WorldWideScience

Sample records for body temperature measurements

  1. Assessment of body temperature measurement options.

    Science.gov (United States)

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature.

  2. Body Temperature Measurements for Metabolic Phenotyping in Mice

    Science.gov (United States)

    Meyer, Carola W.; Ootsuka, Youichirou; Romanovsky, Andrej A.

    2017-01-01

    Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses. PMID:28824441

  3. Miniature ingestible telemeter devices to measure deep-body temperature

    Science.gov (United States)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  4. Diagnostic accuracy of routine postoperative body temperature measurements

    NARCIS (Netherlands)

    Vermeulen, Hester; Storm-Versloot, Marja N.; Goossens, Astrid; Speelman, Peter; Legemate, Dink A.

    2005-01-01

    BACKGROUND: On surgical wards, body temperature is routinely measured, but there is no proof that this is useful for detecting postoperative infection. The aim of this study was to compare temperature measurements (the test) with the confirmed absence or presence of a postoperative infection (the

  5. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    Science.gov (United States)

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  6. Microchip-based body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Nielsen, Jens; Lohse, Louise

    In the present study, we tested whether an electronic identification and body temperature monitorring technology presently applied in small experimental animals could be transferred for use in pigs....

  7. Implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    thermometer. This work, however, can be quite time consuming and laborious, and further compromising the immediate well-fare of the pig, when restraining of the individual animal is necessary. Therefore, an electronic body monitoring system using implantable microchip transponders for measuring peripheral...... body temperature was tested, in order to evaluate the utility and reliability of this tool, in domestic pigs. The system is presently used and well optimized in small laboratory animals [1, 2]. We tested the microchip transponders during experimental infection of pigs with classical swine fever virus...... microchip transponder was injected deep subcutaneously by the left ear base of each individual. The transponder was before insertion programmed with ID identical to the individual pig’s ear tag number. The pigs were randomly divided into 3 groups: one group placebo-infected and two groups virus...

  8. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  9. Individualized estimation of human core body temperature using noninvasive measurements.

    Science.gov (United States)

    Laxminarayan, Srinivas; Rakesh, Vineet; Oyama, Tatsuya; Kazman, Josh B; Yanovich, Ran; Ketko, Itay; Epstein, Yoram; Morrison, Shawnda; Reifman, Jaques

    2018-06-01

    A rising core body temperature (T c ) during strenuous physical activity is a leading indicator of heat-injury risk. Hence, a system that can estimate T c in real time and provide early warning of an impending temperature rise may enable proactive interventions to reduce the risk of heat injuries. However, real-time field assessment of T c requires impractical invasive technologies. To address this problem, we developed a mathematical model that describes the relationships between T c and noninvasive measurements of an individual's physical activity, heart rate, and skin temperature, and two environmental variables (ambient temperature and relative humidity). A Kalman filter adapts the model parameters to each individual and provides real-time personalized T c estimates. Using data from three distinct studies, comprising 166 subjects who performed treadmill and cycle ergometer tasks under different experimental conditions, we assessed model performance via the root mean squared error (RMSE). The individualized model yielded an overall average RMSE of 0.33 (SD = 0.18)°C, allowing us to reach the same conclusions in each study as those obtained using the T c measurements. Furthermore, for 22 unique subjects whose T c exceeded 38.5°C, a potential lower T c limit of clinical relevance, the average RMSE decreased to 0.25 (SD = 0.20)°C. Importantly, these results remained robust in the presence of simulated real-world operational conditions, yielding no more than 16% worse RMSEs when measurements were missing (40%) or laden with added noise. Hence, the individualized model provides a practical means to develop an early warning system for reducing heat-injury risk. NEW & NOTEWORTHY A model that uses an individual's noninvasive measurements and environmental variables can continually "learn" the individual's heat-stress response by automatically adapting the model parameters on the fly to provide real-time individualized core body temperature estimates. This

  10. Is Oral Temperature an Accurate Measurement of Deep Body Temperature? A Systematic Review

    Science.gov (United States)

    Mazerolle, Stephanie M.; Ganio, Matthew S.; Casa, Douglas J.; Vingren, Jakob; Klau, Jennifer

    2011-01-01

    Context: Oral temperature might not be a valid method to assess core body temperature. However, many clinicians, including athletic trainers, use it rather than criterion standard methods, such as rectal thermometry. Objective: To critically evaluate original research addressing the validity of using oral temperature as a measurement of core body temperature during periods of rest and changing core temperature. Data Sources: In July 2010, we searched the electronic databases PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus, Academic Search Premier, and the Cochrane Library for the following concepts: core body temperature, oral, and thermometers. Controlled vocabulary was used, when available, as well as key words and variations of those key words. The search was limited to articles focusing on temperature readings and studies involving human participants. Data Synthesis: Original research was reviewed using the Physiotherapy Evidence Database (PEDro). Sixteen studies met the inclusion criteria and subsequently were evaluated by 2 independent reviewers. All 16 were included in the review because they met the minimal PEDro score of 4 points (of 10 possible points), with all but 2 scoring 5 points. A critical review of these studies indicated a disparity between oral and criterion standard temperature methods (eg, rectal and esophageal) specifically as the temperature increased. The difference was −0.50°C ± 0.31°C at rest and −0.58°C ± 0.75°C during a nonsteady state. Conclusions: Evidence suggests that, regardless of whether the assessment is recorded at rest or during periods of changing core temperature, oral temperature is an unsuitable diagnostic tool for determining body temperature because many measures demonstrated differences greater than the predetermined validity threshold of 0.27°C (0.5°F). In addition, the differences were greatest at the highest rectal temperatures. Oral temperature cannot

  11. Comparison between auricular and standard rectal thermometers for the measurement of body temperature in dogs.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C

    2011-04-01

    Although the rectal mucosa remains the traditional site for measuring body temperature in dogs, an increasing number of clinicians have been using auricular temperature to estimate core body temperature. In this study, 88 mature healthy dogs had body temperatures measured with auricular and rectal thermometers. The mean temperature and confidence intervals were similar for each method, but Bland-Altman plots showed high biases and limits of agreement unacceptable for clinical purposes. The results indicate that auricular and rectal temperatures should not be interpreted interchangeably.

  12. Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry.

    Science.gov (United States)

    Mei, Jie; Riedel, Nico; Grittner, Ulrike; Endres, Matthias; Banneke, Stefanie; Emmrich, Julius Valentin

    2018-02-23

    Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.

  13. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal

  14. Prediction of human core body temperature using non-invasive measurement methods.

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  15. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    Directory of Open Access Journals (Sweden)

    Enøe Claes

    2010-05-01

    Full Text Available Abstract Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV. Subcutaneous tissue temperatures obtained by the implantable transponders were compared with rectal temperatures, recorded by a conventional digital thermometer. Methods In a preliminary study, transponders were inserted subcutaneously at 6 different positions of the body of 5 pigs. The transponders positioned by the ear base provided the best correlation to rectal temperature. To test the stability of the monitoring system in a larger group of pigs, transponders were therefore inserted by the left ear base in a subsequent infection experiment with 30 pigs. Results Generally, the microchip transponders measured a subcutaneous tissue temperature, which was about 1°C lower than the rectal temperature. However, a simple linear relationship between the measures of the two methods was found. Conclusions Our study showed that the tested body monitoring system may represent a promising tool to obtain an approximate correlate of body temperatures in groups of pigs. In contrast, however, the tested system did not constitute a suitable tool to measure body temperatures of individual animals in the present pig infection experiment.

  16. Considerations for the measurement of core, skin and mean body temperatures.

    Science.gov (United States)

    Taylor, Nigel A S; Tipton, Michael J; Kenny, Glen P

    2014-12-01

    Despite previous reviews and commentaries, significant misconceptions remain concerning deep-body (core) and skin temperature measurement in humans. Therefore, the authors have assembled the pertinent Laws of Thermodynamics and other first principles that govern physical and physiological heat exchanges. The resulting review is aimed at providing theoretical and empirical justifications for collecting and interpreting these data. The primary emphasis is upon deep-body temperatures, with discussions of intramuscular, subcutaneous, transcutaneous and skin temperatures included. These are all turnover indices resulting from variations in local metabolism, tissue conduction and blood flow. Consequently, inter-site differences and similarities may have no mechanistic relationship unless those sites have similar metabolic rates, are in close proximity and are perfused by the same blood vessels. Therefore, it is proposed that a gold standard deep-body temperature does not exist. Instead, the validity of each measurement must be evaluated relative to one's research objectives, whilst satisfying equilibration and positioning requirements. When using thermometric computations of heat storage, the establishment of steady-state conditions is essential, but for clinically relevant states, targeted temperature monitoring becomes paramount. However, when investigating temperature regulation, the response characteristics of each temperature measurement must match the forcing function applied during experimentation. Thus, during dynamic phases, deep-body temperatures must be measured from sites that track temperature changes in the central blood volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    Science.gov (United States)

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  18. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating.

    Science.gov (United States)

    Li, Hongqiang; Yang, Haijing; Li, Enbang; Liu, Zhihui; Wei, Kejia

    2012-05-21

    Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18 °C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.

  19. Agreement between auricular and rectal measurements of body temperature in healthy cats.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C

    2013-04-01

    Measurement of body temperature is a routine part of the clinical assessment of a patient. However, this procedure may be time-consuming and stressful to most animals because the standard site of temperature acquisition remains the rectal mucosa. Although an increasing number of clinicians have been using auricular temperature to estimate core body temperature, evidence is still lacking regarding agreement between these two methods in cats. In this investigation, we evaluated the agreement between temperatures measured in the rectum and ear in 29 healthy cats over a 2-week period. Temperatures were measured in the rectum (using digital and mercury-in-glass thermometers) and ear once a day for 14 consecutive days, producing 406 temperature readings for each thermometer. Mean temperature and confidence intervals were similar between methods, and Bland-Altman plots showed small biases and narrow limits of agreement acceptable for clinical purposes. The interobserver variability was also checked, which indicated a strong correlation between two near-simultaneous temperature readings. Results are consistent with auricular thermometry being a reliable alternative to rectal thermometry for assessing core body temperature in healthy cats.

  20. Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers.

    Science.gov (United States)

    Angle, T Craig; Gillette, Robert L

    2011-04-01

    This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog.

  1. Novel Zero-Heat-Flux Deep Body Temperature Measurement in Lower Extremity Vascular and Cardiac Surgery.

    Science.gov (United States)

    Mäkinen, Marja-Tellervo; Pesonen, Anne; Jousela, Irma; Päivärinta, Janne; Poikajärvi, Satu; Albäck, Anders; Salminen, Ulla-Stina; Pesonen, Eero

    2016-08-01

    The aim of this study was to compare deep body temperature obtained using a novel noninvasive continuous zero-heat-flux temperature measurement system with core temperatures obtained using conventional methods. A prospective, observational study. Operating room of a university hospital. The study comprised 15 patients undergoing vascular surgery of the lower extremities and 15 patients undergoing cardiac surgery with cardiopulmonary bypass. Zero-heat-flux thermometry on the forehead and standard core temperature measurements. Body temperature was measured using a new thermometry system (SpotOn; 3M, St. Paul, MN) on the forehead and with conventional methods in the esophagus during vascular surgery (n = 15), and in the nasopharynx and pulmonary artery during cardiac surgery (n = 15). The agreement between SpotOn and the conventional methods was assessed using the Bland-Altman random-effects approach for repeated measures. The mean difference between SpotOn and the esophageal temperature during vascular surgery was+0.08°C (95% limit of agreement -0.25 to+0.40°C). During cardiac surgery, during off CPB, the mean difference between SpotOn and the pulmonary arterial temperature was -0.05°C (95% limits of agreement -0.56 to+0.47°C). Throughout cardiac surgery (on and off CPB), the mean difference between SpotOn and the nasopharyngeal temperature was -0.12°C (95% limits of agreement -0.94 to+0.71°C). Poor agreement between the SpotOn and nasopharyngeal temperatures was detected in hypothermia below approximately 32°C. According to this preliminary study, the deep body temperature measured using the zero-heat-flux system was in good agreement with standard core temperatures during lower extremity vascular and cardiac surgery. However, agreement was questionable during hypothermia below 32°C. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Measurement of body temperature in normothermic and febrile rats: Limitations of using rectal thermometry.

    Science.gov (United States)

    Dangarembizi, Rachael; Erlwanger, Kennedy H; Mitchell, Duncan; Hetem, Robyn S; Madziva, Michael T; Harden, Lois M

    2017-10-01

    Stress-induced hyperthermia following rectal thermometry is reported in normothermic rats, but appears to be muted or even absent in febrile rats. We therefore investigated whether the use of rectal thermometry affects the accuracy of temperature responses recorded in normothermic and febrile rats. Using intra-abdominally implanted temperature-sensitive radiotelemeters we measured the temperature response to rectal temperature measurement in male Sprague Dawley rats (~200g) injected subcutaneously with Brewer's yeast (20ml/kg of a 20% Brewer's yeast solution=4000mg/kg) or saline (20ml/kg of 0.9% saline). Rats had been pre-exposed to, or were naive to rectal temperature measurement before the injection. The first rectal temperature measurement was taken in the plateau phase of the fever (18h after injection) and at hourly intervals thereafter. In normothermic rats, rectal temperature measurement was associated with an increase in abdominal temperature (0.66±0.27°C) that had a rapid onset (5-10min), peaked at 15-20min and lasted for 35-50min. The hyperthermic response to rectal temperature measurement was absent in febrile rats. Exposure to rectal temperature measurement on two previous occasions did not reduce the hyperthermia. There was a significant positive linear association between temperatures recorded using the two methods, but the agreement interval identified that rectal temperature measured with a thermocouple probe could either be 0.7°C greater or 0.5°C lower than abdominal temperature measured with radiotelemeter. Thus, due to stress-induced hyperthermia, rectal thermometry does not ensure accurate recording of body temperature in short-spaced, intermittent intervals in normothermic and febrile rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Theoretical study on the inverse modeling of deep body temperature measurement

    International Nuclear Information System (INIS)

    Huang, Ming; Chen, Wenxi

    2012-01-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. (paper)

  4. Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing

    International Nuclear Information System (INIS)

    Richmond, V L; Wilkinson, D M; Blacker, S D; Horner, F E; Carter, J; Rayson, M P; Havenith, G

    2013-01-01

    This study assessed the validity of insulated skin temperature (T is ) to predict rectal temperature (T re ) for use as a non-invasive measurement of thermal strain to reduce the risk of heat illness for emergency service personnel. Volunteers from the Police, Fire and Rescue, and Ambulance Services performed role-related tasks in hot (30 °C) and neutral (18 °C) conditions, wearing service specific personal protective equipment. Insulated skin temperature and micro climate temperature (T mc ) predicted T re with an adjusted r 2 = 0.87 and standard error of the estimate (SEE) of 0.19 °C. A bootstrap validation of the equation resulted in an adjusted r 2 = 0.85 and SEE = 0.20 °C. Taking into account the 0.20 °C error, the prediction of T re resulted in a sensitivity and specificity of 100% and 91%, respectively. Insulated skin temperature and T mc can be used in a model to predict T re in emergency service personnel wearing CBRN protective clothing with an SEE of 0.2 °C. However, the model is only valid for T is over 36.5 °C, above which thermal stability is reached between the core and the skin. (paper)

  5. Long-term adherence to a local guideline on postoperative body temperature measurement: mixed methods analysis

    NARCIS (Netherlands)

    Storm-Versloot, Marja N.; Knops, Anouk M.; Ubbink, Dirk T.; Goossens, Astrid; Legemate, Dink A.; Vermeulen, Hester

    2012-01-01

    Aim To find out whether a successful multifaceted implementation approach of a local evidence-based guideline on postoperative body temperature measurements (BTM) was persistent over time, and which factors influenced long-term adherence. Methods Mixed methods analysis. Patient records were

  6. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  7. Body temperature norms

    Science.gov (United States)

    Normal body temperature; Temperature - normal ... Morrison SF. Regulation of body temperature. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 59. Sajadi MM, Mackowiak ...

  8. [Comparison of body temperatures in children measured using 3 different thermometers: tympanic, skin and digital axillary].

    Science.gov (United States)

    Padilla-Raygoza, Nicolás; Ruiz-Paloalto, M Laura; Díaz-Guerrero, Rosalina; Olvera-Villanueva, Georgina; Maldonado, Angélica; Raygoza-Mendoza, María Del Pilar

    2014-01-01

    To compare body temperature measurements using tympanic, skin and digital axillary thermometers. Hospitalized or outpatient children from the General Hospital Celaya, ISSSTE Hospital Clinic and General Hospital No. 4 IMSS, and the pediatric private service in Celaya, Guanajuato, from 1 day of life until 16 years old, were recruited over a one month period, after their parents signed the consent form. The order of each institution was selected by simple randomization. Body temperatures were measured in triplicate using tympanic, skin and digital axillary thermometers. The sample consisted of 554 children. The Pearson r between the tympanic and digital axillary thermometers was 0.57 to 0.65, with a positive linear relationship (P<.05); between the skin and the digital axillary thermometers, it was between 0.47 and 0.52 with a positive linearrelationship (P<.05). The intra-observer Kappa for the tympanic thermometer was 0.86, and for the inter-observer was 0.77; for the skin thermometer it was 0.82 and 0.67, respectively, and for the digital axillary thermometer it was 0.86 for intra-observer reliability and 0.78 for inter -observer reliability. Tympanic and axillary thermometers showed better precision in measuring the body temperature in children than skin thermometers. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  9. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  10. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang

    2016-01-01

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120

  11. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  12. Re-visiting the tympanic membrane vicinity as core body temperature measurement site.

    Directory of Open Access Journals (Sweden)

    Wui Keat Yeoh

    Full Text Available Core body temperature (CBT is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies.

  13. Re-visiting the tympanic membrane vicinity as core body temperature measurement site

    Science.gov (United States)

    Gan, Chee Wee; Liang, Wenyu

    2017-01-01

    Core body temperature (CBT) is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies. PMID:28414722

  14. Motor excitability measurements: the influence of gender, body mass index, age and temperature in healthy controls.

    Science.gov (United States)

    Casanova, I; Diaz, A; Pinto, S; de Carvalho, M

    2014-04-01

    The technique of threshold tracking to test axonal excitability gives information about nodal and internodal ion channel function. We aimed to investigate variability of the motor excitability measurements in healthy controls, taking into account age, gender, body mass index (BMI) and small changes in skin temperature. We examined the left median nerve of 47 healthy controls using the automated threshold-tacking program, QTRAC. Statistical multiple regression analysis was applied to test relationship between nerve excitability measurements and subject variables. Comparisons between genders did not find any significant difference (P>0.2 for all comparisons). Multiple regression analysis showed that motor amplitude decreases with age and temperature, stimulus-response slope decreases with age and BMI, and that accommodation half-time decrease with age and temperature. The changes related to demographic features on TRONDE protocol parameters are small and less important than in conventional nerve conduction studies. Nonetheless, our results underscore the relevance of careful temperature control, and indicate that interpretation of stimulus-response slope and accommodation half-time should take into account age and BMI. In contrast, gender is not of major relevance to axonal threshold findings in motor nerves. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Measurement of body temperature by use of auricular thermometers versus rectal thermometers in dogs with otitis externa.

    Science.gov (United States)

    González, A Michelle; Mann, F A; Preziosi, Diane E; Meadows, Richard L; Wagner-Mann, Colette C

    2002-08-01

    To compare measurements of body temperature obtained with auricular thermometers versus rectal thermometers in dogs with otitis externa. Prospective study. 100 client-owned dogs: 50 with and 50 without clinical evidence of otitis externa. Dogs were evaluated for the presence of otitis externa on the basis of clinical signs, otoscopic examination, and cytologic evaluation of ear exudate. Auricular and rectal temperatures were obtained simultaneously in all dogs prior to and following ear examination. There was a high correlation between auricular and rectal temperatures in dogs with otitis externa both prior to and after ear manipulation. Significant differences were not detected in temperature measurements among dogs with different degrees of otitis externa. Auricular temperature readings obtained by use of an auricular thermometer in dogs with otitis externa are accurate measurements of body temperature, compared with rectal temperature measurements. Temperature measurements are reliable before and after examination of the ear canal.

  16. Disorders of body temperature.

    Science.gov (United States)

    Gomez, Camilo R

    2014-01-01

    The human body generates heat capable of raising body temperature by approximately 1°C per hour. Normally, this heat is dissipated by means of a thermoregulatory system. Disorders resulting from abnormally high or low body temperature result in neurologic dysfunction and pose a threat to life. In response to thermal stress, maintenance of normal body temperature is primarily maintained by convection and evaporation. Hyperthermia results from abnormal temperature regulation, leading to extremely elevated body temperature while fever results from a normal thermoregulatory mechanism operating at a higher set point. The former leads to specific clinical syndromes with inability of the thermoregulatory mechanism to maintain a constant body temperature. Heat related illness encompasses heat rash, heat cramps, heat exhaustion and heat stroke, in order of severity. In addition, drugs can induce hyperthermia and produce one of several specific clinical syndromes. Hypothermia is the reduction of body temperature to levels below 35°C from environmental exposure, metabolic disorders, or therapeutic intervention. Management of disorders of body temperature should be carried out decisively and expeditiously, in order to avoid secondary neurologic injury. © 2014 Elsevier B.V. All rights reserved.

  17. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography

    Science.gov (United States)

    Wallage, A. L.; Gaughan, J. B.; Lisle, A. T.; Beard, L.; Collins, C. W.; Johnston, S. D.

    2017-07-01

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT ( r > 0.94, P 0.80, P animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  18. Core body temperature in obesity.

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  19. Relationship between body temperature and air temperature in ...

    African Journals Online (AJOL)

    Body temperatures of singing male Gryllus bimaculatus were measured for the first time. Body temperatures were strongly correlated with ambient temperature. This indicates that, unlike some other orthopterans, larger crickets are not dependent on an elevated body temperature for efficient calling. Our results confirm that it ...

  20. A microcomputer-based data acquisition system for ECG, body and ambient temperatures measurement during bathing.

    Science.gov (United States)

    Uokawa, Y; Yonezawa, Y; Caldwell, W M; Hahn, A W

    2000-01-01

    A data acquisition system employing a low power 8 bit microcomputer has been developed for heart rate variability monitoring before, during and after bathing. The system consists of three integral chest electrodes, two temperature sensors, an instrumentation amplifier, a low power 8-bit single chip microcomputer (SMC) and a 4 MB compact flash memory (CFM). The ECG from the electrodes is converted to an 8-bit digital format at a 1 ms rate by an A/D converter in the SMC. Both signals from the body and ambient temperature sensors are converted to an 8-bit digital format every 1 second. These data are stored by the CFM. The system is powered by a rechargeable 3.6 V lithium battery. The 4 x 11 x 1 cm system is encapsulated in epoxy and silicone, yielding a total volume of 44 cc. The weight is 100 g.

  1. New standards for devices used for the measurement of human body temperature.

    Science.gov (United States)

    Ring, E F J; McEvoy, H; Jung, A; Zuber, J; Machin, G

    2010-05-01

    Significant changes in recording of human body temperature have been taking place worldwide in recent years. The clinical thermometer introduced in the mid-19th century by Wunderlich has been replaced by digital thermometers or radiometer devices for recording tympanic membrane temperature. More recently the use of infrared thermal imaging for fever screening has become more widespread following the SARS infection, and particularly during the pandemic H1N1 outbreak. Important new standards that have now reached international acceptance will affect clinical and fever screening applications. This paper draws attention to these new standard documents. They are designed to improve the standardization of both performance and practical use of these key techniques in clinical medicine, especially necessary in a pandemic influenza situation.

  2. Effect of morning bright light on body temperature, plasma cortisol and wrist motility measured during 24 hour of constant conditions.

    Science.gov (United States)

    Foret, J; Aguirre, A; Touitou, Y; Clodoré, M; Benoit, O

    1993-06-11

    Using 24 h constant conditions, time course of body temperature, plasma cortisol and wrist motility was measured in response to a 3 day morning 2 h bright light pulse. This protocol demonstrated that a 2000 lux illumination was sufficient to elicit a shift of about 2 h of temperature minimum and cortisol peak. In reference session, actimetric recordings showed a circadian time course, closely in relation with core temperature. Bright light pulse resulted in a decrease of amplitude and a disappearance of circadian pattern of actimetry.

  3. [Research on demodulation system for human body temperature measurement of intelligent clothing based on arrayed waveguide grating].

    Science.gov (United States)

    Yu, Xiao-gang; Miao, Chang-yun; Li, Hong-qiang; Li, En-bang; Liu, Zhi-hui; Wei, Ke-jia

    2012-08-01

    A system for demodulating distributed fiber Bragg grating sensors of the intelligent clothing was researched and realized, which is based on arrayed waveguide grating. The principle of demodulation method based on arrayed waveguide grating was analyzed, intensity--demodulating method was used to interrogate the wavelength of the fiber Bragg grating based on the building up of an experimental platform, and demodulation experiment of pre and post series of fiber Bragg grating was completed. The results show that the wavelength demodulation of the system has high linearity for fiber Bragg grating, the system gives a wavelength accuracy of 0.001 nm, and demodulation error caused by crosstalk between different sensors is 0.0005 nm. The measurement error of human body temperature is +/- 0.16 degrees C. It can be applied to the human body temperature measurement.

  4. Effect of body temperature on peripheral venous pressure measurements and its agreement with central venous pressure in neurosurgical patients.

    Science.gov (United States)

    Sahin, Altan; Salman, M Alper; Salman, A Ebru; Aypar, Ulka

    2005-04-01

    Previous studies suggest a correlation of central venous pressure (CVP) with peripheral venous pressure (PVP) in different clinical settings. The effect of body temperature on PVP and its agreement with CVP in patients under general anesthesia are investigated in this study. Fifteen American Society of Anesthesiologists I-II patients undergoing elective craniotomy were included in the study. CVP, PVP, and core (Tc) and peripheral (Tp) temperatures were monitored throughout the study. A total of 950 simultaneous measurements of CVP, PVP, Tc, and Tp from 15 subjects were recorded at 5-minute intervals. The measurements were divided into low- and high-Tc and -Tp groups by medians as cutoff points. Bland-Altman assessment for agreement was used for CVP and PVP in all groups. PVP measurements were within range of +/-2 mm Hg of CVP values in 94% of the measurements. Considering all measurements, mean bias was 0.064 mm Hg (95% confidence interval -0.018-0.146). Corrected bias for repeated measurements was 0.173 +/- 3.567 mm Hg (mean +/- SD(corrected)). All of the measurements were within mean +/- 2 SD of bias, which means that PVP and CVP are interchangeable in our setting. As all the measurements were within 1 SD of bias when Tc was > or = 35.8 degrees C, even a better agreement of PVP and CVP was evident. The effect of peripheral hypothermia was not as prominent as core hypothermia. PVP measurement may be a noninvasive alternative for estimating CVP. Body temperature affects the agreement of CVP and PVP, which deteriorates at lower temperatures.

  5. Short communication: using infrared thermography as an in situ measure of core body temperature in lot-fed Angus steers

    Science.gov (United States)

    Lees, Angela M.; Lees, J. C.; Sejian, V.; Wallage, A. L.; Gaughan, J. B.

    2018-01-01

    Thirty-six Black Angus steers were used in a replicated study; three replicates of 12 steers/replicate. Steers had an initial non-fasted BW of 392.3 ± 5.1, 427.5 ± 6.3, and 392.7 ± 3.7 kg for each replicate, respectively. Steers were housed outside in individual animal pens (10 m × 3.4 m). Each replicate was conducted over a 6-day period where infrared thermography (IRT) images were collected at 3-h intervals, commencing at 0600 h on day 1 and concluding at 0600 h on day 6. Rumen temperatures ( T RUM) were measured at 10-min intervals for the duration of each replicate using a radio-frequency identification (RFID) rumen bolus. These data were used to determine the relationship with surface temperature of the cattle, which was determined using IRT. Individual T RUM were converted to an hourly average. The relationship between T RUM and surface temperature was determined using Pearson's correlation coefficient. There were no linear trends between mean hourly T RUM and mean surface temperature. Pearson's correlation coefficient indicated that there were weak associations ( r ≤ 0.1; P < 0.003) between T RUM and body surface temperature. These data suggest that there was little relationship between the surface temperature and T RUM.

  6. Dinosaur fossils predict body temperatures.

    Directory of Open Access Journals (Sweden)

    James F Gillooly

    2006-07-01

    Full Text Available Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.

  7. Central control of body temperature.

    Science.gov (United States)

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  8. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    Science.gov (United States)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  9. Body Temperature Measurement Skills and Fever Knowledge of Caregivers with a Child Having Cancer

    Directory of Open Access Journals (Sweden)

    Begul Yagci-Kupeli

    2013-08-01

    Full Text Available Purpose: We did not encounter a study dealing with the knowledge of fever and attitudes of caregivers having children with a diagnosis of malignant disease toward fever in English literature. Materials and Methods: Caregivers of 124 pediatric oncology patients and 72 patients without any malignant disease were recruited and interviewed using a 26-item questionnaire about fever and its management in two hospital clinics in Diyarbakir, Turkey. Results: Seventy point one percent of the mothers in oncology group were illiterate and in 75% of the cases, caregiver was the mother of the patient. Most of the caregivers in control group (72.2% knew at least one harmful effect of high fever (p=0.001. The primary method of measurement however was palpation in both groups. 41.9% of the caregivers in oncology group knew the correct measurement of fever, but only 2.7% in control group (p=0.001. Resources of fever konowledge was mainly doctors and nurses in oncology group (p=0.001. Conclusion: Pediatric health care providers must have more initiative and exploit oppportunities on parental understanding of fever and its management. Educational interventions are needed to correct caregivers’ misconceptions about fever and to promote appropriate management of febrile pediatric oncology patients. [Cukurova Med J 2013; 38(4.000: 706-711

  10. Portable Body Temperature Conditioner

    Science.gov (United States)

    2014-12-01

    temperature is 36.0o C. The patient complains of severe abdominal pain and intra- abdominal injury is suspected. In this scenario the patient is...hypothermia will shiver, experience pain , and on a whole be really uncomfortable. If they are sufficiently obtunded to require this therapy then they...Convective hyper- hypothermia water blankets/wraps Single-Use Blanket Maxi-Therm Adult Box 5 $127.00 Pediatric Box 5 $90.00 Infant Box 5 $72.00

  11. The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research.

    Science.gov (United States)

    Hasselberg, Michael J; McMahon, James; Parker, Kathy

    2013-01-01

    Changes in core body temperature due to heat transfer through the skin have a major influence on sleep regulation. Traditional measures of skin temperature are often complicated by extensive wiring and are not practical for use in normal living conditions. This review describes studies examining the reliability, validity and utility of the iButton®, a wireless peripheral thermometry device, in sleep/wake research. A review was conducted of English language literature on the iButton as a measure of circadian body temperature rhythms associated with the sleep/wake cycle. Seven studies of the iButtton as a measure of human body temperature were included. The iButton was found to be a reliable and valid measure of body temperature. Its application to human skin was shown to be comfortable and tolerable with no significant adverse reactions. Distal skin temperatures were negatively correlated with sleep/wake activity, and the temperature gradient between the distal and proximal skin (DPG) was identified as an accurate physiological correlate of sleep propensity. Methodological issues included site of data logger placement, temperature masking factors, and temperature data analysis. The iButton is an inexpensive, wireless data logger that can be used to obtain a valid measurement of human skin temperature. It is a practical alternative to traditional measures of circadian rhythms in sleep/wake research. Further research is needed to determine the utility of the iButton in vulnerable populations, including those with neurodegenerative disorders and memory impairment and pediatric populations. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Core body temperature in obesity123

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C

    2011-01-01

    Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) <30] and obese (BMI ≥30) adults swallowed wireless core temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Conclusions: Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952

  13. Effect of body fat and gender on body temperature distribution.

    Science.gov (United States)

    Neves, Eduardo Borba; Salamunes, Ana Carla Chierighini; de Oliveira, Rafael Melo; Stadnik, Adriana Maria Wan

    2017-12-01

    It is well known that body composition can influence peripheral heat loss and skin temperature. That the distribution of body fat is affected by gender is well known; however, there is little information on how body composition and gender influences the measure of skin temperature. This study evaluated skin temperature distribution according to body fat percentage (BF%) and gender. A sample of 94 apparently healthy volunteers (47 women and 47 men) was assessed with Dual-Energy X-Ray Absorptiometry (DXA) and infrared thermography (mean, maximum and minimum temperatures - T Mean , T Max and T Min ). The sample was divided into groups, according to health risk classification, based on BF%, as proposed by the American College of Sports Medicine: Average (n = 58), Elevated (n = 16) or High (n = 20). Women had lower T Mean in most regions of interest (ROI). In both genders, group High had lower temperature values than Average and Elevated in the trunk, upper and lower limbs. In men, palms and posterior hands had a tendency (p temperature along with increased BF%. T Mean , T Max and T Min of trunk, upper and lower limbs were negatively correlated with BF% and the fat percentage of each segment (upper limbs, lower limbs and trunk). The highest correlations found in women were between posterior trunk and BF% (rho = -0.564, p temperature than men, which was related with higher BF%. Facial temperature seems not to be influenced by body fat. With the future collection of data on the relationship between BF% and skin temperature while taking into account factors such as body morphology, gender, and ethnicity, we conclude that measurement of BF may be reliably estimated with the use of thermal imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Measurement of body temperature in 300 dogs with a novel noncontact infrared thermometer on the cornea in comparison to a standard rectal digital thermometer.

    Science.gov (United States)

    Kreissl, Hannah; Neiger, Reto

    2015-01-01

    To assess the accuracy of obtaining body temperatures in dogs with a noncontact infrared thermometer (NCIT) on the cornea compared with a rectal digital thermometer (RDT). Prospective single center study. University teaching hospital. Three hundred dogs presented with low, normal, or high body temperatures. Three body temperature readings were measured by an RDT and by an NCIT on the cornea of the left eye by 2 investigators (experienced and inexperienced). Results obtained by the 2 methods were compared. Median body temperature measured by the experienced investigator with the RDT and the NCIT were 38.3°C (range 35.5°C-41.1°C; 95% CI: 38.2-38.4°C) and 37.7°C (35.9°C-40.1°C; 95% CI: 37.7°C-37.9°C), respectively. Measurement of RDT as well as of NCIT correlated well between both investigators (rRDT = 0.94; rNCIT = 0.82; respectively, P temperature correlated poorly (r = 0.43; P temperature >39.0°C) showed an area under the curve of 0.76. Mean discomfort score was significantly lower using NCIT compared to RDT measurement (P temperatures obtained by RDT and NCIT. The corneal NCIT measurement tends to underrecognize hypothermic and hyperthermic conditions. Although the use of the NCIT yields faster results and is significantly more comfortable for the dog than the RDT measurement, it cannot be recommended in dogs at this time. © Veterinary Emergency and Critical Care Society 2015.

  15. Computational estimation of decline in sweating in the elderly from measured body temperatures and sweating for passive heat exposure

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Nomura, Tomoki; Laakso, Ilkka

    2012-01-01

    Several studies reported the difference in heat tolerance between younger and older adults, which may be attributable to the decline in the sweating rate. One of the studies suggested a hypothesis that the dominant factor causing the decline in sweating was the decline in thermal sensitivity due to a weaker signal from the periphery to the regulatory centres. However, no quantitative investigation of the skin temperature threshold for activating the sweating has been conducted in previous studies. In this study, we developed a computational code to simulate the time evolution of the temperature variation and sweating in realistic human models under heat exposure, in part by comparing the computational results with measured data from younger and older adults. Based on our computational results, the difference in the threshold temperatures for activating the thermophysiological response, especially for sweating, is examined between older and younger adults. The threshold for activating sweating in older individuals was found to be about 1.5 °C higher than that in younger individuals. However, our computation did not suggest that it was possible to evaluate the central alteration with ageing by comparing the computation with the measurements for passive heat exposure, since the sweating rate is marginally affected by core temperature elevation at least for the scenarios considered here. The computational technique developed herein is useful for understanding the thermophysiological response of older individuals from measured data. (note)

  16. Energetic consequences of field body temperatures in the green iguana

    NARCIS (Netherlands)

    Lichtenbelt, WDVM; Wesselingh, RA

    We investigated body temperatures of free-ranging green iguanas (Iguana iguana) on Curacao (Netherlands Antilles), and how metabolic costs and benefits of food processing affect body temperatures. Body temperatures of free-living iguanas were measured by radio telemetry. We also used a model, with

  17. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  18. FastStats: Body Measurements

    Science.gov (United States)

    ... this? Submit What's this? Submit Button NCHS Home Body Measurements Recommend on Facebook Tweet Share Compartir Data ... 7 MB] Related FastStats Obesity/Overweight Related Links Body Mass Index table CDC Growth Charts National Health ...

  19. Temperature measurement device

    International Nuclear Information System (INIS)

    Oltman, B.G.; Eckerman, K.F.; Romberg, G.P.; Prepejchal, W.

    1975-01-01

    Thermoluminescent dosimeter (TLD) material is exposed to a known amount of radiation and then exposed to the environment where temperature measurements are to be taken. After a predetermined time period, the TLD material is read in a known manner to determine the amount of radiation energy remaining in the TLD material. The difference between the energy originally stored by irradiation and that remaining after exposure to the temperature ofthe environment is a measure of the average temperature of the environment during the exposure. (U.S.)

  20. Temperature measuring device

    International Nuclear Information System (INIS)

    Brixy, H.

    1977-01-01

    The temperature measuring device is equipped with an electric resistor installed within a metal shroud tube so as to be insulated from it, the noise voltage of which resistor is fed to a measuring unit. The measuring junctions of one or two thermocouples are connected with the electric resistor and the legs of one or both thermocouples can be connected to the measuring unit by means of a switch. (orig.) [de

  1. Temperature measurement device

    International Nuclear Information System (INIS)

    Fournier, Christian; Lions, Noel.

    1975-01-01

    The present invention relates to a temperature measuring system that can be applied in particular to monitoring the temperature of the cooling liquid metal of the outlet of the core assemblies of a fast reactor. Said device combines a long hollow metallic pole, at least partially dipped into the liquid metal and constituting a first thermocouple junction between said pole, and two metallic conductors of different nature, joined at one of their ends to constitute the second thermocouple junction. Said conductors suitably insulated are arranged inside a sheath. Said sheath made of the same metals as the pole extends inside the latter and is connected with the pole through a soldered joint. Said reliable system permits an instantaneous measurement of a quantity representing the variations in the recorded temperature and a measurement of the mean surrounding temperature that can be direcly used as a reference for calibrating the first one [fr

  2. Studies on time of death estimation in the early post mortem period -- application of a method based on eyeball temperature measurement to human bodies.

