cities of Manchester and Sheffield, the centre of the 19th century English Industrial Revolution. These peatlands are also severely eroded; therefore erosion could be releasing these pollutants into the fluvial system, representing a threat to both aquatic ecosystems and drinking water supplies. These threats are regulated under the Water Framework Directive (WFD) and the Water Supply Regulations respectively. There are two aims of this project. The first aim is to identify spatial and temporal variability of water quality within the Bamford water treatment works (WTW) catchment. This was achieved by fortnightly spot sampling at eight of the tributaries into the reservoir system. The second aim is to assess the contribution of moorland condition to water quality within the Bamford WTW catchment. Similarly, this was achieved by fortnightly spot sampling at eight moorland streams, draining from a variety of peatland conditions (bare peat, restoration, intact and heather burn). Water samples were analysed for carbon (DOC, POC & TOC), pH, hardness and a suite of heavy metals, including copper, iron and zinc. In addition, stream temperature and stage height was recorded. Preliminary results highlight a number of issues within the Bamford WTW catchment: under the WFD streams are not achieving 'good' status for pH, copper and zinc, and under the Drinking Water Standards (DWS) streams are not achieving targets for aluminium, iron and colour. For example, the

  15. Low-cost compact thermal imaging sensors for body temperature measurement

    Science.gov (United States)

    Han, Myung-Soo; Han, Seok Man; Kim, Hyo Jin; Shin, Jae Chul; Ahn, Mi Sook; Kim, Hyung Won; Han, Yong Hee

    2013-06-01

    This paper presents a 32x32 microbolometer thermal imaging sensor for human body temperature measurement. Waferlevel vacuum packaging technology allows us to get a low cost and compact imaging sensor chip. The microbolometer uses V-W-O film as sensing material and ROIC has been designed 0.35-um CMOS process in UMC. A thermal image of a human face and a hand using f/1 lens convinces that it has a potential of human body temperature for commercial use.

  16. A Proposed Methodology to Control Body Temperature in Patients at Risk of Hypothermia by means of Active Rewarming Systems

    Directory of Open Access Journals (Sweden)

    Silvia Costanzo

    2014-01-01

    Full Text Available Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient’s internal temperature (Tcore decreases by 0.5–1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body’s thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.. Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket’s effect on the average temperature Tskin and, as a consequence, on Tcore temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia.

  17. Effect of Water Vapour to Temperature Inside Sonoluminescing Bubble

    Institute of Scientific and Technical Information of China (English)

    安宇; 谢崇国; 应崇福

    2003-01-01

    Using the model based on the homo-pressure approximation, we explain why the maximum temperature is sensitive to the ambient temperature in the single bubble sonoluminescence. The numerical simulation shows that the maximum temperature inside a sonoluminescing bubble depends on how much water vapour evaporates or coagulates at the bubble wall during the bubble shrinking to its minimum size. While the amount of water vapour inside the bubble at the initial and the final state of the compression depends on the saturated water vapour pressure which is sensitive to the ambient temperature. The lower the saturated vapour pressure is, the higher the maximum temperature is. This may lead to more general conclusion that those liquids with lower saturated vapour pressure are more favourable for the single bubble sonoluminescence. We also compare those bubbles with different noble gases, the result shows that the maximum temperatures in the different gas bubbles are almost the same for those with the same ambient temperature.

  18. A towed body designed for side-scanning hydroacoustic surveying of fish stocks in shallow waters

    NARCIS (Netherlands)

    Mous, P.J.; Kemper, J.; Schelvis, A.

    1999-01-01

    An aluminum towed body was designed for use in hydroacoustic surveying of fish stocks in shallow (2–10 m depth) inland waters. The design allows applications in deep (>10 m) water bodies as well. Test results showed that the towed body was a stable platform for the hydroacoustic transducer. The towe

  19. Worldwide Eutrophication of Water Bodies: Causes, Concerns, Controls

    Science.gov (United States)

    Prepas, E. E.; Charette, T.

    2003-12-01

    Eutrophication is the nutrient enrichment of waters that stimulates an array of symptomatic changes, that can include increased phytoplankton and rooted aquatic plant (macrophyte) production, fisheries and water quality deterioration, and other undesirable changes that interfere with water uses (Bartsch, 1972). The trophic state, or degree of fertility, of water bodies ranges from oligotrophic to mesotrophic to eutrophic with increasing supply of nutrients and organic matter ( Table 1). Eutrophication is most often the result of an elevated supply of nutrients, particularly nitrogen and phosphorus, to surface waters that results in enhanced production of primary producers, particularly phytoplankton and aquatic plants. Table 1. Mean annual values for the trophic classification system Total phosphorus (μg L-1)Chlorophyll a (μg L-1)Secchi disk depth (m) Ultra-oligotrophic12 Oligotrophic6 Mesotrophic10-352.5-86-3 Eutrophic35-1008-253-1.5 Hypertrophic>100>25systems can lead to high decomposition rates by bacteria. Dissolved oxygen consumption by decomposers, combined with a barrier to gas exchange (thermocline or ice cover), can reduce (hypoxia) or eliminate (anoxia) dissolved oxygen in bottom waters. (A thermocline is the junction between an upper layer of warm, less dense water (the epilimnion) and a deeper layer of cold water (the hypolimnion). When this stratification is in place, the typically oxygen-rich waters of the epilimnion do not mix with the waters of the hypolimnion.) Oxygen depletion is one of the most harmful side effects of eutrophication because it can cause catastrophic fish kills, devastating local fisheries.The accumulation of plant biomass depends on the addition of factors that stimulate plant growth. On average, the macronutrients nitrogen and phosphorus are present in marine phytoplankton at an atomic ratio 16 : 1 (Redfield, 1958). The ratio of nitrogen to phosphorus in freshwaters tends to be greater than the ratio in phytoplankton

  20. [Hyperthermia. Modification of body temperature as clinical therapeutics].

    Science.gov (United States)

    Vicuña Urtasun, Berta; Villalgordo Ortin, Paola; Montes García, Yolanda; Marín, Fernández Blanca

    2011-04-01

    The application of heat or cold therapy is called thermotherapy Thermotherapy has been used since ancient times, Egyptians, Greeks and Romans used solar radiation or submersion in springs to apply heat and ice and snow for cold application. The first scientific references related to thermotherapy appear in late eighteenth century but the twentieth century when the introduction of new forms of deep heat therapy have expanded their capabilities and their operation with media surface more comfortable and effective. Thermotherapy although they require more experimentation to obtain a solid scientific proof that their use is raising great expectations in various fields such as oncology treatment, surgery neurology etc. In the surgical field thermal ablation has been used successfully in the treatment of various diseases, benign prostatic hyperplasia, liver and gynecological tumors, among others. In the field of oncology has been shown to improve outcomes diathermy applied in conjunction with chemo and radiation therapy Based on the literature review describing the main uses of the change in temperature as a therapeutic, the main indications for these techniques, as applicable, evidence of its benefits and complications arising from their use.

  1. Constant delivery temperature solar water heater - an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. [C.A.S. Indian Institute of Technology, New Delhi (India); Kumar, N. [D.C.E. Muzaffarpur Institute of Technology, Bihar (India)

    1997-05-01

    An integrated model of a constant delivery temperature solar water heat-cum-active regenerative distillation system has been developed. The water used for the regenerative effect in the distiller of the proposed system is subsequently fed to the basin-cum-storage tank of the still through the heat exchanger (connected to the collector). The model varies the water mass flow rate in order to maintain a constant outlet temperature. With minor modifications in the solar water heater, the extra energy stored in the water mass due to non-utilization of capacity and/or non-linear utilization of capacity can be efficiently utilized for distillation purposes. In this process, the latent heat of vaporization is used for preheating the inlet water supply to the heat exchanger. The effect of insulation on maintaining the hot water temperature and distillate output is also presented. (Author)

  2. Body temperature daily rhythm adaptations in African savanna elephants (Loxodonta africana).

    Science.gov (United States)

    Kinahan, A A; Inge-moller, R; Bateman, P W; Kotze, A; Scantlebury, M

    2007-11-23

    The savanna elephant is the largest extant mammal and often inhabits hot and arid environments. Due to their large size, it might be expected that elephants have particular physiological adaptations, such as adjustments to the rhythms of their core body temperature (T(b)) to deal with environmental challenges. This study describes for the first time the T(b) daily rhythms in savanna elephants. Our results showed that elephants had lower mean T(b) values (36.2 +/- 0.49 degrees C) than smaller ungulates inhabiting similar environments but did not have larger or smaller amplitudes of T(b) variation (0.40 +/- 0.12 degrees C), as would be predicted by their exposure to large fluctuations in ambient temperature or their large size. No difference was found between the daily T(b) rhythms measured under different conditions of water stress. Peak T(b)'s occurred late in the evening (22:10) which is generally later than in other large mammals ranging in similar environmental conditions.

  3. Core Temperature and Surface Heat Flux During Exercise in Heat While Wearing Body Armor

    Science.gov (United States)

    2015-10-26

    Potter AW, Santee WR, Clements CM, Brooks KA, & Hoyt RW. Comparative analysis of metabolic cost equations: A review. Journal of Sport and Human...TECHNICAL REPORT NO. T16-1 DATE October 2015 ADA CORE TEMPERATURE AND SURFACE HEAT FLUX ...DURING EXERCISE IN HEAT WHILE WEARING BODY ARMOR USARIEM TECHNICAL REPORT T16-1 CORE TEMPERATURE AND SURFACE HEAT FLUX DURING EXERCISE

  4. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    DEFF Research Database (Denmark)

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David

    2009-01-01

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design...

  5. Body temperature variation of South African antelopes in two climatically contrasting environments

    NARCIS (Netherlands)

    Shrestha, A.K.; Wieren, van S.E.; Langevelde, van F.; Fuller, A.; Hetem, R.S.; Meyer, L.C.R.; Bie, de S.; Prins, H.H.T.

    2012-01-01

    To understand the adaptive capacity of a species in response to rapid habitat destruction and climate change, we investigated variation in body temperature (Tb) of three species of antelope, namely eland, blue wildebeest and impala, using abdominally-implanted temperature data loggers. The study was

  6. Agreement between auricular and rectal measurements of body temperature in healthy cats.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C

    2013-04-01

    Measurement of body temperature is a routine part of the clinical assessment of a patient. However, this procedure may be time-consuming and stressful to most animals because the standard site of temperature acquisition remains the rectal mucosa. Although an increasing number of clinicians have been using auricular temperature to estimate core body temperature, evidence is still lacking regarding agreement between these two methods in cats. In this investigation, we evaluated the agreement between temperatures measured in the rectum and ear in 29 healthy cats over a 2-week period. Temperatures were measured in the rectum (using digital and mercury-in-glass thermometers) and ear once a day for 14 consecutive days, producing 406 temperature readings for each thermometer. Mean temperature and confidence intervals were similar between methods, and Bland-Altman plots showed small biases and narrow limits of agreement acceptable for clinical purposes. The interobserver variability was also checked, which indicated a strong correlation between two near-simultaneous temperature readings. Results are consistent with auricular thermometry being a reliable alternative to rectal thermometry for assessing core body temperature in healthy cats.

  7. FORECAST OF WATER TEMPERATURE IN RESERVOIR BASED ON ANALYTICAL SOLUTION

    Institute of Scientific and Technical Information of China (English)

    JI Shun-wen; ZHU Yue-ming; QIANG Sheng; ZENG Deng-feng

    2008-01-01

    The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduction-diffusion equations were converted into a system consisting of 2-D equations with the Fourier expansion and some hypotheses. Then the statistical model of forecasting the water temperature was developed based on the analytical solution to the 2-D thermal equations. The simplified statistical model can elucidate the main physical mechanism of the temperature variation much more clearly than the numerical simulation with the Navier-Stokes equations. Finally, with the presented statistical model, the distribution of water temperature in the Shangyoujiang reservoir was determined.

  8. Snow water content estimation from measured snow temperature

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The vertical temperature profiles of snow and sea ice have been measured in the Arctic during the 2nd Chinese National Arctic Research Expedition in 2003 (CHINARE2003). The high-resolution temperature profile in snow is solved by one-dimensional heat transfer equation. The effective heat diffusivity, internal heat sources are identified. The internal heat source refers to the penetrated solar radiation which usually warms the lower part of the snow layer in summer. By temperature gradient analysis, the zero level can be clarified quantitatively as the boundary of the dry and wet snow. According to the in situ time series of vertical temperature profile, the time series of water content in snow is obtained based on an evaluation method of snow water content associated with the snow and ice physical parameters. The relationship of snow water content and snow temperature and temporal-spatial distribution of snow water content are presented

  9. Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions.

    Science.gov (United States)

    Ammer, Stefanie; Lambertz, Christian; Gauly, Matthias

    2016-05-01

    The aim of the research described here was to compare different methods of body temperature (BT) measurements in dairy cows. It was hypothesised that reticular temperature (RET) values reflect the physiological status of the animals in an equivalent way to rectal (RT) and vaginal (VT) measurements. RT, VT and RET temperatures of twelve lactating Holstein-Friesian cows were measured over five consecutive days in June and October 2013. While RT and VT were manually measured three times a day, RET was automatically recorded at 10 min intervals using a bolus in the reticulum. For comparison with RT and VT, different RET values were used: single values at the respective recording times (RET-SIN), and mean (RET-MEAN) and median (RET-MED) values of 2 h prior to RT and VT measurements. Overall, body temperatures averaged 38·1 ± 0·6, 38·2 ± 0·4, 38·7 ± 0·9, 38·5 ± 0·7 and 38·7 ± 0·5 °C for RT, VT, RET-SIN, RET-MEAN and RET-MED, respectively. RT and VT were lower than all RET measurements, while RET-SIN and RET-MED were higher than RET-MEAN (P < 0·001). RET-MEAN and RET-MED values were higher in the morning, whereas RT and VT were greatest in the evening (P < 0·001). Overall, records of RT and VT were strongly correlated (r = 0·75; P < 0·001). In contrast to RET-SIN and RET-MEAN, RET-MED was higher correlated to RT and VT. In June, coefficients were higher between all methods than in October. Relation of barn T to RT and VT was stronger when compared to RET measurements. RET-SIN was higher correlated to barn T than RET-MEAN or RET-MED. Correlation between VT and barn T was strongest (r = 0·48; P < 0·001). In summary, RET-MED showed highest correlation with VT and RT. However, single RET measurements (influenced by water or feed intake) can lead to extreme variations and differences to single VT and RT values.

  10. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature.

    Science.gov (United States)

    Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc

    2016-09-28

    This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting.

  11. Perceived intensity of peripheral thermal stimuli is independent of internal body temperature.

    Science.gov (United States)

    Mower, G D

    1976-12-01

    Four adult male human subjects were tested under three conditions of internal body temperature: hypothermia, normal, and hyperthermia. Under each of these conditions, they judged the intensity (degree of warmness or coolness) and the hedonic quality (degree of pleasantness or unpleasantness) of a series of stimuli ranging from hot to cold. The results showed that whereas hedonic quality is greatly influenced by the value of internal body temperature, the perception of warmness or coolness is independent of internal temperature and dependent only on peripheral stimulation.

  12. Physiological responses of Chinese longsnout catfish to water temperature

    Science.gov (United States)

    Han, Dong; Xie, Shouqi; Zhu, Xiaoming; Yang, Yunxia

    2011-05-01

    We evaluated the effect of water temperature on the growth and physiology of the Chinese longsnout catfish ( Leiocassis longirostris Günther). The fish were reared at four temperatures (20, 25, 30, and 35°C) and sampled on days 7, 20, and 30. We measured plasma levels of insulin, free thyroxine (FT4), free 3,5,3'-triiodothyronine (FT3), lysozyme and leukocyte phagocytic activity. The optimum water temperature for growth was 27.7°C. The plasma levels of insulin and FT4 declined significantly ( P<0.05) on day 30 at temperatures above 20°C. Lysozyme activity was significantly ( P<0.05) lower at 25°C than at other temperatures. We conclude that final weight, insulin, FT4, and lysozyme were significantly affected by water temperature.

  13. Influence of temperature on the structure of liquid water

    Institute of Scientific and Technical Information of China (English)

    顾健德; 田安民; 鄢国森

    1996-01-01

    Molecular dynamics simulations have been carried out for liquid water at 7 different temperatures to understand the nature of hydrogen bonding at molecular level through the investigation of the effects of temperature on the geometry of water molecules. The changes in bond length and bond angle of water molecules from gaseous state to liquid state have been observed, and the change in the bond angle of water molecules in liquid against temperature has been revealed, which has not been seen in literature so far. The analysis of the radial distribution functions and the coordinate numbers shows that, on an average, each water molecule in liquid acts as both receptor and donor, and forms at least two hydrogen bonds with its neigbors. The analysis of the results also indicates that the water molecules form clusters in liquid.

  14. Body temperature changes induced by huddling in breeding male emperor penguins.

    Science.gov (United States)

    Gilbert, Caroline; Maho, Yvon Le; Perret, Martine; Ancel, André

    2007-01-01

    Huddling is the key energy-saving mechanism for emperor penguins to endure their 4-mo incubation fast during the Antarctic winter, but the underlying physiological mechanisms of this energy saving have remained elusive. The question is whether their deep body (core) temperature may drop in association with energy sparing, taking into account that successful egg incubation requires a temperature of about 36 degrees C and that ambient temperatures of up to 37.5 degrees C may be reached within tight huddles. Using data loggers implanted into five unrestrained breeding males, we present here the first data on body temperature changes throughout the breeding cycle of emperor penguins, with particular emphasis on huddling bouts. During the pairing period, core temperature decreased progressively from 37.5 +/- 0.4 degrees C to 36.5 +/- 0.3 degrees C, associated with a significant temperature drop of 0.5 +/- 0.3 degrees C during huddling. In case of egg loss, body temperature continued to decrease to 35.5 +/- 0.4 degrees C, with a further 0.9 degrees C decrease during huddling. By contrast, a constant core temperature of 36.9 +/- 0.2 degrees C was maintained during successful incubation, even during huddling, suggesting a trade-off between the demands for successful egg incubation and energy saving. However, such a limited drop in body temperature cannot explain the observed energy savings of breeding emperor penguins. Furthermore, we never observed any signs of hyperthermia in huddling birds that were exposed to ambient temperatures as high as above 35 degrees C. We suggest that the energy savings of huddling birds is due to a metabolic depression, the extent of which depends on a reduction of body surface areas exposed to cold.

  15. Thermogenic alterations in the woman. II. Basal body, afternoon, and bedtime temperatures.

    Science.gov (United States)

    Zuspan, K J; Zuspan, F P

    1974-10-15

    19 female college students aged 17-20 years volunteered to participate in an experiment whereby they took their temperatures on 1st rising, at 5 p.m., and at bedtime for a minimum of 1 complete ovulation cycle. 3 parallel curves were found with the afternoon temperature being .7 degrees Farenheit higher than the basal and .3 degrees higher than the bedtime temperature. Several graphs illustrate the curve patterns. It is concluded that either the afternoon or the evening temperature can be used instead of the rising (or basal body) temperature, with an adjustment of the correct amount.

  16. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.

    Science.gov (United States)

    Tsai, Yi-Chun; Li, Suming; Hu, Shiaw-Guang; Chang, Wen-Chi; Jeng, U-Ser; Hsu, Shan-hui

    2015-12-23

    Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and a second oligodiol containing amphiphilic blocks was synthesized in this study. The microstructure was characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and rheological measurement of the PU dispersion. The surface hydrophilicity measurement, infrared spectroscopy, wide-angle X-ray diffraction, mechanical and thermal analyses were conducted in solid state. It was observed that the presence of a small amount of amphiphilic blocks in the soft segment resulted in significant changes in microstructure. When 90 mol % PCL diol and 10 mol % amphiphilic blocks of poly(l-lactide)-poly(ethylene oxide) (PLLA-PEO) diol were used as the soft segment, the synthesized PU had a water contact angle of ∼24° and degree of crystallinity of ∼14%. The dispersion had a low viscosity below room temperature. As the temperature was raised to body temperature (37 °C), the dispersion rapidly (∼170 s) underwent sol-gel transition with excellent gel modulus (G' ≈ 6.5 kPa) in 20 min. PU dispersions with a solid content of 25-30% could be easily mixed with cells in sol state, extruded by a 3D printer, and deposited layer by layer as a gel. Cells remained alive and proliferating in the printed hydrogel scaffold. We expect that the development of novel thermoresponsive PU system can be used as smart injectable hydrogel and applied as a new type of bio-3D printing ink.

  17. Comparison of Two Mercury Contaminated Surface Water Bodies

    Science.gov (United States)

    Brooks, S. C.; Southworth, G. R.; Turner, R. R.; Jensen, R.

    2008-12-01

    Due to the methyl mercury (MeHg) burden in fish tissues, the Virginia Department of Health and the Tennessee Department of Environment and Conservation have posted fish advisories for the South River, VA and the East Fork Poplar Creek, TN (EFPC), respectively. This presentation will compare and contrast the hydrogeochemical characteristics of these two industrially contaminated water bodies. Both streams share broad similarities in terms of their general chemistry and underlying geology. Nevertheless, patterns of waterborne mercury (Hg) and, importantly, MeHg concentration are different. For example, in the South River both Hg and MeHg concentrations increase with increasing distance downstream from the industrial site of mercury origin whereas in EFPC Hg decreases while MeHg increases with increasing distance downstream. Although both sites are the focus of concerted research efforts to identify effective remediation, the underlying mechanisms that drive the patterns within each system and therefore account for the differences between them are poorly understood. We intend for this presentation to provide a context within which attendees can frame their discussion of the challenges inherent to studying the biogeochemical cycling of Hg in general and at contaminated sites in particular where effective remedies can be elusive.

  18. Temperature influence on water transport in hardened cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, Emeline [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Poyet, Stéphane, E-mail: stephane.poyet@cea.fr [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Torrenti, Jean-Michel [Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 Marne la Vallée cedex 2 (France)

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  19. Assessing the reliability of thermography to infer internal body temperatures of lizards.

    Science.gov (United States)

    Barroso, Frederico M; Carretero, Miguel A; Silva, Francisco; Sannolo, Marco

    2016-12-01

    For many years lizard thermal ecology studies have relied on the use of contact thermometry to obtain internal body temperature (Tb) of the animals. However, with progressing technology, an interest grew in using new, less invasive methods, such as InfraRed (IR) pyrometry and thermography, to infer Tb of reptiles. Nonetheless few studies have tested the reliability of these new tools. The present study tested the use of IR cameras as a non-invasive tool to infer Tb of lizards, using three differently body-sized lacertid species (Podarcis virescens, Lacerta schreiberi and Timon lepidus). Given the occurrence of regional heterothermy, we pairwise compared thermography readings of six body parts (snout, eye, head, dorsal, hind limb, tail base) to cloacal temperature (measured by a thermometer-associated thermocouple probe) commonly employed to measure Tb in field and lab studies. The results showed moderate to strong correlations (R(2)=0.84-0.99) between all body parts and cloacal temperature. However, despite the readings on the tail base showed the strongest correlation in all three species, it was the eye where the absolute values and pattern of temperature change most consistently followed the cloacal measurements. Hence, we concluded that the eye would be the body location whose IR camera readings more closely approximate that of the animal's internal environment. Alternatively, other body parts can be used, provided that a careful calibration is carried out. We provide guidelines for future research using thermography to infer Tb of lizards.

  20. Metabolism of polychaete Neanthes japonica Izuka: relations to temperature, salinity and body weight

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; XIAN Weiwei; SUN Shichun

    2009-01-01

    Polychaete Neanthesjaponica is a species geographically specific in China and Japan with important scientific implication and commercial value. In this study, the relations of body weight, salinity and temperature to oxygen consumption and ammonia excretion of N. japonica were determined. Threedifferent groups in body weight (large: 2.34±0.36 g, middle: 1.50±0.21 g and small: 0.62±0.12 g) were set for all experiments. Results show that the body weight is negatively related to the rates of oxygen consumption and ammonia excretion; and the relationship is significant. The oxygen consumption and ammonia excretion at 24℃ decreased at salinity from 5 to 30 and increased above 30, indicating that both lower and higher salinity are adverse and certain degree of salinity stress is necessary for enhancing the energy demand. At salinity 30, rising temperature from 18℃ to 30℃, the oxygen consumption increased before 27℃ and then decreased. However, the relation of ammonia excretion and temperature seems more complex. Two-way ANOVA shows that salinity, temperature and body weight all have a significant effect on the oxygen consumption and ammonia excretion of the worm. Moreover, interaction between salinity/temperature and body weight is also significant. O:N (oxygen/nitrogen) ratio varies greatly in this case from 5.97 to 463.22, indicating that N. japonica can regulate the type of metabolic substrate against environment changes.

  1. NOS CO-OPS Meteorological Data, Water Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Water Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  2. Titanium Dioxide Volatility in High Temperature Water Vapor

    Science.gov (United States)

    Nguyen, QynhGiao N.

    2008-01-01

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).

  3. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Science.gov (United States)

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  4. Water temperature modeling in the Garonne River (France

    Directory of Open Access Journals (Sweden)

    Larnier K.

    2010-10-01

    Full Text Available Stream water temperature is one of the most important parameters for water quality and ecosystem studies. Temperature can influence many chemical and biological processes and therefore impacts on the living conditions and distribution of aquatic ecosystems. Simplified models such as statistical models can be very useful for practitioners and water resource management. The present study assessed two statistical models – an equilibrium-based model and stochastic autoregressive model with exogenous inputs – in modeling daily mean water temperatures in the Garonne River from 1988 to 2005. The equilibrium temperature-based model is an approach where net heat flux at the water surface is expressed as a simpler form than in traditional deterministic models. The stochastic autoregressive model with exogenous inputs consists of decomposing the water temperature time series into a seasonal component and a short-term component (residual component. The seasonal component was modeled by Fourier series and residuals by a second-order autoregressive process (Markov chain with use of short-term air temperatures as exogenous input. The models were calibrated using data of the first half of the period 1988–2005 and validated on the second half. Calibration of the models was done using temperatures above 20 °C only to ensure better prediction of high temperatures that are currently at stake for the aquatic conditions of the Garonne River, and particularly for freshwater migrating fishes such as Atlantic Salmon (Salmo salar L.. The results obtained for both approaches indicated that both models performed well with an average root mean square error for observed temperatures above 20 °C that varied on an annual basis from 0.55 °C to 1.72 °C on validation, and good predictions of temporal occurrences and durations of three temperature threshold crossings linked to the conditions of migration and survival of Atlantic Salmon.

  5. Effect of climate change on water temperature and attainment of water temperature criteria in the Yaquina Estuary, Oregon (USA)

    Science.gov (United States)

    Brown, Cheryl A.; Sharp, Darrin; Mochon Collura, T. Chris

    2016-02-01

    There is increasing evidence that our planet is warming and this warming is also resulting in rising sea levels. Estuaries which are located at the interface between land and ocean are impacted by these changes. We used CE-QUAL-W2 water quality model to predict changes in water temperature as a function of increasing air temperatures and rising sea level for the Yaquina Estuary, Oregon (USA). Annual average air temperature in the Yaquina watershed is expected to increase about 0.3 °C per decade by 2040-2069. An air temperature increase of 3 °C in the Yaquina watershed is likely to result in estuarine water temperature increasing by 0.7-1.6 °C. Largest water temperature increases are expected in the upper portion of the estuary, while sea level rise may mitigate some of the warming in the lower portion of the estuary. Smallest changes in water temperature are predicted to occur in the summer, and maximum changes during the winter and spring. Increases in air temperature may result in an increase in the number of days per year that the 7-day maximum average temperature exceeds 18 °C (criterion for protection of rearing and migration of salmonids and trout) as well as other water quality concerns. In the upstream portion of the estuary, a 4 °C increase in air temperature is predicted to cause an increase of 40 days not meeting the temperature criterion, while in the lower estuary the increase will depend upon rate of sea level rise (ranging from 31 to 19 days).

  6. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based...

  7. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    2010-01-01

    Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV). Subcutaneous tissue temperatures obtained by the implantable...... temperature. To test the stability of the monitoring system in a larger group of pigs, transponders were therefore inserted by the left ear base in a subsequent infection experiment with 30 pigs. Results Generally, the microchip transponders measured a subcutaneous tissue temperature, which was about 1º...

  8. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    Science.gov (United States)

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  9. Detection of pathogenic organisms in food, water, and body fluids

    Science.gov (United States)

    Wallace, William H.; Henley, Michael V.; Sayler, Gary S.

    2002-06-01

    The construction of specific bioluminescent bacteriophage for detection of pathogenic organism can be developed to overcome interferences in complex matrices such as food, water and body fluids. Detection and identification of bacteria often require several days and frequently weeks by standard methods of isolation, growth and biochemical test. Immunoassay detection often requires the expression of the bacterial toxin, which can lead to non-detection of cells that may express the toxin under conditions different from testing protocols. Immunoassays require production of a specific antibody to the agent for detection and interference by contaminants frequently affects results. PCR based detection may be inhibited by substances in complex matrices. Modified methods of the PCR technique, such as magnetic capture-hybridization PCR (MCH-PCR), appear to improve the technique by removing the DNA products away from the inhibitors. However, the techniques required for PCR-based detection are slow and the procedures require skilled personnel working with labile reagents. Our approach is based on transferring bioluminescence (lux) genes into a selected bacteriophage. Bacteriophages are bacterial viruses that are widespread in nature and often are genus and species specific. This specificity eliminates or reduces false positives in a bacteriophage assay. The phage recognizes a specific receptor molecule on the surface of a susceptible bacterium, attaches and then injects the viral nucleic acid into the cell. The injected viral genome is expressed and then replicated, generating numerous exact copies of the viral genetic material including the lux genes, often resulting in an increase in bioluminescence by several hundred fold.

  10. Temperature impacts on the water year 2014 drought in California

    OpenAIRE

    Shukla, S; Safeeq, M.; A. AghaKouchak; Guan, K; Funk, C.

    2015-01-01

    ©2015. American Geophysical Union. California is experiencing one of the worst droughts on record. We use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found t...

  11. A new approach to inventorying bodies of water, from local to global scale

    Directory of Open Access Journals (Sweden)

    Bartout, Pascal

    2015-12-01

    Full Text Available Having reliable estimates of the number of water bodies on different geographical scales is of great importance to better understand biogeochemical cycles and to tackle the social issues related to the economic and cultural use of water bodies. However, limnological research suffers from a lack of reliable inventories; the available scientific references are predominately based on water bodies of natural origin, large in size and preferentially located in previously glaciated areas. Artificial, small and randomly distributed water bodies, especially ponds, are usually not inventoried. Following Wetzel’s theory (1990, some authors included them in global inventories by using remote sensing or mathematical extrapolation, but fieldwork on the ground has been done on a very limited amount of territory. These studies have resulted in an explosive increase in the estimated number of water bodies, going from 8.44 million lakes (Meybeck 1995 to 3.5 billion water bodies (Downing 2010. These numbers raise several questions, especially about the methodology used for counting small-sized water bodies and the methodological treatment of spatial variables. In this study, we use inventories of water bodies for Sweden, Finland, Estonia and France to show incoherencies generated by the “global to local” approach. We demonstrate that one universal relationship does not suffice for generating the regional or global inventories of water bodies because local conditions vary greatly from one region to another and cannot be offset adequately by each other. The current paradigm for global estimates of water bodies in limnology, which is based on one representative model applied to different territories, does not produce sufficiently exact global inventories. The step-wise progression from the local to the global scale requires the development of many regional equations based on fieldwork; a specific equation that adequately reflects the actual relationship

  12. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm.

    Science.gov (United States)

    Jeong, Keun-Yeong; Seong, Jinsil

    2014-06-15

    The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1.

  13. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  14. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV.

  15. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  16. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  17. Teaching in Uncharted Waters: Seeking Critical Body Literacy Scripts

    Science.gov (United States)

    Robertson, Lorayne; Thomson, Dianne

    2012-01-01

    Schools are places of learning, but they are also sites of struggle when fitness, obesity, and body image issues converge for students and teachers. Responding to teachers' concerns about their students on diets, a Canadian teachers' organization produced a body image program which included a training day for schools undertaking whole-school…

  18. Body temperature control in patients with refractory septic shock:too much may be harmful

    Institute of Scientific and Technical Information of China (English)

    YANG Yan-li; LIU Da-wei; WANG Xiao-ting; LONG Yun; ZHOU Xiang; CHAI Wen-zao

    2013-01-01

    Background The lowering of body temperature is a common,almost reflexive step in the daily care of septic shock patient.However,the effect of different magnitudes of fever control on the outcome of refractory septic patients with a very poor outcome is controversial and has yet to be explored.Methods This prospective trial examined sixty-five refractory septic shock patients with a core temperature higher than 38.5℃.Patients were randomly assigned to a group achieving a "low temperature" range (LT group:36.0-37.5 ℃) or to a group achieving a "high temperature" range (HT group:37.5-38.3 ℃C) by physical methods including a water-flow cooling blanket and ice packs.A target core temperature was achieved in 1-2 hours post-treatment,and maintained for 72 hours.Averaged values of core temperature as well as hemodynamic,respiratory,and laboratory variables were analyzed at baseline and during the first 72 hours after fever control.Results Thirty-four (52.31%) patients were assigned to the LT group and thirty-one (47.69%) patients were assigned to the HT group.The mean core temperature was significantly lower in the LT group than in the HT group (36.61 vs.37.85 ℃,respectively; P < 0.0001).The average heart rate (HR) (75.5 vs.91.9 beats/min,respectively; P < 0.0001) and the mean cardiac output (CO) (5.35 vs.6.45 L/min,respectively; P =0.002) were also statistically significant lower in the LT group than in the HT group.The averaged serum lactate level was significantly higher in the LT group compared to the HT group (5.59 vs.2.82 mmol/L,respectively; P=-0.008).Fibrinogen and activated partial thromboplatin time were also different between the two groups.The 28 days mortality was significantly higher in the LT group than in the HT group (61.8vs.25.8%,respectively; P=0.003).A Cox-regression model analysis showed that mean core temperature during the 72 h period was an independent predictor of 28 days mortality (odds ratio (OR) =0.42,95%Cl 0

  19. Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits.