    Science.gov (United States)

    Kaliszan, Michał

    2013-09-01

    This paper presents a verification of the thermodynamic model allowing an estimation of the time of death (TOD) by calculating the post mortem interval (PMI) based on a single eyeball temperature measurement at the death scene. The study was performed on 30 cases with known PMI, ranging from 1h 35min to 5h 15min, using pin probes connected to a high precision electronic thermometer (Dostmann-electronic). The measured eye temperatures ranged from 20.2 to 33.1°C. Rectal temperature was measured at the same time and ranged from 32.8 to 37.4°C. Ambient temperatures which ranged from -1 to 24°C, environmental conditions (still air to light wind) and the amount of hair on the head were also recorded every time. PMI was calculated using a formula based on Newton's law of cooling, previously derived and successfully tested in comprehensive studies on pigs and a few human cases. Thanks to both the significantly faster post mortem decrease of eye temperature and a residual or nonexistent plateau effect in the eye, as well as practically no influence of body mass, TOD in the human death cases could be estimated with good accuracy. The highest TOD estimation error during the post mortem intervals up to around 5h was 1h 16min, 1h 14min and 1h 03min, respectively in three cases among 30, while for the remaining 27 cases it was not more than 47min. The mean error for all 30 cases was ±31min. All that indicates that the proposed method is of quite good precision in the early post mortem period, with an accuracy of ±1h for a 95% confidence interval. On the basis of the presented method, TOD can be also calculated at the death scene with the use of a proposed portable electronic device (TOD-meter). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Relationship between alertness, performance, and body temperature in humans

    Science.gov (United States)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  4. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  5. Predicting body temperature of endotherms during shuttling

    NARCIS (Netherlands)

    Rodriguez-Girones, M.A.

    2002-01-01

    This paper presents two models that can be used to predict the temporal dynamics of body temperature in endotherms. A first-order model is based on the assumption that body temperature is uniform at all times, while a second-order model is based on the assumption that animals can be divided in a

  6. Temperature measuring device

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  7. Astronaut James Lovell checks body temperature with oral temperature probe

    Science.gov (United States)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  8. Temperature measurements by thermocouples

    International Nuclear Information System (INIS)

    Liermann, J.

    1975-01-01

    The measurement of a temperature (whatever the type of transducer used) raises three problems: the choice of transducer; where it should be placed; how it should be fixed and protected. These are the three main points examined, after a brief description of the most commonly used thermocouples [fr

  9. Evaluation of a novel noninvasive continuous core temperature measurement system with a zero heat flux sensor using a manikin of the human body.

    Science.gov (United States)

    Brandes, Ivo F; Perl, Thorsten; Bauer, Martin; Bräuer, Anselm

    2015-02-01

    Reliable continuous perioperative core temperature measurement is of major importance. The pulmonary artery catheter is currently the gold standard for measuring core temperature but is invasive and expensive. Using a manikin, we evaluated the new, noninvasive SpotOn™ temperature monitoring system (SOT). With a sensor placed on the lateral forehead, SOT uses zero heat flux technology to noninvasively measure core temperature; and because the forehead is devoid of thermoregulatory arteriovenous shunts, a piece of bone cement served as a model of the frontal bone in this study. Bias, limits of agreements, long-term measurement stability, and the lowest measurable temperature of the device were investigated. Bias and limits of agreement of the temperature data of two SOTs and of the thermistor placed on the manikin's surface were calculated. Measurements obtained from SOTs were similar to thermistor values. The bias and limits of agreement lay within a predefined clinically acceptable range. Repeat measurements differed only slightly, and stayed stable for hours. Because of its temperature range, the SOT cannot be used to monitor temperatures below 28°C. In conclusion, the new SOT could provide a reliable, less invasive and cheaper alternative for measuring perioperative core temperature in routine clinical practice. Further clinical trials are needed to evaluate these results.

  10. Estimation of temperature change in human body using MRI

    International Nuclear Information System (INIS)

    Nikawa, Yoshio; Nakamura, Suguru

    2016-01-01

    In the field of traditional oriental medicine, two types of treatment style, which are an acupuncture treatment and a moxibustion treatment have been performed. These treatments are used and effected by doctor or acupuncturist in their clinic or hospital and are widely spread. In spite of such a general treatment, it is not deeply discussed about mechanism of heat transfer modality and about temperature distribution in the treatment of moxibustion. Also, it is not discussed about temperature distribution deep inside human tissue during acupuncture treatment. It comes from the difficulty of noninvasive measurement of temperature deep inside human body. In this study, a temperature distribution for acupuncture and moxibustion treatment is measured and analyzed using thermograph and MRI by measuring the phase of longitudinal relaxation time of protons. The experimental results of measured temperature distribution under the human legs have been demonstrated. The result of temperature analysis in the human body is also reported. (author)

  11. Measuring radioactivity in the body

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-09-15

    Techniques of measuring the total amount of radioactivity in the body of a living person as well as the principal applications of such measurements were reviewed at a Symposium on Whole Body Counting held in Vienna from 12 to 16 June 1961. The whole body counters can be divided into two broad groups: (a) counters for the radiation protection surveillance of the general public and radiation workers, capable of detecting extremely low levels of radioactivity in the human body, and (b) counters for medical research and diagnosis, designed to check the retention and excretion of radioactive substances administered to patients for metabolic and pathological studies. In both cases, the primary requirement is that the counter must be able to measure the total activity in the body. In recent years, there has been a remarkable development of the instruments and techniques for such measurements. One of the main purposes of the symposium in Vienna was to discuss how best to use these highly sophisticated instruments.

  12. Metabolic rate and body temperature of an African sun bird ...

    African Journals Online (AJOL)

    The oxygen consumption (VO2) of the lesser double-collared sunbird, Nectarinia chalybea, was measured at ambient temperatures (Ta) from 7 to 35°C. The diel variation in body temperature (Tb) and wet thermal conductance (C) was also determined. The sunbirds (mean mass 8.36 g ± S.E. 0.21 g) showed a pronounced ...

  13. Association between obesity and reduced body temperature in dogs.

    Science.gov (United States)

    Piccione, G; Giudice, E; Fazio, F; Refinetti, R

    2011-08-01

    Industrialized nations are currently experiencing an obesity epidemic, the causes of which are not fully known. One possible mechanism of enhanced energy efficiency that has received almost no attention is a reduction in the metabolic cost of homeothermy, which could be achieved by a modest lowering of body core temperature. We evaluated the potential of this obesity-inducing mechanism in a canine model of the metabolic syndrome. We compared the rectal temperature of lean dogs and obese dogs by (a) conducting cross-sectional measurements in 287 dogs of many breeds varying greatly in body size, (b) conducting longitudinal measurements in individual dogs over 7-10 years and (c) tracking rectal temperature of lean and obese dogs at 3-h intervals for 48 consecutive hours in the laboratory. We found that larger dogs have lower rectal temperatures than smaller dogs and that, for the same body mass, obese dogs have lower rectal temperatures than lean dogs. The results were consistent in the cross-sectional, longitudinal and around-the-clock measurements. These findings document an association between obesity and reduced body temperature in dogs and support the hypothesis that obesity in this and other species of homeotherms may result from an increase in metabolic efficiency achieved by a regulated lowering of body temperature.

  14. Temperature measurement in the sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnamacharyulu, R.J.; Rao, L.V.G.

    The importance of measuring sea temperature is explained and the various methods employed for this purpose are reviewed. Instruments used for spot measurement of water temperature at the sea surface and at discrete depths (bucket thermometer...

  15. Temperature measurement with neutrons

    International Nuclear Information System (INIS)

    Bizard, G.; Durand, D.; Lecolley, J.F.; Lefebvres, F.; Marques, M.; Peter, J.; Tamain, B.

    1998-01-01

    The results presented in this report were obtained from the information provided by charged products. Another alternative consists in detecting the neutrons abundantly emitted particularly by heavy nuclei. The residue channel was studied in the 40 Ar + 197 Au at 60 MeV/nucleon by means of the neutron multidetector DEMON. The evolution of the multiplicity of neutrons emitted backwards in the framework of the heavy nucleus forwardly detected as a function of the residue velocity by a silicon detector, placed at 8 degrees and at 24.5 cm from target, agrees with the expected results i.e. an increase with the residue velocity hence with the collision violence. For the same detector the first measurements show similarly a linear increase of the apparent temperature of 4.0 to around 6.5 MeV for residue velocities varying from 0.5 to 1.3 cm/ns and masses ranging from 140 to 160 uma. This first results of the analysis show therefore a good behaviour of the assembly and especially of the couple DeMoN-SyReP

  16. Neutron ion temperature measurement

    International Nuclear Information System (INIS)

    Strachan, J.D.; Hendel, H.W.; Lovberg, J.; Nieschmidt, E.B.

    1986-11-01

    One important use of fusion product diagnostics is in the determination of the deuterium ion temperature from the magnitude of the 2.5 MeV d(d,n) 3 He neutron emission. The detectors, calibration methods, and limitations of this technique are reviewed here with emphasis on procedures used at PPPL. In most tokamaks, the ion temperature deduced from neutrons is in reasonable agreement with the ion temperature deduced by other techniques

  17. Whole body cooling by immersion in water at moderate temperatures.

    Science.gov (United States)

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  18. Elevated body temperature in ischemic stroke associated with neurological improvement.

    Science.gov (United States)

    Khanevski, A N; Naess, H; Thomassen, L; Waje-Andreassen, U; Nacu, A; Kvistad, C E

    2017-11-01

    Some studies suggest that high body temperature within the first few hours of ischemic stroke onset is associated with improved outcome. We hypothesized an association between high body temperature on admission and detectable improvement within 6-9 hours of stroke onset. Consecutive ischemic stroke patients with NIHSS scores obtained within 3 hours and in the interval 6-9 hours after stroke onset were included. Body temperature was measured on admission. A total of 315 patients with ischemic stroke were included. Median NIHSS score on admission was 6. Linear regression showed that NIHSS score 6-9 hours after stroke onset was inversely associated with body temperature on admission after adjusting for confounders including NIHSS score body temperature and neurological improvement within few hours after admission. This finding may be limited to patients with documented proximal middle cerebral artery occlusion on admission and suggests a beneficial effect of higher body temperature on clot lysis within the first three hours. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Estimation Of Body Weight From Linear Body Measurements In Two ...

    African Journals Online (AJOL)

    The prediction of body weight from body girth, keel length and thigh length was studied using one hundred Ross and one hundred Anak Titan broilers. Data were collected on the birds from day-old to 9 weeks of age. Body measurement was regressed against body weight at 9 weeks of age using simple linear and ...

  20. A survey of temperature measurement

    International Nuclear Information System (INIS)

    Saltvold, J.R.

    1976-03-01

    Many different techniques for measuring temperature have been surveyed and are discussed. The concept of temperature and the physical phenomena used in temperature measurement are also discussed. Extensive tables are presented in which the range and accuracy of the various techniques and other related data are included. (author)

  1. Full body illusion is associated with widespread skin temperature reduction

    Directory of Open Access Journals (Sweden)

    Roy eSalomon

    2013-07-01

    Full Text Available A central feature of our consciousness is the experience of the self as a unified entity residing in a physical body, termed bodily self-consciousness. This phenomenon includes aspects such as the sense of owning a body (also known as body ownership and has been suggested to arise from the integration of sensory and motor signals from the body. Several studies have shown that temporally synchronous tactile stimulation of the real body and visual stimulation of a fake or virtual body can induce changes in bodily self-consciousness, typically resulting in a sense of illusory ownership over the fake body. The present study assessed the effect of anatomical congruency of visuo-tactile stimulation on bodily self-consciousness. A virtual body was presented and temporally synchronous visuo-tactile stroking was applied simultaneously the participants’ body and to the virtual body. We manipulated the anatomical locations of the visuo-tactile stroking (i.e. on the back, on the leg, resulting in congruent stroking (stroking was felt and seen on the back or the leg or incongruent stroking (i.e. stroking was felt on the leg and seen on the back. We measured self-identification with the virtual body and self-location as well as skin temperature. Illusory self-identification with the avatar as well as changes in self-localization were experienced in the congruent stroking conditions. Participants showed a decrease in skin temperature across several body locations during congruent stimulation. These data establish that the full-body illusion alters bodily self-consciousness and instigates widespread physiological changes in the participant’s body.

  2. Rhythms of mammalian body temperature can sustain peripheral circadian clocks.

    Science.gov (United States)

    Brown, Steven A; Zumbrunn, Gottlieb; Fleury-Olela, Fabienne; Preitner, Nicolas; Schibler, Ueli

    2002-09-17

    Low-amplitude temperature oscillations can entrain the phase of circadian rhythms in several unicellular and multicellular organisms, including Neurospora and Drosophila. Because mammalian body temperature is subject to circadian variations of 1 degrees C-4 degrees C, we wished to determine whether these temperature cycles could serve as a Zeitgeber for circadian gene expression in peripheral cell types. In RAT1 fibroblasts cultured in vitro, circadian gene expression could be established by a square wave temperature rhythm with a (Delta)T of 4 degrees C (12 hr 37 degrees C/12 hr 33 degrees C). To examine whether natural body temperature rhythms can also affect circadian gene expression, we first measured core body temperature cycles in the peritoneal cavities of mice by radiotelemetry. We then reproduced these rhythms with high precision in the liquid medium of cultured fibroblasts for several days by means of a homemade computer-driven incubator. While these "in vivo" temperature rhythms were incapable of establishing circadian gene expression de novo, they could maintain previously induced rhythms for multiple days; by contrast, the rhythms of control cells kept at constant temperature rapidly dampened. Moreover, circadian oscillations of environmental temperature could reentrain circadian clocks in the livers of mice, probably via the changes they imposed upon both body temperature and feeding behavior. Interestingly, these changes in ambient temperature did not affect the phase of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. We postulate that both endogenous and environmental temperature cycles can participate in the synchronization of peripheral clocks in mammals.

  3. Implanted telemeter for electrocardiogram and body temperature

    Science.gov (United States)

    Barrows, W. F.

    1972-01-01

    Measuring system requiring one blocking oscillator to generate modulated pulse repetition rate is implantable in the bodies of small animals. Device has life of two years and transmission range of about three feet. EKG sensing unit also is used to sense electromyogram or electrooculogram of laboratory animals.

  4. The relationship between virtual body ownership and temperature sensitivity

    Science.gov (United States)

    Llobera, Joan; Sanchez-Vives, M. V.; Slater, Mel

    2013-01-01

    In the rubber hand illusion, tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here, we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first-person perspective. For half the participants, the VB was consistent in posture and movement with their own body, and in the other half, there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared with the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full VB. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity—with proprioception and tactile sensations on the real body integrated with the visual presence of the VB. The results are interpreted in the framework of a ‘body matrix’ recently introduced into the literature. PMID:23720537

  5. Measurements of body protein for clinical investigation

    International Nuclear Information System (INIS)

    Mernagh, J.R.; Harrison, J.E.; McNeill, M.G.; Jeejeebhoy, K.N.; Krishnan, S.S.

    1986-01-01

    Body protein (nitrogen) is determined by bilaterally irradiating the body with neutrons using Pu-Be sources and measuring the resultant 10.8 MeV gamma rays from the reaction 14 N(n,8) 15 N. In the authors lab the whole body can be scanned or separate segments of the body can be measured independently. A nitrogen index has been developed based on body size and is used as a predictor of normal total body nitrogen (TBN). They have found that TBN, when normalized to body size in this way, provides a reliable index of protein status which cannot be accurately determined by body weight, anthropometry, or body potassium measurements. Changes in body composition with age were studied by measuring the composition of 56 healthy female volunteers aged 20-80. Measurements were made for K( 40 K), Ca and N. It was shown that protein and bone mineral decrease with age but that this is not reflected in K or anthropometry measurements. Results of other studies to be presented include: body protein measurements pre and post TPN (total parenteral nutrition), nutritional status of patients on long term CAPD (continuous ambulatory peritoneal dialysis) and changes in body composition as a result of TPN in patients with small cell lung cancer receiving chemotherapy. Clinical results show that indirect measurements of body protein based on weight, potassium, or anthropometry, do not give an accurate measure of body protein. For an accurate measurement, direct measurement of body protein is necessary

  6. Influence of MR imaging on the central body temperature and peripheral temperature in humans

    International Nuclear Information System (INIS)

    Vogl, T.; Krimmel, K.; Dopmeier, D.; Seiderer, M.; Lissner, J.

    1986-01-01

    Thermal effects of in vitro and in vivo MR imaging were studied at different field strengths (0.35 T, 1.5 T) and radio frequency power, using a modified fluoroptical technique. A fiber optic probe that measures with an accuracy of up to 0.1 0 C was inserted via esophageal and rectal tubes in 20 test subjects to measure central body temperature. In another ten subjects the temperature was measured subcutaneously and by an intravenous catheter system. No significant temperature change was measurable in the central parts of the body (rectum, esophagus) within the static magnetic field and during MR imaging. Subcutaneous and intravenous measurements of the superficial temperature of the arm led to the same conclusions. Theoretical calculations of the absorbed energy confirm these findings

  7. Temperature Measurements in the Magnetic Measurement Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  8. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  9. Validity of Devices That Assess Body Temperature During Outdoor Exercise in the Heat

    OpenAIRE

    Casa, Douglas J; Becker, Shannon M; Ganio, Matthew S; Brown, Christopher M; Yeargin, Susan W; Roti, Melissa W; Siegler, Jason; Blowers, Julie A; Glaviano, Neal R; Huggins, Robert A; Armstrong, Lawrence E; Maresh, Carl M

    2007-01-01

    Context: Rectal temperature is recommended by the National Athletic Trainers' Association as the criterion standard for recognizing exertional heat stroke, but other body sites commonly are used to measure temperature. Few authors have assessed the validity of the thermometers that measure body temperature at these sites in athletic settings.

  10. Surface temperature measurement using infrared radiometer. 2nd Report. Applicability of pseudo gray body approximation. Sekitaisen eizo sochi wo riyoshita jitsuyoteki ondo keisoku ni kansuru kenkyu. 2. Giji Haiiro kinji no tekiyosei

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, T; Sekiya, M; Ishibashi, H; Okamoto, Y [Ibaraki University, Ibaraki (Japan). Faculty of Engineering; Kurokawa, K [NEC Corp., Tokyo (Japan)

    1994-06-25

    Establishment of a simple and reasonable technique and its application to the metallic surface in addition to the nonmetallic surface in the room-temperature measurement using infrared picture equipment have been studied. It was found, as published in the previous paper, in the investigation of radiation temperature, radiosity coefficient, their wave-length dependence and the dispersiveness of these parameters about the surfaces of various kinds of material that the assumption of gray body approximation does not hold in the surfaces of metal and part of nonmetal. In the present work, applicability of pseudo-gray body approximation to the metal surface in a system surrounded by black body surfaces was studied in consideration of directivity of emissivity and reflectance while, in actual, a measuring angle of 15 degrees giving a small directivity effect was used based on experimental results. As in the previous paper, three kinds of sensors different in the detectable wave-length range were used to evaluate the radiation temperature, emissivity, radiosity coefficient, and their dispersiveness. The experimental results proved the applicability of pseudo-gray body approximation. 3 refs., 18 figs., 2 tabs.

  11. Temperature radiation measuring equipment. Temperaturstrahlungsmessgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Lotzer, W

    1981-01-22

    The invention is concerned with a temperature radiation measuring equipment for non-contact temperature measurement by the light intensity variation method, with a photoelectric resistance as the measuring element. By having a circuit with a transistor, the 'dark resistance' occurring in the course of time is compensated for and thus gives a genuine reading (ie. the voltage drop across the photoelectric resistance remains constant).

  12. Core body temperature, skin temperature, and interface pressure. Relationship to skin integrity in nursing home residents.

    Science.gov (United States)

    Knox, D M

    1999-06-01

    To ascertain the effects of 1-, 1 1/2-, and 2-hour turning intervals on nursing home residents' skin over the sacrum and trochanters. (1) the higher the core body temperature, the higher the skin surface temperature; (2) the 2-hour turning interval would have significantly higher skin surface temperature; (3) there would be no relationship between skin surface temperature and interface pressure; and (4) the sacrum would have the lowest skin surface temperature. Modified Latin-square. For-profit nursing home. Convenience sample of 26 residents who scored bedridden. First Temp measured core temperature; a disposable thermistor temperature probe, skin temperature; and a digital interface pressure evaluator, the interface pressure. Negative correlation (r = -.33, P = .003) occurred between core body temperature and skin surface temperature. Skin surface temperature rose at the end of the 2-hour turning interval but was not significant (F = (2.68) = .73, P = .49). Weak negative relationship (r = -12, P = .29) occurred between skin surface temperature and interface pressure, and sacral skin surface temperature was significantly lower for the left trochanter only (F = (8.68) = 7.05, P = .002). Although hypotheses were not supported, more research is needed to understand how time in position and multiple chronic illnesses interact to affect skin pressure tolerance.

  13. Heart rates in hospitalized children by age and body temperature.

    Science.gov (United States)

    Daymont, Carrie; Bonafide, Christopher P; Brady, Patrick W

    2015-05-01

    Heart rate (HR) is frequently used by clinicians in the hospital to assess a patient's severity of illness and make treatment decisions. We sought to develop percentiles that characterize the relationship of expected HR by age and body temperature in hospitalized children and to compare these percentiles with published references in both primary care and emergency department (ED) settings. Vital sign data were extracted from electronic health records of inpatients temperature measurement pairs from each admission. Measurements from 60% of patients were used to derive the percentile curves, with the remainder used for validation. We compared our upper percentiles with published references in primary care and ED settings. We used 60,863 observations to derive the percentiles. Overall, an increase in body temperature of 1°C was associated with an increase of ∼ 10 beats per minute in HR, although there were variations across age and temperature ranges. For infants and young children, our upper percentiles were lower than in primary care and ED settings. For school-age children, our upper percentiles were higher. We characterized expected HR by age and body temperature in hospitalized children. These percentiles differed from references in primary care and ED settings. Additional research is needed to evaluate the performance of these percentiles for the identification of children who would benefit from further evaluation or intervention for tachycardia. Copyright © 2015 by the American Academy of Pediatrics.

  14. Temperature measurements in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Breton, D.

    1958-01-01

    The temperatures needed to produce thermonuclear reactions are of the order of several million degrees Kelvin. Devising methods for measuring such temperatures has been the subject of research in many countries. In order to present the problem clearly and to demonstrate its importance, the author reviews the various conditions which must be fulfilled in order that reactions may be qualified as thermonuclear. The relationship between the temperature and the cross-section of the reactions is studied, and it is shown that the notion of temperature in the plasmas is complex, which leads to a consideration of the temperature of the ions and that of the electrons. None of the methods for the temperature measurements is completely satisfactory because of the hypotheses which must be made, and which are seldom fulfilled during high-intensity discharges in the plasmas. In practice it is necessary to use several methods simultaneously. (author) [fr

  15. Relationship between body temperature, weight, and hematological parameters of black tufted-ear marmosets (Callithrix penicillata).

    Science.gov (United States)

    Pereira, Lucas Cardoso; Barros, Marilia

    2016-06-01

    Basal thermal values of captive adult black tufted-ear marmosets (Callithrix penicillata) in a thermoneutral environment were measured via different methods, along with body weight and hematological parameters. Body temperatures were recorded with rectal (RC), subcutaneous (SC) microchip transponder and infrared (left and right) tympanic membrane (TM) thermometries. Thermal values were correlated with body mass and some hematological data. Similar RC and SC temperatures were observed, these being significantly higher than the left and right TM values. SC temperature was positively correlated and in close agreement with RC measurements. Although body temperatures were not influenced by gender, capture time, or body weight, they were correlated with hematological parameters. Thus, body temperatures in this species seem to reflect some of the characteristics of the assessments' location, with SC microchip transponders being a less invasive method to assess body temperature in these small-bodied non-human primates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Body temperatures of fish feeding in the Point Beach thermal discharge

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Thommes, M.M.

    1974-01-01

    Between April and November, 1973, measurements of internal body temperature were made on 1310 fish caught by fishermen at the Point Beach Nuclear Plant. Records were also made of fish weight, length, and sex and intake and discharge temperatures. A table is presented to show mean monthly body temperatures and numbers of each species. Approximately 76 percent of the measurements were made on rainbow and brown trout, since these species accounted for 74 percent of the catch. Body temperatures of most fish were intermediate between intake and discharge temperatures. Results suggested that each species has rather specific seasonal temperature requirements and that the maximum discharge temperature was normally avoided by feeding fish

  17. Regulation of Body Temperature by the Nervous System.

    Science.gov (United States)

    Tan, Chan Lek; Knight, Zachary A

    2018-04-04

    The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    Science.gov (United States)

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [The reaction of human surface and inside body temperature to extreme hypothermia].

    Science.gov (United States)

    Panchenko, O A; Onishchenko, V O; Liakh, Iu Ie

    2011-01-01

    The dynamics of changes in the parameters of the surface and core body temperature under the systematic impact of ultra-low temperature is described in this article. As a source of ultra-low temperature was used (Cryo Therapy Chamber) Zimmer Medizin Systeme firm Zimmer Electromedizin (Germany) (-110 degrees C). Surface and internal body temperature was measured by infrared thermometer immediately before visiting cryochamber and immediately after exiting. In the study conducted 47,464 measurements of body temperature. It was established that the internal temperature of the human body under the influence of ultra-low temperatures in the proposed mode of exposure remains constant, and the surface temperature of the body reduces by an average of 11.57 degrees C. The time frame stabilization of adaptive processes of thermoregulation under the systematic impact of ultra-low temperature was defined in the study.

  20. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs.

    Science.gov (United States)

    Thompson, K R; MacFarlane, P D

    2013-01-01

    This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT) while dogs in group W received warmed (W) irrigation fluid (36°C). A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1) pre-anaesthetic examination, (T2) arrival into theatre, (T3) end of surgery and (T4) arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1) and return to the recovery suite (T4) was significant in both groups, with a fall of 1.06±0.58°C (pdogs were hypothermic (temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses.

  1. Comparative effects of melatonin, zolpidem and diazepam on sleep, body temperature, blood pressure and heart rate measured by radiotelemetry in Wistar rats.

    Science.gov (United States)

    Mailliet, F; Galloux, P; Poisson, D

    2001-08-01

    The role of melatonin (MLT) in mediating the sleep-wake cycle has been previously suspected of indicating that this substance could be a candidate for a new generation of hypnotics. We investigated whether MLT acted as a sleep promoter or a modulator of sleep temporal timing related to cardiovascular and body temperature (Tb) adaptations to sleep induction. The pharmacological effects of MLT on sleep were compared with zolpidem (ZP) and diazepam (DZ). The radiotelemetry system was used to record the electrocorticogram [slow wave sleep (SWS), paradoxical sleep (PS)], Tb, blood pressure and heart rate in six Wistar rats. DZ (3 mg/kg and 6 mg/kg), ZP (1, 3, 5 and 10 mg/kg) and MLT (2.5 and 5 mg/kg) were delivered intraperitoneally during light (L) and dark (D) periods. MLT increased the number of sleep cycles (L: 30%, D: 110%) and total duration (P<0.05) of PS (L: 70%, D: 150%). In return, ZP (10 mg/kg) presented no effect during L but increased total (40%) and mean duration (37%) of SWS during the D period. DZ modified mean duration of SWS (L: -27%, D: +26%) and increased total duration of SWS (+47%). ZP and DZ induced a more pronounced decrease in Tb than MLT but only DZ induced tachycardia and hypertension. We showed that MLT could not promote sleep and its cardiovascular adaptations despite hypothermia, but modulated the period of ultradian sleep cycles. DZ and ZP promoted sleep and induced hypothermia during the D period. Only DZ disrupted sleep architecture and induced adverse effects on cardiovascular parameters.

  2. The Kelvin and Temperature Measurements

    Science.gov (United States)

    Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.

    2001-01-01

    The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by

  3. Nutritional assessment with body composition measurements

    International Nuclear Information System (INIS)

    Shizgal, H.M.

    1987-01-01

    The measurement of body composition by multiple isotope dilution provides an accurate and precise measure of both the nutritional state and the response to nutritional support. A multiple isotope dilution technique has been developed that permits measurement of the three major components of body composition: body fat, extracellular mass (ECM), and body cell mass (BCM). Normal body composition was defined by data obtained in 25 healthy volunteers. Malnutrition is characterized by a loss of BCM and an expansion of the ECM, and as a result the lean body mass is not significantly different from normal. The loss of body weight with malnutrition therefore often reflects the loss of body fat. The utility of body composition measurements was demonstrated by determining the effect of total parenteral nutrition on body composition to determine the relationship between caloric intake and the change in the BCM. A statistically significant relationship was developed which demonstrated that a caloric intake in the range of 30-40 cal/kg/day is required for maintenance. To restore a depleted or malnourished BCM requires a caloric intake in excess of that required for maintenance. The measurement of body composition by multiple isotope dilution is complex and time consuming, and requires specialized laboratory facilities and specially trained personnel. As a result, these measurements are not suited for routine patient management, but should rather be reserved for research purposes

  4. Michelson interferometer for measuring temperature

    OpenAIRE

    Xie, Dong; Xu, Chunling; wang, Anmin

    2016-01-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  5. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Science.gov (United States)

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  6. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  7. The effect of stress on core and peripheral body temperature in humans.

    Science.gov (United States)

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  8. Michelson interferometer for measuring temperature

    Science.gov (United States)

    Xie, Dong; Xu, Chunling; Wang, An Min

    2017-09-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displaying Kerr nonlinearity. We obtain the analytical equations and numerically calculate the precision with parameters within the reach of current technology, proving that the precision of temperature can be greatly enhanced by using a nonlinear medium. Our results show that one can create an accurate thermometer by measuring the photons in the Michelson interferometer, with no need to directly measure the population of thermalized sample.

  9. Influence of Sensor Ingestion Timing on Consistency of Temperature Measures

    National Research Council Canada - National Science Library

    Goodman, Daniel A; Kenefick, Robert W; Cadarette, Bruce S; Cheuvront, Samuel N

    2009-01-01

    ... (ITS) to measure core body temperature have been demonstrated. However, the effect of elapsed time between ITS ingestion and Tint measurement has not been thoroughly studied. Methods: Eight volunteers...

  10. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  11. Lower core body temperature and greater body fat are components of a human thrifty phenotype.

    Science.gov (United States)

    Reinhardt, M; Schlögl, M; Bonfiglio, S; Votruba, S B; Krakoff, J; Thearle, M S

    2016-05-01

    In small studies, a thrifty human phenotype, defined by a greater 24-hour energy expenditure (EE) decrease with fasting, is associated with less weight loss during caloric restriction. In rodents, models of diet-induced obesity often have a phenotype including a reduced EE and decreased core body temperature. We assessed whether a thrifty human phenotype associates with differences in core body temperature or body composition. Data for this cross-sectional analysis were obtained from 77 individuals participating in one of two normal physiology studies while housed on our clinical research unit. Twenty-four-hour EE using a whole-room indirect calorimeter and 24-h core body temperature were measured during 24 h each of fasting and 200% overfeeding with a diet consisting of 50% carbohydrates, 20% protein and 30% fat. Body composition was measured by dual X-ray absorptiometry. To account for the effects of body size on EE, changes in EE were expressed as a percentage change from 24-hour EE (%EE) during energy balance. A greater %EE decrease with fasting correlated with a smaller %EE increase with overfeeding (r=0.27, P=0.02). The %EE decrease with fasting was associated with both fat mass and abdominal fat mass, even after accounting for covariates (β=-0.16 (95% CI: -0.26, -0.06) %EE per kg fat mass, P=0.003; β=-0.0004 (-0.0007, -0.00004) %EE kg(-1) abdominal fat mass, P=0.03). In men, a greater %EE decrease in response to fasting was associated with a lower 24- h core body temperature, even after adjusting for covariates (β=1.43 (0.72, 2.15) %EE per 0.1 °C, P=0.0003). Thrifty individuals, as defined by a larger EE decrease with fasting, were more likely to have greater overall and abdominal adiposity as well as lower core body temperature consistent with a more efficient metabolism.

  12. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    Science.gov (United States)

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  13. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  14. Central control of body temperature [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Shaun F. Morrison

    2016-05-01

    Full Text Available Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  15. Body/bone-marrow differential-temperature sensor

    Science.gov (United States)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  16. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  17. Nasal reaction to changes in whole body temperature.

    Science.gov (United States)

    Lundqvist, G R; Pedersen, O F; Hilberg, O; Nielsen, B

    1993-11-01

    The changes in nasal patency following a 1.5 degrees C decrease or increase in whole body temperature were measured in 8 healthy young males, during and after 30 min of immersion in a 15 degrees C cold or a 40 degrees C warm bath, breathing air at the same temperature, in a cross-over experimental design. The nasal reactions were traced by consecutive measurements of changes in nasal cavity volumes by acoustic rhinometry. Swelling of the mucosa during cooling and an almost maximal shrinkage of the mucosa during heating were indicated by respectively a decrease and an increase in nasal cavity volumes. The reactions were determined predominantly by the whole body thermal balance, but were also influenced by the temperature of the inhaled air, either enhanced, reduced or temporarily reversed. The greatest change occurred in the nasal cavity, left or right, which differed most from the final state at the beginning of exposure due to the actual state of nasal cycle.

  18. Relation between Wet-Bulb Globe Temperature and Thermal Work Limit Indices with Body Core Temperature

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2018-06-01

    Full Text Available Occupational exposure to heat stress in casting and smelting industries can cause adverse health effects on employees who working in such industries. The present study was set to assess the correlation and agreement of heat stress indices, including wet bulb globe temperature (WBGT, and thermal work limit (TWL, and the deep body temperature indices in workers of several casting and smelting industries located in the vicinity of Tehran, Iran. In This cross-sectional study 40 workers randomly selected and were examined. WBGT and TWL were the indices used for assessing heat stress, and the tympanic temperature and the oral temperature were measured as the heat strain indices. The correlation and agreement of indices were measured using SPSS vs.16. The results of the assessment of WBGT, TWL, the tympanic temperature, and oral temperature showed that 80, 17.5, 40, and 32.5 percent of workers exposed to heat stress higher than permissible limits proposed by standard bodies. Moreover, the present study showed that the significant correlation coefficient between heat stress and heat strain indices was in the range of 0.844- 0.869. Further, there was observed a good agreement between TWL and heat strain indices. The agreement between TWL and the oral temperature was 0.63 (P-value≤ 0.001 and between TWL and tympanic temperature was 0.612 (P-value≤ 0.001. However, the agreement between WBGT and heat strain indices was not satisfactory. These values were 0.154 (P-value ≥ 0.068 and 0.215 (P-value≥ 0.028 for the oral temperature and the tympanic temperature, respectively. The TWL index had a better agreement than WBGT with heat strain indices so TWL index is the better choice for assessing the heat stress in casting and metal smelting industries.

  19. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  20. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    Science.gov (United States)

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Investigation of radiofrequency heating for a closed conducting loop formed in a part of the patient's body in 1.5 tesla magnetic resonance (MR) imaging and 3.0 tesla MR imaging. Measurement of temperature by use of human body-equivalent phantom

    International Nuclear Information System (INIS)

    Yamazaki, Masaru; Higashida, Mitsuji; Kudo, Sadahiro; Ideta, Takahiro; Nakazawa, Masami

    2012-01-01

    Thermal injuries have been sometimes reported due to a closed conducting loop formed in a part of the patient's body during magnetic resonance imaging (MRI). In recent years, 3.0 T-MRI scanner has been widely used. However, it is considered that the specific absorption rate (SAR) of 3.0 T-MRI can affect the heat of the loop because its own SAR becomes approximately 4 times as much as that of the 1.5 T-MRI scanner. With this, the change in temperature was measured with human body-equivalent loop phantom in both 1.5 T-MRI and 3.0 T-MRI. In the two scanners, the temperature during 20 min of scanning time was measured with three types of sequences such as field echo (FE), spin echo (SE), and turbo SE (TSE) set up with the same scanning condition. It was found from the result that rise in temperature depended on SAR of the scanning condition irrespective of static magnetic field intensity and any pulse sequences. Furthermore, the increase of SAR and rise in temperature were not only in proportion to each other but also were indicated to have good correlation. However, even low SAR can occasionally induce serious thermal injuries. It was found from result that we had to attempt not to form a closed conducting loop with in a part of the patient's body during MRI. (author)

  2. Thermocouple design for measuring temperatures of small insects

    Science.gov (United States)

    A.A. Hanson; R.C. Venette

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to...

  3. Using Three-Body Recombination to Extract Electron Temperatures of Ultracold Plasmas

    International Nuclear Information System (INIS)

    Fletcher, R. S.; Zhang, X. L.; Rolston, S. L.

    2007-01-01

    Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T e -9/2 . We measure three-body recombination in an ultracold neutral xenon plasma by detecting recombination-created Rydberg atoms using a microwave-ionization technique. With the accepted theory (expected to be applicable for weakly coupled plasmas) and our measured rates, we extract the plasma temperatures, which are in reasonable agreement with previous measurements early in the plasma lifetime. The resulting electron temperatures indicate that the plasma continues to cool to temperatures below 1 K

  4. Operational methods of thermodynamics. Volume 1 - Temperature measurement

    Science.gov (United States)

    Eder, F. X.

    The principles of thermometry are examined, taking into account the concept of temperature, the Kelvin scale, the statistical theory of heat, negative absolute temperatures, the thermodynamic temperature scale, the thermodynamic temperature scale below 1 K, noise thermometry, temperature scales based on black-body radiation, acoustical thermometry, and the International Practical Temperature Scale 1968. Aspects of practical temperature measurement are discussed, giving attention to thermometers based on the expansion of a gas or a liquid, instruments utilizing the relative thermal expansion of two different metals, devices measuring the vapor pressure of a liquid, thermocouples, resistance thermometers, radiation pyrometers of various types, instruments utilizing the temperature dependence of a number of material characteristics, devices for temperature control, thermometer calibration, and aspects of thermometer installation and inertia. A description is presented of the approaches employed for the measurement of low temperatures.

  5. Integration of body temperature into the analysis of energy expenditure in the mouse.

    Science.gov (United States)

    Abreu-Vieira, Gustavo; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L

    2015-06-01

    We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. The effect of environmental temperature (4-33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3 (-/y) , lipodystrophic) was measured using continuous monitoring. Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts of energy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-induced thermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matched that calculated from the energy expenditure using Fourier's law of heat conduction. Mice defended a higher body temperature during physical activity. The cost of the warmer body temperature during the active phase is 4-16% of total daily energy expenditure. Parameters measured in diet-induced obese and Brs3 (-/y) mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in mice is via physiological mechanisms. At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  6. Correlated colour temperature of morning light influences alertness and body temperature.

    Science.gov (United States)

    Te Kulve, Marije; Schlangen, Luc; Schellen, Lisje; Souman, Jan L; van Marken Lichtenbelt, Wouter

    2018-03-01

    Though several studies have reported human alertness to be affected by the intensity and spectral composition of ambient light, the mechanism behind this effect is still largely unclear, especially for daytime exposure. Alerting effects of nocturnal light exposure are correlated with melatonin suppression, but melatonin levels are generally low during the day. The aim of this study was to explore the alerting effect of light in the morning for different correlated colour temperature (CCT) values, as well as its interaction with ambient temperature. Body temperature and perceived comfort were included in the study as possible mediating factors. In a randomized crossover design, 16 healthy females participated in two sessions, once under 2700K and once under 6500K light (both 55lx). Each session consisted of a baseline, a cool, a neutral and a warm thermal environment. Alertness as measured in a reaction time task was lower for the 6500K exposure, while subjective sleepiness was not affected by CCT. Also, core body temperature was higher under 6500K. Skin temperature parameters and perceived comfort were positively correlated with subjective sleepiness. Reaction time correlated with heat loss, but this association did not explain why the reaction time was improved for 2700K. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Laser Pyrometer For Spot Temperature Measurements

    Science.gov (United States)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  8. Hypercoagulability in response to elevated body temperature and central hypovolemia

    DEFF Research Database (Denmark)

    Meyer, Martin; Ostrowski, Sisse R; Overgaard, Flemming Anders

    2013-01-01

    Coagulation abnormalities contribute to poor outcomes in critically ill patients. In trauma patients exposed to a hot environment, a systemic inflammatory response syndrome, elevated body temperature, and reduced central blood volume occur in parallel with changes in hemostasis and endothelial...... damage. The objective of this study was to evaluate whether experimentally elevated body temperature and reduced central blood volume (CBV) per se affects hemostasis and endothelial activation....

  9. Measurement of Radioactivity in the Human Body

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Nilsson, I

    1960-12-15

    A body counter with a steel room and a 4-inch-diameter by 4-inch thick Nal scintillation counter has been in operation since February 1958. It is used to control the internal contamination in people working with radioactive materials. Measurements have also been made on the natural activity in the human body. The average cesium-137/potassium ratio in a group of Swedish males was in May 1959 73 {mu}{mu}c per gram of body potassium and in June 1960 55 {mu}{mu}c per gram of body potassium. The cessation of the nuclear bomb tests has caused a decrease in the cesium level in people. This gives some information of how cesium is entering the biosphere.

  10. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  11. Measurement of Radioactivity in the Human Body

    International Nuclear Information System (INIS)

    Andersson, I.Oe.; Nilsson, I.

    1960-12-01

    A body counter with a steel room and a 4-inch-diameter by 4-inch thick Nal scintillation counter has been in operation since February 1958. It is used to control the internal contamination in people working with radioactive materials. Measurements have also been made on the natural activity in the human body. The average cesium-137/potassium ratio in a group of Swedish males was in May 1959 73 μμc per gram of body potassium and in June 1960 55 μμc per gram of body potassium. The cessation of the nuclear bomb tests has caused a decrease in the cesium level in people. This gives some information of how cesium is entering the biosphere

  12. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  13. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Science.gov (United States)

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  14. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    Science.gov (United States)

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors

  15. Effect of peritoneal lavage solution temperature on body temperature in anaesthetised cats and small dogs.

    Science.gov (United States)

    Barnes, D C; Leece, E A; Trimble, T A; Demetriou, J L

    2017-05-20

    A prospective, randomised, non-blinded, clinical study to assess the effect of peritoneal lavage using warmed fluid on body temperature in anesthetised cats and dogs of less than 10 kg body mass undergoing coeliotomy. A standardised anaesthetic protocol was used. Oesophageal and rectal temperatures were measured at various time points. At the end of surgery, group 1 patients (n=10) were lavaged with 200 ml/kg sterile isotonic saline at 34±1°C and group 2 (n=10) at 40±1°C. Groups were similar with respect to age, mass, body condition and surgical incision length. Duration of anaesthesia, surgical procedures and peritoneal lavage was similar between groups. Linear regression showed no significant change in oesophageal temperature during the lavage period for group 1 (P=0.64), but a significant increase for group 2 patients (Ptemperature changes of -0.5°C (from (36.3°C to 35.9°C) and +0.9°C (from 35.4°C to 36.3°C), respectively. Similar results were found for rectal temperature, with mean changes of -0.5°C and +0.8°C (P=0.922 and 0.045), respectively. The use of isotonic crystalloid solution for peritoneal lavage at a temperature of 40±1°C significantly warms small animal patients, when applied in a clinical setting, compared with lavage solution at 34±1°C. British Veterinary Association.

  16. The pupal body temperature and inner space temperature of cocoon under microwave irradiation

    International Nuclear Information System (INIS)

    Kagawa, T.

    1996-01-01

    The temperature of pupal surface,body and inner space of cocoon on cocoon drying of microwave irradiation was investigated to make clear the effect of temperature with pupa and cocoon shell. After pupal surface temperature and body temperature were risen rapidly in early irradiation and slowly thereafter, these were done fast again. Then these rising degrees fell. The variation of inner space temperature consists three terms: as the first stage of rapidly rising on early irradiation, the second stage of slowly doing and the third stage of fast doing again in temperature. In the first stage and the second stage, the higher the temperature of sending air during irradiation was, the shorter the term was and the higher the reached temperature was. The surface, pupal body and inner space have reached higher temperature than the sending air before cocoon drying was over

  17. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    Science.gov (United States)

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Daily rhythmicity of body temperature in the dog.

    Science.gov (United States)

    Refinetti, R; Piccione, G

    2003-08-01

    Research over the past 50 years has demonstrated the existence of circadian or daily rhythmicity in the body core temperature of a large number of mammalian species. However, previous studies have failed to identify daily rhythmicity of body temperature in dogs. We report here the successful recording of daily rhythms of rectal temperature in female Beagle dogs. The low robustness of the rhythms (41% of maximal robustness) and the small range of excursion (0.5 degrees C) are probably responsible for previous failures in detecting rhythmicity in dogs.

  19. Effects of MDMA on body temperature in humans

    Science.gov (United States)

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046

  20. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)], E-mail: ahirata@nitech.ac.jp

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 deg. C at a whole-body-averaged specific absorption rate of 0.08 W kg{sup -1}, which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  1. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.

    Science.gov (United States)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 degrees C at a whole-body-averaged specific absorption rate of 0.08 W kg(-1), which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  2. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-01-01

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 deg. C at a whole-body-averaged specific absorption rate of 0.08 W kg -1 , which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio

  3. The measurement of single particle temperature in plasma sprays

    International Nuclear Information System (INIS)

    Fincke, J.R.; Swank, W.D.; Bolsaitis, P.P.; Elliott, J.F.

    1990-01-01

    A measurement technique for simultaneously obtaining the size, velocity, temperature, and relative number density of particles entrained in high temperature flow fields is described. In determining the particle temperature from a two-color pyrometery technique, assumptions about the relative spectral emissivity of the particle are required. For situations in which the particle surface undergoes chemical reactions the assumption of grey body behavior is shown to introduce large Temperature measurement uncertainties. Results from isolated, laser heated, single particle measurements and in-flight data from the plasma spraying of WC-Co are presented. 10 refs., 5 figs

  4. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  5. Apparatus Would Measure Temperatures Of Ball Bearings

    Science.gov (United States)

    Gibson, John C.; Fredricks, Thomas H.

    1995-01-01

    Rig for testing ball bearings under radial and axial loads and measuring surface temperatures undergoing development. Includes extensible thermocouples: by means of bellows as longitudinal positioners, thermocouples driven into contact with bearing balls to sense temperatures immediately after test run. Not necessary to disassemble rig or to section balls to obtain indirect indications of maximum temperatures reached. Thermocouple measurements indicate temperatures better than temperature-sensitive paints.

  6. Wall temperature control of low-speed body drag

    Science.gov (United States)

    Lin, J. C.; Ash, R. L.

    1986-01-01

    The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.

  7. Body temperature change characteristics of Lake Michigan fishes

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Thommes, M.M.; Beitinger, T.L.

    1974-01-01

    Body temperature change rate experiments were conducted on alewife, brown trout, rainbow trout, brook trout, and carp collected from the discharge flumes and inshore areas near the Point Beach Nuclear Plant. Test fish were exposed to immediate water temperature changes of up to 10.6 0 C by transfer between ambient and discharge water holding tanks. Results showed that the temperature change rate was related to fish size, species, and direction of change, suggesting that rapid temperature changes would have a more pronounced effect on smaller fish

  8. Regulation of body temperature by some Mesozoic marine reptiles.

    Science.gov (United States)

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  9. Whole body measurements in Bavarian school children

    International Nuclear Information System (INIS)

    Schmier, H.; Berg, D.

    1992-12-01

    On behalf of the Bavarian State Ministry for State Development and Environmental Affairs measurements were conducted using the whole body counters at the Institute for Radiation Hygiene (of the Federal Office for Radiation Protection), and the Institute for Radiation Biology (of the GSF Research Centre for Environment and Health). Between September 1988 and July 1990 about 1600 school children from all over Bavaria were investigated for incorporated radiocesium. The aim of these measurements was to evaluate the whole body activity due to regionally differing soil contaminations in Bavaria following the accident in the nuclear power plant in Chernobyl and to assess the effective dose from an intake of radionuclides for the pupils by comparing the results of their WBC measurements with those of reference groups of children which underwent WBC examinations at regular intervals at both institutes since the middle of the year 1986. The results of the WBC measurements of those pupils who had not eaten mushrooms in the days before the measurement are in good agreement with the results of comparative measurements in children living in the regions of Munich and Frankfurt-am-Main. Based on these results an effective dose of 0,2 mSv for the Munich region children and of 0,1 mSv for Nothern Bavarian children can be derived. For children living in the highest contaminated region of Bavaria, i.e. the counties adjacent to the Alps, no comparable reference group results are available, but the amount of incorporated radiocesium is only twice that for pupils in the Munich region. The mean value for the specific activity of radiocesium in South Bavarian school children who consumed mushrooms was found to be twice the value of pupils who did not. This is also true for that group of children whose parents had bought allegedly low contaminated foodstuffs. Other effecs of nutrition habits on the specific whole body activity could not be found. (orig.) [de

  10. Improvements in X-band transmitter phase stability through Klystron body temperature regulation

    Science.gov (United States)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of wave guide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  11. Measuring Poisson Ratios at Low Temperatures

    Science.gov (United States)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  12. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    Science.gov (United States)

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-06-01

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Relationships between brain and body temperature, clinical and imaging outcomes after ischemic stroke

    Science.gov (United States)

    Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M

    2013-01-01

    Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281

  14. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  15. Whole body immersion and hydromineral homeostasis: effect of water temperature.

    Science.gov (United States)

    Jimenez, Chantal; Regnard, Jacques; Robinet, Claude; Mourot, Laurent; Gomez-Merino, Danielle; Chennaoui, Mounir; Jammes, Yves; Dumoulin, Gilles; Desruelle, Anne-Virginie; Melin, Bruno

    2010-01-01

    This experiment was designed to assess the effects of prolonged whole body immersion (WBI) in thermoneutral and cold conditions on plasma volume and hydromineral homeostasis.10 navy "combat swimmers" performed three static 6-h immersions at 34 degrees C (T34), 18 degrees C (T18) and 10 degrees C (T10). Rectal temperature, plasma volume (PV) changes, plasma proteins, plasma and urine ions, plasma osmolality, renin, aldosterone and antidiuretic hormone (ADH) were measured. Results show that compared to pre-immersion levels, PV decreased throughout WBI sessions, the changes being markedly accentuated in cold conditions. At the end of WBI, maximal PV variations were -6.9% at T34, -14.3% at T18, and -16.3% at T10. Plasma osmolality did not change during and after T34 immersion, while hyperosmolality was present at the end of T18 immersion and began after only 1 h of T10 immersion. In the three temperature conditions, significant losses of water (1.6-1.7 l) and salt (6-8 g) occurred and were associated with similar increases in osmolar and free water clearances. Furthermore, T18 and T10 immersions increased the glomerular filtration rate. There was little or no change in plasma renin and ADH, while the plasma level of aldosterone decreased equally in the three temperature conditions. In conclusion, our data indicate that cold water hastened PV changes induced by immersion, and increased the glomerular filtration rate, causing larger accumulated water losses. The iso-osmotic hypovolemia may impede the resumption of baseline fluid balance. Results are very similar to those repeatedly described by various authors during head-out water immersion.

  16. Comparison of three methods of temperature measurement in hypothermic, euthermic, and hyperthermic dogs.

    Science.gov (United States)

    Greer, Rebecca J; Cohn, Leah A; Dodam, John R; Wagner-Mann, Colette C; Mann, F A

    2007-06-15

    To assess the reliability and accuracy of a predictive rectal thermometer, an infrared auricular thermometer designed for veterinary use, and a subcutaneous temperature-sensing microchip for measurement of core body temperature over various temperature conditions in dogs. Prospective study. 8 purpose-bred dogs. A minimum of 7 days prior to study commencement, a subcutaneous temperature-sensing microchip was implanted in 1 of 3 locations (interscapular, lateral aspect of shoulder, or sacral region) in each dog. For comparison with temperatures measured via rectal thermometer, infrared auricular thermometer, and microchip, core body temperature was measured via a thermistor-tipped pulmonary artery (TTPA) catheter. Hypothermia was induced during anesthesia at the time of TTPA catheter placement; on 3 occasions after placement of the catheter, hyperthermia was induced via administration of a low dose of endotoxin. Near-simultaneous duplicate temperature measurements were recorded from the TTPA catheter, the rectal thermometer, auricular thermometer, and subcutaneous microchips during hypothermia, euthermia, and hyperthermia. Reliability (variability) of temperature measurement for each device and agreement between each device measurement and core body temperature were assessed. Variability between duplicate near-simultaneous temperature measurements was greatest for the auricular thermometer and least for the TTPA catheter. Measurements obtained by use of the rectal thermometer were in closest agreement with core body temperature; for all other devices, temperature readings typically underestimated core body temperature. Among the 3 methods of temperature measurement, rectal thermometry provided the most accurate estimation of core body temperature in dogs.

  17. Hibernation in black bears: independence of metabolic suppression from body temperature.

    Science.gov (United States)

    Tøien, Øivind; Blake, John; Edgar, Dale M; Grahn, Dennis A; Heller, H Craig; Barnes, Brian M

    2011-02-18

    Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.

  18. Temperature measurement in nuclear environment

    International Nuclear Information System (INIS)

    Degas, P.

    1986-12-01

    Some criterions, that the used sensors have to follow, are given together with the conditions they may encountered. They may be used in irradiation or safety test devices, in experiments concerning mock-up or plant element, or even in nuclear plants themselves. The most suitable sensor type are mentioned, with their characteristics and their fiability. Two use examples of temperature probes are given, chosen to illustrate two sensor types: thermocouples in Superphenix-1 and platinum resistance probes in research reactor Orphee [fr

  19. Estimating Body Weight of Cattle Using Linear Body Measurements ...

    African Journals Online (AJOL)

    The relationships between body weight (BW) and heart girth, body length and height at withers of 116 Indigenous, 72 Friesian, 95 Brahman, 88 Red Dane and 123 Crossbred cattle from 42 smallholder herds in Nharira-Lancashire, Zimbabwe, were investigated. The principal objective was to develop simple models that ...

  20. Environmental stressors during space flight: potential effects on body temperature

    Science.gov (United States)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  1. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  2. Estimation of Body Weight from Body Size Measurements and Body Condition Scores in Dairy Cows

    DEFF Research Database (Denmark)

    Enevoldsen, Carsten; Kristensen, T.

    1997-01-01

    , and body condition score were consistently associated with BW. The coefficients of multiple determination varied from 80 to 89%. The number of significant terms and the parameter estimates of the models differed markedly among groups of cows. Apparently, these differences were due to breed and feeding...... regimen. Results from this study indicate that a reliable model for estimating BW of very different dairy cows maintained in a wide range of environments can be developed using body condition score, demographic information, and measurements of hip height and hip width. However, for management purposes......The objective of this study was to evaluate the use of hip height and width, body condition score, and relevant demographic information to predict body weight (BW) of dairy cows. Seven regression models were developed from data from 972 observations of 554 cows. Parity, hip height, hip width...

  3. Increase of body surface temperature and blood flow by theanine

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Noguchi, Kenichi; Ando, Satoshi

    2002-01-01

    Suntheanine (Taiyo Kagaku Co.: Theanine) is the trade name for L-theanine which is a unique amino acid found almost solely in tea plants, responsible for the exotictaste of green tea. We investigated the effects of relate to relaxation, improves the taste of processed foods, radiation sensitization, and increase of body surface temperature in vivo study. The results of the present study confirmed, (1) Suntheanine is incorporated into the brain and induces the emission of α -waves an induced of relaxation. (2) Body surface temperature and blood flow on skin were increased after administration of Suntheanine. (3) There was effects of radiation sensitization in whole body irradiation of X-rays after Suntheanine IP injection on C3H mice. (4) Acute toxicity, subacute toxicity and mutagen testconfirm the safety Suntheanine in this study

  4. Current Options for Measuring the Surface Temperature of Dairy Cattle in a Stable Technology: Review

    Directory of Open Access Journals (Sweden)

    Kateřina Švejdová

    2016-05-01

    Full Text Available Regular measurement of the body surface temperature can help to assess the health status of animals. There are many technological possibilities of contactless temperature measurement of body surface. The important thing is to find the right part of the body whose temperature will point to the first possible symptoms and immediately react to the first signs of the disease. Disagreements about how to measure body surface temperature and accuracy of the method can occur when different measures are used. We review work showing possibilities of contactless surface temperature measurements using 1 thermography, 2 electronic transponders and 3 other possibilities of measuring the body surface temperature of dairy cattle. For example, when we scan the surface temperature with the thermal imager there can operate in individual animals confounding factors such as the nature or degree of muscular coat, which may significantly affect the results.

  5. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.

    Science.gov (United States)

    Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart

    2016-11-21

    High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.

  6. Temperature standards, what and where: resources for effective temperature measurements

    International Nuclear Information System (INIS)

    Johnston, W.W. Jr.

    1982-01-01

    Many standards have been published to describe devices, methods, and other topics. How they are developed and by whom are briefly described, and an attempt is made to extract most of those relating to temperature measurements. A directory of temperature standards and their sources is provided

  7. Temperature dependence of three-body ion-molecule reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.

    1983-01-01

    The temperature dependence of the ion-molecule association reactions (i) N 2 + + N 2 + M → N 4 + + M (M=N 2 , He), (ii) O 2 + + O 2 + M → O 4 + + M (M=O 2 , He) and (iii) He + + 2He → He 2 + + He have been studied over an extended temperature range to temperatures as low as 30K with a recently constructed liquid helium-cooled ion drift tube. Over most of the temperature range the threebody reaction rate coefficients show an inverse temperature dependence proportional to Tsup(-n) with n in the range 0.6 to 2.9. This temperature dependence is quite consistent with current theories of ion molecule association. At low temperatures, however, a deviation from the Tsup(-n) dependence was observed for the association reactions (ii). For reactions (i) different temperature dependences were obtained for N 2 and He third bodies indicating an additional temperature dependence of the collisional stabilisation process. (Authors)

  8. Validity of Devices That Assess Body Temperature During Outdoor Exercise in the Heat

    Science.gov (United States)

    Casa, Douglas J; Becker, Shannon M; Ganio, Matthew S; Brown, Christopher M; Yeargin, Susan W; Roti, Melissa W; Siegler, Jason; Blowers, Julie A; Glaviano, Neal R; Huggins, Robert A; Armstrong, Lawrence E; Maresh, Carl M

    2007-01-01

    Context: Rectal temperature is recommended by the National Athletic Trainers' Association as the criterion standard for recognizing exertional heat stroke, but other body sites commonly are used to measure temperature. Few authors have assessed the validity of the thermometers that measure body temperature at these sites in athletic settings. Objective: To assess the validity of commonly used temperature devices at various body sites during outdoor exercise in the heat. Design: Observational field study. Setting: Outdoor athletic facilities. Patients or Other Participants: Fifteen men and 10 women (age = 26.5 ± 5.3 years, height = 174.3 ± 11.1 cm, mass = 72.73 ± 15.95 kg, body fat = 16.2 ± 5.5%). Intervention(s): We simultaneously tested inexpensive and expensive devices orally and in the axillary region, along with measures of aural, gastrointestinal, forehead, temporal, and rectal temperatures. Temporal temperature was measured according to the instruction manual and a modified method observed in medical tents at local road races. We also measured forehead temperatures directly on the athletic field (other measures occurred in a covered pavilion) where solar radiation was greater. Rectal temperature was the criterion standard used to assess the validity of all other devices. Subjects' temperatures were measured before exercise, every 60 minutes during 180 minutes of exercise, and every 20 minutes for 60 minutes of postexercise recovery. Temperature devices were considered invalid if the mean bias (average difference between rectal temperature and device temperature) was greater than ±0.27°C (±0.5°F). Main Outcome Measure(s): Temperature from each device at each site and time point. Results: Mean bias for the following temperatures was greater than the allowed limit of ±0.27°C (±0.5°F): temperature obtained via expensive oral device (−1.20°C [−2.17°F]), inexpensive oral device (−1.67°C [−3.00°F]), expensive axillary device (−2.58°C [−4

  9. Individual differences in normal body temperature: longitudinal big data analysis of patient records

    Science.gov (United States)

    Samra, Jasmeet K; Mullainathan, Sendhil

    2017-01-01

    Abstract Objective To estimate individual level body temperature and to correlate it with other measures of physiology and health. Design Observational cohort study. Setting Outpatient clinics of a large academic hospital, 2009-14. Participants 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Main outcome measures Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. Results In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (–0.021°C for every decade, Ptemperature (eg, hypothyroidism: –0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, Pbody mass index: 0.002 per m/kg2, Ptemperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). Conclusions Individuals’ baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. PMID:29237616

  10. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  11. Effect of prewarming on the body temperature of small dogs undergoing inhalation anesthesia.

    Science.gov (United States)

    Rigotti, Clara F; Jolliffe, Colette T; Leece, Elizabeth A

    2015-10-01

    To investigate whether prewarming affects body temperature of small dogs (weighing dogs weighing temperature was recorded. Before IM administration of buprenorphine hydrochloride and acepromazine maleate, dogs were randomly assigned to be placed in a pediatric incubator at 33°C (91.4°F) for approximately 30 to 60 minutes (prewarming group) or to receive no prewarming (control group); subsequently, dogs underwent inhalation anesthesia with isoflurane in oxygen. Rectal, esophageal, and ambient temperatures were measured every 5 minutes from induction of anesthesia (IOA) for > 1 hour by an observer who was unaware of treatment. If a dog became hypothermic (esophageal temperature dogs, anesthesia, temperatures, hypothermia, and study withdrawal were compared between groups. 1 dog was excluded from the prewarming group after becoming excessively excited in the incubator. Between groups, age, weight, body condition score, degree of preanesthesia sedation, interval from sedation to IOA, duration of anesthesia, baseline rectal temperature, rectal temperatures immediately prior to IOA, esophageal temperature following IOA, ambient temperature during the first 70 minutes of anesthesia, esophageal or rectal temperature during the first 90 minutes of anesthesia, and incidence of hypothermia and study withdrawal (5 dogs/group) did not differ significantly. Prewarming in an incubator prior to IOA failed to improve or maintain body temperature of dogs weighing < 10 kg during inhalation anesthesia.

  12. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    Science.gov (United States)

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  13. Use of extremity insulation during whole body hyperthermia to reduce temperature nonuniformity

    International Nuclear Information System (INIS)

    Thrall, D.E.; Page, R.L.

    1987-01-01

    The author previously documented during whole body hyperthermia in dogs using a radiant heating device that temperature at superficial sites, including tibial bone marrow, falls below systemic arterial temperature during the plateau phase of heating. This may be due to direct heat loss to the environment. Sites where temperature is lower than systemic arterial temperature during the plateau phase may become sanctuary sites where tumor deposits are spared because they do not receive the prescribed thermal dose. In an attempt to decrease temperature nonuniformity and increase thermal dose delivered to such superficial sites, extremity insulation has been employed during whole body hyperthermia in dogs. The author measured temperature at cutaneous and subcutaneous sites and within tibial bone marrow in insulated and noninsulated extremities of dogs undergoing whole body hyperthermia in the radiant heating device. The author found that extremity insulation is effective in reducing extremity temperature nonuniformity. Specific results are presented. Extremity insulation may be necessary during whole body hyperthermia to assure that extremity tumor deposits receive a thermal dose similar to that prescribed for the entire body

  14. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Science.gov (United States)

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  15. Locatable-Body Temperature Monitoring Based on Semi-Active UHF RFID Tags

    Directory of Open Access Journals (Sweden)

    Guangwei Liu

    2014-03-01

    Full Text Available This paper presents the use of radio-frequency identification (RFID technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip’s internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  16. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.

    1984-01-01

    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  17. Designing an accurate system for temperature measurements

    Directory of Open Access Journals (Sweden)

    Kochan Orest

    2017-01-01

    Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

  18. Surface temperature measurement with radioactive kryptonates

    International Nuclear Information System (INIS)

    Pruzinec, J.; Piatrik, M.

    1976-01-01

    The preparation and use of radioactive kryptonates is described for measuring surface temperatures within the region of 45 to 70 degC. Two samples each were prepared of kryptonated beechwood and hydroquinone on a paper carrier. One sample served as the standard which during the experiment was placed in a thermostat at a constant temperature of 45 degC. The second sample was placed in another thermostat where the temperature changed from 45 to 70 degC. Both samples were in the thermostat for 30 mins. The temperature was raised in steps of 2.5 degC and the time of measurement was constant in both samples. The dependences are given of the drop in activity on temperature for both types of samples. The difference was determined of the drop in activity between the standard and the second sample and the relation for measuring the temperature of the sample was determined therefrom. (J.B.)

  19. Black-body anomaly: analysis of temperature offsets

    International Nuclear Information System (INIS)

    Szopa, M.; Hofmann, R.; Schwarz, M.; Giacosa, F.

    2008-01-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale ∝10 -4 eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-l suppression, it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature black-body precision experiment. (orig.)

  20. Design of Monitoring Tool Heartbeat Rate and Human Body Temperature Based on WEB

    Directory of Open Access Journals (Sweden)

    Jalinas

    2018-01-01

    Full Text Available The heart is one of the most important organs in the human body. One way to know heart health is to measure the number of heart beats per minute and body temperature also shows health, many heart rate and body temperature devices but can only be accessed offline. This research aims to design a heart rate detector and human body temperature that the measurement results can be accessed via web pages anywhere and anytime. This device can be used by many users by entering different ID numbers. The design consists of input blocks: pulse sensor, DS18B20 sensor and 3x4 keypad button. Process blocks: Arduino Mega 2560 Microcontroller, Ethernet Shield, router and USB modem. And output block: 16x2 LCD and mobile phone or PC to access web page. Based on the test results, this tool successfully measures the heart rate with an average error percentage of 2.702 % when compared with the oxymeter tool. On the measurement of body temperature get the result of the average error percentage of 2.18 %.

  1. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  2. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  3. Genetic variablilities of body temperature and resting behaviour in ...

    African Journals Online (AJOL)

    This implies that neither progeny nor generation had effect on body temperature. The Alpha strain exhibited more resting behaviour than did the exotic and the pure native types. Majority of the birds rested in the afternoon at 2.00 pm. This could be attributed to the fact that at 2.00 pm the weather is hot and birds search for a ...

  4. Features of Teaching Third-Year Students the Subject «Assessment of the General State of a Child. Anthropometry. Measuring and Recording Body Temperature. Work with Newborn Children» by the Module «Nursing in Pediatrics» at the Department of Propedeut

    Directory of Open Access Journals (Sweden)

    A.A. Koniushevska

    2014-11-01

    Full Text Available The paper presents the methodology of teaching at the department of propedeutics of pediatrics the subject «Assessment of the general state of a child. Anthropometry. Measuring and recording body temperature. Work with newborn children». Objectives of the lesson, the skills needed to achieve the goal are provided. Stages of lessons are presented.

  5. Basal body temperature as a biomarker of healthy aging.

    Science.gov (United States)

    Simonsick, Eleanor M; Meier, Helen C S; Shaffer, Nancy Chiles; Studenski, Stephanie A; Ferrucci, Luigi

    2016-12-01

    Scattered evidence indicates that a lower basal body temperature may be associated with prolonged health span, yet few studies have directly evaluated this relationship. We examined cross-sectional and longitudinal associations between early morning oral temperature (95.0-98.6 °F) and usual gait speed, endurance walk performance, fatigability, and grip strength in 762 non-frail men (52 %) and women aged 65-89 years participating in the Baltimore Longitudinal Study of Aging. Since excessive adiposity (body mass index ≥35 kg/m 2 or waist-to-height ratio ≥0.62) may alter temperature set point, associations were also examined within adiposity strata. Overall, controlling for age, race, sex, height, exercise, and adiposity, lower temperature was associated with faster gait speed, less time to walk 400 m quickly, and lower perceived exertion following 5-min of walking at 0.67 m/s (all p ≤ 0.02). In the non-adipose (N = 662), these associations were more robust (all p ≤ 0.006). Direction of association was reversed in the adipose (N = 100), but none attained significance (all p > 0.22). Over 2.2 years, basal temperature was not associated with functional change in the overall population or non-adipose. Among the adipose, lower baseline temperature was associated with greater decline in endurance walking performance (p = 0.006). In longitudinal analyses predicting future functional performance, low temperature in the non-adipose was associated with faster gait speed (p = 0.021) and less time to walk 400 m quickly (p = 0.003), whereas in the adipose, lower temperature was associated with slower gait speed (p = 0.05) and more time to walk 400 m (p = 0.008). In older adults, lower basal body temperature appears to be associated with healthy aging in the absence of excessive adiposity.

  6. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  7. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  8. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  9. Measurements of temperature dependence of 'localized susceptibility'

    CERN Document Server

    Shiozawa, H; Ishii, H; Takayama, Y; Obu, K; Muro, T; Saitoh, Y; Matsuda, T D; Sugawara, H; Sato, H

    2003-01-01

    The magnetic susceptibility of some rare-earth compounds is estimated by measuring magnetic circular dichroism (MCD) of rare-earth 3d-4f absorption spectra. The temperature dependence of the magnetic susceptibility obtained by the MCD measurement is remarkably different from the bulk susceptibility in most samples, which is attributed to the strong site selectivity of the core MCD measurement.

  10. A pilot study to examine maturation of body temperature control in preterm infants.

    Science.gov (United States)

    Knobel, Robin B; Levy, Janet; Katz, Laurence; Guenther, Bob; Holditch-Davis, Diane

    2013-01-01

    To test instrumentation and develop analytic models to use in a larger study to examine developmental trajectories of body temperature and peripheral perfusion from birth in extremely low-birth-weight (EBLW) infants. A case study design. The study took place in a Level 4 neonatal intensive care unit (NICU) in North Carolina. Four ELBW infants, fewer than 29 weeks gestational age at birth. Physiologic data were measured every minute for the first 5 days of life: peripheral perfusion using perfusion index by Masimo and body temperature using thermistors. Body temperature was also measured using infrared thermal imaging. Stimulation and care events were recorded over the first 5 days using video which was coded with Noldus Observer software. Novel analytical models using the state space approach to time-series analysis were developed to explore maturation of neural control over central and peripheral body temperature. Results from this pilot study confirmed the feasibility of using multiple instruments to measure temperature and perfusion in ELBW infants. This approach added rich data to our case study design and set a clinical context with which to interpret longitudinal physiological data. © 2013 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  11. Body Temperatures in the Elderly: A National Study of Physiological, Social, and Environmental Conditions

    Science.gov (United States)

    Fox, R. H.; Woodward, Patricia M.; Exton-Smith, A. N.; Green, M. F.; Donnison, D. V.; Wicks, M. H.

    1973-01-01

    Two large-scale surveys of body temperatures in elderly people living at home were carried out in the winter of 1972. Most of the homes visited were cold with room temperatures below the minimum recommended by the Department of Health. Deep body temperatures below 35·5°C were found in 10% of those studied, and the difference between the skin temperature and the core temperature was also reduced in this group. Such individuals are at risk of developing hypothermia since they show evidence of some degree of thermoregulatory failure. Further research is needed, but meanwhile there are practical measures that could be taken to reduce the risk of hypothermia in the elderly. PMID:4686555

  12. Dedicated tool to assess the impact of a rhetorical task on human body temperature.

    Science.gov (United States)

    Koprowski, Robert; Wilczyński, Sławomir; Martowska, Katarzyna; Gołuch, Dominik; Wrocławska-Warchala, Emilia

    2017-10-01

    Functional infrared thermal imaging is a method widely used in medicine, including analysis of the mechanisms related to the effect of emotions on physiological processes. The article shows how the body temperature may change during stress associated with performing a rhetorical task and proposes new parameters useful for dynamic thermal imaging measurements MATERIALS AND METHODS: 29 healthy male subjects were examined. They were given a rhetorical task that induced stress. Analysis and processing of collected body temperature data in a spatial resolution of 256×512pixels and a temperature resolution of 0.1°C enabled to show the dynamics of temperature changes. This analysis was preceded by dedicated image analysis and processing methods RESULTS: The presented dedicated algorithm for image analysis and processing allows for fully automated, reproducible and quantitative assessment of temperature changes and time constants in a sequence of thermal images of the patient. When performing the rhetorical task, the temperature rose by 0.47±0.19°C in 72.41% of the subjects, including 20.69% in whom the temperature decreased by 0.49±0.14°C after 237±141s. For 20.69% of the subjects only a drop in temperature was registered. For the remaining 6.89% of the cases, no temperature changes were registered CONCLUSIONS: The performance of the rhetorical task by the subjects causes body temperature changes. The ambiguous temperature response to the given stress factor indicates the complex mechanisms responsible for regulating stressful situations. Stress associated with the examination itself induces body temperature changes. These changes should always be taken into account in the analysis of infrared data. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The relationship of normal body temperature, end-expired breath temperature, and BAC/BrAC ratio in 98 physically fit human test subjects.

    Science.gov (United States)

    Cowan, J Mack; Burris, James M; Hughes, James R; Cunningham, Margaret P

    2010-06-01

    The relationship between normal body temperature, end-expired breath temperature, and blood alcohol concentration (BAC)/breath alcohol concentration (BrAC) ratio was studied in 98 subjects (84 men, 14 women). Subjects consumed alcohol sufficient to produce a BrAC of at least 0.06 g/210 L 45-75 min after drinking. Breath samples were analyzed using an Intoxilyzer 8000 specially equipped to measure breath temperature. Venous blood samples and body temperatures were then taken. The mean body temperature of the men (36.6 degrees C) was lower than the women (37.0 degrees C); however, their mean breath temperatures were virtually identical (men: 34.5 degrees C; women: 34.6 degrees C). The BAC exceeded the BrAC for every subject. BAC/BrAC ratios were calculated from the BAC and BrAC analytical results. There was no difference in the BAC/BrAC ratios for men (1:2379) and women (1:2385). The correlation between BAC and BrAC was high (r = 0.938, p body temperature and end-expired breath temperature, body temperature and BAC/BrAC ratio, and breath temperature and BAC/BrAC ratio were much lower. Neither normal body temperature nor end-expired breath temperature was strongly associated with BAC/BrAC ratio.

  14. Primate body temperature and sleep responses to lower body positive pressure

    Science.gov (United States)

    Edgar, D. M.; Fuller, C. A.

    1984-01-01

    Cephalic fluid shifts, induced by lower body positive pressure (LBPP) are known to influence various physiological systems (i.e., cardiovascular and renal). In earlier experiments, an apparent change in the arousal state of primates in such LBPP conditions was observed. This study was designed to examine the effects of LBPP on arousal state and body temperature level which is normally correlated with sleep. Chair-restrained male squirrel monkeys were exposed to 40 mmHg LBPP for 90-100 minutes between the daytime hours of 13:00-15:00. Each monkey was placed in a specially modified restraint chair to which they were highly trained. Deep body temperature (DBT) was collected from 10 animals. Sleep parameters were obtained from six animals chronically implanted for sleep recording. A video camera was used to observe each animal's apparent state of arousal. LBPP resulted in an approximate 0.9 C decrease in DBT. During video observation, some animals appeared drowsy during LBPP; however, sleep recording revealed no significant changes in the state of arousal. Thus, LBPP is capable of inducing a mild hyperthermia. Further, the mechanisms underlying the observed lowering of body temperature appear to be independent of arousal state.

  15. Temperature measurement with industrial color camera devices

    Science.gov (United States)

    Schmidradler, Dieter J.; Berndorfer, Thomas; van Dyck, Walter; Pretschuh, Juergen

    1999-05-01

    This paper discusses color camera based temperature measurement. Usually, visual imaging and infrared image sensing are treated as two separate disciplines. We will show, that a well selected color camera device might be a cheaper, more robust and more sophisticated solution for optical temperature measurement in several cases. Herein, only implementation fragments and important restrictions for the sensing element will be discussed. Our aim is to draw the readers attention to the use of visual image sensors for measuring thermal radiation and temperature and to give reasons for the need of improved technologies for infrared camera devices. With AVL-List, our partner of industry, we successfully used the proposed sensor to perform temperature measurement for flames inside the combustion chamber of diesel engines which finally led to the presented insights.

  16. General temperature field measurement by digital holography

    Czech Academy of Sciences Publication Activity Database

    Doleček, Roman; Psota, Pavel; Lédl, Vít; Vít, Tomáš; Václavík, Jan; Kopecký, V.

    2013-01-01

    Roč. 52, č. 1 (2013), A319-A325 ISSN 1559-128X Institutional support: RVO:61389021 Keywords : digital holography * temperature field measurement * tomography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.649, year: 2013

  17. Noise thermometry - a new temperature measuring method

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Rittinghaus, K.F.