    OpenAIRE

    Small, P M; Täuber, M G; Hackbarth, C J; Sande, M A

    1986-01-01

    We examined the role of fever as a host defense in experimental pneumococcal meningitis in rabbits. Twelve hours after intracisternal inoculation of an encapsulated type 3 Streptococcus pneumoniae strain, body temperature was manipulated by using two different anesthetic drugs: pentobarbital, which did not affect temperature, and urethane, which mitigated the febrile response to infection. Growth rates of pneumococci in cerebrospinal fluid were dramatically influenced by modification of the f...

  20. Fluids in human bodies and biomineralization – parallels to global water resources and reactions

    NARCIS (Netherlands)

    Skinner, H. Catherine W.; King, Helen

    2014-01-01

    The amount of surface freshwaters on Earth is remarkably small considering the human population needing drinking water to survive and to ensure water in their bodies is at that very important locale where cells operate, the transcellular fluid. Like the fluid in and on the planet, body fluid is high

  1. Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study

    Directory of Open Access Journals (Sweden)

    Amanda L Brearley

    2015-10-01

    Full Text Available Question: What is the body temperature response of healthy pregnant women exercising at moderate intensity in an aqua-aerobics class where the water temperature is in the range of 28 to 33 degrees Celsius, as typically found in community swimming pools? Design: An observational study. Participants: One hundred and nine women in the second and third trimester of pregnancy who were enrolled in a standardised aqua-aerobics class. Outcome measures: Tympanic temperature was measured at rest pre-immersion (T1, after 35 minutes of moderate-intensity aqua-aerobic exercise (T2, after a further 10 minutes of light exercise while still in the water (T3 and finally on departure from the facility (T4. The range of water temperatures in seven indoor community pools was 28.8 to 33.4 degrees Celsius. Results: Body temperature increased by a mean of 0.16 degrees Celsius (SD 0.35, p < 0.001 at T2, was maintained at this level at T3 and had returned to pre-immersion resting values at T4. Regression analysis demonstrated that the temperature response was not related to the water temperature (T2 r = –0.01, p = 0.9; T3 r = –0.02, p = 0.9; T4 r = 0.03, p = 0.8. Analysis of variance demonstrated no difference in body temperature response between participants when grouped in the cooler, medium and warmer water temperatures (T2 F = 0.94, p = 0.40; T3 F = 0.93, p = 0.40; T4 F = 0.70, p = 0.50. Conclusions: Healthy pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic exercise conducted in pools heated up to 33 degrees Celsius. The study provides evidence to inform guidelines for safe water temperatures for aqua-aerobic exercise during pregnancy. [Brearley AL, Sherburn M, Galea MP, Clarke SJ, (2015 Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study. Journal of

  2. Change in the body temperature of healthy term infant over the first 72 hours of life

    Institute of Scientific and Technical Information of China (English)

    李萌霞; 孙革; NEUBAUERHenning

    2004-01-01

    Objective:To determine the range of body temperature in a group of healthy Chinese term neonates over the first 72 hours of life and to assess the influence of body weight, gestational age and route of delivery.Method: All 200 consecutive cases of neonates delivered at our hospital from March to August 2001 were included in this retrospective study.Temperatures were measured immediately after delivery, after 30 minutes, 1 hour, 2 hours, 8 hours and 15 hours and on the 2nd and 3rd day. Axillary temperatures ranging from 36.5℃ to 37℃ were regarded as normal. No cases of maternal fever or systemic infection of the newborns were discovered. All infants were discharged in good general condition. Results:The mean rectal temperature at birth was 37.19℃. The lowest average temperature was reached at 1 hour after delivery (36.54℃) with a significant difference between natural delivery (36.48℃) and section (36.59℃) (P<0.05).Temperature subsequently rose to 36.70℃ at 8 hours and 36.78℃ at 15 hours (P<0.05).Hypothermia was seen in 51.8% and hypothermia in 42.5% of the patients.On the 3rd day after delivery, 96% of all temperatures were in the normal range. A significant relation was found between hypothermia and both low birth weight (P<0.001) and low gestational age (P<0.05).Conclusion: The reference range presently used did not include all physiological temperatures in the first 72 hours of life. Considering other factors,such as birth weight, route of delivery,gestational age and body temperature on the 2nd and 3rd day of life, may help to correctly assess the significance of temperatures beyond the reference range.

  3. Change in the body temperature of healthy term infant over the first 72 hours of life

    Institute of Scientific and Technical Information of China (English)

    LI Meng-xia (李萌霞); SUN Ge (孙革); NEUBAUER Henning

    2004-01-01

    Objective: To determine the range of body temperature in a group of healthy Chinese term neonates over the first 72 hours of life and to assess the influence of body weight, gestational age and route of delivery. Method: All 200 consecutive cases of neonates delivered at our hospital from March to August 2001 were included in this retrospective study. Temperatures were measured immediately after delivery, after 30 minutes, 1 hour, 2 hours, 8 hours and 15 hours and on the 2nd and 3rd day. Axillary temperatures ranging from 36.5 oC to 37 oC were regarded as normal. No cases of maternal fever or systemic infection of the newborns were discovered. All infants were discharged in good general condition. Results: The mean rectal temperature at birth was 37.19 ℃. The lowest average temperature was reached at 1 hour after delivery (36.54 ℃) with a significant difference between natural delivery (36.48 ℃) and section (36.59 ℃) (P<0.05). Temperature subsequently rose to 36.70 ℃ at 8 hours and 36.78 ℃ at 15 hours (P<0.05). Hypothermia was seen in 51.8% and hypothermia in 42.5% of the patients. On the 3rd day after delivery, 96% of all temperatures were in the normal range. A significant relation was found between hypothermia and both low birth weight (P<0.001) and low gestational age (P<0.05). Conclusion: The reference range presently used did not include all physiological temperatures in the first 72 hours of life. Considering other factors, such as birth weight, route of delivery, gestational age and body temperature on the 2nd and 3rd day of life, may help to correctly assess the significance of temperatures beyond the reference range.

  4. Human thermoregulation and measurement of body temperature in exercise and clinical settings.

    Science.gov (United States)

    Lim, Chin Leong; Byrne, Chris; Lee, Jason Kw

    2008-04-01

    This review discusses human thermoregulation during exercise and the measurement of body temperature in clinical and exercise settings. The thermoregulatory mechanisms play important roles in maintaining physiological homeostasis during rest and physical exercise. Physical exertion poses a challenge to thermoregulation by causing a substantial increase in metabolic heat production. However, within a non-thermolytic range, the thermoregulatory mechanisms are capable of adapting to sustain physiological functions under these conditions. The central nervous system may also rely on hyperthermia to protect the body from "overheating." Hyperthermia may serve as a self-limiting signal that triggers central inhibition of exercise performance when a temperature threshold is achieved. Exposure to sub-lethal heat stress may also confer tolerance against higher doses of heat stress by inducing the production of heat shock proteins, which protect cells against the thermolytic effects of heat. Advances in body temperature measurement also contribute to research in thermoregulation. Current evidence supports the use of oral temperature measurement in the clinical setting, although it may not be as convenient as tympanic temperature measurement using the infrared temperature scanner. Rectal and oesophagus temperatures are widely accepted surrogate measurements of core temperature (Tc), but they cause discomfort and are less likely to be accepted by users. Gastrointestinal temperature measurement using the ingestible temperature sensor provides an acceptable level of accuracy as a surrogate measure of Tc without causing discomfort to the user. This form of Tc measurement also allows Tc to be measured continuously in the field and has gained wider acceptance in the last decade.

  5. Physiological responses of Chinese longsnout catfish to water temperature

    Institute of Scientific and Technical Information of China (English)

    HAN Dong; XIE Shouqi; ZHU Xiaoming; YANG Yunxia

    2011-01-01

    We evaluated the effect of water temperature on the growth and physiology of the Chinese longsnout catfish (Leiocassis longirostris Gtinther). The fish were reared at four temperatures (20, 25, 30,and 35℃) and sampled on days 7, 20, and 30. We measured plasma levels of insulin, free thyroxine (FT4),free 3,5,3′-triiodothyronine (FT3), lysozyme and leukocyte phagocytic activity. The optimum watertemperature for growth was 27.7℃. The plasma levels of insulin and FT4 declined significantly (P<0.05)on day 30 at temperatures above 20℃. Lysozyme activity was significantly (P<0.05) lower at 25℃ than at other temperatures. We conclude that final weight, insulin, FT4, and lysozyme were significantly affected by water temperature.

  6. Temperature impacts on the water year 2014 drought in California

    Science.gov (United States)

    Shukla, Shradhanand; Safeeq, Mohammad; AghaKouchak, Amir; Guan, Kaiyu; Funk, Christopher C.

    2015-01-01

    California is experiencing one of the worst droughts on record. Here we use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found that if WY 2014 temperatures resembled the 1916–2012 climatology, there would have been at least an 86% chance that winter snow water equivalent and spring-summer soil moisture and runoff deficits would have been less severe than the observed conditions. We also report that the temperature forecast skill in California for the important seasons of winter and spring is negligible, beyond a lead-time of one month, which we postulate might hinder skillful drought prediction in California.

  7. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  8. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  9. [Biodiversity in plankton, benthos, and fish communities, and ecosystems of fresh water bodies with various productivity].

    Science.gov (United States)

    Alimov, A F

    2001-01-01

    The species diversity of phyto- and zooplankton, benthic animals, and ichthyofauna was studied in continental water bodies that differ in type, geographic location, size, and productivity. The results showed that the number of species in the communities of aquatic organisms and in ecosystems depends on the area and volume of the water body and the level of plankton primary production. Corresponding relationships can be approximated by the equations of exponential and polymodal functions. The species number and biomass per unit area or volume proved to decrease the area or volume of the water body increased. The greatest number of heterotrophic species was observed in water bodies whose primary production approached 1400 kcal/m2 per year. It is proposed that the number of aquatic species in a body of water depends on the total area of the latter and the area of individual territories occupied by the representatives of certain species.

  10. River water temperature and fish growth forecasting models

    Science.gov (United States)

    Danner, E.; Pike, A.; Lindley, S.; Mendelssohn, R.; Dewitt, L.; Melton, F. S.; Nemani, R. R.; Hashimoto, H.

    2010-12-01

    Water is a valuable, limited, and highly regulated resource throughout the United States. When making decisions about water allocations, state and federal water project managers must consider the short-term and long-term needs of agriculture, urban users, hydroelectric production, flood control, and the ecosystems downstream. In the Central Valley of California, river water temperature is a critical indicator of habitat quality for endangered salmonid species and affects re-licensing of major water projects and dam operations worth billions of dollars. There is consequently strong interest in modeling water temperature dynamics and the subsequent impacts on fish growth in such regulated rivers. However, the accuracy of current stream temperature models is limited by the lack of spatially detailed meteorological forecasts. To address these issues, we developed a high-resolution deterministic 1-dimensional stream temperature model (sub-hourly time step, sub-kilometer spatial resolution) in a state-space framework, and applied this model to Upper Sacramento River. We then adapted salmon bioenergetics models to incorporate the temperature data at sub-hourly time steps to provide more realistic estimates of salmon growth. The temperature model uses physically-based heat budgets to calculate the rate of heat transfer to/from the river. We use variables provided by the TOPS-WRF (Terrestrial Observation and Prediction System - Weather Research and Forecasting) model—a high-resolution assimilation of satellite-derived meteorological observations and numerical weather simulations—as inputs. The TOPS-WRF framework allows us to improve the spatial and temporal resolution of stream temperature predictions. The salmon growth models are adapted from the Wisconsin bioenergetics model. We have made the output from both models available on an interactive website so that water and fisheries managers can determine the past, current and three day forecasted water temperatures at

  11. A body temperature model for lizards as estimated from the thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.

    2012-01-01

    A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and re

  12. Differences in oral temperature and body shape in two populations with different propensities for obesity

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Bogardus, C;

    2002-01-01

    Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is...

  13. Software tools for data modelling and processing of human body temperature circadian dynamics.

    Science.gov (United States)

    Petrova, Elena S; Afanasova, Anastasia I

    2015-01-01

    This paper is presenting a software development for simulating and processing thermometry data. The motivation of this research is the miniaturization of actuators attached to human body which allow frequent temperature measurements and improve the medical diagnosis procedures related to circadian dynamics.

  14. Changes in daily rhythms of body temperature and activity after a single social defeat in rats

    NARCIS (Netherlands)

    Meerlo, P; DeBoer, SF; Koolhaas, JM; Daan, S; VandenHoofdakker, RH

    1996-01-01

    The long-term consequences of social stress on daily rhythms of body temperature and activity in rats were studied by means of radiotelemetry with intraperitoneally implanted transmitters. Rats were subjected to a single social defeat by placing them into the territory of a male conspecific for 1 h.

  15. Postmortem time estimation using body temperature and a finite-element computer model

    NARCIS (Netherlands)

    Hartog, E.A. den; Lotens, W.A.

    2004-01-01

    In the Netherlands most murder victims are found 2-24 h after the crime. During this period, body temperature decrease is the most reliable method to estimate the postmortem time (PMT). Recently, two murder cases were analysed in which currently available methods did not provide a su.ciently reliabl

  16. Forced desynchrony of circadian rhythms of body temperature and activity in rats

    NARCIS (Netherlands)

    Strijkstra, AM; Meerlo, P; Beersma, DGM

    1999-01-01

    The daily rhythm in body temperature is thought to be the result of the direct effects of activity and the effects of an endogenous circadian clock. Forced desynchrony (FD) is a tool used in human circadian rhythm research to disentangle endogenous and activity-related effects on daily rhythms. In t

  17. Reduction of body temperature governs neutrophil retention in hibernating and nonhibernating animals by margination

    NARCIS (Netherlands)

    Bouma, Hjalmar R.; Dugbartey, George J.; Boerema, Ate S.; Talaei, Fatemeh; Herwig, Annika; Goris, Maaike; van Buiten, Azuwerus; Strijkstra, Arjen M.; Carey, Hannah V.; Henning, Robert H.; Kroese, Frans G. M.

    2013-01-01

    Low body temperature leads to decrease of circulating neutrophils due to margination in hibernating and nonhibernating animals. Hibernation consists of periods of low metabolism, called torpor, interspersed by euthermic arousal periods. During deep and daily (shallow) torpor, the number of circulati

  18. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    1997-01-01

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7 +/

  19. Development of an Anti-Theft Device using Motion Detection and Body Temperature

    Directory of Open Access Journals (Sweden)

    Rhowel Dellosa

    2014-12-01

    Full Text Available –The researcher aimed to design, assemble and determine the performance of the anti-theft device using motion detection and body temperature. The study utilized developmental design to observe the functionality of the device. Study showed that the anti-theft device can detect motion from a moving object for those with body temperature like human being, animals. A signal from the sensor circuits will trigger the receiver circuit to produce an audible sound that served as alarm. It was also found out that the output of the study is accurate in terms of detecting moving objects with body temperature during day and night times. The researchers formulated an evaluation instrument to determine its performance. Results showed that the device had a good performance and acceptable in terms of functionality. It is strongly recommended that further studies be conducted to enrich the anti-theft device using motion detection and body temperature in a controlled environment like museum and banks to determine the effectiveness of the integration of the anti-theft device.

  20. Simultaneous collection of body temperature and activity data in burrowing mammals : a new technique

    NARCIS (Netherlands)

    Long, Ryan A.; Hut, Roelof A.; Barnes, Brian M.

    2007-01-01

    Integrating physiological and behavioral observations into ecological field studies of animals can provide novel insights into relationships among animal behavior, physiology, and ecology. We describe and evaluate a new technique for simultaneously collecting body temperature (T-b) and burrow use da

  1. Orexin-a regulates body temperature in coordination with control of arousal state

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Orexins, hypothalamic neuropeptieds, are involved in modulation of food intake and arousal state. To examine further physiological roles of orexin in brain function, the effects of centrally administered orexin- A on body temperature was investigated in rats. Assessed by a telemetry-sensor system implanted into the abdominal cavity, infusion of orexin-A into the third cerebroventricle increased body temperature in a dose-responsive manner. Cumulative ambulatory activity was concomitantly increased during 6 h but not 12 h after administration of orexin-A. Expression of uncoupling protein 1 (UCP1) mRNA in brown adipose tissue, as a marker for peripheal thermogenesis which affects body temperature, failed to increase after orexin-A administration. Expression of UCP3 mRNA in skeletal muscle but not UCP 2 in white adipose tissue was upregulated by infusion of orexin-A. The resulting information indicates that orexin neuron regulates body temperature in coordination with control of arousal system independently of peripheral thermogenesis through the BAT UCP1.

  2. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  3. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    CERN Document Server

    Molaro, Jamie L; Langer, Steve A

    2015-01-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

  4. A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangman Moh

    2013-08-01

    Full Text Available The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node’s circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  5. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  6. Infrared thermoimages display of body surface temperature reaction in experimental cholecystitis

    Institute of Scientific and Technical Information of China (English)

    Dong Zhang; Yuan-Gen Zhu; Shu-You Wang; Hui-Min Ma; Yan-Yan Ye; Wei-Xing Fu; Wei-Guo Hu

    2002-01-01

    AIM: To display the thermoirnages of the body surface inexperimental cholecystitis, to observe the body surfacetemperature reaction in visceral disorders, and to study if the theory of body surface-viscera correlation is true and the mechanism of temperature changes along the meridians. METHODS: By injecting bacteria ssuspension into the stricturebile duct and gallbladder, 21 rabbits were prepared as acutepyogenic cholangiocholecystitis models, with another 8rabbits prepared by the same process except withoutinjection of bacteria suspension as control. The body surfaceinfrared thermoimages were continuously observed on thehair shaven rabbit skin with AGA-782 thermovision 24 hbefore, 1-11 d after and (2,3 wk) 4 wk after the operation witha total of over 10 records of thermoimages.RESULTS: Twelve cases out of 21 rabbits with cholecystitisrevealed bi-lsteral longitudinal high temperature lines in itstrunk; with negative findings in the control group. The high-temperature line appeared on d l-d2, first in the right trunk,after the preparation of the model, about 7 d after the modelpreparation, the lines appeared at the left side too,persisting for 4 wk. The hyper-temperature line revealed 1.1-2.7 ℃ higher than before the model preparation, 0.7-2.5 ℃higher than the surrounding skin. The length of the hightemperature line might reach a half length of the body trunk,or as long as the whole body itself.CONCLUSION: The appearance of the longitudinal hightemperature lines st the lateral aspects of the trunk in theexperimental group is directly bound up with theexperimental animals pyogenic cholecystitis, with itsrunning course quite similar to that of the GallbladderChannel of Foot Shaoyang, but different to the zones ofhyperalgesia and site of referred pain in cholecystitis.

  7. Dynamical Temperature of a One- Dimensional Many-Body Systerm in the Lennard-Jones Model

    Institute of Scientific and Technical Information of China (English)

    刘觉平; 袁保仑

    2001-01-01

    A new way to derive the formula of the dynamical temperature by using the invariance of the Liouville measure and the ergodicity hypothesis is presented, based on the invariance of the functional under the transformation of the measure. The obtained dynamical temperature is intrinsic to the underlying dynamics of the system. A molecular dynamical simulation of a one-dimensional many-body system in the Lennard-Jones model has been performed. The temperature calculated from the Hamiltonian for the stationary state of the system coincides with that determined with the thermodynamical method.

  8. Research and application of multi-angle polarization characteristics of water body mirror reflection

    Institute of Scientific and Technical Information of China (English)

    LUO YangJie; ZHAO YunSheng; LI XiaoWen; WU TaiXia; ZHAO LiLi

    2007-01-01

    On the basis of the multi-angle polarized reflection spectrum of the water samples, the water body mirror reflection polarization characteristics and mechanism are described systematically. By altering such influential factors as the angle of incidence, detecting angle, detecting azimuth angle and polarization angle, ubiquitous laws for the multi-angle polarized reflection spectrum of the water samples are obtained. Combining multi-angle remote sensing with polarized light, the multi-angle polarized reflection method about eliminating the water body mirror reflection and the suitable time of the polarized remote sensing of the water body are proposed. This study provides technical references for the application of multi-angle polarization technology on water body remote sensing.

  9. Research and application of multi-angle polarization characteristics of water body mirror reflection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of the multi-angle polarized reflection spectrum of the water samples,the water body mirror reflection polarization characteristics and mechanism are described systematically. By altering such influential factors as the angle of incidence,detecting angle,detecting azimuth angle and polari-zation angle,ubiquitous laws for the multi-angle polarized reflection spectrum of the water samples are obtained. Combining multi-angle remote sensing with polarized light,the multi-angle polarized reflec-tion method about eliminating the water body mirror reflection and the suitable time of the polarized remote sensing of the water body are proposed. This study provides technical references for the ap-plication of multi-angle polarization technology on water body remote sensing.

  10. Circadian characteristics of spontaneous physical activity and body temperature in narcoleptic patients

    Directory of Open Access Journals (Sweden)

    Xing XU

    2016-08-01

    Full Text Available Objective To assess circadian characteristics of spontaneous physical activity and deep body temperature in narcoleptic patients.  Methods Fourteen narcoleptic patients and 14 healthy age- and sex-matched control subjects were enrolled. Nocturnal polysomnography (PSG was recorded, followed by standard multiple sleep latency test (MSLT. Then all subjects were required to wear the actigraphy (actiwatch at home with continuous monitoring of spontaneous physical activity for 1-2 weeks and complete the daily sleep record. All subjects' deep body temperatures were measured at 20 time points.  Results In comparison with control subjects, PSG data suggested narcoleptic patients had significantly longer time in bed at night (P = 0.008, decreased sleep efficiency (P = 0.001, increased awakenings (P = 0.000, extended wake time after sleep onset (P = 0.000 and sleep onset rapid eye movement period (SOREMP, P = 0.002. MSLT data suggested decreased average sleep latency (P = 0.000 and increased SOREMPs (P = 0.000. Actigraphy data suggested increased nocturnal activity and nocturnal activity per hour (P = 0.000, for all, decreased daytime activity and daytime activity per hour (P = 0.000, for all and increased nocturnal activity per hour/daytime activity per hour (P = 0.000, for all. The deep body temperature in both groups showed significant circadian rhythms. The differences in mesor, amplitude and peak phase of deep body temperature between 2 groups had no statistical significance (P = 0.177, 0.730, 0.488.  Conclusions Narcoleptic patients are characterized by impaired circadian rhythm of sleep-wake and spontaneous physical activity. The limited effects on deep body temperature suggest the relative conservation of thermoregulation in narcolepsy. DOI: 10.3969/j.issn.1672-6731.2016.07.010

  11. Influence of ambient temperature on whole body and segmental bioimpedance spectroscopy measurements

    Science.gov (United States)

    Medrano, G.; Bausch, R.; Ismail, A. H.; Cordes, A.; Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Bioimpedance spectroscopy (BIS) measurements are easy to implement and could be used for continuous monitoring. However, several factors (e.g. environment temperature) influence the measurements limiting the accuracy of the technology. Changes in skin temperature produced by changes in ambient temperature are related with changes in skin blood flow and skin impedance. It is assumed that skin impedance change is responsible for the error observed in whole body and segmental measurements. Measurements including body parts more distant from the torso seem to be more affected. In the present article skin and segment impedance have been performed on healthy subjects under extreme changes in environment temperature (13-39 °C). A commercial BIS device with a range between 5 kHz and 1 MHz has been used for the measurements. The results indicate that not only skin impedance, but also impedance of deeper tissue (e.g. muscle) may be responsible for the influence of environment temperature on BIS measurements. Segmental (knee-to-knee) BIS measurements show a relative change of only 2 %, while forearm and whole body impedance changed 14 % and 8 % respectively.

  12. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy.

    Science.gov (United States)

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-10-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls. Eight hypocretin-deficient male narcolepsy type 1 patients and eight healthy matched controls underwent temperature measurement of core body and proximal and distal skin twice, and the sleep-wake state for 24 h. After the baseline assessment, 2 × 3 g of sodium oxybate was administered for 5 nights, immediately followed by the second assessment. At baseline, daytime core body temperature and proximal skin temperature were significantly lower in patients with narcolepsy (core: 36.8 ± 0.05 °C versus 37.0 ± 0.05 °C, F = 8.31, P = 0.01; proximal: 33.4 ± 0.26 °C versus 34.3 ± 0.26 °C, F = 5.66, P = 0.03). In patients, sodium oxybate administration increased proximal skin temperature during the day (F = 6.46, P = 0.04) to a level similar as in controls, but did not affect core body temperature, distal temperature or distal-proximal temperature gradient. Sodium oxybate administration normalised the predictive value of distal skin temperature and distal-proximal temperature gradient for the onset of daytime naps (P < 0.01). In conclusion, sodium oxybate administration resulted in a partial normalisation of the skin temperature profile, by increasing daytime proximal skin temperature, and by strengthening the known relationship between skin temperature and daytime sleep propensity. These changes seem to be related to the clinical improvement induced by sodium oxybate treatment. A causal relationship is not proven.

  13. Do fentanyl and morphine influence body temperature after severe burn injury?

    Science.gov (United States)

    Kahn, Steven Alexander; Beers, Ryan J; Lentz, Christopher W

    2011-01-01

    Fentanyl lacks the antiinflammatory properties of morphine. Morphine attenuates the inflammatory response through differential stimulation of μ-receptor subtypes. Patients who receive morphine during coronary artery bypass graft have been shown to experience less postoperative fever than those who receive fentanyl. Patients who receive continuous fentanyl infusions in increased room temperatures after thermal injury may be at increased risk to experience higher body temperature than those who receive morphine. The records of 28 patients with >20%TBSA burn in 30 intensive care unit rooms (13 received fentanyl and 15 received morphine or hydromorphone) and 12 trauma patients who received fentanyl in 22°C intensive care unit rooms were reviewed. Mean maximum core temperature and percentage of temperature recordings > 39°C in the first 48 hours of admission were compared between burn patients who received fentanyl, those who did not, and with trauma patients. Burn patients exposed to fentanyl experienced significantly higher temperatures (40.1 ± 0.9°C) compared with those given morphine (38.7 ± 0.8°C) and compared with trauma patients (37.5 ± 2.4°C), P Burn patients on fentanyl had temperatures > 39°C for a higher percentage of time (33 ± 27%) than those without fentanyl (7.2 ± 13%) and trauma patients (1 ± 2.8%), P Burn patients who receive fentanyl in 30°C rooms experience higher body temperatures and are febrile for a higher percentage of time than those receiving morphine only. Morphine has well-established antiinflammatory properties and likely attenuates the postburn inflammatory response more than fentanyl, resulting in lower body temperatures. This phenomenon needs to be further investigated in additional studies.

  14. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    Science.gov (United States)

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions.

  15. [Body thermal status under low-temperature conditions in brewing production].

    Science.gov (United States)

    Vasileva-Todorova, L; Dimitrova-Toneva, I

    1992-01-01

    The purpose of the present study is to trace the thermal state of workers exposed to low temperatures in brewery production, establishing the heat loss and the stress of thermoregulation. The investigations are performed in the departments for fermentation, deposit, cask washing and filling of 3 brewery plants. In order to characterize the microclimate methods of thermometry, psychometry and catathermometry are used. The heat state is controlled by methods of subjective heat perception, skin temperature, average skin temperature, temperature gradients, oral, rectal and average body temperature and the thermal content. The results of the physiological examinations point out to significant loss, which affects not only the periphery but also the deep tissues. There is an expressed risk of supercooling of the organism. The data of the heat deficit impose a correction of the working clothes and limitation of the exposure.

  16. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  17. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    Science.gov (United States)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  18. Development of solid electrolytes for water electrolysis at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Kopitzke, R.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1995-09-01

    If an electrolyzer could operate at higher temperatures, several benefits would accrue. The first is that the thermodynamic electrical energy requirement to drive the reaction would be reduced. Supplying the total enthalpy of reaction at any temperature involves a combination of electrical and thermal energy inputs. Because of the positive entropy associated with water decomposition, the thermal contribution increases as temperature rises, allowing the free energy requirement to decrease. Thus the open circuit voltage, V{sub oc}, for water splitting drops as temperature rises. At room temperature, V{sub oc} for water decomposition is 1.229 V. At 400{degrees}C, voltage requirement has dropped to 1.1 V; at 1000{degrees}C, it is only 0.92 V. Since electricity is a more expensive form of energy on a btu basis, the more energy taken from the thermal surroundings the better. Moreover, this thermal energy content could be solar-derived. While the cost of solar thermal energy varies in the range of $360-900/peak kilowatt, the installed cost of photovoltaic electricity is in the range of $4,000-5,000/peak kilowatt. Thus if one is compelled to erect an array of photovoltaic panels to generate the e.m.f. necessary to split water, substituting as much area with thermal collectors as possible represents a substantial cost savings.

  19. Swimming of pregnant rats at different water temperatures.

    Science.gov (United States)

    Osorio, R A L; Silveira, V L F; Maldjian, S; Morales, A; Christofani, J S; Russo, A K; Silva, A C; Piçarro, I C

    2003-08-01

    We studied the chronic effect of exercise during water immersion, associated with thermal stress (water temperature at 22, 35 and 40 degrees C) at an intensity of 80% of maximal work load supported in pregnant rats (P) and non-pregnant female rats (NP). P and NP were subdivided into three subgroups according to water temperature during exercise (P22 and NP22; P35 and NP35; P40 and NP40). The animals were submitted to daily swimming sessions of 10-15 min, for 19 days of pregnancy (P) or experimental conditions (NP). Plasma concentration of triglycerides, cholesterol, glucose, total protein, albumin and corticosterone were determined 24 h after the last exercise session. Weight gain and rectal temperature pre- and post-swimming session were also determined. The offspring were examined just after caesarian section on the 20th day of pregnancy to check weight, length and litter size. Pregnant rats showed an increase of triglycerides, reduction of glycemia, total protein and albumin and cholesterol (at 35 degrees C) when compared to non-pregnant animals. Such effects probably lead to an adequate delivery of substrate to the fetus and prepare the mother for lactation. Daily thermal stress did not modify metabolic responses to exercise in pregnant rats. Results also show a deleterious effect on offspring when the mother is exposed daily to extreme temperatures during swimming. These results suggest that water temperature (cold and hot) in swimming have to be considered to avoid damage in fetal development.

  20. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using...... the Distributed Temperature Sensing (DTS) system and instream temperature modelling. Locations of surface water–groundwater interactions were identified from the temperature data collected over a 2-km stream reach using a DTS system with 1-m spatial and 5-min temporal resolution. The stream under consideration...... exhibits three distinct thermal regimes within a 2 km reach length due to two major interactions. An energy balance model is used to simulate the instream temperature and to quantify the effect of these interactions on the stream temperature. This research demonstrates the effect of reach level small scale...

  1. Temperature-driven switching of water adhesion on organogel surface.

    Science.gov (United States)

    Yao, Xi; Ju, Jie; Yang, Shuai; Wang, Jianjun; Jiang, Lei

    2014-03-26

    Temperature-driven switching of water adhesion is realized on a novel n-paraffinswollen organogel by thermally controlling the transition of air/liquid/solid (ALS/ALLS) systems via the phasechange process of n-paraffin. The thermal control of both the water-drop sliding motion and the switching of the optical transparency shows potential applications in scientific research and daily life.

  2. Temperature Dependency of Water Vapor Permeability of Shape Memory Polyurethane

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-min; HU Jin-lian; YAN Hao-jing

    2002-01-01

    Solution-cast films of shape memory polyurethane have beea investigated. Differential scanning calorimetry,DMA, tensile test, water vapor permeability and the shape merry effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S- shaped curve, and increases abruptly at Tm of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D)are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below Tg. The crystalline state hardsegment is necessary for the good shape memory effect.

  3. Decadal Variation in Microflora and Fauna in 10 Water Bodies of Bhopal, Madhya Pradesh

    Directory of Open Access Journals (Sweden)

    Subrata Pani

    2014-04-01

    Full Text Available Bhopal, the capital of Madhya Pradesh is gifted with number of water resources of multiple uses. However most of the water bodies have shrunken because of siltation, illegal land filling, conversion, and encroachment. The combination of all these factors ultimately resulted in deterioration of water quality and loss of species. The present study therefore was undertaken to evaluate the impact of urbanization on water quality and bio-diversity of the 10 lakes and wetlands situated within the municipal area of the city. A comparison of data generated over the years depicts considerable reduction in total number of species in the water bodies like Upper Lake, Hathaikheda and Sarangpani Lake.