    1975-01-01

    The thermal Johnson-Niquist noise is the basis of noise thermometry. This temperature measuring method is, e.g., of interest insofar as the noise thermometer gives absolute values as a primary thermometer and is in principle extensively independent of environmental influences and material properties. The resistance values of the measuring probe are about 10 Ohm to a few kOhm. The demands of electronics are high, the self-noise of the measuring apparatus must be as small as possible; a comparative measuring method is advantageous. 1 to 2,500 K are given as a possible temperature range. An accuracy of 0.1% could be achieved in laboratory measurements. Temperature measurements to be used in operation in a few nuclear reactors are mentioned. (HP/LH) [de

  18. Software tools for data modelling and processing of human body temperature circadian dynamics.

    Science.gov (United States)

    Petrova, Elena S; Afanasova, Anastasia I

    2015-01-01

    This paper is presenting a software development for simulating and processing thermometry data. The motivation of this research is the miniaturization of actuators attached to human body which allow frequent temperature measurements and improve the medical diagnosis procedures related to circadian dynamics.

  19. Wideband filter radiometers for blackbody temperature measurements

    Science.gov (United States)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  20. Integration of body temperature into the analysis of energy expenditure in the mouse

    Directory of Open Access Journals (Sweden)

    Gustavo Abreu-Vieira

    2015-06-01

    Conclusions: At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  1. Influence of the Environment on Body Temperature of Racing Greyhounds.

    Science.gov (United States)

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal

  2. What do foraging wasps optimize in a variable environment, energy investment or body temperature?

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2015-11-01

    Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.

  3. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.

    Science.gov (United States)

    Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L

    2016-11-01

    Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Method for solving the problem of nonlinear heating a cylindrical body with unknown initial temperature

    Science.gov (United States)

    Yaparova, N.

    2017-10-01

    We consider the problem of heating a cylindrical body with an internal thermal source when the main characteristics of the material such as specific heat, thermal conductivity and material density depend on the temperature at each point of the body. We can control the surface temperature and the heat flow from the surface inside the cylinder, but it is impossible to measure the temperature on axis and the initial temperature in the entire body. This problem is associated with the temperature measurement challenge and appears in non-destructive testing, in thermal monitoring of heat treatment and technical diagnostics of operating equipment. The mathematical model of heating is represented as nonlinear parabolic PDE with the unknown initial condition. In this problem, both the Dirichlet and Neumann boundary conditions are given and it is required to calculate the temperature values at the internal points of the body. To solve this problem, we propose the numerical method based on using of finite-difference equations and a regularization technique. The computational scheme involves solving the problem at each spatial step. As a result, we obtain the temperature function at each internal point of the cylinder beginning from the surface down to the axis. The application of the regularization technique ensures the stability of the scheme and allows us to significantly simplify the computational procedure. We investigate the stability of the computational scheme and prove the dependence of the stability on the discretization steps and error level of the measurement results. To obtain the experimental temperature error estimates, computational experiments were carried out. The computational results are consistent with the theoretical error estimates and confirm the efficiency and reliability of the proposed computational scheme.

  5. Tympanic ear thermometer assessment of body temperature among patients with cognitive disturbances. An acceptable and ethically desirable alternative?

    Science.gov (United States)

    Aadal, Lena; Fog, Lisbet; Pedersen, Asger Roer

    2016-12-01

    Investigation of a possible relation between body temperature measurements by the current generation of tympanic ear and rectal thermometers. In Denmark, a national guideline recommends the rectal measurement. Subsequently, the rectal thermometers and tympanic ear devices are the most frequently used and first choice in Danish hospital wards. Cognitive changes constitute challenges with cooperating in rectal temperature assessments. With regard to diagnosing, ethics, safety and the patients' dignity, the tympanic ear thermometer might comprise a desirable alternative to rectal noninvasive measurement of body temperature during in-hospital-based neurorehabilitation. A prospective, descriptive cohort study. Consecutive inclusion of 27 patients. Linear regression models were used to analyse 284 simultaneous temperature measurements. Ethical approval for this study was granted by the Danish Data Protection Agency, and the study was completed in accordance with the Helsinki Declaration 2008. About 284 simultaneous rectal and ear temperature measurements on 27 patients were analysed. The patient-wise variability of measured temperatures was significantly higher for the ear measurements. Patient-wise linear regressions for the 25 patients with at least three pairs of simultaneous ear and rectal temperature measurements showed large interpatient variability of the association. A linear relationship between the rectal body temperature assessment and the temperature assessment employing the tympanic thermometer is weak. Both measuring methods reflect variance in temperature, but ear measurements showed larger variation. © 2016 Nordic College of Caring Science.

  6. Dynamics and complexity of body temperature in preterm infants nursed in incubators.

    Science.gov (United States)

    Jost, Kerstin; Pramana, Isabelle; Delgado-Eckert, Edgar; Kumar, Nitin; Datta, Alexandre N; Frey, Urs; Schulzke, Sven M

    2017-01-01

    Poor control of body temperature is associated with mortality and major morbidity in preterm infants. We aimed to quantify its dynamics and complexity to evaluate whether indices from fluctuation analyses of temperature time series obtained within the first five days of life are associated with gestational age (GA) and body size at birth, and presence and severity of typical comorbidities of preterm birth. We recorded 3h-time series of body temperature using a skin electrode in incubator-nursed preterm infants. We calculated mean and coefficient of variation of body temperature, scaling exponent alpha (Talpha) derived from detrended fluctuation analysis, and sample entropy (TSampEn) of temperature fluctuations. Data were analysed by multilevel multivariable linear regression. Data of satisfactory technical quality were obtained from 285/357 measurements (80%) in 73/90 infants (81%) with a mean (range) GA of 30.1 (24.0-34.0) weeks. We found a positive association of Talpha with increasing levels of respiratory support after adjusting for GA and birth weight z-score (pbody temperature in incubator-nursed preterm infants show considerable associations with GA and respiratory morbidity. Talpha may be a useful marker of autonomic maturity and severity of disease in preterm infants.

  7. Empirical Temperature Measurement in Protoplanetary Disks

    Science.gov (United States)

    Weaver, Erik; Isella, Andrea; Boehler, Yann

    2018-02-01

    The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.

  8. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    Science.gov (United States)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  9. Extremely Low Birth Weight Preterm Infants Lack Vasomotor Response in Relationship to Cold Body Temperatures at Birth

    OpenAIRE

    Knobel, Robin B.; Holditch-Davis, Diane; Schwartz, Todd A.; Wimmer, John E.

    2009-01-01

    Objective This study evaluated peripheral vasoconstriction in ELBW infants when body temperature decreased during the first 12-hours of life. Design An exploratory, within-subjects design with 10 ELBW infants. Abdominal and foot temperatures were measured every minute. Peripheral vasoconstriction (abdominal > peripheral temperature by 2? C) and abdominal-peripheral temperature difference were also evaluated. Results Abdominal and peripheral temperatures were significantly correlated within ea...

  10. Temperature measurement of tin under shock compression

    International Nuclear Information System (INIS)

    Hereil, Pierre-Louis; Mabire, Catherine

    2002-01-01

    The results of pyrometric measurements performed at the interface of a tin target with a LiF window material are presented for stresses ranging from 38 to 55 GPa. The purpose of the study is to analyze the part of the interface in the temperature measurement by a multi-channel pyrometric device. The results show that the glue used at target/window interface remains transparent under shock. The values of temperature measured at the tin/LiF interface are consistent with the behavior of tin under shock

  11. Individual differences in normal body temperature: longitudinal big data analysis of patient records.

    Science.gov (United States)

    Obermeyer, Ziad; Samra, Jasmeet K; Mullainathan, Sendhil

    2017-12-13

    To estimate individual level body temperature and to correlate it with other measures of physiology and health. Observational cohort study. Outpatient clinics of a large academic hospital, 2009-14. 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (-0.021°C for every decade, Pdata) was linked to 8.4% higher one year mortality (P=0.014). Individuals' baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Temperature measurement in the flowing medium

    Directory of Open Access Journals (Sweden)

    Sedlák Kamil

    2018-01-01

    Full Text Available The article deals with a brief description of methods of temperature measurements in a flowing water steam. Attention is paid to the measurement of pseudo static temperature by a single sealed thermocouple entering the flowing liquid through the flown-by wall. Then three types of probes for stagnation temperature measurement are shown, whose properties were tested using CFD calculations. The aim was to design a probe of stagnation parameters of described properties which can be used for measuring flow parameters in a real steam turbine. An important factor influencing the construction is not only the safe manipulation of the probe when inserting and removing it from the machine in operation, but also the possibility to traverse the probe along the blade length.

  13. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    Science.gov (United States)

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  14. Body weight prediction of Brakmas and Bali cattle using body measurements

    Directory of Open Access Journals (Sweden)

    Mohd. Hafiz, A.W.

    2016-06-01

    Full Text Available In the rural areas facilities for farm animal weighing are often difficult to find and the construction of such facilities is relatively expensive. Therefore a study was conducted with the objective to estimate body weight of Brakmas and Bali cattle using prediction equations of linear body measurements. Data of body weight and body measurements, namely withers height, body length and heart girth from 279 heads of Brakmas (age 1 to 10 y old and 74 heads of Bali (age 1 to 10 y old cows were collected. The animals were in average body condition of 3 (1= emaciated, 3= moderate fat cover, and 5= excess fat cover. The correlation analysis showed that body weight of Brakmas cattle was highly correlated with its body length, heart girth and withers height with the correlation coefficients of 0.967, 0.964 and 0.942, respectively, while body weight in Bali cattle had the highest correlation with heart girth followed by body length and height at withers with the correlation coefficient of 0.985, 0.954 and 0.945, respectively. Regression analysis showed that body length provided a good estimate of live body weight with high precision as it accounted for 91.6% of the variability in body weight in Brakmas cattle, while heart girth accounted 97.1% of body weight variability in Bali cattle. The combination of body length-withers height, body length-heart girth and body length-withers height-heart girth showed an improvement in terms of predictive precision with the changes of 0.21%, 0.21% and 0.44%, respectively, in coeficient of determination (R2 compared to a single measure of body length in Brakmas cattle. The combination of heart girth-body length did not show any change in R2 in Bali cattle compared to a single measure of heart girth. Combining heart girth-height at withers and the combination of all body measurements showed the increment in coefficients of determination at 0.41% and 0.51%, respectively as compared to heart girth. Although the combination

  15. Temperature measurements of shock-compressed deuterium

    International Nuclear Information System (INIS)

    Holmes, N.C.; Ross, M.; Nellis, W.J.

    1994-11-01

    The authors measured the temperatures of single and double-shocked D 2 and H 2 up to 85 GPa (0.85 Mbar) and 5,200 K. While single shock temperatures, at pressures to 23 GPa, agree well with previous models, the double shock temperatures are as much as 40% lower than predicted. This is believed to be caused by molecular dissociation, and a new model of the hydrogen EOS at extreme conditions has been developed which correctly predicts their observations. These data and model have important implications for programs which use condensed-phase hydrogen in implosion systems

  16. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  17. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  18. High temperature measurement by noise thermometry

    International Nuclear Information System (INIS)

    Decreton, M.C.

    1982-06-01

    Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible

  19. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans

    Science.gov (United States)

    Soare, Andreea; Cangemi, Roberto; Omodei, Daniela; Holloszy, John O.; Fontana, Luigi

    2011-01-01

    Reduction of body temperature has been proposed to contribute to the increased lifespan in calorie restricted animals and mice overexpressing the uncoupling protein-2 in hypocretin neurons. However, nothing is known regarding the long-term effects of calorie restriction (CR) with adequate nutrition on body temperature in humans. In this study, 24-hour core body temperature was measured every minute by using ingested telemetric capsules in 24 men and women (mean age 53.7±9.4 yrs) consuming a CR diet for an average of 6 years, 24 age- and sex-matched sedentary (WD) and 24 body fat-matched exercise-trained (EX) volunteers, who were eating Western diets. The CR and EX groups were significantly leaner than the WD group. Energy intake was lower in the CR group (1769±348 kcal/d) than in the WD (2302±668 kcal/d) and EX (2798±760 kcal/d) groups (Ptemperatures were all significantly lower in the CR group than in the WD and EX groups (P≤0.01). Long-term CR with adequate nutrition in lean and weight-stable healthy humans is associated with a sustained reduction in core body temperature, similar to that found in CR rodents and monkeys. This adaptation is likely due to CR itself, rather than to leanness, and may be involved in slowing the rate of aging. PMID:21483032

  20. Temperature measurements at the LMFBR core outlet

    International Nuclear Information System (INIS)

    Argous, J.P.; Berger, R.; Casejuane, R.; Fournier, C.; Girard, J.P.

    1980-04-01

    Over the last few years the temperature sensors used to measure the subassembly outlet temperature in French designed LMFBRs have been modified, basically in an effort to reduce the dispersion of the chromel-alumel thermocouple time constant, and to extend the frequency spectrum of the measurement signals by adding a steel electrode to from a stainless steel-sodium thermocouple. The result of this evolution is the temperature probe immersed in sodium which will be used in the SUPER PHENIX reactor. This paper describes the tests already completed or in progress on this probe. It also presents measurement data on the two basic probe parameters: the thermoelectric power of the stainless steel-sodium thermocouple and the time constant of the chromel-alumel thermocouple

  1. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  2. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines.

    Science.gov (United States)

    White, Matthew D; Bosio, Catharine M; Duplantis, Barry N; Nano, Francis E

    2011-09-01

    Many of the live human and animal vaccines that are currently in use are attenuated by virtue of their temperature-sensitive (TS) replication. These vaccines are able to function because they can take advantage of sites in mammalian bodies that are cooler than the core temperature, where TS vaccines fail to replicate. In this article, we discuss the distribution of temperature in the human body, and relate how the temperature differential can be exploited for designing and using TS vaccines. We also examine how one of the coolest organs of the body, the skin, contains antigen-processing cells that can be targeted to provoke the desired immune response from a TS vaccine. We describe traditional approaches to making TS vaccines, and highlight new information and technologies that are being used to create a new generation of engineered TS vaccines. We pay particular attention to the recently described technology of substituting essential genes from Arctic bacteria for their homologues in mammalian pathogens as a way of creating TS vaccines.

  3. Physical performance and peak aerobic power at different body temperatures.

    Science.gov (United States)

    Bergh, U; Ekblom, B

    1979-05-01

    In eight male subjects we studied the effect of different core (esophageal, (Tes 34.9--38.4 degrees C) and muscle (Tm 35.1--39.3 degrees C) temperature on 1) physical performance (time to exhaustion at a standard maximal rate of work, WT), 2) aerobic power (VO2), 3) heart rate (HR), and 4) blood lactate (LA) concentration during exhaustive combined arm and leg exercise. In three subjects the effects at different mean skin temperatures (Tsk 27 and 31 degrees C, respectively) were also studied. Peak VO2 was positively correlated to both Tes (r = 0.88) and Tm (r = 0.91). None of the subjects attained control VO2max at Tes and Tm lower than 37.5 and 38.0 degrees C, respectively. HR was correlated to both Tes (r = 0.97) and Tm (r = 0.95). Different Tsk did not affect peak VO2 and HR at subnormal body temperatures. Pulmonary ventilation was independent of Tes and Tm in all experimental situations. LA was significantly higher at Tes 37.5 degrees C compared to both Tes 34.9 and 38.5 degrees C, respectively. At Tes less than 37.5 degrees C and Tm less than 38.0 degrees C, there was a linear reduction in WT (20%.degrees C-1), peak VO2 (5--6%.degrees C-1), and HR (8 beats.min-1.degrees C-1) with lowered Tes and Tm.

  4. Ion temperature measurements in the Maryland Spheromak

    International Nuclear Information System (INIS)

    Gauvreau, J.L.

    1992-01-01

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP's and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 μs, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity

  5. Measurement of total body radioactivity in man

    International Nuclear Information System (INIS)

    Naversten, Y.

    1982-01-01

    Techniques for the determination of whole-body radioactivity in man using uncollimated NaI(Tl) detectors have been studied. Geometrical effects and photon attenuation effects due to the different shapes of humans as well as due to varying in-vivo radioactivity distributions have been evaluated particularly for scanning-bed geometries and the chair geometry. Theoretically it is shown that the attenuation effects are generally dominating, for full-energy-peak pulse-range methods. For the application in radiation protection a cheap and simple chair-geometry unit has been constructed and used at various places distantly from the home-laboratory, for studies of body activity of Cs-137 in northern Sweden. High body activities were found particularly in reindeer-breeding Lapps. The elimination rate of Cs-137 in man was studied in the stationary whole-body counter in Lund as well as with the field-system. For the study of the performances at low and high photon energies clinical applications of methods for gastro-intestinal absorption of vitamin B12 (Co-57; 122 keV) and total body potassium determination (K-40; 1.46 MeV, K-42; 1.52 MeV) have been evaluated. Theoretical and experimental results as well as experiences of applications in radiation protection and medicine show that the scanning-bed geometry effectively evens out redistributional effects. For optimum results, however, scatter-energy pulse-ranges rather than full-energy-peak ranges should be used. (Auth.)

  6. Sex, season, and time of day interact to affect body temperatures of the Giant Gartersnake

    Science.gov (United States)

    Wylie, G.D.; Casazza, Michael L.; Halstead, B.J.; Gregory, C.J.

    2009-01-01

    1.We examined multiple hypotheses regarding differences in body temperatures of the Giant Gartersnake using temperature-sensitive radio telemetry and an information-theoretic analytical approach.2.Giant Gartersnakes selected body temperatures near 30 ??C, and males and females had similar body temperatures most of the year, except during the midsummer gestation period.3.Seasonal differences in the body temperatures of males and females may relate to both the costs associated with thermoregulatory behavior, such as predation, and the benefits associated with maintaining optimal body temperatures, such as successful incubation.

  7. Measurement of rotational temperature at Kolhapur, India

    Directory of Open Access Journals (Sweden)

    G. K. Mukherjee

    2004-09-01

    Full Text Available Measurements of the hydroxyl rotational temperature for the (8,3 Meinel band have been reported from the observations of the ratio of the relative intensities of P1(2 and P1(4 lines of the OH(8,3 band at Kolhapur (16.8° N, 74.2° E, dip lat. 10.6° N in India during the period 1 November 2002-29 April 2003 using tilting-filter photometers. Mean values of rotational temperature have been computed for 60 nights. The monthly mean value of temperature lies in the range 194(±11-208(±18K. The mean rotational temperature obtained from all the measurements was found to be 202±15K. The results agree with other low-latitude measurements of rotational temperature using photometric airglow techniques. Quasi-periodic fluctuations with a period of about one to two hours have been prominent on many nights. Furthermore, the results show the general agreement between observations and model (MSIS-86 predictions.

  8. Temperature measurements in ZT-40M

    International Nuclear Information System (INIS)

    Little, E.M.; Haberstich, A.; Thomas, K.S.; Watt, R.G.

    1983-01-01

    Electron temperatures derived from Thomson scattering and ultrasoft x-ray (USXR) measurements taken before and after machine modifications are compared for ZT-40M. Modifications were made to the magnetic field windings to reduce field errors and the joints in the aluminum shell were coated with joint compound to reduce resistance and make all joints electrically uniform. These modifications resulted in increased plasma lifetime in ZT-40M from less than 10 ms to over 20 ms. Thomson scattering measurements were made with a single-point Thomson scattering apparatus. The scattered spectrum is collected by a three-grating spectrometer. The soft x rays are collected by a two-foil differential transmission system whose foil ratios may be easily varied. Before modifications the Thomson scattering and soft x-ray temperatures agreed up until 3 to 4 ms into the discharge. After this time the Thomson scattering temperature decreased slowly while the soft x-ray ''temperature'' increased rapidly. field errors resulted in Thomson scattering and USXR ''temperature'' time histories remaining fairly flat out to 10 to 11 ms, but introduced a small discrepancy (about 50 eV) in the absolute value of the temperatures. This change may be due either to the change in foil thickness used or to changes in radial temperature profiles. Profile changes may have been caused by the addition of four poloidal limiters or improvements to the magnetic field topology. After modifications the temperatures from both Thomson scattering and USXR were lower and the plasma density was higher. This is probably a result of the lower plasma-wall interaction with the new configuration

  9. Two methods to measure granular gas temperature

    Science.gov (United States)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2017-07-01

    Grains are vibrated so as to achieve a granular gas, here regarded as an archetype of a dissipative non equilibrium steady state (NESS). We report on two distinct and concordant experimental measures of the system effective temperature. To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian rotator, which is used as both actuator and sensor simultaneously. On the one hand, the Gallavotti-Cohen fluctuation theorem, which involves a measure of the asymmetry of the energy exchanges between the rotator and the NESS reservoir, provides a first effective temperature. On the other hand, the fluctuation-dissipation theorem, which involves the relation between the spontaneous fluctuations and the response to a weak perturbation, defines a second, independent, effective temperature. Both methods, even though they are based on drastically different ideas, give nicely concordant results.

  10. Measurement of very rapidly variable temperatures

    International Nuclear Information System (INIS)

    Elberg, S.; Mathonnet, P.

    1974-01-01

    Bibliographical research and visits to laboratories were undertaken in order to survey the different techniques used to measure rapidly variable temperatures, specifying the limits in maximum temperature and variation rate (time constant). On the basis of the bibliographical study these techniques were classified in three categories according to the physical meaning of their response time. Extension of the bibliographical research to methods using fast temperature variation measurement techniques and visits to research and industrial laboratories gave in an idea of the problems raised by the application of these methods. The use of these techniques in fields other than those for which they were developed can sometimes be awkward in the case of thermometric probe devices where the time constant cannot generally be specified [fr

  11. Body temperature increases during pediatric full mouth rehabilitation surgery under general anesthesia

    Directory of Open Access Journals (Sweden)

    Yi-Shan Chuang

    2015-12-01

    Conclusion: Body temperature transiently increased during pediatric full mouth rehabilitation surgery. The increase in body temperature was associated with operation duration. The etiology is uncertain. Continuous body temperature monitoring and the application of both heating and cooling devices during pediatric full mouth rehabilitation surgery should be mandatory.

  12. NMR measurement of bitumen at different temperatures.

    Science.gov (United States)

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (index (HI), fluid content and viscosity were evaluated by using corrected T2.

  13. Measurement of low-temperature specific heat

    International Nuclear Information System (INIS)

    Stewart, G.R.

    1983-01-01

    The measurement of low-temperature specific heat (LTSH) (0.1 K< T<60 K) has seen a number of breakthroughs both in design concepts and instrumentation in the last 15 years: particularly in small sample calorimetry. This review attempts to provide an overview of both large and small sample calorimetry techniques at temperatures below 60 K, with sufficient references to enable more detailed study. A comprehensive review is made of the most reliable measurements of the LTSH of 84 of the elements to illustrate briefly some of the problems of measurements and analysis, as well as to provide additional references. More detail is devoted to three special areas of low-temperature calorimetry that have seen rapid development recently: (1) measurement of the specific heat of highly radioactive samples, (2) measurement of the specific heat of materials in high magnetic fields (18 T), and (3) measurement of the specific heat of very small (100 μg) samples. The review ends with a brief discussion of the frontier research currently underway on microcalorimetry for nanogram sample weights

  14. Live weight and body measurement of Hungarian Thoroughbred broodmares

    Directory of Open Access Journals (Sweden)

    Szabolcs Bene

    2013-09-01

    Full Text Available Live weights and 21 body measurements of 110 adult brood mares from Thoroughbred breed were evaluated in Hungary. Body measurements and some body measure indices were determined. One way ANOVA was used to compare the studs. Regression equations were developed to estimate the live weight from body measurements. Population genetic parameters of the examined traits were estimated. Only few differences among studs, concerning evaluated body measurements, were presented - firstly: body measurements, related to the kilter and nutritional status (hearth girth - were significant. Between the mentioned traits and the live weight medium positive correlation (r = 0.47 - 0.79; P<0.01 was found. For the estimation of live weight with regression model the necessary data are as follows: hearth girth, 2nd width of rump and diagonal length of body. The determination coefficient was 0.80 (P<0.01. Height at withers, of back and at rump (h2 = 0.66, 0.67 and 0.51 showed medium heritability values. The heritability of depth of chest and height of bieler-point were 0.32 and 0.48, respectively. Quite small differences were found between the stallions in most of the body measurements. The live weight and height measurements were exceptions, as here the differences between the sires were slightly higher. As a conclusion it can be stated that the Thoroughbred population in Hungary is quite homogenous in terms of the most important body measurements.

  15. Dynamic Anthropometry – Deffning Protocols for Automatic Body Measurement

    Directory of Open Access Journals (Sweden)

    Slavenka Petrak

    2017-12-01

    Full Text Available The paper presents the research on possibilities of protocol development for automatic computer-based determination of measurements on a 3D body model in defined dynamic positions. Initially, two dynamic body positions were defined for the research on dimensional changes of targeted body lengths and surface segments during body movement from basic static position into a selected dynamic body position. The assumption was that during body movement, specifi c length and surface dimensions would change significantly from the aspect of clothing construction and functionality of a garment model. 3D body scanning of a female test sample was performed in basic static and two defined dynamic positions. 3D body models were processed and measurement points were defined as a starting point for the determination of characteristic body measurements. The protocol for automatic computer measurement was defined for every dynamic body position by the systematic set of activities based on determined measurement points. The verification of developed protocols was performed by automatic determination of defined measurements on the test sample and by comparing the results with the conventional manual measurement.

  16. Estimation of Live Weight of Calves from Body Measurements within ...

    African Journals Online (AJOL)

    All phenotypic correlations between body measurements were positive and significant (P<0.001). The highest correlation coefficient was found between chest girth and body weight. The polynomial equation using chest girth as an independent variable predicted body weight more accurately within breed as compared to the ...

  17. Effect of the temperature-humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan.

    Science.gov (United States)

    Nabenishi, Hisashi; Ohta, Hiroshi; Nishimoto, Toshihumi; Morita, Tetsuo; Ashizawa, Koji; Tsuzuki, Yasuhiro

    2011-09-01

    In the present study, we investigated the relationship between the temperature-humidity index (THI) and the conception rate of lactating dairy cows in southwestern Japan, one of the hottest areas of the country. We also investigated the relationship between measurement of the vaginal temperature of lactating dairy cows as their core body temperature at one-hour intervals for 25 consecutive days in hot (August-September, n=6) and cool (January-February, n=5) periods and their THI. Furthermore, we discussed the above relationship using these vaginal temperatures, the conception rates and the THI. As a result, when the conception rates from day 2 to 0 before AI were classified into day 2, 1 and 0 groups by the six maximum THI values in each group (mTHI; 80), only the conception rate for the mTHI over 80 at 1 day before AI group was significantly lower (P80) was significantly lower (P80. There was a significant positive correlation (Ptemperature, but not during the cool period. When the mTHI reached 69, the vaginal temperature started to increase. As for the relationship between the conception rates and vaginal temperatures for all mTHI classes, in the mTHI>80 at 1 day before AI group, the vaginal temperature increased by 0.6 C from 38.7 C, resulting in a reduction of 11.6% in the conception rate from 40.5%. In conclusion, these results suggest that one of the causes of the fall in conception rate of lactating dairy cows during the summer season in southwestern Japan may be an increase in their core body temperature with a higher mTHI than the critical mTHI of 69 at 1 day before AI.

  18. Assessment of axillary temperature for the evaluation of normal body temperature of healthy young adults at rest in a thermoneutral environment.

    Science.gov (United States)

    Marui, Shuri; Misawa, Ayaka; Tanaka, Yuki; Nagashima, Kei

    2017-02-22

    The aims of this study were to (1) evaluate whether recently introduced methods of measuring axillary temperature are reliable, (2) examine if individuals know their baseline body temperature based on an actual measurement, and (3) assess the factors affecting axillary temperature and reevaluate the meaning of the axillary temperature. Subjects were healthy young men and women (n = 76 and n = 65, respectively). Three measurements were obtained: (1) axillary temperature using a digital thermometer in a predictive mode requiring 10 s (T ax-10 s ), (2) axillary temperature using a digital thermometer in a standard mode requiring 10 min (T ax-10 min ), and (3) tympanic membrane temperature continuously measured by infrared thermometry (T ty ). The subjects answered questions about eating and exercise habits, sleep and menstrual cycles, and thermoregulation and reported what they believed their regular body temperature to be (T reg ). T reg , T ax-10 s , T ax-10 min , and T ty were 36.2 ± 0.4, 36.4 ± 0.5, 36.5 ± 0.4, and 36.8 ± 0.3 °C (mean ± SD), respectively. There were correlations between T ty and T ax-10 min , T ty and T ax-10 s , and T ax-10 min and T ax-10 s (r = .62, r = .46, and r = .59, respectively, P body mass indices and irregular menstrual cycles. Modern devices for measuring axillary temperature may have changed the range of body temperature that is recognized as normal. Core body temperature variations estimated by tympanic measurements were smaller than those estimated by axillary measurements. This variation of axillary temperature may be due to changes in the measurement methods introduced by modern devices and techniques. However, axillary temperature values correlated well with those of tympanic measurements, suggesting that the technique may reliably report an individual's state of health. It is important for individuals to know their baseline axillary temperature to evaluate subsequent

  19. Effects of pregnancy on body temperature and locomotor performance of velvet geckos.

    Science.gov (United States)

    Dayananda, Buddhi; Ibargüengoytía, Nora; Whiting, Martin J; Webb, Jonathan K

    2017-04-01

    Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs ('selfish mother' hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness ('maternal manipulation hypothesis'), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35°C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0°C, T set =27.8-30.5°C) than when they were non-pregnant (mean =26.2°C, T set =23.7-28.7°C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant

  20. Using pairs of physiological models to estimate temporal variation in amphibian body temperature.

    Science.gov (United States)

    Roznik, Elizabeth A; Alford, Ross A

    2014-10-01

    Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures

  1. An IR Sensor Based Smart System to Approximate Core Body Temperature.

    Science.gov (United States)

    Ray, Partha Pratim

    2017-08-01

    Herein demonstrated experiment studies two methods, namely convection and body resistance, to approximate human core body temperature. The proposed system is highly energy efficient that consumes only 165 mW power and runs on 5 VDC source. The implemented solution employs an IR thermographic sensor of industry grade along with AT Mega 328 breakout board. Ordinarily, the IR sensor is placed 1.5-30 cm away from human forehead (i.e., non-invasive) and measured the raw data in terms of skin and ambient temperature which is then converted using appropriate approximation formula to find out core body temperature. The raw data is plotted, visualized, and stored instantaneously in a local machine by means of two tools such as Makerplot, and JAVA-JAR. The test is performed when human object is in complete rest and after 10 min of walk. Achieved results are compared with the CoreTemp CM-210 sensor (by Terumo, Japan) which is calculated to be 0.7 °F different from the average value of BCT, obtained by the proposed IR sensor system. Upon a slight modification, the presented model can be connected with a remotely placed Internet of Things cloud service, which may be useful to inform and predict the user's core body temperature through a probabilistic view. It is also comprehended that such system can be useful as wearable device to be worn on at the hat attachable way.

  2. Measuring Thermal Conductivity at LH2 Temperatures

    Science.gov (United States)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  3. Liquid temperature measuring method and device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Fumi; Karasawa, Hirokazu

    1995-06-02

    In the present invention, temperature of liquid metal in coolants in an FBR type reactor can accurately be measured at rapid response time. Namely, ultrasonic waves are emitted from an ultrasonic wave sensor disposed in the air to a guide wave tube. Ultrasonic waves are reflected at reflection plates disposed at front and back or upper and lower portions of a small hole disposed to the wave guide tube. The reflected waves are received by the sensor described above. The difference of the reaching time of the reflected waves from the reflecting plates disposed at the front and the back or the upper and lower portions is measured. The speed of sounds in this case is determined based on the size of the small hole and the distance of the upper and the lower reflection plates. The speed of sounds is determined by the formula below: V(m/s) = 2500 - 0.52 T, where T: temperature. The temperature of the liquid can easily be calculated based on the formula. Accordingly, since the speed of the ultrasonic waves from their emission to the reception is msec order, and the processing of the signals are simple, the temperature can be measured at a response time of several msecs. In addition, since the ultrasonic wave sensor is disposed at the outside of the reactor, no special countermeasure for environmental circumstances is necessary, to improve maintenance ability. (I.S.).

  4. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  5. Electron temperature measurement in Z-pinch

    International Nuclear Information System (INIS)

    Gerusov, A.V.; Orlov, M.M.; Terent'ev, A.R.; Khrabrov, V.A.

    1987-01-01

    Measurement of temperature of emitting plasma sheath in noncylindrical Z-pinch in neon at the stage of convergence to the axis, based on comparing the intensity of spectral lines belonging to Ne1, Ne2, is performed. Line intensity relation dependence was determined using calculations according to emitting-collision model. Spectra were recorded by electron-optical converter and relative intensity was determined by subsequent photometry of photolayer. Cylindric symmetrical MHD-calculations during which temperature and the observed line intensity relation were determined, are conducted

  6. Irradiation temperature measurements in the surveillance program

    International Nuclear Information System (INIS)

    Pav, T.; Krhounek, V.

    1991-01-01

    Evaluation of the diamond monitor method for the determination of the irradiation temperature in the surveillance programme of WWER-440 reactors is discussed. One of the difficulties with the practical application of the method is that the measured values of irradiation temperature are unlikely high. Using a thermodynamical model of the processes in the annealing of the irradiated diamond crystals, it was shown that experimental difficulties came from the principles of the method used. An analysis was performed of the thermal field inside the capsule of the surveillance chain in operational conditions, using the finite element method. The diamond monitor method was suggested to be eliminated from the surveillance programme and the use was proposed of the value of 273+-3 degC (as the most likely value) for the irradiation temperature of surveillance samples in WWER-440 reactors. (Z.S.). 3 tabs., 6 figs., 4 refs

  7. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  8. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  9. Global rainbow refractometry for droplet temperature measurement

    International Nuclear Information System (INIS)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux; Gerard Grehan

    2005-01-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm 3 . The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  10. Global rainbow refractometry for droplet temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux [Institut de Radioprotection et de Surete Nucleaire DSU/SERAC, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gerard Grehan [UMR 6614 CORIA, Laboratoire d' Electromagnetisme et Systemes Particulaires Site Universitaire du Madrillet, Avenue de l' universite BP 12, 76 801 Saint Etienne du Rouvray Cedex, (France)

    2005-07-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm{sup 3}. The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  11. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV. © 2015 Blackwell Verlag GmbH.

  12. Intraoperative body temperature control: esophageal thermometer versus infrared tympanic thermometer.

    Science.gov (United States)

    Poveda, Vanessa de Brito; Nascimento, Ariane de Souza

    2016-01-01

    To verify the correlation between temperature measurements performed using an infrared tympanic thermometer and an esophageal thermometer during the intraoperative period. A longitudinal study of repeated measures was performed including subjects aged 18 years or older undergoing elective oncologic surgery of the digestive system, with anesthesia duration of at least 1 hour. Temperature measurements were performed simultaneously by a calibrated esophageal thermometer and by a calibrated infrared tympanic thermometer, with laboratory reading precision of ±0.2ºC. The operating room temperature remained between 19 and 21ºC. The study included 51 patients, mostly men (51%), white (80.4%). All patients were kept warm by a forced-air heating system, for an average of 264.14 minutes (SD = 87.7). The two temperature measurements showed no different behavior over time (p = 0.2205), however, tympanic measurements were consistently 1.24°C lower (ptemperatura realizadas por meio de um termômetro timpânico por infravermelho e por um termômetro esofágico, durante o período intraoperatório. Realizou-se um estudo longitudinal, de medidas repetidas, incluindo sujeitos com idade igual ou superior a 18 anos, submetidos à cirurgia oncológica eletiva do sistema digestório, com duração da anestesia de, no mínimo, 1 hora. As medidas de temperatura eram realizadas, ao mesmo tempo, por meio de um termômetro esofágico calibrado e por termômetro timpânico por infravermelho calibrado, com precisão de leitura em laboratório de ±0,2ºC. A temperatura da sala operatória permaneceu entre 19 e 21ºC. Foram incluídos 51 pacientes, em sua maioria homens (51%), brancos (80,4%). Todos os pacientes foram aquecidos com o sistema de ar forçado aquecido, em média por 264,14 minutos (DP = 87,7). As duas medidas de temperatura não tiveram comportamento diferente ao longo do tempo (p = 0,2205), mas a medida timpânica foi consistentemente menor em 1,24°C (p temperaturas mais

  13. Field measurements of radium in the human body

    International Nuclear Information System (INIS)

    Toohey, R.E.; May, H.A.

    1978-01-01

    Two whole body counting systems have been developed and employed for field measurements. The radium contents of nine previously unmeasured cases have been determined during three field trips. Future trips are being scheduled to make body radioactivity measurements on a specific subpopulation of CHR radium cases

  14. Establishment of Average Body Measurement and the Development ...

    African Journals Online (AJOL)

    cce

    body measurement for height and backneck to waist for ages 2,3,4 and 5 years. The ... average measurements of the different parts of the body must be established. ..... and OAU Charter on Rights of the child: Lagos: Nigeria Country office.

  15. Measurement of Organ Uptake by Whole-Body Counting

    International Nuclear Information System (INIS)

    Dudley, R.A.

    1970-01-01

    This paper reviews methods for the measurement of radioactivity in body organs based on whole-body radioactivity measurements. Such measurements can of course only be used to measure radioactivity in a body organ when the radioactivity is exclusively localized in the organ or when the ratio of radioactivity in the organ to that in the whole body is known from other sources of information. They find particular applications, however, when the organ is so widely dispersed throughout the body that more localized measurement is impossible. Examples of situations in which whole-body radioactivity measurements have been used in this way are cited. The more important techniques used for such measurements are described and their respective advantages and disadvantages indicated. The importance of uniformity of counting efficiency with position of source throughout the body is stressed. Simple systems incorporating sodium iodide crystal scintillation detectors are shown to combine satisfactory sensitivity and uniformity of efficiency for clinical measurements of radioactivity in body organs and have the additional advantage that they can be readily adapted for profile scanning. Systems incorporating plastic or liquid scintillation detectors are less convenient in this respect. (author)

  16. Wireless sensor for temperature and humidity measurement

    Science.gov (United States)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  17. Electrode for improving electrochemical measurements in high temperature water

    International Nuclear Information System (INIS)

    Sengarsai, T.

    2005-01-01

    A silver/silver-chloride (Ag/AgCl) reference electrode was specially designed and constructed in a body of oxidized titanium for potentiometric measurements under high-temperature and high-pressure conditions. To avoid the thermal decomposition of silver-chloride, the electrode is designed to maintain the reference element at low temperature while it is still connected to high-temperature process zone via a non-isothermal electrolyte bridge. This configuration leads to the development of a thermal gradient along the length of the electrode. At room temperature, the stability of the Ag/AgCl reference electrode versus a standard calomel electrode (SCE) is maintained with an accuracy of 5 mV. The electrode's performance at high temperature and pressure (up to 300 o C and 1500 psi) was examined by measuring the potential difference against platinum, which acted as a reversible hydrogen electrode (RHE). Comparison of the experimental and theoretical values verifies the reliability and reproducibility of the electrode. Deviation from the Nernst equation is considered and related to the thermal liquid junction potential (TLJP). An empirical correction factor is used to maintain the Ag/AgCl potential within an acceptable accuracy limit of ±20 mV at high temperature. (author)

  18. Measurement of body potassium with a whole-body counter: relationship between lean body mass and resting energy expenditure

    International Nuclear Information System (INIS)

    Jensen, M.D.; Braun, J.S.; Vetter, R.J.; Marsh, H.M.

    1988-01-01

    We conducted studies to determine whether the Mayo whole-body counter could be used to measure body potassium, and thus lean body mass (LBM), and whether moderate obesity alters resting energy expenditure when corrected for LBM. Twenty-four nonobese and 18 moderately obese adults underwent body potassium (40K) counting, as well as tritiated water space measurement and indirect calorimetry. LBM values predicted from 40K counting and tritiated water space measurements were highly correlated (P = 0.001; r = 0.88). Resting energy expenditure was closely related to LBM (P less than 0.0001; r = 0.78): kcal/day = 622 kcal + (LBM.20.0 kcal/kg LBM). In this relationship, the obese subjects did not differ from nonobese subjects. In summary, the Mayo whole-body counter can accurately measure LBM, and moderate obesity has no detectable effect on corrected resting energy expenditure

  19. Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body.

    Science.gov (United States)

    Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel

    2016-11-06

    We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm², while the second prototype, which is described herein, had a 2 × 2 cm² detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat's temperature, while the power dissipated depends on the individual's metabolism and any physical and/or emotional activity.

  20. Effects of a whole-body spandex garment on rectal temperature and oxygen consumption in healthy dogs.

    Science.gov (United States)

    Reimer, S Brent; Schulz, Kurt S; Mason, David R; Jones, James H

    2004-01-01

    To determine whether a full-body spandex garment would alter rectal temperatures of healthy dogs at rest in cool and warm environments. Prospective study. 10 healthy dogs. Each dog was evaluated at a low (20 degrees to 25 degrees C [68 degrees to 77 degrees F]) or high (30 degrees to 35 degrees C [86 degrees to 95 degrees F]) ambient temperature while wearing or not wearing a commercially available whole-body spandex garment designed for dogs. Oxygen consumption was measured by placing dogs in a flow-through indirect calorimeter for 90 to 120 minutes. Rectal temperature was measured before dogs were placed in the calorimeter and after they were removed. Rectal temperature increased significantly more at the higher ambient temperature than at the lower temperature and when dogs were not wearing the garment than when they were wearing it. The specific rate of oxygen consumption was significantly higher at the lower ambient temperature than at the higher temperature. Results suggest that wearing a snug spandex body garment does not increase the possibility that dogs will overheat while in moderate ambient temperatures. Instead, wearing such a garment may enable dogs to better maintain body temperature during moderate heat loading. These results suggest that such garments might be used for purposes such as wound or suture protection without causing dogs to overheat.

  1. Temperature measuring element in nuclear reactors

    International Nuclear Information System (INIS)

    Wada, Takashi.

    1987-01-01

    Purpose: To easily measure the partial maximum temperature at a portion within the nuclear reactor where the connection with the external portion is difficult. Constitution: Sodium, potassium or the alloy thereof with high heat expansion coefficient is packed into an elastic vessel having elastic walls contained in a capsule. A piercing member formed into an acute triangle is attached to one end in the direction of expansion and contraction of the elastic container. The two sides of the triangle form an acute knife edge. A diaphragm is disposed within a capsule at a position opposed to the sharpened direction of the piercing member. Such a capsule is placed in a predetermined position of the nuclear reactor. The elastic vessel causes thermal expansion displacement depending on the temperature at a certain position, by which the top end of the pierce member penetrates through the diaphragm. A pierced scar of a penetration length depending on the temperature is resulted to the diaphragm. The length of the piercing damage is electroscopically observed and compared with the calibration curve to recognize the maximum temperature in the predetermined portion of the nuclear reactor. (Kamimura, M.)

  2. Heat balance model for a human body in the form of wet bulb globe temperature indices.

    Science.gov (United States)

    Sakoi, Tomonori; Mochida, Tohru; Kurazumi, Yoshihito; Kuwabara, Kohei; Horiba, Yosuke; Sawada, Shin-Ichi

    2018-01-01

    The purpose of this study is to expand the empirically derived wet bulb globe temperature (WBGT) index to a rational thermal index based on the heat balance for a human body. We derive the heat balance model in the same form as the WBGT for a human engaged in moderate intensity work with a metabolic heat production of 174W/m 2 while wearing typical vapor-permeable clothing under shady and sunny conditions. Two important relationships are revealed based on this derivation: (1) the natural wet bulb and black globe temperature coefficients in the WBGT coincide with the heat balance equation for a human body with a fixed skin wettedness of approximately 0.45 at a fixed skin temperature; and (2) the WBGT can be interpreted as the environmental potential to increase skin temperature rather than the heat storage rate of a human body. We propose an adjustment factor calculation method that supports the application of WBGT for humans dressed in various clothing types and working under various air velocity conditions. Concurrently, we note difficulties in adjusting the WBGT by using a single factor for humans wearing vapor-impermeable protective clothing. The WBGT for shady conditions does not need adjustment depending on the positive radiant field (i.e., when a radiant heat source exists), whereas that for the sunny condition requires adjustments because it underestimates heat stress, which may result in insufficient human protection measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Temporal and spatial dispersion of human body temperature during deep hypothermia.

    Science.gov (United States)

    Opatz, O; Trippel, T; Lochner, A; Werner, A; Stahn, A; Steinach, M; Lenk, J; Kuppe, H; Gunga, H C

    2013-11-01

    Clinical temperature management remains challenging. Choosing the right sensor location to determine the core body temperature is a particular matter of academic and clinical debate. This study aimed to investigate the relationship of measured temperatures at different sites during surgery in deep hypothermic patients. In this prospective single-centre study, we studied 24 patients undergoing cardiothoracic surgery: 12 in normothermia, 3 in mild, and 9 in deep hypothermia. Temperature recordings of a non-invasive heat flux sensor at the forehead were compared with the arterial outlet temperature of a heart-lung machine, with the temperature on a conventional vesical bladder thermistor and, for patients undergoing deep hypothermia, with oesophageal temperature. Using a linear model for sensor comparison, the arterial outlet sensor showed a difference among the other sensor positions between -0.54 and -1.12°C. The 95% confidence interval ranged between 7.06 and 8.82°C for the upper limit and -8.14 and -10.62°C for the lower limit. Because of the hysteretic shape, the curves were divided into phases and fitted into a non-linear model according to time and placement of the sensors. During cooling and warming phases, a quadratic relationship could be observed among arterial, oesophageal, vesical, and cranial temperature recordings, with coefficients of determination ranging between 0.95 and 0.98 (standard errors of the estimate 0.69-1.12°C). We suggest that measured surrogate temperatures as indices of the cerebral temperature (e.g. vesical bladder temperature) should be interpreted with respect to the temporal and spatial dispersion during cooling and rewarming phases.

  4. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    Science.gov (United States)

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  5. Influence of low ambient temperature on epitympanic temperature measurement: a prospective randomized clinical study.

    Science.gov (United States)

    Strapazzon, Giacomo; Procter, Emily; Putzer, Gabriel; Avancini, Giovanni; Dal Cappello, Tomas; Überbacher, Norbert; Hofer, Georg; Rainer, Bernhard; Rammlmair, Georg; Brugger, Hermann

    2015-11-05

    Epitympanic temperature (Tty) measured with thermistor probes correlates with core body temperature (Tcore), but the reliability of measurements at low ambient temperature is unknown. The aim of this study was to determine if commercially-available thermistor-based Tty reflects Tcore in low ambient temperature and if Tty is influenced by insulation of the ear. Thirty-one participants (two females) were exposed to room (23.2 ± 0.4 °C) and low (-18.7 ± 1.0 °C) ambient temperature for 10 min using a randomized cross-over design. Tty was measured using an epitympanic probe (M1024233, GE Healthcare Finland Oy) and oesophageal temperature (Tes) with an oesophageal probe (M1024229, GE Healthcare Finland Oy) inserted into the lower third of the oesophagus. Ten participants wore ear protectors (Arton 2200, Emil Lux GmbH & Co. KG, Wermelskirchen, Switzerland) to insulate the ear from ambient air. During exposure to room temperature, mean Tty increased from 33.4 ± 1.5 to 34.2 ± 0.8 °C without insulation of the ear and from 35.0 ± 0.8 to 35.5 ± 0.7 °C with insulation. During exposure to low ambient temperature, mean Tty decreased from 32.4 ± 1.6 to 28.5 ± 2.0 °C without insulation and from 35.6 ± 0.6 to 35.2 ± 0.9 °C with insulation. The difference between Tty and Tes at low ambient temperature was reduced by 82% (from 7.2 to 1.3 °C) with insulation of the ear. Epitympanic temperature measurements are influenced by ambient temperature and deviate from Tes at room and low ambient temperature. Insulating the ear with ear protectors markedly reduced the difference between Tty and Tes and improved the stability of measurements. The use of models to correct Tty may be possible, but results should be validated in larger studies.

  6. Influence of body temperature on the development of fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    1999-01-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperatur...

  7. Density and temperature measurement using CARS spectroscopy

    International Nuclear Information System (INIS)

    Hirth, A.; Vollrath, K.

    1979-01-01

    Coherent Anti Stokes Raman Scattering (CARS) a technique derived from nonlinear optics offers two major advantages compared with the spontaneous Raman method: improved scattering efficiency and spatial coherence of the scattered signal. The theory of the coherent mixing in resonant media serves as a quantitative background of the CARS technique. A review of several applications on plasma physics and gasdynamics is given, which permits to consider the CARS spectroscopy as a potential method for nonintrusive measurement of local concentration and temperature in gas flows and reactive media. (Auth.)

  8. Reliability of an infrared forehead skin thermometer for core temperature measurements

    NARCIS (Netherlands)

    Kistemaker, J.A.; Hartog, E.A. den; Daanen, H.A.M.

    2006-01-01

    The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal

  9. Estimating body weight and body composition of chickens by using noninvasive measurements.

    Science.gov (United States)

    Latshaw, J D; Bishop, B L

    2001-07-01

    The major objective of this research was to develop equations to estimate BW and body composition using measurements taken with inexpensive instruments. We used five groups of chickens that were created with different genetic stocks and feeding programs. Four of the five groups were from broiler genetic stock, and one was from sex-linked heavy layers. The goal was to sample six males from each group when the group weight was 1.20, 1.75, and 2.30 kg. Each male was weighed and measured for back length, pelvis width, circumference, breast width, keel length, and abdominal skinfold thickness. A cloth tape measure, calipers, and skinfold calipers were used for measurement. Chickens were scanned for total body electrical conductivity (TOBEC) before being euthanized and frozen. Six females were selected at weights similar to those for males and were measured in the same way. Each whole chicken was ground, and a portion of ground material of each was used to measure water, fat, ash, and energy content. Multiple linear regression was used to estimate BW from body measurements. The best single measurement was pelvis width, with an R2 = 0.67. Inclusion of three body measurements in an equation resulted in R2 = 0.78 and the following equation: BW (g) = -930.0 + 68.5 (breast, cm) + 48.5 (circumference, cm) + 62.8 (pelvis, cm). The best single measurement to estimate body fat was abdominal skinfold thickness, expressed as a natural logarithm. Inclusion of weight and skinfold thickness resulted in R2 = 0.63 for body fat according to the following equation: fat (%) = 24.83 + 6.75 (skinfold, ln cm) - 3.87 (wt, kg). Inclusion of the result of TOBEC and the effect of sex improved the R2 to 0.78 for body fat. Regression analysis was used to develop additional equations, based on fat, to estimate water and energy contents of the body. The body water content (%) = 72.1 - 0.60 (body fat, %), and body energy (kcal/g) = 1.097 + 0.080 (body fat, %). The results of the present study

  10. Oscillation measuring device for body of rotation

    International Nuclear Information System (INIS)

    Komita, Hideo.

    1994-01-01

    The present invention concerns an internal pump of a BWR type reactor and provides a device for detecting oscillations of a rotational shaft. Namely, recesses are formed along an identical circumference on the outer circumferential surface of the rotating portion each at a predetermined distance. The recesses rotate along with the rotation. An eddy current type displacement gage measures the distance to the outer circumferential surface of the rotating portion. The recesses are detected by the displacement gage as pulse signals. When the rotating portion oscillates, it is detected by the displacement gage as waveform signals. Accordingly, the output signals of the eddy current type displacement gage are formed by pulse signals superposed on the waveform signals. A rising detection circuit detects the rising position of the pulse signals as the components of the number of rotation of the rotating portion, and fall detection circuit detects the falling position. A comparator circuit is disposed in parallel with both of rising/falling detection circuits. A predetermined threshold value is set in the comparator circuit to output a signal when the inputted signal exceeds the value. (I.S.)

  11. Principal Component Analysis of Body Measurements In Three ...

    African Journals Online (AJOL)

    This study was conducted to explore the relationship among body measurements in 3 strains of broilers chicken (Arbor Acre, Marshal and Ross) using principal component analysis with the view of identifying those components that define body conformation in broilers. A total of 180 birds were used, 60 per strain.

  12. Improved measurement system for the whole body monitor

    International Nuclear Information System (INIS)

    Kotler, L.H.

    1983-01-01

    A static four-detector system has been established as a whole body radioactivity measurement system. A technique is being developed to position the detectors in such a manner as to minimise longitudinal distribution effects within a subject. This technique, which represents the human body as a simple geometric model, requires the determination of efficiency at any point within this model

  13. Relationship between pelvic and linear body measurements in ...

    African Journals Online (AJOL)

    The aim of this study was to determine pelvic height, width and area and to estimate correlations between these measurements and other external linear body parameters, i.e. body height, shoulder height, chest depth, front quarter width, hindquarter width, rump length and rump slope in Dorper ewes. A total of 332 young ...

  14. Comparative study of growth and linear body measurements in Anak ...

    African Journals Online (AJOL)

    The study was designed to compare the performance of two different breeds of broilers (Anak and Hubbard) using body weight and body linear measurements. Data on a total of 200 (100 each) Anak and Hubbard broiler breeds were collected weekly and the experiment lasted for 8 weeks. The parameters investigated ...

  15. LOFT fuel rod surface temperature measurement testing

    International Nuclear Information System (INIS)

    Eaton, A.M.; Tolman, E.L.; Solbrig, C.W.

    1978-01-01

    Testing of the LOFT fuel rod cladding surface thermocouples has been performed to evaluate how accurately the LOFT thermocouples measure the cladding surface temperature during a loss-of-coolant accident (LOCA) sequence and what effect, if any, the thermocouple would have on core performance. Extensive testing has been done to characterize the thermocouple design. Thermal cycling and corrosion testing of the thermocouple weld design have provided an expected lifetime of 6000 hours when exposed to reactor coolant conditions of 620 K and 15.9 MPa and to sixteen thermal cycles with an initial temperature of 480 K and peak temperatures ranging from 870 to 1200K. Departure from nucleate boiling (DNB) tests have indicated a DNB penalty (5 to 28% lower) during steady state operation and negligible effects during LOCA blowdown caused by the LOFT fuel rod surface thermocouple arrangement. Experience with the thermocouple design in Power Burst Facility (PBF) and LOFT nonnuclear blowdown testing has been quite satisfactory. Tests discussed here were conducted using both stainless steel and zircaloy-clad electrically heated rod in the LOFT Test Support Facility (LTSF) blowdown simulation loop

  16. Measurement system for ultrahigh temperature thermophysical properties

    International Nuclear Information System (INIS)

    Fukuyama, Hiroyuki

    2015-01-01

    Properties and Simulations Probed with Electromagnetic Containerless Technique (PROSPECT) is a measurement system for ultrahigh temperature thermophysical properties to be able to measure thermophysical properties with high precision by combining AC magnetic field (electromagnetic levitation device) and DC magnetic field (superconducting magnet) to realize the static floating state of metallic melt, in other words, the state of suppressing the surface vibration of droplets, translational motion, and internal convection. The electromagnetic levitation method is a method to obtain a floating force due to the Lorentz force generated by the interaction between high-frequency current flowing in the coil and the induced current generated in a sample, and to heat/melt the sample with the Joule heat generated by its induced current. This paper roughly explains the element technologies of PROSPECT with a focus on the laser modulation calorimetry (laser periodic heating method), normal spectral emissivity measurement method, density measurement, and surface tension measurement method. Furthermore, as the application of PROSPECT to new research deployment, it introduces the observation of phase separation structure in the supercooled solidification structure of Cu-Co alloy. (A.O.)

  17. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  18. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure

    Science.gov (United States)

    Sumowski, James F.; Leavitt, Victoria M.

    2014-01-01

    Objective To investigate whether resting body temperature is elevated and linked to fatigue in patients with relapsing-remitting multiple sclerosis (RRMS). Design Cross-sectional study investigating (a) differences in resting body temperature across RRMS, SPMS, and healthy groups, and (b) the relationship between body temperature and fatigue in RRMS patients. Setting Climate-controlled laboratory (~22°C) within a non-profit medical rehabilitation research center. Participants Fifty patients with RRMS, 40 matched healthy controls, and 22 patients with secondary-progressive MS (SPMS). Intervention None. Main Outcome Measure(s) Body temperature was measured with an aural infrared thermometer (normal body temperature for this thermometer is 36.75°C), and differences were compared across RRMS, SPMS, and healthy persons. RRMS patients completed measures of general fatigue (Fatigue Severity Scale; FSS), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale; MFIS). Results There was a large effect of group (ptemperature was higher in RRMS patients (37.04°C±0.27) relative to healthy controls (36.83 ± 0.33; p = .009) and SPMS patients (36.75°C±0.39; p=.001). Warmer body temperature in RRMS patients was associated with worse general fatigue (FSS; rp=.315, p=.028) and physical fatigue (pMFIS; rp=.318, p=.026), but not cognitive fatigue (cMIFS; rp=−.017, p=.909). Conclusions These are the first-ever demonstrations that body temperature is elevated endogenously in RRMS patients, and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. PMID:24561056

  19. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    Science.gov (United States)

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  20. Article comprising a garment or other textile structure for use in controlling body temperature

    Science.gov (United States)

    Butzer, Melissa J.

    2000-01-01

    There is disclosed an article for use in cooling body temperature which comprises a garment having a coat and pant, with each having a body section adapted to receive a portion of the torso of the wearer and extensions from the body section to receive the wearer's limbs. The garment includes a system for circulating temperature controlling fluid from a suitable source through patches removably received in pockets in each of body section and extensions.

  1. Key to good fit: body measurement problems specific to key ...

    African Journals Online (AJOL)

    Key to good fit: body measurement problems specific to key dimensions. ... to explore and describe the problems that the South African Clothing Industry currently ... A postal survey was conducted among South African apparel and footwear ...

  2. Predicting live weight using body measurements in Afar goats in ...

    African Journals Online (AJOL)

    Bheema

    Predicting live weight using body measurements in Afar goats in north eastern. Ethiopia ... farmers get value for their stock rather than the middlemen. However ..... of West African long-legged and West African dwarf sheep in Northern Ghana.

  3. Growth performance and certain body measurements of ostrich ...

    African Journals Online (AJOL)

    Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2–9 weeks of age. Kh M Mahrose, AI Attia, IE Ismail, DE Abou-Kassem, ME Abd El-Hack ...

  4. Measurement of the Lorentz-FitzGerald body contraction

    Science.gov (United States)

    Rafelski, Johann

    2018-02-01

    A complete foundational discussion of acceleration in the context of Special Relativity (SR) is presented. Acceleration allows the measurement of a Lorentz-FitzGerald body contraction created. It is argued that in the back scattering of a probing laser beam from a relativistic flying electron cloud mirror generated by an ultra-intense laser pulse, a first measurement of a Lorentz-FitzGerald body contraction is feasible.

  5. Body composition as measured by in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Cohn, S.H.; Sawitsky, A.; Vartsky, D.; Yasumura, S.; Zanzi, I.; Gartenhaus, W.; Ellis, K.J.

    1979-01-01

    A large scale study is currently underway on the changes in body composition resulting from the cachexia of malignancy. The ultimate objective of the overall project is to assess the changes in body composition associated with hyperalimentation and other modes of nutritional support to cancer patients. The first phase of this study is now in progress. In this phase, a study is being made of a control group of normal patients to provide baseline data against which data from cancer patients can be evaluated. Total body nitrogen and potassium are measured in a group of normal men and women, and are analyzed as a function of age. Additionally, changes in skeletal mass (total body calcium) are also recorded, and body water is measured simultaneously with the use of tritiated water

  6. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    International Nuclear Information System (INIS)

    Baqai, A.

    2014-01-01

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  7. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baqai, A. [Mehran Univ. of Engineering and Technology, Jamshoro (Pakistan). Dept. of Information and Communication Technology

    2014-07-15

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  8. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    Science.gov (United States)

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2017-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  9. The effect of lower body cooling on the changes in three core temperature indices

    International Nuclear Information System (INIS)

    Basset, F A; Cahill, F; Handrigan, G; DuCharme, M B; Cheung, S S

    2011-01-01

    Rectal (T re ), ear canal (T ear ) and esophageal (T es ) temperatures have been used in the literature as core temperature indices in humans. The aim of the study was to investigate if localized lower body cooling would have a different effect on each of these measurements. We hypothesized that prolonged lower body surface cooling will result in a localized cooling effect for the rectal temperature not reflected in the other core measurement sites. Twelve participants (mean ± SD; 26.8 ± 6.0 years; 82.6 ± 13.9 kg; 179 ± 10 cm, BSA = 2.00 ± 0.21 m 2 ) attended one experimental session consisting of sitting on a rubberized raft floor surface suspended in 5 °C water in a thermoneutral air environment (∼21.5 ± 0.5 °C). Experimental conditions were (a) a baseline phase during which participants were seated for 15 min in an upright position on an insulated pad (1.408 K . m 2 . W −1 ); (b) a cooling phase during which participants were exposed to the cooling surface for 2 h, and (c) an insulation phase during which the baseline condition was repeated for 1 h. Temperature data were collected at 1 Hz, reduced to 1 min averages, and transformed from absolute values to a change in temperature from baseline (15 min average). Metabolic data were collected breath-by-breath and integrated over the same temperature epoch. Within the baseline phase no significant change was found between the three indices of core temperature. By the end of the cooling phase, T re was significantly lower (Δ = −1.0 ± 0.4 °C) from baseline values than from T ear (Δ = −0.3 ± 0.3 °C) and T es (Δ = −0.1 ± 0.3 °C). T re continued to decrease during the insulation phase from Δ −1.0 ± 0.4 °C to as low as Δ −1.4 ± 0.5 °C. By the end of the insulation phase T re had slightly risen back to Δ −1.3 ± 0.4 °C but remained significantly different from baseline values and from the other two core measures. Metabolic data showed no variation throughout the experiment. In

  10. A method for measuring the inertia properties of rigid bodies

    Science.gov (United States)

    Gobbi, M.; Mastinu, G.; Previati, G.

    2011-01-01

    A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.

  11. The impact of high temperatures on foraging behaviour and body ...

    African Journals Online (AJOL)

    High temperatures can pose significant thermoregulation challenges for endotherms, and determining how individual species respond to high temperatures will be important for predicting the impact of global warming on wild populations. Animals can adjust their behaviour or physiology to cope with higher temperatures, ...

  12. Effects of peripheral cold application on core body temperature and haemodynamic parameters in febrile patients.

    Science.gov (United States)

    Asgar Pour, Hossein; Yavuz, Meryem

    2014-04-01

    This study designed to assess the effects of peripheral cold application (PCA) on core body temperature and haemodynamic parameters in febrile patients. This study was an experimental, repeated-measures performed in the neurosurgical intensive-care unit. The research sample included all patients with fever in postoperative period. PCA was performed for 20 min. During fever, systolic blood pressure, mean arterial blood pressure and arterial oxygen saturation (O2 Sat) decreased by 5.07 ± 7.89 mm Hg, 0.191 ± 6.00 mm Hg and 0.742% ± 0.97%, respectively, whereas the pulse rate and diastolic blood pressure increased by 8.528 ± 4.42 beats/ min and 1.842 ± 6.9 mmHg, respectively. Immediately after PCA, core body temperature and pulse rate decreased by 0.3°C, 3.3 beats/min, respectively, whereas systolic, diastolic, mean arterial blood pressure and O2 Sat increased by, 1.40 mm Hg, 1.87 mm Hg, 0.98 mmHg and 0.27%, respectively. Thirty minutes after the end of PCA, core body temperature, diastolic, mean arterial blood pressure and pulse rate decreased by 0.57°C, 0.34 mm Hg, 0.60 mm Hg and 4.5 beats/min, respectively, whereas systolic blood pressure and O2 Sat increased by 0.98 mm Hg and 0.04%, respectively. The present results showed that PCA increases systolic, diastolic, mean arterial blood pressure and O2 Sat, and decreases core body temperature and pulse rate. © 2013 Wiley Publishing Asia Pty Ltd.

  13. Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5

    Science.gov (United States)

    Brinich, Paul F.

    1961-01-01

    Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.

  14. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms.

    Science.gov (United States)

    Borniger, Jeremy C; Maurya, Santosh K; Periasamy, Muthu; Nelson, Randy J

    2014-10-01

    The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼ 5 lux). However, the metabolic effects of short-term (dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to "internal desynchrony" between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.

  15. Deviation from goal pace, body temperature and body mass loss as predictors of road race performance.

    Science.gov (United States)

    Adams, William M; Hosokawa, Yuri; Belval, Luke N; Huggins, Robert A; Stearns, Rebecca L; Casa, Douglas J

    2017-03-01

    The purpose of this study was to examine the relationship between pacing, gastrointestinal temperature (T GI ), and percent body mass loss (%BML) on relative race performance during a warm weather 11.3km road race. Observational study of a sample of active runners competing in the 2014 Falmouth Road Race. Participants ingested a T GI pill and donned a GPS enabled watch with heart rate monitoring capabilities prior to the start of the race. Percent off predicted pace (% OFF ) was calculated for seven segments of the race. Separate linear regression analyses were used to assess the relationship between pace, T ​GI , and %BML on relative race performance. One-way ANOVA was used to analyse post race T GI (≥40°C vs 0.05). There was a trend in a slower pace (p=0.055) and greater % OFF (p=0.056) in runners finishing the race with a T GI >40°C. Overall, finish time was influenced by greater variations in pace during the first two miles of the race. In addition, runners who minimized fluid losses and had lower T GI were associated with meeting self-predicted goals. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. Influence of elevated body temperature on circulating immunoglobulin-secreting cells

    DEFF Research Database (Denmark)

    Kappel, M; Barington, T; Gyhrs, A

    1995-01-01

    This work was designed to investigate the effect of in vivo hyperthermia in man on circulating immunoglobulin-secreting cells. Eight healthy male volunteers were immersed into a hot waterbath (WI) (water temperature 39.5 degrees C) for 2 h, whereby their body temperature rose to 39.5 degrees C....... On another occasion they served as their own controls, being immersed into thermoneutral water (water temperature 34.5 degrees C) for 2 h. Blood samples were drawn before immersion, at body temperatures of 38, 39 and 39.5 degrees C, as well as 2 h after WI when their body temperatures were normalized...

  17. National survey of human body radioactivity measured by a mobile whole-body counter and installed whole-body counters

    International Nuclear Information System (INIS)

    Boddy, K.; Fenwick, J.D.; McKenzie, A.L.

    1989-05-01

    Body radioactivity in the general public has been measured in 2339 volunteers throughout the U.K. A mobile whole-body monitor visited collaborating Medical Physics Departments and data were also contributed by Medical Physics Departments possessing installed counters. Levels of body radiocaesium ranged from below detection level to 4149 Bq. Radiocaesium levels were normalised by dividing by the content of natural body potassium-40. In all cases, the dose rate to the body from radiocaesium was less than that from potassium-40. Radiocaesium levels were 2-3 times higher in N.W. England, Scotland and N. Wales than the rest of the country, but this factor is much less than the variation in deposition of Chernobyl radiocaesium. This discrepancy may be accounted for by the nationwide distribution of foodstuffs. At all sites where volunteers were monitored, the ratio of caesium-137/caesium-134 was consistent with a radiocaesium intake attributable primarily to fallout from the Chernobyl fire. (author)

  18. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    Directory of Open Access Journals (Sweden)

    William Amos

    2014-11-01

    Full Text Available Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate.

  19. Temperature measurements inside nuclear reactor cores

    International Nuclear Information System (INIS)

    Tarassenko, Serge

    1969-11-01

    Non negligible errors may happen in nuclear reactor temperature measurements using magnesium oxide insulated and stainless steel sheathed micro-wire thermocouples, when these thermometric lines are placed under operational conditions typical of electrical power stations. The present work shows that this error is principally due to electrical hysteresis and polarization phenomena in the insulator subjected to the strong fields generated by common-mode voltages. These phenomena favour the unsymmetrical common-mode current flow and thus lead to the differential-mode voltage generation which is superposing on the thermoelectric hot junction potential. A calculation and an experimental approach make possible the importance of the magnesium oxide insulating characteristics, the hot junction insulation, the choice of the main circuits in the data processing equipment as well as the galvanic isolation performances and the common-mode rejection features of all the measurement circuits. A justification is thereby given for the severe conditions imposed for the acceptance of thermoelectric materials; some particular precautions to be taken are described, as well as the high performance characteristics which have to be taken into account in choosing measurement systems linked to thermometric circuits with sheathed micro-wire thermocouples. (author) [fr

  20. Body temperature and motion: Evaluation of an online monitoring system in pigs challenged with Porcine Reproductive & Respiratory Syndrome Virus.

    Science.gov (United States)

    Süli, Tamás; Halas, Máté; Benyeda, Zsófia; Boda, Réka; Belák, Sándor; Martínez-Avilés, Marta; Fernández-Carrión, Eduardo; Sánchez-Vizcaíno, José Manuel

    2017-10-01

    Highly contagious and emerging diseases cause significant losses in the pig producing industry worldwide. Rapid and exact acquisition of real-time data, like body temperature and animal movement from the production facilities would enable early disease detection and facilitate adequate response. In this study, carried out within the European Union research project RAPIDIA FIELD, we tested an online monitoring system on pigs experimentally infected with the East European subtype 3 Porcine Reproductive & Respiratory Syndrome Virus (PRRSV) strain Lena. We linked data from different body temperature measurement methods and the real-time movement of the pigs. The results showed a negative correlation between body temperature and movement of the animals. The correlation was similar with both body temperature obtaining methods, rectal and thermal sensing microchip, suggesting some advantages of body temperature measurement with transponders compared with invasive and laborious rectal measuring. We also found a significant difference between motion values before and after the challenge with a virulent PRRSV strain. The decrease in motion values was noticeable before any clinical sign was recorded. Based on our results the online monitoring system could represent a practical tool in registering early warning signs of health status alterations, both in experimental and commercial production settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  2. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  3. Comparison of rectal, tympanic membrane and axillary temperature measurement methods in dogs.

    Science.gov (United States)

    Lamb, V; McBrearty, A R

    2013-11-30

    The aim of this study was to compare axillary and tympanic membrane (TM) temperature measurements to rectal temperature in a large group of clinical canine patients. We also sought to ascertain whether certain factors affected the differences between the measurements and to compare the ease of measurement. Axillary temperatures were easy to obtain but tended to be lower than rectal readings (median difference 0.6°C). In 54.7 per cent of dogs there was a difference of >0.5°C between the two readings. Weight, coat length, body condition score and breed size were significantly associated with the difference between the rectal and axillary temperature. TM temperatures were more similar to rectal temperatures (median difference 0°C) but in 25 per cent of dogs, there was a difference of >0.5°C between rectal and TM readings. TM measurements were less well tolerated than axillary measurements. None of the factors assessed were associated with the difference between the rectal and TM temperature. As a difference of >0.5°C has previously been described as unacceptable for different methods of temperature measurement, neither axillary nor TM temperatures are interchangeable with rectal temperatures for the measurement of body temperature.

  4. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Science.gov (United States)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  5. Histologically Measured Cardiomyocyte Hypertrophy Correlates with Body Height as Strongly as with Body Mass Index

    Directory of Open Access Journals (Sweden)

    Richard E. Tracy

    2011-01-01

    Full Text Available Cardiac myocytes are presumed to enlarge with left ventricular hypertrophy (LVH. This study correlates histologically measured myocytes with lean and fat body mass. Cases of LVH without coronary heart disease and normal controls came from forensic autopsies. The cross-sectional widths of myocytes in H&E-stained paraffin sections followed log normal distributions almost to perfection in all 104 specimens, with constant coefficient of variation across the full range of ventricular weight, as expected if myocytes of all sizes contribute proportionately to hypertrophy. Myocyte sizes increased with height. By regression analysis, height2.7 as a proxy for lean body mass and body mass index (BMI as a proxy for fat body mass, exerted equal effects in the multiple correlation with myocyte volume, and the equation rejected race and sex. In summary, myocyte sizes, as indexes of LVH, suggest that lean and fat body mass may contribute equally.

  6. Is there an association between body temperature and serum lactate levels in hip fracture patients?

    Science.gov (United States)

    Murtuza, F; Farrier, A J; Venkatesan, M; Smith, R; Khan, A; Uzoigwe, C E; Chami, G

    2015-10-01

    Introduction Hyperlactataemia is associated with adverse outcomes in trauma cases. It is thought to be the result of anaerobic respiration during hypoperfusion. This produces much less energy than complete aerobic glycolysis. Low body temperature in the injured patient carries an equally poor prognosis. Significant amounts of energy are expended in maintaining euthermia. Consequently, there may be a link between lactate levels and dysthermia. Hyperlactataemia may be indicative of inefficient energy production and therefore insufficient energy to maintain euthermia. Alternatively, significant amounts of available oxygen may be sequestered in thermoregulation, resulting in anaerobic respiration and lactate production. Our study investigated whether there is an association between lactate levels and admission body temperature in hip fracture patients. Furthermore, it looked at whether there is a difference in the mean lactate levels between hip fracture patients with low (37.5°C) body temperature on admission, and for patients who have low body temperature, whether there is a progressive rise in serum lactate levels as body temperature falls. Methods The admission temperature and serum lactate of 1,162 patients presenting with hip fracture were recorded. Patients were divided into the euthermic (body temperature 36.5-37.5°C), the pyrexial (>37.5°C) and those with low body temperature (body temperature were compared. Results There was a significant difference in age between the three body temperature groups (p=0.007). The pyrexial cohort was younger than the low body temperature group (mean: 78 vs 82 years). Those with low body temperature had a higher mean lactate level than the euthermic (2.2mmol/l vs 2.0mmol/l, p=0.03). However, there was no progressive rise in serum lactate level as admission temperature fell. Conclusions The findings suggest that in hip fracture patients, the body attempts initially to maintain euthermia, incurring an oxygen debt. This would

  7. Decreases in beetle body size linked to climate change and warming temperatures.

    Science.gov (United States)

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The

  8. Temperature and body weight affect fouling of pig pens.

    Science.gov (United States)

    Aarnink, A J A; Schrama, J W; Heetkamp, M J W; Stefanowska, J; Huynh, T T T

    2006-08-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) was studied. Ten groups of 5 pigs were placed in partially slatted pens (60% solid concrete, 40% metal-slatted) in climate respiration chambers. After an adaptation period, temperatures were raised daily for 9 d. Results showed that above certain inflection temperatures (IT; mean 22.6 degrees C, SE = 0.78) the number of excretions (relative to the total number of excretions) on the solid floor increased with temperature (mean increase 9.7%/ degrees C, SE = 1.41). Below the IT, the number of excretions on the solid floor was low and not influenced by temperature (mean 13.2%, SE = 3.5). On average, the IT for excretion on the solid floor decreased with increasing BW, from approximately 25 degrees C at 25 kg to 20 degrees C at 100 kg of BW (P temperature also affected the pattern and postural lying. The temperature at which a maximum number of pigs lay on the slatted floor (i.e., the IT for lying) decreased from approximately 27 degrees C at 25 kg to 23 degrees C at 100 kg of BW (P temperatures, pigs lay more on their sides and less against other pigs (P Temperature affects lying and excreting behavior of growing-finishing pigs in partially slatted pens. Above certain IT, pen fouling increases linearly with temperature. Inflection temperatures decrease at increasing BW.

  9. Repeatability of Objective Measurements of Linear Udder and Body ...

    African Journals Online (AJOL)

    The objective of this study was to estimates the repeatability of objective measurements on linear udder and body conformation traits and to evaluate the objectivity of the measurements in Friesian x Bunaji cows. Data from 50 (F1) Frisian X Bunaji cows collected between 2007 and 2008 at the Dairy Research Farm of the ...

  10. High frequency body mass measurement, feedback, and health behaviors

    NARCIS (Netherlands)

    Kooreman, P.; Scherpenzeel, A.

    We analyze weight and fat percentage measurements of respondents in an online general population panel in the Netherlands, collected using wireless scales, with an average frequency of 1.6 measurements per week. First, we document the existence of a weekly cycle; body mass is lowest on Fridays and

  11. SOI Transistor measurement techniques using body contacted transistors

    International Nuclear Information System (INIS)

    Worley, E.R.; Williams, R.

    1989-01-01

    Measurements of body contacted SOI transistors are used to isolate parameters of the back channel and island edge transistor. Properties of the edge and back channel transistor have been measured before and after X-ray irradiation (ARACOR). The unique properties of the edge transistor are shown to be a result of edge geometry as confirmed by a two dimensional transistor simulator

  12. The influence of body temperature on image contrast in post mortem MRI

    International Nuclear Information System (INIS)

    Ruder, Thomas D.; Hatch, Gary M.; Siegenthaler, Lea; Ampanozi, Garyfalia; Mathier, Sandra; Thali, Michael J.; Weber, Oliver M.

    2012-01-01

    Objective: To assess the temperature dependency of tissue contrast on post mortem magnetic resonance (PMMR) images both objectively and subjectively; and to visually demonstrate the changes of image contrast at various temperatures. Materials and methods: The study was approved by the responsible justice department and the ethics committee. The contrast of water, fat, and muscle was measured using regions of interest (ROI) in the orbit of 41 human corpses to assess how body temperature (range 2.1–39.8 °C) relates to image contrast of T1-weighted (T1W) and T2-weighted (T2W) sequences on PMMR. Regressions were calculated using the method of least squares. Three readers judged visible changes of image contrast subjectively by consensus. Results: There was a positive relationship between temperature and contrast on T1-weighted (T1W) images and between temperature and the contrast of fat/muscle on T2-weighted (T2W) images. There was a negative relationship between temperature and the contrast of water/fat and water/muscle on T2W images. Subjectively, the influence of temperature became visible below 20 °C on T2W images, and below 10 °C on T1W images. Conclusion: Image contrast on PMMR depends on the temperature of a corpse. Radiologists involved in post mortem imaging must be aware of temperature-related changes in MR image contrast. To preserve technical quality, scanning corpses below 10 °C should be avoided.