  4. Three-body recombination in heteronuclear systems at finite temperature with a large positive scattering length

    Science.gov (United States)

    Emmons, Samuel; Acharya, Bijaya; Platter, Lucas

    2017-01-01

    For an ultracold heteronuclear mixture with a large positive interspecies scattering length and negligible intraspecies scattering length, we determine the three-body recombination rate as a function of collision energy using universal functions of a single scaling variable. We use the zero-range approximation and the Skorniakov -Ter-Martirosian equation to calculate these scaling functions for a range of collision energies. Further, we explore the effects that a nonzero temperature has on three-body recombination, as well as the effects of the formation of deep dimers, for experimentally relevant heteronuclear gases such as the 6Li-133Cs mixture. NSF Grant Nos. PHY-1516077 and PHY-1555030.

  5. Biphasic changes in body temperature produced by intracerebroventricular injections of histamine in the cat.

    Science.gov (United States)

    Clark, W G; Cumby, H R

    1976-09-01

    1. Intracerebroventricular administration of histamine to cats caused hypothermia followed by a rise in body temperature. 2-Methylhistamine caused a similar biphasic response, while 3-methylhistamine had no effect on body temperature and 4-methylhistamine produced a delayed hyperthermia. Some tolerance to the hypothermic activity developed when a series of closely spaced injections of histamine was given. 2. Doses of histamine and 2-methylhistamine which altered body temperature when given centrally were ineffective when infused or injected I.V. 3. Pyrilamine, an H1-receptor antagonist, prevented the hypothermic response to histamine. 4. Hypothermic responses to histamine at an environmental temperature of 22 degrees C were comparable to responses in a cold room at 4 degrees C in both resting animals and animals acting to depress a lever to escape an external heat load. A change in error signal from the thermostat could account for these results. However, lesser degrees of hypothermia developed when histamine was given to animals in a hot environment. In some, but not all animals, this smaller response could be attributed to inadequate heat loss in spite of maximal activation of heat-loss mechanisms. 5. The hyperthermic response to histamine was antagonized by central, but not peripheral, injection of metiamide, an H2-receptor antagonist. 6. The results indicate that histamine and related agents can act centrally to cause both hypothermia, mediated by H1-receptors, and hyperthermia, mediated by H2-receptors.

  6. No relation between body temperature and arterial recanalization at three days in patients with acute ischaemic stroke

    NARCIS (Netherlands)

    M. Geurts (Marjolein); H.B. Van Der Worp (H. Bart); A.D. Horsch (Alexander D.); L.J. Kappelle (Jaap); G.J. Biessels (Geert Jan); B.K. Velthuis (Birgitta); C.B. Majoie (Charles); Y.B.W.E.M. Roos; L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); K.E. Droogh-De Greve; H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); J. Bot (Joseph); M.C. Visser (Marieke); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); T. van Seeters (Tom); A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels; L.J. Kappelle; J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2015-01-01

    textabstractBackground: Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods: We included 278 patients with acute ischaemic stroke within nine

  7. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    Science.gov (United States)

    Goodfriend, Glenn A.; Magaritz, Mordeckai; Gat, Joel R.

    1989-12-01

    Day-to-day and within-day (diel) variations in δD and δ18O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished: 1) on rain days, snail water becomes isotopically depleted approximately in the direction of the rain isotope values, but always less depleted in D as is atmospheric water vapor; 2) during the 1-3 days following a rain, the snail water becomes isotopically enriched along a line with slope persists until the next rain event. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in 18O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in 18O by ca. 1-2%. relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate 18O should provide a reliable indication of rainfall 18O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  8. Water-Body types identification in urban areas from radarsat-2 fully polarimetric SAR data

    Science.gov (United States)

    Xie, Lei; Zhang, Hong; Wang, Chao; Chen, Fulong

    2016-08-01

    This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.

  9. Body temperature null distributions in reptiles with nonzero heat capacity: seasonal thermoregulation in the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Seebacher, Frank; Elsey, Ruth M; Trosclair, Phillip L

    2003-01-01

    Regulation of body temperature may increase fitness of animals by ensuring that biochemical and physiological processes proceed at an optimal rate. The validity of current methods of testing whether or not thermoregulation in reptiles occurs is often limited to very small species that have near zero heat capacity. The aim of this study was to develop a method that allows estimation of body temperature null distributions of large reptiles and to investigate seasonal thermoregulation in the American alligator (Alligator mississippiensis). Continuous body temperature records of wild alligators were obtained from implanted dataloggers in winter (n=7, mass range: 1.6-53.6 kg) and summer (n=7, mass range: 1.9-54.5 kg). Body temperature null distributions were calculated by randomising behavioural postures, thereby randomly altering relative animal surface areas exposed to different avenues of heat transfer. Core body temperatures were predicted by calculations of transient heat transfer by conduction and blood flow. Alligator body temperatures follow regular oscillations during the day. Occasionally, body temperature steadied during the day to fall within a relatively narrow range. Rather than indicating shuttling thermoregulation, however, this pattern could be predicted from random movements. Average daily body temperature increases with body mass in winter but not in summer. Daily amplitudes of body temperature decrease with increasing body mass in summer but not in winter. These patterns result from differential exposure to heat transfer mechanisms at different seasons. In summer, alligators are significantly cooler than predictions for a randomly moving animal, and the reverse is the case in winter. Theoretical predictions show, however, that alligators can be warmer in winter if they maximised their sun exposure. We concluded that alligators may not rely exclusively on regulation of body temperature but that they may also acclimatise biochemically to seasonally

  10. Autonomous profiling device to monitor remote water bodies

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Dabholkar, N.A.; Navelkar, G.S.; Desa, E.; Afzulpurkar, S.; Mascarenhas, A.A.M.Q.; Prabhudesai, S.P.

    of temperature, phytoplankton concentration, turbidity and DO from the remote Tillari Dam - a freshwater reservoir near Dodamarg, Maharashtra, India. The profiles were received without errors at the Marine Instrumentation Laboratory at NIO. The benefits...

  11. Does Water Temperature Affect the Timing and Duration of Remigial Moult in Sea Ducks? An Experimental Approach.

    Science.gov (United States)

    Viain, Anouck; Guillemette, Magella

    2016-01-01

    Aquatic birds have high cost of thermoregulation, especially during the moulting period, yet the effect of water temperature on the moulting strategy of aquatic birds has rarely been studied. Our general hypothesis is that energy savings associated with lower thermoregulation costs would be allocated to moulting processes. We predicted that aquatic birds moulting in warm water would have a higher level of body reserves, a faster growth rate of feathers, and an earlier remigial moult onset compared with birds moulting in cold water. We used the common eider (Somateria mollissima dresseri), a large sea duck, as the model species. Captive individuals were experimentally exposed to warm (18°C) and cold (8°C) water treatments during a three year period with individuals swapped between treatments. We found a similar feather growth rate for the two water temperature treatments and in contrast to our predictions, eiders exposed to warm water had a lower body mass and showed a delayed onset of remigial moult of approximately 7 days compared with those exposed to cold water. Our data indicate that body mass variations influence the timing of moult in unexpected ways and we suggest that it likely controls the occurrence of wing moult through a hormonal cascade. This study emphasizes the importance of improving our knowledge of the effects of water temperature on remigial moult of aquatic birds, to better assert the potential effects of global warming on their survival.

  12. Does Water Temperature Affect the Timing and Duration of Remigial Moult in Sea Ducks? An Experimental Approach.

    Directory of Open Access Journals (Sweden)

    Anouck Viain

    Full Text Available Aquatic birds have high cost of thermoregulation, especially during the moulting period, yet the effect of water temperature on the moulting strategy of aquatic birds has rarely been studied. Our general hypothesis is that energy savings associated with lower thermoregulation costs would be allocated to moulting processes. We predicted that aquatic birds moulting in warm water would have a higher level of body reserves, a faster growth rate of feathers, and an earlier remigial moult onset compared with birds moulting in cold water. We used the common eider (Somateria mollissima dresseri, a large sea duck, as the model species. Captive individuals were experimentally exposed to warm (18°C and cold (8°C water treatments during a three year period with individuals swapped between treatments. We found a similar feather growth rate for the two water temperature treatments and in contrast to our predictions, eiders exposed to warm water had a lower body mass and showed a delayed onset of remigial moult of approximately 7 days compared with those exposed to cold water. Our data indicate that body mass variations influence the timing of moult in unexpected ways and we suggest that it likely controls the occurrence of wing moult through a hormonal cascade. This study emphasizes the importance of improving our knowledge of the effects of water temperature on remigial moult of aquatic birds, to better assert the potential effects of global warming on their survival.

  13. Numerical Modeling of Thermal Pollution of Large Water Bodies from Thermal and Nuclear Power Plants

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Lyakhin, Yury; Parshakova, Yanina; Tiunov, Alexey

    2016-04-01

    Currently, the major manufacturers of electrical energy are the thermal and nuclear power plants including the cooling ponds in the processing chains. For a wide range of both environmental and technological problems, the evaluation of the temperature fields in the cooling ponds at certain critical values of hydrological and meteorological parameters is important. The present paper deals with the evaluation of the thermal effect of one of the largest thermal power plant in Europe - Perm GRES - to its cooling pond which is the Kama Reservoir. Since the area of the possible impact is rather large and the reservoir itself is characterized by a very complex morphometry, numerical modeling of thermal spot propagation in the Kama River due to the discharge of warm water by Perm GRES for the entire area in the 3D-formulation with the desired detail setting morphometric characteristics of the water body meets very serious difficulties. Because of that, to solve the problem, a combined scheme of calculations based on the combination of hydrodynamic models in 2D and 3D formulations was used. At the first stage of the combined scheme implementation, 2D hydrodynamical model was developed for all possible area, using software SMS v.11.1. The boundary and initial conditions for this model were formulated on the basis of calculations made using 1D hydrodynamical model developed and applied for the entire Kama Reservoir. Application of 2D hydrodynamical model for solving the problem under consideration was needed to obtain the necessary information for setting the boundary conditions for the 3D model. Software package ANSYS Fluent v.6.3 was used for the realization of 3D model. 3D modeling was performed for different wind speeds and directions and quantitative characteristics of the discharge of warm water. To verify the models, the data of the detailed field measurements in the zones of thermal pollution of the Kama reservoir due to impact of the Perm GRES were used. A

  14. Amination of allylic alcohols in water at room temperature.

    Science.gov (United States)

    Nishikata, Takashi; Lipshutz, Bruce H

    2009-06-04

    The "trick" to carrying out regiocontrolled aminations of allylic alcohols in water as the only medium is use of a nanomicelle's interior as the organic reaction solvent. When HCO(2)Me is present, along with the proper base and source of catalytic Pd, allylic amines are cleanly formed at room temperature.

  15. Defluoridation of drinking water with pottery: effect of firing temperature.

    Science.gov (United States)

    Hauge, S; Osterberg, R; Bjorvatn, K; Selvig, K A

    1994-12-01

    Excessive fluoride (F) in drinking water should be removed, but simple, inexpensive methods of fluoride removal are not readily available. This study examines the F(-)-binding capacity of clay and clayware, especially the effect of the firing temperature on the F(-)-binding process. A series of pots were made from ordinary potter's clay and fired at 500-1000 degrees C. Likewise, small clay bricks were fired and then crushed and sieved. NaF solutions containing 10 mg/l F- (10 ppm F-) were prepared. Suitable aliquots of the solutions were poured into clay pots or exposed to powdered clayware. Samples were taken at storage periods of 30 min to 20 days and analyzed for F- by ion-selective electrodes. The rate and capacity of F(-)-binding in the clayware varied with the firing temperature. Clay fired at approximately 600 degrees C was most effective. Temperatures over 700 degrees C caused a decline in F(-)-binding, and pottery fired at 900 degrees C and above seemed unable to remove F- from water. Pots fired at 500 degrees C or less cracked in water. The findings indicate that clayware, fired at an optimal temperature, may be of practical value for partial defluoridation of drinking water.

  16. Artificial quantum thermal bath: Engineering temperature for a many-body quantum system

    Science.gov (United States)

    Shabani, Alireza; Neven, Hartmut

    2016-11-01

    Temperature determines the relative probability of observing a physical system in an energy state when that system is energetically in equilibrium with its environment. In this paper we present a theory for engineering the temperature of a quantum system different from its ambient temperature. We define criteria for an engineered quantum bath that, when coupled to a quantum system with Hamiltonian H , drives the system to the equilibrium state e/-H/TTr (e-H /T) with a tunable parameter T . This is basically an analog counterpart of the digital quantum metropolis algorithm. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. Our proposal opens the path to simulate thermodynamical properties of many-body quantum systems of size not accessible to classical simulations. Also we discuss how an artificial thermal bath can serve as a temperature knob for a hybrid quantum-thermal annealer.

  17. Experimental Research on the Application of Water Hyacinths to the Ecological Restoration of Water Bodies with Eutrophication

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Fa-kuo; SHAO; Xiao-long; SUN; Yi-chao; LIU; Hong-lei; YUAN; Min; XIE; Hua-sheng; LI; Li; YU; Dan; LIU; Xu

    2012-01-01

    [Objective] The study aims to discuss the application of water hyacinths to the ecological restoration of water bodies with eutrophication through simulation experiments. [Method] In this study, water hyacinths were used to restore the simulated eutrophic water with green algae as the dominant algae species, and then the restoration effect of the simulated eutrophic water by water hyacinths was analyzed. [Result] In the simulation test without sediment, the peak chlorophyll concentration was 434.6 mg/m3 in the tank without water hyacinths, which decreased to 285 and 119 mg/m3 respectively in the tanks with 1 and 4 water hyacinths. In the experiment with sediment, compared with the control tank without water hyacinths, a 58% reduction in chlorophyll concentration could be observed in the tank with 4 water hyacinths planted (with a coverage of 51%). The results showed that water hyacinths could inhibit alga growth notably, but there was likely a density threshold (51% coverage), and no significant eco-restoration effect was observed in the simulated eutrophic water with too few water hyacinths planted. [Conclusion] The research could provide scientific references for the ecological restoration of eutrophic water bodies.

  18. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  19. Low body temperature affects associative processes in long-trace conditioned flavor aversion.

    Science.gov (United States)

    Misanin, J R; Wilson, H A; Schwarz, P R; Tuschak, J B; Hinderliter, C F

    1998-12-01

    A series of experiments examined the effect of low body temperature on the associative process in long-trace conditioned flavor aversion. Experiment 1 demonstrated that maintaining a low body temperature between conditioned stimulus (CS) and unconditioned stimulus (US) administration facilitates the associative process and allows a flavor aversion to be conditioned in young rats over an interval that would normally not support conditioning. Experiments 2 and 3 demonstrated that this was due neither to lingering systemic saccharin serving as a CS nor to a cold induced enhancement of US intensity. Experiment 4 demonstrated that inducing hypothermia at various times during a 3-h CS-US interval results in an apparent delay of reinforcement gradient. We propose that a cold induced decrease in metabolic rate slows the internal clock that governs the perception of time and that the CS-US association depends upon perceived contiguity rather than upon an external clock-referenced contiguity.

  20. [Body temperature, Aldrete-Kroulik index, and patient discharge from the post-anesthetic recovery unit].

    Science.gov (United States)

    de Castro, Fernanda Salim Ferreira; Peniche, Aparecida de Cássia Giani; Mendoza, Isabel Yovana Quispe; Couto, Andréa Tamancoldi

    2012-08-01

    Patient discharge from post-anesthetic recovery (PAR) depends, among other factors, on normothermia and the patient's score on the Aldrete-Kroulik index. The objective of this study was to verify the relationship between the Aldrete-Kroulik index and body temperature in patients. This study was performed at the University of São Paulo University Hospital. Convenience sampling was used, and the sample consisted of 60 patients of ages between 18 and 60 years who underwent general anesthesia. The patients' body temperature was obtained by tympanic measurement, and the Aldrete-Kroulik index was measured on admission and at discharge from post-anesthetic recovery. The data were processed using SPSS, considering a significance level of 5%, and the Spearman and Wilcoxon tests were applied. In conclusion, no significant correlation was found between the two parameters for discharge.

  1. Finite-temperature second-order many-body perturbation theory revisited

    CERN Document Server

    Santra, Robin

    2016-01-01

    We present an algebraic, nondiagrammatic derivation of finite-temperature second-order many-body perturbation theory [FT-MBPT(2)], using techniques and concepts accessible to theoretical chemical physicists. We give explicit expressions not just for the grand potential but particularly for the mean energy of an interacting many-electron system. The framework presented is suitable for computing the energy of a finite or infinite system in contact with a heat and particle bath at finite temperature and chemical potential. FT-MBPT(2) may be applied if the system, at zero temperature, may be described using standard (i.e., zero-temperature) second-order many-body perturbation theory [ZT-MBPT(2)] for the energy. We point out that in such a situation, FT-MBPT(2) reproduces, in the zero-temperature limit, the energy computed within ZT-MBPT(2). In other words, the difficulty that has been referred to as the Kohn--Luttinger conundrum, does not occur. We comment, in this context, on a "renormalization" scheme recently ...

  2. Water Temperature Dynamics in High Arctic River Basins

    Science.gov (United States)

    Blaen, P. J.; Hannah, D. M.; Brown, L. E.; Milner, A. M.

    2012-04-01

    Despite the high sensitivity of polar regions to climate change, and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap is addressed by exploring high-resolution water column thermal regimes for glacier-fed and non-glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier-fed rivers (0.3 - 3.2 °C) were the lowest and most thermally-stable near the glacier terminus but increased downstream (0.7 - 2.3 °C km-1). Non-glacial rivers, where discharge was sourced primarily from snowmelt, were warmer (mean 2.9 - 5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones with increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of Alaskan rivers but low at all sites when compared to alpine glacierized environments at lower latitudes. Thermal regimes were strongly correlated (pgeomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high-latitude river systems in the context of projected warming in polar regions. We hypothesise warmer and more variable temperature regimes may prevail in future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow- and groundwater sources. Importantly, such changes could have implications for species diversity and abundance in benthic communities and influence rates of ecosystem functioning in high-latitude aquatic systems.

  3. Freshwater Fish Survey of Mathews Brake Water Body - 1980 and 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A Freshwater Fish Survey of Mathews Brake water body including land not within Mathews Brake NWR. Methods included Electroshocker, creel census, and seine.

  4. Body water distribution and risk of cardiovascular morbidity and mortality in a healthy population

    DEFF Research Database (Denmark)

    Knudsen, Nikoline Nygård; Kjærulff, Thora Majlund; Ward, Leigh Cordwin;

    2014-01-01

    Early alterations in the cardiovascular structure and function may change normal body water distribution. The resulting fluid shifts may thus serve as an early marker for cardiovascular disease. However, studies examining this in healthy populations are absent....

  5. Hydrography, Water bodies, Published in 2004, 1:24000 (1in=2000ft) scale, Washington County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Hydrography dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2004. It is described as 'Water bodies'....

  6. Shuttle Radar Topography Mission Water Body Data - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The SRTM Water Body Data files are a by-product of the data editing performed by the National Geospatial-Intelligence Agency (NGA) to produce the finished SRTM...

  7. Technologies for Upgrading Light Water Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  8. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    Science.gov (United States)

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  9. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    Science.gov (United States)

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2016-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  10. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  11. Central inhibitory effect of α-methyldopa on blood pressure, heart rate and body temperature of renal hypertensive rats

    NARCIS (Netherlands)

    Nijkamp, F.P.; Ezer, Joseph; Jong, Wybren de

    1975-01-01

    The central inhibitory effect of α-methyldopa on blood pressure, heart rate and body temperature was studied in conscious renal hypertensive rats. Systemic administration of α-methyldopa decreased mean arterial blood pressure and body temperature and caused a short lasting increase in heart rate fol

  12. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  13. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David;

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy...... range of seasonal weather conditions. In this study, analysis was undertaken to ascertain whether important theoretical assumptions required for both techniques are valid in the complex environment of a small reservoir. Statistical comparison, energy balance closure, and the relationship between...

  14. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman; Risley, John C.; Rounds, Stewart A.

    2016-01-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered

  15. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.

    2016-04-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A

  16. Landscape pattern dynamics of water body in Kaifeng city in the 20th century

    Institute of Scientific and Technical Information of China (English)

    CAOXinxiang; DINGShengyan

    2005-01-01

    Landscape spatial pattern mainly refers to the distribution of patches, which are different in size and shape in space owing to the interaction of various ecological activities. In landscape ecology study, landscape pattern has been one of the key study areas. Water body landscape plays an important role in the development history of a city, but at present city water body landscape in many cities has been destroyed, hence protecting water body in the city is becoming more and more important. In order to protect city water body landscape reasonably, the precondition is to probe the dynamics of water body landscape. Based on historical data and remote sensing data, six indexes including patch number, patch area, landscape dominance index, fractal dimension, patch density and connectivity index etc. were used to analyze landscape pattern dynamics of water body in Kaifeng city since the end of the Qing Dynasty (in the 20th century). The results showed: (1) Since the end of the Qing Dynasty, landscape area of water body in Kaifeng city increased first and then decreased from 1898 to 2002AD; the landscape dominant degree had the same changing tendency with the area. (2) Patch number of water body landscape in Kaifeng city had an increase from 1898 to 2002, but maximum area of patch, minimum area of patch and average area of patch decreased, which resulted in an increase in landscape fragment degree. (3) Connectivity index decreased and fractal dimension increased from 1898 to 2002. The reasons for these changes were the repeated overflows and flooding of the Yellow River and the influence of human activities.

  17. Trade-off Between Cost and Effectiveness of Control of Nutrient Loading into a Water Body

    OpenAIRE

    Bogardi, I.; DAVID L.; Duckstein, L.

    1983-01-01

    A system consisting of a watershed and a water body is considered, and a methodology is presented for selecting the alternative scheme offering the best compromise between economic activity in the watershed and quality of the water body. The general problem is specified for the system of a watershed and a lake endangered by eutrophication. Both economic activity and eutrophication can be characterized by several criteria. The method is applied to actual data from a subwatershed of Lake Bal...

  18. Northern squawfish Ptychochelius oregonensis, O2 consumption rate: Effects of temperature and body size

    Science.gov (United States)

    Cech, Joseph J.; Castleberry, Daniel T.; Hopkins, Todd E.; Petersen, James H.

    1994-01-01

    Northern squawfish, Ptychocheilus oregonensis (live weight range 0.361–1.973 kg), O2consumption was measured with temperature-controlled, flow-through respirometers for >24 h. Mean standard O2 consumption rate of northern squawfish increased with acclimation temperature: 24.3, 49.1, 75.0, and 89.4 mg∙kg−0.67∙h−1 at 9, 15, 18, and 21 °C, respectively. Q10analysis showed that O2 consumption rate temperature sensitivity was greatest at the intermediate acclimation temperatures (15–18 °C, Q10 = 4.10), moderate at the lower acclimation temperatures (9–15 °C, Q10 = 3.23), and lowest at the higher acclimation temperatures (18–21 °C, Q10 = 1.80). Overall Q10 was 2.96 (9–21 °C). Body size (W, grams) and temperature (T, degrees Celcius) were related to O2 consumption (, grams per gram per day) by W−0.285∙e0.105T. Northern squawfish red to white muscle ratios significantly exceeded those of rainbow trout, Oncorhynchus mykiss, in cross sections at 50 and 75% of standard length. High metabolic rates and red to white muscle ratios argue for comparability of northern squawfish with active predators such as sympatric rainbow trout.

  19. Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures?

    Science.gov (United States)

    Shine, Richard

    2004-08-01

    Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution.

  20. In utero heat stress increases postnatal core body temperature in pigs.

    Science.gov (United States)

    Johnson, J S; Sanz Fernandez, M V; Seibert, J T; Ross, J W; Lucy, M C; Safranski, T J; Elsasser, T H; Kahl, S; Rhoads, R P; Baumgard, L H

    2015-09-01

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics.

  1. The acute and subchronic effect of 3,4-methylenedioxymethamphetamine on body temperature in rats

    Directory of Open Access Journals (Sweden)

    Simić Ivan

    2009-01-01

    Full Text Available Introduction. The consumption of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy is known to cause severe hyperthermia in humans. This is of extreme importance since ecstasy is often consumed at 'rave' parties, where dancing takes place in a warm environment, which may exacerbate the effect of MDMA on thermoregulation. The present study was performed in order to evaluate the effects of single and repeated administration of MDMA on body temperature in Wistar rats. Material and methods. The study included 72 male Wistar rats, housed in groups of four in cages at a room temperature of 222oC. They were divided in two groups. The rats in the first group were treated with oral solution of MDMA (5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg and their temperature was measured hourly until 8th hour. The rats in the second group were treated with oral solution of MDMA (5 mg/kg, 10 mg/kg, 20 mg/kg every day during 15 days and their temperature was measured daily at 0th, 1st, 3rd, 5th and 8th hour. Temperature was measured by inserting a thermocouple probe 2,5 cm into the rectum. Results. Both groups showed dose dependent increase of body temperature, determined by rectal temperature measurements. The magnitude of hyperthemic response caused by subchronic administration of MDMA was markedly diminished during the experiment. Conclusion. The hyperthermic effect of MDMA was dose-dependent. The magnitude of the hyperthermic response was markedly diminished in subchronic administration.

  2. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  3. Dry body weight: Water and sodium removal targets in PD

    NARCIS (Netherlands)

    R.T. Krediet

    2006-01-01

    Background/Aims: Cardiovascular mortality is high in peritoneal dialysis patients. This may be due to the presence of hypertension and fluid overload. Dietary intake of water and sodium are likely to be important, especially in anuric patients. Methods: A review of the literature on assessment of fl

  4. Improving image quality by accounting for changes in water temperature during a photoacoustic tomography scan.

    Directory of Open Access Journals (Sweden)

    Dominique Van de Sompel

    Full Text Available The emerging field of photoacoustic tomography is rapidly evolving with many new system designs and reconstruction algorithms being published. Many systems use water as a coupling medium between the scanned object and the ultrasound transducers. Prior to a scan, the water is heated to body temperature to enable small animal imaging. During the scan, the water heating system of some systems is switched off to minimize the risk of bubble formation, which leads to a gradual decrease in water temperature and hence the speed of sound. In this work, we use a commercially available scanner that follows this procedure, and show that a failure to model intra-scan temperature decreases as small as 1.5°C leads to image artifacts that may be difficult to distinguish from true structures, particularly in complex scenes. We then improve image quality by continuously monitoring the water temperature during the scan and applying variable speed of sound corrections in the image reconstruction algorithm. While upgrading to an air bubble-free heating pump and keeping it running during the scan could also solve the changing temperature problem, we show that a software correction for the temperature changes provides a cost-effective alternative to a hardware upgrade. The efficacy of the software corrections was shown to be consistent across objects of widely varying appearances, namely physical phantoms, ex vivo tissue, and in vivo mouse imaging. To the best of our knowledge, this is the first study to demonstrate the efficacy of modeling temporal variations in the speed of sound during photoacoustic scans, as opposed to spatial variations as focused on by previous studies. Since air bubbles pose a common problem in ultrasonic and photoacoustic imaging systems, our results will be useful to future small animal imaging studies that use scanners with similarly limited heating units.

  5. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature.

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-07

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability.

  6. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands).

    Science.gov (United States)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ(18)Ocalc and δ(13)Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ(18)Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in (18)O relative to (16)O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ(18)Ocalc value of eggshell calcite to the δ(18)Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ(13)Ccalc and δ(18)Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ(13)Ccalc and high δ(18)Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  7. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    Science.gov (United States)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  8. How close do we live to water? A global analysis of population distance to freshwater bodies.

    Science.gov (United States)

    Kummu, Matti; de Moel, Hans; Ward, Philip J; Varis, Olli

    2011-01-01

    Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water.

  9. Limits to life at low temperatures and at reduced water contents and water activities

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1978-01-01

    Liquid water is generally considered an absolute requisite for functional terrestrial life; consequently, life is expected to function only over the range of temperatures that permit its existence. These limits, however, do not apply to cell survival. Some can survive the closest attainable approach to 0/sup 0/K and some can survive the loss of over 99% of their water. The author discusses various aspects of the phenomena of cell survival at low temperatures. Included are sections on events occurring during freezing and thawing of cells, the consequences of cell dehydration, limits to cell survival, and minimum temperatures for cell growth. (ACR)

  10. Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron

    Science.gov (United States)

    Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels

    2016-06-01

    The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.

  11. Effects of wearing two different types of clothing on body temperatures during and after exercise

    Science.gov (United States)

    Jeong, Woon Seon; Tokura, Hiromi

    1989-06-01

    The experiment was conducted to investigate the human thermoregulatory responses during rest, exercise and recovery at T a 20°C and 60% R.H. under the conditions of wearing two different types of clothing. Six healthy men wore two types of clothing: one covering the whole body area except the head (Type A, weight 1656 g), and the other covering only the trunk, upper arms and thighs (Type B, weight 996 g). The level of rectal temperature was kept significantly higher in Type B than in Type A during rest and recovery. The increased and decreased rates of rectal temperature during exercise and recovery were significantly greater in Type A than in Type B, respectively. These findings are discussed from the viewpoint of the differences of skin temperatures of the extremities between Type A and Type B.

  12. Visualization of high-speed interaction of bodies in water

    Science.gov (United States)

    Ishchenko, Aleksandr; Burkin, Viktor; Diachkovskii, Alexei; Korolkov, Leonid; Chupashev, Andrei; Zykova, Angelica

    2016-10-01

    The work presents opportunities of hydroballistic complex for studying the characteristics of movement super-cavitation model (SCM) on the length of waterway to 10 m. Gunfire of SCM implemented by this complex allows to study movement and collision of the different masses of SCM with underwater obstacles at subsonic, transonic and supersonic velocities in water. During the movement of SCM different masses the behavior supercavity was investigated.

  13. Does Water Temperature Affect the Timing and Duration of Remigial Moult in Sea Ducks? An Experimental Approach

    OpenAIRE

    Anouck Viain; Magella Guillemette

    2016-01-01

    Aquatic birds have high cost of thermoregulation, especially during the moulting period, yet the effect of water temperature on the moulting strategy of aquatic birds has rarely been studied. Our general hypothesis is that energy savings associated with lower thermoregulation costs would be allocated to moulting processes. We predicted that aquatic birds moulting in warm water would have a higher level of body reserves, a faster growth rate of feathers, and an earlier remigial moult onset com...

  14. Viscosity of water-in-oil emulsions. Variation with temperature and water volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Marco A.; Caldas, Jorge Navaes [Petroleo Brasileiro S.A., Rua General Canabarro, 500, Maracana, Rio, CEP 2057-900 (Brazil); Oliveira, Roberto C. [Petroleo Brasileiro S.A., Cenpes, Cidade Universitaria (Brazil); Rajagopal, Krishnaswamy [LATCA-Laboratorio de Termodinamica e Cinetica Aplicada-Escola de Quimica, Departamento de Engenharia Quimica, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitaria, C.P. 68452, CEP 21949-900, Rio de Janeiro (Brazil)

    2005-09-15

    Water-in-oil emulsions are important in the petroleum industry in production operations, where the water content of the emulsion can be as high as 60% in volume, also in petroleum refining operations where generally the water content is low. The effective viscosity of water-in-oil emulsions depends mainly on the volume fraction of dispersed phase and temperature, along with several minor effects, such as shear rate, average droplet size, droplet size distribution, viscosity and density of oil. Using six different crude oils, the effective viscosities of several synthetic water-in-oil emulsions are measured at atmospheric pressure using a dynamic viscosimeter for different shear rates, temperatures and volume fractions of the dispersed phase. The ASTM equation, method D-341, for describing viscosity as a function of temperature is extended to include the variation of dispersed phase volume fraction. The proposed equation gives good correlation between the measured viscosities of water-in-oil emulsions as a function of temperature and the volume fraction of water.

  15. Supraphysiological cyclic dosing of sustained release T3 in order to reset low basal body temperature.

    Science.gov (United States)

    Friedman, Michael; Miranda-Massari, Jorge R; Gonzalez, Michael J

    2006-03-01

    The use of sustained release tri-iodothyronine (SR-T3) in clinical practice, has gained popularity in the complementary and alternative medical community in the treatment of chronic fatigue with a protocol (WT3) pioneered by Dr. Denis Wilson. The WT3 protocol involves the use of SR-T3 taken orally by the patient every 12 hours according to a cyclic dose schedule determined by patient response. The patient is then weaned once a body temperature of 98.6 degrees F has been maintained for 3 consecutive weeks. The symptoms associated with this protocol have been given the name Wilson's Temperature Syndrome (WTS). There have been clinical studies using T3 in patients who are euthyroid based on normal TSH values. However, this treatment has created a controversy in the conventional medical community, especially with the American Thyroid Association, because it is not based on a measured deficiency of thyroid hormone. However, just as estrogen and progesterone are prescribed to regulate menstrual cycles in patients who have normal serum hormone levels, the WT3 therapy can be used to regulate metabolism despite normal serum thyroid hormone levels. SR-T3 prescription is based exclusively on low body temperature and presentation of symptoms. Decreased T3 function exerts widespread effects throughout the body. It can decrease serotonin and growth hormone levels and increase the number of adrenal hormone receptor sites. These effects may explain some of the symptoms observed in WTS. The dysregulation of neuroendocrine function may begin to explain such symptoms as alpha intrusion into slow wave sleep, decrease in blood flow to the brain, alterations in carbohydrate metabolism, fatigue, myalgia and arthralgia, depression and cognitive dysfunction. Despite all thermoregulatory control mechanisms of the body and the complex metabolic processes involved, WT3 therapy seems a valuable tool to re-establish normal body functions. We report the results of 11 patients who underwent the

  16. Predictions for water clusters from a first-principles two- and three-body force field.

    Science.gov (United States)

    Góra, Urszula; Cencek, Wojciech; Podeszwa, Rafał; van der Avoird, Ad; Szalewicz, Krzysztof

    2014-05-21

    A new rigid-monomer three-body potential has been developed for water by fitting it to more than 70 thousand trimer interaction energies computed ab initio using coupled-cluster methods and augmented triple-zeta-quality basis sets. This potential was used together with a modified form of a previously developed two-body potential and with a polarization model of four- and higher-body interactions to predict the energetics of the water trimer, hexamer, and 24-mer. Despite using the rigid-monomer approximation, these predictions agree better with flexible-monomer benchmarks than published results obtained with flexible-monomer force fields. An unexpected finding of our work is that simple polarization models predict four-body interactions to within a few percent, whereas for three-body interactions these models are known to have errors on the order of 50%.