  13. The effects of a tranquilizer on body temperature.

    Science.gov (United States)

    1963-10-01

    Four young adult mongrel dogs were exposed twice untranquilized to each of three environmental temperatures: 4.4C, 23.9C, and 37.8C and exposed twice tranquilized with 2.2 mg/Kg propiopromazine hydrochloride. Rectal temperatures were monitored ...

  14. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Yvo); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait (Henri); M.A.A. van Walderveen (Marianne); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (Wouter); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  15. Admission body temperature predicts long-term mortality after acute stroke

    DEFF Research Database (Denmark)

    Kammersgaard, L P; Jørgensen, H S; Rungby, Jørgen

    2002-01-01

    Body temperature is considered crucial in the management of acute stroke patients. Recently hypothermia applied as a therapy for stroke has been demonstrated to be feasible and safe in acute stroke patients. In the present study, we investigated the predictive role of admission body temperature...

  16. Crowdsourcing urban air temperature measurements using smartphones

    Science.gov (United States)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  17. Extracellular hyperosmolality and body temperature during physical exercise in dogs

    Science.gov (United States)

    Kozlowski, S.; Greenleaf, J. E.; Turlejska, E.; Nazar, K.

    1980-01-01

    The purpose of this study was to test the hypothesis that thermoregulation during exercise can be affected by extracellular fluid hyperosmolality without changing the plasma Na(+) concentration. The effects of preexercise venous infusions of hypertonic mannitol and NaCl solutions on rectal temperature responses were compared in dogs running at moderate intensity for 60 min on a treadmill. Plasma Na(+) concentration was increased by 12 meq after NaCl infusion, and decreased by 9 meq after mannitol infusion. Both infusions increased plasma by 15 mosmol/kg. After both infusions, rectal temperature was essentially constant during 60 min rest. However, compared with the noninfusion exercise increase in osmolality of 1.3 C, rectal temperature increased by 1.9 C after both postinfusion exercise experiments. It was concluded that inducing extracellular hyperosmolality, without elevating plasma, can induce excessive increases in rectal temperature during exericse but not at rest.

  18. Estimation of core body temperature from skin temperature, heat flux, and heart rate using a Kalman filter.

    Science.gov (United States)

    Welles, Alexander P; Xu, Xiaojiang; Santee, William R; Looney, David P; Buller, Mark J; Potter, Adam W; Hoyt, Reed W

    2018-05-18

    Core body temperature (T C ) is a key physiological metric of thermal heat-strain yet it remains difficult to measure non-invasively in the field. This work used combinations of observations of skin temperature (T S ), heat flux (HF), and heart rate (HR) to accurately estimate T C using a Kalman Filter (KF). Data were collected from eight volunteers (age 22 ± 4 yr, height 1.75 ± 0.10 m, body mass 76.4 ± 10.7 kg, and body fat 23.4 ± 5.8%, mean ± standard deviation) while walking at two different metabolic rates (∼350 and ∼550 W) under three conditions (warm: 25 °C, 50% relative humidity (RH); hot-humid: 35 °C, 70% RH; and hot-dry: 40 °C, 20% RH). Skin temperature and HF data were collected from six locations: pectoralis, inner thigh, scapula, sternum, rib cage, and forehead. Kalman filter variables were learned via linear regression and covariance calculations between T C and T S , HF, and HR. Root mean square error (RMSE) and bias were calculated to identify the best performing models. The pectoralis (RMSE 0.18 ± 0.04 °C; bias -0.01 ± 0.09 °C), rib (RMSE 0.18 ± 0.09 °C; bias -0.03 ± 0.09 °C), and sternum (RMSE 0.20 ± 0.10 °C; bias -0.04 ± 0.13 °C) were found to have the lowest error values when using T S , HF, and HR but, using only two of these measures provided similar accuracy. Copyright © 2018. Published by Elsevier Ltd.

  19. Regulation of the peripheral body temperature by foods: a temperature decrease induced by the Japanese persimmon (kaki, Diospyros kaki).

    Science.gov (United States)

    Hibino, Gaku; Nadamoto, Tomonori; Fujisawa, Fumiko; Fushiki, Tohru

    2003-01-01

    We investigated whether the ingestion of the Japanese persimmon (kaki, Diospyros kaki) could lower the human peripheral body temperature. It was found that the temperatures recorded at the foot and wrist were depressed after kaki consumption compared to after the same amount of water consumption. The effects of ingesting freeze-dried kaki and eating a cookie (as its nutritional counterpart) containing the same amount of carbohydrate, protein, fat, and water were compared. A similar temperature-reducing effect of kaki was observed. The recovery of finger temperature after soaking the finger in ice-cooled water was also studied. The temperature recovery was delayed after kaki consumption. It was thus quantitatively demonstrated that ingesting kaki indeed had the effect of lowering (or repressing the rise) of the peripheral human body temperature, as has been traditionally believed in China for many hundreds of years.

  20. Aminophylline partially prevents the decrease of body temperature during laparoscopic abdominal surgery.

    Science.gov (United States)

    Kim, Dae Woo; Lee, Jung Ah; Jung, Hong Soo; Joo, Jin Deok; In, Jang Hyeok; Jeon, Yeon Soo; Chun, Ga Young; Choi, Jin Woo

    2014-08-01

    Aminophylline can elicit thermogenesis in rats or increase metabolic rate during cold stress in lambs. We tested the hypothesis that aminophylline would reduce the change in core body temperature during laparoscopic abdominal surgery requiring pneumoperitoneum. Fifty patients were randomly divided into an aminophylline group (n=25) and a saline control group (n=25). Esophageal temperature, index finger temperature, and hemodynamic variables, such as mean blood pressure and heart rate, were measured every 15 min during sevoflurane anesthesia. In the aminophylline group, esophageal temperatures at T45 (36.1±0.38 vs. 35.7±0.29, P=0.024), T60 (36.0±0.39 vs. 35.6±0.28, P=0.053), T75 (35.9±0.34 vs. 35.5±0.28, P=0.025), T90 (35.8±0.35 vs. 35.3±0.33, P=0.011), and T105 (35.8±0.36 vs. 35.1±0.53, P=0.017) and index finger temperatures at T15 (35.8±0.46 vs. 34.9±0.33, Ptemperature through a thermogenic effect, despite reduced peripheral thermoregulatory vasoconstriction.

  1. Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature

    International Nuclear Information System (INIS)

    Fu Xiao-Chen; Hao Ya-Jiang

    2015-01-01

    With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature. (paper)

  2. Comparison of auricular and rectal temperature measurement in normothermic, hypothermic, and hyperthermic dogs.

    Science.gov (United States)

    Konietschke, U; Kruse, B D; Müller, R; Stockhaus, C; Hartmann, K; Wehner, A

    2014-01-01

    Measurement of rectal temperature is the most common method and considered gold standard for obtaining body temperature in dogs. So far, no study has been performed comparing agreement between rectal and auricular measurements in a large case series. The purpose of the study was to assess agreement between rectal and auricular temperature measurement in normothermic, hypothermic, and hyperthermic dogs with consideration of different environmental conditions and ear conformations. Reference values for both methods were established using 62 healthy dogs. Three hundred dogs with various diseases (220 normothermic, 32 hypothermic, 48 hyperthermic) were enrolled in this prospective study. Rectal temperature was compared to auricular temperature and differences in agreement with regard to environmental temperature, relative humidity, and different ear conformations (pendulous versus prick ears) were evaluated using Pearson's correlation coefficient and Bland-Altman analysis. Correlation between rec- tal and auricular temperature was significant (r: 0.892; p  temperature did not. Variation between the two methods of measuring body temperature was clinically unacceptable. Although measurement of auricular temperature is fast, simple, and well tolerated, this method provides a clinically unacceptable difference to the rectal measurement.

  3. Body awareness: construct and self-report measures.

    Directory of Open Access Journals (Sweden)

    Wolf E Mehling

    Full Text Available Heightened body awareness can be adaptive and maladaptive. Improving body awareness has been suggested as an approach for treating patients with conditions such as chronic pain, obesity and post-traumatic stress disorder. We assessed the psychometric quality of selected self-report measures and examined their items for underlying definitions of the construct.PubMed, PsychINFO, HaPI, Embase, Digital Dissertations Database.Abstracts were screened; potentially relevant instruments were obtained and systematically reviewed. Instruments were excluded if they exclusively measured anxiety, covered emotions without related physical sensations, used observer ratings only, or were unobtainable. We restricted our study to the proprioceptive and interoceptive channels of body awareness. The psychometric properties of each scale were rated using a structured evaluation according to the method of McDowell. Following a working definition of the multi-dimensional construct, an inter-disciplinary team systematically examined the items of existing body awareness instruments, identified the dimensions queried and used an iterative qualitative process to refine the dimensions of the construct.From 1,825 abstracts, 39 instruments were screened. 12 were included for psychometric evaluation. Only two were rated as high standard for reliability, four for validity. Four domains of body awareness with 11 sub-domains emerged. Neither a single nor a compilation of several instruments covered all dimensions. Key domains that might potentially differentiate adaptive and maladaptive aspects of body awareness were missing in the reviewed instruments.Existing self-report instruments do not address important domains of the construct of body awareness, are unable to discern between adaptive and maladaptive aspects of body awareness, or exhibit other psychometric limitations. Restricting the construct to its proprio- and interoceptive channels, we explore the current understanding

  4. A new method of body habitus correction for total body potassium measurements

    International Nuclear Information System (INIS)

    O'Hehir, S; Green, S; Beddoe, A H

    2006-01-01

    This paper describes an accurate and time-efficient method for the determination of total body potassium via a combination of measurements in the Birmingham whole body counter and the use of the Monte Carlo n-particle (MCNP) simulation code. In developing this method, MCNP has also been used to derive values for some components of the total measurement uncertainty which are difficult to quantify experimentally. A method is proposed for MCNP-assessed body habitus corrections based on a simple generic anthropomorphic model, scaled for individual height and weight. The use of this model increases patient comfort by reducing the need for comprehensive anthropomorphic measurements. The analysis shows that the total uncertainty in potassium weight determination by this whole body counting methodology for water-filled phantoms with a known amount of potassium is 2.7% (SD). The uncertainty in the method of body habitus correction (applicable also to phantom-based methods) is 1.5% (SD). It is concluded that this new strategy provides a sufficiently accurate model for routine clinical use

  5. A new method of body habitus correction for total body potassium measurements

    Energy Technology Data Exchange (ETDEWEB)

    O' Hehir, S [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom); Green, S [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom); Beddoe, A H [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom)

    2006-09-07

    This paper describes an accurate and time-efficient method for the determination of total body potassium via a combination of measurements in the Birmingham whole body counter and the use of the Monte Carlo n-particle (MCNP) simulation code. In developing this method, MCNP has also been used to derive values for some components of the total measurement uncertainty which are difficult to quantify experimentally. A method is proposed for MCNP-assessed body habitus corrections based on a simple generic anthropomorphic model, scaled for individual height and weight. The use of this model increases patient comfort by reducing the need for comprehensive anthropomorphic measurements. The analysis shows that the total uncertainty in potassium weight determination by this whole body counting methodology for water-filled phantoms with a known amount of potassium is 2.7% (SD). The uncertainty in the method of body habitus correction (applicable also to phantom-based methods) is 1.5% (SD). It is concluded that this new strategy provides a sufficiently accurate model for routine clinical use.

  6. An energy-based body temperature threshold between torpor and normothermia for small mammals.

    Science.gov (United States)

    Willis, Craig K R

    2007-01-01

    Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T(b)) from normothermic T(b)'s. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR and T(b) from 32 respirometry runs for 14 mammal species. For each graph, I quantified the T(b) measured when MR first began to drop at the onset of torpor (T(b-onset)). I used a general linear model to quantify the effect of ambient temperature (T(a)) and body mass (BM) on T(b-onset). For species lighter than 70 g, the model was highly significant and was described by the equation Tb-onset=(0.055+/-0.014)BM+(0.071+/-0.031)Ta+(31.823+/-0.740). To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to Tb-onset-1 SE=(0.041)BM+(0.040)Ta+31.083. This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time-course data required to quantify T(b-onset), so more data are needed to validate this relationship.

  7. Bulk temperature measurement in thermally striped pipe flows

    International Nuclear Information System (INIS)

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique

  8. Effects of season, temperature, and body mass on the standard metabolic rate of tegu lizards (Tupinambis merianae).

    Science.gov (United States)

    Toledo, Luís F; Brito, Simone P; Milsom, William K; Abe, Augusto S; Andrade, Denis V

    2008-01-01

    Abstract This study examined how the standard metabolic rate of tegu lizards, a species that undergoes large ontogenetic changes in body weight with associated changes in life-history traits, is affected by changes in body mass, body temperature, season, and life-history traits. We measured rates of oxygen consumption (Vo(2)) in 90 individuals ranging in body mass from 10.4 g to 3.75 kg at three experimental temperatures (17 degrees , 25 degrees , and 30 degrees C) over the four seasons. We found that standard metabolic rate scaled to the power of 0.84 of body mass at all experimental temperatures in all seasons and that thermal sensitivity of metabolism was relatively low (Q(10) approximately 2.0-2.5) over the range from 17 degrees to 30 degrees C regardless of body size or season. Metabolic rates did vary seasonally, being higher in spring and summer than in autumn and winter at the same temperatures, and this was true regardless of animal size. Finally, in this study, the changes in life-history traits that occurred ontogenetically were not accompanied by significant changes in metabolic rate.

  9. Temperature and body weight affect fouling of pig pens

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Schrama, J.W.; Heetkamp, M.J.W.; Stefanowska, J.; Huynh, T.T.T.

    2006-01-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg)

  10. P2X(3) receptor gating near normal body temperature

    Czech Academy of Sciences Publication Activity Database

    Kmyhz, V.; Maximyuk, O.; Teslenko, V.; Verkhratsky, Alexei; Krishtal, O.

    2008-01-01

    Roč. 456, č. 12 (2008), s. 339-347 ISSN 0031-6768 Institutional research plan: CEZ:AV0Z50390703 Keywords : P2X3 receptors * Temperature-sensitivity * Gating Subject RIV: FH - Neurology Impact factor: 3.526, year: 2008

  11. Insect temperature-body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2018-01-01

    Body size affects rates of most biological and ecological processes, from individual performance to ecosystem function, and is fundamentally linked to organism fitness. Within species, size at maturity can vary systematically with environmental temperature in the laboratory and across seasons...... altitude. Although the general direction of body size clines along altitudinal gradients has been examined previously, to our knowledge altitude-body size (A-S) clines have never been synthesised quantitatively, nor compared with temperature-size (T-S) responses measured under controlled laboratory......, as well as over latitudinal gradients. Recent meta-analyses have revealed a close match in the magnitude and direction of these size gradients in various arthropod orders, suggesting that these size responses share common drivers. As with increasing latitude, temperature also decreases with increasing...

  12. Various anti-motion sickness drugs and core body temperature changes.

    Science.gov (United States)

    Cheung, Bob; Nakashima, Ann M; Hofer, Kevin D

    2011-04-01

    Blood flow changes and inactivity associated with motion sickness appear to exacerbate the rate of core temperature decrease during subsequent body cooling. We investigated the effects of various classes of anti-motion sickness drugs on core temperature changes. There were 12 healthy male and female subjects (20-35 yr old) who were given selected classes of anti-motion sickness drugs prior to vestibular Coriolis cross coupling induced by graded yaw rotation and periodic pitch-forward head movements in the sagittal plane. All subjects were then immersed in water at 18 degrees C for a maximum of 90 min or until their core temperature reached 35 degrees C. Double-blind randomized trials were administered, including a placebo, a non-immersion control with no drug, and six anti-motion sickness drugs: meclizine, dimenhydrinate, chlorpheniramine, promethazine + dexamphetamine, promethazine + caffeine, and scopolamine + dexamphetamine. A 7-d washout period was observed between trials. Core temperature and the severity of sickness were monitored throughout each trial. A repeated measures design was performed on the severity of sickness and core temperature changes prior to motion provocation, immediately after the motion sickness end point, and throughout the period of cold-water immersion. The most effective anti-motion sickness drugs, promethazine + dexamphetamine (with a sickness score/duration of 0.65 +/- 0.17) and scopolamine + dexamphetamine (with a sickness score/duration of 0.79 +/- 0.17), significantly attenuated the decrease in core temperature. The effect of this attenuation was lower in less effective drugs. Our results suggest that the two most effective anti-motion sickness drugs are also the most effective in attenuating the rate of core temperature decrease.

  13. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients.

    Science.gov (United States)

    Asadian, Simin; Khatony, Alireza; Moradi, Gholamreza; Abdi, Alireza; Rezaei, Mansour

    2016-01-01

    An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients' body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (Ptemperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%). Paired t-test demonstrated an acceptable precision with forehead (P=0.132), left (P=0.18) and right (P=0.318) tympanic membranes, oral (P=1.00), and axillary (P=1.00) methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left) for assessing a patient's body temperature in the intensive care units because of high accuracy and acceptable precision.

  14. Measurements of whole-body radioactivity in the UK population

    International Nuclear Information System (INIS)

    Fenwick, J.D.; Boddy, K.; McKenzie, A.L.; Oxby, C.B.

    1992-01-01

    A national survey of whole-body radioactivity was undertaken. A mobile whole-body counter visited collaborating Medical Physics Departments and Hospitals in England and Wales. Data were also obtained from an installed whole-body counter at the West Cumberland Hospital, Whitehaven, and from a control site at Addenbrooke's Hospital, Cambridge. 1657 volunteer members of the public were measured, including 162 children. 36% of volunteers had been measured in a similar survey 2 years earlier, and showed between a two and five fold reduction in body radiocaesium. No radiocaesium was detected in 54% of people measured. Measurements showed a progressive fall over the course of the study, reaching a baseline of 0.3 Bq 137 Cs/gK. In 1989, the additional radiation dose incurred from radiocaesium varied from a maximum of 4.1 μSv in Cumbria to 1.5 μSv in the South East, compared with the average annual radiation dose of 2500 μSv due to all other causes. No other gamma-emitting radionuclides were found. Results are consistent with Chernobyl as the source of the radiocaesium detected. (author)

  15. Convergence of Algorithms for Reconstructing Convex Bodies and Directional Measures

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus; Milanfar, Peyman

    2006-01-01

    We investigate algorithms for reconstructing a convex body K in Rn from noisy measurements of its support function or its brightness function in k directions u1, . . . , uk. The key idea of these algorithms is to construct a convex polytope Pk whose support function (or brightness function) best...

  16. Heat production and body temperature during cooling and rewarming in overweight and lean men.

    Science.gov (United States)

    Claessens-van Ooijen, Anne M J; Westerterp, Klaas R; Wouters, Loek; Schoffelen, Paul F M; van Steenhoven, Anton A; van Marken Lichtenbelt, Wouter D

    2006-11-01

    To compare overweight and lean subjects with respect to thermogenesis and physiological insulation in response to mild cold and rewarming. Ten overweight men (mean BMI, 29.2 +/- 2.8 kg/m(2)) and 10 lean men (mean BMI, 21.1 +/- 2.0 kg/m(2)) were exposed to cold air for 1 hour, followed by 1 hour of rewarming. Body composition was determined by hydrodensitometry and deuterium dilution. Heat production and body temperatures were measured continuously by indirect calorimetry and thermistors, respectively. Muscle activity was recorded using electromyography. In both groups, heat production increased significantly during cooling (lean, p = 0.004; overweight, p = 0.006). The increase was larger in the lean group compared with the overweight group (p = 0.04). During rewarming, heat production returned to baseline in the overweight group and stayed higher compared with baseline in the lean group (p = 0.003). The difference in heat production between rewarming and baseline was larger in the lean (p = 0.01) than in the overweight subjects. Weighted body temperature of both groups decreased during cold exposure (lean, p = 0.002; overweight, p < 0.001) and did not return to baseline during rewarming. Overweight subjects showed a blunted mild cold-induced thermogenesis. The insulative cold response was not different among the groups. The energy-efficient response of the overweight subjects can have consequences for energy balance in the long term. The results support the concept of a dynamic heat regulation model instead of temperature regulation around a fixed set point.

  17. Synthetic cannabinoids found in "spice" products alter body temperature and cardiovascular parameters in conscious male rats.

    Science.gov (United States)

    Schindler, Charles W; Gramling, Benjamin R; Justinova, Zuzana; Thorndike, Eric B; Baumann, Michael H

    2017-10-01

    The misuse of synthetic cannabinoids is a persistent public health concern. Because these drugs target the same cannabinoid receptors as the active ingredient of marijuana, Δ 9 -tetrahydrocannabinol (THC), we compared the effects of synthetic cannabinoids and THC on body temperature and cardiovascular parameters. Biotelemetry transmitters for the measurement of body temperature or blood pressure (BP) were surgically implanted into separate groups of male rats. THC and the synthetic cannabinoids CP55,940, JWH-018, AM2201 and XLR-11 were injected s.c., and rats were placed into isolation cubicles for 3h. THC and synthetic cannabinoids produced dose-related decreases in body temperature that were most prominent in the final 2h of the session. The rank order of potency was CP55,940>AM2201=JWH-018>THC=XLR-11. The cannabinoid inverse agonist rimonabant antagonized the hypothermic effect of all compounds. Synthetic cannabinoids elevated BP in comparison to vehicle treatment during the first h of the session, while heart rate was unaffected. The rank order of potency for BP increases was similar to that seen for hypothermia. Hypertensive effects of CP55,940 and JWH-018 were not antagonized by rimonabant or the neutral antagonist AM4113. However, the BP responses to both drugs were antagonized by pretreatment with either the ganglionic blocker hexamethonium or the α 1 adrenergic antagonist prazosin. Our results show that synthetic cannabinoids produce hypothermia in rats by a mechanism involving cannabinoid receptors, while they increase BP by a mechanism independent of these sites. The hypertensive effect appears to involve central sympathetic outflow. Published by Elsevier B.V.

  18. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    Science.gov (United States)

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  19. Measuring brightness temperature distributions of plasma bunches

    International Nuclear Information System (INIS)

    Kirko, V.I.; Stadnichenko, I.A.

    1981-01-01

    The possibility of restoration of brightness temperature distribution along plasma jet on the base of a simple ultra high- speed photography and subsequent photometric treatment is shown. The developed technique has been applied for finding spectral radiation intensity and brightness temperature of plasma jets of a tubular gas-cumulative charge and explosive plasma compressor. The problem of shock wave front has been successfully solved and thus distribution of above parameters beginning from the region preceeding the shock wave has been obtained [ru

  20. Investigation of human body potential measured by a non-contact measuring system.

    Science.gov (United States)

    Ichikawa, Norimitsu

    2016-12-07

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.

  1. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.

    Science.gov (United States)

    O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N

    2017-12-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.

  2. Deeply torpid bats can change position without elevation of body temperature.

    Science.gov (United States)

    Bartonička, Tomáš; Bandouchova, Hana; Berková, Hana; Blažek, Ján; Lučan, Radek; Horáček, Ivan; Martínková, Natália; Pikula, Jiri; Řehák, Zdeněk; Zukal, Jan

    2017-01-01

    Because body temperature is tightly coupled to physiological function, hibernating animals entering deep torpor are typically immobile. We analysed thermal behaviour and locomotory activity of hibernating greater mouse-eared bats Myotis myotis and found two types of movement behaviour related to body temperature, i.e. movement at high fur temperature and at low fur temperatures (Tflow; body temperature. Distance travelled, flight duration and speed of locomotion during Tflow events was lower than in high fur temperature events. Such behaviour could allow bats to save energy long-term and prolong torpor bouts. Tflow movement in torpid bats significantly changes our understanding of basic hibernation principles and we strongly recommend further studies on the subject. Copyright © 2016. Published by Elsevier Ltd.

  3. Measurement of body fat and hydration of the fat-free body in health and disease

    International Nuclear Information System (INIS)

    Streat, S.J.; Beddoe, A.H.; Hill, G.L.

    1985-01-01

    Body fat mass, fat-free body mass and body water are basic components of body composition which are used in nutritional and metabolic studies and in patient care. A method of measuring total body fat (TBF), fat-free mass (FFM) and its hydration (TBW/FFM) involving prompt gamma in vivo neutron activation analysis (IVNAA) and tritium dilution has been compared with the more traditional methods of densitometry and skinfold anthropometry in 36 normal volunteers, and with skinfold anthropometry in 56 patients presenting for nutritional support. While the mean values of TBF were in reasonable agreement for the three methods in normals it was founds that skinfold anthropometry underestimated TBF relative to the IVNAA/tritium method by, on average, 3.0 kg (19%) in patients. Furthermore, the ranges of values in normals of the ratio TBW/FFM for the anthropometric (0.62 to 0.80) and densitometric (0.65 to 0.80) methods were much wider than the range for the IVNAA/tritium method (0.69 to 0.76), in which TBW was measured by tritium dilution in all cases. In the patients, the ranges of this ratio were 0.52 to 0.90 for the anthropometric method and 0.67 to 0.82 for the IVNAA/tritium method; clearly anthropometry yields values of TBW/FFM which are outside accepted biological limits. On the basis of these findings, ranges of TBW/FFM are suggested for both normal adults (0.69 to 0.75) and patients requiring nutritional support (0.67 to 0.83). Finally it is concluded that the IVNAA/tritium method is a suitable method for measuring TBF and FFM and particularly so when body composition is abnormal

  4. Profound and Rapid Reduction in Body Temperature Induced by the Melanocortin Receptor Agonists

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-01-01

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. PMID:25065745

  5. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. West African donkey's liveweight estimation using body measurements

    Directory of Open Access Journals (Sweden)

    Pierre Claver Nininahazwe

    2017-10-01

    Full Text Available Aim: The objective of this study was to determine a formula for estimating the liveweight in West African donkeys. Materials and Methods: Liveweight and a total of 6 body measurements were carried out on 1352 donkeys from Burkina Faso, Mali, Niger, and Senegal. The correlations between liveweight and body measurements were determined, and the most correlated body measurements with liveweight were used to establish regression lines. Results: The average weight of a West African donkey was 126.0±17.1 kg, with an average height at the withers of 99.5±3.67 cm; its body length was 104.4±6.53 cm, and a heart girth (HG of 104.4±6.53 cm. After analyzing the various regression lines and correlations, it was found that the HG could better estimate the liveweight of West African donkeys by simple linear regression method. Indeed, the liveweight (LW showed a better correlation with the HG (R2=0.81. The following formulas (Equations 1 and 2 could be used to estimate the LW of West Africa donkeys. Equation 1: Estimated LW (kg = 2.55 x HG (cm - 153.49; Equation 2: Estimated LW (kg = Heart girth (cm2.68 / 2312.44. Conclusion: The above formulas could be used to manufacture weighing tape to be utilized by veterinary clinicians and farmers to estimate donkey's weight in the view of medication and adjustment of load.

  7. 40 CFR 91.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...

  8. Changes in body temperature in king penguins at sea: the result of fine adjustments in peripheral heat loss?

    Science.gov (United States)

    Schmidt, Alexander; Alard, Frank; Handrich, Yves

    2006-09-01

    To investigate thermoregulatory adjustments at sea, body temperatures (the pectoral muscle and the brood patch) and diving behavior were monitored during a foraging trip of several days at sea in six breeding king penguins Aptenodytes patagonicus. During inactive phases at sea (water temperature: 4-7 degrees C), all tissues measured were maintained at normothermic temperatures. The brood patch temperature was maintained at the same values as those measured when brooding on shore (38 degrees C). This high temperature difference causes a significant loss of heat. We hypothesize that high-energy expenditure associated with elevated peripheral temperature when resting at sea is the thermoregulatory cost that a postabsorptive penguin has to face for the restoration of its subcutaneous body fat. During diving, mean pectoral temperature was 37.6 +/- 1.6 degrees C. While being almost normothermic on average, the temperature of the pectoral muscle was still significantly lower than during inactivity in five out of the six birds and underwent temperature drops of up to 5.5 degrees C. Mean brood patch temperature was 29.6 +/- 2.5 degrees C during diving, and temperature decreases of up to 21.6 degrees C were recorded. Interestingly, we observed episodes of brood patch warming during the descent to depth, suggesting that, in some cases, king penguins may perform active thermolysis using the brood patch. It is hypothesized that functional pectoral temperature may be regulated through peripheral adjustments in blood perfusion. These two paradoxical features, i.e., lower temperature of deep tissues during activity and normothermic peripheral tissues while inactive, may highlight the key to the energetics of this diving endotherm while foraging at sea.

  9. A bedside measure of body composition in Duchenne muscular dystrophy.

    Science.gov (United States)

    Elliott, Sarah A; Davidson, Zoe E; Davies, Peter S W; Truby, Helen

    2015-01-01

    In clinical practice, monitoring body composition is a critical component of nutritional assessment and weight management in boys with Duchenne muscular dystrophy. We aimed to evaluate the accuracy of a simple bedside measurement tool for body composition, namely bioelectrical impedance analysis, in boys with Duchenne muscular dystrophy. Measures of fat-free mass were determined using a bioelectrical impedance analysis machine and compared against estimations obtained from a reference body composition model. Additionally, the use of raw impedance values was analyzed using three existing predictive equations for the estimation of fat-free mass. Accuracy of bioelectrical impedance analysis was assessed by comparison against the reference model by calculation of biases and limits of agreement. Body composition was measured in 10 boys with Duchenne muscular dystrophy, mean age 9.01 ± 2.34 years. The bioelectrical impedance analysis machine values of fat-free mass were on average 2.3 ± 14.1 kg higher than reference values. Limits of agreement (based on 95% confidence interval of the mean) were -7.4 to 2.9 kg. There was a significant correlation between the mean fat-free mass and difference in fat-free mass between the bioelectrical impedance analysis machine and the reference model (r = -0.86; P = 0.02) suggesting that the bias was not consistent across the range of measurements. The most accurate predictive equation for the estimation of fat-free mass using raw impedance values was the equation by Pietrobelli et al. (mean difference, -0.7 kg; 95% limits of agreement, -3.5 to 2.0 kg). In a clinical setting, where a rapid assessment of body composition is advantageous, the use of raw impedance values, combined with the equation by Pietrobelli et al., is recommended for the accurate estimation of fat-free mass, in boys with Duchenne muscular dystrophy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Cutaneous noradrenaline measured by microdialysis in complex regional pain syndrome during whole-body cooling and heating

    DEFF Research Database (Denmark)

    Terkelsen, Astrid Juhl; Gierthmühlen, Janne; Petersen, Lars J.

    2013-01-01

    and in healthy volunteers. Seven patients and nine controls completed whole-body cooling (sympathetic activation) and heating (sympathetic inhibition) induced by a whole-body thermal suit with simultaneous measurement of the skin temperature, skin blood flow, and release of dermal noradrenaline. CRPS pain...

  11. 7 CFR 28.301 - Measurement: humidity; temperature.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  12. Novel method for noncontact measurement of particle temperatures

    NARCIS (Netherlands)

    Wagenaar, B.M.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, W.P.M.

    1995-01-01

    A nonintrusive temperature measurement technique is developed for noncontact measurement of the temperature of single particles with <200 µm dia. It is based on the temperature dependence of the fluorescence spectrum resulting from irradiation of a certain phosphor mixture with UV light by applying

  13. Novel method for noncontact measurement of particle temperatures

    NARCIS (Netherlands)

    Wagenaar, B.M.; Wagenaar, B.M.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    A nonintrusive temperature measurement technique is developed for noncontact measurement of the temperature of single particles with < 200 m dia. It is based on the temperature dependence of the fluorescence spectrum resulting from irradiation of a certain phosphor mixture with UV light by applying

  14. Measurement of the argon plasma temperature by use of pyrometer

    International Nuclear Information System (INIS)

    Wang Fanhou; Jing Fuqian

    2002-01-01

    The author describes in detail how to use pyrometer to measure the plasma temperature. The temperatures of shock-generated argon plasmas are given in the present work. Measured results of temperature-pressure curve are compared with calculated results using Saha-Debye-Huckel model, which are in good agreement

  15. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  16. NATURAL USER INTERFACE SENSORS FOR HUMAN BODY MEASUREMENT

    Directory of Open Access Journals (Sweden)

    J. Boehm

    2012-08-01

    Full Text Available The recent push for natural user interfaces (NUI in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  17. Natural User Interface Sensors for Human Body Measurement

    Science.gov (United States)

    Boehm, J.

    2012-08-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  18. Measuring the temperature of hot nuclear fragments

    International Nuclear Information System (INIS)

    Wuenschel, S.; Bonasera, A.; May, L.W.; Souliotis, G.A.; Tripathi, R.; Galanopoulos, S.; Kohley, Z.; Hagel, K.; Shetty, D.V.; Huseman, K.; Soisson, S.N.; Stein, B.C.; Yennello, S.J.

    2010-01-01

    A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin, etc.) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source.

  19. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients

    Directory of Open Access Journals (Sweden)

    Asadian S

    2016-09-01

    Full Text Available Simin Asadian,1 Alireza Khatony,1 Gholamreza Moradi,2 Alireza Abdi,1 Mansour Rezaei,3 1Nursing and Midwifery School, Kermanshah University of Medical Sciences, 2Department of Anesthesiology, 3Biostatistics & Epidemiology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran Introduction: An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. Methods: In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients’ body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. Results: There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (P<0.001. Kappa coefficients showed good agreement between the temperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%. Paired t-test demonstrated an acceptable precision with forehead (P=0.132, left (P=0.18 and right (P=0.318 tympanic membranes, oral (P=1.00, and axillary (P=1.00 methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. Conclusion: The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left for

  20. The measurement of temperature effect of light output of scintillators

    International Nuclear Information System (INIS)

    Ji Changsong; Zhou Zaiping; Zhang Longfang

    1999-01-01

    The author describes a experiment equipment used for measurement of temperature effect of light output of scintillators; gives some measurement results of temperature effect of light output for NaI(Tl), CsI(Tl), plastic scintillator, ZnS(Ag), anthracene crystal glass scintillator; analyzes the error factors affecting the measurement results. The total uncertainty of the temperature effect measurement for NaI(Tl) and plastic scintillator is 11%

  1. Is Older Colder or Colder Older? The Association of Age With Body Temperature in 18,630 Individuals

    Science.gov (United States)

    Buxbaum, Joel N.

    2011-01-01

    In animal studies, caloric restriction resulting in increased longevity is associated with a reduction in body temperature, which is strain specific and likely under genetic control. Small studies in humans have suggested that temperatures may be lower among elderly populations, usually attributed to loss of thermoregulation. We analyzed cross-sectional data from 18,630 white adults aged 20–98 years (mean 58.3 years) who underwent oral temperature measurement as part of a standardized health appraisal at a large U.S. health maintenance organization. Overall, women had higher mean temperatures (97.5 ± 1.2°F) than men (97.2 ± 1.1°F; p temperature decreased with age, with a difference of 0.3°F between oldest and youngest groups after controlling for sex, body mass index, and white blood cell count. The results are consistent with low body temperature as a biomarker for longevity. Prospective studies are needed to confirm whether this represents a survival advantage associated with lifetime low steady state temperature. PMID:21324956

  2. Body mass index and blood pressure measurement during pregnancy.

    LENUS (Irish Health Repository)

    Hogan, Jennifer L

    2012-02-01

    OBJECTIVE: The accurate measurement of blood pressure requires the use of a large cuff in subjects with a high mid-arm circumference (MAC). This prospective study examined the need for a large cuff during pregnancy and its correlation with maternal obesity. METHODS: Maternal body mass index (BMI), fat mass, and MAC were measured. RESULTS: Of 179 women studied, 15.6% were obese. With a BMI of level 1 obesity, 44% needed a large cuff and with a BMI of level 2 obesity 100% needed a large cuff. CONCLUSION: All women booking for antenatal care should have their MAC measured to avoid the overdiagnosis of pregnancy hypertension.

  3. Dogs with macroadenomas have lower body temperature and heart rate than dogs with microadenomas.

    Science.gov (United States)

    Benchekroun, Ghita; Desquilbet, Loic; Herrtage, Michael E; Jeffery, Nick D; Rosenberg, Dan; Granger, Nicolas

    2017-09-01

    Pituitary macroadenomas compress the hypothalamus, which partly regulates heart rate and body temperature. The aim of this study was to investigate whether heart rate and/or body temperature could aid in clinically differentiating dogs with macroadenomas from dogs with microadenomas (i.e. small non-compressive pituitary mass). Two groups of dogs diagnosed with pituitary-dependent hyperadrenocorticism (i.e. Cushing's disease) were included. Heart rate and body temperature were collected on initial presentation before any procedure. Dogs with macroadenoma had a significantly lower heart rate and body temperature (Pdogs with microadenoma. We suggest that the combined cut-off values of 84 beats per minutes and 38.3°C in dogs with Cushing's disease, especially with vague neurological signs (nine of 12 dogs=75%), might help to suspect the presence of a macroadenoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Temperature transient response measurement in flowing water

    International Nuclear Information System (INIS)

    Rainbird, J.C.

    1980-01-01

    A specially developed procedure is described for determining the thermal transient response of thermocouples and other temperature transducers when totally immersed in flowing water. The high velocity heat transfer conditions associated with this facility enable thermocouple response times to be predicted in other fluids. These predictions can be confirmed by electrical analogue experiments. (author)

  5. Electron Density and Temperature Measurements, and Abundance ...

    Indian Academy of Sciences (India)

    tribpo

    tics—emission lines. Dwivedi, Curdt & Wilhelm (1997, 1999a) carried out an observing sequence based on a theoretical study by Dwivedi & Mohan (1995), with intercombination/forbidden. Ne VI and Mg VI lines, which are formed at essentially the same temperature. (4 × 105 K), according to Arnaud & Rothenflug (1985).

  6. Isothermal temperature reactivity coefficient measurement in TRIGA reactor

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Trkov, A.

    2002-01-01

    Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 o C and 25 o C. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)

  7. A Measurement of the Cosmic Microwave Background Temperature ...

    Indian Academy of Sciences (India)

    tribpo

    power law form spectrum. Besides the inevitable ... measurement of the thermodynamic temperature of the CMB at 1280 MHz. 2. The receiver ... from the feed assembly and the third term is the receiver temperature as referred to the circulator ...

  8. Body temperature change and outcomes in patients undergoing long-distance air medical transport.

    Science.gov (United States)

    Nakajima, Mikio; Aso, Shotaro; Yasunaga, Hideo; Shirokawa, Masamitsu; Nakano, Tomotsugu; Miyakuni, Yasuhiko; Goto, Hideaki; Yamaguchi, Yoshihiro

    2018-04-30

    Short-distance air medical transport for adult emergency patients does not significantly affect patients' body temperature and outcomes. This study aimed to examine the influence of long-distance air medical transport on patients' body temperatures and the relationship between body temperature change and mortality. We retrospectively enrolled consecutive patients transferred via helicopter or plane from isolated islands to an emergency medical center in Tokyo, Japan between April 2010 and December 2016. Patients' average body temperature was compared before and after air transport using a paired t-test, and corrections between body temperature change and flight duration were calculated using Pearson's correlation coefficient. Multivariable logistic regression models were then used to examine the association between body temperature change and in-hospital mortality. Of 1253 patients, the median age was 72 years (interquartile range, 60-82 years) and median flight duration was 71 min (interquartile range, 54-93 min). In-hospital mortality was 8.5%, and average body temperature was significantly different before and after air transport (36.7 °C versus 36.3 °C; difference: -0.36 °C; 95% confidence interval, -0.30 to -0.42; p 38.0 °C) or normothermia (36.0-37.9 °C) before air transport and hypothermia after air transport (odds ratio, 2.08; 95% confidence interval, 1.20-3.63; p = 0.009), and (ii) winter season (odds ratio, 2.15; 95% confidence interval, 1.08-4.27; p = 0.030). Physicians should consider body temperature change during long-distance air transport in patients with not only hypothermia but also normothermia or hyperthermia before air transport, especially in winter. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Leptin actions on food intake and body temperature are mediated by IL-1

    OpenAIRE

    Luheshi, Giamal N.; Gardner, Jason D.; Rushforth, David A.; Loudon, Andrew S.; Rothwell, Nancy J.

    1999-01-01

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, inje...

  10. An intelligent instrument for measuring exhaust temperature of marine engine

    Science.gov (United States)

    Ma, Nan-Qi; Su, Hua; Liu, Jun

    2006-12-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple. Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer). The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually.

  11. Changes in body chemical composition with age measured by total-body neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Vaswani, A.; Zanzi, I.; Aloia, J.F.; Roginsky, M.S.; Ellis, K.J.

    1976-01-01

    Total-body levels of calcium and phosphorus (reflecting skeletal mass) and total-body levels of potassium (reflecting muscle mass) were measured by neutron activation analysis in 39 men and 40 women ages 30 to 90 yr. In order to intercompare the total body calcium (TBCa) values in a heterogeneous population, such as this, it was necessary to normalize the data for skeletal size. The normalization consisted of dividing the absolute calcium level by the predicted calcium level for each individual matched to a set of critical parameters. The parameter used in the computation of normal values were age, sex, muscle mass, i.e., total body potassium (TBK) and height. For the calcium data of the women, it was necessary to add an age correction factor after the age of 55 yr. The calcium ratio (mean ratio of the predicted to measured TBCa) in men was 1.000 +- 7.8 percent and in women 0.996 +- 7.1 percent. The TBCa of normal males and females can thus be predicted to +-13 percent (at the 90 percent confidence level). An exception to this was found in males (70 to 90 yr) who exhibited a mean calcium ratio greater than 1.13

  12. Immediate effects of reiki on heart rate variability, cortisol levels, and body temperature in health care professionals with burnout.

    Science.gov (United States)

    Díaz-Rodríguez, Lourdes; Arroyo-Morales, Manuel; Fernández-de-las-Peñas, Cesar; García-Lafuente, Francisca; García-Royo, Carmen; Tomás-Rojas, Inmaculada

    2011-10-01

    Burnout is a work-related mental health impairment comprising three dimensions: emotional exhaustion, depersonalization, and reduced personal accomplishment. Reiki aims to help replenish and rebalance the body's energetic system, thus stimulating the healing process. The objective of this placebo-controlled, repeated measures, crossover, single-blind, randomized trial was to analyze the immediate effects of Reiki on heart rate variability (HRV), body temperature, and salivary flow rate and cortisol level in health care professionals with burnout syndrome (BS). Participants included 21 health care professionals with BS, who were asked to complete two visits to the laboratory with a 1-week interval between sessions. They were randomly assigned the order in which they would receive a Reiki session applied by an experienced therapist and a placebo treatment applied by a therapist with no knowledge of Reiki, who mimicked the Reiki treatment. Temperature, Holter ECG recordings (standard deviation of the normal-to-normal interval [SDNN], square root of mean squared differences of successive NN intervals [RMSSD], HRV index, low frequency component [LF], and high frequency component [HF]), salivary flow rate and cortisol levels were measured at baseline and postintervention by an assessor blinded to allocation group. SDNN and body temperature were significantly higher after the Reiki treatment than after the placebo. LF was significantly lower after the Reiki treatment. The decrease in the LF domain was associated with the increase in body temperature. These results suggest that Reiki has an effect on the parasympathetic nervous system when applied to health care professionals with BS.

  13. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenbiao; Zhang, Pu [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Wenzhong, E-mail: lwz7410@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  14. Effect of paracetamol (acetaminophen) on body temperature in acute stroke: A meta-analysis.

    Science.gov (United States)

    Fang, Junjie; Chen, Chensong; Cheng, Hongsen; Wang, Ren; Ma, Linhao

    2017-10-01

    The objective of this study was to assess the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Medline, Cochrane Central Register of Controlled Trials, EMBASE, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, and the World Health Organization (WHO) International Clinical Trials Registry Platform were searched electronically. Relevant journals and references of studies included were hand-searched for randomized controlled trials (RCT) and controlled clinical trials (CCT) regarding the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Two reviewers independently performed data extraction and quality assessment. Data were analyzed using RevMan 5.3 software by the Cochrane Collaboration. Five studies were included. To compare the efficacy of paracetamol (acetaminophen) in acute stroke, the pooled RR (Risk Ratio) and its 95% CI of body temperature reduction at 24h from the start of treatment were -0.3 (95% CI: -0.52 to -0.08), with statistical significance (P=0.007). Consistently, the pooled RR (Risk Ratio) and its 95% CI of body temperature at 24h from the start of treatment were -0.22 (-0.29, -0.15), with statistical significance (PParacetamol (acetaminophen) is one of the most commonly used antipyretic drugs and has some capability to reduce body temperature through acting on central nervous system. Acetaminophen showed some capability to decrease body temperature for acute stroke. Acetaminophen could not improve functional outcome and reduce adverse events of patients with acute stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    Science.gov (United States)

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K.A.S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D.G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O’Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J.A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-01-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature. PMID:27727238

  16. Developing a Novel Measure of Body Satisfaction Using Virtual Reality

    Science.gov (United States)

    Purvis, Clare K.; Jones, Megan; Bailey, Jakki O.; Bailenson, Jeremy; Taylor, C. Barr

    2015-01-01

    Body image disturbance (BID), considered a key feature in eating disorders, is a pervasive issue among young women. Accurate assessment of BID is critical, but the field is currently limited to self-report assessment methods. In the present study, we build upon existing research, and explore the utility of virtual reality (VR) to elicit and detect changes in BID across various immersive virtual environments. College-aged women with elevated weight and shape concerns (n = 38) and a non-weight and shape concerned control group (n = 40) were randomly exposed to four distinct virtual environments with high or low levels of body salience and social presence (i.e., presence of virtual others). Participants interacted with avatars of thin, normal weight, and overweight body size (BMI of approximately 18, 22, and 27 respectively) in virtual social settings (i.e., beach, party). We measured state-level body satisfaction (state BD) immediately after exposure to each environment. In addition, we measured participants’ minimum interpersonal distance, visual attention, and approach preference toward avatars of each size. Women with higher baseline BID reported significantly higher state BD in all settings compared to controls. Both groups reported significantly higher state BD in a beach with avatars as compared to other environments. In addition, women with elevated BID approached closer to normal weight avatars and looked longer at thin avatars compared to women in the control group. Our findings indicate that VR may serve as a novel tool for measuring state-level BID, with applications for measuring treatment outcomes. Implications for future research and clinical interventions are discussed. PMID:26469860

  17. Whole-body dose meters. Measurements of total activity

    International Nuclear Information System (INIS)

    Koeppe, P.; Klinikum Steglitz, Berlin

    1990-01-01

    By means of measurements using a whole-body dose meter, the course of the incorporation of radionuclides was established between April 1986 and May 1989 for unchanged conditions of alimentation, activity-conscious alimentation, and uniquely increased incorporation. Monitoring covered persons from the most different spheres of life. The incorporation is compared with the one resulting from nuclear weapons explosions in the atmosphere. (DG) [de

  18. Noise temperature measurements for the determination of the thermodynamic temperature of the melting point of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Edler, F.; Kuhne, M.; Tegeler, E. [Bundesanstalt Physikalisch-Technische, Berlin (Germany)

    2004-02-01

    The thermodynamic temperature of the melting point of palladium in air was measured by noise thermometric methods. The temperature measurement was based on noise comparison using a two-channel arrangement to eliminate parasitic noises of electronic components by cross correlation. Three miniature fixed points filled with pure palladium (purity: {approx}99.99%, mass: {approx}90 g) were used to realize the melts of the fixed point metal. The measured melting temperature of palladium in air amounted to 1552.95 deg C {+-} 0.21 K (k = 2). This temperature is 0.45 K lower than the temperature of the melting point of palladium measured by radiation thermometry. (authors)

  19. Design and Implementation of High Precision Temperature Measurement Unit

    Science.gov (United States)

    Zeng, Xianzhen; Yu, Weiyu; Zhang, Zhijian; Liu, Hancheng

    2018-03-01

    Large-scale neutrino detector requires calibration of photomultiplier tubes (PMT) and electronic system in the detector, performed by plotting the calibration source with a group of designated coordinates in the acrylic sphere. Where the calibration source positioning is based on the principle of ultrasonic ranging, the transmission speed of ultrasonic in liquid scintillator of acrylic sphere is related to temperature. This paper presents a temperature measurement unit based on STM32L031 and single-line bus digital temperature sensor TSic506. The measurement data of the temperature measurement unit can help the ultrasonic ranging to be more accurate. The test results show that the temperature measurement error is within ±0.1°C, which satisfies the requirement of calibration source positioning. Take energy-saving measures, with 3.7V/50mAH lithium battery-powered, the temperature measurement unit can work continuously more than 24 hours.

  20. Measurement of temperature, electric conductivity and density of plasma

    International Nuclear Information System (INIS)

    Vasilevova, I.; Nefedov, A.; Oberman, F.; Urinson, A.

    1982-01-01

    Three instruments are briefly described developed by the High Temperatures Institute of the USSR Academy of Sciences for the measurement of plasma temperature, electric conductivity and density. The temperature measuring instrument uses as a standard a light source whose temperature may significantly differ from plasma temperature because three light fluxes are compared, namely the flux emitted by the plasma, the flux emitted directly by the standard source, and the flux emitted by the standard source after passage through the plasma. The results of measurement are computer processed. Electric conductivity is measured using a coil placed in a probe which is automatically extended for a time of maximally 0.3 seconds into the plasma stream. The equipment for measuring plasma density consists of a special single-channel monochromator, a temperature gauge, a plasma pressure gauge, and of a computer for processing the results of measurement. (Ha)

  1. 40 CFR 90.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  2. Body Fat Measurements in Singaporean Adults Using Four Methods

    Directory of Open Access Journals (Sweden)

    Xinyan Bi

    2018-03-01

    Full Text Available Few studies have been conducted to measure body composition in Asian populations. In this study, we determined the percent body fat (PBF by using dual-energy X-ray absorptiometry (DEXA, air-displacement plethysmography (ADP or BOD POD, bioelectrical impedance analysis (BIA and skinfold (SKF in 445 healthy Singaporean adults. We observed that the BOD POD, BIA and SKF estimates of PBF were highly correlated with that from DEXA (as a reference method among Singaporean adults. However, they all underestimated PBF (differences of 3.9% for BOD POD, 5.6% for BIA and 12.5% for SKF. Our results filled a gap in the literature by testing the relationships between DEXA and BOD POD, BIA and SKF in a large sample with a wide range of body mass index (BMI from 16.1 to 37.5 kg/m2 and age from 21 to 69.2 years. The differences of PBF measured by different methods were dependent on age, gender and ethnicity. No significant difference was observed between DEXA and BOD POD in men aged > 40 or in BMI tertile 3. However, the mean difference between DEXA and BOD POD was significant in women. Different measuring methods of estimating PBF therefore must be cautiously interpreted.

  3. Pirani pressure sensor with distributed temperature measurement

    NARCIS (Netherlands)

    de Jong, B.R.; Bula, W.P.; Zalewski, D.R.; van Baar, J.J.J.; Wiegerink, Remco J.

    2003-01-01

    Surface micro-machined distributed Pirani pressure gauges, with designed heater-to-heat sink distances (gap-heights) of 0.35 μm and 1.10 μm, are successfully fabricated, modeled and characterized. Measurements and model response correspond within 5% of the measured value in a pressure range of 10 to

  4. Air Temperature Measurements Using Dantec Draught Probes

    DEFF Research Database (Denmark)

    Kristensen, Martin Heine; Jensen, Jakob Søland; Jensen, Rasmus Lund

    This technical report is written based on investigations of Dantec measurement equipment used in a master thesis project by the authors in the period September 2014 to June 2015 (Kristensen & Jensen, 2015).......This technical report is written based on investigations of Dantec measurement equipment used in a master thesis project by the authors in the period September 2014 to June 2015 (Kristensen & Jensen, 2015)....

  5. 复合保温措施预防胃癌根治术病人术中低体温的效果观察%Effect observation on composite insulation measures for preventing low body temperature in gastric cancer patients undergoing radical gastrectomy

    Institute of Scientific and Technical Information of China (English)

    吴春梅; 戴靖华; 张旭; 曹莹丽

    2017-01-01

    Objective:To explore the effect of composite insulation measures for preventing low body temperature in gastric cancer patients undergoing radical gastrectomy.Method: A total of 106 gastric cancer patients undergoing radical gastrectomy were selected by cross-sectional cluster.According to the matching principle,they were randomly divided into routine heat preservation group and composite heat preservation group,53 cases in each.All rectal temperature and anesthesia recovery time of patients were compared when admitting into the operation room,every 30 min after anesthesia until the end of surgery and the patient leaving the operation room.Results:There was no statistically significant difference in core temperature after they entered the operation room between the two groups(P>0.05).With the anesthesia,the core temperature of the composite heat preservation group was higher than that in conventional heat preservation group(P0.05),随着麻醉的进行,复合保温组病人直肠温度高于常规保温组(P<0.01),且复合保温组病人低体温发生率(3.77%)低于常规保温组(92.45%);复合保温组病人术后麻醉复苏时间为27.76 min±12.08 min,低于常规保温组病人(37.73 min±16.18 min)(P<0.01).[结论]在胃癌根治术过程中对病人实施复合保温护理措施能维持病人体温在正常范围内,预防低体温的发生,同时有利于缩短病人的麻醉苏醒时间.

  6. Evidence for Reduced Fatigue Resistance of Contemporary Rotary Instruments Exposed to Body Temperature.

    Science.gov (United States)

    de Vasconcelos, Rafaela Andrade; Murphy, Sarah; Carvalho, Claudio Antonio Talge; Govindjee, Rajiv G; Govindjee, Sanjay; Peters, Ove A

    2016-05-01

    The purpose of this study was to evaluate the effect of 2 different temperatures (20°C and 37°C) on the cyclic fatigue life of rotary instruments and correlate the results with martensitic transformation temperatures. Contemporary nickel-titanium rotary instruments (n = 20 each and tip size #25, including Hyflex CM [Coltene, Cuyahoga Falls, OH], TRUShape [Dentsply Tulsa Dental Specialties, Tulsa, OK], Vortex Blue [Dentsply Tulsa Dental Specialties], and ProTaper Universal [Dentsply Tulsa Dental Specialties]) were tested for cyclic fatigue at room temperature (20°C ± 1°C) and at body temperature (37°C ± 1°C). Instruments were rotated until fracture occurred in a simulated canal with an angle curvature of about 60° and a radius curvature of 3 mm; the center of the curvature was 4.5 mm from the instrument tip. The number of cycles to fracture was measured. Phase transformation temperatures for 2 instruments of each brand were analyzed by differential scanning calorimetry. Data were analyzed using the t test and 1-way analysis of variance with the significance level set at 0.05. For the tested size and at 20°C, Hyflex CM showed the highest resistance to fracture; no significant difference was found between TRUShape and Vortex Blue, whereas ProTaper Universal showed the lowest resistance to fracture. At 37°C, resistance to fatigue fracture was significantly reduced, up to 85%, for the tested instruments (P rotary instruments tested. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Body Temperatures During Exercise in Deconditioned Dogs: Effect of NACL and Glucose Infusion

    Science.gov (United States)

    Greenleaf, J. E.; Kruk, B.; Nazar, K.; Kaciuba-Usciko, H.

    2000-01-01

    Infusion of glucose (Glu) into normal exercising dogs attenuates the rise in rectal temperature (Delta-Tre) when compared with delta-Tre during FFA infusion or no infusion. Rates of rise and delta-=Tre levels are higher during exercise after confinement. Therefore, the purpose of this study was to determine if Glu infusion would attenuate the exercise-induced excess hyperthermia after deconditioning. Rectal and quadricep femoris muscle temperatures (Tmu) were measured in 7 male, mongrel dogs dogs (19.6 +/- SD 3.0 kg) during 90 minutes of treadmill exercise (3.1 +/-SD 0.2 W/kg) with infusion (30ml/min/kg) of 40% Glu or 0.9% NaCL before BC) and after confinement (AC) in cages (40 x 110 x 80 cm) for 8 wk. Mean (+/-SE body wt. were 19.6 +/- 1.1 kg BC and 19.5 +/- 1.1kg AC, exercise VO2 were not different (40.0 - 42.0 mi/min/kg-1). With NaCl AC, NaCl BC, GluAC, and GluBC: Delta-Tre were, 1.8, 1.4, 1.3 and 0.9C respectively; and Delta-Tmu were 2.3, 1.9, 1.6, and 1.4C. respectively (Pbody temperature with Glu infusion must affect avenues of heat dissipation.

  8. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  9. Effects of whole body cryotherapy and cold water immersion on knee skin temperature

    OpenAIRE

    Costello, J. T.; Donnelly, A. E.; Karki, A.; Selfe, J.

    2014-01-01

    This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of −110°C whole body cryotherapy and 8°C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature (

  10. No effects of huddling on core body temperature in rock hyrax ...

    African Journals Online (AJOL)

    Huddling is a behavioural energy conservation mechanism that is widely used by many small endotherms at low ambient temperatures. Huddling has many benefits, including decreasing the metabolic cost of maintaining body temperature (Tb), reducing the amount of heat lost to the environment, and increasing the local ...

  11. Measurement and analysis of reactivity temperature coefficient of CEFR

    International Nuclear Information System (INIS)

    Chen Yiyu; Hu Yun; Yang Xiaoyan; Fan Zhendong; Zhang Qiang; Zhao Jinkun; Li Zehua

    2013-01-01

    The reactivity temperature coefficient of CEFR was calculated by CITATION program and compared with the results calculated by correlative programs and measured from experiments for temperature effects. It is indicated that the calculation results from CITATION agree well with measured values. The reactivity temperature coefficient of CEFR is about -4 pcm/℃. The deviation of the measured values between the temperature increasing and decreasing processes is about 11%, which satisfies the experiment acceptance criteria. The measured results can validate the calculation ones by program and can provide important reference data for the safety operation of CEFR and the analysis of the reactivity balance in the reactor refueling situation. (authors)

  12. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  13. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology.

    Science.gov (United States)

    Rizzo, Maria; Arfuso, Francesca; Alberghina, Daniela; Giudice, Elisabetta; Gianesella, Matteo; Piccione, Giuseppe

    2017-10-01

    The aim of this study was to evaluate the influence of moderate treadmill exercise session on body surface and core temperature in dog measured by means of two infrared instruments. Ten Jack Russell Terrier/Miniature Pinscher mixed-breed dogs were subjected to 15min of walking, 10min of trotting and 10min of gallop. At every step, body surface temperature (T surface ) was measured on seven regions (neck, shoulder, ribs, flank, back, internal thigh and eye) using two different methods, a digital infrared camera (ThermaCam P25) and a non-contact infrared thermometer (Infrared Thermometer THM010-VT001). Rectal temperature (T rectal ) and blood samples were collected before (T0) and after exercise (T3). Blood samples were tested for red blood cell (RBC), hemoglobin concentration (Hb) and hematocrit (Hct). A significant effect of exercise in all body surface regions was found, as measured by both infrared methods. The temperature obtained in the eye and the thigh area were higher with respect to the other studied regions throughout the experimental period (Ptemperature values measured by infrared thermometer was found in neck, shoulder, ribs, flank, back regions respect to the values obtained by digital infrared camera (Ptemperatures are influenced by physical exercise probably due to muscle activity and changes in blood flow in dogs. Both infrared instruments used in this study have proven to be useful in detecting surface temperature variations of specific body regions, however factors including type and color of animal hair coat must be taken into account in the interpretation of data obtained by thermography methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A technique of melting temperature measurement and its application for irradiated high-burnup MOX fuels

    International Nuclear Information System (INIS)

    Namekawa, Takashi; Hirosawa, Takashi

    1999-01-01

    A melting temperature measurement technique for irradiated oxide fuels is described. In this technique, the melting temperature was determined from a thermal arrest on a heating curve of the specimen which was enclosed in a tungsten capsule to maintain constant chemical composition of the specimen during measurement. The measurement apparatus was installed in an alpha-tight steel box within a gamma-shielding cell and operated by remote handling. The temperature of the specimen was measured with a two-color pyrometer sighted on a black-body well at the bottom of the tungsten capsule. The diameter of the black-body well was optimized so that the uncertainties of measurement were reduced. To calibrate the measured temperature, two reference melting temperature materials, tantalum and molybdenum, were encapsulated and run before and after every oxide fuel test. The melting temperature data on fast reactor mixed oxide fuels irradiated up to 124 GWd/t were obtained. In addition, simulated high-burnup mixed oxide fuel up to 250 GWd/t by adding non-radioactive soluble fission products was examined. These data shows that the melting temperature decrease with increasing burnup and saturated at high burnup region. (author)

  15. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  16. Device for the alternative option of temperature measurement

    Science.gov (United States)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Cubik, Jakub; Cvejn, Daniel; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) has good optical properties, and its composition offers the possibility of use in many applications (industry, security device, medicine applications and etc.). We focused on the alternative option of temperature measurement in this article. Our approach is based on measuring changes of chromaticity correlated temperature corresponding to changes in temperature. Described device uses an optical fiber with a defined layer of PDMS and luminophore and we assume that it can find use also in the field of security. The article describes the process of making the prototype of the device and its verification based on laboratory results. The measured temperature depends mainly on the type of optical fiber and the measured temperature range is determined by the thermal resistance of used optical fiber. Using a calibration measurement can determine the value of temperature with an accuracy of +/- 2,5 %.

  17. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    Science.gov (United States)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  18. Nonlinear mixed effects modelling for the analysis of longitudinal body core temperature data in healthy volunteers.

    Science.gov (United States)

    Seng, Kok-Yong; Chen, Ying; Wang, Ting; Ming Chai, Adam Kian; Yuen Fun, David Chiok; Teo, Ya Shi; Sze Tan, Pearl Min; Ang, Wee Hon; Wei Lee, Jason Kai

    2016-04-01

    Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N  =  18) or 15 km (N  =  16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models.

  19. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    DEFF Research Database (Denmark)

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David

    2009-01-01

    to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets......, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization...

  20. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature.

    Science.gov (United States)

    Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc

    2016-09-28

    This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting. © 2016 The Author(s).

  1. Anorexia nervosa and nutritional assessment: contribution of body composition measurements.

    Science.gov (United States)

    Mattar, Lama; Godart, Nathalie; Melchior, Jean Claude; Pichard, Claude

    2011-06-01

    The psychiatric condition of patients suffering from anorexia nervosa (AN) is affected by their nutritional status. An optimal assessment of the nutritional status of patients is fundamental in understanding the relationship between malnutrition and the psychological symptoms. The present review evaluates some of the available methods for measuring body composition in patients with AN. We searched literature in Medline using several key terms relevant to the present review in order to identify papers. Only articles in English or French were reviewed. A brief description is provided for each body composition technique, with its applicability in AN as well as its limitation. All methods of measuring body composition are not yet validated and/or feasible in patients with AN. The present review article proposes a practical approach for selecting the most appropriate methods depending on the setting, (i.e. clinical v. research) and the goal of the assessment (initial v. follow-up) in order to have a more personalised treatment for patients suffering from AN.

  2. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure.

    Science.gov (United States)

    Sumowski, James F; Leavitt, Victoria M

    2014-07-01

    To investigate whether (1) resting body temperature is elevated in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy individuals and patients with secondary progressive multiple sclerosis (SPMS), and (2) warmer body temperature is linked to worse fatigue in patients with RRMS. Cross-sectional study. Climate-controlled laboratory (∼22°C) within a nonprofit medical rehabilitation research center. Patients with RRMS (n=50), matched healthy controls (n=40), and patients with SPMS (n=22). Not applicable. Body temperature was measured with an aural infrared thermometer (normative body temperature for this thermometer, 36.75°C), and differences were compared across patients with RRMS and SPMS and healthy persons. Patients with RRMS completed measures of general fatigue (Fatigue Severity Scale [FSS]), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale [MFIS]). There was a large effect of group (Pphysical fatigue (physical fatigue subscale of the MFIS; rp=.318, P=.026), but not cognitive fatigue (cognitive fatigue subscale of the MIFS; rp=-.017, P=.909). These are the first-ever demonstrations that body temperature is elevated endogenously in patients with RRMS and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Investigation of Factors Affecting Body Temperature Changes During Routine Clinical Head Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, Myeong Seong

    2016-01-01

    Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872

  4. Faecal glucocorticoid metabolites and body temperature in Australian merino ewes (Ovis aries) during summer artificial insemination (AI) program

    Science.gov (United States)

    Sawyer, Gregory; Parisella, Simone

    2018-01-01

    Reproductive wastage is a key issue for sheep producers, both regionally and globally. The reproductive output of farm animals can be influenced by physiological and environmental factors. Rapid and reliable quantification of physiological stress can provide a useful tool for designing and testing on-farm management interventions to improve farm animal welfare and productivity. In this study, we quantified physiological stress non-invasively using faecal glucocorticoid metabolites-FGMs analysis and body temperature measurements of 15 superovulated donor merino ewes (Ovis aries) during participation in artificial insemination (AI) program conducted during 2015/2016 Australian summer. We hypothesized that low percentage transferable embryos in donor merino ewes will be associated positively with higher body temperature and/or higher FGMs in these ewes. Temperature humidity index (THI) was calculated and found within high thermal stress range during the two AI trials. Overall, results showed none of the factors (ewe ID, AI trial no., THI or FGMs) were significant for reduced percentage transferrable embryos, except ewe body temperature was highly significant (p = 0.014). Within AI trial comparisons showed significant positive associations between higher FGMs and body temperature with reduced transferrable embryos. These results suggest that Australian merino ewes participating in summer AI trials can experience physiological stress. Prolonged activation of the stress endocrine response and high body temperature (e.g. ensued from heat stress) could impact on ewe reproductive output. Therefore, future research should apply minimally invasive physiological tools to gather baseline information on physiological stress in merino sheep to enable the development of new farm-friendly methods of managing stress. PMID:29381759

  5. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators

    Science.gov (United States)

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-01-01

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles. PMID:22379191

  6. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators.

    Science.gov (United States)

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-03-15

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles.

  7. Measurement of temperature fluctuations and anomalous transport ...

    Indian Academy of Sciences (India)

    an isolated DC power supply (having negligible capacitance with respect to ground or the vacuum vessel) and the ion saturation current Б× drawn by the pair is obtained by measur- ing the voltage drop across a 10 Ω resistance using a battery operated isolation amplifier. The potential of the positively biased probe · is also ...

  8. Body temperature responses to handling stress in wintering Black-capped Chickadees (Poecile atricapillus L.).

    Science.gov (United States)

    Lewden, Agnès; Nord, Andreas; Petit, Magali; Vézina, François

    2017-10-01

    Body temperature variation in response to acute stress is typically characterized by peripheral vasoconstriction and a concomitant increase in core body temperature (stress-induced hyperthermia). It is poorly understood how this response differs between species and within individuals of the same species, and how it is affected by the environment. We therefore investigated stress-induced body temperature changes in a non-model species, the Black-capped Chickadee, in two environmental conditions: outdoors in low ambient temperature (mean: -6.6°C), and indoors, in milder ambient temperature close to thermoneutrality (mean: 18.7°C). Our results show that the change in body temperature in response to the same handling stressor differs in these conditions. In cold environments, we noted a significant decrease in core body temperature (-2.9°C), whereas the response in mild indoor conditions was weak and non-significant (-0.6°C). Heat loss in outdoor birds was exacerbated when birds were handled for longer time. This may highlight the role of behavioral thermoregulation and heat substitution from activity to body temperature maintenance in harsh condition. Importantly, our work also indicates that changes in the physical properties of the bird during handling (conductive cooling from cold hands, decreased insulation from compression of plumage and prevention of ptiloerection) may have large consequences for thermoregulation. This might explain why females, the smaller sex, lost more heat than males in the experiment. Because physiological and physical changes during handling may carry over to affect predation risk and maintenance of energy balance during short winter days, we advice caution when designing experimental protocols entailing prolonged handling of small birds in cold conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    Science.gov (United States)

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-10-13

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  10. Research on temperature measurement by X-ray transmission intensity

    International Nuclear Information System (INIS)

    Chen, Shuyue; Cheng, Rong

    2013-01-01

    The relationship between temperature and X-ray transmission intensity was researched and analyzed by inspecting material density change, which is caused by thermal expansion. A digital radiographic system was employed to obtain the images. On this basis, we deduced the temperature formula based on the average gray level of the captured images. The measured temperatures were obtained from the experiments and the errors were analyzed. We concluded that when X-rays pass through an object, the X-ray strength and the gray level of the image under high temperatures are greater than those under lower temperatures and the image gray level error has great impact on the accuracy of the measured temperature. The presented approach allowed the non-contact temperature measurement of material

  11. The effects of floor heating on body temperature, water consumption, stress response and immune competence around parturition in loose-housed sows

    DEFF Research Database (Denmark)

    Damgaard, B M; Malmkvist, J; Pedersen, L J

    2009-01-01

    The aim of the present study was to study whether floor heating from 12 h after onset of nest building until 48 h after birth of the first piglet had any effect on measures related to body temperature, water consumption, stress response and immune competence in loose-housed sows (n = 23......). In conclusion, the present results indicate that floor heating for a limited period around parturition did not compromise physiological and immunological parameters, water intake and body temperature in loose-housed sows. The water intake peaked the day before parturition and the body temperature peaked...

  12. Impulse method for temperature measurement of silicon detectors

    International Nuclear Information System (INIS)

    Kushpil, V.V.; Kushpil, S.A.; Petracek, V.

    1999-01-01

    A new impulse method of temperature measurement based on switching characteristic of the P-N junction is described. Temperature of silicon detector can be determined, due to the strong temperature dependence of minority carrier lifetime, from the charge registered during the switching-off process. The method has been tested in temperature range 25 - 60 deg C. Advantages, drawbacks and precision of this method are discussed

  13. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  14. Development of electron temperature measuring system by silicon drift detector

    International Nuclear Information System (INIS)

    Song Xianying; Yang Jinwei; Liao Min

    2007-12-01

    Soft X-ray spectroscopy with two channels Silicon Drift Detector (SDD) are adopted for electron temperature measuring on HL-2A tokamak in 2005. The working principle, design and first operation of the SDD soft X-ray spectroscopy are introduced. The measuring results of electron temperature are also presented. The results show that the SDD is very good detector for electron temperature measuring on HL-2A tokamak. These will become a solid basic work to establish SDD array for electron temperature profiling. (authors)

  15. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  16. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...... intermittently. For one of the materials, aerated concrete, the sorption curves are determined at three different temperatures....

  17. 40 CFR 89.325 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  18. Measuring transient high temperature thermal phenomena in hostile environment

    International Nuclear Information System (INIS)

    Brenden, B.B.; Hartman, J.S.; Reich, F.R.

    1980-01-01

    The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument

  19. Battery-free, wireless sensors for full-body pressure and temperature mapping.

    Science.gov (United States)

    Han, Seungyong; Kim, Jeonghyun; Won, Sang Min; Ma, Yinji; Kang, Daeshik; Xie, Zhaoqian; Lee, Kyu-Tae; Chung, Ha Uk; Banks, Anthony; Min, Seunghwan; Heo, Seung Yun; Davies, Charles R; Lee, Jung Woo; Lee, Chi-Hwan; Kim, Bong Hoon; Li, Kan; Zhou, Yadong; Wei, Chen; Feng, Xue; Huang, Yonggang; Rogers, John A

    2018-04-04

    Thin, soft, skin-like sensors capable of precise, continuous measurements of physiological health have broad potential relevance to clinical health care. Use of sensors distributed over a wide area for full-body, spatiotemporal mapping of physiological processes would be a considerable advance for this field. We introduce materials, device designs, wireless power delivery and communication strategies, and overall system architectures for skin-like, battery-free sensors of temperature and pressure that can be used across the entire body. Combined experimental and theoretical investigations of the sensor operation and the modes for wireless addressing define the key features of these systems. Studies with human subjects in clinical sleep laboratories and in adjustable hospital beds demonstrate functionality of the sensors, with potential implications for monitoring of circadian cycles and mitigating risks for pressure-induced skin ulcers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. The daily rhythm of body temperature, heart and respiratory rate in newborn dogs.

    Science.gov (United States)

    Piccione, Giuseppe; Giudice, Elisabetta; Fazio, Francesco; Mortola, Jacopo P

    2010-08-01

    We asked whether, during the postnatal period, the daily patterns of body temperature (Tb), heart rate (HR) and breathing frequency (f) begin and develop in synchrony. To this end, measurements of HR, f and Tb were performed weekly, on two consecutive days, for the first two postnatal months on puppies of three breeds of dogs (Rottweiler, Cocker Spaniel and Carlino dogs) with very different birth weights and postnatal growth patterns. Ambient conditions and feeding habits were constant for all puppies. The results indicated that (1) the 24-h average Tb increased and average HR and f decreased with growth, (2) the daily rhythms in Tb were apparent by 4 weeks, irrespective of the puppy's growth pattern, (3) the daily rhythm of Tb in the puppy was not necessarily following that of the mother; in fact, it could anticipate it. (4) The daily rhythms in HR and f were not apparent for the whole study period. We conclude that in neonatal dogs the onset of the daily rhythms of Tb has no obvious relationship with body size or rate of growth and is not cued by the maternal Tb rhythm. The daily rhythms of HR and f do not appear before 2 months of age. Hence, they are not in synchrony with those of Tb.

  1. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  2. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  3. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both the an...

  4. Comparison of Dolphins' Body and Brain Measurements with Four Other Groups of Cetaceans Reveals Great Diversity.

    Science.gov (United States)

    Ridgway, Sam H; Carlin, Kevin P; Van Alstyne, Kaitlin R; Hanson, Alicia C; Tarpley, Raymond J

    2016-01-01

    We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial

  5. A wireless body measurement system to study fatigue in multiple sclerosis

    DEFF Research Database (Denmark)

    Yu, Fei; Rabotti, Chiara; Bilberg, Arne

    2012-01-01

    Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS......), was developed to study fatigue in MS. It can continuously measure electrocardiogram, body-skin temperature, electromyogram and motions of feet. The goal of this study is to test the ability of distinguishing fatigued MS patients from healthy subjects by the use of FAMOS. This paper presents the realization...... of the measurement system including the design of both hardware and dedicated signal processing algorithms. Twenty-six participants including 17 MS patients with fatigue and 9 sex- and age-matched healthy controls were included in the study for continuous 24 h monitoring. The preliminary results show significant...

  6. Principal components regression of body measurements in five ...

    African Journals Online (AJOL)

    Username, Password, Remember me, or Register ... Body weight and seven biometric traits that are; body length (BL), breast girth (BG), wing length ... Pearson correlations between body weight and biometric traits were positive and highly ...

  7. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Liou, J.-C.

    2012-01-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources.

  8. Liquidus temperature and optical properties measurement by containerless techniques

    Science.gov (United States)

    Anderson, Collin D.

    1993-01-01

    Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.

  9. How is it possible to measure a nuclear temperature

    International Nuclear Information System (INIS)

    Tamain, B.

    1989-01-01

    Several methods for the measurement of nuclear temperatures are summarized. The concepts of hot nuclei and temperature are defined. The nuclear equation of state is presented. The statistical theory of hot nuclei decay properties is analyzed. The obtention of the excitation energy from the recoil velocity measurement is considered in the case of complete and incomplete fusion. The measurements of temperature and excitation energy from the properties of decay products are reviewed. The study shows that no measurement method is perfect. Moreover, it is necessary to select events for which the degree of dissipation of the incident energy is estimated

  10. Improvement of measuring techniques with whole-body and partial-body counters

    International Nuclear Information System (INIS)

    Anon

    1998-01-01

    Mathematical simulation methods have been applied for optimizing and standardizing the calibration of whole-body and partial-body counters for any nuclide accumulation in the human body. (orig./CB) [de

  11. Outdoor surface temperature measurement: ground truth or lie?

    Science.gov (United States)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  12. The potential for using urinary bladder temperature in monitoring whole body hyperthermia

    International Nuclear Information System (INIS)

    Martin, P.A.; Robins, H.I.; Dennis, W.H.

    1985-01-01

    Urinary bladder, esophageal and rectal temperatures of patients were determined by thermistor thermometry during systemic hyperthermia treatments. When deep temperatures were raised from 37 0 to 41.8 0 , the esophageal temperature increases led those of the bladder and rectum. Throughout the heating phases the paired difference of esophageal and bladder temperatures was significantly greater than zero while the difference between bladder and rectal was less. In this system, urinary bladder temperature is a measure of deep tissue temperature and not a good estimate of arterial blood temperature

  13. Measuring temperatures with modified Kleiber 270B pyrometer

    International Nuclear Information System (INIS)

    Osch, E.V. van.

    1995-05-01

    At ECN a fast pyrometer is being used as a diagnostic tool for plasma disruption simulation experiments on candidate plasma facing materials for future thermonuclear fusion devices such as NET or ITER. The pyrometer is being used to measure the surface temperature response of the materials to short pulse high heat loads as induced by high power laser or electron beam, simulating the disrupting plasma's energy deposition. A procedure to measure surface temperatures without having to know surface emissivity in advance is described. The formulae needed in this procedure to obtain the correct temperature, starting from the initial incorrect temperature reading, are derived. Inversely, the formula to determine the emissivity of the surface when its temperature is known is equally derived. Finally, a small study on background level sensitivity is presented, showing the, in general, small effect of background on the temperature measurement. (orig.)

  14. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  15. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral...

  16. Effect of summer heat environment on body temperature, estrous cycles and blood antioxidant levels in Japanese Black cow.

    Science.gov (United States)

    Sakatani, Miki; Balboula, Ahmed Z; Yamanaka, Kenichi; Takahashi, Masashi

    2012-05-01

    This study investigated the effect of summer heat environment on estrous cycles and blood antioxidant levels in Japanese Black cows. A total of 13 non-lactating Japanese Black cows (summer: 9, winter: 4) were examined. Body temperature was measured rectally and intravaginally using a thermometer and data logger, respectively. Estrous behavior was monitored using a radiotelemetric pedometer that recorded walking activity. Rectal temperatures were higher during summer than winter (Pstress, and also reduces signs of estrus in Japanese Black cows. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  17. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle.

    Science.gov (United States)

    George, W D; Godfrey, R W; Ketring, R C; Vinson, M C; Willard, S T

    2014-11-01

    Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of these experiments was to compare the temperature of the eye (EYE) or muzzle (MUZ) measured using DITI to vaginal (VT) and rectal temperature (RT) as measures of core body temperature in hair sheep and beef cattle. In Exp.1 EYE, VT and RT were measured in lactating, multiparous hair sheep ewes (St. Croix White, n = 10, and Dorper × St. Croix White, n = 10) in a non-febrile state 5 times over a 48-h period. Data loggers were used to measure VT and a digital veterinary thermometer was used to measure RT. There was a high correlation (P 0.10) between RT or VT and MUZ. The findings of these three studies indicate that temperature of the eye, measured using DITI, can be used as an indicator of core body temperature in hair sheep and beef cattle as an alternative to using vaginal or rectal temperature.

  18. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...... agreement with thermocouple readings. Gas lines and bands from CO, CO2 and H2O can be observed in the spectra. CO was only observed at the first measuring port (100ms) with the strongest CO-signal seen during experiments with straw particles. Variations in gas concentration (CO2 and H2O) and the signal from...

  19. Common rectifier diodes in temperature measurement applications below 50 K

    International Nuclear Information System (INIS)

    Jaervelae, J; Stenvall, A; Mikkonen, R

    2010-01-01

    In this paper we studied the use of common electronic semiconductor diodes in temperature measurements at cryogenic atmosphere. The motivation for this is the high price of calibrated cryogenic temperature sensors since there are some applications, like quench detection, in which a cheaper and a less accurate sensor would suffice. We measured the forward voltage as a function of temperature, V f (T), of several silicon rectifier diodes to determine the accuracy and interchangeability of the diodes. The experimental results confirmed that V f (T) of common rectifier diodes are similar to cryogenic sensor diodes, but the variability between two samples is much larger. The interchangeability of the diodes proved to be poor if absolute temperatures are to be measured. However for sensing changes in temperature they proved to be adequate and thus can be used to measure e.g. quench propagation or sense quench ignition at multiple locations with cheap price.

  20. Deep-body temperature changes in rats exposed to chronic centrifugation.

    Science.gov (United States)

    Oyama, J.; Platt, W. T.; Holland, V. B.

    1971-01-01

    Deep-body temperature was monitored continuously by implant biotelemetry in unrestrained rats before, during, and after exposure to prolonged and almost continuous centrifugation. Rats subjected to centrifugation for the first time at various G loads ranging up to 2.5 G show a rapid and significant fall in temperature which is sustained below normal levels for periods as long as 3 days. The magnitude of the temperature fall and the recovery time were generally proportional to the G load imposed. The initial fall and recovery of body temperature closely parallels the decrease in food consumption and to a lesser degree the decrease in body mass experienced by centrifuged rats. After exposure to 2 weeks of centrifugation, rats show either no change or only a small transient increase in temperature when decelerated to a lower G level or when returned to normal gravity. Rats repeatedly exposed to centrifugation consistently showed a smaller temperature response compared to the initial exposure. Implant temperature biotelemetry has been found to be a sensitive, reliable, and extremely useful technique for assessing the initial stress of centrifugation and in monitoring the time course of recovery and acclimation of rats to increase as well as*decrease G.

  1. Measurement of caesium-137 in the human body using a whole body counter

    Science.gov (United States)

    Elessawi, Elkhadra Abdulmula

    Gamma radiation in the environment is mainly due to naturally occurring radionuclides. However, there is also a contribution from anthropogenic radionuclides such as 137Cs which originate from nuclear fission processes. Since 1986, the accident at the Chernobyl power plant has been a significant source of artificial environmental radioactivity. In order to assess the radiological impact of these radionuclides, it is necessary to measure their activities in samples drawn from the environment and in plants and animals including human populations. The whole body counter (WBC) at the University Hospital of Wales in Cardiff makes in vivo measurements of gamma emitting radionuclides using a scanning ring of six large-volume thallium-doped sodium iodide (Nal(Tl)) scintillation detectors. In this work the WBC was upgraded by the addition of two high purity germanium (HPGe) detectors. The performance and suitability of the detection systems were evaluated by comparing the detection limits for Cs. Sensitivities were measured using sources of known activity in a water filled anthropomorphic phantom and theoretical minimum detectable count-rates were estimated from phantom background pulse height spectra. The theoretical minimum detectable activity was about 24 Bq for the combination of six Nal(Tl) detectors whereas for the individual HPGe detectors it was 64 Bq and 65 Bq, despite the much improved energy resolution Activities of 137Cs in the human body between 1993 and 2007 were estimated from the background Nal(Tl) spectra of 813 patients and compared with recent measurements in 14 volunteers. The body burden of Cs in Cardiff patients increased from an average of about 60 Bq in the early and mid 1990s to a maximum of about 100 Bq in 2000. By 2007 it had decreased to about 40 Bq. This latter value was similar to that of Cardiff residents at the time of the Chernobyl accident and to that of the volunteers measured in 2007 (51 Bq). However, it was less than the mean activity of

  2. Disruption of the circadian period of body temperature by the anesthetic propofol.

    Science.gov (United States)

    Touitou, Yvan; Mauvieux, Benoit; Reinberg, Alain; Dispersyn, Garance

    2016-01-01

    The circadian time structure of an organism can be desynchronized in a large number of instances, including the intake of specific drugs. We have previously found that propofol, which is a general anesthetic, induces a desynchronization of the circadian time structure in rats, with a 60-80 min significant phase advance of body temperature circadian rhythm. We thus deemed it worthwhile to examine whether this phase shift of body temperature was related to a modification of the circadian period Tau. Propofol was administered at three different Zeitgeber Times (ZTs): ZT6 (middle of the rest period), ZT10 (2 h prior to the beginning of activity period), ZT16 (4 h after the beginning of the activity period), with ZT0 being the beginning of the rest period (light onset) and ZT12 being the beginning of the activity period (light offset). Control rats (n = 20) were injected at the same ZTs with 10% intralipid, which is a control lipidic solution. Whereas no modification of the circadian period of body temperature was observed in the control rats, propofol administration resulted in a significant shortening of the period by 96 and 180 min at ZT6 and ZT10, respectively. By contrast, the period was significantly lengthened by 90 min at ZT16. We also found differences in the time it took for the rats to readjust their body temperature to the original 24-h rhythm. At ZT16, the speed of readjustment was more rapid than at the two other ZTs that we investigated. This study hence shows (i) the disruptive effects of the anesthetic propofol on the body temperature circadian rhythm, and it points out that (ii) the period Tau for body temperature responds to this anesthetic drug according to a Tau-response curve. By sustaining postoperative sleep-wake disorders, the disruptive effects of propofol on circadian time structure might have important implications for the use of this drug in humans.

  3. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  4. Analysis and improvement of gas turbine blade temperature measurement error

    International Nuclear Information System (INIS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-01-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed. (paper)

  5. Analysis and improvement of gas turbine blade temperature measurement error

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  6. Application of phosphor thermometry to a Galvanneal Temperature Measurement System

    International Nuclear Information System (INIS)

    Allison, S.W.; Andrews, W.H.; Beshears, D.L.; Cates, M.R.; Childs, R.M.; Grann, E.B.; Manges, W.W.; McIntyre, T.J.; Scudiere, M.B.; Simpson, M.L.

    1999-01-01

    The Galvanneal Temperature Measurement System (GTMS) was developed for the American Iron and Steel Institute by the Oak Ridge National Laboratory through a partnership with the National Steel Midwest Division in Portage, Indiana. The GTMS provides crucial on-line thermal process control information during the manufacturing of galvanneal steel. The system has been used with the induction furnaces to measure temperatures ranging from 450 to 700 degrees C with an accuracy of better than +/-5 Degrees C. The GTMS provides accurate, reliable temperature information thus ensuring a high quality product, reducing waste, and saving energy. The production of uniform, high-quality galvanneal steel is only possible through strict temperature control

  7. Concordance of In-Home "Smart" Scale Measurement with Body Weight Measured In-Person.

    Science.gov (United States)

    Ross, Kathryn M; Wing, Rena R

    2016-06-01

    Newer "smart" scales that transmit participants' body weights directly to data collection centers offer the opportunity to simplify weight assessment in weight management research; however, little data exist on the concordance of these data compared to weights measured at in-person assessments. We compared the weights of 58 participants (mean±SD BMI = 31.6±4.8, age = 52.1±9.7 years, 86.2% White, 65.5% Female) measured by study staff at an in-person assessment visit to weights measured on the same day at home using BodyTrace "smart" scales. These measures occurred after 3 months of an internet-based weight management intervention. Weight (mean±SD) measured at the 3-month in-person assessment visit was 81.5±14.7kg compared to 80.4±14.5kg measured on the same day using in-home body weight scales; mean bias =1.1±0.8kg, 95% limits of agreement = -0.5 to 2.6. Two outliers in the data suggest that there may be greater variability between measurements for participants weighing above 110 kg. Results suggest good concordance between the measurements and support the use of the BodyTrace smart scale in weight management research. Future trials using BodyTrace scales for outcome assessment should clearly define protocols for measurement and associated instructions to participants (e.g., instruct individuals to weigh at the same time of day, similarly clothed). Finally, measure concordance should be investigated in a group of individuals weighing more than 110kg.

  8. The effect of humidified heated breathing circuit on core body temperature in perioperative hypothermia during thyroid surgery.

    Science.gov (United States)

    Park, Hue Jung; Moon, Ho Sik; Moon, Se Ho; Do Jeong, Hyeon; Jeon, Young Jae; Do Han, Keung; Koh, Hyun Jung

    2017-01-01

    Purpose: During general anesthesia, human body easily reaches a hypothermic state, which is mainly caused by heat redistribution. Most studies suggested that humidified heated breathing circuits (HHBC) have little influence on maintenance of the core temperature during early phase of anesthesia. This study was aimed at examining heat preservation effect with HHBC in case of undergoing surgery with less exposure of surgical fields and short surgical duration. Methods: Patients aged 19 to 70 yr - old, ASA-PS I or II who were scheduled for elective thyroidectomy were assigned and divided to the group using HHBC (G1) and the group using conventional circuit (G2) by random allocation. During operation, core, skin, and room temperatures were measured every 5minutes by specific thermometer. Results: G1 was decreased by a lesser extent than G2 in core temperature, apparently higher at 30 and 60 minutes after induction. Skin and room temperatures showed no differences between the two groups (p>0.05). Consequently, we confirmed HHBC efficiently prevented a decrease in core temperature during early period in small operation which has difficulty in preparing warming devices or environments were not usually considered. Conclusions: This study showed that HHBC influences heat redistribution in early period of operation and can lessen the magnitude of the decrease in core body temperature. Therefore, it can be applied efficiently for other active warming devices in mild hypothermia.

  9. Tail position affects the body temperature of rats during cold exposure in a low-energy state.

    Science.gov (United States)

    Uchida, Yuki; Tokizawa, Ken; Nakamura, Mayumi; Lin, Cheng-Hsien; Nagashima, Kei

    2012-02-01

    Rats place their tails underneath their body trunks when cold (tail-hiding behavior). The aim of the present study was to determine whether this behavior is necessary to maintain body temperature. Male Wistar rats were divided into 'fed' and '42-h fasting' groups. A one-piece tail holder (8.4 cm in length) that prevented the tail-hiding behavior or a three-piece tail holder (2.8 cm in length) that allowed for the tail-hiding behavior was attached to the tails of the rats. The rats were exposed to 27°C for 180 min or to 20°C for 90 min followed by 15°C for 90 min with continuous body temperature and oxygen consumption measurements. Body temperature decreased by -1.0 ± 0.1°C at 15°C only in the rats that prevented tail-hiding behavior of the 42-h fasting group, and oxygen consumption increased at 15°C in all animals. Oxygen consumption was not different between the rats that prevented tail-hiding behavior and the rats that allowed the behavior in the fed and 42-h fasting groups under ambient conditions. These results show that the tail-hiding behavior is involved in thermoregulation in the cold in fasting rats.

  10. [Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].

    Science.gov (United States)

    Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei

    2017-01-01

    In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.

  11. Surgical implantation of temperature-sensitive transmitters and data-loggers to record body temperature in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Adam, D; Johnston, S D; Beard, L; Nicholson, V; Lisle, A; Gaughan, J; Larkin, R; Theilemann, P; Mckinnon, A; Ellis, W

    2016-01-01

    Under predicted climate change scenarios, koala distribution in Australia is expected to be adversely affected. Recent studies have attempted to identify suitable habitat, based on models of bioclimatic regions, but to more accurately reflect the thermal tolerance and behavioural adaptations of the various regional populations, the koala's response to periods of heat stress will need to be investigated at the individual animal level. To explore the safety and suitability of temperature-sensitive intra-abdominal implants for monitoring core body temperature in the koala. A temperature-sensitive radio transmitter and thermal iButton data-logger, waxed together as a package, were surgically implanted into the abdominal cavity of four captive koalas. In one animal the implant was tethered and in the other three, it was left free-floating. After 3 months, the implants were removed and all four koalas recovered without complications. The tethering of the package in the one koala resulted in minor inflammation and adhesion, so this practice was subsequently abandoned. The free-floating deployments were complication-free and revealed a diurnal body temperature rhythm, with daily ranges of 0.4-2.8°C. The minimum recorded body temperature was 34.2°C and the maximum was 37.7°C. The difference in the readings obtained from the transmitters and iButtons never exceeded 0.3°C. The suitability of the surgical approach was confirmed, from both the animal welfare and data collection points of view. © 2016 Australian Veterinary Association.

  12. Effect of paracetamol (acetaminophen and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial [ISRCTN98608690

    Directory of Open Access Journals (Sweden)

    Meijer Ron J

    2003-02-01

    Full Text Available Abstract Background Body temperature is a strong predictor of outcome in acute stroke. In a previous randomized trial we observed that treatment with high-dose acetaminophen (paracetamol led to a reduction of body temperature in patients with acute ischemic stroke, even when they had no fever. The purpose of the present trial was to study whether this effect of acetaminophen could be reproduced, and whether ibuprofen would have a similar, or even stronger effect. Methods Seventy-five patients with acute ischemic stroke confined to the anterior circulation were randomized to treatment with either 1000 mg acetaminophen, 400 mg ibuprofen, or placebo, given 6 times daily during 5 days. Treatment was started within 24 hours from the onset of symptoms. Body temperatures were measured at 2-hour intervals during the first 24 hours, and at 6-hour intervals thereafter. Results No difference in body temperature at 24 hours was observed between the three treatment groups. However, treatment with high-dose acetaminophen resulted in a 0.3°C larger reduction in body temperature from baseline than placebo treatment (95% CI: 0.0 to 0.6 °C. Acetaminophen had no significant effect on body temperature during the subsequent four days compared to placebo, and ibuprofen had no statistically significant effect on body temperature during the entire study period. Conclusions Treatment with a daily dose of 6000 mg acetaminophen results in a small, but potentially worthwhile decrease in body temperature after acute ischemic stroke, even in normothermic and subfebrile patients. Further large randomized clinical trials are needed to study whether early reduction of body temperature leads to improved outcome.

  13. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    Science.gov (United States)

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  14. Electronic temperature control and measurements reactor fuel rig circuits

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC).

  15. The electronic temperature control and measurements reactor fuel rig circuits

    International Nuclear Information System (INIS)

    Glowacki, S.W.

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC). (author)

  16. Temperature measurement in low pressure plasmas. Temperaturmessungen im Niederdruckplasma

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbauer, K.A.; Wilting, H.; Schramm, G. (Duesseldorf Univ. (Germany, F.R.). Abt. fuer Histologie und Embryologie)

    1989-11-01

    The present work discusses the influence of various parameters on the substrate temperature in a low pressure plasma. The measurement method chosen utilized Signotherm (Merck) temperature sensors embedded in silicon between two glass substrates. All measurements were made in a 200 G Plasma Processor from Technics Plasma GmbH. The substrate temperature is dependent on the process time, the RF power, the process gas and the position in the chamber. The substrate temperature increases with increasing process time and increasing power. Due to the location of the microwave port from the magnetron to the chamber, the substrate temperature is highest in the center of the chamber. Measurements performed in an air plasma yielded higher results than in an oxygen plasma. (orig.).

  17. Non-invasive monitoring of core body temperature rhythms over 72 h in 10 bedridden elderly patients with disorders of consciousness in a Japanese hospital: a pilot study.

    Science.gov (United States)

    Matsumoto, Masaru; Sugama, Junko; Okuwa, Mayumi; Dai, Misako; Matsuo, Junko; Sanada, Hiromi

    2013-01-01

    The purpose of this study was to elucidate the body core temperature rhythms of bedridden elderly patients with disorders of consciousness (DOC) in a Japanese hospital using a simple, non-invasive, deep-body thermometer. We measured body core temperature on the surface of abdomen in 10 bedridden elderly patients with DOC continuously over 72 h. A non-heated core body temperature thermometer was used. The cycle of the body core temperature rhythm was initially derived by using the least squares method. Then, based on that rhythm, the mean, amplitude, and times of day of the highest and lowest body temperatures during the optimum cycle were determined using the cosinor method. We found a 24-h cycle in seven of the 10 patients. One patient had a 6-h, one a 12-h, and one a 63-h cycle. The mean value of the cosine curve in the respective optimum cycles was 36.48 ± 0.34 °C, and the amplitude was 0.22 ± 0.09 °C. Of the seven subjects with 24-h cycles, the highest body temperature occurred between 12:58 and 14:44 h in four. In addition to 24-h cycles of core temperature rhythm, short cycles of 12 and 6-h and a long cycle of 63-h were seen. In order to understand the temperature rhythms of bedridden elderly patients with DOC, it is necessary to monitor their core body temperatures, ideally using a simple, non-invasive device. In the future, it will be important to investigate the relationship of the core temperature rhythm to nursing care and living environment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    International Nuclear Information System (INIS)

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-01-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition

  19. The effect of warmed inspired gases on body temperature during arthroscopic shoulder surgery under general anesthesia.

    Science.gov (United States)

    Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong

    2013-07-01

    Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.

  20. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  1. Tribocorrosion in pressurized high temperature water: a mass flow model based on the third body approach

    Energy Technology Data Exchange (ETDEWEB)

    Guadalupe Maldonado, S.

    2014-07-01

    Pressurized water reactors (PWR) used for power generation are operated at elevated temperatures (280-300 °C) and under higher pressure (120-150 bar). In addition to these harsh environmental conditions some components of the PWR assemblies are subject to mechanical loading (sliding, vibration and impacts) leading to undesirable and hardly controllable material degradation phenomena. In such situations wear is determined by the complex interplay (tribocorrosion) between mechanical, material and physical-chemical phenomena. Tribocorrosion in PWR conditions is at present little understood and models need to be developed in order to predict component lifetime over several decades. The goal of this project, carried out in collaboration with the French company AREVA NP, is to develop a predictive model based on the mechanistic understanding of tribocorrosion of specific PWR components (stainless steel control assemblies, stellite grippers). The approach taken here is to describe degradation in terms of electro-chemical and mechanical material flows (third body concept of tribology) from the metal into the friction film (i.e. the oxidized film forming during rubbing on the metal surface) and from the friction film into the environment instead of simple mass loss considerations. The project involves the establishment of mechanistic models for describing the single flows based on ad-hoc tribocorrosion measurements operating at low temperature. The overall behaviour at high temperature and pressure in investigated using a dedicated tribometer (Aurore) including electrochemical control of the contact during rubbing. Physical laws describing the individual flows according to defined mechanisms and as a function of defined physical parameters were identified based on the obtained experimental results and from literature data. The physical laws were converted into mass flow rates and solved as differential equation system by considering the mass balance in compartments

  2. Association between different phases of menstrual cycle and body image measures of perceived size, ideal size, and body dissatisfaction.

    Science.gov (United States)

    Teixeira, André Luiz S; Dias, Marcelo Ricardo C; Damasceno, Vinícius O; Lamounier, Joel A; Gardner, Rick M

    2013-12-01

    The association between phases of the menstrual cycle and body image was investigated. 44 university women (M age = 23.3 yr., SD = 4.7) judged their perceived and ideal body size, and body dissatisfaction was calculated at each phase of the menstrual cycle, including premenstrual, menstrual, and intermenstrual. Participants selected one of nine figural drawings ranging from very thin to obese that represented their perceived size and ideal size. Body dissatisfaction was measured as the absolute difference between scores on perceived and ideal figural drawings. During each menstrual phase, anthropometric measures of weight, height, body mass index, circumference of waist and abdomen, and body composition were taken. There were no significant differences in any anthropometric measures between the three menstrual cycle phases. Perceived body size and body dissatisfaction were significantly different between menstrual phases, with the largest perceived body size and highest body dissatisfaction occurring during the menstrual phase. Ideal body size did not differ between menstrual phases, although participants desired a significantly smaller ideal size as compared to the perceived size.

  3. Methodological aspects of EEG and Body dynamics measurements during motion.

    Directory of Open Access Journals (Sweden)

    Pedro eReis

    2014-03-01

    Full Text Available EEG involves recording, analysis, and interpretation of voltages recorded on the human scalp originating from brain grey matter. EEG is one of the favorite methods to study and understand processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements, that are performed in response to the environment. However, there are methodological difficulties when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions of how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determination of real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks.

  4. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD......) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity...... within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared...

  5. Technology and education: First approach for measuring temperature with Arduino

    Science.gov (United States)

    Carrillo, Alejandro

    2017-04-01

    This poster session presents some ideas and approaches to understand concepts of thermal equilibrium, temperature and heat in order to bulid a man-nature relationship in a harmonious and responsible manner, emphasizing the interaction between science and technology, without neglecting the relationship of the environment and society, an approach to sustainability. It is proposed the development of practices that involve the use of modern technology, of easy access and low cost to measure temperature. We believe that the Arduino microcontroller and some temperature sensors can open the doors of innovation to carry out such practices. In this work we present some results of simple practices presented to a population of students between the ages of 16 and 17 years old. The practices in this proposal are: Zero law of thermodynamics and the concept of temperature, calibration of thermometers and measurement of temperature for heating and cooling of three different substances under the same physical conditions. Finally the student is asked to make an application that involves measuring of temperature and other physical parameters. Some suggestions are: to determine the temperature at which we take some food, measure the temperature difference at different rooms of a house, housing constructions that favour optimal condition, measure the temperature of different regions, measure of temperature trough different colour filters, solar activity and UV, propose applications to understand current problems such as global warming, etc. It is concluded that the Arduino practices and electrical sensors increase the cultural horizon of the students while awaking their interest to understand their operation, basic physics and its application from a modern perspective.

  6. Body temperature change during anesthesia for electroconvulsive therapy: implications for quality incentives in anesthesiology.

    Science.gov (United States)

    Modell, Jerome H; Gravenstein, Nikolaus; Morey, Timothy E

    2008-11-01

    The American Society of Anesthesiologists has announced that perioperative normothermia is a "Quality Incentive in Anesthesiology." We examined whether we could meet this quality incentive in a simple population: patients undergoing anesthesia for electroconvulsive therapy (ECT). We compared infrared-measured ear temperature before anesthesia to temperature upon delivery of patients to the postanesthesia care unit (PACU) after 101 consecutive brief anesthetics to facilitate ECT. For 35 procedures, the patients had an infrared ear thermometer temperature of measures were substandard. Also, current methods of measuring temperature may be inadequate to ascertain if patients are hypothermic after surgery. As the avoidance of hypothermia is a meritorious goal, anesthesia departments need to ensure that their temperature monitoring equipment is adequate to ensure accurate measurement of postanesthetic temperature if this variable is to be used as a quality incentive.

  7. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.; Yang, P.E.; Lin, Y.P.; Lin, B.Y.; Chen, H.J.; Lai, R.C.; Cheng, J.S.

    2011-01-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well

  8. Spectroscopic analysis applied to temperature measurement in plasmas

    International Nuclear Information System (INIS)

    Fieffe-Prevost, P.

    1978-01-01

    The plasma temperature is defined only if the plasma is in a state near thermodynamic equilibrium. This plasma state is analysed in detail and spectroscopic methods for measuring the temperature are discussed. As an application the hydrogen arc of the National Institute of Metrology of the Conservatoire National des Arts et Metiers (Paris) is briefly described [fr

  9. Refractory thermowell for continuous high temperature measurement of molten metal

    International Nuclear Information System (INIS)

    Thiesen, T.J.

    1992-01-01

    This patent describes a vessel for handling molten metal having an interior refractory lining, apparatus for continuous high temperature measurement of the molten metal. It comprises a thermowell; the thermowell containing a multiplicity of thermocouples; leads being coupled to a means for continuously indicating the temperature of the molten metal in the vessel

  10. Time-Resolved Surface Temperature Measurement for Pulsed Ablative Thrusters

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2003-01-01

    .... The diagnostic draws on heritage from the experimental dynamic crack propagation community which has used photovoltaic infrared detectors to measure temperature rise in materials in the process of fracture...

  11. Device for measuring the temperature of flowing hot gases

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R D

    1977-05-12

    The invention pertains to a device to measure the temperature of a hot gas flowing through a closed tube. The device will have a simple and inexpensive design and avoid heat losses due to heat radiation near the thermal sensor.

  12. High temperature spectral emissivity measurement using integral blackbody method

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  13. Kangen-karyu raises surface body temperature through oxidative stress modification.

    Science.gov (United States)

    Hirayama, Aki; Okamoto, Takuya; Kimura, Satomi; Nagano, Yumiko; Matsui, Hirofumi; Tomita, Tsutomu; Oowada, Shigeru; Aoyagi, Kazumasa

    2016-05-01

    Kangen-karyu, a prescription containing six herbs, has been shown to achieve its pharmacological effect through oxidative stress-dependent pathways in animal models. The aim of this study is to investigate the relationship between the antioxidative effect and pharmacological mechanisms of Kangen-karyu, specifically its body temperature elevating effect in humans. Healthy human volunteers, age 35 ± 15 years old, were enrolled in this study. Surface body temperature, serum nitrite, reactive oxygen species (ROS) scavenging activities, and inflammatory cytokines were investigated before and 120 min after Kangen-karyu oral intake. Kangen-karyu significantly increased the surface-body temperature of the entire body; this effect was more remarkable in the upper body and continued for more than 120 min. Accompanying this therapeutic effect, serum nitrite levels were increased 120 min after oral administration. Serum ROS scavenging activities were enhanced against singlet oxygen and were concomitantly decreased against the alkoxyl radical. Serum nitrite levels and superoxide scavenging activities were positively correlated, suggesting that Kangen-karyu affects the O2 (•-)-NO balance in vivo. Kangen-karyu had no effect on IL-6, TNF-α and adiponectin levels. These results indicate that the therapeutic effect of Kangen-karyu is achieved through NO- and ROS-dependent mechanisms. Further, this mechanism is not limited to ROS production, but includes ROS-ROS or ROS-NO interactions.

  14. Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians

    Directory of Open Access Journals (Sweden)

    David R. Daversa

    2018-05-01

    Full Text Available Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd. Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.

  15. Differences in oral temperature and body shape in two populations with different propensities for obesity

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Bogardus, C

    2002-01-01

    Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is...

  16. A body temperature model for lizards as estimated from the thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.

    2012-01-01

    A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and

  17. Postmortem time estimation using body temperature and a finite-element computer model

    NARCIS (Netherlands)

    Hartog, E.A. den; Lotens, W.A.

    2004-01-01

    In the Netherlands most murder victims are found 2-24 h after the crime. During this period, body temperature decrease is the most reliable method to estimate the postmortem time (PMT). Recently, two murder cases were analysed in which currently available methods did not provide a su.ciently

  18. Deeply torpid bats can change position without elevation of body temperature

    Czech Academy of Sciences Publication Activity Database

    Bartonička, T.; Banďouchová, H.; Berková, Hana; Blažek, J.; Lučan, R.; Horáček, I.; Martínková, Natália; Pikula, J.; Řehák, Z.; Zukal, Jan

    2017-01-01

    Roč. 63, January (2017), s. 119-123 ISSN 0306-4565 R&D Projects: GA ČR(CZ) GAP506/12/1064 Institutional support: RVO:68081766 Keywords : Body temperature * Hibernation * Locomotor performance * Chiroptera * Flight Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.157, year: 2016

  19. Increased core body temperature in astronauts during long-duration space missions

    Czech Academy of Sciences Publication Activity Database

    Stahn, A. C.; Werner, A.; Opatz, O.; Maggioni, M. A.; Steinach, M.; von Ahlefeld, V. W.; Moore, A.; Crucian, B. E.; Smith, S. M.; Zwart, S. R.; Schlabs, T.; Mendt, S.; Trippel, T.; Koralewski, E.; Koch, J.; Chouker, A.; Reitz, Guenther; Shang, P.; Rocker, L.; Kirsch, K. A.; Gunga, H-C.

    2017-01-01

    Roč. 7, č. 11 (2017), č. článku 16180. ISSN 2045-2322 Institutional support: RVO:61389005 Keywords : core body temperature * astonauts' CBT * spaceflights Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 4.259, year: 2016

  20. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7

  1. Selective SWS suppression does not affect the time course of core body temperature in men

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Dijk, Derk-Jan

    1992-01-01

    In eight healthy middle-aged men, sleep and core body temperature were recorded under baseline conditions, during all-night SWS suppression by acoustic stimulation, and during undisturbed recovery sleep. SWS suppression resulted in a marked reduction of sleep stages 3 and 4 but did not affect the

  2. Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature.

    NARCIS (Netherlands)

    Scheer, F.A.J.L.; Pirovano, C.; Someren, E.J.W. van; Buijs, R.M.

    2005-01-01

    The mammalian biological clock, located in the suprachiasmatic nucleus (SCN), is crucial for circadian rhythms in physiology and behavior. However, equivocal findings have been reported on its role in the circadian regulation of body temperature. The goal of the present studies was to investigate

  3. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    Science.gov (United States)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  4. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  5. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  6. A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangman Moh

    2013-08-01

    Full Text Available The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node’s circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  7. The effects of spatial sampling choices on MR temperature measurements.

    Science.gov (United States)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  8. Temperature measurement in the adult emergency department: oral, tympanic membrane and temporal artery temperatures versus rectal temperature.

    Science.gov (United States)

    Bijur, Polly E; Shah, Purvi D; Esses, David

    2016-12-01

    The objective was to compare agreement between three non-invasive measures of temperature and rectal temperatures and to estimate the sensitivity and specificity of these measures to detect a rectal temperature of 38°C or higher. We conducted a study of the diagnostic accuracy of oral, tympanic membrane (TM) and temporal artery (TA) thermometry to measure fever in an urban emergency department (ED). Data were collected from adult patients who received rectal temperature measurement. Bland-Altman analysis was performed; sensitivity, specificity and 95% CIs were calculated. 987 patients were enrolled. 36% of the TM and TA readings differed by 0.5°C or more from rectal temperatures, 50% of oral temperatures. TM measures were most precise-the SD of the difference from rectal was 0.4°C TM, and 0.6°C for oral and TA (ptemperature of 38°C or higher were: 37.0%, 68.3% and 71.1%, respectively (oral vs TM and TA pmethods (pmethods met benchmarks for diagnostic accuracy using the criterion of 38°C to detect rectal temperature of 38°C. A TM cutpoint of 37.5°C provides maximum diagnostic accuracy of the three non-invasive measures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Ring to measure magnetic permeability at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    While for magn. permeability measurements at room temperature a split-coil permeameter is used (see photo 7708553X), for measurements at cryogenic temperatures the excitation and the flux-measuring coils are wound directly on the ring sample by means of a toroidal winding machine. The ring in the picture was made to select the mild steel for the ISR Prototype Superconducting Quadrupole(see photo 7702690X). The excitation coil was wound with 1 mm diam. copper wire and had about 2730 turns. For measurements at 4.2 K a max. current of 90 A was used. See also photos 7708553X,7708100,7708103.

  10. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J. M.; Hernandez, A.

    1994-07-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01 % in the range 1 to 30, and 3 x 10{sup 6} for loss tangent values below 10{sup 2}, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99.9 % purity in the same temperature range are presented. (Author) 23 refs.

  11. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J.M.; Hernandez, A.

    1994-01-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01% in the range 1 to 30, and 3 x 10''6 for loss tangent values below 10''2, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99,9% purity in the same temperature range are presented

  12. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  13. Fiber Bragg Grating Based System for Temperature Measurements

    Science.gov (United States)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  14. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  15. Correlations of metabolic rate and body acceleration in three species of coastal sharks under contrasting temperature regimes.

    Science.gov (United States)

    Lear, Karissa O; Whitney, Nicholas M; Brewster, Lauran R; Morris, Jack J; Hueter, Robert E; Gleiss, Adrian C

    2017-02-01

    The ability to produce estimates of the metabolic rate of free-ranging animals is fundamental to the study of their ecology. However, measuring the energy expenditure of animals in the field has proved difficult, especially for aquatic taxa. Accelerometry presents a means of translating metabolic rates measured in the laboratory to individuals studied in the field, pending appropriate laboratory calibrations. Such calibrations have only been performed on a few fish species to date, and only one where the effects of temperature were accounted for. Here, we present calibrations between activity, measured as overall dynamic body acceleration (ODBA), and metabolic rate, measured through respirometry, for nurse sharks (Ginglymostoma cirratum), lemon sharks (Negaprion brevirostris) and blacktip sharks (Carcharhinus limbatus). Calibrations were made at a range of volitional swimming speeds and experimental temperatures. Linear mixed models were used to determine a predictive equation for metabolic rate based on measured ODBA values, with the optimal model using ODBA in combination with activity state and temperature to predict metabolic rate in lemon and nurse sharks, and ODBA and temperature to predict metabolic rate in blacktip sharks. This study lays the groundwork for calculating the metabolic rate of these species in the wild using acceleration data. © 2017. Published by The Company of Biologists Ltd.

  16. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  17. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  18. Low-temperature mobility measurements on CMOS devices

    International Nuclear Information System (INIS)

    Hairpetian, A.; Gitlin, D.; Viswanathan, C.R.

    1989-01-01

    The surface channel mobility of carriers in eta- and rho-MOS transistors fabricated in a CMOS process was accurately determined at low temperatures down to 5 Κ. The mobility was obtained by an accurate measurement of the inversion charge density using a split C-V technique and the conductance at low drain voltages. The split C-V technique was validated at all temperatures using a one-dimensional Poisson solver (MOSCAP), which was modified for low-temperature application. The mobility dependence on the perpendicular electric field for different substrate bias values appears to have different temperature dependence for eta- and rho-channel devices. The electron mobility increases with a decrease in temperature at all gate voltages. On the other hand, the hole mobility exhibits a different temperature behavior depending upon whether the gate voltage corresponds to strong inversion or is near threshold

  19. Glutamate excitoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke.

    Science.gov (United States)

    Campos, Francisco; Pérez-Mato, María; Agulla, Jesús; Blanco, Miguel; Barral, David; Almeida, Angeles; Brea, David; Waeber, Christian; Castillo, José; Ramos-Cabrer, Pedro

    2012-01-01

    Glutamate excitotoxicity, metabolic rate and inflammatory response have been associated to the deleterious effects of temperature during the acute phase of stroke. So far, the association of temperature with these mechanisms has been studied individually. However, the simultaneous study of the influence of temperature on these mechanisms is necessary to clarify their contributions to temperature-mediated ischemic damage. We used non-invasive Magnetic Resonance Spectroscopy to simultaneously measure temperature, glutamate excitotoxicity and metabolic rate in the brain in animal models of ischemia. The immune response to ischemia was measured through molecular serum markers in peripheral blood. We submitted groups of animals to different experimental conditions (hypothermia at 33°C, normothermia at 37°C and hyperthermia at 39°C), and combined these conditions with pharmacological modulation of glutamate levels in the brain through systemic injections of glutamate and oxaloacetate. We show that pharmacological modulation of glutamate levels can neutralize the deleterious effects of hyperthermia and the beneficial effects of hypothermia, however the analysis of the inflammatory response and metabolic rate, demonstrated that their effects on ischemic damage are less critical than glutamate excitotoxity. We conclude that glutamate excitotoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke.

  20. Description of the universal low-temperature measuring system

    International Nuclear Information System (INIS)

    Langfeld, R.; Maurer, C.

    1987-01-01

    There are various measuring methods for a characterization of semiconductor devices, especially for analysis of radiation effects after ion implantation. The four most important methods are: 1. Recording of voltage-current characteristics at pn-junctions or Schottky diodes. 2. Determination of the temperature dependence of the electrical resistance, e.g. of amorphous semiconductor layers, by feeding a constant voltage and measuring the current as a function of sample temperature. 3. Measurement of the resistive layer capacitance of a semiconductor diode as a function of the fed blocking voltage and determination of the doping concentration profile. 4. Time-resolved capacitance measurement after abrupt blocking-voltage alterations at pn - or Schottky diodes as a function of specimen temperature for determining defects in semiconductors, DLTS method. A measuring equipment has been set up that allows measurements being made in the temperature range between 14 K and 400 K, on up to eight specimens in one temperature test. Operating mode and handling of the computerized measuring program are described. (orig./HP) [de