  17. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    Science.gov (United States)

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7–8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms. PMID:20685867

  18. Light masking of circadian rhythms of heat production, heat loss, and body temperature in squirrel monkeys

    Science.gov (United States)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.

  19. Bioindicators of pollution in lentic water bodies of Nagpur city.

    Science.gov (United States)

    Kumari, Pramila; Dhadse, Sharda; Chaudhari, P R; Wate, S R

    2007-10-01

    The present study deals with assessment of water quality of four selected lakes in the Nagpur city using physicochemical and biological parameters especially phytoplankton and zooplankton community. Tropic level and pollution status of lakes were assessed on the basis of the Palmer's Pollution Index, Shannon Wiener Index and physico-chemical parameters. 57 genera belonging to 7 groups of phytoplankton and 10 genera belonging to 3 groups of zooplankton were identified from the lakes. Different patterns of dominance and sub-dominance of indicator plankton community and species along with physico-chemical quality observed confirm the pollution status of the lakes.

  20. Possible effects of delivering methionine to broilers in drinking water at constant low and high environmental temperatures

    Directory of Open Access Journals (Sweden)

    Sahin Cadirci

    2014-02-01

    Full Text Available An experiment was conducted to study the effects of water-soluble DL-methionine supplied through water and feed on the performance and carcass yield of broilers housed at two constant temperatures from 21 to 42 days of age. Birds were housed in two rooms (240 birds per room with temperatures set at 21±2 and 30±2oC, respectively. Birds were divided into five groups of equal number within each room and fed five different diets (G1-G5. A low-methionine basal diet without supplemental methionine was fed to group 1 (G1. The basal diet was fortified with 0.025% or 0.050% methionine, either in feed (G2 and G3, respectively, or in a water solution (G4 and G5, respectively. Mortality was not significantly altered by any dietary treatment. Neither feed nor water intake was affected adversely by DLmethionine inclusion in drinking water. Housing at high temperature showed deleterious effect on birds’ weight gain. Additional methionine intake both in feed and water was associated with significantly heavier body weight, weight gain and feed conversion ratio, than the basal diet at low and high environmental temperature. Carcass yields, as a percentage of live body weight, were not affected by dietary treatment. The results indicate that, under the experimental conditions, DLmethionine provided in drinking water can be effectively assimilated by broilers, at least from 21 to 42 days of age.

  1. Effects of meal size, meal type, body temperature, and body size on the specific dynamic action of the marine toad, Bufo marinus.

    Science.gov (United States)

    Secor, Stephen M; Faulkner, Angela C

    2002-01-01

    Specific dynamic action (SDA), the accumulated energy expended on all physiological processes associated with meal digestion, is strongly influenced by features of both the meal and the organism. We assessed the effects of meal size, meal type, body temperature, and body size on the postprandial metabolic response and calculated SDA of the marine toad, Bufo marinus. Peak postprandial rates of O(2) consumption (.V(O2)) and CO(2) production (.V(CO2)) and SDA increased with meal size (5%-20% of body mass). Postprandial metabolism was impacted by meal type; the digestion of hard-bodied superworms (Zophobas larva) and crickets was more costly than the digestion of soft-bodied earthworms and juvenile rats. An increase in body temperature (from 20 degrees to 35 degrees C) altered the postprandial metabolic profile, decreasing its duration and increasing its magnitude, but did not effect SDA, with the cost of meal digestion remaining constant across body temperatures. Allometric mass exponents were 0.69 for standard metabolic rate, 0.85 for peak postprandial .V(O2), and 1.02 for SDA; therefore, the factorial scope of peak postprandial .V(O2) increased with body mass. The mass of nutritive organs (stomach, liver, intestines, and kidneys) accounted for 38% and 20% of the variation in peak postprandial .V(O2) and SDA, respectively. Toads forced to exercise experienced 25-fold increases in .V(O2) much greater than the 5.5-fold increase experience during digestion. Controlling for meal size, meal type, and body temperature, the specific dynamic responses of B. marinus are similar to those of the congeneric Bufo alvarius, Bufo boreas, Bufo terrestris, and Bufo woodhouseii.

  2. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography.

    Science.gov (United States)

    Wallage, A L; Gaughan, J B; Lisle, A T; Beard, L; Collins, C W; Johnston, S D

    2017-03-23

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT (r > 0.94, P  0.80, P < 0.001). Surgery produced temporary minor inflammation and scrotal hematoma in two animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  3. Investigating aftergrowth potential of polymers in drinking water – the effect of water replacement and temperature

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    no significant effect on the aftergrowth potential of the water. The background biomass production could be affected by the choice of caps for the test bottles, since ‘blue caps’ of polyethylene leached significant amounts of AOCP17 compared to ‘red caps’ containing teflon inlayers. There was no or only slightly......The aftergrowth potential of polymers used in drinking water distribution was investigated by a batch set-up, where test pieces were incubated in biostable, inorganic nutrient amended drinking water inoculated with surface water. Biomass production was measured as ATP and followed over 16 weeks...... in the water phase and on the material surface. Supplementary measurements of HPC and NVOC were applied when investigating the biostability within the test system, and the effect of water replacement and temperature. Addition of inorganic nutrients and inoculum to the biostable drinking water had...

  4. Formation of Iron Sulfide in Water-Body Sediment and Its Influence on Environment

    Institute of Scientific and Technical Information of China (English)

    YAN Lei; SUMI Katsuhiro

    2008-01-01

    Iron sulfide is an important reductive pollutant in aquatic sediment, so that increasing attentions have been paid to it in recent years. In this paper, the formation of iron sulfide in water-body sediment was introduced. Moreover, its adverse influences upon environment were summarized, including direct contribution to deficiency of dissolved oxygen in water, association with eutrophication in water-bodies and impact on geochemical sulfur cycle. Since conventional chemical analysis for iron sulfide has several disadvantages, new technique for rapid determination of iron sulfide on-line was prospected.

  5. Temperature dependence of isotopic quantum effects in water.

    Science.gov (United States)

    Hart, R T; Benmore, C J; Neuefeind, J; Kohara, S; Tomberli, B; Egelstaff, P A

    2005-02-04

    The technique of high energy x-ray diffraction has been used to measure the temperature variation of hydrogen versus deuterium isotopic quantum effects on the structure of water. The magnitude of the effect is found to be inversely proportional to the temperature, varying by a factor of 2.5 over the range 6 to 45 degrees C. In addition, the H216O versus H218O effect has been measured at 26 degrees C and the structural difference shown to be restricted to the nearest neighbor molecular interactions. The results are compared to recent simulations and previously measured isochoric temperature differentials; additionally, implications for H/D substitution experiments are considered.

  6. Association between Body Temperature Patterns and Neurological Outcomes after Extracorporeal Cardiopulmonary Resuscitation

    Science.gov (United States)

    Ryu, Jeong-Am; Park, Taek Kyu; Chung, Chi Ryang; Cho, Yang Hyun; Sung, Kiick; Suh, Gee Young; Lee, Tae Rim; Sim, Min Seob; Yang, Jeong Hoon

    2017-01-01

    We evaluated the association of body temperature patterns with neurological outcomes after extracorporeal cardiopulmonary resuscitation (ECPR). Between December 2013 and December 2015, we enrolled 48 patients with cardiac arrest who survived for at least 24 hours after ECPR. Based on their body temperature patterns and the intention to control fever, we divided the patients into those in whom fever was actively controlled (N = 25), those with normothermia (N = 17), and those with unintended hypothermia (N = 6). The primary outcome was the Cerebral Performance Categories (CPC) scale at discharge. Of the 48 ECPR patients, 23 patients (47.9%) had good neurological outcomes (CPC 1 and 2) and 27 patients (56.3%) survived to discharge. The normothermia group showed a pattern of higher temperatures compared with the other groups during 48 hours after ECPR. Not only poor neurological outcomes but also intensive care unit (ICU) mortality occurred more often in the unintended hypothermia group than in the other two groups, regardless of the fever control strategy (p = 0.023 and p = 0.002, respectively). There were no differences in neurological outcomes and ICU mortality between the actively controlled fever group and the normothermia group (p = 0.845 and p = 0.616, respectively). Unintentionally sustained hypothermia may be associated with poor neurological outcomes after ECPR. These findings suggest that patients who are unable to generate a fever following ECPR may incur severe hypoxic brain injury. PMID:28114337

  7. The Effect of Tub Bathing on Body Temperature in Preterm Infants: Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mahnaz Jabraeili

    2015-06-01

    Full Text Available Background: Bathing of a premature newborn is important in care giving, but due to inadequate evidences, infant caregivers are not sure about bathing being safe in terms of not causing hypothermia and are not systematically considered in the infants’ care giving programs. Aim: To determine the effect of tub bathing on body temperature of preterm infants”. Methods: This study is a randomized controlled clinical trial which was conducted in 1392 in neonatal unit of Al-zahra hospital. 118 preterm infants were randomly divided into intervention and control groups. The infants in the control group received routine skin care only. The intervention group was bathed three times every other day inside the bathtub. In both group, the infants’ body temperature was measured at the same times by the researcher. Data were analyzed with SPSS software version 14 using independent T-test, Chi-square and repeated measurements tests. Results: In both groups, boys outnumbered girls. At the time of inclusion, the infants' age was 5.8 ± 8.6 days and their weight was 320.6 ± 1660.0 grams. In both groups, the mean temperature of premature infants after bath was dropped in all three times. Which was statistically significant in the first and second baths (P

  8. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.

    Science.gov (United States)

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  9. Quantum three-body calculation of the nonresonant triple-\\alpha reaction rate at low temperatures

    CERN Document Server

    Ogata, Kazuyuki; Kamimura, Masayasu

    2009-01-01

    The triple-\\alpha reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. Accurate description of the \\alpha-\\alpha nonresonant states significantly quenches the Coulomb barrier between the two-\\alpha's and the third \\alpha particle. Consequently, the \\alpha-\\alpha nonresonant continuum states below the resonance at 92.04 keV, i.e., the ground state of 8Be, give markedly larger contribution at low temperatures than in foregoing studies. We find about 20 orders-of-magnitude enhancement of the triple-\\alpha reaction rate around 10^7 K compared to the rate of the NACRE compilation.

  10. Perception of drinking water temperature and effects for humans after exercise.

    Science.gov (United States)

    Sandick, B L; Engell, D B; Maller, O

    1984-05-01

    Subjects rated the perceived temperature and hedonic values of four samples of drinking water (5 degrees, 16 degrees, 22 degrees, 38 degrees C) after exercise and on a control day. Ad lib drinking of any of the four samples was permitted for 20 minutes after exercise and intake was measured. Subjects completed questionnaires pertaining to their subjective states. Sensory thermal neutral water was found to be close to 22 degrees C which was also judged to be affectively neutral. Subjects rated 16 degrees C water higher on the hedonic scale after exercise than they did on a control day, despite the fact that no change in the perception of this temperature was observed. Responses to the symptoms questionnaire showed a marked effect of exercise on the perception of thirst, sweating, body warmth and dryness in the mouth. Sensations of stomach fullness could not account for the incomplete rehydration of most subjects in the time allotted. It was suggested that a rapid reduction in symptoms which initiate drinking was responsible for drinking termination. The role of water temperature in the reduction of thirst symptoms was discussed.

  11. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  12. Benthic soft-bodied algae as bioindicators of stream water quality

    Directory of Open Access Journals (Sweden)

    Stancheva R.

    2016-01-01

    Full Text Available This review presents the state-of-the-art of benthic soft-bodied algae as biondicators of stream and river water quality, with emphasis on bioassessments set by the legislation (e.g., European Water Framework Directive, USA Clean Water Act to promote the restoration and ensure ecological sustainability of water resources. The advantages and shortcomings of a variety of bioassessment field and laboratory methods for algae are discussed. The increasing use of soft-bodied algae in biotic indices to assess individual anthropogenic stressors, and in multimetric indices of biotic integrity to evaluate ecological condition in streams is summarized. Rapid microscopic and molecular approaches for inferring nutrient supply with heterocystous cyanobacteria and other sensitive algae are proposed. The need of better understanding of soft-bodied algae as bioindicators is discussed and suggestions are made for obtaining meaningful bioassessment information with cost-efficient efforts.

  13. Optimization of a pain model: effects of body temperature and anesthesia on bladder nociception in mice.

    Science.gov (United States)

    Sadler, Katelyn E; Stratton, Jarred M; DeBerry, Jennifer J; Kolber, Benedict J

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  14. Dinosaur body temperatures determined from isotopic (¹³C-¹⁸O) ordering in fossil biominerals.

    Science.gov (United States)

    Eagle, Robert A; Tütken, Thomas; Martin, Taylor S; Tripati, Aradhna K; Fricke, Henry C; Connely, Melissa; Cifelli, Richard L; Eiler, John M

    2011-07-22

    The nature of the physiology and thermal regulation of the nonavian dinosaurs is the subject of debate. Previously, arguments have been made for both endothermic and ectothermic metabolisms on the basis of differing methodologies. We used clumped isotope thermometry to determine body temperatures from the fossilized teeth of large Jurassic sauropods. Our data indicate body temperatures of 36° to 38°C, which are similar to those of most modern mammals. This temperature range is 4° to 7°C lower than predicted by a model that showed scaling of dinosaur body temperature with mass, which could indicate that sauropods had mechanisms to prevent excessively high body temperatures being reached because of their gigantic size.

  15. Elevational variation in body-temperature response to immune challenge in a lizard

    Directory of Open Access Journals (Sweden)

    Francisco Javier Zamora-Camacho

    2016-04-01

    Full Text Available Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1 hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2 fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain, by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment.

  16. Prediction of thermal environment via revision of PMV index with body temperature

    Institute of Scientific and Technical Information of China (English)

    Mao Yan; Liu Jiaping; Kubota Hideki

    2007-01-01

    PMV (Predicted Mean Vote) is a widely used index for evaluating the thermal environment. However, few studies have been conducted to take physiological values directly as evaluating indices. This paper assumes a linear relation between body temperature and both sweating rate and heat produced by shivering, and introduces the linear relation into the human heat balance equation to revise the classic PMV. And the assumption of linear relation is subsequently proved. The revised PMV possesses the same characteristic of dependent heat load as that of the classic one, and moreover it is convenient to be calculated.

  17. Seasonal and inter-annual temperature variability in the bottom waters over the Black Sea shelf

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    2011-02-01

    Full Text Available Long-term changes in the state of the Bottom Shelf Water (BSW on the Western shelf of the Black Sea are assessed using analysis of intra- and inter-annual variations of temperature as well as their relations to physical parameters of both shelf and deep-sea waters. First, large data sets of in-situ observations over the 20th century are compiled into high-resolution monthly climatology at different depth levels. Then, the temperature anomalies from the climatic mean are calculated and aggregated into spatial compartments and seasonal bins to reveal temporal evolution of the BSW. For the purpose of this study the BSW is defined as such shelf water body between the seabed and the upper mixed layer (bounded by the σθ = 14.2 isopycnal which has limited ability to mix vertically with oxygen-rich surface waters during the warm season (May–November due to the formation of a seasonal pycnocline. The effects of atmospheric processes at the surface on the BSW are hence suppressed as well as the action of the "biological pump". The vertical extent of the near- bottom waters is determined based on energy considerations and the structure of the seasonal pycnocline, whilst the horizontal extent is controlled by the shelf break, where strong along-slope currents hinder exchanges with the deep sea. The BSW is shown to occupy nearly half of the area of the shelf during the summer stratification period. The potential of the BSW to ventilate horizontally during the warm season with the deep-sea waters is assessed using isopycnic analysis of temperature variations. A long-term time series of temperature anomalies in the BSW is constructed from observations during the May–November period for the 2nd half of the 20th century. The results reveal a warm phase in the 1960s/70s, followed by cooling of the BSW during 1980–2001. The transition between the warm and cold periods coincides with a regime shift in the Black Sea ecosystem. While it was

  18. Providing Longitudinal Connection In Case Of Cross Sluicing On Water Bodies In Banat Hydrographic Area

    Directory of Open Access Journals (Sweden)

    Hoancă Diana

    2014-10-01

    Full Text Available On Banat Hydrographic Area level, there are a series of works which put hydrological pressures on bodies of water: accumulations, damming, water diversions, regulations, shore protection, etc. These works were created in order to ensure water demand, defend against floods, regulate discharges, and combat humidity excess. Speaking justly, they have an important socioeconomic role. Among the negative effects of longitudinal connection interruption of water bodies we can mention, the risk of not achieving the positive ecological potential of water bodies in accordance with the Water Framework Directive, the reduction of the aquatic biodiversity, the reduction or even extinction of certain aquatic species and the alteration of the flow process. Because the negative effects of the hydromorphological alterations, especially those due to the interruption of the longitudinal connection, have a significant impact on the aquatic biodiversity. At Banat Hydrographic Area level, a series of measures, have been identified for the rehabilitation of the affected water courses: the removal of the hydrotechnical constructions from the water body if they have lost their functional features, building of passages for the migration of the ichthyofauna, reconnecting of the affluents and the disconnected arms as well as other measures intended to bring things back to their natural state. The implementation of these measures is made according to the importance and the extent of their positive impact as opposed to the negative effect that might occur as a consequence of their application. Analyzing the measures aforementioned and taking into consideration the characteristics of the hydromorphological pressures on water bodies in Banat Hydrographic Area, a number of measures regarding control are supplied in this paper.

  19. Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment.

    Science.gov (United States)

    Mohan, S Venkata; Devi, M Prathima; Mohanakrishna, G; Amarnath, N; Babu, M Lenin; Sarma, P N

    2011-01-01

    Biodiesel as an eco-friendly fuel is gaining much acceptance in recent years. This communication provides an overview on the possibility of using mixed microalgae existing in ecological water-bodies for harnessing biodiesel. Microalgal cultures from five water-bodies are cultivated in domestic wastewater in open-ponds and the harvested algal-biomass was processed through acid-catalyzed transesterification. Experiments evidenced the potential of using mixed microalgae for harnessing biodiesel. Presence of palmitic acid (C16:0) in higher fraction and physical properties of algal oil correlated well with the biodiesel properties. Functional characteristics of water-bodies showed to influence both species diversity and lipid accumulation. Microalgae from stagnant water-bodies receiving domestic discharges documented higher lipid accumulation. Algal-oil showed to consist 33 types of saturated and unsaturated fatty acids having wide food and fuel characteristics. Simultaneous wastewater treatment was also noticed due to the syntrophic association in the water-body microenvironment. Diversity studies visualized the composition of algae species known to accumulate higher lipids.

  20. Novel Analytic Methods Needed for Real-Time Continuous Core Body Temperature Data.

    Science.gov (United States)

    Hertzberg, Vicki; Mac, Valerie; Elon, Lisa; Mutic, Nathan; Mutic, Abby; Peterman, Katherine; Tovar-Aguilar, J Antonio; Economos, Eugenia; Flocks, Joan; McCauley, Linda

    2016-10-18

    Affordable measurement of core body temperature (Tc) in a continuous, real-time fashion is now possible. With this advance comes a new data analysis paradigm for occupational epidemiology. We characterize issues arising after obtaining Tc data over 188 workdays for 83 participating farmworkers, a population vulnerable to effects of rising temperatures due to climate change. We describe a novel approach to these data using smoothing and functional data analysis. This approach highlights different data aspects compared with describing Tc at a single time point or summaries of the time course into an indicator function (e.g., did Tc ever exceed 38 °C, the threshold limit value for occupational heat exposure). Participants working in ferneries had significantly higher Tc at some point during the workday compared with those working in nurseries, despite a shorter workday for fernery participants. Our results typify the challenges and opportunities in analyzing big data streams from real-time physiologic monitoring.

  1. Soft-Sensing Method of Water Temperature Measurement for Controlled Cooling System

    Institute of Scientific and Technical Information of China (English)

    CAI Xiao-hui; ZHANG Dian-hua; WANG Guo-dong; LIU Xiang-hua; FAN Lei

    2003-01-01

    Aiming at the water temperature measuring problem for controlled cooling system of rolling plant, a new water temperature measuring method based on soft-sensing method with a water temperature model of on-line self correction parameter was built. A water temperature compensation factor model was also built to improve coiling temperature control precision. It was proved that the model meets production requirements. The soft-sensing technique has extensive applications in the field of metal forming.

  2. How Trace Element Levels of Public Drinking Water Affect Body Composition in Turkey.

    Science.gov (United States)

    Cetin, Ihsan; Nalbantcilar, Mahmut Tahir; Tosun, Kezban; Nazik, Aydan

    2017-02-01

    Since waterborne minerals appear in ionic form and are readily absorbed by the gastrointestinal tract, drinking water could be a crucial source of mineral intake. However, no comprehensive research has yet determined how trace elements in drinking water relate to body composition. We aimed to assess the relationship between clinically important trace elements in public drinking water and body composition in average, overweight and obese individuals in Turkey. The study's population consisted of 423 participants: 143 overweight, 138 obese and 142 healthy control individuals, grouped according to clinical cutoff points of body mass index (BMI). We measured levels of lithium (Li), nickel (Ni), lead (Pb), silicon (Si), tin (Sn), strontium (Sr), boron (B), aluminium (Al), barium (Ba) and rubidium (Rb) in samples from wells of municipal water by using inductively coupled plasma mass spectrometry. We gauged all the participants' body composition measurements with a BC-418 body composition analyser. In all the participants, body weight values showed significant positive correlations with Ni levels in drinking water, as did BMI values with Al levels and percentage of obesity with Ni, Si and B levels. In particular, Ni levels showed significant positive correlations with the basal metabolic rate, activity calories, and total activity of participants. Giving findings showing correlations between obesity-related parameters and Al, Si, B and Ni content in drinking water, we hope that these associations will be clarified with further studies including cellular, experimental and clinical studies. Hence, medical practitioners must be aware of trace element levels in drinking water for overweight and obese patients.

  3. Pavement Sealcoat, PAHs, and Water Quality of Urban Water Bodies: An Overview

    Science.gov (United States)

    Mahler, B. J.; Van Metre, P. C.; Ingersoll, C.; Kunz, J. L.; Kienzler, A.; Devaux, A.; Bony, S.

    2014-12-01

    Coal-tar-based (CT) sealcoat is used to protect and beautify the asphalt pavement of driveways and parking lots primarily in the central, southern, and northeastern U.S. and in Canada. CT sealcoat typically is 20 to 35 percent crude coal tar or coal-tar pitch and contains from 50,000 to 100,000 mg/kg PAHs, about 1,000 times more than asphalt-based (AS) sealcoat or asphalt itself. Tires and snowplows abrade the friable sealcoat surface into fine particles—PAH concentrations in fine particles (dust) from CT-sealcoated pavement are about 1,000 times higher than in dust from AS-sealcoated pavement (median total PAH concentrations 2,200 and 2.1 mg/kg, respectively). Use of CT sealcoat has several implications for urban streams and lakes. Source apportionment modeling has indicated that, in regions where CT sealcoat is prevalent, particles from sealcoated pavement are contributing the majority of the PAHs to recently deposited lake sediment, with implications for ecological health. Acute 2-d toxicity of runoff from CT-sealcoated pavement to stream biota, demonstrated for a cladoceran (Ceriodaphnia dubia) and fathead minnows (Pimephales promelas), continues for samples collected as long as weeks or months following sealcoat application. Using the fish-liver cell line RGL-W1, runoff collected as much as 36 days following CT-sealcoat application has been demonstrated to cause DNA damage and impair DNA repair capacity. These results demonstrate that CT runoff is a potential hazard to aquatic ecosystems for at least several weeks after sealant application, and that exposure to sunlight can enhance toxicity and genetic damage. Recent research has provided direct evidence that restricting use of CT sealcoat in a watershed can lead to a substantial reduction in PAH concentrations in receiving water bodies.

  4. Effects of ozone and water stress on canopy temperature, water use, and water use efficiency of alfalfa

    Energy Technology Data Exchange (ETDEWEB)

    Temple, P.J. (Univ. of California, Riverside (USA)); Benoit, L.F. (Univ. of California, Davis (USA))

    Ozone (O{sub 3}) and soil water deficit are two environmental stresses that significantly affect the growth and yield of alfalfa (Medicago sativa L). However, little is known of the responses of field-grown alfalfa to O{sub 3}, and the effects of the interaction between O{sub 3} and water stress on canopy temperature and water relations of alfalfa have not been previously reported. The objective of this 2-yr study was to determine the interactive effects of O{sub 3} and soil water deficits on canopy temperatures, water use, and water use efficiency (WUE) of alfalfa. Alfalfa (cv. WL-514) was grown in 30-3- by 5.5-m plots on Wasco sandy loam (coarse-loamy, mixed, nonacid, thermic Typic Torriorthents) in Shafter, CA, and was exposed in open-top chambers to five levels of O{sub 3} for 12 h daily, from March to October of 1984 and 1985. Ozone treatments ranged from charcoal-filtered air (CF) to twice ambient O{sub 3} concentrations. Each plot received either normal amounts of irrigation (NI) or 30% less than normal (WS). Canopy temperature-air temperature differentials ({Tc}-T{sub a}) were significantly reduced by water stress an average of 27.9% in 1984 and 44.0% in 1985. Ozone also significantly reduced {Tc}-T{sub a} by 31% in NI and 37% in WS plots in 1984, but in 1985 O{sub 3} had no effect on {Tc}-T{sub a}. Water use, rate of soil water depletion, or depth of effective rooting zone were not affected by O{sub 3}, whereas water stress significantly reduced all three. Water use efficiency was significantly reduced by O{sub 3}, averaging 12% lower in nonfiltered compared with CF plots. The effects of O{sub 3} on WUE were attributed to premature senescence and abscission of older alfalfa leaves.

  5. The effects of fire temperatures on water soluble heavy metals.

    Science.gov (United States)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (Quercus species and Mn2+ in Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem, because at long term can increase soil acidity. After all base cations have being leached

  6. Body temperature and oxygen uptake in the kinkajou (Potos flavus, Schreber), a nocturnal tropical carnivore.

    Science.gov (United States)

    Müller, E; Kulzer, E

    1978-02-01

    Two kinkajous (Potos flavus, Procyonidae) showed marked nycthemeral variations in their rectal temperature. The mean Tr at night was 38.1 +/- 0.4 degrees C SD and 36.0 +/- 0.6 degrees C SD while resting during the day. Body temperature and O2-consumption were measured at ambient temperatures from 5-35 degrees C. With one exception at 35 degrees C, hypo- or hyperthermia was never observed. At air temperatures above 30 degrees C the bears reacted with behavioural responses. O2-consumption was minimal at Ta's from 23-30 degrees C. The mean basal metabolic rate was 0.316 ml O2 g-1 h-1 which is only 65% of the expected value according to the Kleiber formula. Below 23 degrees C heat production followed the equation : y (ml O2 g-1 h-1) = 0.727--0.018 Ta. The minimal thermal conductance was 90% of the predicted value according to the formula : C (ml O2 g-1 h-1 degrees C-1) = 1.02 W-0.505 (HERREID & KESSEL, 1967). Kinkajous are another distinct exception to the mouse to elephant curve.

  7. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Saito, Shigeyoshi; Nishiura, Motoko

    2013-12-01

    The purpose of this study was to develop a simple and inexpensive system for controlling body temperature in small animal experiments using magnetic resonance imaging (MRI) and to investigate the effect of body temperature on the kinetic behavior of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the liver. In our temperature-control system, body temperature was controlled using a feedback-regulated heated or cooled air flow generated by two Futon dryers. The switches of the two Futon dryers were controlled using a digital temperature controller, in which the rectal temperature of a mouse measured by an optical fiber thermometer was used as the input. In experimental studies, male ICR mice aged 8weeks old were used and allocated into 5 groups (39-, 36-, 33-, 30-, and 27-degree groups, n=10), in which the body temperature was maintained at 39 °C, 36 °C, 33 °C, 30 °C, and 27 °C, respectively, using our system. The dynamic contrast-enhanced MRI (DCE-MRI) data were acquired with an MRI system for animal experiments equipped with a 1.5-Tesla permanent magnet, for approximately 43min, after the injection of Gd-EOB-DTPA into the tail vein. After correction of the image shift due to the temperature-dependent drift of the Larmor frequency using the gradient-based image registration method with robust estimation of displacement parameters, the kinetic behavior of Gd-EOB-DTPA was analyzed using an empirical mathematical model. With the use of this approach, the upper limit of the relative enhancement (A), the rates of contrast uptake (α) and washout (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum relative enhancement (REmax), the time to REmax (Tmax), and the elimination half-life of the contrast agent (T1/2) were calculated. The body temperature of mice could be controlled well by use of our system. Although there were no significant differences in α, AUC, and q among groups, there

  8. Effect of Flow Rate of Side-Type Orifice Intake on Withdrawn Water Temperature

    OpenAIRE

    Xueping Gao; Guangning Li; Yunpeng Han

    2014-01-01

    Side-type orifice intake is a type of selective withdrawal facility used in managing reservoirs to mitigate the negative effects of low-temperature water. Based on the temperature data of a thermal stratified reservoir in China, an experiment was conducted in flume to study the influence of intake flow rate on withdrawn water temperature with different temperature distributions. Results indicated that withdrawn water temperature changed with different flow rates. The temperature change was de...

  9. Kv4.2 mediates histamine modulation of preoptic neuron activity and body temperature.

    Directory of Open Access Journals (Sweden)

    Jasmine Sethi

    Full Text Available Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K⁺ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2⁻/⁻ preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle.

  10. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.

    Science.gov (United States)

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-01-01

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size.

  11. An artificial water body provides habitat for an endangered estuarine seahorse species

    Science.gov (United States)

    Claassens, Louw

    2016-10-01

    Anthropogenic development, especially the transformation of natural habitats to artificial, is a growing concern within estuaries and coastal areas worldwide. Thesen Islands marina, an artificial water body, added 25 ha of new estuarine habitat to the Knysna Estuary in South Africa, home to the Knysna seahorse. This study aimed to answer: (I) Can an artificial water body provide suitable habitat for an endangered seahorse species? And if so (II) what characteristics of this new habitat are important in terms of seahorse utilization? Four major habitat types were identified within the marina canals: (I) artificial reno mattress (wire baskets filled with rocks); (II) Codium tenue beds; (III) mixed vegetation on sediment; and (IV) barren canal floor. Seahorses were found throughout the marina system with significantly higher densities within the reno mattress habitat. The artificial water body, therefore, has provided suitable habitat for Hippocampus capensis, a noteworthy finding in the current environment of coastal development and the increasing shift from natural to artificial.

  12. Water used to visualize and remove hidden foreign bodies from the external ear canal.

    Science.gov (United States)

    Peltola, T J; Saarento, R

    1992-02-01

    Small foreign bodies lodged anteriorly in the tympanic sulcus are usually not visible, due to the curve of the external ear canal. Such objects can be seen with the aid of an otomicroscope and micromirror or with an endoscope, and removed by irrigation. If irrigation fails, epithelial migration on the tympanic membrane may remove lodged foreign bodies, although this may take months. Our new method, which uses water to locate small objects lodged in the tympanic sulcus, includes irrigation of the ear, adjustment of the water level to the middle curve of the external ear canal, and use of the water surface as a concave lens, making the tympanic sulcus visible. With otomicroscopy a curved ear probe can then be used to remove lodged foreign bodies from behind the curve.

  13. Simulation model of pollution spreading in the water bodies affected by mining mill

    Directory of Open Access Journals (Sweden)

    Kalinkina Natalia Mikhailovna

    2015-09-01

    Full Text Available Water bodies of the northern Karelia are polluted by liquid wastes of Kostomukshsky iron ore-dressing mill. The main components of these wastes are potassium ions. The processes of the potassium spreading in lake-river system of the River Kenty were studied using simulation modeling. For water bodies, where chemical observations were not carried out, the reconstruction of data was realized. The parameters of the model (constants of potassium transfer for seven lakes were calculated. These constants reflect the hydrological regime of water bodies and characterize high-speed transfer of potassium in the upstream and downstream, and low transfer rate - in the middle stream. It is shown that the vast majority of potassium (70% is carried out of the system Kenty and enters the lake Srednee Kuito

  14. A methodology for defining homogeneous water bodies in estuaries - Application to the transitional systems of the EU Water Framework Directive

    NARCIS (Netherlands)

    Ferreira, JG; Nobre, AM; Sirnas, TC; Silva, MC; Newton, A; Bricker, SB; Wolff, WJ; Stacey, PE; Sequeira, A; Simas, T.C.; Sequiera, A.

    2006-01-01

    A methodology is developed and tested for division of estuarine and coastal systems into water bodies for monitoring and management purposes. This division is often implicit in the choice of sampling stations and in pollution abatement measures applied to different locations - it is now an explicit

  15. Heavy metals toxicity and bioaccumulation patterns in the body organs of four fresh water fish species

    Directory of Open Access Journals (Sweden)

    Safina Kousar and Muhammad Javed

    2014-04-01

    Full Text Available Various environmental pollutants, including metals can cause toxicological effects on aquatic animals especially fish species. Laboratory experiments were conducted to determine acute toxicity and bioaccumulation patterns of arsenic (As, nickel (Ni and zinc (Zn in 150-day old fish species (Labeo rohita, Cirrhina mrigala, Catla catla and Ctenopharyngodon idella, separately, in glass aquaria under constant water temperature (30oC, total hardness (300 mg L-1 and pH (7.5. Catla catla showed significantly (PNi>As. Among exposed fish species, Cirrhina mrigala exhibited significantly higher ability to amass Ni (146.8±149.1 μg g-1 and Zn (243.0±190.5 μg g-1, followed by Ctenopharyngodon idella, Labeo rohita and Catla catla at 96-h LC50. Liver showed higher tendency to accumulate Ni, followed by gills and kidney with significant differences while kidney showed higher tendency to accumulate As, followed by liver. Fins and scales exhibited significantly (P<0.05 least tendency to accumulate all the three metals. Accumulation of metals in different fish species is the function of their membrane permeability, which is highly species specific. Due to this reason different fish species showed different amount of metal accumulated in their bodies. This study also reveals that the metals, being conservative in nature have higher ability of biomagnifications.

  16. Determination of total body water by a simple and rapid mass spectrometric method.

    Science.gov (United States)

    Van Kreel, B K; Van der Vegt, F; Meers, M; Wagenmakers, T; Westerterp, K; Coward, A

    1996-01-01

    A rapid and inexpensive method was developed to determine deuterium enrichment in body fluids. This is achieved by converting water into acetylene. To vacutainer tubes a small amount of calcium carbide is added. The tubes are evacuated and 25 microliters of sample are injected through the stopper. The reaction takes place spontaneously at room temperature in a few seconds. Enrichment at mass 27 compared with mass 26 can be determined by continuous flow isotope ratio mass spectrometry without any interference from the carrier gas helium. A series of D2O samples diluted with increasing amounts of H2O is prepared at the time of measurement of the biological samples and the measured ratios are used to calculate the isotope dilution of the unknown. The relative error of the method is 1.6% when a dose of 25 ml kg-1 is administered to the patient. The method was compared with two different methods in use in other laboratories, by a published method The means of the differences were -0.1 and 0.08 1, respectively, with standard deviations of 0.63 and 3.0.

  17. Effects of GABA agonists on body temperature regulation in GABA(B(1))-/- mice.

    Science.gov (United States)

    Quéva, Christophe; Bremner-Danielsen, Marianne; Edlund, Anders; Ekstrand, A Jonas; Elg, Susanne; Erickson, Sven; Johansson, Thore; Lehmann, Anders; Mattsson, Jan P

    2003-09-01

    1. Activation of GABA(B) receptors evokes hypothermia in wildtype (GABA(B(1))+/+) but not in GABA(B) receptor knockout (GABA(B(1))-/-) mice. The aim of the present study was to determine the hypothermic and behavioural effects of the putative GABA(B) receptor agonist gamma-hydroxybutyrate (GHB), and of the GABA(A) receptor agonist muscimol. In addition, basal body temperature was determined in GABA(B(1))+/+, GABA(B(1))+/- and GABA(B(1))-/- mice. 2. GABA(B(1))-/- mice were generated by homologous recombination in embryonic stem cells. Correct gene targeting was assessed by Southern blotting, PCR and Western blotting. GABA(B) receptor-binding sites were quantified with radioligand binding. Measurement of body temperature was done using subcutaneous temperature-sensitive chips, and behavioural changes after drug administration were scored according to a semiquantitative scale. 3. GABA(B(1))-/- mice had a short lifespan, probably caused by generalised seizure activity. No histopathological or blood chemistry changes were seen, but the expression of GABA(B(2)) receptor protein was below the detection limit in brains from GABA(B(1))-/- mice, in the absence of changes in mRNA levels. 4. GABA(B) receptor-binding sites were absent in brain membranes from GABA(B(1))-/- mice. 5. GABA(B(1))-/- mice were hypothermic by approximately 1 degrees C compared to GABA(B(1))+/+ and GABA(B(1))+/- mice. 6. Injection of baclofen (9.6 mg kg-1) produced a large reduction in body temperature and behavioural effects in GABA(B(1))+/+ and in GABA(B(1))+/- mice, but GABA(B(1))-/- mice were unaffected. The same pattern was seen after administration of GHB (400 mg kg-1). The GABA(A) receptor agonist muscimol (2 mg kg-1), on the other hand, produced a more pronounced hypothermia in GABA(B(1))-/-mice. In GABA(B(1))+/+ and GABA(B(1))+/- mice, muscimol induced sedation and reduced locomotor activity. However, when given to GABA(B(1))-/- mice, muscimol triggered periods of intense jumping and wild

  18. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  19. Room temperature synthesis of water-repellent polystyrene nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yonggang; Jiang Dong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhang Xia; Zhang Zhijun [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Wang Qihua, E-mail: wangqh@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-09-15

    A stable superhydrophobic polystyrene nanocomposite coating was fabricated by means of a very simple and easy method. The coating was characterized by scanning electron microscopy and X-ray photoelectron spectrum. The wettability of the products was also investigated. By adding the surface-modified SiO{sub 2} nanoparticles, the wettability of the coating changed to water-repellent superhydrophobic, not only for pure water, but also for a wide pH range of corrosive liquids. The influence of the drying temperature and SiO{sub 2} content on the wettability of the nanocomposite coating was also investigated. It was found that both factors had little or no significant effect on the wetting behavior of the coating surface.

  20. Interactions of Water Vapor with Oxides at Elevated Temperatures

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  1. Corrosion behaviour of construction materials for high temperature water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    2010-01-01

    proton exchange membrane (PEM) water electrolysers (HTPEMWE). All samples were exposed to anodic polarisation in 85% phosphoric acid electrolyte solution. Platinum and gold plates were tested for the valid comparison. Steady-state voltammetry was used in combination with scanning electron microscopy......Different types of corrosion resistant stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as a possible metallic bipolar plate and construction material with respect to corrosion resistance under simulated conditions corresponding to the conditions in high temperature...

  2. Enhanced Acid/Base Catalysis in High Temperature Liquid Water

    Institute of Scientific and Technical Information of China (English)

    Xiu Yang LU; Qi JING; Zhun LI; Lei YUAN; Fei GAO; Xin LIU

    2006-01-01

    Two novel and environmentally benign solvent systems, organic acids-enriched high temperature liquid water (HTLW) and NH3-enriched HTLW, were developed, which can enhance the reaction rate of acid/base-catalyzed organic reactions in HTLW. We investigated the decomposition of fructose in organic acids-enriched HTLW, hydrolysis of cinnamaldehyde and aldol condensation of phenylaldehyde with acetaldehyde in NH3-enriched HTLW. The experimental results demonstrated that organic acids-enriched or NH3-enriched HTLW can greatly accelerate acid/base-catalyzed organic reactions in HTLW.

  3. Seasonal variation of nutrient loads in treated wastewater effluents and receiving water bodies in Sedibeng and Soshanguve, South Africa.

    Science.gov (United States)

    Teklehaimanot, G Z; Kamika, I; Coetzee, M A A; Momba, M N B

    2015-09-01

    The discharge of inadequately treated wastewater effluent presents a major threat to the aquatic environment and public health worldwide. As a water-scarce country, South Africa is facing an alarming situation since most of its wastewater discharges are not meeting the permissible limit. The aim of this study was to assess the physicochemical quality of treated wastewater effluents and their impact on receiving water bodies. During the study period, pH, temperature, free chlorine residue (Cl(-)), dissolved oxygen (DO), nitrate (NO3 (-1)), orthophosphate (PO4 (-3)) and chemical oxygen demand (COD) were measured in order to ascertain whether the selected wastewater systems in Sedibeng and Soshanguve complied with the South African and World Health Organization standards during wet and dry seasons. These parameters were analysed for samples collected from raw wastewater influent, treated wastewater effluent and receiving water bodies. The study was carried out between August 2011 and May 2012, and samples were collected on a weekly basis during both seasons. The physicochemical quality of effluents did not comply with the regulatory limits set by South Africa in terms of pH in Meyerton, Rietgat and Sandspruit (pH 7.6 to 8.1); free chlorine in Sandspruit (0.27 ± 0.05 mg/L); nitrate in Leeuwkuil and Rietgat (2.1 and 3.8 mg/L, respectively) during the wet season; orthophosphate in Meyerton during the wet season and in Sandspruit during the dry season (1.3 mg PO4 (-3) as P/L and 1.1 mg PO4 (-3) as P/L, respectively); and chemical oxygen demand in Rietgat during the dry season and in Sandspruit during the wet season (75.5 and 35 mg/L, respectively). Furthermore, the quality of the receiving water bodies did not comply with the South African standards recommended for pH, chemical oxygen demand and orthophosphate and DO (5 mg/L) in Rietgat during the wet season. The geometric mean of the water quality index values ranged between 32.4 and 36.9 for the effluent samples

  4. Comparison of absorption properties of colored dissolved organic matter in six different case 2 water bodies

    Science.gov (United States)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Okullo, Willy; Stamnes, Knut; Stamnes, Jakob J.

    2017-02-01

    Colored Dissolved Organic Matter (CDOM) is one of the main factors controlling the penetration of solar radiation in Case 2 water and affecting satellite-based estimation of ocean color. We present absorption properties of CDOM sampled in 6 water bodies including three in Norway (Røst coastal water, Samnangerfjord, Lysefjord), two in China (Bohai Sea, Lake Namtso), and one in Africa (Lake Victoria). These locations, which range from near the equator to subarctic regions, include water types from oligotrophic to eutrophic, and altitudes from sea level to 4,700 m above sea level.

  5. Molecular dynamics of water at high temperatures and pressures

    Science.gov (United States)

    Brodholt, John; Wood, Bernard

    1990-09-01

    There are currently no precise P-V-T data for water at pressures above 8.9 kbars and temperatures above 900°C. Many petrological processes in the lower crust and upper mantle take place under more extreme conditions, however and petrologists commonly rely on empirical equations of state such as the modified Redlich-Kwong equation (MRK) to extrapolate the low pressure data. In this study we have taken an alternative approach and attempted to simulate the P-V-T properties of water using molecular dynamics. The TIP4P intermolecular potential for H 2O ( JORGENSEN et al., 1983) has had considerable success predicting the properties of water at low temperatures and pressures up to 10 kbar ( MADURA et al., 1988). We have extended its application by making molecular dynamics (MD) simulations at a density of 1.0 g/cc from 300 to 2300 K and 0.5 to 40 kbars. The results agree with the P-V-T data of BURNHAM et al. (1969) (up to 10 kbars) with an average error of under 2%. This is a much better concordance than is obtained with any of the currently used versions of MRK. At 300 kbars and 2000 K the MD simulations predict densities within 8% of those obtained in the shock wave experiments of KORMER (1968). This is a very good agreement given the fact that water ionizes to some extent at high pressures ( MITCHELL and NELLIS, 1982) and we have made no provisions for this effect. We conclude that molecular dynamics simulations provide the possibility of estimating P-V-T properties in the upper mantle P-T regime with very good accuracy.

  6. Water bodies extraction from high resolution satellite images using water indices and optimal threshold

    Science.gov (United States)

    AlMaazmi, Alya

    2016-10-01

    Over the past years, remote sensing imagery made the earth monitoring more effective and valuable through developing different algorithms for feature extraction. One of the significant features are water surfaces. Water features extraction such as pools, lakes and gulfs gained a considerable attention over the past years, as water plays critical role for surviving, planning and protecting water resources. Past worth efforts in water extraction from remote sensed images mainly faced the challenge of misclassification, especially with shadows. Shadows are typical noise objects for water, extraction, as they have almost identical spectrum characteristics, which result difficulty to discriminate between water and shadows in a remote sensing image, especially in the urban region such as Dubai. Therefore, water extraction algorithm is developed in order to extract water surfaces accurately with shadows elimination. The detection is based on spectral information such as water indices (WIs), and morphological operations. Water indices are used to discriminate water surfaces from lands based on combining two or more water indices such as Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), and Normalized Saturation-value Difference Index (NSVDI), used at an optimum threshold. The morphological operators will be performed using opening by reconstruction to discriminate between water and shadows at an optimum threshold. Both Water Indices and morphological operation results will be infused together in one image that result a binary image of water objects. The algorithm and final results are compared with ground truth image for accuracy assessment, the results were satisfactory with an accuracy of 95% and higher and very minimum negligible shadows appeared. Moreover the resultant image transformed into vector features in order to create a shape file that can be used and viewed in google earth and Geo software.

  7. Phytocenotic structure and physico-chemical properties of a small water body in agricultural landscape

    Directory of Open Access Journals (Sweden)

    Joanna Sender

    2014-07-01

    Full Text Available Small water bodies, until recently considered as wasteland, are an essential element of the so-called small water retention. Their main use can vary significantly, but they always play a positive role by increasing water resources and enhancing the natural values of the landscape. Moreover, by increasing bio- diversity thanks to plants forming habitats for many species of flora and fauna, small water bodies act as a biofilter, improving water quality. But these small reservoirs belong to the groups of waters that are most exposed to damage, especially within the catchment area. Because of the invaluable role of small farmland water bodies, a study was undertaken to investigate their phytocenotic structure. In addition, an attempt was made to assess the level of threats and to indicate their role in the development of habitat conditions. The investigated reservoir was created in 2007. Before that time, it functioned as a part of the Zemborzycki reservoir, as they were close to each other. Almost the entire surrounding of this small reservoir consisted of farmland. In 2011 a revitalization project was carried out in the reservoir. Plants typical for wetland habitats were mainly introduced, while synanthropic vegetation was removed. Based on chemical and physical analyses, it can be concluded that the investigated reservoir serves as a natural biofilter thanks to the qualitative and quantitative changes in the structure of macrophytes. After the revitalization project, the investigated pond gained new aesthetic and ecological qualities.

  8. Water level influences on body condition of Geophagus brasiliensis (Perciformes: Cichlidae in a Brazilian oligotrophic reservoir

    Directory of Open Access Journals (Sweden)

    Alejandra Filippo Gonzalez Neves dos Santos

    Full Text Available Effects of water level fluctuations on body condition of Geophagus brasiliensis were studied in a 30 km² Brazilian oligotrophic reservoir. Physiological condition (K and gonadosomatic index (GSI were compared according to water level (low and high. Females' best conditions were associated to higher resources availability during high water, since gonad development did not change between low and high water. Males' condition did not change between water levels, while the highest gonad development occurred in low water. Females presented higher reproductive investment than males, which allocated most of energy for somatic development. This strategy could be a mechanism to undergo the stress caused by oligotrophic characteristics of the reservoir enhanced during low water level.

  9. Water Bodies and Vegetation in the California-Baja California Border Region a Remote Sensors Perspective.

    Science.gov (United States)

    Hinojosa, A.; Mexicano-Vargas, M. L.; Serrato, B. A.

    2007-05-01

    The California-Baja California border region although they share watersheds, similar climate and landscape, there is a big contrast in the vegetation cover and water bodies between the two countries as seen from remote sensors. There is a stronger signature of vegetation and larger number of water bodies in the California side. To do a quantitative estimate of these differences, a comparative analysis of vegetation and water bodies was perfomerd along a strip of 100 km from both sides of the border with remote sensing techniques using Landsat TM images from 1984 to 2006. The strong absorption of water to short wave infrared radiation captured by band 5 of TM Landsat sensor (1.55- 1.75 micrometers) is use to detect water bodies. The histogram segmentation technique was used with TM 5/1 band ratios reinforced with a shades prediction technique using the sun position and a digital elevation model. The aerial extent of detected water bodies is estimated. Also an analysis from 1972 trough 2002 of the Mexican portion of Colorado river delta will be presented, with emphasis on flood events induced by abnormal snowmelts and higher precipitations in the high basin; 250 Landsat image previews were collected , from which 157 were selected to integrate 63 scenes that provide a dynamic picture of the Colorado delta river over 30 years. A regression with the annual averages of inundated areas and annual water flow data from E.U. to Mexico was made with a correlation coefficient of 0.912. The normalized difference vegetation index (NDVI) was used to estimate the vegetation greenness in the agricultural valleys and in natural vegetated areas along the mountains on both sides of the border. The spatial distribution of the NDVI and the differences between zones with the same land use regime on both sides of the border is presented.

  10. Zero-Heat-Flux Thermometry for Non-Invasive Measurement of Core Body Temperature in Pigs.

    Directory of Open Access Journals (Sweden)

    Maria Guschlbauer

    Full Text Available Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, temperature surveillance is a prerequisite in general anesthesia settings during experimental surgeries. The gold standard to measure the core body temperature (Tcore is placement of a Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. Therefore, Tcore is commonly examined in the urine bladder and rectum. However, these procedures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux (ZHF thermometry is an alternative, non-invasive method quantifying Tcore in human patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cranial anatomy is different to the human's, the optimal location of the patch remains unclear to date. The aim was to compare three different patch locations of ZHF thermometry in a porcine hypothermia model. Hypothermia (33.0 °C Tcore was conducted in 11 anesthetized female pigs (26-30 kg. Tcore was measured continuously by an invasive Swan-Ganz catheter in the pulmonary artery (Tpulm. A ZHF thermometry device was mounted on three different defined locations. The smallest average difference between Tpulm and TZHF during stable temperatures was 0.21 ± 0.16 °C at location A, where the patch was placed directly behind the eye. Also during rapidly changing temperatures location A showed the smallest bias with 0.48 ± 0.29 °C. Location A provided the most reliable data for Tcore. Therefore, the ZHF thermometry patch should be placed directly behind the left temporal corner of the eye to provide a non-invasive method for accurate measurement of Tcore in pigs.

  11. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle.

    Science.gov (United States)

    Alzahal, O; Alzahal, H; Steele, M A; Van Schaik, M; Kyriazakis, I; Duffield, T F; McBride, B W

    2011-07-01

    The objective of this study was to validate the efficacy of a radiotelemetric bolus (RTB) to detect changes in ruminal temperature resulting from (1) systemic illnesses that are associated with febrile responses and (2) subacute ruminal acidosis (SARA). Eight rumen-fistulated, lactating Holstein cows (586±37 kg of body weight, 106±18 d in milk) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement. Each period consisted of 21 d. The factors were 2 diets, a moderate forage:concentrate [MFC; 52:48; % of dry matter (DM)] or a high forage:concentrate (HFC; 65:35, % of DM) total mixed ration, and a challenge with a single intramammary injection of lipopolysaccharide (LPS; 100 μg derived from Escherichia coli 0111:B4) or no LPS (sterile saline). Thus, the 4 resulting treatments were (1) MFC with LPS challenge, (2) MFC with saline, (3) HFC with LPS challenge, and (4) HFC with saline. Cows were fed at 0800 and 1400 h daily. Cows received the intramammary injections at 0900 h of d 21. Ruminal pH and ruminal temperature were also measured on d 21 every minute via an indwelling logging system that resided in the ventral sac of the rumen and via a radiotelemetric bolus that resided in the reticulum. Vaginal temperature was also recorded every minute via temperature loggers. Prior to LPS injection, the duration of rumen pH below 5.6 (indicative of SARA) was higher in cows receiving MFC than cows receiving HFC (148±24 and 62±24 min/d, respectively). The temperature measured at the same time via RTB was higher for MFC than HFC cows (167±21 vs. 104 vs. 21 min/d above 38.8°C, respectively). The following day, cows challenged with LPS showed signs of mastitis within the injected quarters, depressed DM intake, decreased milk yield, and a peak vaginal temperature of 41.3±0.1°C 5.5h after the LPS injection. The RTB system successfully detected a fever response parallel to that measured by the vaginal loggers but temperature peak detected by

  12. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers.

    Science.gov (United States)

    Lee, Y; Bok, J D; Lee, H J; Lee, H G; Kim, D; Lee, I; Kang, S K; Choi, Y J

    2016-02-01

    Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.

  13. Analysis of body water compartments after a short sauna bath using bioelectric impedance analysis.

    Science.gov (United States)

    Servidio, M-F; Mohamed, E I; Maiolo, C; Hereba, A T; Perrone, F; Garofano, P; Iacopino, L

    2003-10-01

    Studies have suggested that long-term sauna bathing may lower blood pressure in persons with hypertension by causing a direct loss of extracellular water and plasma minerals. The objective of the present study was to evaluate the effect of short-term sauna bathing on body water compartments as estimated by bioelectric impedance analysis (BIA). We recruited 15 men [mean age (+/-SD) of 23.93+/-5.12 years and mean body mass index (BMI) of 23.25+/-2.84 kg/m(2)] and 10 women matched for age and BMI. Total body resistance, reactance, and impedance were measured for all participants using BIA, at baseline, after a short sauna bath, and after a rest period. Total, extracellular, and intracellular water compartments were calculated using BIA formulae. There were no significant differences for any of the body water compartments when comparing the measurements taken before and after the sauna bath and after the rest period. However, it remains to be determined whether or not BIA is sensitive to rapid changes in water volume.

  14. The risk of river pollution due to washout from contaminated floodplain water bodies during high floods

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Parshakova, Yanina; Tiunov, Alexey

    2016-04-01

    Today, the potential impact of extremely high floods, which in the last years have become a rather frequent weather-related disaster, is the problem of primary concern. In studies of the potential impact of floods the emphasis is placed first of all on the estimation of possible flood zones and the analysis of the flow regimes in these zones. However, in some cases the hydrochemical parameters related to changes in the chemical composition of water are more important than the hydraulic parameters. It is generally believed that the higher is the flow rate, the more intensive is the process of dissolution, i.e. the lower is the concentration of limiting contaminants in water. However, this statement is valid provided that flooding does not activate new sources of water pollution such as contaminated floodplain water bodies located in the vicinity of water supply systems. Being quite reliable and safe at small and moderate discharges, in the case of extremely high level of river waters they become intensive sources of water pollution, essentially limiting the water consumption schedule for downstream water consumers. It should be noted that compared to the well-studied mechanisms of waste discharge due to failure of hydraulic engineering structures by flood waves, the mechanisms of pollutant washout from the contaminated floodplain water bodies by the flood waves is still poorly understood. We analyze the impacts of such weather-related events on the quality of water in the water intake system, taking as an example, the section of the Vyatka River located in the Prikamskaya lowland of the Russian Federation. The risk of river pollution due to washout from the contaminated floodplain water bodies during high floods is studied by hydrodynamical modeling in the framework of combined approach using one-, two- and three-dimensional hydrodynamic models are implemented and by in situ measurements. It is shown that during high floods the removal of pollutants from the

  15. Environmental Evolution of the Water Body of Qinghai Lake since the Postglacial Age

    Institute of Scientific and Technical Information of China (English)

    张彭熹; 张保珍; 等

    1989-01-01

    Based on the data developed from various s natural waters in the Qinghai Lake area and ostracode shells present in drill core QH-16A of recent lake-floor sediments ,this paper discusses the distribution of stable isotopes in the modern water body of Qinghai Lake,and the initial isotopic composition of the lake water has been deduced ,Studies of δ18O,δ13C,Mg/Ca and Sr/Ca in ostracode shells provide the basis for the establishment of the model of climatic fluctuation in the Qinghai Lake area since the postaglacial age,as well as for the elucidation of the environmental evolution of the water body of Qinghai Lake since the postglacial age.

  16. Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data

    CERN Document Server

    de Martino, I; Atrio-Barandela, F; Ebeling, H; Kashlinsky, A; Kocevski, D; Martins, C J A P

    2015-01-01

    We constrain the deviation of adiabatic evolution of the Universe using the data on the Cosmic Microwave Background (CMB) temperature anisotropies measured by the {\\it Planck} satellite and a sample of 481 X-ray selected clusters with spectroscopically measured redshifts. To avoid antenna beam effects, we bring all the maps to the same resolution. We use a CMB template to subtract the cosmological signal while preserving the Thermal Sunyaev-Zeldovich (TSZ) anisotropies; next, we remove galactic foreground emissions around each cluster and we mask out all known point sources. If the CMB black-body temperature scales with redshift as $T(z)=T_0(1+z)^{1-\\alpha}$, we constrain deviations of adiabatic evolution to be $\\alpha=-0.007\\pm 0.013$, consistent with the temperature-redshift relation of the standard cosmological model. This result could suffer from a potential bias associated with the CMB template, that we quantify it to be less than $-0.02$, but is free from those biases associated with using TSZ selected ...

  17. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    Science.gov (United States)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  18. Nocturnal loss of body reserves reveals high survival risk for subordinate great tits wintering at extremely low ambient temperatures.

    Science.gov (United States)

    Krams, Indrikis; Cīrule, Dina; Vrublevska, Jolanta; Nord, Andreas; Rantala, Markus J; Krama, Tatjana

    2013-06-01

    Winter acclimatization in birds is a complex of several strategies based on metabolic adjustment accompanied by long-term management of resources such as fattening. However, wintering birds often maintain fat reserves below their physiological capacity, suggesting a cost involved with excessive levels of reserves. We studied body reserves of roosting great tits in relation to their dominance status under two contrasting temperature regimes to see whether individuals are capable of optimizing their survival strategies under extreme environmental conditions. We predicted less pronounced loss of body mass and body condition and lower rates of overnight mortality in dominant great tits at both mild and extremely low ambient temperatures, when ambient temperature dropped down to -43 °C. The results showed that dominant great tits consistently maintained lower reserve levels than subordinates regardless of ambient temperature. However, dominants responded to the rising risk of starvation under low temperatures by increasing their body reserves, whereas subdominant birds decreased reserve levels in harsh conditions. Yet, their losses of body mass and body reserves were always lower than in subordinate birds. None of the dominant great tits were found dead, while five young females and one adult female were found dead in nest boxes during cold spells when ambient temperatures dropped down to -43 °C. The dead great tits lost up to 23.83 % of their evening body mass during cold nights while surviving individuals lost on average 12.78 % of their evening body mass. Our results show that fattening strategies of great tits reflect an adaptive role of winter fattening which is sensitive to changes in ambient temperatures and differs among individuals of different social ranks.

  19. Flow and transport within a coastal aquifer adjacent to a stratified water body

    Science.gov (United States)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  20. Effect of Flow Rate of Side-Type Orifice Intake on Withdrawn Water Temperature

    Directory of Open Access Journals (Sweden)

    Xueping Gao

    2014-01-01

    Full Text Available Side-type orifice intake is a type of selective withdrawal facility used in managing reservoirs to mitigate the negative effects of low-temperature water. Based on the temperature data of a thermal stratified reservoir in China, an experiment was conducted in flume to study the influence of intake flow rate on withdrawn water temperature with different temperature distributions. Results indicated that withdrawn water temperature changed with different flow rates. The temperature change was determined by the water temperature gradients above and below the intake, whereas the change trend of temperature depended on the difference between the water temperature gradient above and below the intake. We likewise proposed a new equation with which the withdrawn water temperature of a thermal stratified reservoir using a side-type orifice could be calculated. These findings could be directly applied to the design and operation of side-type orifice intake in thermal stratified reservoirs.

  1. Effect of flow rate of side-type orifice intake on withdrawn water temperature.

    Science.gov (United States)

    Gao, Xueping; Li, Guangning; Han, Yunpeng

    2014-01-01

    Side-type orifice intake is a type of selective withdrawal facility used in managing reservoirs to mitigate the negative effects of low-temperature water. Based on the temperature data of a thermal stratified reservoir in China, an experiment was conducted in flume to study the influence of intake flow rate on withdrawn water temperature with different temperature distributions. Results indicated that withdrawn water temperature changed with different flow rates. The temperature change was determined by the water temperature gradients above and below the intake, whereas the change trend of temperature depended on the difference between the water temperature gradient above and below the intake. We likewise proposed a new equation with which the withdrawn water temperature of a thermal stratified reservoir using a side-type orifice could be calculated. These findings could be directly applied to the design and operation of side-type orifice intake in thermal stratified reservoirs.

  2. The Effect of Water Compressibility on a Rigid Body Movement in Two Phase Flow

    Science.gov (United States)

    Park, Chan Wook; Kim, Hak Sun; Lee, Sungsu

    2008-11-01

    The motion of a rigid body in a tube full of water-filled, initiated by a sudden release of highly pressurized air is simulated presuming the flow field as a two dimensional one. The effects of water compressibility on the body movement are investigated, comparing results based on the Fluent VOF model where water is treated as an incompressible medium with those from the presently developed VOF scheme. The present model considers compressibility of both air and water. The Fluent results show that the body moves farther and at higher speeds than the present ones. As time proceeds, the relative difference of speed and displacement between the two results drops substantially, after acoustic waves in water traverse and return the full length of the tube several times. To estimate instantaneous accelerations, however, requires implementation of the water compressibility effect as discrepancies between them do not decrease even after several pressure wave cycles. This work was supported by a research fund granted from Agency for Defense Development, South Korea.

  3. Hydrographic Surveys for Six Water Bodies in Eastern Nebraska, 2005-07

    Science.gov (United States)

    Johnson, Michaela R.; Andersen, Michael J.; Sebree, Sonja K.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Nebraska Department of Environmental Quality, completed hydrographic surveys for six water bodies in eastern Nebraska: Maskenthine Wetland, Olive Creek Lake, Standing Bear Lake, Wagon Train Lake and Wetland, Wildwood Lake, and Yankee Hill Lake and sediment basin. The bathymetric data were collected using a boat-mounted survey-grade fathometer that operated at 200 kHz, and a differentially corrected Global Positioning System with antenna mounted directly above the echo-sounder transducer. Shallow-water and terrestrial areas were surveyed using a Real-Time Kinematic Global Positioning System. The bathymetric, shallow-water, and terrestrial data were processed in a geographic information system to generate a triangulated irregular network representation of the bottom of the water body. Bathymetric contours were interpolated from the triangulated irregular network data using a 2-foot contour interval. Bathymetric contours at the conservation pool elevation for Maskenthine Wetland, Yankee Hill Lake, and Yankee Hill sediment pond also were interpolated in addition to the 2-foot contours. The surface area and storage capacity of each lake or wetland were calculated for 1-foot intervals of water surface elevation and are tabulated in the Appendix for all water bodies.

  4. Pythium species in 13 various types of water bodies of N-E Poland

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-01-01

    Full Text Available Pythium species and environmental factors in various types of water bodies (2 springs, 2 rivers, 3 ponds and 6 different trophic lakes were studied. Samples of water were collected every two months (springs, rivers, ponds and every three months (lakes in the years 1996-1999 for hydrochemical analysis and in order to determine the Pythium species content. From springs rivers and ponds collected were also ice blocks for determinations of presence of Pythium species. Buckwheatand hemp-seeds, cellophane and snake exuviae were used as bait. Forty-five species of Pythium were found in various types of water bodies. Pythium acanthicum, P. complectens, P. complens, P. diameson, P. dissimile, P. elongatum, P. lucens, P. megalacanthum, P. nagae, P. oedochilum, P. oryzae, P. palingenes, P. periilum and P. polysporum were recorded for the first time in Poland. The largest mean number of species was observed in spring Cypisek, a bit fewer in spring Jaroszówka and lake Białe (oligotrophic-like waters. The lowest mean number of Pythium species was noted in pond Akcent and Pałacowy (polytrophic waters. In all types of water bodies the higest mean number of species was found in winter, and the lowest in summer.

  5. DIGESTION IN AN ECTOTHERMIC HERBIVORE, THE GREEN IGUANA (IGUANA-IGUANA) - EFFECT OF FOOD COMPOSITION AND BODY-TEMPERATURE

    NARCIS (Netherlands)

    LICHTENBELT, WDV

    1992-01-01

    In laboratory experiments, the effect of food composition and body temperature on digestive efficiency was investigated in the lizard Iguana iguana on Curacao (Netherlands Antilles). In a series of experiments the animals were kept in cages with a temperature gradient and different foods were offere

  6. The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L

    DEFF Research Database (Denmark)

    Tirsgaard, Bjørn; Behrens, Jane; Steffensen, John Fleng

    2015-01-01

    Changes in ambient temperature affect the physiology and metabolism and thus the distribution of fish. In this study we used intermittent flow respirometry to determine the effect of temperature (2, 5, 10, 15 and 20 °C) and wet body mass (BM) (~30–460 g) on standard metabolic rate (SMR, mg O2 h−1...

  7. The effect of body temperature on the dynamic respiratory system compliance-breathing frequency relationship in the rat.

    Science.gov (United States)

    Rubini, Alessandro; Bosco, Gerardo

    2013-06-01

    The mechanical inhomogeneity of the respiratory system is frequently investigated by measuring the frequency dependence of dynamic compliance, but no data are currently available describing the effects of body temperature variations. The aim of the present report was to study those effects in vivo. Peak airway pressure was measured during positive pressure ventilation in eight anesthetized rats while breathing frequency (but not tidal volume) was altered. Dynamic compliance was calculated as the tidal volume/peak airway pressure, and measurements were taken in basal conditions (mean rectal temperature 37.3 °C) as well as after total body warming (mean rectal temperature 39.7 °C). Due to parenchymal mechanical inhomogeneity and stress relaxation-linked effects, the normal rat respiratory system exhibited frequency dependence of dynamic lung compliance. Even moderate body temperature increments significantly reduced the decrements in dynamic compliance linked to breathing rate increments. The results were analyzed using Student's and Wilcoxon's tests, which yielded the same results (p temperature variations are known to influence respiratory mechanics. The frequency dependence of dynamic compliance was found, in the experiments described, to be temperature-dependent as temperature variations affected parenchymal mechanical inhomogeneity and stress relaxation. These results suggest that body temperature variations should be taken into consideration when the dynamic compliance-breathing frequency relationship is being examined during clinical assessment of inhomogeneity of lung parenchyma in patients.

  8. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?

    DEFF Research Database (Denmark)

    Sinclair, Brent J.; Marshall, Katie E.; Sewell, Mary A.;

    2016-01-01

    Thermal performance curves (TPCs), which quantify how an ectotherm's body temperature (T-b) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying...... this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced T-b. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs....... For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions...

  9. Tourette syndrome associated with body temperature dysregulation: possible involvement of an idiopathic hypothalamic disorder.

    Science.gov (United States)

    Kessler, Abraham R

    2002-10-01

    Tourette syndrome is a neuropsychiatric disorder that holds the potential to afflict the emotional, familial, social, or scholastic performances of patients with Tourette syndrome in day-to-day life functioning. The disorder is today characterized mainly and diagnosed by clinical observations, yet false-negative results obtained in the diagnosis of Tourette syndrome are numerous and well documented. There is still no laboratory or imaging technique available for the diagnosis of Tourette syndrome. This article reports on changes of the ambient thermal perception (38%) and a circadian dysregulation of the body-temperature profile present in Tourette syndrome probands, irrespective of their chronologic age, sex, or comorbid symptoms. An involvement of idiopathic hypothalamic dysfunctions associated with Tourette syndrome is proposed. Such a phenomenon, if substantiated, could lead to a better understanding of Tourette syndrome and the development of unbiased physical diagnostic criteria of Tourette syndrome and potentiate possible production of novel therapeutic possibilities.

  10. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior.

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  11. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  12. Water Intake and Utilization in Mithun (Bos frontalis):Effect of Environmental Temperature, Rearing System and Concentrate Feed Supplement

    Institute of Scientific and Technical Information of China (English)

    D. T. Pal; A. Dhali; S. K. Mondal; C. Rajkhowa; K. M. Bujarbaruah

    2008-01-01

    Seasonal and sexual variations as well as the effect of dry feed supplement on total drinking water intake and its utilization were observed in mithun (Bos frontalis)-a semi-wild animal found in North Eastern Hill Region (NEHR) of India. In a completely randomized design, twelve adult mithuns (B. frontalis) as per their sex and body weight were assigned in two different rearing systems (free grazing and free grazing with dry concentrate feed supplementation), and ten growing male mithuns as per their body weight assigned in two different levels of dry concentrate feed supplementation (1.0 kg and 2.0 kg dry concentrate feeds on green forage based diet) and in two different seasons (summer and winter). It was observed that the environmental temperature had a significant effect on drinking water intake by mithuns. Drinking water consumption (per unit of body weight) was significantly (P < 0.05) higher in summer than in winter. Supplementation of concentrate feed on free grazing animals resulted in increase in water consumption. Total water consumption (drinking as well as performed water) was found to be 15.18 litres per 100 kg body weight by growing mithun. Feed dry matter and digestible nutrient intakes by growing mithun were observed to be increased with the increase of supplementation of dry concentrate feed. Roughage to concentrate ratio did not affect the nutrient digestibility. Mithun calves drank an average of 4.30 litres water for each kg of dry matter intake. Metabolic water was significantly (P<0.01) increased with the increase of supplementation of concentrate feed whereas water turn over, which depends upon the body weight of the animals, did not differ significantly on offering of lower or higher level of dry feed. Faecal water loss of growing mithun was decreased with the increase in intake of concentrate feed and was estimated to be 33~46% of total water intake. Excretion of water through faeces of mithun was about 3.8% of body weight. It could

  13. Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet

    NARCIS (Netherlands)

    Kuipers Munneke, P.; Ligtenberg, S.R.M.; van den Broeke, M.R.; van Angelen, J.H.; Forster, R.R.

    2014-01-01

    Recent observations have shown that the firn layer on the Greenland Ice Sheet features subsurface bodies of liquid water at the end of the winter season. Using a model with basic firn hydrology, thermodynamics, and compaction in one dimension, we find that a combination of moderate to strong surface

  14. Effect of water electrolysis temperature of hydrogen production system using direct coupling photovoltaic and water electrolyzer

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Maeda

    2016-01-01

    Full Text Available We propose control methods of a photovoltaic (PV-water electrolyzer (ELY system that generates hydrogen by controlling the number of ELY cells. The advantage of this direct coupling between PV and ELY is that the power loss of DC/DC converter is avoided. In this study, a total of 15 ELY cells are used. In the previous researches, the electrolyzer temperature was constantly controlled with a thermostat. Actually, the electrolyzer temperature is decided by the balance of the electrolysis loss and the heat loss to the outside. Here, the method to control the number of ELY cells was investigated. Maximum Power Point Tracking efficiency of more than 96% was achieved without ELY temperature control. Furthermore we construct a numerical model taking into account of ELY temperature. Using this model, we performed a numerical simulation of 1-year. Experimental data and the simulation results shows the validity of the proposed control method.

  15. Methylphenidate alters flash-evoked potentials, body temperature, and behavior in Long-Evans rats.

    Science.gov (United States)

    Hetzler, Bruce E; Meckel, Katherine R; Stickle, Bruce A

    2014-01-01

    This experiment examined the effects of methylphenidate hydrochloride on flash-evoked potentials (FEPs) recorded from the visual cortex (VC) and superior colliculus (SC) of chronically implanted male Long-Evans rats, as well as on body temperature and open field behavior. FEPs were recorded at 10, 20 and 40 min following intraperitoneal injections of saline, and of doses of 0.7, 2.9, and 11.6 mg/kg methylphenidate on separate days. The 0.7 mg/kg dose did not produce significant effects. In the VC, following administration of the 11.6 mg/kg dose of methylphenidate the amplitude of components P83, N146, and P232 decreased, the amplitude of component N64 briefly increased and components P23, N30, N40, and P48 were unchanged in amplitude. In the SC, component P29 was unaffected, while components P38 and N51 were reduced in amplitude by the 11.6 mg/kg dose of methylphenidate. Peak latencies of components N40, P48, P83, and N146 in the VC and component P38 in the SC were increased by the 11.6 mg/kg dose of methylphenidate. When body temperature was recorded 45 min after drug administration, a mild dose-dependent hypothermia was found with the 2.9 and 11.6 mg/kg methylphenidate doses, suggesting that this may have contributed to the increased latencies. In subsequent open field observations, both line crossings and rearings were significantly increased by the 11.6 mg/kg dose. Increased movement into the center of the testing area was also observed, which could be a sign of increased exploration and reduced anxiety following methylphenidate.

  16. To use or not to use torpor? Activity and body temperature as predictors

    Science.gov (United States)

    Christian, Nereda; Geiser, Fritz

    2007-06-01

    When food is limited and/or environmental conditions are unfavourable, many mammals reduce activity and use torpor to save energy. Nevertheless, reliable predictors for torpor occurrence, especially in the wild, are currently not available. Interrelations between torpor use and other energy conserving strategies are also poorly understood. We tested the hypothesis that reductions in normothermic body temperature ( T b) and the period of activity before torpor events could be used as predictors for torpor occurrence in sugar gliders, Petaurus breviceps (body mass, ˜125 g), known to display daily torpor in the wild. Occurrence of torpor was preceded by significant (˜10-25%) reductions of the duration of the activity phase. Moreover, the normothermic resting T b fell by an average of 1.2°C over 3 days before a torpor event, relative to individuals that did not display torpor. Our new findings suggest that before entering torpor, sugar gliders, which appear to use torpor as an emergency measure rather than a routine energy saving strategy, systematically reduce activity times and normothermic resting T bs to lower energy expenditure and perhaps to avoid employing torpor. Thus, reduced activity and normothermic T b may provide a predictive tool for the occurrence of daily torpor in the wild.

  17. Water-waves modes trapped in a canal by a body with the rough surface

    CERN Document Server

    Cardone, G; Nazarov, S A

    2009-01-01

    The problem about a body in a three dimensional infinite channel is considered in the framework of the theory of linear water-waves. The body has a rough surface characterized by a small parameter $\\epsilon>0$ while the distance of the body to the water surface is also of order $\\epsilon$. Under a certain symmetry assumption, the accumulation effect for trapped mode frequencies is established, namely, it is proved that, for any given $d>0$ and integer $N>0$, there exists $\\epsilon(d,N)>0$ such that the problem has at least $N$ eigenvalues in the interval $(0,d)$ of the continuous spectrum in the case $\\epsilon\\in(0,\\epsilon(d,N)) $. The corresponding eigenfunctions decay exponentially at infinity, have finite energy, and imply trapped modes.

  18. A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.

    Science.gov (United States)

    Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao

    2012-01-17

    The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications.

  19. Core temperature response to immersed bicycle ergometer exercise at water temperatures of 21 degrees, 25 degrees, and 29 degrees C.

    Science.gov (United States)

    Israel, D J; Heydon, K M; Edlich, R F; Pozos, R S; Wittmers, L E

    1989-01-01

    A bicycle ergometer modified for aquatic exercise was used to determine the effects of immersion on core temperature during submaximal exercise at different water temperatures. An exercise intensity (60% of maximal oxygen consumption) and duration (30 minutes) considered appropriate for cardiovascular conditioning were used. These data will be useful in cardiovascular and leg-strengthening hydrotherapy programs. Rectal temperature, skin temperature, and a rating of thermal comfort were studied in five normal men (14.8% +/- 5.6% fat) during headout immersion at water temperatures of 21.1 degrees, 25.3 degrees, and 29.4 degrees C and exercise in air of 21.1 degrees C. Subjects were immersed for 30 minutes during static and exercise (63% +/- 0.6% maximal oxygen consumption) conditions. Data were collected every 5 minutes and analyzed by repeated measured analysis of variance. At water temperatures, rectal temperature fell from control during static immersion (p less than or equal to 0.05) and was lower than control at the end of the 30-minute recovery period (p less than or equal to 0.05). During exercise there was no change in rectal temperature at water temperatures of 21.1 degrees and 25.3 degrees C; however, rectal temperature rose at water temperatures of 29.4 degrees (p less than or equal to 0.05) and air 21.1 degrees C (p less than or equal to 0.05). At the end of recovery rectal temperature was lower than control at water temperatures 21.1 degrees C (p less than or equal to 0.05) and greater than control at water temperatures 29.4 degrees C (p less than or equal to 0.05). There was no change from control in rectal temperatures at water temperatures 25.3 degrees C and air at 21.1 degrees C. These results indicate that immersion in 25.3 degrees and 21.1 degrees C water effectively attenuates the rise in rectal temperature during exercise at 63% of maximal oxygen consumption, whereas immersion in 29.4 degrees C water does not. In addition, both skin and rectal

  20. Does gestation or feeding affect the body temperature of the golden lancehead, Bothrops insularis (Squamata: Viperidae under field conditions?

    Directory of Open Access Journals (Sweden)

    Rafael P. Bovo

    2010-01-01

    Full Text Available Temperature affects physiological performance in reptiles and, therefore, body temperature (Tb control is argued to have an important adaptive value. Alterations in Tb due to transient changes in physiological state, as during digestion or gestation, are often linked to the potential benefits of a more precise Tb regulation. However, such thermoregulatory responses in nature remain controversial, particularly for tropical snakes. Herein, we measured Tb of the golden lanceheads, Bothrops insularis (Amaral, 1921, at Queimada Grande Island, southeastern Brazil, to test for alteration in selected body temperatures associated with feeding or gestation. We found no evidence that postprandial or gravid snakes selected for higher Tb indicating that, under natural conditions, body temperature regulation in B. insularis apparently encompasses other ecological factors beyond physiological state per se.

  1. Development of a novel scheme for long-term body temperature monitoring: a review of benefits and applications.

    Science.gov (United States)

    Cuesta-Frau, David; Varela-Entrecanales, Manuel; Valor-Perez, Raul; Vargas, Borja

    2015-04-01

    Body temperature is a health or disease marker that has been in clinical use for centuries. The threshold currently applied to define fever, with small variations, is 38 °C. However, current approaches do not provide a full picture of the thermoregulation process and its correlation with disease. This paper describes a new non-invasive body temperature device that improves the understanding of the pathophysiology of diseases by integrating a variety of temperature data from different body locations. This device enables to gain a deeper insight into fever, endogenous rhythms, subject activity and ambient temperature to provide anticipatory and more efficient treatments. Its clinical use would be a big step in the overcoming of the anachronistic febrile/afebrile dichotomy and walking towards a system medicine approach to certain diseases. This device has already been used in some clinical applications successfully. Other possible applications based on the device features and clinical requirements are also described in this paper.

  2. Coupled daily streamflow and water temperature modelling in large river basins

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Yearsley, J.R.; Franssen, W.H.P.; Ludwig, F.; Haddeland, I.; Kabat, P.

    2012-01-01

    Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. for electricity and drinking water production) and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully

  3. Temperature and magnetization-dependent band-gap renormalization and optical many-body effects in diluted magnetic semiconductors

    OpenAIRE

    2005-01-01

    We calculate the Coulomb interaction induced density, temperature and magnetization dependent many-body band-gap renormalization in a typical diluted magnetic semiconductor GaMnAs in the optimally-doped metallic regime as a function of carrier density and temperature. We find a large (about 0.1 eV) band gap renormalization which is enhanced by the ferromagnetic transition. We also calculate the impurity scattering effect on the gap narrowing. We suggest that the temperature, magnetization, an...

  4. Oligonol supplementation attenuates body temperature and the circulating levels of prostaglandin E2 and cyclooxygenase-2 after heat stress in humans.

    Science.gov (United States)

    Shin, Young Oh; Lee, Jeong Beom; Song, Young Ju; Min, Young Ki; Yang, Hun Mo

    2013-04-01

    Oligonol, a phenolic production from lychee, has been reported to exhibit anti-oxidative and anti-inflammatory effects. This study investigated the effect of Oligonol supplementation on circulating levels of prostaglandin E2 (PGE2) and cyclooxygenase (COX)-2, as well as body temperature, after heat stress in 17 healthy human male volunteers (age, 21.6±2.1 years). All experiments were performed in an automated climate chamber (26.0°C±0.5°C, relative humidity 60%±3.0%, air velocity less than 1 m/sec) between 2 and 5 p.m. Subjects ingested an Oligonol (100 mg)-containing beverage or placebo beverage before half-body immersion into hot water (42°C±0.5°C for 30 min). Tympanic and skin temperatures were measured and mean body temperatures were calculated. Serum concentrations of PGE2 and COX-2 were analyzed before, immediately after, and 60 min after immersion. Oligonol intake significantly prevented elevation of tympanic (temperature difference: 0.17°C at Post, Pheat stress, and this is associated with decreases in serum levels of PGE2 and COX-2.

  5. Fractionation mechanism of stable isotope in evaporating water body%水体蒸发过程中稳定同位素的分形机制

    Institute of Scientific and Technical Information of China (English)

    章新平; 田立德; 刘晶淼

    2005-01-01

    Under Rayleigh equilibrium condition, stable isotopic ratio in residual water increases with the decrease of the residual water proportion f exponentially, and the fractionation rate of stable isotopes is inversely proportional to temperature. However, under kinetic evaporation condition, the fractionation of stable isotopes is not only related to the phase temperature but also influenced by the atmospheric humidity and the mass exchange between liquid and vapor phases. The ratio δ in residual water will not change with f after undergoing evaporation of a long time for great relative humidity.The rate that the evaporating water body reaches isotopic steady state is mainly dependent on the relative humidity in atmosphere. The analysis shows that the actual mean linear variety rates, about -30.0, of the δ18O in residual water versus the residual water proportion at Nagqu and Amdo stations are consistent with the simulated process under temperature of 20 ℃ and relative humidity of 50%.The distillation line simulated under Rayleigh equilibrium condition is analogous to the global meteoric water line (MWL) as the temperature is about 20 ℃. Under non-equilibrium condition, the slope and constant values of distillation line are directly proportional to temperature and relative humidity.According to the basic data, the simulated distillation line is very consistent with the actual distillation line of Qinghai Lake.

  6. The historical distribution of main malaria foci in Spain as related to water bodies.

    Science.gov (United States)

    Sousa, Arturo; García-Barrón, Leoncio; Vetter, Mark; Morales, Julia

    2014-08-06

    The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO) in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS), using the Inverse Distance Weighted (IDW) interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura), the presence of another vector (Anopheles labranchiae) besides A. atroparvus (Levante) or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia). In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe.

  7. The Historical Distribution of Main Malaria Foci in Spain as Related to Water Bodies

    Directory of Open Access Journals (Sweden)

    Arturo Sousa

    2014-08-01

    Full Text Available The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS, using the Inverse Distance Weighted (IDW interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura, the presence of another vector (Anopheles labranchiae besides A. atroparvus (Levante or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia. In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe.

  8. Record-high specific conductance and water temperature in San Francisco Bay during water year 2015

    Science.gov (United States)

    Work, Paul; Downing-Kunz, Maureen; Livsey, Daniel

    2017-02-22

    The San Francisco estuary is commonly defined to include San Francisco Bay (bay) and the adjacent Sacramento–San Joaquin River Delta (delta). The U.S. Geological Survey (USGS) has operated a high-frequency (15-minute sampling interval) water-quality monitoring network in San Francisco Bay since the late 1980s (Buchanan and others, 2014). This network includes 19 stations at which sustained measurements have been made in the bay; currently, 8 stations are in operation (fig. 1). All eight stations are equipped with specific conductance (which can be related to salinity) and water-temperature sensors. Water quality in the bay constantly changes as ocean tides force seawater in and out of the bay, and river inflows—the most significant coming from the delta—vary on time scales ranging from those associated with storms to multiyear droughts. This monitoring network was designed to observe and characterize some of these changes in the bay across space and over time. The data demonstrate a high degree of variability in both specific conductance and temperature at time scales from tidal to annual and also reveal longer-term changes that are likely to influence overall environmental health in the bay.In water year (WY) 2015 (October 1, 2014, through September 30, 2015), as in the preceding water year (Downing-Kunz and others, 2015), the high-frequency measurements revealed record-high values of specific conductance and water temperature at several stations during a period of reduced freshwater inflow from the delta and other tributaries because of persistent, severe drought conditions in California. This report briefly summarizes observations for WY 2015 and compares them to previous years that had different levels of freshwater inflow.

  9. Development and clinical application of a length-adjustable water phantom for total body irradiation.

    Science.gov (United States)

    Chen, Zhi-Wei; Yao, Sheng-Yu; Zhang, Tie-Ning; Zhu, Zhen-Hua; Hu, Zhe-Kai; Lu, Xun

    2012-08-01

    A new type of water phantom which would be specialised for the absorbed dose measurement in total body irradiation (TBI) treatment is developed. Ten millimetres of thick Plexiglas plates were arranged to form a square cube with 300 mm of edge length. An appropriate sleeve-type piston was installed on the side wall, and a tabular Plexiglas piston was positioned inside the sleeve. By pushing and pulling the piston, the length of the self-made water phantom could be varied to meet the required patients' physical sizes. To compare the international standard water phantom with the length-adjustable and the Plexiglas phantoms, absorbed dose for 6-MV X ray was measured by an ionisation chamber at different depths in three kinds of phantoms. In 70 cases with TBI, midplane doses were metered using the length-adjustable and the Plexiglas phantoms for simulating human dimensions, and dose validation was synchronously carried out. There were no significant statistical differences, p > 0.05, through statistical processing of data from the international standard water phantom and the self-designed one. There were significant statistical differences, p body width. Obviously, the difference had a positive correlation with the body width. The results proved that the new length-adjustable water phantom is more accurate for simulating human dimensions than Plexiglas phantom.

  10. Evolution of microstructure in flyash-containing porcelain body on heating at different temperatures

    Indian Academy of Sciences (India)

    Kausik Dana; Swapan Kumar Das

    2004-04-01

    15 wt% flyash (a calcined byproduct of thermal power plant) was incorporated in a normal triaxial kaolin–quartz–feldspar system by replacing equivalent amount of quartz. The differences in microstructural evolution on heating the compact mass of both normal and flyash-containing porcelain at different temperatures (1150–1300°C) were examined using scanning electron microscopy (SEM) operating in secondary electron image (SEI) mode. Microstructure of normal porcelain did not show the presence of mullite and quartz grains at 1200°C and the viscosity of silica-rich glass restricted the growth of mullite crystals at 1250°C. Flyash porcelain, on the other hand, shows the presence of primary mullite aggregates in the clay relict and a significant growth of mullite crystals in a low viscosity glassy matrix at 1200°C itself. At 1300°C, both the bodies show a larger region of more elongated (> 1 m) secondary mullite along with clusters of smaller sized primary mullite (< 1 m). Small primary mullite crystals in the clay relict can be distinguished from elongated secondary mullite crystals in the feldspar relict in their size. Primary mullite aggregates remain stable also at higher temperatures. XRD studies were carried out for quantitative estimation of quartz, mullite and glass, which supported the SEM observations. An attempt was also made to correlate their mechanical strength with the constituent phases.

  11. Changes in body water distribution during treatment with inhaled steroid in pre-school children

    DEFF Research Database (Denmark)

    Heitmann, B L; Anhøj, Jacob; Bisgaard, A M;

    2004-01-01

    .i.d. delivered via Babyhaler, budesonide pressurized metered dose inhaler (pMDI) 200 microg b.i.d. delivered via Nebuchamber and placebo. Spacers were primed before use. In total, 40 children aged 1-3 years, with mild intermittent asthma were included. Twenty-five of the children completed all three treatments....... At the end of each treatment period body impedance and skin ultrasonography were measured. METHODS AND PROCEDURES: We measured changes in water content of the soft tissues by two methods. Skin ultrasonography was used to detect small changes in dermal water content, and bioelectrical impedance was used...... to assess body water content and distribution. MAIN OUTCOMES AND RESULTS: We found an increase in skin density of the shin from fluticasone as measured by ultrasonography (p = 0.01). There was a tendency for a consistent elevation of impedance parameters from active treatments compared to placebo although...

  12. Assessment of molecular methods as a tool for detecting pathogenic protozoa isolated from water bodies.

    Science.gov (United States)

    Adamska, M; Sawczuk, M; Kolodziejczyk, L; Skotarczak, B

    2015-12-01

    Several species belong to the Cryptosporidium and Giardia genus, the main parasitic protozoa occurring in water, but only some of them are infectious to humans. We investigated the occurrence of Cryptosporidium and Giardia and identified their species in the water samples collected from natural water bodies in north-western Poland. A total of 600 samples from water bodies used for bathing, sewage discharge, as drinking water sources and watering places for animals were screened. The samples were collected during a 3-year period in each of the four seasons and filtered using Filta-Max (IDEXX Laboratories, USA). Genomic DNA was extracted from all samples and used as a target sequence for polymerase chain reaction (PCR) and TaqMan real-time PCR, as well as for reverse line blotting (RLB) methods. PCR methods seem to be more sensitive to detect Giardia and Cryptosporidium DNA in water samples than RLB methods. All PCR products were sequenced and three were identified as C. parvum and four as G. intestinalis. The overall prevalence of C. parvum (0.5%) and G. intestinalis (0.6%) in the samples suggests that the risk of Cryptosporidium and Giardia infections in north-western Poland is minimal.

  13. Effect of hot-water consumption on temperature distribution in a horizontal solar water storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Helwa, N.H.; El-Ghetany, H.H. [National Research Center, Cairo (Egypt). Dept. of Solar Energy; Mobarak, A.M.; El-Sallak, M.S. [Cairo Univ. (Egypt). Dept. of Mechanical Engineering

    1995-12-31

    This experimental investigation assesses the behaviour of a solar water heater provided with a liquid heat exchanger in a horizontal storage tank. The factors that affect the stratification inside the storage tank are considered. The performance of the system is studied in the light of the daily consumption of hot water of an Egyptian family. The results obtained show that in the places where it is necessary to use a horizontal tank it must be supplied with an auxiliary electric heater to meet the required load at the required temperature, especially in winter. (author)

  14. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation.

    Science.gov (United States)

    McCann, Michael J

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L(-1), 0.083 mg P L(-1)). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions.

  15. Sensitivity of Sump Water Temperature to Containment Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Misuk; Kim, Seoung Rae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-05-15

    This paper is focused on the containment behavior analysis in the above described cases using GOTHIC-IST (generation of thermal-hydraulic information for containments, industry standard toolset). GOTHIC-IST version 7.2a is an integrated, general purpose thermal-hydraulics software package for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings. In this study, we perform the sensitivity the sump water temperature to containment integrity. For 35% RIH break accident with the malfunction of spray system, local air coolers, ECC(emergency core cooling) pump and heat exchanger, the peak pressure at boiler room do not exceed the design pressure 124kPa(g) of the containment and containment integrity is secured. If accompanied the malfunction of heat exchanger or pump in the time of low pressure safety injection, of ECCS, it will be one of the aggravating factors to the integrity of core and containment.

  16. Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons

    Science.gov (United States)

    Joyce, Chris B.; Vina-Herbon, Cristina; Metcalfe, Daniel J.

    2005-12-01

    Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and

  17. Aster Global dem Version 3, and New Aster Water Body Dataset

    Science.gov (United States)

    Abrams, M.

    2016-06-01

    In 2016, the US/Japan ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) project released Version 3 of the Global DEM (GDEM). This 30 m DEM covers the earth's surface from 82N to 82S, and improves on two earlier versions by correcting some artefacts and filling in areas of missing DEMs by the acquisition of additional data. The GDEM was produced by stereocorrelation of 2 million ASTER scenes and operation on a pixel-by-pixel basis: cloud screening; stacking data from overlapping scenes; removing outlier values, and averaging elevation values. As previously, the GDEM is packaged in ~ 23,000 1 x 1 degree tiles. Each tile has a DEM file, and a NUM file reporting the number of scenes used for each pixel, and identifying the source for fill-in data (where persistent clouds prevented computation of an elevation value). An additional data set was concurrently produced and released: the ASTER Water Body Dataset (AWBD). This is a 30 m raster product, which encodes every pixel as either lake, river, or ocean; thus providing a global inland and shore-line water body mask. Water was identified through spectral analysis algorithms and manual editing. This product was evaluated against the Shuttle Water Body Dataset (SWBD), and the Landsat-based Global Inland Water (GIW) product. The SWBD only covers the earth between about 60 degrees north and south, so it is not a global product. The GIW only delineates inland water bodies, and does not deal with ocean coastlines. All products are at 30 m postings.

  18. Accuracy of parents in measuring body temperature with a tympanic thermometer

    Directory of Open Access Journals (Sweden)

    Spady Donald W

    2005-01-01

    Full Text Available Abstract Background It is now common for parents to measure tympanic temperatures in children. The objective of this study was to assess the diagnostic accuracy of these measurements. Methods Parents and then nurses measured the temperature of 60 children with a tympanic thermometer designed for home use (home thermometer. The reference standard was a temperature measured by a nurse with a model of tympanic thermometer commonly used in hospitals (hospital thermometer. A difference of ≥ 0.5 °C was considered clinically significant. A fever was defined as a temperature ≥ 38.5 °C. Results The mean absolute difference between the readings done by the parent and the nurse with the home thermometer was 0.44 ± 0.61 °C, and 33% of the readings differed by ≥ 0.5 °C. The mean absolute difference between the readings done by the parent with the home thermometer and the nurse with the hospital thermometer was 0.51 ± 0.63 °C, and 72 % of the readings differed by ≥ 0.5 °C. Using the home thermometer, parents detected fever with a sensitivity of 76% (95% CI 50–93%, a specificity of 95% (95% CI 84–99%, a positive predictive value of 87% (95% CI 60–98%, and a negative predictive value of 91% (95% CI 79–98 %. In comparing the readings the nurse obtained from the two different tympanic thermometers, the mean absolute difference was 0.24 ± 0.22 °C. Nurses detected fever with a sensitivity of 94% (95 % CI 71–100 %, a specificity of 88% (95% CI 75–96 %, a positive predictive value of 76% (95% CI 53–92%, and a negative predictive value of 97% (95%CI 87–100 % using the home thermometer. The intraclass correlation coefficient for the three sets of readings was 0.80, and the consistency of readings was not affected by the body temperature. Conclusions The readings done by parents with a tympanic thermometer designed for home use differed a clinically significant amount from the reference standard (readings done by nurses with a model of

  19. Body temperature regulation during acclimation to cold and hypoxia in rats.

    Science.gov (United States)

    Cadena, V; Tattersall, G J

    2014-12-01

    Extreme environmental conditions present challenges for thermoregulation in homoeothermic organisms such as mammals. Such challenges are exacerbated when two stressors are experienced simultaneously and each stimulus evokes opposing physiological responses. This is the case of cold, which induces an increase in thermogenesis, and hypoxia, which suppresses metabolism conserving oxygen and preventing hypoxaemia. As an initial approach to understanding the thermoregulatory responses to cold and hypoxia in a small mammal, we explored the effects of acclimation to these two stressors on the body temperature (Tb) and the daily and ultradian Tb variations of Sprague-Dawley rats. As Tb is influenced by sleep-wake cycles, these Tb variations reflect underlying adjustments in set-point and thermosensitivity. The Tb of rats decreased precipitously during initial hypoxic exposure which was more pronounced in cold (Tb=33.4 ± 0.13) than in room temperature (Tb=35.74 ± 0.17) conditions. This decline was followed by an increase in Tb stabilising at a new level ~0.5°C and ~1.4°C below normoxic values at room and cold temperatures, respectively. Daily Tb variations were blunted during hypoxia with a greater effect in the cold. Ultradian Tb variations exhibited daily rhythmicity that disappeared under hypoxia, independent of ambient temperature. The adjustments in Tb during hypoxia and/or cold are in agreement with the hypothesis that an initial decrease in the Tb set-point is followed by its partial re-establishment with chronic hypoxia. This rebound of the Tb set-point might reflect cellular adjustments that would allow animals to better deal with low oxygen conditions, diminishing the drive for a lower Tb set-point. Cold and hypoxia are characteristic of high altitude environments. Understanding how mammals cope with changes in oxygen and temperature will shed light into their ability to colonize new environments along altitudinal clines and increase our understanding of how

  20. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    Science.gov (United States)

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction

  1. Universal One-Parametric Dependence of Dielectric Water and Water Steam Permeability on Density-Temperature Ratio

    OpenAIRE

    Yu. V. Mulev; K. M. Arefiev; O. V. Beliayeva; M. Yu. Mulev; T. A/ Zaiats

    2011-01-01

    Available experimental data on dielectric permeability of water and water steam have been analyzed in the paper. The paper presents an universal one-parametric dependence of dielectric water and water steam permeability in single-phase areas and also on boundary curves on density -temperature ratio.

  2. Universal One-Parametric Dependence of Dielectric Water and Water Steam Permeability on Density-Temperature Ratio

    Directory of Open Access Journals (Sweden)

    Yu. V. Mulev

    2011-01-01

    Full Text Available Available experimental data on dielectric permeability of water and water steam have been analyzed in the paper. The paper presents an universal one-parametric dependence of dielectric water and water steam permeability in single-phase areas and also on boundary curves on density -temperature ratio.

  3. Coiling Temperature Control Using Temperature Measurement Method for the Hot Rolled Strip in the Water Cooling Banks

    Science.gov (United States)

    Nakagawa, Shigemasa; Tachibana, Hisayoshi; Honda, Tatsuro; Uematsu, Chihiro

    In the hot strip mill, the quality of the strip greatly depends on the cooling process between the last stand in the finishing mill and the coilers. Therefore, it is important to carefully control the coiling temperature to regulate the mechanical properties of the strip. To realize high accuracy of coiling temperature, a new coiling temperature control using temperature measurement method for the hot rolled strip in the water cooling banks has been developed. The features of the new coiling temperature control are as follows: (i) New feedforward control adjusts ON/OFF swiching of cooling headers according to the strip temperature measured in the water cooling banks. (ii) New feedforward control is achieved by dynamic control function. This coiling temperature control has been in operation successfully since 2008 at Kashima Steel Works and improved the accuracy of coiling temperature of high strength steel considerably.

  4. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    Science.gov (United States)

    Metz, Patricia A.

    2016-09-27

    in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward the coast. Multiple lines of evidence indicate that a source of warm groundwater to Warm Mineral Springs is likely the permeable zone of the Avon Park Formation within the Upper Floridan aquifer at a depth of about 1,400 to 1,600 feet, or deeper sources. The permeable zone contains saline groundwater with water temperatures of at least 95 degrees Fahrenheit.The water quality of Warm Mineral Springs, when compared with other springs in Florida had the highest temperature and the greatest mineralized content. Warm Mineral Springs water is

  5. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  6. Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation

    Directory of Open Access Journals (Sweden)

    M. Munz

    2011-06-01

    Full Text Available Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of ±1.3 m d−1. Pass band filtered time series provided amplitude and phase of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to probe distance, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small probe distances of all setups were found to be insensitive to vertical water flux.

  7. CHARACTERIZATION OF SALMONELLA SPECIES FROM WATER BODIES IN DAR-ES-SALAAM CITY, TANZANIA

    Directory of Open Access Journals (Sweden)

    Eliningaya Kweka

    2013-03-01

    Full Text Available Background: Water-borne diseases are the most common cause of illness and death among the poor population from developing countries. The majority of the people are inadequately aware that aquatic environment is a major source of salmonellosis. Dar es Salaam city is among the cities with most of its population live in squatter. Typhoid fever ranks second with 14.3% of all notifiable disease cases in the city. The city experience water scarcity which forces water wells and rivers to become the main sources of water for domestic use and livestock. This study therefore, characterized Salmonella strains from different water bodies of city as possible sources for enteric diseases endemicity. Methods: The Salmonella Chromogenic Agar (SC Agar and Kligler Iron Agar (KIA media were used for isolation and enumeration of the strains. The inoculated cultures were incubated at 370C for 24 hours. Salmonella colonies were confirmed by magenta colorations and hydrogen sulfide production on SC Agar and KIA Agar, respectively. The Analytical Profile Index 20 Enterobacteriaceae kit (API 20E kit was used to identify Salmonella species. Results: Based on the API 20E kit, the identified Salmonella species from different water bodies were Salmonella ser. paratyphi A (96.9%, Salmonella cholelaesuis spp choleraesuis (99.5% and Salmonella typhi (99.9%. Conclusion: This study shows that shallow wells and rivers which are mainly used by the city dwellers were highly contaminated with Salmonella and were more contaminated than deep wells and marine water bodies. This warrants further investigation on the disease mapping in the urban and peri-urban areas.

  8. Finite water depth effect on wave-body problems solved by Rankine source method

    Science.gov (United States)

    Feng, Aichun; Tang, Peng; You, Yunxiang; Liu, Kaizhou

    2017-04-01

    Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non- desingularized technique. Free surface and seabed surface profiles are represented by continuous panels rather than a discretization by isolated points. These panels are positioned exactly on the fluid boundary surfaces and therefore no desingularization technique is required. Space increment method is applied for both free surface source and seabed source arrangements to reduce computational cost and improve numerical efficiency. Fourth order Runge-Kutta iteration scheme is adopted on the free surface updating at every time step. The finite water depth effect is studied quantitatively for a series of cylinders with different B/T ratios. The accuracy and efficiency of the proposed model are validated by comparison with published numerical results and experimental data. Numerical results show that hydrodynamic coefficients vary for cylinder bodies with different ratios of B/T. For certain set of B/T ratios the effect of finite water depth increases quickly with the increase of motion frequency and becomes stable when frequency is relatively large. It also shows that water depths have larger hydrodynamic effects on cylinder with larger breadth to draft ratios. Both the heave added mass and damping coefficients increase across the frequency range with the water depths decrease for forced heave motion. The water depths have smaller effects on sway motion response than on heave motion response.

  9. Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder.

    Science.gov (United States)

    Scheike, T; Böhlmann, W; Esquinazi, P; Barzola-Quiquia, J; Ballestar, A; Setzer, A

    2012-11-14

    Granular superconductivity in powders of small graphite grains (several tens of micrometers) is demonstrated after treatment with pure water. The temperature, magnetic field and time dependence of the magnetic moment of the treated graphite powder provides evidence for the existence of superconducting vortices with some similarities to high-temperature granular superconducting oxides but even at temperatures above 300 K. Room temperature superconductivity in doped graphite or at its interfaces appears to be possible.

  10. Assessing the vulnerability of Dutch water bodies to exotic species: A new methodology

    Directory of Open Access Journals (Sweden)

    R.J. LEEWIS, A. GITTENBERGER

    2011-12-01

    Full Text Available Invasive exotic (alien species have not been taken into enough consideration concerning the European Water Framework Directive (WFD and other European directives until recently. The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types. This paper concentrates on the vulnerability of such water types to the introduction of exotic species. This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves. We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated. Numerical values used in the formula have been found by scoring a number of properties in different water types and species, which are specified in questionnaires. The results of the calculations are given as relative vulnerability scores (scale 1–10. By testing as many as 8 water types and 13 species, we demonstrate that this method is flexible and easy to use for water managers. Our results can be translated into classes of vulnerability, which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies. This readily corresponds to the way countries are required to report to the European Union in the context of the WFD. The method can also be generalized using functional groups of (exotic species instead of particular species [Current Zoology 57 (6: 863–873, 2011].

  11. Psychoneuroendocrine immunology: perception of stress can alter body temperature and natural killer cell activity.

    Science.gov (United States)

    Hiramoto, R N; Solvason, H B; Hsueh, C M; Rogers, C F; Demissie, S; Hiramoto, N S; Gauthier, D K; Lorden, J F; Ghanta, V K

    1999-01-01

    Psychoimmunology has been credited with using the mind as a way to alter immunity. The problem with this concept is that many of the current psychoimmunology techniques in use are aimed at alleviating stress effects on the immune system rather than at direct augmentation of immunity by the brain. Studies in animals provide a model that permits us to approach the difficulties associated with gaining an understanding of the CNS-immune system connection. A particular advantage of using animals over humans is that psychological and social contributions play a less prominent role for animals than for human subjects, since the animals are all inbred and reared under identical controlled conditions. If the insightful information provided by animal studies is correct, then psychotherapy for the treatment of diseases might be made more effective if some aspect of this knowledge is included in the design of the treatment. We emphasize conditioning as a regimen and an acceptable way to train the brain to remember an output pathway to raise immunity. We propose that a specific drug or perception (mild stress, represented by rotation, total body heating or handling) could substitute and kindle the same output pathway without the need for conditioning. If this view is correct, then instead of using conditioning, it may be possible to use an antigen to activate desired immune cells, and substitute a drug or an external environmental sensory stimulus (perception) to energize the output pathway to these cells. Alternatively, monitoring alterations of body temperature in response to a drug or perception might allow us to follow how effectively the brain is performing in altering immunity. Studies with animals suggest that there are alternative ways to use the mind to raise natural or acquired immunity in man.

  12. Body mass, energy intake, and water consumption of rats and humans during space flight

    Science.gov (United States)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  13. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    CERN Document Server

    Reddy, Sandeep K; Bajaj, Pushp; Pham, C Huy; Riera, Marc; Moberg, Daniel R; Morales, Miguel A; Knight, Chris; Gotz, Andreas W; Paesani, Francesco

    2016-01-01

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly inc...

  14. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W

    2015-11-01

    There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of <0.4 °C when used to predict the temperature at the seat and skin interface 15 min ahead, but required 45 min data prior to give this accuracy. Although the 45 min front loading of data appears large (in proportion to the 15 min prediction), a relative strength derives from the fact that the same algorithm could be used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 min required to train the algorithm is transferable to other data from the same individual. This approach might be developed (along with incorporation of other measures such as movement and humidity) into a system that can give caregivers prior warning to help avoid

  15. Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator.

    Science.gov (United States)

    Chayama, Yuichi; Ando, Lisa; Tamura, Yutaka; Miura, Masayuki; Yamaguchi, Yoshifumi

    2016-04-01

    Hibernation is an adaptive strategy for surviving during periods with little or no food availability, by profoundly reducing the metabolic rate and the core body temperature (T b). Obligate hibernators (e.g. bears, ground squirrels, etc.) hibernate every winter under the strict regulation of endogenous circannual rhythms, and they are assumed to undergo adaptive remodelling in autumn, the pre-hibernation period, prior to hibernation. However, little is known about the nature of pre-hibernation remodelling. Syrian hamsters (Mesocricetus auratus) are facultative hibernators that can hibernate irrespective of seasons when exposed to prolonged short photoperiod and cold ambient temperature (SD-Cold) conditions. Their T b set point reduced by the first deep torpor (DT) and then increased gradually after repeated cycles of DT and periodic arousal (PA), and finally recovered to the level observed before the prolonged SD-Cold in the post-hibernation period. We also found that, before the initiation of hibernation, the body mass of animals decreased below a threshold, indicating that hibernation in this species depends on body condition. These observations suggest that Syrian hamsters undergo pre-hibernation remodelling and that T b and body mass can be useful physiological markers to monitor the remodelling process during the pre-hibernation period.

  16. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    Science.gov (United States)

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release.

  17. Thermodynamic, diffusional, and structural anomalies in rigid-body water models.

    Science.gov (United States)

    Agarwal, Manish; Alam, Mohammad Parvez; Chakravarty, Charusita

    2011-06-02

    Structural, density, entropy, and diffusivity anomalies of the TIP4P/2005 model of water are mapped out over a wide range of densities and temperatures. The locus of temperatures of maximum density (TMD) for this model is very close to the experimental TMD locus for temperatures between 250 and 275 K. Four different water models (mTIP3P, TIP4P, TIP5P, and SPC/E) are compared with the TIP4P/2005 model in terms of their anomalous behavior. For all the water models, the density regimes for anomalous behavior are bounded by a low-density limit at around 0.85-0.90 g cm(-3) and a high-density limit at about 1.10-1.15 g cm(-3). The onset temperatures of the density anomaly in the various models show a much greater variation, ranging from 202 K for mTIP3P to 289 K for TIP5P. The order maps for the various water models are qualitatively very similar with the structurally anomalous regions almost superimposable in the q(tet)-τ plane. Comparison of the phase diagrams of water models with the region of liquid-state anomalies shows that the crystalline phases are much more sensitive to the choice of water models than the liquid state anomalies; for example, SPC/E and TIP4P/2005 show qualitatively similar liquid state anomalies but very different phase diagrams. The anomalies in the liquid in all the models occur at much lower pressures than those at which the melting line changes from negative to positive slope. The results in this study demonstrate several aspects of structure-entropy-diffusivity relationships of water models that can be compared with experiment and used to develop better atomistic and coarse-grained models for water.

  18. Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivity.

    Science.gov (United States)

    Sade, Sharon; Katzir, Abraham

    2004-03-20

    Infrared fiber optic radiometry was used for noncontact thermometry of gray bodies whose temperature was close to room temperature (40-70 degrees C). We selected three gray bodies, one with high emissivity (epsilon = 0.97), one with medium emissivity (epsilon = 0.71), and one with low emissivity (epsilon = 0.025). We carried out optimization calculations and measurements for a multiband fiber optic radiometer that consisted of a silver halide (AgClBr) infrared-transmitting fiber, a dual-band cooled infrared detector, and a set of 18 narrowband infrared filters that covered the 2-14-microm spectral range. We determined the optimal spectral range, the optimal number of filters to be used, and the optimal chopping scheme. Using these optimal conditions, we performed measurements of the three gray bodies and obtained an accuracy of better than 1 degrees C for body temperature and for room temperature. An accuracy of 0.03 was obtained for body emissivity.

  19. Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus)

    Energy Technology Data Exchange (ETDEWEB)

    Christian, K.; Tracy, C.R.; Porter, W.P.

    1983-06-01

    Seasonal differences in the body temperatures (T/sub b/) of free-ranging Galapagos land iguanas (Conolophus pallidus) were detected by temperature sensitive telemetry transmitters. Midday T/sub b/'s of iguanas average 4.4/sup 0/C lower in the Garua (cool) season than in the Hot season. Measured T/sub b/'s and those predicted from biophysical models permitted the following conclusions: (1) lower T/sub b/'s during the Garua season represent an active shift in thermoregulation by the iguanas rather than a passive result of a cooler season; (2) the average midday T/sub b/ selected by the iguanas in either season is the T/sub b/ that allows maintenance of a constant T/sub b/ for the longest possible portion of the day; (3) by exploiting the warmer microclimate created by a cliff face, the iguanas are able to maintain a constant T/sub b/ for a full hour longer than they could elsewhere in their home range. Census data demonstrated that the iguanas exploited the warmer microclimate created by the cliff extensively during the Garua season, and the cliff face was visited by the iguanas relatively infrequently during the Hot season. Thus, the exploitation of the microclimate created by the cliff results in seasonal differences in the pattern of space utilization within the home ranges of the iguanas. Within the Garua season the iguanas moved away from the cliff more often on sunny days than during cloudy days. It is concluded that the physical environment is an important determinant of patterns of space utilization both within and between seasons.

  20. Is older colder or colder older? The association of age with body temperature in 18,630 individuals.

    Science.gov (United States)

    Waalen, Jill; Buxbaum, Joel N

    2011-05-01

    In animal studies, caloric restriction resulting in increased longevity is associated with a reduction in body temperature, which is strain specific and likely under genetic control. Small studies in humans have suggested that temperatures may be lower among elderly populations, usually attributed to loss of thermoregulation. We analyzed cross-sectional data from 18,630 white adults aged 20-98 years (mean 58.3 years) who underwent oral temperature measurement as part of a standardized health appraisal at a large U.S. health maintenance organization. Overall, women had higher mean temperatures (97.5 ± 1.2°F) than men (97.2 ± 1.1°F; p temperature decreased with age, with a difference of 0.3°F between oldest and youngest groups after controlling for sex, body mass index, and white blood cell count. The results are consistent with low body temperature as a biomarker for longevity. Prospective studies are needed to confirm whether this represents a survival advantage associated with lifetime low steady state temperature.

  1. Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs

    Directory of Open Access Journals (Sweden)

    Fabien Pifferi

    2013-01-01

    Full Text Available In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly.

  2. Antioxidant activity of water extracts from fruit body of Lentinus edodes enriched with selenium

    Directory of Open Access Journals (Sweden)

    Savić Milena D.

    2011-01-01

    Full Text Available Shiitake (Lentinus edodes belongs to medically important and delicious fungi. It is recognizable for its healing properties, excellent taste and rich aroma. According to the traditional Japanese and Chinese medicine, shiitake mushroom significantly increases the strength and vitality of the body. Shiitake contains immunostimulants, compounds that lower cholesterol, prevents clogging of blood vessels, regulates the pressure, balances blood sugar levels, regulates digestion, and improves the performance of respiratory organs by its antirheumatic and antiallergic activities. Shiitake is recommended to use as food, prevention and cure, usually in a form of a spice (dried and ground or tea. It can be consumed fresh, too. The objective of this study was to test the effect of enrichment in selenium on antioxidant, reducing and free radical scavenging activity of water extracts from fruit body of Lentinus edodes. The fungus was enhanced by adding organic selenium, zinc (II complex with the ligand 2.6-bis diacetylpyridine (selenosemicarbazon and inorganic compounds (Na2SeO3 of selenium in nutritional substrate where the fungus was grown. The total selenium content in fruit body was around 50 ppm for the sample enriched with selenium originating from organic sources, and 80 ppm for the sample enriched with selenium from inorganic sources. Samples were prepared by extraction of fruiting bodies in heated water. The results indicated that water extracts of whole fruit bodies, from both control and mushrooms supplemented with selenium, had quite good antioxidant activity. However, there was no significant difference between the samples supplemented with selenium content and those that were not.

  3. Towards Deriving Renewable Energy from Aquatic Macrophytes Polluting Water Bodies in Niger Delta Region of Nigeria

    Directory of Open Access Journals (Sweden)

    Badmus Abdurrahman Adeleye

    2013-01-01

    Full Text Available This study was performed to derive methane rich biogas from biomass of harvested water hyacinth polluting water bodies in selected rivers of the Niger delta region of Nigeria. Field visits were undertaken on selected rivers in the Niger Delta region in which aquatic macrophytes were collected and inventorized. Also different types of aquatic macrophytes were surveyed. Control by harvesting macrophytes and deriving energy (methane-rich biogas from biomass of one (water hyacinth was successfully carried out in this study. An initial test was conducted to evaluate methane rich biogas production from water hyacinth collected from the wild. After a successful production of combustible biogas, laboratory experiments aimed at generating biogas from harvested biomass of aquatic mycrophyte (water hyacinth cultivated under eutrophic and oligotrophic conditions were undertaken in the laboratory. The result of the study showed highest biogas yield of 22 L over a 40 day retention time for water hyacinth raised under eutrophic conditions. Biogas yield for water hyacinth raised under oligotrophic conditions recorded the highest yield of 53L over an 11 day retention time. The conversion of the biomass of harvested aquatic macrophyte (water hyacinth from the Niger Delta into renewable energy, that is combustible biogas, demonstrated an inevitable option for the control and management of environmental pollution associated with aquatic macrophytes and their usability for poverty alleviation in the Niger Delta region of Nigeria.

  4. Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water

    Institute of Scientific and Technical Information of China (English)

    YAN JunJie; WU XinZhuang; CHONG DaoTong

    2009-01-01

    A low mass flux steam jet in subcooled water was experimentally investigated. The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature. The axial total pressures, the axial and radial temperature distributions were measured in the jet region. The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature. The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region, the results showed s good agreement between the predictions and experiments. Moreover, the self-similarity property of the radial temperature was obtained, which agreed well with Gauss distribution. In present work, all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.

  5. The seasonal abundance and size distributions of water bodies on the Yamal Peninsula

    Science.gov (United States)

    Trofaier, Anna Maria; Bartsch, Annett; Rees, William Gareth

    2014-05-01

    The significant role Arctic freshwater ecosystems play in the carbon cycle leads to a necessity to quantify these remote inland waters on the landscape-scale. A new approach to analysing size-frequency distributions of open surface water bodies is presented in this study. Geospatial data of water bodies over the Yamal peninsula (NW Siberia) in the form of binary (two classes: water and land) temporal composite classifications are analysed over the two summer months July and August in 2007, 2008 and 2009. The source of the temporal composite dataset is the European Space Agency's Envisat Advanced Synthetic Aperture Radar (ASAR) operating in Wide Swath Mode (WSM). These data are medium/low spatial resolution data with a pixel spacing of 75 m. However, their high temporal frequencies enable a seasonal analysis of water body abundance and size distributions. The emphasis is not only on quantifying Arctic lakes, but also on evaluating the distribution of spring floods throughout the active season. Size-frequency distributions are fit to a power-law model, conforming to be linear on a base 10 log-log scale. However, extrapolation of the myriad of smaller water bodies has in the past proven to be more complex than the current model would suggest. The apparent scale issues are investigated by additionally analysing active microwave data from the high spatial resolution TerraSAR-X satellite, and comparing the results to co-temporal ASAR WS data. With a total surface water area of around 606±50 km2 over the first two weeks of July in 2007, 2008 and 2009, a continuous decrease in water surface extent is determined over the course of the following six weeks. In 2009, high fragmentation of the early season classification is determined (1.6 and 1.4 times more polygons are found compared to the same period in 2007 and 2008). This is an artefact from weather affected data, resulting from high wind speeds over larger lakes and therefore showing a distinct wind bias in the

  6. The languages spoken in the water body (or the biological role of cyanobacterial toxins).

    Science.gov (United States)

    Kaplan, Aaron; Harel, Moshe; Kaplan-Levy, Ruth N; Hadas, Ora; Sukenik, Assaf; Dittmann, Elke

    2012-01-01

    Although intensification of toxic cyanobacterial blooms over the last decade is a matter of growing concern due to bloom impact on water quality, the biological role of most of the toxins produced is not known. In this critical review we focus primarily on the biological role of two toxins, microcystins and cylindrospermopsin, in inter- and intra-species communication and in nutrient acquisition. We examine the experimental evidence supporting some of the dogmas in the field and raise several open questions to be dealt with in future research. We do not discuss the health and environmental implications of toxin presence in the water body.

  7. Low species richness of non-biting midges (Diptera: Chironomidae) in Neotropical artificial urban water bodies

    DEFF Research Database (Denmark)

    Hamerlik, Ladislav; Jacobsen, Dean; Brodersen, Klaus Peter

    2011-01-01

    Chironomid assemblages of 22 artificial water bodies, mainly fountains, in two South American cities were surveyed. We found surprisingly low diversities, with a total of 11 taxa, averaging two taxa per site. The typical fountain assemblages mainly consisted of common species that have a wide...... distribution pattern and are tolerant to organic pollution. Also taxa independent of the natural aquatic sources, such as tap-water and semi-terrestrial species were represented. There was no significant difference between the taxa richness of the two S. American regions, however, the assemblage structures...

  8. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    Science.gov (United States)

    McGloin, Ryan; McGowan, Hamish; McJannet, David; Cook, Freeman; Sogachev, Andrey; Burn, Stewart

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy covariance and scintillometry measurements from a reservoir in southeast Queensland, Australia. The work presented expands on a short study presented by McJannet et al. (2011) to include comparisons of eddy covariance measurements and scintillometer-derived predictions of surface energy fluxes under a wide range of seasonal weather conditions. In this study, analysis was undertaken to ascertain whether important theoretical assumptions required for both techniques are valid in the complex environment of a small reservoir. Statistical comparison, energy balance closure, and the relationship between evaporation measurements and key environmental controls were used to compare the results of the two techniques. Reasonable agreement was shown between the sensible heat flux measurements from eddy covariance and scintillometry, while scintillometer-derived estimates of latent heat flux were approximately 21% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry.

  9. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    Science.gov (United States)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes

  10. A Hydraulic Nexus between Geographically Isolated Wetlands and Downstream Water Bodies

    Science.gov (United States)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2014-12-01

    Geographic isolation does not imply hydrological isolation; indeed, local groundwater exchange between geographically isolated wetlands (GIWs) and surrounding uplands may yield important controls on regional hydrology. Differences in specific yield (Sy) between aquifers and inundated GIWs drive differences in water level responses to atmospheric fluxes, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. When distributed across the landscape, these reversals in local groundwater fluxes are predicted to collectively buffer the surficial aquifer and its regulation of baseflow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we integrated models of daily soil moisture, upland water table, and wetland stage dynamics to simulate hydrology of a low-relief landscape with GIWs. Simulations explored the influences of cumulative wetland area, individual wetland size, climate, and soil texture on water table and baseflow variation. Increasing cumulative wetland area and decreasing individual wetland size reduced water table variation and the frequency of extremely shallow and deep water tables. This buffering effect extended to baseflow deliveries, decreasing the standard deviation of daily baseflow by as much as 50%. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the important role of small GIWs in regulating regional hydrology. Recent U.S. Supreme Court rulings have limited federal protections for GIWs except where a "significant nexus" to a navigable water body is demonstrated. Our results suggest that GIWs regulate downstream baseflow, even where water in GIWs may never physically reach downstream systems, providing a significant "hydraulic" nexus to distant water bodies.

  11. Inhaled vasopressin increases sociability and reduces body temperature and heart rate in rats.

    Science.gov (United States)

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; McGregor, Iain S

    2014-08-01

    The neuropeptides vasopressin (AVP) and oxytocin (OT) have therapeutic potential across a range of psychiatric disorders. However, there is uncertainty about the effectiveness of the intranasal route of administration that is often used to deliver these neuropeptides. Recent preclinical studies, typically involving anesthetized or restrained animals, have assessed intranasal AVP or OT effects, and have obtained somewhat inconsistent results. Here we obtained intranasal administration of AVP in rats by nebulizing the peptide (1ml of 5 or 10mg/ml solution) into a small enclosed chamber over a 2min period in which well-habituated, unanesthetized, unrestrained, rats were placed. Rats were immediately removed from the chamber and tested in the social interaction test, or assessed for changes in heart rate and body temperature using biotelemetry. Results showed that rats exposed to nebulized AVP (5 or 10mg/ml) showed increased social proximity (adjacent lying) and decreased anogenital sniffing in the social interaction test. Biotelemetry showed substantial and long lasting (>1h) hypothermic and bradycardic effects of nebulized AVP. These behavioral and physiological effects of nebulized AVP mimic those observed in recent studies with peripherally injected AVP. Plasma AVP concentrations were substantially increased 10min after nebulized AVP, producing levels above those seen with a behaviorally effective injected dose of AVP (0.005mg/kg intraperitoneal). This study thus provides a novel and effective method for neuropeptide administration to rodents.

  12. The dynamic relationship between mu and kappa opioid receptors in body temperature regulation.

    Science.gov (United States)

    Chen, Xiaohong; McClatchy, Daniel B; Geller, Ellen B; Tallarida, Ronald J; Adler, Martin W

    2005-12-12

    Previous studies demonstrated that intracerebroventricular (icv) injection of a kappa opioid receptor agonist decreased, and a mu agonist increased, body temperature (Tb) in rats. A dose-response study with the selective kappa antagonist nor-binaltorphimine (nor-BNI) showed that a low dose (1.25 nmol, icv) alone had no effect, although a high dose (25 nmol, icv) increased Tb. It was hypothesized that the hyperthermia induced by nor-BNI was the result of the antagonist blocking the kappa opioid receptor and releasing its inhibition of mu opioid receptor activity. To determine whether the Tb increase caused by nor-BNI was a mu receptor-mediated effect, we administered the selective mu antagonist CTAP (1.25 nmol, icv) 15 min after nor-BNI (25 nmol, icv) and measured rectal Tb in unrestrained rats. CTAP significantly antagonized the Tb increase induced by icv injection of nor-BNI. Injection of 5 or 10 nmol of CTAP alone significantly decreased the Tb, and 1.25 nmol of nor-BNI blocked that effect, indicating that the CTAP-induced hypothermia was kappa-mediated. The findings strongly suggest that mu antagonists, in blocking the basal hyperthermia mediated by mu receptors, can unmask the endogenous kappa receptor-mediated hypothermia, and that there is a tonic balance between mu and kappa opioid receptors that serves as a homeostatic mechanism for maintaining Tb.

  13. Biphasic effect of melanocortin agonists on metabolic rate and body temperature.

    Science.gov (United States)

    Lute, Beth; Jou, William; Lateef, Dalya M; Goldgof, Margalit; Xiao, Cuiying; Piñol, Ramón A; Kravitz, Alexxai V; Miller, Nicole R; Huang, Yuning George; Girardet, Clemence; Butler, Andrew A; Gavrilova, Oksana; Reitman, Marc L

    2014-08-01

    The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r)-mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists, and MTII selectively activated arcuate nucleus dopaminergic neurons, suggesting that these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress.

  14. Post-warmup strategies to maintain body temperature and physical performance in professional rugby union players.

    Science.gov (United States)

    West, Daniel J; Russell, Mark; Bracken, Richard M; Cook, Christian J; Giroud, Tibault; Kilduff, Liam P

    2016-01-01

    We compared the effects of using passive-heat maintenance, explosive activity or a combination of both strategies during the post-warmup recovery time on physical performance. After a standardised warmup, 16 professional rugby union players, in a randomised design, completed a counter-movement jump (peak power output) before resting for 20 min and wearing normal-training attire (CON), wearing a passive heat maintenance (PHM) jacket, wearing normal attire and performing 3 × 5 CMJ (with a 20% body mass load) after 12 min of recovery (neuromuscular function, NMF), or combining PHM and NMF (COMB). After 20 min, participants completed further counter-movement jump and a repeated sprint protocol. Core temperature (Tcore) was measured at baseline, post-warmup and post-20 min. After 20 min of recovery, Tcore was significantly lower under CON and NMF, when compared with both PHM and COMB (P union players.

  15. Flume experiments on wind induced flow in static water bodies in the presence of protruding vegetation

    Science.gov (United States)

    Banerjee, Tirtha; Muste, Marian; Katul, Gabriel

    2015-02-01

    The problem of wind-induced flow in inland waters is drawing significant research attention given its relevance to a plethora of applications in wetlands including treatment designs, pollution reduction, and biogeochemical cycling. The present work addresses the role of wind induced turbulence and waves within an otherwise static water body in the presence of rigid and flexible emergent vegetation through flume experimentation and time series analysis. Because no prior example of Particle Imaging Velocimetry (PIV) experiments involving air-water and flexible oscillating components have been found in the literature, a spectral analysis framework is needed and proposed here to guide the analysis involving noise, wave and turbulence separation. The experiments reveal that wave and turbulence effects are simultaneously produced at the air-water interface and the nature of their coexistence is found to vary with different flow parameters including water level, mean wind speed, vegetation density and its flexibility. For deep water levels, signature of fine-scaled inertial turbulence is found at deeper layers of the water system. The wave action appears stronger close to the air-water interface and damped by the turbulence deeper inside the water system. As expected, wave action is found to be dominated in a certain frequency range driven by the wind forcing, while it is also diffused to lower frequencies by means of (wind-induced) oscillations in vegetation. Regarding the mean water velocity, existence of a counter-current flow and its switching to fully forward flow in the direction of the wind under certain combinations of flow parameters were studied. The relative importance of wave and turbulence to the overall energy, degree of anisotropy in the turbulent energy components, and turbulent momentum transport at different depths from the air-water interface and flow combinations were then quantified. The flume experiments reported here differ from previous laboratory

  16. The Effectiveness of Whole Body Cryotherapy Compared to Cold Water Immersion: Implications for Sport and Exercise Recovery

    Directory of Open Access Journals (Sweden)

    Michael Holmes

    2016-10-01

    Full Text Available Background: Cryotherapy is the process of cooling the body, is typically used therapeutically, and is often used as a method of recovery relative to sport and exercise performance.  The purpose of this review is to compare the current literature on WBC to that of CWI and determine whether WBC provides any additional enhancements for sport and exercise recovery. These include tissue temperature reduction, markers of muscle damage, markers of inflammation, and parasympathetic reactivation. Method: Common methods of cryotherapy include cold water immersion (CWI, ice packs, ice massages, and gel or cooling creams. CWI is the most common method among athletes; however, a new form of cryotherapy, known as whole-body cryotherapy (WBC, has recently emerged.  Since its introduction, WBC has grown in popularity among practitioners and athletes. WBC involves short exposures (generally between 2-4 minutes to very cold air (-100o C to -140o C in a controlled room and setting. Furthermore, many of the studies on WBC were observational and did not contain a control group. Conclusion: Despite its growing popularity, the alleged benefits of WBC are largely based on anecdotal evidence as randomized, clinically-controlled studies regarding its efficacy are limited.  Keywords: cryotherapy, cold water immersion, exercise, recovery, muscle damage, inflammation

  17. Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies

    Science.gov (United States)

    Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.

    2012-04-01

    In this paper, we present the general design of a hydrographic laser scanner (prototype instrument) manufactured by the company Riegl Laser Measurement Systems in cooperation with the University of Innsbruck, Unit of Hydraulic Engineering. The instrument utilizes very short laser pulses (1 ns) in the green wavelength domain (λ=532 nm) capable of penetrating the water column. The backscattered signal is digitized in a waveform recorder at high frequency enabling sophisticated waveform processing, both, online during the flight and in post processing. In combination with a traditional topographic airborne laser scanner (λ=1500 nm) mounted on the same platform a complete hydrographic and topographic survey of the riparian foreland, the water surface and river bed can be carried out in a single campaign. In contrast to existing bathymetric LiDAR systems, the presented system uses only medium pulse energy but a high pulse repetition rate of up to 250 kHz and, thus, focuses on a detailed description of shallow water bodies under clear water conditions. Different potential fields of applications of the instrument (hydraulic modelling, hydro-morphology, hydro-biology, ecology, river restoration and monitoring) are discussed and the results of first real-world test flights in Austria and Germany are presented. It is shown that: (i) the high pulse repetition rate enables a point density on the ground of the water body of 10-20 pts/m2, (ii) the short laser pulses together with waveform processing enable a discrimination between water and ground reflections at a water depth of less than 25 cm, (iii) the combination of a topographic and hydrographic laser scanner enable the acquisition of the geometry data for hydraulic modeling in a single survey, thus, providing a much more homogeneous data basis compared to traditional techniques, and (iv) the high point density and the ranging accuracy of less than 10 cm enable a detailed and precise description of the river bed

  18. European perspectives on regional estimates of standing water bodies and the relevance of man-made ponds

    Science.gov (United States)

    Terasmaa, Jaanus; Bartout, Pascal; Marzecova, Agata; Touchart, Laurent; Koff, Tiiu; Choffel, Quentin; Kapanen, Galina; Maleval, Véronique; Millot, Camille; Qsair, Zoubida; Vandel, Egert

    2015-04-01

    Until recently, the small water bodies have been disregarded in the environmental management and protection policies. For example, the European Water Framework Directive 2000/60/EC proposes the threshold surface area of water bodies for typology and reporting as 50 ha. The inventories on state level or scientific studies took into account smaller water bodies (e.g. environmental deterioration. References: Verpoorter et al. (2014) Geophysical Research Letters, 41. Bartout & Touchart,(2013) Annales de Géographie, 691. Downing et al., (2006) Limnology and Oceanography, 51(5). Kuusisto & Raatikainen, (1988) Terra, 102. Meybeck, (1995) in Lerman et al., Physics and chemistry of lakes. Rjanžin, (2005) Priroda, 4.

  19. The effects of temperature and body mass on jump performance of the locust Locusta migratoria.

    Science.gov (United States)

    Snelling, Edward P; Becker, Christie L; Seymour, Roger S

    2013-01-01

    Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M (0.17±0.08 (95% CI)), jump take-off angle (A; degrees) scales as A = 52.5M (0.00±0.06), and jump energy (E; mJ per jump) scales as E = 1.91M (1.14±0.09). Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm) of the femur and tibia of the hind leg, L f+t = 34.9M (0.37±0.02). The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.

  20. The effects of temperature and body mass on jump performance of the locust Locusta migratoria.

    Directory of Open Access Journals (Sweden)

    Edward P Snelling

    Full Text Available Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m scales with body mass (M; g according to the power equation D = 0.35M (0.17±0.08 (95% CI, jump take-off angle (A; degrees scales as A = 52.5M (0.00±0.06, and jump energy (E; mJ per jump scales as E = 1.91M (1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm of the femur and tibia of the hind leg, L f+t = 34.9M (0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12% legs and a relatively larger (11% femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.

  1. Bull trout (Salvelinus confluentus) movement in relation to water temperature, season, and habitat features in Arrowrock Reservoir, Idaho, 2012

    Science.gov (United States)

    Maret, Terry R.; Schultz, Justin E.

    2013-01-01

    Acoustic telemetry was used to determine spring to summer (April–August) movement and habitat use of bull trout (Salvelinus confluentus) in Arrowrock Reservoir (hereafter “Arrowrock”), a highly regulated reservoir in the Boise River Basin of southwestern Idaho. Water management practices annually use about 86 percent of the reservoir water volume to satisfy downstream water demands. These practices might be limiting bull trout habitat and movement patterns. Bull trout are among the more thermally sensitive coldwater species in North America, and the species is listed as threatened throughout the contiguous United States under the Endangered Species Act. Biweekly water-temperature and dissolved-oxygen profiles were collected by the Bureau of Reclamation at three locations in Arrowrock to characterize habitat conditions for bull trout. Continuous streamflow and water temperature also were measured immediately upstream of the reservoir on the Middle and South Fork Boise Rivers, which influence habitat conditions in the riverine zones of the reservoir. In spring 2012, 18 bull trout ranging in total length from 306 to 630 millimeters were fitted with acoustic transmitters equipped with temperature and depth sensors. Mobile boat tracking and fixed receivers were used to detect released fish. Fish were tagged from March 28 to April 20 and were tracked through most of August. Most bull trout movements were detected in the Middle Fork Boise River arm of the reservoir. Fifteen individual fish were detected at least once after release. Water surface temperature at each fish detection location ranged from 6.0 to 16.2 degrees Celsius (°C) (mean=10.1°C), whereas bull trout body temperatures were colder, ranging from 4.4 to 11.6°C (mean=7.3°C). Bull trout were detected over deep-water habitat, ranging from 8.0 to 42.6 meters (m) (mean=18.1 m). Actual fish depths were shallower than total water depth, ranging from 0.0 to 24.5 m (mean=6.7 m). The last bull trout was

  2. Microstructure and Temperature Distribution in ZnAl2O4 Sintered Body by Pulse Electric Current

    Institute of Scientific and Technical Information of China (English)

    Dongming ZHANG; Zhengyi FU; Jingkun GUO

    2003-01-01

    Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismatch. lt is the evidence that periodical temperature field existed during pulse electric current sintering of nonconductive materials.The distance between high temperature areas was related to die diameter.

  3. Evaluation of significantly modified water bodies in Vojvodina by using multivariate statistical techniques

    Directory of Open Access Journals (Sweden)

    Vujović Svetlana R.

    2013-01-01

    Full Text Available This paper illustrates the utility of multivariate statistical techniques for analysis and interpretation of water quality data sets and identification of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Multivariate statistical techniques, such as factor analysis (FA/principal component analysis (PCA and cluster analysis (CA, were applied for the evaluation of variations and for the interpretation of a water quality data set of the natural water bodies obtained during 2010 year of monitoring of 13 parameters at 33 different sites. FA/PCA attempts to explain the correlations between the observations in terms of the underlying factors, which are not directly observable. Factor analysis is applied to physico-chemical parameters of natural water bodies with the aim classification and data summation as well as segmentation of heterogeneous data sets into smaller homogeneous subsets. Factor loadings were categorized as strong and moderate corresponding to the absolute loading values of >0.75, 0.75-0.50, respectively. Four principal factors were obtained with Eigenvalues >1 summing more than 78 % of the total variance in the water data sets, which is adequate to give good prior information regarding data structure. Each factor that is significantly related to specific variables represents a different dimension of water quality. The first factor F1 accounting for 28 % of the total variance and represents the hydrochemical dimension of water quality. The second factor F2 accounting for 18% of the total variance and may be taken factor of water eutrophication. The third factor F3 accounting 17 % of the total variance and represents the influence of point sources of pollution on water quality. The fourth factor F4 accounting 13 % of the total variance and may be taken as an ecological dimension of water quality. Cluster analysis (CA is an

  4. Sorbent biomaterials for cleaning up hydrocarbon spills on soil and bodies of water

    Directory of Open Access Journals (Sweden)

    Diana Paola Ortíz González

    2010-04-01

    Full Text Available This study was aimed at identifying and evaluating natural organic materials which could be used as sorbents in clean-up operations following hydrocarbons spills on both soils and bodies of water. The sorption capacity of three materials (sugarcane fibre, coco fibre and water Eichornia crassipies was evaluated with three hydrocarbons (35°, 30° and 25°API and two types of water (distilled and artificial marine water adopting the ASTM F-726 standard and following the methodology suggested in the “Oil spill sorbents: testing protocol and certification listing programme” Canadian protocol. It was found that the three materials being evaluated had a sorption capacity equal to or greater than that of the commercial material to which they were compared. It was observed that sorption capacity results depended on some variables such as hydrocarbon viscosity, granulometry (particle size in Tyler sieve and the structure of the material. Sugarcane fibre sorption in water showed the greatest hydrophobicity, different to Eichornia crassipies which is extremely hydrophilic. The materials’ sorption kinetics were determined and modelled with the three hydrocarbons (35°, 30° and 25°API. It was found that the materials became saturated in less than a minute, leading to a rapid alternative for cleaning-up and controlling hydrocarbon spills. Materials were also thermally treated for improving their hydrophobicity and behaviour during spills on bodies of water. Sugarcane fibre was the material which presented the best results with the thermal treatment, followed by water Eichornia crassipies. Coco fibre did not present any significant change in its hydrophobicity.

  5. The effects of water flow and temperature on thermal regime around a culvert built on permafrost

    Institute of Scientific and Technical Information of China (English)

    Loriane Prier; Guy Dor; CR Burn

    2014-01-01

    Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek, Yukon, were measured at hourly intervals between June and October 2013. These data were used to simulate the effect of the culvert on the thermal regime of the road embankment and subjacent permafrost. A 2-D thermal model of the embankment and permafrost was developed with TEMP/W and calibrated using field observations. Empirical relations were obtained between water tem-peratures at the entrance to the culvert, flow into the culvert, and water temperatures inside the structure. Water temper-atures at the entrance and inside the culvert had a linear relation, while water temperatures inside the culvert and water flow were associated by a logarithmic relation. A multiple linear regression was used to summarize these relations. From this relationship, changes in the flow rate and water temperatures at the entrance of the culvert were simulated to obtain pre-dicted water temperatures in the culvert. The temperatures in the culvert were used in the thermal model to determine their effects on the ground thermal regime near the culvert. Variation of ±10%in water flow rate had no impact on the thermal regime underneath the culvert. Variation of water temperature at the entrance of the culvert had a noticeable influence on the thermal regime. A final simulation was conducted without insulation beneath the culvert. The thaw depth was 30 cm with insulation, and 120 cm without insulation, illustrating the importance of insulation to the ground thermal regime.

  6. A paleothermometer based on abundances of 13C-18O bonds in bioapatite: Calibration and reconstruction of the body temperatures of extinct Cenozoic mammals and Mesozoic dinosaurs

    Science.gov (United States)

    Eagle, R.; Schauble, E. A.; Tripati, A. K.; Fricke, H. C.; Tuetken, T.; Eiler, J. M.

    2009-12-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms, and to reconstruct past climate in terrestrial and marine settings. Here we report the application of a new type of geochemical measurement to bioapatite, a ‘clumped isotope’ thermometer based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the crystal lattice of apatite. This effect is dependent on temperature but unlike conventional stable isotope paleotemperature proxies, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of apatite from modern teeth is proportional to the body temperature of the organism, with an accuracy of 1-2oC, and that the empirical calibration is supported by a theoretical model of isotopic ordering. We also report initial paleothermometry results from analyses of Cenozoic fossil mammal teeth and Mesozoic dinosaur teeth. Therefore, clumped isotope analysis of bioapatite represents a new approach in the study of the physiology of extinct species by allowing the first relatively assumption-free measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurements of clumped isotopes in apatite from fossils, such as conodonts and brachiopods, as well as phosphorites, have the potential to record environmental temperatures.

  7. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  8. Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure

    Science.gov (United States)

    Unstad, Kody M.; Uden, Daniel R.; Allen, Craig R.; Chaine, Noelle M.; Haak, Danielle M.; Kill, Robert A.; Pope, Kevin L.; Stephen, Bruce J.; Wong, Alec

    2013-01-01

    Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water body drawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasive aquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability of B. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccation events. Individual B. chinensis specimens survived air exposure in a laboratory setting for > 9 weeks, and survivorship was greater among adults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate. Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork for future management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures, predation, or molluscicides.

  9. Comparing the effects of rapid and gradual cooling on body temperature and inflammatory response following acute hyperthermia

    Science.gov (United States)

    Hyperthermia negatively impacts human and animal health, and extreme cases can result in mortality if recovery is not appropriately managed. The study objective was to determine the effects of rapid versus gradual cooling on body temperature and the inflammatory response following exposure to acute ...

  10. STUDY AND APPLICATION ABOUT COMPUTED SYSTEM FOR EXTERNAL CARDIAC MASSAGE,MONITOR OF HEART AND BODY TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To make and study computed system for external cardiac massage, monitor of heart and body temperature and observe its clinical effect. Method: The system was made and applied. Result: The effect of system was obvious. Conclusion: The system was an effective clinical equipment in treatment of patient with cardiac arrest.

  11. Immediate effects of reiki on heart rate variability, cortisol levels, and body temperature in health care professionals with burnout.

    Science.gov (United States)

    Díaz-Rodríguez, Lourdes; Arroyo-Morales, Manuel; Fernández-de-las-Peñas, Cesar; García-Lafuente, Francisca; García-Royo, Carmen; Tomás-Rojas, Inmaculada

    2011-10-01

    Burnout is a work-related mental health impairment comprising three dimensions: emotional exhaustion, depersonalization, and reduced personal accomplishment. Reiki aims to help replenish and rebalance the body's energetic system, thus stimulating the healing process. The objective of this placebo-controlled, repeated measures, crossover, single-blind, randomized trial was to analyze the immediate effects of Reiki on heart rate variability (HRV), body temperature, and salivary flow rate and cortisol level in health care professionals with burnout syndrome (BS). Participants included 21 health care professionals with BS, who were asked to complete two visits to the laboratory with a 1-week interval between sessions. They were randomly assigned the order in which they would receive a Reiki session applied by an experienced therapist and a placebo treatment applied by a therapist with no knowledge of Reiki, who mimicked the Reiki treatment. Temperature, Holter ECG recordings (standard deviation of the normal-to-normal interval [SDNN], square root of mean squared differences of successive NN intervals [RMSSD], HRV index, low frequency component [LF], and high frequency component [HF]), salivary flow rate and cortisol levels were measured at baseline and postintervention by an assessor blinded to allocation group. SDNN and body temperature were significantly higher after the Reiki treatment than after the placebo. LF was significantly lower after the Reiki treatment. The decrease in the LF domain was associated with the increase in body temperature. These results suggest that Reiki has an effect on the parasympathetic nervous system when applied to health care professionals with BS.

  12. The Impact of Temperature on the Performance of Anaerobic Biological Treatment of Perchlorate in Drinking Water

    Science.gov (United States)

    A 20 month pilot-scale study was conducted to examine the impact of temperature on the performance of an anaerobic biological contactor used to treat perchlorate-contaminated water. The contactor was successfully acclimated with indigenous microorganisms. Influent temperatures ...

  13. Succession and biodiversity indices in eutrophication process of static landscaping water body in northern China

    Institute of Scientific and Technical Information of China (English)

    CONG Ke-ming; LIU Shu-yu; MA Fang; Chein-chi Chang; REN Nan-qi

    2008-01-01

    Many biodiversity indices were used to indicate the biological contamination degree in studies of lake water or seawater.Some were studied on biodiversity comparison for different areas at the same time,or initial structure succession of some aerial lake water systems.The phytoplankton changed with the development of various dominant species.In this study,the dominant species at these stages were Chlorophyta in the beginning stage,Cyanophyta in the second stage,and Xanthophyta in the last stage.Seven of nine biodiversity indices (Margalef's,IE,Shannon-Wiener,Simpson's,McNaughton's,Species and Odds Measure of Diversity)showed their failure to represent the eutrophication trend,and the other two indices(Menhinick's and Monk)exhibited good efficiency to indicate the eutrophication trend for the static landscaping water body.

  14. [A new method for the transcutaneous measurement of deep body temperature during anaesthesia and intensive care (author's transl)].

    Science.gov (United States)

    Jost, U; Hanf, K; Köhler, C O; Just, O H

    1978-04-01

    A new method for monitoring deep body temperature is described. It is based on the establishment, by means of electronic appliances, of a zone without heatflow from the deep tissues. The method is simple and the results compare favourably with those obtained by other procedures for measuring core temperature. The uses of this transcutaneous mehtod are discussed and its advantages and reliability in the operating theatre and intensive care unit are emphasized. It becomes less reliable if it is employed during and after extracorporeal circulation in hypothermia on account of the temperature gradient.

  15. Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water...

  16. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.

    Science.gov (United States)

    Alzobaidi, Shehab; Da, Chang; Tran, Vu; Prodanović, Maša; Johnston, Keith P

    2017-02-15

    Ultralow water content carbon dioxide-in-water (C/W) foams with gas phase volume fractions (ϕ) above 0.95 (that is foams may be stabilized with viscoelastic aqueous phases formed with a single zwitterionic surfactant at a concentration of only 1% (w/v) in DI water and over a wide range of salinity. Moreover, they are stable with a foam quality ϕ up to 0.98 even for temperatures up to 120°C. The properties of aqueous viscoelastic solutions and foams containing these solutions are examined for a series of zwitterionic amidopropylcarbobetaines, R-ONHC3H6N(CH3)2CH2CO2, where R is varied from C12-14 (coco) to C18 (oleyl) to C22 (erucyl). For the surfactants with long C18 and C22 tails, the relaxation times from complex rheology indicate the presence of viscoelastic wormlike micelles over a wide range in salinity and pH, given the high surfactant packing fraction. The apparent viscosities of these ultralow water content foams reached more than 120cP with stabilities more than 30-fold over those for foams formed with the non-viscoelastic C12-14 surfactant. At 90°C, the foam morphology was composed of ∼35μm diameter bubbles with a polyhedral texture. The apparent foam viscosity typically increased with ϕ and then dropped at ϕ values higher than 0.95-0.98. The Ostwald ripening rate was slower for foams with viscoelastic versus non-viscoelastic lamellae as shown by optical microscopy, as a consequence of slower lamellar drainage rates. The ability to achieve high stabilities for ultralow water content C/W foams over a wide temperature range is of interest in various technologies including polymer and materials science, CO2 enhanced oil recovery, CO2 sequestration (by greater control of the CO2 flow patterns), and possibly even hydraulic fracturing with minimal use of water to reduce the requirements for wastewater disposal.

  17. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    Science.gov (United States)

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg

  18. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  19. Assessing the vulnerability of Dutch water bodies to exotic species: A new methodology

    Institute of Scientific and Technical Information of China (English)

    R.J. LEEWIS; A. GITTENBERGER

    2011-01-01

    Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently.The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types.This paper concentrates on the vulnerability of such water types to the introduction of exotic species.This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves.We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated).Numerical values used in the formula have been found by scoring a number of properties in different water types and species,which are specified in questionnaires.The results of the calculations are given as relative vulnerability scores (scale 1-10).By testing as many as 8 water types and 13 species,we demonstrate that this method is flexible and easy to use for water managers.Our results can be translated into classes of vulnerability,which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies.This readily corresponds to the way countries are required to report to the European Union in the context of the WFD.The method can also be generalized using functional groups of (exotic) species instead of particular species [Current Zoology 57 (6):863-873,2011].

  20. Analysis of land use changes near large water bodies in Ukraine using GIS.

    Science.gov (United States)

    Bogdanets, Vyacheslav; Vlaev, Anatoliy

    2015-01-01

    Analysis of land use and land cover changes in Ukraine were evaluated with special attention given to the interaction of land and water resources. The rational fresh water management in agriculture under future climate change conditions is of great importance. The hydrological regime of a river has huge impact on the environment of the surrounding area. Creating reservoirs, changes the landscape of river valleys and lake basins. Changes in the hydrological regime of the river and the process taking place in the coastal zone are reflected in land cover, wildlife and micro-climatic conditions. In the area closer to the shore line of the reservoir, there is greater amplitude of fluctuations in the level of ground water due to low rate of filtration behind fluctuations in the level of the reservoir. The interaction of water reservoirs with the environment, especially with the nature of the catchment area is substantially different from the natural water bodies. Analysis was done using GIS and remotely sensed data of land use near large water reservoirs and processed statistically. The ratio of arable lands and forested territories and future analysis of land use has been discussed.

  1. Ecotoxicological endpoints, are they useful tools to support ecological status assessment in strongly modified water bodies?

    Science.gov (United States)

    Palma, P; Ledo, L; Alvarenga, P

    2016-01-15

    Although man-made reservoirs represent an important water supply source in countries where water scarcity has become a problem, little work has been done on the evaluation of their ecological status. Taking this in account, the general aim of this study was to assess the usefulness of ecotoxicological endpoints in the potential ecological status characterization of water reservoirs, with the purpose of their possible integration in evaluation programs developed under the Water Framework Directive (WFD). To achieve this purpose, a group of bioassays were selected to evaluate both water and sediment compartments at the Alqueva reservoir (the biggest from the Iberian Peninsula), with representative species from different taxonomic and functional groups: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna and Heterocypris incongruens. The ecotoxicological assessment showed that sublethal endpoints (e.g., luminescence, growth or reproduction), would be more useful and sensitive to identify toxicity patterns in this type of water body. In general, the results from this ecotoxicological toolbox agreed with the potential ecological status established according to the WFD, which indicates that the bioassays complement the ecological assessment. Furthermore, the use of an ecotoxicological approach can be extremely useful, especially in cases where the biotic indices are difficult to establish, such as in man-made reservoirs. However, when pollutant concentrations are very low, and/or when nutrients and organic matter concentrations are high, the two approaches do not fit, requiring further research to determine which organisms are more sensitive and the best biotic indices to use under those conditions.

  2. Assessing disproportionate costs to achieve good ecological status of water bodies in a Mediterranean river basin.

    Science.gov (United States)

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón

    2011-08-01

    Water management is becoming increasingly important as the demand for water grows, diversifies, and includes more complex environmental concerns. The Water Framework Directive (WFD) seeks to achieve a good ecological status for all European Community water bodies by 2015. To achieve this objective, economic consideration of water management must be given to all decision-making processes. Exemption (time or level of stringency) from the objectives of the EU Directive can be justified by proving that the cost of implementing measures is disproportionate to the benefits. This paper addresses the issue of disproportionate costs through a cost-benefit analysis (CBA). To predict the costs, the function costs method is used. The quantification of environmental benefits is more complex, because they are not determined by the market. As an alternative to stated preference methods, we use the distance function approach to estimate the environmental benefits of improving water quality. We then apply this methodological approach to a Mediterranean River Basin in Spain. The results show that the achievement of good status could not be rejected based on the criterion of disproportionate costs in this river basin. This paper illustrates that CBA is a useful tool to inform policy and decision making. Furthermore, it is shown that economics, particularly the valuation of environmental benefits, plays a crucial role in fulfilling the environmental objectives of the WFD.

  3. Changes in body surface temperature during speed endurance work-out in highly-trained male sprinters

    Science.gov (United States)

    Korman, Paweł; Straburzyńska-Lupa, Anna; Kusy, Krzysztof; Kantanista, Adam; Zieliński, Jacek

    2016-09-01

    The mechanism of thermoregulatory adaptation to exercise cannot yet be fully explained, however, infrared thermography (IRT) seems to have potential for monitoring physiological changes during exercise and training. It is a non-contact and easy to use technology to measure heat radiation from the body surface. The objective of the study was to examine the temperature changes over time on lower limbs in sprinters during speed endurance training session. Eight sprinters, specialized in distances 100 m and 200 m, aged 21-29 years, members of the Polish national team, were evaluated during an outdoor speed endurance work-out. Their track session comprised of warm-up, specific drills for sprinting technique, and speed endurance exercise. The surface temperature of lower limbs was measured and thermal images were taken using infrared camera after each part of the session. The speed endurance training session brought about specific time course of body surface (legs) temperature. The warm-up induced a significant decline in surface temperature by ∼2.5 °C, measured both on the front and back of lower limbs (p Body surface temperature may help identify an individual optimal time to terminate warm up and start the main part of the training session. It may also be useful for the assessment of muscle activity symmetry in cyclical activities, such as sprint running. This is of particular relevance when a training session is performed outdoors in changeable weather conditions.

  4. Family Growth and Survival Response to Two Simulated Water Temperature Environments in the Sea Urchin Strongylocentrotus intermedius.

    Science.gov (United States)

    Chang, Yaqing; Tian, Xiaofei; Zhang, Weijie; Han, Fenjie; Chen, Shun; Zhou, Mi; Pang, Zhenguo; Qi, Shoubing; Feng, Wenping

    2016-01-01

    Heat tolerance is a target trait in the selective breeding of the sea urchin Strongylocentrotus intermedius, as it plays an important role in the survival and growth of cultured S. intermedius during summer. We investigated family growth and survival response to two temperature treatments to evaluate the genotype by temperature interaction (GEI) in the family selection of S. intermedius. Sea urchins from 11 families were exposed to two simulated water temperature environments-high temperature (HE) and control temperature (CE)-for 12 months, with each experiment divided into four periods (P1, stress-free period I; P2, stress-full high period; P3, stress-response period; and P4, stress-free period II) based on the temperature changes and the survival. Test diameter (TD), body weight (BW), and survival rate (SR) in HE and CE were measured monthly. Effects of family, temperature, and family-temperature interaction on TD, BW, SR, and specific growth rate (SGR) for BW were examined. In CE, BW differed significantly between families in P2, P3, and P4, while TD differed significantly between families in P3 and P4 (p intermedius under temperature pressure.

  5. Influence of temperature and pressure on quartz-water-CO₂ contact angle and CO₂-water interfacial tension.

    Science.gov (United States)

    Sarmadivaleh, Mohammad; Al-Yaseri, Ahmed Z; Iglauer, Stefan

    2015-03-01

    We measured water-CO2 contact angles on a smooth quartz surface (RMS surface roughness ∼40 nm) as a function of pressure and temperature. The advancing water contact angle θ was 0° at 0.1 MPa CO2 pressure and all temperatures tested (296-343 K); θ increased significantly with increasing pressure and temperature (θ=35° at 296 K and θ=56° at 343 K at 20 MPa). A larger θ implies less structural and residual trapping and thus lower CO2 storage capacities at higher pressures and temperatures. Furthermore we did not identify any significant influence of CO2-water equilibration on θ. Moreover, we measured the CO2-water interfacial tension γ and found that γ strongly decreased with increasing pressure up to ∼10 MPa, and then decreased with a smaller slope with further increasing pressure. γ also increased with increasing temperature.

  6. Novel Algorithms for Retrieval of Hydrology and Ice Regimes of Middle-sized Inland Water Bodies from Satellite Altimetry

    Science.gov (United States)

    Troitskaya, Y. I.; Rybushkina, G. V.; Kuznetsova, A. M.; Baidakov, G. A.; Soustova, I.

    2014-12-01

    A novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. The algorithm includes four consecutive steps: a) constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; b) solving a direct problem by calculating the reflected waveforms within the framework of the model; c) imposing restrictions and validity criteria for the algorithm based on waveform modelling; d) solving the inverse problem by retrieving a tracking point by the improved threshold algorithm. The results obtained on the basis of standard algorithm and method for adaptive re-tracking at Rybinsk , Gorky, Kuibyshev, Saratov and Volgograd reservoirs and middle-sized lakes of Russia: Chany, Segozero, Hanko, Onego, Beloye are compared to each other and to the field data of hydrological stations in reservoirs and lakes. The possibility of determination of significant wave height (SWH) in the lakes through a two-step adaptive retracking is investigated. Comparing results of retracting of SGDR data and ground measurements shows, that retrieving wave parameters in medium sized water bodies still meets difficulties. The direction of improvement of the existing algorithm is associated with comprehensive use of altimetry data, field studies and numerical modeling of high resolution. A simple method for timing of water freezing and ice break-up in lakes based on analysis of along-track dependencies of brightness temperatures at 18.7 and 34 GHz registered by microwave radiometer of altimetry satellite Jason-2. Comparison with in situ data of Russian Register of hydraulic structures on the example of reservoirs of the Volga River and the Don River confirms ability of the proposed method to determine quantitatively the freezing and break-up times for middle-sized inland water bodies.

  7. l-Leucine acts as a potential agent in reducing body temperature at hatching and affords thermotolerance in broiler chicks.

    Science.gov (United States)

    Han, Guofeng; Yang, Hui; Bahry, Mohammad A; Tran, Phuong V; Do, Phong H; Ikeda, Hiromi; Furuse, Mitsuhiro; Chowdhury, Vishwajit S

    2017-02-01

    Thermal manipulation (TM) of incubation temperature causes metabolic alterations and contributes to improving thermotolerance in chicks post hatching. However, there has been no report on amino acid metabolism during TM and the part it plays in thermotolerance. In this study, we therefore first analyzed free amino acid concentrations in the embryonic brain and liver during TM (38.6°C, 6h/d during embryonic day (ED) 10 to ED 18). It was found that leucine (Leu), phenylalanine and lysine were significantly decreased in the embryonic brain and liver. We then chose l-Leu and other branched-chain amino acids (l-isoleucine (L-Ile) and l-valine (l-Val)) for in ovo injection on ED 7 to reveal their roles in thermoregulation, growth, food intake and thermotolerance in chicks. It was found that in ovo injection of l-Leu, but not of l-Ileu or l-Val, caused a significant decline in body temperature at hatching and increased food intake and body weight gain in broiler chicks. Interestingly, in ovo injection of l-Leu resulted in the acquisition of thermotolerance under high ambient temperature (35±1°C for 180min) in comparison with the control thermoneutral temperature (28±1°C for 180min). These results indicate that the free amino acid concentrations during embryogenesis were altered by TM. l-Leu administration in eggs caused a reduction in body temperature at hatching, and afforded thermotolerance in heat-exposed young chicks, further suggesting that l-Leu may be one of the key metabolic factors involved in controlling body temperature in embryos, as well as in producing thermotolerance after hatching.

  8. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    Science.gov (United States)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  9. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies' Functions.

    Science.gov (United States)

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-22

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  10. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  11. Metabolic and Cardiovascular Responses during Aquatic Exercise in Water at Different Temperatures in Older Adults

    Science.gov (United States)

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco

    2015-01-01

    Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40…

  12. Possible Signs of Water and Differentiation in a Rocky Exoplanetary Body

    CERN Document Server

    Farihi, J; Gaensicke, B T; Marsh, T R; Girven, J; Hoard, D W; Klein, B; Koester, D

    2011-01-01

    Spitzer observations reveal the presence of warm debris from a tidally destroyed rocky and possibly icy planetary body orbiting the white dwarf GD61. Ultraviolet and optical spectroscopy of the metal-contaminated stellar photosphere reveal traces of hydrogen, oxygen, magnesium, silicon, iron, and calcium. The nominal ratios of these elements indicate an excess of oxygen relative to that expected from rock-forming metal oxides, and thus it is possible that water was accreted together with the terrestrial-like debris. Iron is found to be deficient relative to magnesium and silicon, suggesting the material may have originated as the outer layers of a differentiated parent body, as is widely accepted for the Moon. Subject

  13. Rare and threatened pondweed communities in anthropogenic water bodies of Opole Silesia (SW Poland

    Directory of Open Access Journals (Sweden)

    Arkadiusz Nowak

    2011-04-01

    Full Text Available The paper presents results of geobotanic studies conducted in anthropogenic water bodies like excavation ponds, fish culture ponds, other ponds, dam reservoirs, ditches, channels and recreational pools incl. watering places in Opole Silesia and surroundings in the years 2002-2005. The research focused on occurrence of threatened and rare pondweed communities. As the result of the investigations of several dozen of water bodies, 28 localities of rare pondweed communities were documented by 75 phytosociological relevés. Associations of Potametum trichoidis J. et R Tx. in R. Tx. 1965, Potametum praelongi Sauer 1937, P. alpini Br.-Bl. 1949, P. acutifolii Segal 1961, P. obtusifolii (Carst. 1954 Segal 1965 and P. perfoliati W. Koch 1926 em. Pass. 1964 were found as well as communities formed by Potamogeton berchtoldii, P. nodosus and P. pusillus. The study confirms that anthropogenic reservoirs could serve as last refugees for many threatened pondweed communities, which decline or even extinct in their natural habitats. The results indicate that man-made habitats could shift the range limits of threatened species and support their dispersal. The authors conclude that habitats strongly transformed by man are important factors in the natural syntaxonomical diversity protection and should not be omitted in strategies of nature conservation.

  14. Molecular characterization of Cryptosporidium and Giardia occurring in natural water bodies in Poland.

    Science.gov (United States)

    Adamska, Małgorzata

    2015-02-01

    Cryptosporidium and Giardia protozoa are zoonotic parasites that cause human gastroenteritis and can be transmitted to human through the fecal-oral route and water or food. Several species belong to these genera and their resistant forms occur in water, but only some of them are infectious to human. Health risk depends on the occurrence of infectious Cryptosporidium and Giardia species and genotypes in water, and only molecular techniques allow detecting them, as well as enable to identify the contamination source. In this work, genotyping and phylogenetic analysis have been performed on the basis of 18S rDNA and ß-giardin genes sequences of Cryptosporidium and Giardia, respectively, in order to provide the molecular characterization of these parasites detected earlier in five natural water bodies in Poland and to track possible sources of their (oo)cysts in water. Genotyping revealed a high similarity (over 99 up to 100 %) of analyzed sequences to cattle genotype of C. parvum isolated from cattle and human and to G. intestinalis assemblage B isolated from human. The sequences obtained by others originated from patients with clinical symptoms of cryptosporidiosis or giardiasis and/or with the infection confirmed by different methods. The contamination of three examined lakes is probably human-originated, while the sources of contamination of two remaining lakes are wild and domestic animals. Obtained phylogenetic trees support suggestions of other authors that the bovine genotype of C. parvum should be a separate species, as well as A and B assemblages of G. intestinalis.

  15. HYDRO BIOLOGICAL ASSESSMENT OF WATER BODIES FROM MIRAJ TAHSIL MAHARASHTRA: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    A. B. Sarwade

    2014-09-01

    Full Text Available Physicochemical features of freshwater bodies were regulated by number of factors. It includes temperature, turbidity, pH, total alkalinity, carbondioxide, dissolved oxygen, biological oxygen demand, chemical oxygen demand, phosphate, chloride and hardness. Present study focused on the determination of hydrobiological parameters during different seasons in January, 2011 – December, 2013 in three lakes of Miraj tahsil. The study indicated marked variation in some of the factors as turbidity, CO₂, DO, COD, Alkalinity etc. Obtained data showed, variations in pollution status of three lakes. As per observations and analysis contamination of lakes was Bharatnagar > Mhaishal > Brahmanath lake.

  16. Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stress.

    Science.gov (United States)

    Romero, Rosita Denny; Montero Pardo, Arnulfo; Montaldo, Hugo Horacio; Rodríguez, Ana Delia; Hernández Cerón, Joel

    2013-11-01

    Pelibuey and Suffolk sheep were compared as to their capacity to regulate body temperature under environmental hyperthermia by measuring their differences in cellular response to heat stress (HS). In a first experiment, seven Pelibuey and seven Suffolk ewes were kept in a climatic chamber for 6 h daily during 10 days (temperatures within the 18 to 39.5 °C range). As chamber temperature rose, sheep rectal temperature increased in both groups, but to a lesser extent in Pelibuey (0.3 °C) than in Suffolk sheep (0.7 °C) (P  0.05]. HS significantly increased HSP-70 average concentrations for both breeds at 43 °C. A significant effect was observed for the breed by temperature interaction (P  0.05). In conclusion, Pelibuey sheep show more effective body temperature regulation under conditions of environmental hyperthermia. Also, cell viability after HS was higher in Pelibuey than in Suffolk, an effect that could be mediated by an HSP-70-related mechanism.

  17. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    Science.gov (United States)

    Metz, Patricia A.

    2016-09-27

    in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward t