WorldWideScience

Sample records for body temperature measurements

  1. A Microwave Radiometer for Internal Body Temperature Measurement

    Science.gov (United States)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  2. Microchip-based body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Nielsen, Jens; Lohse, Louise

    In the present study, we tested whether an electronic identification and body temperature monitorring technology presently applied in small experimental animals could be transferred for use in pigs....

  3. Implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    thermometer. This work, however, can be quite time consuming and laborious, and further compromising the immediate well-fare of the pig, when restraining of the individual animal is necessary. Therefore, an electronic body monitoring system using implantable microchip transponders for measuring peripheral...... body temperature was tested, in order to evaluate the utility and reliability of this tool, in domestic pigs. The system is presently used and well optimized in small laboratory animals [1, 2]. We tested the microchip transponders during experimental infection of pigs with classical swine fever virus...... microchip transponder was injected deep subcutaneously by the left ear base of each individual. The transponder was before insertion programmed with ID identical to the individual pig’s ear tag number. The pigs were randomly divided into 3 groups: one group placebo-infected and two groups virus...

  4. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  5. Body temperature measurements in pigs during general anaesthesia.

    Science.gov (United States)

    Musk, G C; Costa, R S; Tuke, J

    2016-04-01

    The aim was to compare rectal, pharyngeal and oesophageal temperature measurements in anaesthetized pigs. Data were compared using the Bland-Altman method, and correlation coefficients and error measures were calculated. Sixty-six sets of data were collected from 16 pigs weighing 16.2 ± 4.2 kg. The bias (and 95% limit of agreement) for rectal and pharyngeal compared with oesophageal temperature were 0.69 (-1.18 to 2.57) ℃ and 0.22 (-0.84 to 1.28) ℃, respectively. The correlation coefficients for rectal and pharyngeal compared with oesophageal temperature were 0.47 and 0.87, respectively. The absolute error for rectal and pharyngeal compared with oesophageal temperature was 0.7 ± 0.9℃ and 0.2 ± 0.5℃, respectively. Pharyngeal temperature measurement may be more suitable than rectal temperature measurement for estimation of oesophageal temperature during general anaesthesia of pigs.

  6. Prediction of human core body temperature using non-invasive measurement methods

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  7. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal batt

  8. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    Science.gov (United States)

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  9. Low-cost compact thermal imaging sensors for body temperature measurement

    Science.gov (United States)

    Han, Myung-Soo; Han, Seok Man; Kim, Hyo Jin; Shin, Jae Chul; Ahn, Mi Sook; Kim, Hyung Won; Han, Yong Hee

    2013-06-01

    This paper presents a 32x32 microbolometer thermal imaging sensor for human body temperature measurement. Waferlevel vacuum packaging technology allows us to get a low cost and compact imaging sensor chip. The microbolometer uses V-W-O film as sensing material and ROIC has been designed 0.35-um CMOS process in UMC. A thermal image of a human face and a hand using f/1 lens convinces that it has a potential of human body temperature for commercial use.

  10. Agreement between auricular and rectal measurements of body temperature in healthy cats.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C

    2013-04-01

    Measurement of body temperature is a routine part of the clinical assessment of a patient. However, this procedure may be time-consuming and stressful to most animals because the standard site of temperature acquisition remains the rectal mucosa. Although an increasing number of clinicians have been using auricular temperature to estimate core body temperature, evidence is still lacking regarding agreement between these two methods in cats. In this investigation, we evaluated the agreement between temperatures measured in the rectum and ear in 29 healthy cats over a 2-week period. Temperatures were measured in the rectum (using digital and mercury-in-glass thermometers) and ear once a day for 14 consecutive days, producing 406 temperature readings for each thermometer. Mean temperature and confidence intervals were similar between methods, and Bland-Altman plots showed small biases and narrow limits of agreement acceptable for clinical purposes. The interobserver variability was also checked, which indicated a strong correlation between two near-simultaneous temperature readings. Results are consistent with auricular thermometry being a reliable alternative to rectal thermometry for assessing core body temperature in healthy cats.

  11. Human thermoregulation and measurement of body temperature in exercise and clinical settings.

    Science.gov (United States)

    Lim, Chin Leong; Byrne, Chris; Lee, Jason Kw

    2008-04-01

    This review discusses human thermoregulation during exercise and the measurement of body temperature in clinical and exercise settings. The thermoregulatory mechanisms play important roles in maintaining physiological homeostasis during rest and physical exercise. Physical exertion poses a challenge to thermoregulation by causing a substantial increase in metabolic heat production. However, within a non-thermolytic range, the thermoregulatory mechanisms are capable of adapting to sustain physiological functions under these conditions. The central nervous system may also rely on hyperthermia to protect the body from "overheating." Hyperthermia may serve as a self-limiting signal that triggers central inhibition of exercise performance when a temperature threshold is achieved. Exposure to sub-lethal heat stress may also confer tolerance against higher doses of heat stress by inducing the production of heat shock proteins, which protect cells against the thermolytic effects of heat. Advances in body temperature measurement also contribute to research in thermoregulation. Current evidence supports the use of oral temperature measurement in the clinical setting, although it may not be as convenient as tympanic temperature measurement using the infrared temperature scanner. Rectal and oesophagus temperatures are widely accepted surrogate measurements of core temperature (Tc), but they cause discomfort and are less likely to be accepted by users. Gastrointestinal temperature measurement using the ingestible temperature sensor provides an acceptable level of accuracy as a surrogate measure of Tc without causing discomfort to the user. This form of Tc measurement also allows Tc to be measured continuously in the field and has gained wider acceptance in the last decade.

  12. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    2010-01-01

    Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV). Subcutaneous tissue temperatures obtained by the implantable...... temperature. To test the stability of the monitoring system in a larger group of pigs, transponders were therefore inserted by the left ear base in a subsequent infection experiment with 30 pigs. Results Generally, the microchip transponders measured a subcutaneous tissue temperature, which was about 1º...

  13. Influence of ambient temperature on whole body and segmental bioimpedance spectroscopy measurements

    Science.gov (United States)

    Medrano, G.; Bausch, R.; Ismail, A. H.; Cordes, A.; Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Bioimpedance spectroscopy (BIS) measurements are easy to implement and could be used for continuous monitoring. However, several factors (e.g. environment temperature) influence the measurements limiting the accuracy of the technology. Changes in skin temperature produced by changes in ambient temperature are related with changes in skin blood flow and skin impedance. It is assumed that skin impedance change is responsible for the error observed in whole body and segmental measurements. Measurements including body parts more distant from the torso seem to be more affected. In the present article skin and segment impedance have been performed on healthy subjects under extreme changes in environment temperature (13-39 °C). A commercial BIS device with a range between 5 kHz and 1 MHz has been used for the measurements. The results indicate that not only skin impedance, but also impedance of deeper tissue (e.g. muscle) may be responsible for the influence of environment temperature on BIS measurements. Segmental (knee-to-knee) BIS measurements show a relative change of only 2 %, while forearm and whole body impedance changed 14 % and 8 % respectively.

  14. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature.

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-07

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability.

  15. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  16. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  17. Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions.

    Science.gov (United States)

    Ammer, Stefanie; Lambertz, Christian; Gauly, Matthias

    2016-05-01

    The aim of the research described here was to compare different methods of body temperature (BT) measurements in dairy cows. It was hypothesised that reticular temperature (RET) values reflect the physiological status of the animals in an equivalent way to rectal (RT) and vaginal (VT) measurements. RT, VT and RET temperatures of twelve lactating Holstein-Friesian cows were measured over five consecutive days in June and October 2013. While RT and VT were manually measured three times a day, RET was automatically recorded at 10 min intervals using a bolus in the reticulum. For comparison with RT and VT, different RET values were used: single values at the respective recording times (RET-SIN), and mean (RET-MEAN) and median (RET-MED) values of 2 h prior to RT and VT measurements. Overall, body temperatures averaged 38·1 ± 0·6, 38·2 ± 0·4, 38·7 ± 0·9, 38·5 ± 0·7 and 38·7 ± 0·5 °C for RT, VT, RET-SIN, RET-MEAN and RET-MED, respectively. RT and VT were lower than all RET measurements, while RET-SIN and RET-MED were higher than RET-MEAN (P < 0·001). RET-MEAN and RET-MED values were higher in the morning, whereas RT and VT were greatest in the evening (P < 0·001). Overall, records of RT and VT were strongly correlated (r = 0·75; P < 0·001). In contrast to RET-SIN and RET-MEAN, RET-MED was higher correlated to RT and VT. In June, coefficients were higher between all methods than in October. Relation of barn T to RT and VT was stronger when compared to RET measurements. RET-SIN was higher correlated to barn T than RET-MEAN or RET-MED. Correlation between VT and barn T was strongest (r = 0·48; P < 0·001). In summary, RET-MED showed highest correlation with VT and RT. However, single RET measurements (influenced by water or feed intake) can lead to extreme variations and differences to single VT and RT values.

  18. Zero-Heat-Flux Thermometry for Non-Invasive Measurement of Core Body Temperature in Pigs.

    Directory of Open Access Journals (Sweden)

    Maria Guschlbauer

    Full Text Available Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, temperature surveillance is a prerequisite in general anesthesia settings during experimental surgeries. The gold standard to measure the core body temperature (Tcore is placement of a Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. Therefore, Tcore is commonly examined in the urine bladder and rectum. However, these procedures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux (ZHF thermometry is an alternative, non-invasive method quantifying Tcore in human patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cranial anatomy is different to the human's, the optimal location of the patch remains unclear to date. The aim was to compare three different patch locations of ZHF thermometry in a porcine hypothermia model. Hypothermia (33.0 °C Tcore was conducted in 11 anesthetized female pigs (26-30 kg. Tcore was measured continuously by an invasive Swan-Ganz catheter in the pulmonary artery (Tpulm. A ZHF thermometry device was mounted on three different defined locations. The smallest average difference between Tpulm and TZHF during stable temperatures was 0.21 ± 0.16 °C at location A, where the patch was placed directly behind the eye. Also during rapidly changing temperatures location A showed the smallest bias with 0.48 ± 0.29 °C. Location A provided the most reliable data for Tcore. Therefore, the ZHF thermometry patch should be placed directly behind the left temporal corner of the eye to provide a non-invasive method for accurate measurement of Tcore in pigs.

  19. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography.

    Science.gov (United States)

    Wallage, A L; Gaughan, J B; Lisle, A T; Beard, L; Collins, C W; Johnston, S D

    2017-03-23

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT (r > 0.94, P  0.80, P < 0.001). Surgery produced temporary minor inflammation and scrotal hematoma in two animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  20. Accuracy of parents in measuring body temperature with a tympanic thermometer

    Directory of Open Access Journals (Sweden)

    Spady Donald W

    2005-01-01

    Full Text Available Abstract Background It is now common for parents to measure tympanic temperatures in children. The objective of this study was to assess the diagnostic accuracy of these measurements. Methods Parents and then nurses measured the temperature of 60 children with a tympanic thermometer designed for home use (home thermometer. The reference standard was a temperature measured by a nurse with a model of tympanic thermometer commonly used in hospitals (hospital thermometer. A difference of ≥ 0.5 °C was considered clinically significant. A fever was defined as a temperature ≥ 38.5 °C. Results The mean absolute difference between the readings done by the parent and the nurse with the home thermometer was 0.44 ± 0.61 °C, and 33% of the readings differed by ≥ 0.5 °C. The mean absolute difference between the readings done by the parent with the home thermometer and the nurse with the hospital thermometer was 0.51 ± 0.63 °C, and 72 % of the readings differed by ≥ 0.5 °C. Using the home thermometer, parents detected fever with a sensitivity of 76% (95% CI 50–93%, a specificity of 95% (95% CI 84–99%, a positive predictive value of 87% (95% CI 60–98%, and a negative predictive value of 91% (95% CI 79–98 %. In comparing the readings the nurse obtained from the two different tympanic thermometers, the mean absolute difference was 0.24 ± 0.22 °C. Nurses detected fever with a sensitivity of 94% (95 % CI 71–100 %, a specificity of 88% (95% CI 75–96 %, a positive predictive value of 76% (95% CI 53–92%, and a negative predictive value of 97% (95%CI 87–100 % using the home thermometer. The intraclass correlation coefficient for the three sets of readings was 0.80, and the consistency of readings was not affected by the body temperature. Conclusions The readings done by parents with a tympanic thermometer designed for home use differed a clinically significant amount from the reference standard (readings done by nurses with a model of

  1. Body Temperature and Mood

    Institute of Scientific and Technical Information of China (English)

    李冬

    2007-01-01

    Body temperature can affect how happy or unhappy we are when we wake up in the morning.During a day,our body temperature rises and falls at regular times.Although we don’t notice the change,it does affect our sleeping patterns.We grow tired and,in the end,we sleep.As a result,anyone who has a fast-rising temperature cycle is a"morning person"and can get out of bed quickly.And an"evening person", on the other hand,has a body temperature that rises slowly.It doesn’t reach its high point until mid-afternoon,when this person feels best.

  2. Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivity.

    Science.gov (United States)

    Sade, Sharon; Katzir, Abraham

    2004-03-20

    Infrared fiber optic radiometry was used for noncontact thermometry of gray bodies whose temperature was close to room temperature (40-70 degrees C). We selected three gray bodies, one with high emissivity (epsilon = 0.97), one with medium emissivity (epsilon = 0.71), and one with low emissivity (epsilon = 0.025). We carried out optimization calculations and measurements for a multiband fiber optic radiometer that consisted of a silver halide (AgClBr) infrared-transmitting fiber, a dual-band cooled infrared detector, and a set of 18 narrowband infrared filters that covered the 2-14-microm spectral range. We determined the optimal spectral range, the optimal number of filters to be used, and the optimal chopping scheme. Using these optimal conditions, we performed measurements of the three gray bodies and obtained an accuracy of better than 1 degrees C for body temperature and for room temperature. An accuracy of 0.03 was obtained for body emissivity.

  3. [A new method for the transcutaneous measurement of deep body temperature during anaesthesia and intensive care (author's transl)].

    Science.gov (United States)

    Jost, U; Hanf, K; Köhler, C O; Just, O H

    1978-04-01

    A new method for monitoring deep body temperature is described. It is based on the establishment, by means of electronic appliances, of a zone without heatflow from the deep tissues. The method is simple and the results compare favourably with those obtained by other procedures for measuring core temperature. The uses of this transcutaneous mehtod are discussed and its advantages and reliability in the operating theatre and intensive care unit are emphasized. It becomes less reliable if it is employed during and after extracorporeal circulation in hypothermia on account of the temperature gradient.

  4. Dinosaur fossils predict body temperatures.

    Directory of Open Access Journals (Sweden)

    James F Gillooly

    2006-07-01

    Full Text Available Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.

  5. Body Temperature Measurement Skills and Fever Knowledge of Caregivers with a Child Having Cancer

    Directory of Open Access Journals (Sweden)

    Begul Yagci-Kupeli

    2013-08-01

    Full Text Available Purpose: We did not encounter a study dealing with the knowledge of fever and attitudes of caregivers having children with a diagnosis of malignant disease toward fever in English literature. Materials and Methods: Caregivers of 124 pediatric oncology patients and 72 patients without any malignant disease were recruited and interviewed using a 26-item questionnaire about fever and its management in two hospital clinics in Diyarbakir, Turkey. Results: Seventy point one percent of the mothers in oncology group were illiterate and in 75% of the cases, caregiver was the mother of the patient. Most of the caregivers in control group (72.2% knew at least one harmful effect of high fever (p=0.001. The primary method of measurement however was palpation in both groups. 41.9% of the caregivers in oncology group knew the correct measurement of fever, but only 2.7% in control group (p=0.001. Resources of fever konowledge was mainly doctors and nurses in oncology group (p=0.001. Conclusion: Pediatric health care providers must have more initiative and exploit oppportunities on parental understanding of fever and its management. Educational interventions are needed to correct caregivers’ misconceptions about fever and to promote appropriate management of febrile pediatric oncology patients. [Cukurova Med J 2013; 38(4.000: 706-711

  6. Tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography.

    Science.gov (United States)

    Miyakawa, M

    1993-07-01

    The chirp radar-type microwave computed tomograph (CT) measures the temperature change in a human body noninvasively. The paper examines its feasibility. A chirp pulse signal between 1 and 2 GHz is radiated from the transmitting antenna to the phantom. The transmitted waves are detected by the receiving antenna, which is placed on the opposite side of the object, and the beat signal between the incident wave and the transmitted wave is produced by the mixer. By spectral analysis of the beat signal, only those signals transmitted on the straight line between the transmitting antenna and the receiving antenna are discriminated from multipath signals. The microwave tomogram can therefore be reconstructed easily using the conventional algorithms for an X-ray CT image. The microwave CT can use the chirp signal to remove the influence of multipath signals caused by diffraction and reflection. The imaging of dielectric materials with complicated structures is thus possible. The experimental results using phantoms show that the spatial resolution of this microwave CT is about 10 mm and that a two-dimensional distribution of temperature change can be measured.

  7. 玻璃体温计测量体温的研究进展%Research progress on body temperature measurement with glass thermometer

    Institute of Scientific and Technical Information of China (English)

    程建英; 王云娟; 李志伟

    2013-01-01

    介绍玻璃体温计的质量标准及检测,综述了玻璃体温计测量体温的研究现状,提出应规范玻璃体温计检测及测量体温方法.%It introduced the quality standards and testing of glass thermometer and reviewed the research status quo of body temperature measurement with glass thermometer. It put forward that one should make the glass thermometer check and body temperature measurement standard.

  8. Energetic consequences of field body temperatures in the green iguana

    NARCIS (Netherlands)

    Lichtenbelt, WDVM; Wesselingh, RA

    1997-01-01

    We investigated body temperatures of free-ranging green iguanas (Iguana iguana) on Curacao (Netherlands Antilles), and how metabolic costs and benefits of food processing affect body temperatures. Body temperatures of free-living iguanas were measured by radio telemetry. We also used a model, with a

  9. 测量人体温度的双脉冲超声波传感系统%Sensor system with double-pulse ultrasonic for measuring body temperature

    Institute of Scientific and Technical Information of China (English)

    吴水才; 夏雅琴; 贾丽芹; 彭见曙

    2001-01-01

    介绍了一种用于测量人体温度的双脉冲超声波传感系统,重点叙述了双超声波探头的设计。通过系统实验获取了超声回波信号,结果表明该传感系统完全满足设计要求。%The sensor system with double-pulse ultrasonic for measuring body temperature is introduced, and the design of double-ultrasonic probe is described.The signal of the ultrasonic echo is achieved by the system experiment, and the results show that the sensor system designed meets the needs of the measurement of body temperature.

  10. Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats.

    Science.gov (United States)

    Torrao, N A; Hetem, R S; Meyer, L C R; Fick, L G

    2011-03-26

    Body temperature was measured at five different body sites (retroperitoneum, groin, semimembranosus muscle, flank and shoulder) using temperature-sensitive microchips implanted in five female goats, and compared with the core body and rectal temperatures. Body temperature was measured while the goats were kept in different ambient temperatures, with and without radiant heat, as well as during a fever induced experimentally by injection of bacterial lipopolysaccharide. Bland-Altman limit of agreement analysis was used to compare the temperature measurements at the different body sites during the different interventions. Temperatures measured by the microchip implanted in the retroperitoneum showed the closest agreement (mean 0.2 °C lower) with core and rectal temperatures during all interventions, whereas temperatures measured by the microchips implanted in the groin, muscle, flank and shoulder differed from core body temperature by up to 3.5 °C during the various interventions.

  11. 3 - Dimensional Body Measurement Technology

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xu-dong; LI Yan-mei

    2002-01-01

    3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.

  12. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  13. Studies on time of death estimation in the early post mortem period -- application of a method based on eyeball temperature measurement to human bodies.

    Science.gov (United States)

    Kaliszan, Michał

    2013-09-01

    This paper presents a verification of the thermodynamic model allowing an estimation of the time of death (TOD) by calculating the post mortem interval (PMI) based on a single eyeball temperature measurement at the death scene. The study was performed on 30 cases with known PMI, ranging from 1h 35min to 5h 15min, using pin probes connected to a high precision electronic thermometer (Dostmann-electronic). The measured eye temperatures ranged from 20.2 to 33.1°C. Rectal temperature was measured at the same time and ranged from 32.8 to 37.4°C. Ambient temperatures which ranged from -1 to 24°C, environmental conditions (still air to light wind) and the amount of hair on the head were also recorded every time. PMI was calculated using a formula based on Newton's law of cooling, previously derived and successfully tested in comprehensive studies on pigs and a few human cases. Thanks to both the significantly faster post mortem decrease of eye temperature and a residual or nonexistent plateau effect in the eye, as well as practically no influence of body mass, TOD in the human death cases could be estimated with good accuracy. The highest TOD estimation error during the post mortem intervals up to around 5h was 1h 16min, 1h 14min and 1h 03min, respectively in three cases among 30, while for the remaining 27 cases it was not more than 47min. The mean error for all 30 cases was ±31min. All that indicates that the proposed method is of quite good precision in the early post mortem period, with an accuracy of ±1h for a 95% confidence interval. On the basis of the presented method, TOD can be also calculated at the death scene with the use of a proposed portable electronic device (TOD-meter).

  14. Temperature Error Analysis and Compensation of Revolving Body Measuring Machine%回转体测量机温度误差分析及补偿

    Institute of Scientific and Technical Information of China (English)

    陈文亮; 胡毓国; 李杏华; 洪燕

    2015-01-01

    Considering the influence of temperature on measurement precision of revolving body measur -ing machine , thermal deformation and measurement error induced by temperature were studied by combi-ning ANSYS simulation and mathematic calculation , and the main form of measurement error of revolving body measuring machine was analyzed .A mathematic model of error compensation was established based on the translation in x direction and the tilt in z direction of measuring frame .Dual-cycle method was used to compensate temperature error and then contrast experiments were carried out by measuring upper and lower reference rings respectively .Finally , the error of the workpiece was obtained with the math-ematic compensation model mentioned above , and then was used to compensate the measurement results . Experimental results show that the temperature error compensation model is effective and repeatability error was reduced from above 100 μm to about 16 μm, which can reduce the influence of temperature on measurement precision of measuring machine effectively and the measuring machine after compensation can work well under the environment with changing temperature .%针对温度对回转体测量机测量精度所产生的影响,结合ANSYS软件仿真及数学计算的方法研究了回转体测量机受温度影响产生的热变形及测量误差,分析了回转体测量机温度误差的主要表现形式。建立了一个以测量架在x方向上的平移和在z方向的倾斜为基础的误差补偿数学模型。采用双环法对测量机温度误差进行了补偿,进行了对比测量实验,实验中分别测量工件上下两个参考圆环的参数,再利用提出的数学补偿模型公式得出工件自身的误差结果,继而对测量结果进行补偿。实验数据显示:温度误差补偿模型合理有效,测量机的重复性误差从100μm以上下降为16μm左右,提出的温度误差补偿模型可以有效降低温度对测量

  15. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  16. Assessment of body composition by air-displacement plethysmography: influence of body temperature and moisture.

    Science.gov (United States)

    Fields, David A; Higgins, Paul B; Hunter, Gary R

    2004-04-01

    BACKGROUND: To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). METHODS: %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 +/- 11, weight (kg) 64 +/- 14, height (cm) 167 +/- 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. RESULTS: BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P BOD PODBH %fat (28.9%), body volume (61.7 L), and body density (1.0341 g/cm3). A significant increase in body temperature (~0.6 degrees C; P BOD PODBH and BOD PODFH. Body surface area was positively associated with the difference in %fat independent of changes in body temperature and moisture, r = 0.30, P BOD POD, however, the precise mechanism remains unidentified.

  17. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  18. Measurement Error Analysis and Calibration Technique of NTC- Based Body Temperature Sensor%一种基于NTC的体温传感器测量误差分析及校准技术

    Institute of Scientific and Technical Information of China (English)

    邓迟; 胡巍; 刁盛锡; 林福江; 钱大宏

    2015-01-01

    A NTC thermistor-based wearable body temperature sensor was designed. This paper described the design principles and realization method of the NTC-based body temperature sensor. In this paper the temperature measurement error sources of the body temperature sensor were analyzed in detail. The automatic measurement and calibration method of ADC error was given. The results showed that the measurement accuracy of calibrated body temperature sensor is better than±0.04oC. The temperature sensor has high accuracy, smal size and low power consumption advantages.%该文设计了一款基于NTC热敏电阻的可穿戴式体温传感器,阐述了基于NTC的体温传感器的设计原理及实现方法。文中对体温传感器的温度测量误差来源进行了详细分析,给出了ADC误差自动测量和校准的方法。实验结果表明,经校准后的体温传感器其测量精度误差小于±0.04 oC。该体温传感器具有精度高、体积小和功耗低的优点。

  19. Body temperature set-point and the conscious perception of skin temperature in obese women.

    Science.gov (United States)

    Zahorska-Markiewicz, B; Staszkiewicz, M

    1987-01-01

    Obese and control women were immersed in a bath of water kept at 37 degrees C. Oral temperature was measured. The subjects left hand was placed outside the bath for the local application of thermal stimuli between 20 degrees and 45 degrees C, subjects reporting the most pleasant temperature. The lower oral temperatures and lower levels of skin temperature rated as pleasant by obese women as compared with women of normal body weight or less suggests that in obesity the set-point of body temperature is lowered.

  20. Body temperature influence on time perception.

    Science.gov (United States)

    Hancock, P A

    1993-07-01

    The chemical clock hypothesis implies a causal link between body temperature and the perception of duration. A strict interpretation of this construct requires a common slope value in an Arrhenius plot that relates time to temperature for every individual tested. Previous studies testing this proposition have confirmed a general relationship for data summed across multiple subjects. However, the same studies raise doubts as to whether this relationship holds for each and every individual tested. Unfortunately, these investigations have been limited by methodological constraints, thus, one could argue that the strong isomorphism intrinsic to the chemical clock hypothesis has yet to be fairly tested. In the present experiment, I sought to distinguish the effects of selective head temperature changes on the estimation of duration. Nonlinear decreases in estimated duration were observed with ascending deep auditory canal temperature. These findings support the contention of a thermally stable region of temporal perception bounded by conditions in which temporal estimates directly depend on body temperature. In contradicting physiological adequacy as an explanatory construct, the present results suggest a direct relationship between time perception and the homeothermic platform. I compare these results with earlier findings concerning the chemical clock concept and examine respective discrepancies as a basis for a fuller understanding of a temporal phenomenon that is frequently referred to as the internal clock.

  1. A thermosensory pathway that controls body temperature.

    Science.gov (United States)

    Nakamura, Kazuhiro; Morrison, Shaun F

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

  2. Direct Measuring Methods of Water Vapor Content and Air Velocity at High Temperature using ZrO2-MgO Gas Chemisorption Type Ceramic Body

    Science.gov (United States)

    Nomura, Tomohiro; Nishimura, Nobuya; Shiba, Tooru; Hyodo, Tsutomu

    The control of humidity or air velocity as well as temperature is imperative for industrial process equipment such as air conditioners, dryers. At present, much about humidity sensors has been reported, and recently, ceramic sensors have been used with improved results. However, the effective operating temperature of these sensors for a direct measurement of the humidity is about 423 K at the highest. From the various ceramic sensors so far investigated, the authors selected composite ceramics ZrO2-MgO with porous structure and n-type semiconductor for humidity sensing at high temperature. This is because, when the working temperature of the ceramic sensor is between 673 and 973K, the sensor detects the presence of water vapor and gas velocity by the variations in the electronic condition caused by the reversible of the water vapor. From the test, the sensor that use a single sensing ceramic element can detect directly both the water vapor content in a mixed gas of air and superheated vapor in the temperature range 373-773 K and the air velocity(O.5-4m/s) in the range 373-573K.

  3. Basal body temperature recordings in spontaneous abortion.

    Science.gov (United States)

    Cohen, J; Iffy, L; Keyser, H H

    1976-01-01

    Basal body temperature (BBT) charts taken during the cycle of conception in cases that resulted in spontaneous abortion appear to provide the best available information concerning events associated with time of fertilization in doomed gestations. This study is based on a series of 227 patients who had early spontaneous abortion occurring between January 1967 and December 1974. A diagnosis of pregnancy initiated regular assays of urinary estrogen and pregnanediol excretion. Patients were instructed to report any bleeding episode which might occur, and to preserve all tissues that might be expelled. A total of 11 basal body temperature charts were obtained from patients who had subsequent early spontaneous abortion. Chromosome studies and histologic investigations were conducted. Another group of 11 consecutive BBT records were obtained from patients who had normal deliveries. The study shows that women with normal cycles experience a midcycle temperature rise requiring 1 to 3 days. In subsequent patients, this time limit was exceeded in 7 out of 11 cases of early abortion, and in 4 of 11 fertilization that resulted in an apparently normal gestation and infant. As temperature rise resulted from vigorous progesterone secretion by the corpus luteum, subnormal levels indicate inadequate steroidogenesis in the early luteal phase, and falling estrogen and progesterone levels predicted fetal demise in all cases. These findings are useful in the management of early pregnancy that follows repeated spontaneous first trimester abortions or a prolonged period of infertility. They also confirm experimental and clinical evidence regarding the role of ovulation defects in the occurrence of various types of reproductive wastage, including early abortion, anatomic and chromosome defects of the embryo and others. Prospective studies of cycles of conception through BBT recordings/hormone assays may shed light in the understanding of defects of human reproduction.

  4. [Temperature Measurement with Bluetooth under Android Platform].

    Science.gov (United States)

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development.

  5. Temperature Measurements in the Magnetic Measurement Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  6. Comparative Study of Body Temperature and Measuring Speed Among Several Thermometers%几种体温计测量体温和测温速度的比较

    Institute of Scientific and Technical Information of China (English)

    王薇薇; 郭鑫媛; 杨琳; 王杨柳; 张蕾; 张松; 杨益民

    2011-01-01

    目的 目前市场上体温计的种类很多,但各类体温计测量的体温和测温速度不尽相同.本文通过温度试验对五种不同原理和不同品牌的体温计测量的体温和测量速度进行了对比研究.方法 以水银体温计为温度测量的标准,使用额温体温计、耳温体温计、电子体温计和伟伦体温计分别测量受试者体温,对四种体温计测量的体温和测温速度进行对比分析.结果 伟伦体温计测量的腋温与水银体温计测量腋温没有统计学差异;电子体温计测量的腋温、额温测温计测量的额温和耳温测温计测量的耳温与水银体温计测量的腋温相比有统计学差异.耳温体温计测量耳温的时间最短,但有4s的复位时间,且易因操作不当产生误差;额温体温计在4s左右温度会达到稳定;电子体温计测温时间最长,连续使用时需要3s复位;伟伦体温计测量口腔温度较快,但连续测量时脱去和再次取用口套约需3s,伟伦体温计测量腋温时间相对其它腋温测量方式最短.结论 耳温体温计与额温体温计测量温度方便、快速,能够满足快速体温测量场合的需要,但其测量的额温或耳温与水银体温计测量的腋温有一定差异;伟伦体温计和电子体温计测量的腋温与水银体温计测量的腋温相比,伟伦体温计更为快速、准确.%Objective There are many types of thermometers on the market, however the body temperature and measuring speed of thermometer are different. In this paper, a comparative study of body temperature and measuring speed among five thermometers, which work in different principles and are with different brands, was performed. Methods With the mercury thermometer as standard, forehead thermometer, ear thermometer, electronic thermometer and Welch Allyn thermometer were enclosed to measure subjects' body temperature. And the body temperature and measuring speed of four thermometers were investigated. Results

  7. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  8. FastStats: Body Measurements

    Science.gov (United States)

    ... for the U.S. Measured average height, weight, and waist circumference for adults ages 20 years and over Men: Height (inches): 69.3 Weight (pounds): 195.5 Waist circumference (inches): 39.7 Women: Height (inches): 63.8 ...

  9. Determining seabird body condition using nonlethal measures.

    Science.gov (United States)

    Jacobs, Shoshanah R; Elliott, Kyle; Guigueno, Mélanie F; Gaston, Anthony J; Redman, Paula; Speakman, John R; Weber, Jean-Michel

    2012-01-01

    Energy stores are critical for successful breeding, and longitudinal studies require nonlethal methods to measure energy stores ("body condition"). Nonlethal techniques for measuring energy reserves are seldom verified independently. We compare body mass, size-corrected mass (SCM), plasma lipids, and isotopic dilution with extracted total body lipid content in three seabird species (thick-billed murres Uria lomvia, all four measures; northern fulmars Fulmarus glacialis, three measures; and black-legged kittiwakes Rissa tridactyla, two measures). SCM and body mass were better predictors of total body lipids for the species with high percent lipids (fulmars; R2 = 0.5-0.6) than for the species with low percent lipids (murres and kittiwakes; R2 = 0.2-0.4). The relationship between SCM and percent body lipids, which we argue is often a better measure of condition, was also poor (R2 SCM be used as an index of energy stores only when lipids exceed 15% of body mass. Across all three species we measured, SCM based on the ordinary least squares regression of mass on the first principal component outperformed other measures. Isotopic dilution was a better predictor of both total body lipids and percent body lipids than were mass, SCM, or plasma lipids in murres. Total body lipids decreased through the breeding season at both sites, while total and neutral plasma lipid concentrations increased at one site but not another, suggesting mobilization of lipid stores for breeding. A literature review showed substantial variation in the reliability of plasma markers, and we recommend isotopic dilution (oxygen-18, plateau) for determination of energy reserves in birds where lipid content is below 15%.

  10. Black Body Detector Temperature from Gall and Planck Perspectives

    Science.gov (United States)

    Gall, Clarence A.

    2009-05-01

    The laws of Gall (http://sites.google.com/site/purefieldphysics) and Planck are generally defined with zero intensity at 0 K. However actual measurements involve detectors above absolute zero. These detectors must also be treated as approximate black body radiators. The zero intensity reference point is thus defined by the radiated intensity at the detector temperature. Planck's law thus becomes ( IP=c1λ^51e^c2λT;-1-c1λ^51e^c2λTd;-1) where Td is the detector temperature. Provided that T>Td;;;IP;is;always>0. Thus from a Planck perspective, wavelength increase should not be a factor in defining detector temperature. The corresponding expression for Gall's law is ( IG=σT^6b^2λe^-λTb-σTd^6b^2λe^-λTdb) . Above the crossover wavelength (http://absimage.aps.org/image/MWSMAR09-2008-000004.pdf), even though T>Td;;;IG<0. From a Gall perspective, this sets a limit on the long wavelength range for a given detector temperature. Longer wavelength measurements require lower detector temperatures. For a 6000 K black body radiator, the long wavelength crossover limits for detectors at 300 K, 100 K and 4 K are 9.138, 12.066 and 21.206 microns respectively.

  11. Measurement of Body Composition in Children.

    Science.gov (United States)

    Lohman, T. G.

    1982-01-01

    Identification and treatment of obesity in children is believed to be an important factor in its control during the adult years. Laboratory and field methods for body composition measurement are described along with estimates of body fat content from anthropometric dimensions. (CJ)

  12. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  13. Prediction of Core Body Temperature from Multiple Variables.

    Science.gov (United States)

    Richmond, Victoria L; Davey, Sarah; Griggs, Katy; Havenith, George

    2015-11-01

    This paper aims to improve the prediction of rectal temperature (T re) from insulated skin temperature (T is) and micro-climate temperature (T mc) previously reported (Richmond et al., Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing. Physiol Meas 2013; 34:1531-43.) using additional physiological and/or environmental variables, under several clothing and climatic conditions. Twelve male (25.8±5.1 years; 73.6±11.5kg; 178±6cm) and nine female (24.2±5.1 years; 62.4±11.5kg; 169±3cm) volunteers completed six trials, each consisting of two 40-min periods of treadmill walking separated by a 20-min rest, wearing permeable or impermeable clothing, under neutral (25°C, 50%), moderate (35°C, 35%), and hot (40°C, 25%) conditions, with and without solar radiation (600W m(-2)). Participants were measured for heart rate (HR) (Polar, Finland), skin temperature (T s) at 11 sites, T is (Grant, Cambridge, UK), and breathing rate (f) (Hidalgo, Cambridge, UK). T mc and relative humidity were measured within the clothing. T re was monitored as the 'gold standard' measure of T c for industrial or military applications using a 10cm flexible probe (Grant, Cambridge, UK). A stepwise multiple regression analysis was run to determine which of 30 variables (T is, T s at 11 sites, HR, f, T mc, temperature, and humidity inside the clothing front and back, body mass, age, body fat, sex, clothing, Thermal comfort, sensation and perception, and sweat rate) were the strongest on which to base the model. Using a bootstrap methodology to develop the equation, the best model in terms of practicality and validity included T is, T mc, HR, and 'work' (0 = rest; 1 = exercise), predicting T re with a standard error of the estimate of 0.27°C and adjusted r (2) of 0.86. The sensitivity and specificity for predicting individuals who reached 39°C was 97 and 85%, respectively. Insulated skin temperature was the most important individual

  14. The effect of stress on core and peripheral body temperature in humans.

    Science.gov (United States)

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  15. Analysis of the best time of body temperature measured after physical cooling%物理降温后测量体温的最佳时间探讨

    Institute of Scientific and Technical Information of China (English)

    张倩; 姜岚; 杨佳红; 谭玲; 马红波

    2011-01-01

    Objective To investigate the best time of body temperature measured after physical cooling. Methods 90 patients with T≥38.5℃ were randomly divided into three groups of children received sponge bath with warm water (CW group), adult sponge bath with warm water (AW group) and adult sponge bath with alcohol (AA group). The body temperatures were measured and assessed before sponge bath (T0) and after 30 min (Ti) , 45 min (T2), 60 min (T3) and 75 min (T4) of the end sponge bath. Results The body temperatures at T3 were lower than that at T0-2 (P<0.01) , and the temperatures of three groups were equivalent at the same time point (P>0. 05 ). Conclusion The best time of body temperature measured was at 60 minutes after physical cooling, and there was no significant impact on the cooling effect by taking alcohol or warm water sponge bath.%目的 探讨物理降温后测量体温的最佳时间.方法 将90例T≥38.5℃的患者随机均分成3组,分别接受小儿温水擦浴(CW组)、成人温水擦浴(AW组)和成人酒精擦浴(AA组),测量并记录基础体温(T0)及擦浴结束后30分钟(T1)、45分钟(T2)、60分钟(T3)、75分钟(T4)患者的体温.结果 与T0~2时间点体温比较,患者在T3时间点上体温降至最低(P<0.01);在同一时间点的组间比较,3组体温下降无统计学意义(P>0.05).结论 物理降温后测量体温的最佳时间为60分钟,采取酒精或温水擦浴对降温效果无明显影响.

  16. Integrated Emissivity And Temperature Measurement

    Science.gov (United States)

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  17. Non-contact temperature measurement

    Science.gov (United States)

    Nordine, Paul C.; Krishnan, Shankar; Weber, J. K. R.; Schiffman, Robert A.

    Three methods for noncontact temperature measurement are presented. Ideal gas thermometry is realized by using laser-induced fluorescence to measure the concentration of mercury atoms in a Hg-Ar mixture in the vicinity of hot specimens. Emission polarimetry is investigated by measuring the spatially resolved intensities of polarized light from a hot tungsten sphere. Laser polarimetry is used to measure the optical properties, emissivity, and, in combination with optical pyrometry, the temperature of electromagnetically levitated liquid aluminum. The precision of temperature measurements based on the ideal gas law is + or - 2.6 percent at 1500-2000 K. The polarized emission technique is found to have the capability to determine optical properties and/or spectral emissivities of specimens over a wide range of wavelengths with quite simple instruments.

  18. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  19. Non-invasive, transient determination of the core temperature of a heat-generating solid body.

    Science.gov (United States)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-02

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  20. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    Science.gov (United States)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  1. Diet and body temperature in mammals and birds

    OpenAIRE

    Clarke, Andrew; O'Connor, Mary I.

    2014-01-01

    Aim We test the hypothesis that endotherm body temperature varies with diet. Location Global terrestrial ecosystems. Methods We compile data from the literature on diet and body temperature in mammals and birds. We analyse these and demonstrate global macrophysiological patterns. Results In mammals, carnivores overall have a lower mean body temperature (Tb) than either herbivores or omnivores. However, within carnivores, those taking vertebrate prey have a h...

  2. [Flame temperature distribution measurement of solid propellants].

    Science.gov (United States)

    Zhao, Wen-hua; Zhu, Shu-guang; Li, Yan; Fang, Zhong-yan; Yang, Rong-jie; Li, Yu-ping; Zhang, Jie; Liu, Yun-fei

    2004-09-01

    Many high temperature bodies such as flame, in which chemical reactions are very complex, emit their own spectra. These emission spectra usually consist of the spectral lines, spectral bands and the continuous spectra. In some cases, the spectral lines gather together. It is very difficult to find the right single spectral line when the spectral line intensity method is used. To deal with this problem, the idea that the single spectral line intensity is replaced by the total intensity of many spectral lines to measure the temperature is mentioned. And the relative intensity method is also changed to deal with this idea. The measurement of the temperature distribution based on this improved method is successful, and the measurement results are compared with the results of the thermocouple method.

  3. Body temperatures of selected amphibian and reptile species.

    Science.gov (United States)

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  4. Michelson interferometer for measuring temperature

    OpenAIRE

    Xie, Dong; Xu, Chunling; Wang, Anmin

    2016-01-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  5. Contemporary methods of body composition measurement

    DEFF Research Database (Denmark)

    Fosbøl, Marie Ø; Zerahn, Bo

    2015-01-01

    . This review is focused on currently applied methods for in vivo measurement of body composition, including densitometry, bioimpedance analysis, dual-energy X-ray absorptiometry, computed tomography (CT), magnetic resonance techniques and anthropometry. Multicompartment models including quantification of trace......Reliable and valid body composition assessment is important in both clinical and research settings. A multitude of methods and techniques for body composition measurement exist, all with inherent problems, whether in measurement methodology or in the assumptions upon which they are based...... elements by in vivo neutron activation analysis, which are regarded as gold standard methods, are also summarized. The choice of a specific method or combination of methods for a particular study depends on various considerations including accuracy, precision, subject acceptability, convenience, cost...

  6. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  7. Measuring the Acceleration of a Rigid Body

    Directory of Open Access Journals (Sweden)

    Peter G. Martin

    1998-01-01

    Full Text Available Two methods to measure the six-degree-of-freedom acceleration of a point on a rigid body are presented. The first, referred to as the periphery scheme, makes use of three clusters of accelerometers mounted orthogonal to each other and coincident with the axes of the point. One of the clusters consists of the three accelerometers attached to a cube-shaped triaxial angular rate sensor (ARS. The second method, called the compact cube scheme, uses a single 3-accelerometer/ARS cluster that may be mounted anywhere on the rigid body. During impact tests with an instrumented rigid body, both methods produced measurements that were highly correlated near the time of peak acceleration. Whereas the compact cube scheme was more economical and easier to implement, the periphery scheme produced results that were less disrupted by instrument signal errors and noisy environments.

  8. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  9. Body temperature stability achieved by the large body mass of sea turtles.

    Science.gov (United States)

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses.

  10. Wide-range logarithmic radiometer for measuring high temperatures

    Science.gov (United States)

    Liston, E. M.

    1971-01-01

    Filter radiometer utilizing photomultiplier circuit, in which a direct-coupled amplifier varies dynode voltage to maintain constant anode current, measures rapid variations of temperature of white-hot charred body at 2000 K to 3000 K.

  11. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    OpenAIRE

    Shoucheng Ding

    2013-01-01

    In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to...

  12. Estimation of Body Weight from Body Size Measurements and Body Condition Scores in Dairy Cows

    DEFF Research Database (Denmark)

    Enevoldsen, Carsten; Kristensen, T.

    1997-01-01

    regimen. Results from this study indicate that a reliable model for estimating BW of very different dairy cows maintained in a wide range of environments can be developed using body condition score, demographic information, and measurements of hip height and hip width. However, for management purposes......The objective of this study was to evaluate the use of hip height and width, body condition score, and relevant demographic information to predict body weight (BW) of dairy cows. Seven regression models were developed from data from 972 observations of 554 cows. Parity, hip height, hip width......, substantial improvements can be obtained by developing models that are specific to a given site....

  13. Hypercoagulability in response to elevated body temperature and central hypovolemia

    DEFF Research Database (Denmark)

    Meyer, Martin; Ostrowski, Sisse R; Overgaard, Flemming Anders;

    2013-01-01

    Coagulation abnormalities contribute to poor outcomes in critically ill patients. In trauma patients exposed to a hot environment, a systemic inflammatory response syndrome, elevated body temperature, and reduced central blood volume occur in parallel with changes in hemostasis and endothelial...... damage. The objective of this study was to evaluate whether experimentally elevated body temperature and reduced central blood volume (CBV) per se affects hemostasis and endothelial activation....

  14. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    Science.gov (United States)

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits.

  15. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    Science.gov (United States)

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  16. High temperature skin friction measurement

    Science.gov (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  17. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    Science.gov (United States)

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors

  18. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    Science.gov (United States)

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.

  19. Type I collagen is thermally unstable at body temperature.

    Science.gov (United States)

    Leikina, E; Mertts, M V; Kuznetsova, N; Leikin, S

    2002-02-05

    Measured by ultra-slow scanning calorimetry and isothermal circular dichroism, human lung collagen monomers denature at 37 degrees C within a couple of days. Their unfolding rate decreases exponentially at lower temperature, but complete unfolding is observed even below 36 degrees C. Refolding of full-length, native collagen triple helices does occur, but only below 30 degrees C. Thus, contrary to the widely held belief, the energetically preferred conformation of the main protein of bone and skin in physiological solution is a random coil rather than a triple helix. These observations suggest that once secreted from cells collagen helices would begin to unfold. We argue that initial microunfolding of their least stable domains would trigger self-assembly of fibers where the helices are protected from complete unfolding. Our data support an earlier hypothesis that in fibers collagen helices may melt and refold locally when needed, giving fibers their strength and elasticity. Apparently, Nature adjusts collagen hydroxyproline content to ensure that the melting temperature of triple helical monomers is several degrees below rather than above body temperature.

  20. Effect of methergoline on body temperature in mice.

    Science.gov (United States)

    Cardano, C; Strocchi, P; Gonni, D; Walsh, M; Agnati, L F

    1977-03-01

    Serotonin (5-HT) involvement in body temperature regulation has been studied in mice by means of a 5-HT-selective blocking agent (methergoline). This drug causes an effect on body temperature which is dependent on environmental temperature. At environmental temperatures of 25 degrees C and 11 degrees C methergoline has a hypothermic effect, while at 36 degrees C environmental temperature, methergoline has a hyperthermic effect. At 25 degrees C environmental temperature, the hypothermic effect induced by 125 mug/kg i.p. of methergoline could be antagonized by low doses of LAE-32 (80 mug/kg s.c.), while there was not such an antagonism using higher doses of LAE-32 (100 and 300 mug/kg s.c.). This has been explained using Jalfre's hypothesis of the existence of 5-HT inhibitory and excitatory receptors.

  1. Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard

    Science.gov (United States)

    Ortega, Zaida; Pérez-Mellado, Valentín

    2016-11-01

    In temperate areas, seasonal changes entail a source of environmental variation potentially important for organisms. Temperate ectotherms may be adapted to the seasonal fluctuations in environmental traits. For lizards, behavioural adaptations regarding microhabitat selection could arise to improve thermoregulation during the different seasons. However, little is still known about which traits influence microhabitat selection of lizards and their adaptation to seasonality. Here we used Podarcis guadarramae to study the role of potential intrinsic (body size, sex, age) and environmental traits (air and substrate temperatures, wind speed, and sunlight) in the seasonal changes of body temperatures and microhabitat selection of lizards. We measured body temperatures of lizards in the same habitat during the four seasons and compared the climatic variables of the microhabitats selected by lizards with the mean climatic conditions available in their habitat. Body temperatures were similar for adult males, adult females, and juveniles within each season, being significantly higher in summer than in the other seasons, and in spring than in winter. The same pattern was found regarding substrate and air temperatures of the selected microhabitats. Wind speed and air temperature did not affect body temperatures, while body length was marginally significant and substrate temperatures and season did affect the body temperatures of lizards. Our results during the whole year support the idea that the seasonality could be the most important factor affecting body temperatures of these temperate species. Regarding microhabitat selection, environmental constraints, as environmental temperatures and wind speed, affected the seasonal changes on behavioural thermoregulation of lizards. This effect was similar between sexes and age classes, and was independent of body size. In addition, importance of sunlight exposure of the selected microhabitats (full sun, filtered sun, or shade) also

  2. Regulation of body temperature by some Mesozoic marine reptiles.

    Science.gov (United States)

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  3. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    DEFF Research Database (Denmark)

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David

    2009-01-01

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design...

  4. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Sira Maria Karvinen

    2016-07-01

    Full Text Available The production of heat , i.e. thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect body temperature. Here we use rat models that differ for maximal running capacity (Low capacity runners, LCR and High capacity Runners, HCR to study the connection between PA and body temperature. Ten HCR and ten LCR female rats were studied between 9 and 21 months of age. Rectal temperature of HCR and LCR rats was measured before and after one year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs 21 months of age. HCRs had on average 1.3C higher body temperature than LCRs (p < 0.001. Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a marked impact on the body temperature of HCRs (p < 0.001 allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c and OXPHOS contents in the skeletal muscle (p < 0.050. These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050, but not that of HCRs. In conclusion, rats born with high intrinsic aerobic capacity and better health have higher body temperature compared to rats born with low aerobic

  5. New algorithm for extreme temperature measurements

    NARCIS (Netherlands)

    Damean, N.

    2000-01-01

    A new algorithm for measurement of extreme temperature is presented. This algorithm reduces the measurement of the unknown temperature to the solving of an optimal control problem, using a numerical computer. Based on this method, a new device for extreme temperature measurements is projected. It co

  6. Temperature measurement in hollow contacts; Mesure de temperature dans un contact creux

    Energy Technology Data Exchange (ETDEWEB)

    Maftoul, J. [Schneider Electric, Groupe appareillage, Centre de recherches A2, 75 - Paris (France)

    2002-06-01

    When studying the behaviour of electric arcs, specifically as regards interaction with circuit-breaker contacts walls, precise measurements require sensors insensitive to strong electric and magnetic fields. This article discusses optical sensor technology, with optic fibre conveying radiation to a photo-sensor from the surface of the body whose temperature is being measured. Temperature is measured every 100 microseconds at several locations, by interpolation. (author)

  7. Effect of Ambient Temperature on Body Temperature and Rest Metabolic Rate in Apodemus chevrieri During Postnatal Development

    Directory of Open Access Journals (Sweden)

    Zhu Wan-long

    2014-05-01

    Full Text Available In order to investigate the ability of constant temperature and thermoregulation in Apodemus chevrieri, body temperature and rest metabolic rate (RMR were measured during postnatal development (1~42 day when the A. chevrieri exposed different ambient temperature. The result showed that: body temperature and RMR of pups in A. chevrieri increased according to the increase of ambient temperature during 1 day to 7 day, showed character of poikilotherms; body temperature of pups were lower in low temperature(5oC and 10oC, relatively and RMR significant increased when day age is 14 day, it indicated that the pups showed a certain degree of thermoregulation in this phase. Its thermoregulation ability developed quickly during 7 day to 14 day. RMR of pups was extreme significantly higher in low temperature than that in other temperature when day age was 21 day, it showed that the pups had some thermoregulation to low temperature stimulation. The RMR of pups was showed increasing trend in high temperature(35oC when 28 day; when day age was 35 day and 42 day, the thermal neutral zone were 22.5 to 30oC and approaching its adult level. All of these results indicated that pups of A. chevrieri in the different growing period had different thermogenesis and energy allocation to maintain stable to body temperature, thermogenesis was weaker in the early phase of postnatal development, most of energy is used to its growth. After pups were weaned, the ability of constant temperature and thermoregulation developed quickly to adjust variations of environment during postnatal development.

  8. Measuring Specific Heats at High Temperatures

    Science.gov (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  9. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Shoucheng Ding

    2013-01-01

    Full Text Available In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to real-time calibration. In order to calculate the antenna brightness temperature and then after signal conditioning circuit, which can show the temperature value, in order to achieve the detection of microwave temperature. Microwave-temperature measurement system hardware based on 89C51 microcontroller consists of the microwave temperature sensor, signal conditioning circuitry and chip control circuit, AD converter circuit and display circuit. The system software is by the main program, the AD conversion routines, subroutines and delay subprogram. The microwave temperature measurement characterize has: without gain fluctuations, without the impact of changes in the noise of the machine, to provide continuous calibration, wide dynamic range.

  10. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  11. The effect of myostatin genotype on body temperature during extreme temperature events.

    Science.gov (United States)

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L

    2013-07-01

    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P 0.05). The current study illustrated that a genotype × environment interaction exists for MG and 1-copy animals were more robust to environmental extremes in comparison with 0- or 2-copy animals.

  12. Assessing the reliability of thermography to infer internal body temperatures of lizards.

    Science.gov (United States)

    Barroso, Frederico M; Carretero, Miguel A; Silva, Francisco; Sannolo, Marco

    2016-12-01

    For many years lizard thermal ecology studies have relied on the use of contact thermometry to obtain internal body temperature (Tb) of the animals. However, with progressing technology, an interest grew in using new, less invasive methods, such as InfraRed (IR) pyrometry and thermography, to infer Tb of reptiles. Nonetheless few studies have tested the reliability of these new tools. The present study tested the use of IR cameras as a non-invasive tool to infer Tb of lizards, using three differently body-sized lacertid species (Podarcis virescens, Lacerta schreiberi and Timon lepidus). Given the occurrence of regional heterothermy, we pairwise compared thermography readings of six body parts (snout, eye, head, dorsal, hind limb, tail base) to cloacal temperature (measured by a thermometer-associated thermocouple probe) commonly employed to measure Tb in field and lab studies. The results showed moderate to strong correlations (R(2)=0.84-0.99) between all body parts and cloacal temperature. However, despite the readings on the tail base showed the strongest correlation in all three species, it was the eye where the absolute values and pattern of temperature change most consistently followed the cloacal measurements. Hence, we concluded that the eye would be the body location whose IR camera readings more closely approximate that of the animal's internal environment. Alternatively, other body parts can be used, provided that a careful calibration is carried out. We provide guidelines for future research using thermography to infer Tb of lizards.

  13. Relationships among Body Weight, Body Measurements and Estimated Feed Efficiency Characteristics in Holstein Friesian Cows

    Directory of Open Access Journals (Sweden)

    B. Bayram

    2006-01-01

    Full Text Available Data concerning body measurements, milk yield and body weights data were analysed on 101 of Holstein Friesian cows. Phenotypic correlations indicated positive significant relations between estimated feed efficiency (EFE and milk yield as well as 4 % fat corrected milk yield, and between body measurements and milk yield. However, negative correlations were found between the EFE and body measurements indicating that the taller, longer, deeper and especially heavier cows were not to be efficient as smaller cows

  14. Ultrasonic range measurements on the human body

    NARCIS (Netherlands)

    Weenk, D.; Beijnum, van B.J.F.; Droog, A.; Hermens, H.J.; Veltink, P.H.

    2013-01-01

    Ambulatory range estimation on the human body is important for the assessment of the performance of upper- and lower limb tasks outside a laboratory. In this paper an ultrasound sensor for estimating ranges on the human body is presented and validated during gait. The distance between the feet is e

  15. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Science.gov (United States)

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  16. Axillary and rectal temperature measurements in infants.

    OpenAIRE

    Morley, C J; Hewson, P H; Thornton, A. J.; Cole, T J

    1992-01-01

    Rectal and axillary temperatures were measured during the daytime in 281 infants seen randomly at home and 656 at hospital under 6 months old, using mercury-in-glass thermometers. The normal temperature range derived from the babies at home was 36.7-37.9 degrees C for rectal temperature and 35.6-37.2 degrees C for axillary temperature. Rectal temperature was higher than axillary in 98% of the measurements. The mean (SD) difference between rectal and axillary temperatures was 0.7 (0.5) degrees...

  17. Temperature control of thermal radiation from composite bodies

    Science.gov (United States)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  18. Perioperative core body temperatures effect on outcome after colorectal resections.

    Science.gov (United States)

    Geiger, Timothy M; Horst, Sara; Muldoon, Roberta; Wise, Paul E; Enrenfeld, Jesse; Poulose, Ben; Herline, Alan J

    2012-05-01

    The World Health Organization has set a standard of maintaining a core body temperature above 36°C in the perioperative period. The purpose of this study was to examine the relationship between both intraoperative temperature (IOT) and immediate postop core body temperature as it relates to postop complications. A retrospective analysis of a prospective database of patients who underwent an elective segmental colectomy without a stoma, for 3 diagnoses was performed. Six postoperative outcomes were examined: length of stay (LOS), placement of a nasogastric tube, return to the operating room, placement of an interventional drain, diagnosed leak, and surgical site infection (SSI). Statistics were calculated using a two-sample Wilcoxon rank-sum (Mann-Whitney) test. Seventy-nine patients met the inclusion criteria and there were no preoperative differences between the groups (those with a postop complication vs without). LOS > 9 days (36.64°C vs 35.98°C; P = 0.011) and clinical leak (37.06°C vs 35.99°C; P = 0.005) both had a statistically higher average IOT than those who did not. Patients with SSI trended to a higher IOT (36.44°C vs 35.99°C; P = 0.062). When the last IOT recorded was compared with the six outcomes, again length of stay and leak both were statistically significant (P = 0.018, P = 0.012) showing a higher temperature related to a higher complication rate. No other complications were related to IOT, nor did postop temperature relate to complication. In our data, relatively lower IOTs were protective for LOS and clinical leaks, with a trend of lower SSI rates. Further research is needed to fully endorse or refute the absolute recommendations for core body temperature.

  19. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  20. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  1. Black-body anomaly: analysis of temperature offsets

    Science.gov (United States)

    Szopa, M.; Hofmann, R.; Giacosa, F.; Schwarz, M.

    2008-04-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale ˜10-4 eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-l suppression, it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature black-body precision experiment.

  2. 基于光纤布拉格光栅的智能服装人体测温模型研究%Research on human body temperature measurement models of intelligent clothing based on optical fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    于晓刚; 苗长云; 李鸿强; 陈弘达; 习江涛; 杨海静; 张诚

    2011-01-01

    根据热量传递机理建立了智能服装中光纤布拉格光栅人体测温的热传递物理模型,对人体、空气层和服装之间的热传递进行了有限元建模和稳态热分析,确定了智能服装中光纤布拉格光栅温度场的数学模型,利用该数学模型对光纤布拉格光栅测量温度值进行了修正.在多点加权皮肤平均温度的基础上,提出了由左右胸、左右腋和后背五处皮肤温度构成的智能服装人体温度加权模型.由克拉默法则得出了智能服装人体温度加权系数:左前胸为0.0826,左腋为0.3706,右腋为0.3706,后背为0.0936,右前胸为0.0826.人体穿着智能服装的实验结果表明,基于光纤布拉格光栅的智能服装温度检测动态范围为33~42℃,人体温度测量误差为±0.2℃,可应用于人体温度的高精度监测.%A functioning prototype of intelligent biomedical clothing is introduced. It aims at the integration of optical fibers based sensors into functional textiles for extending the capabilities of wearable solutions for body temperature monitoring. According to the laws of human body physiology and heat transmission in fabric, the mathematical model of heat transmission between body and clothed FBG sensors is studied and the steady-state thermal analysis using ANSYS soft-ware is presented. The actual human body temperature can be corrected by the simulation results. Based on the skin temperature by a multi-weighted average, five points weight coefficient model using both sides chest, both sides axilla and back for the intelligent clothing human body temperature is presented. Using Cramer's Rule, the weighted coefficient of 0. 0826 for left chest, 0. 3706 for left axilla, 0. 3706 for right axilla, 0. 0936 for back and 0. 0826 for right chest is obtained. Experimental results show that it can detect the temperature of the dynamic around the 33~42°C and the analysis of a deviation is +0. 2°C. It can be applied to the human body

  3. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (pinsulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (pinsulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (pinsulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  4. Auto-measuring System of 3- Dimensional Human Body

    Institute of Scientific and Technical Information of China (English)

    李勇; 尚保平; 付小莉; 尚会超

    2001-01-01

    To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge Coupled Devices (CCD) and infrared sensors is presented in this paper. The system can measure the bare size of human body that excludes the effect of clothing quickly and accurately.

  5. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV.

  6. Measuring Moduli Of Elasticity At High Temperatures

    Science.gov (United States)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  7. Nocturnal body temperature in wintering blue tits is affected by roost-site temperature and body reserves.

    Science.gov (United States)

    Nord, Andreas; Nilsson, Johan F; Nilsson, J-Å

    2011-09-01

    Birds commonly use rest-phase hypothermia, a controlled reduction of body temperature (T(b)), to conserve energy during times of high metabolic demands. We assessed the flexibility of this heterothermic strategy by increasing roost-site temperature and recording the subsequent T(b) changes in wintering blue tits (Cyanistes caeruleus L.), assuming that blue tits would respond to treatment by increasing T(b). We found that birds increased T(b) when roost-site temperature was increased, but only at low ambient temperatures. Moreover, birds with larger fat reserves regulated T(b) at higher levels than birds carrying less fat. This result implies that a roosting blue tit maintains its T(b) at the highest affordable level, as determined by the interacting effect of ecophysiological costs associated with rest-phase hypothermia and energy reserves, in order to minimize potential fitness costs associated with a low T(b).

  8. Finger temperature controller for non-invasive blood glucose measurement

    Science.gov (United States)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  9. Dynamical Temperature of a One- Dimensional Many-Body Systerm in the Lennard-Jones Model

    Institute of Scientific and Technical Information of China (English)

    刘觉平; 袁保仑

    2001-01-01

    A new way to derive the formula of the dynamical temperature by using the invariance of the Liouville measure and the ergodicity hypothesis is presented, based on the invariance of the functional under the transformation of the measure. The obtained dynamical temperature is intrinsic to the underlying dynamics of the system. A molecular dynamical simulation of a one-dimensional many-body system in the Lennard-Jones model has been performed. The temperature calculated from the Hamiltonian for the stationary state of the system coincides with that determined with the thermodynamical method.

  10. Software tools for data modelling and processing of human body temperature circadian dynamics.

    Science.gov (United States)

    Petrova, Elena S; Afanasova, Anastasia I

    2015-01-01

    This paper is presenting a software development for simulating and processing thermometry data. The motivation of this research is the miniaturization of actuators attached to human body which allow frequent temperature measurements and improve the medical diagnosis procedures related to circadian dynamics.

  11. Liquid Crystal Quantitative Temperature Measurement Technique

    Institute of Scientific and Technical Information of China (English)

    Wei Lu; Zongshan Wu

    2001-01-01

    Quantitatve temperature measurement using wide band thermochromic liquid crystals is an "area" thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal's color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained.Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  12. Live weight and body measurement of Hungarian Thoroughbred broodmares

    Directory of Open Access Journals (Sweden)

    Szabolcs Bene

    2013-09-01

    Full Text Available Live weights and 21 body measurements of 110 adult brood mares from Thoroughbred breed were evaluated in Hungary. Body measurements and some body measure indices were determined. One way ANOVA was used to compare the studs. Regression equations were developed to estimate the live weight from body measurements. Population genetic parameters of the examined traits were estimated. Only few differences among studs, concerning evaluated body measurements, were presented - firstly: body measurements, related to the kilter and nutritional status (hearth girth - were significant. Between the mentioned traits and the live weight medium positive correlation (r = 0.47 - 0.79; P<0.01 was found. For the estimation of live weight with regression model the necessary data are as follows: hearth girth, 2nd width of rump and diagonal length of body. The determination coefficient was 0.80 (P<0.01. Height at withers, of back and at rump (h2 = 0.66, 0.67 and 0.51 showed medium heritability values. The heritability of depth of chest and height of bieler-point were 0.32 and 0.48, respectively. Quite small differences were found between the stallions in most of the body measurements. The live weight and height measurements were exceptions, as here the differences between the sires were slightly higher. As a conclusion it can be stated that the Thoroughbred population in Hungary is quite homogenous in terms of the most important body measurements.

  13. Acoustic CT system for temperature distribution measurement

    Institute of Scientific and Technical Information of China (English)

    Shinji Ohyama; Toyofumi Oga; Kazuo Oshima; Junya Takayama

    2008-01-01

    In this paper,a measurement method for crosssectional temperature distribution is addressed. A novel method based on an acoustic CT technique is proposed. Specifically,the temperature distributions are estimated using the time of flight data of several ultrasonic propagation paths. The times of the flight data contain both temperature and wind effect,and the method to select only temperature component is introduced. A filtered back projection method is applied to reconstruct the temperature distributions from the time of flight data. An experimental system was designed and fabricated to realize simultaneous temperature and wind velocity distribution measurements. Through this system,the effectiveness of the proposed measurement method is confirmed.

  14. Comparison of different methods of temperature measurement in children

    Directory of Open Access Journals (Sweden)

    Pavlović Momčilo

    2008-01-01

    Full Text Available Introduction The consequences of failing to notice fever in children can be serious. On the other hand, false positive reading can result in unnecessary investigation or diagnostic approach. The aim of this study was to compare different ways of body temperature measurement. Material and methods This prospective study was carried out on Pediatric Department of General Hospital in Subotica during 10 months (March-December 2006. In 263 children aged 1 month to 18 years of age, the body temperature was obtained from 4 measurement sites: tactile assessment, forehead and ear by electronic thermometer, rectal temperature in small children (up to 2 years of age or axillar temperature in older children by mercury thermometer. Tympanic thermometry was considered as a standard for fever detection. Results The sensitivity of rectal temperature to detect fever is 46.67%, while specificity is 92.19%. The sensitivity of fever detection by electronic thermometry on the forehead is lower according to rectal thermometry - 36.08%, while specificity is 95.18%. The lowest values of sensitivity are recorded in axillar thermometry (35.82%, specificity is 90.20%. The correlation coefficient is higher between tympanic and rectal temperature measurement (r=0.5076, p<0.0005, than between tympanic and forehead measurements (r=0.5076, p<0,0005, while the lowest was between tympanic and axillar measurement sites (r=0.4933, p<0.0005. Conclusions The results of our study and literature data show that the most accurate methods of thermometry are rectal measurement of body temperature in small children and tympanic thermometry in children over 2 years of age.

  15. Black-Body Anomaly: Analysis of Temperature Offsets

    CERN Document Server

    Szopa, Michal; Giacosa, Francesco; Schwarz, Markus

    2007-01-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale $\\sim 10^{-4} $eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-$l$ suppression it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature...

  16. Accurate measurement of unsteady state fluid temperature

    Science.gov (United States)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  17. Influence of the Environment on Body Temperature of Racing Greyhounds.

    Science.gov (United States)

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal

  18. Agreement between rectal and vaginal temperature measured with temperature loggers in dairy cows.

    Science.gov (United States)

    Suthar, Vishal; Burfeind, Onno; Maeder, Britta; Heuwieser, Wolfgang

    2013-05-01

    The overall objective of this study was to evaluate agreement between rectal (RT) and vaginal temperature (VT) measured with the same temperature loggers in dairy cows. Three experiments were conducted. The study began with a validation in vitro of 24 temperature loggers comparing them to a calibrated liquid-in-glass thermometer as a reference method. The association and agreement between the 24 temperature loggers with the reference method was r=0.996 (Ptemperature loggers were tested in 11 healthy post-partum cows (Experiment 2) and 12 early post-partum cows with greater body temperature (Experiment 3). Temperature loggers were set to record VT and RT at 1-min intervals. To prevent rectal and vaginal straining and potential expulsion of temperature logger an epidural injection of 2.5 ml of 2% Procain was administered. Association between RT and VT was r=0.92 (Ptemperature in Experiments 2 and 3, respectively. Furthermore the intra-class correlation coefficient between RT and VT measured with identical loggers within cows of Experiments 2 and 3 also demonstrated greater agreements (Ptemperature loggers can be used as a measure of body temperature in dairy cows.

  19. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2011-01-01

    Full Text Available The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  20. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    Science.gov (United States)

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  1. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  2. Dust Ejection from Planetary Bodies by Temperature Gradients: Laboratory Experiments

    CERN Document Server

    Kelling, Thorben; Kocifaj, Miroslav; Klacka, Jozef; Reiss, Dennis

    2011-01-01

    Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/(m*m) and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edges or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg/s for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which ...

  3. Measuring temperature rise during orthopaedic surgical procedures.

    Science.gov (United States)

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2016-09-01

    A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons.

  4. New Measuring Temperature Setup with Optical Probe①

    Institute of Scientific and Technical Information of China (English)

    HOUPeiguo; LIUJianming

    1997-01-01

    A new setup of measuring temperature is developed,which the probe is a micro-power consumptive one with CMOS circuit and is driven by optical power.For transmitting the measured signal and optical signal in a long distance,the fiber technology is applied in this setup.

  5. The effect of stress on core and peripheral body temperature in humans

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; Penning, Renske; Hellhammer, Juliane; Verster, Joris C.; Klaessens, John H. G. M.; Olivier, Berend; Kalkman, Cor J.

    2013-01-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature u

  6. Change in the body temperature of healthy term infant over the first 72 hours of life

    Institute of Scientific and Technical Information of China (English)

    李萌霞; 孙革; NEUBAUERHenning

    2004-01-01

    Objective:To determine the range of body temperature in a group of healthy Chinese term neonates over the first 72 hours of life and to assess the influence of body weight, gestational age and route of delivery.Method: All 200 consecutive cases of neonates delivered at our hospital from March to August 2001 were included in this retrospective study.Temperatures were measured immediately after delivery, after 30 minutes, 1 hour, 2 hours, 8 hours and 15 hours and on the 2nd and 3rd day. Axillary temperatures ranging from 36.5℃ to 37℃ were regarded as normal. No cases of maternal fever or systemic infection of the newborns were discovered. All infants were discharged in good general condition. Results:The mean rectal temperature at birth was 37.19℃. The lowest average temperature was reached at 1 hour after delivery (36.54℃) with a significant difference between natural delivery (36.48℃) and section (36.59℃) (P<0.05).Temperature subsequently rose to 36.70℃ at 8 hours and 36.78℃ at 15 hours (P<0.05).Hypothermia was seen in 51.8% and hypothermia in 42.5% of the patients.On the 3rd day after delivery, 96% of all temperatures were in the normal range. A significant relation was found between hypothermia and both low birth weight (P<0.001) and low gestational age (P<0.05).Conclusion: The reference range presently used did not include all physiological temperatures in the first 72 hours of life. Considering other factors,such as birth weight, route of delivery,gestational age and body temperature on the 2nd and 3rd day of life, may help to correctly assess the significance of temperatures beyond the reference range.

  7. Change in the body temperature of healthy term infant over the first 72 hours of life

    Institute of Scientific and Technical Information of China (English)

    LI Meng-xia (李萌霞); SUN Ge (孙革); NEUBAUER Henning

    2004-01-01

    Objective: To determine the range of body temperature in a group of healthy Chinese term neonates over the first 72 hours of life and to assess the influence of body weight, gestational age and route of delivery. Method: All 200 consecutive cases of neonates delivered at our hospital from March to August 2001 were included in this retrospective study. Temperatures were measured immediately after delivery, after 30 minutes, 1 hour, 2 hours, 8 hours and 15 hours and on the 2nd and 3rd day. Axillary temperatures ranging from 36.5 oC to 37 oC were regarded as normal. No cases of maternal fever or systemic infection of the newborns were discovered. All infants were discharged in good general condition. Results: The mean rectal temperature at birth was 37.19 ℃. The lowest average temperature was reached at 1 hour after delivery (36.54 ℃) with a significant difference between natural delivery (36.48 ℃) and section (36.59 ℃) (P<0.05). Temperature subsequently rose to 36.70 ℃ at 8 hours and 36.78 ℃ at 15 hours (P<0.05). Hypothermia was seen in 51.8% and hypothermia in 42.5% of the patients. On the 3rd day after delivery, 96% of all temperatures were in the normal range. A significant relation was found between hypothermia and both low birth weight (P<0.001) and low gestational age (P<0.05). Conclusion: The reference range presently used did not include all physiological temperatures in the first 72 hours of life. Considering other factors, such as birth weight, route of delivery, gestational age and body temperature on the 2nd and 3rd day of life, may help to correctly assess the significance of temperatures beyond the reference range.

  8. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  9. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  10. [Body temperature, Aldrete-Kroulik index, and patient discharge from the post-anesthetic recovery unit].

    Science.gov (United States)

    de Castro, Fernanda Salim Ferreira; Peniche, Aparecida de Cássia Giani; Mendoza, Isabel Yovana Quispe; Couto, Andréa Tamancoldi

    2012-08-01

    Patient discharge from post-anesthetic recovery (PAR) depends, among other factors, on normothermia and the patient's score on the Aldrete-Kroulik index. The objective of this study was to verify the relationship between the Aldrete-Kroulik index and body temperature in patients. This study was performed at the University of São Paulo University Hospital. Convenience sampling was used, and the sample consisted of 60 patients of ages between 18 and 60 years who underwent general anesthesia. The patients' body temperature was obtained by tympanic measurement, and the Aldrete-Kroulik index was measured on admission and at discharge from post-anesthetic recovery. The data were processed using SPSS, considering a significance level of 5%, and the Spearman and Wilcoxon tests were applied. In conclusion, no significant correlation was found between the two parameters for discharge.

  11. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  12. ESTIMATION OF LIVE BODY WEIGHT FROM LINEAR BODY MEASUREMENTS FOR FARTA SHEEP

    Directory of Open Access Journals (Sweden)

    MENGISTIE TAYE

    2012-01-01

    Full Text Available A study, to develop regression models for prediction of body weight from other linear body measurements, was conducted in Esite, Farta and Lai-Gaint districts of South Gondar, Amhara region. Records on body weight (BW and other linear body measurements (Body Length (BL, Wither Height (WH, Chest Girth (CH, Pelvic Width (PW and Ear Length (EL were taken from 941 sheep. Non-linear, simple linear and multiple linear regression models were developed using Statistical Package for Social Sciences (SPSS version 12.0. For the multiple linear regressions, step-wise regression procedures were used. Predicting models were developed for different age, sex and for the pool. Positive and significant (P<0.01 correlations were observed between body weight and linear body measurements for all sex and age groups. Among the four linear body measurements, heart girth had the highest correlation coefficient (except ear length in all age and sex groups which is followed by body length, height at wither and pelvic width. Heart girth was the first variable to explain more variation than other variables in both sex and age groups. The models developed had a coefficient of determination of 0.26 to 0.89; the highest coefficient of determination was depicted for male while the lowest was for dentition groups having two permanent incisors. Regression models in general were poor in explaining weight for the dentition groups above one pair of permanent incisors. Heart girth alone was able to estimate weight with a coefficient of determination of 0.77, for both sexes and the pool. The coefficient of determination of the fitted equations (in general decreased as the age of sheep advances indicating that the fitted equations can predict weight for younger sheep with better accuracy than for older ones. In general, much of the variation in weight was explained when many traits were included in the model. However, for ease of use and to avoid complexity at field condition, it is

  13. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  14. Body measurement s in relation to cockpit design

    Directory of Open Access Journals (Sweden)

    P.V. Krishna Iyer

    1966-01-01

    Full Text Available The paper deals with the major conclusions arising from the statistical analysis of 22 body Measurements of 691 airmen. Besides the upper and lower 95 per rent confidence limits for these characters, the regression equations for (i body a-eight on the measurement of abdomen, shoulder, elbow, seat maximum below hips and total height and (ii total height on knee height and thigh height, have also been given.

  15. Two-temperature method for measuring emissivity

    Science.gov (United States)

    Watson, K.

    1992-01-01

    Spectral emissivity can be uniquely determined from radiance measurements if the object can be observed at two different temperatures. The advantage of this approach is that the spectral emissivity is determined without a priori assumptions about spectral shape. Because the different temperatures are obtained by observing the scene at two times in the diurnal cycle (optimally after midday and midnight), the method assumes that emissivity is temporally invariant. This is valid for rocks and dry soils, not well established for vegetation, and not true when changes in soil moisture occur between the measurements. Accurate image registration and satisfactory signal:noise are critical factors that limit extensive use of this method. ?? 1992.

  16. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  17. Body composition as measured by in vivo neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Sawitsky, A.; Vartsky, D.; Yasumura, S.; Zanzi, I.; Gartenhaus, W.; Ellis, K.J.

    1979-01-01

    A large scale study is currently underway on the changes in body composition resulting from the cachexia of malignancy. The ultimate objective of the overall project is to assess the changes in body composition associated with hyperalimentation and other modes of nutritional support to cancer patients. The first phase of this study is now in progress. In this phase, a study is being made of a control group of normal patients to provide baseline data against which data from cancer patients can be evaluated. Total body nitrogen and potassium are measured in a group of normal men and women, and are analyzed as a function of age. Additionally, changes in skeletal mass (total body calcium) are also recorded, and body water is measured simultaneously with the use of tritiated water.

  18. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    Science.gov (United States)

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K. A. S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D. G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O'Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J. A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-10-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.

  19. Circadian characteristics of spontaneous physical activity and body temperature in narcoleptic patients

    Directory of Open Access Journals (Sweden)

    Xing XU

    2016-08-01

    Full Text Available Objective To assess circadian characteristics of spontaneous physical activity and deep body temperature in narcoleptic patients.  Methods Fourteen narcoleptic patients and 14 healthy age- and sex-matched control subjects were enrolled. Nocturnal polysomnography (PSG was recorded, followed by standard multiple sleep latency test (MSLT. Then all subjects were required to wear the actigraphy (actiwatch at home with continuous monitoring of spontaneous physical activity for 1-2 weeks and complete the daily sleep record. All subjects' deep body temperatures were measured at 20 time points.  Results In comparison with control subjects, PSG data suggested narcoleptic patients had significantly longer time in bed at night (P = 0.008, decreased sleep efficiency (P = 0.001, increased awakenings (P = 0.000, extended wake time after sleep onset (P = 0.000 and sleep onset rapid eye movement period (SOREMP, P = 0.002. MSLT data suggested decreased average sleep latency (P = 0.000 and increased SOREMPs (P = 0.000. Actigraphy data suggested increased nocturnal activity and nocturnal activity per hour (P = 0.000, for all, decreased daytime activity and daytime activity per hour (P = 0.000, for all and increased nocturnal activity per hour/daytime activity per hour (P = 0.000, for all. The deep body temperature in both groups showed significant circadian rhythms. The differences in mesor, amplitude and peak phase of deep body temperature between 2 groups had no statistical significance (P = 0.177, 0.730, 0.488.  Conclusions Narcoleptic patients are characterized by impaired circadian rhythm of sleep-wake and spontaneous physical activity. The limited effects on deep body temperature suggest the relative conservation of thermoregulation in narcolepsy. DOI: 10.3969/j.issn.1672-6731.2016.07.010

  20. A method for measuring the inertia properties of rigid bodies

    Science.gov (United States)

    Gobbi, M.; Mastinu, G.; Previati, G.

    2011-01-01

    A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.

  1. The acute and subchronic effect of 3,4-methylenedioxymethamphetamine on body temperature in rats

    Directory of Open Access Journals (Sweden)

    Simić Ivan

    2009-01-01

    Full Text Available Introduction. The consumption of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy is known to cause severe hyperthermia in humans. This is of extreme importance since ecstasy is often consumed at 'rave' parties, where dancing takes place in a warm environment, which may exacerbate the effect of MDMA on thermoregulation. The present study was performed in order to evaluate the effects of single and repeated administration of MDMA on body temperature in Wistar rats. Material and methods. The study included 72 male Wistar rats, housed in groups of four in cages at a room temperature of 222oC. They were divided in two groups. The rats in the first group were treated with oral solution of MDMA (5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg and their temperature was measured hourly until 8th hour. The rats in the second group were treated with oral solution of MDMA (5 mg/kg, 10 mg/kg, 20 mg/kg every day during 15 days and their temperature was measured daily at 0th, 1st, 3rd, 5th and 8th hour. Temperature was measured by inserting a thermocouple probe 2,5 cm into the rectum. Results. Both groups showed dose dependent increase of body temperature, determined by rectal temperature measurements. The magnitude of hyperthemic response caused by subchronic administration of MDMA was markedly diminished during the experiment. Conclusion. The hyperthermic effect of MDMA was dose-dependent. The magnitude of the hyperthermic response was markedly diminished in subchronic administration.

  2. Ion temperature measurements in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Gauvreau, J.L.

    1992-12-31

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  3. Neutral thermospheric temperature from ion concentration measurements

    Science.gov (United States)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  4. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy.

    Science.gov (United States)

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-10-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls. Eight hypocretin-deficient male narcolepsy type 1 patients and eight healthy matched controls underwent temperature measurement of core body and proximal and distal skin twice, and the sleep-wake state for 24 h. After the baseline assessment, 2 × 3 g of sodium oxybate was administered for 5 nights, immediately followed by the second assessment. At baseline, daytime core body temperature and proximal skin temperature were significantly lower in patients with narcolepsy (core: 36.8 ± 0.05 °C versus 37.0 ± 0.05 °C, F = 8.31, P = 0.01; proximal: 33.4 ± 0.26 °C versus 34.3 ± 0.26 °C, F = 5.66, P = 0.03). In patients, sodium oxybate administration increased proximal skin temperature during the day (F = 6.46, P = 0.04) to a level similar as in controls, but did not affect core body temperature, distal temperature or distal-proximal temperature gradient. Sodium oxybate administration normalised the predictive value of distal skin temperature and distal-proximal temperature gradient for the onset of daytime naps (P < 0.01). In conclusion, sodium oxybate administration resulted in a partial normalisation of the skin temperature profile, by increasing daytime proximal skin temperature, and by strengthening the known relationship between skin temperature and daytime sleep propensity. These changes seem to be related to the clinical improvement induced by sodium oxybate treatment. A causal relationship is not proven.

  5. Variable-Temperature Critical-Current Measurements

    Energy Technology Data Exchange (ETDEWEB)

    L. F. Goodrich; T. C. Stauffer

    2009-05-19

    This is the final report of a three year contract that covered 09/19/2005 to 07/14/2008. We requested and received a no cost time extension for the third year, 07/15/2007 to 07/14/2008, to allow DoE to send us funds if they became available during that year. It turned out that we did not receive any funding for the third year. The following paper covers our variable-temperature critical-current measurements. We made transport critical-current (Ic) measurements on commercial multifilamentary Nb3Sn strands at temperatures (T) from 4 to 17 K and magnetic fields (H) from 0 to 14 T. One of the unique features of our measurements is that we can cover a wide range of critical currents from less than 0.1 A to over 700 A.

  6. Histologically Measured Cardiomyocyte Hypertrophy Correlates with Body Height as Strongly as with Body Mass Index

    Directory of Open Access Journals (Sweden)

    Richard E. Tracy

    2011-01-01

    Full Text Available Cardiac myocytes are presumed to enlarge with left ventricular hypertrophy (LVH. This study correlates histologically measured myocytes with lean and fat body mass. Cases of LVH without coronary heart disease and normal controls came from forensic autopsies. The cross-sectional widths of myocytes in H&E-stained paraffin sections followed log normal distributions almost to perfection in all 104 specimens, with constant coefficient of variation across the full range of ventricular weight, as expected if myocytes of all sizes contribute proportionately to hypertrophy. Myocyte sizes increased with height. By regression analysis, height2.7 as a proxy for lean body mass and body mass index (BMI as a proxy for fat body mass, exerted equal effects in the multiple correlation with myocyte volume, and the equation rejected race and sex. In summary, myocyte sizes, as indexes of LVH, suggest that lean and fat body mass may contribute equally.

  7. Measuring entanglement entropy in a quantum many-body system.

    Science.gov (United States)

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-01

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  8. The influence of urine volume on body impedance measurement.

    Science.gov (United States)

    Hong, K H; Park, K S

    2008-01-01

    Bio-signal has some characteristics that the signal is so weak. So, it is good that the factors to influence measured electrical signal are eliminated as much as they can. So, in this paper we will show the influence of urine in bladder on measuring human body impedance. Human urine has different conductivity from other human tissues. Therefore, if the volume of the urine changed, the measured body impedance data also changed.So, in this paper, we will show the influence of urine in bladder with foot-to-foot and thigh-to-thigh current paths. As a result, if the current flows through human bladder, the influence of urine in the bladder must be considered when the body impedance is measured

  9. The effect of body temperature on the dynamic respiratory system compliance-breathing frequency relationship in the rat.

    Science.gov (United States)

    Rubini, Alessandro; Bosco, Gerardo

    2013-06-01

    The mechanical inhomogeneity of the respiratory system is frequently investigated by measuring the frequency dependence of dynamic compliance, but no data are currently available describing the effects of body temperature variations. The aim of the present report was to study those effects in vivo. Peak airway pressure was measured during positive pressure ventilation in eight anesthetized rats while breathing frequency (but not tidal volume) was altered. Dynamic compliance was calculated as the tidal volume/peak airway pressure, and measurements were taken in basal conditions (mean rectal temperature 37.3 °C) as well as after total body warming (mean rectal temperature 39.7 °C). Due to parenchymal mechanical inhomogeneity and stress relaxation-linked effects, the normal rat respiratory system exhibited frequency dependence of dynamic lung compliance. Even moderate body temperature increments significantly reduced the decrements in dynamic compliance linked to breathing rate increments. The results were analyzed using Student's and Wilcoxon's tests, which yielded the same results (p temperature variations are known to influence respiratory mechanics. The frequency dependence of dynamic compliance was found, in the experiments described, to be temperature-dependent as temperature variations affected parenchymal mechanical inhomogeneity and stress relaxation. These results suggest that body temperature variations should be taken into consideration when the dynamic compliance-breathing frequency relationship is being examined during clinical assessment of inhomogeneity of lung parenchyma in patients.

  10. Thermoluminescence measurement technique using millisecond temperature pulses.

    Science.gov (United States)

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater.

  11. Global rainbow refractometry for droplet temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux [Institut de Radioprotection et de Surete Nucleaire DSU/SERAC, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gerard Grehan [UMR 6614 CORIA, Laboratoire d' Electromagnetisme et Systemes Particulaires Site Universitaire du Madrillet, Avenue de l' universite BP 12, 76 801 Saint Etienne du Rouvray Cedex, (France)

    2005-07-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm{sup 3}. The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  12. Using Amazon's Mechanical Turk website to measure accuracy of body size estimation and body dissatisfaction.

    Science.gov (United States)

    Gardner, Rick M; Brown, Dana L; Boice, Russell

    2012-09-01

    This study investigated Amazon.com's website Mechanical Turk (MTurk) as a research tool for measuring body size estimation and dissatisfaction. 160 U.S. participants completed the BIAS-BD figural drawing scale and demographic questions posted on the MTurk website. The BIAS-BD consists of 17 drawings of various male and female body sizes based on anthropometric data corresponding to a range of 60% below to 140% above the average U.S. adult. Respondents selected a drawing that best reflected their current size and ideal size. Results revealed that respondents overestimated their body size by 6% and desired an ideal size 9.2% smaller than their perceived size. Findings are compared with three previous studies using the BIAS-BD scale. A general correspondence in findings between the four studies was found. We conclude that the MTurk can serve as a viable method for collecting data on the perceptual and attitudinal aspects of body image quickly and inexpensively.

  13. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    Science.gov (United States)

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2016-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  14. Thermocouple design for measuring temperatures of small insects.

    Science.gov (United States)

    Hanson, A A; Venette, R C

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to improve our ability to resolve insect exotherms. We tested the designs with adults from three parasitoid species: Tetrastichus planipennisi, Spathius agrili, and S. floridanus. These species are thermocouples than thick-gauge thermocouples for the smallest species tested, T. planipennisi. This difference was not apparent for larger species S. agrili and S. floridanus. Thermocouple design did not affect the mean supercooling point for any of the species. The cradle thermocouple design developed with the fine gauge wire was reusable and allowed for easy insect recovery after cold exposure.

  15. Reliability of an infrared forehead skin thermometer for core temperature measurements

    NARCIS (Netherlands)

    Kistemaker, J.A.; Hartog, E.A. den; Daanen, H.A.M.

    2006-01-01

    The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal

  16. Light masking of circadian rhythms of heat production, heat loss, and body temperature in squirrel monkeys

    Science.gov (United States)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.

  17. Northern squawfish Ptychochelius oregonensis, O2 consumption rate: Effects of temperature and body size

    Science.gov (United States)

    Cech, Joseph J.; Castleberry, Daniel T.; Hopkins, Todd E.; Petersen, James H.

    1994-01-01

    Northern squawfish, Ptychocheilus oregonensis (live weight range 0.361–1.973 kg), O2consumption was measured with temperature-controlled, flow-through respirometers for >24 h. Mean standard O2 consumption rate of northern squawfish increased with acclimation temperature: 24.3, 49.1, 75.0, and 89.4 mg∙kg−0.67∙h−1 at 9, 15, 18, and 21 °C, respectively. Q10analysis showed that O2 consumption rate temperature sensitivity was greatest at the intermediate acclimation temperatures (15–18 °C, Q10 = 4.10), moderate at the lower acclimation temperatures (9–15 °C, Q10 = 3.23), and lowest at the higher acclimation temperatures (18–21 °C, Q10 = 1.80). Overall Q10 was 2.96 (9–21 °C). Body size (W, grams) and temperature (T, degrees Celcius) were related to O2 consumption (, grams per gram per day) by W−0.285∙e0.105T. Northern squawfish red to white muscle ratios significantly exceeded those of rainbow trout, Oncorhynchus mykiss, in cross sections at 50 and 75% of standard length. High metabolic rates and red to white muscle ratios argue for comparability of northern squawfish with active predators such as sympatric rainbow trout.

  18. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Saito, Shigeyoshi; Nishiura, Motoko

    2013-12-01

    The purpose of this study was to develop a simple and inexpensive system for controlling body temperature in small animal experiments using magnetic resonance imaging (MRI) and to investigate the effect of body temperature on the kinetic behavior of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the liver. In our temperature-control system, body temperature was controlled using a feedback-regulated heated or cooled air flow generated by two Futon dryers. The switches of the two Futon dryers were controlled using a digital temperature controller, in which the rectal temperature of a mouse measured by an optical fiber thermometer was used as the input. In experimental studies, male ICR mice aged 8weeks old were used and allocated into 5 groups (39-, 36-, 33-, 30-, and 27-degree groups, n=10), in which the body temperature was maintained at 39 °C, 36 °C, 33 °C, 30 °C, and 27 °C, respectively, using our system. The dynamic contrast-enhanced MRI (DCE-MRI) data were acquired with an MRI system for animal experiments equipped with a 1.5-Tesla permanent magnet, for approximately 43min, after the injection of Gd-EOB-DTPA into the tail vein. After correction of the image shift due to the temperature-dependent drift of the Larmor frequency using the gradient-based image registration method with robust estimation of displacement parameters, the kinetic behavior of Gd-EOB-DTPA was analyzed using an empirical mathematical model. With the use of this approach, the upper limit of the relative enhancement (A), the rates of contrast uptake (α) and washout (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum relative enhancement (REmax), the time to REmax (Tmax), and the elimination half-life of the contrast agent (T1/2) were calculated. The body temperature of mice could be controlled well by use of our system. Although there were no significant differences in α, AUC, and q among groups, there

  19. Influence of measurement errors on temperature-based death time determination.

    Science.gov (United States)

    Hubig, Michael; Muggenthaler, Holger; Mall, Gita

    2011-07-01

    Temperature-based methods represent essential tools in forensic death time determination. Empirical double exponential models have gained wide acceptance because they are highly flexible and simple to handle. The most established model commonly used in forensic practice was developed by Henssge. It contains three independent variables: the body mass, the environmental temperature, and the initial body core temperature. The present study investigates the influence of variations in the input data (environmental temperature, initial body core temperature, core temperature, time) on the standard deviation of the model-based estimates of the time since death. Two different approaches were used for calculating the standard deviation: the law of error propagation and the Monte Carlo method. Errors in environmental temperature measurements as well as deviations of the initial rectal temperature were identified as major sources of inaccuracies in model based death time estimation.

  20. AMAB: Automated measurement and analysis of body motion

    NARCIS (Netherlands)

    Poppe, Ronald; Zee, van der Sophie; Heylen, Dirk K.J.; Taylor, Paul J.

    2014-01-01

    Technologies that measure human nonverbal behavior have existed for some time, and their use in the analysis of social behavior has become more popular following the development of sensor technologies that record full-body movement. However, a standardized methodology to efficiently represent and an

  1. Application of Three-dimensional Body Measurement System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The configuration principles and functions of the non-contact three-dimensional (3D) body measurement system (BMS)developed by the Textile/Clothing Technology Corporation ([TC]2) are described in this paper. The advantages of this new system, compared with traditional contact body measurement instruments ( Martin instruments ) are discussed by selecting 40 female undergraduates of Donghua University as the scan objects. In the experiments both the Martin instruments and [TC]2 BMS were used respectively. According to the data of different position ( Bust Circumference, Full Waist, Full Hips, Bust Height, Front Waist Height and Back Waist Height) obtained from both of the methods we can get the correlation coefficient which is close to 1, indicating that the results of both methods have comparability. Finally some suggestions for the further applications of the non-contact BMS in the apparel development of China are given. Ke ywords : Body measurement, anth ro pormetr y , non- contact 3D body measurement system, apparel industry, made-tomeasure (MTM).

  2. Low-temperature softening in body-centered cubic alloys

    Science.gov (United States)

    Pink, E.; Arsenault, R. J.

    1979-01-01

    In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.

  3. Temperature distribution in the human body under various conditions of induced hyperthermia

    Science.gov (United States)

    Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.

    1977-01-01

    A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.

  4. Intracellular pH in lizard Dipsosaurus dorsalis in relation to changing body temperatures.

    Science.gov (United States)

    Bickler, P E

    1982-12-01

    Mean whole-body and tissue-specific intracellular pH values (pHi) were measured in Dipsosaurus dorsalis by the dimethyloxazolidinedione technique. pHi was measured in lizards at constant body temperatures (Tb) (18, 25, 35, and 42 degrees C) and in lizards undergoing changes in Tb between 18 and 42 degrees C. Constant Tb between 18 and 42 degrees C maintained for 24 h or more produced a delta pH/delta Tb of -0.015 for the mean whole-body, -0.012 for venous blood, -0.0104 for cardiac muscle, and -0.0098 for skeletal muscle. Within the preferred range of Tb values (35-42 degrees C), the delta pH/delta Tb patterns were closer to that expected to achieve constant dissociation of protein imidazole (approximately -0.017): mean whole-body -0.020, cardiac muscle -0.016, and skeletal muscle -0.018. Tissue water contents were independent of Tb. Whole-body pHi during gradual warming and cooling (approximately 2 h elapsed time for each direction) closely corresponded to steady-state values. Upon cooling to 18 degrees C, tissue-specific and whole-body pHi often fell 0.1-0.2 unit below that expected; in each case this was correlated with an extracellular acidosis. A gradual recovery of pHi occurred with the recovery of the extracellular acidosis. Over the normally experienced Tb range, adjustments in pHi apparently rapidly achieve steady-state values and are in accord with the imidazole alphastat hypothesis. These patterns are discussed in terms of the thermal ecology of Dipsosaurus.

  5. The Effect of Tub Bathing on Body Temperature in Preterm Infants: Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mahnaz Jabraeili

    2015-06-01

    Full Text Available Background: Bathing of a premature newborn is important in care giving, but due to inadequate evidences, infant caregivers are not sure about bathing being safe in terms of not causing hypothermia and are not systematically considered in the infants’ care giving programs. Aim: To determine the effect of tub bathing on body temperature of preterm infants”. Methods: This study is a randomized controlled clinical trial which was conducted in 1392 in neonatal unit of Al-zahra hospital. 118 preterm infants were randomly divided into intervention and control groups. The infants in the control group received routine skin care only. The intervention group was bathed three times every other day inside the bathtub. In both group, the infants’ body temperature was measured at the same times by the researcher. Data were analyzed with SPSS software version 14 using independent T-test, Chi-square and repeated measurements tests. Results: In both groups, boys outnumbered girls. At the time of inclusion, the infants' age was 5.8 ± 8.6 days and their weight was 320.6 ± 1660.0 grams. In both groups, the mean temperature of premature infants after bath was dropped in all three times. Which was statistically significant in the first and second baths (P

  6. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  7. [Temperature measurements during abrasive water jet osteotomy].

    Science.gov (United States)

    Schmolke, S; Pude, F; Kirsch, L; Honl, M; Schwieger, K; Krömer, S

    2004-01-01

    Working on bone is a major aspect of orthopaedic surgery. Despite its well-known appreciable thermal effects on the edges of the bone cut, the oscillating bone saw blade the oscillating saw remains the standard instrument both for cutting long bones and creating a bed for an endoprosthesis. The application of abrasive water jets offers the possibility of achieving an extremely precise curved cut in bone with no accompanying thermal effect. The thermographically measured absolute temperature increase at the cut edges seen with the water jet was 13 K maximum. The small process forces permit the application in automated handling systems.

  8. Does gestation or feeding affect the body temperature of the golden lancehead, Bothrops insularis (Squamata: Viperidae under field conditions?

    Directory of Open Access Journals (Sweden)

    Rafael P. Bovo

    2010-01-01

    Full Text Available Temperature affects physiological performance in reptiles and, therefore, body temperature (Tb control is argued to have an important adaptive value. Alterations in Tb due to transient changes in physiological state, as during digestion or gestation, are often linked to the potential benefits of a more precise Tb regulation. However, such thermoregulatory responses in nature remain controversial, particularly for tropical snakes. Herein, we measured Tb of the golden lanceheads, Bothrops insularis (Amaral, 1921, at Queimada Grande Island, southeastern Brazil, to test for alteration in selected body temperatures associated with feeding or gestation. We found no evidence that postprandial or gravid snakes selected for higher Tb indicating that, under natural conditions, body temperature regulation in B. insularis apparently encompasses other ecological factors beyond physiological state per se.

  9. Investigation of human body potential measured by a non-contact measuring system.

    Science.gov (United States)

    Ichikawa, Norimitsu

    2016-12-07

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.

  10. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  11. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Science.gov (United States)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  12. Supraphysiological cyclic dosing of sustained release T3 in order to reset low basal body temperature.

    Science.gov (United States)

    Friedman, Michael; Miranda-Massari, Jorge R; Gonzalez, Michael J

    2006-03-01

    The use of sustained release tri-iodothyronine (SR-T3) in clinical practice, has gained popularity in the complementary and alternative medical community in the treatment of chronic fatigue with a protocol (WT3) pioneered by Dr. Denis Wilson. The WT3 protocol involves the use of SR-T3 taken orally by the patient every 12 hours according to a cyclic dose schedule determined by patient response. The patient is then weaned once a body temperature of 98.6 degrees F has been maintained for 3 consecutive weeks. The symptoms associated with this protocol have been given the name Wilson's Temperature Syndrome (WTS). There have been clinical studies using T3 in patients who are euthyroid based on normal TSH values. However, this treatment has created a controversy in the conventional medical community, especially with the American Thyroid Association, because it is not based on a measured deficiency of thyroid hormone. However, just as estrogen and progesterone are prescribed to regulate menstrual cycles in patients who have normal serum hormone levels, the WT3 therapy can be used to regulate metabolism despite normal serum thyroid hormone levels. SR-T3 prescription is based exclusively on low body temperature and presentation of symptoms. Decreased T3 function exerts widespread effects throughout the body. It can decrease serotonin and growth hormone levels and increase the number of adrenal hormone receptor sites. These effects may explain some of the symptoms observed in WTS. The dysregulation of neuroendocrine function may begin to explain such symptoms as alpha intrusion into slow wave sleep, decrease in blood flow to the brain, alterations in carbohydrate metabolism, fatigue, myalgia and arthralgia, depression and cognitive dysfunction. Despite all thermoregulatory control mechanisms of the body and the complex metabolic processes involved, WT3 therapy seems a valuable tool to re-establish normal body functions. We report the results of 11 patients who underwent the

  13. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    Science.gov (United States)

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  14. Warming temperatures and smaller body sizes: synchronous changes in grwoth of North Sea fishes

    NARCIS (Netherlands)

    Baudron, A.; Needle, C.; Rijnsdorp, A.D.; Marshall, C.T.

    2014-01-01

    Decreasing body size has been proposed as a universal response to increasing temperatures. The physiology behind the response is well established for ectotherms inhabiting aquatic environments: as higher temperatures decrease the aerobic capacity, individuals with smaller body sizes have a reduced r

  15. Influence of body temperature on the evoked activity in mouse visual cortex.

    Science.gov (United States)

    Tang, Bin; Kalatsky, Valery A

    2013-06-01

    Optical imaging of intrinsic signals and conventional electrophysiological methods were used to investigate the correlation between the evoked activity in mouse visual cortex and core body temperature. The results show that hypothermia (25-36 °C) decreases the intensity of optical imaging in the visual cortex and the imaging signal reversibly disappears at 25 °C. Hyperthermia (39-41 °C) increases the intensity but decreases the quality of cortical imaging when body temperature is above 40 °C. The change of optical imaging was in line with that of neuronal activities and local field potentials (LFPs) directly recorded from the visual cortex at 25-39 °C. Hypothermia decreases neuron firing rate and LFPs amplitude. Most of the recorded neurons ceased firing to visual stimulation at 25 °C. Hyperthermia increases neuronal firing rate and LFPs amplitude. Both are reduced when body temperature is above 40 °C, though neither change was statistically significant. These results suggest: (1) Body temperature has an important impact on the visual cortical evoked activities and optical imaging generally reflects these effects when body temperature is between 25 and 39 °C; (2) Optical imaging may not properly reflect the neuronal activity when body temperature is over 40 °C. It is important to maintain core body temperature within 3 °C of the normal body temperature to obtain verifiable results.

  16. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Y. B W E M); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  17. Natural User Interface Sensors for Human Body Measurement

    Science.gov (United States)

    Boehm, J.

    2012-08-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  18. Body mass index and blood pressure measurement during pregnancy.

    LENUS (Irish Health Repository)

    Hogan, Jennifer L

    2012-02-01

    OBJECTIVE: The accurate measurement of blood pressure requires the use of a large cuff in subjects with a high mid-arm circumference (MAC). This prospective study examined the need for a large cuff during pregnancy and its correlation with maternal obesity. METHODS: Maternal body mass index (BMI), fat mass, and MAC were measured. RESULTS: Of 179 women studied, 15.6% were obese. With a BMI of level 1 obesity, 44% needed a large cuff and with a BMI of level 2 obesity 100% needed a large cuff. CONCLUSION: All women booking for antenatal care should have their MAC measured to avoid the overdiagnosis of pregnancy hypertension.

  19. Body temperatures and behavior of American alligators during cold winter weather

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, I.L., Jr.; Standora, E.A.; Vargo, M.J.

    1982-04-01

    Data from two large (188 and 135 kg) male alligators (Alligator mississippiensis) indicated that 4-5 C seemed to be the lowest body temperatures that they could endure with subsequent recovery. Although one animal in shallow water managed to keep a breathing hole open for several days, in ice that was 1.5 cm thick, it later died following a decrease of its body temperature to 4.0 C. The second alligator which was located in a deeper portion of the reservoir used both terrestrial and aquatic basking behavior to raise its body temperature and level of activity. Except in the case of basking events, there was not clear evidence of significant evaluations of the body temperatures of either the live or dead alligators above those of their adjacent water. When located side-by-side, diurnal cycles of deep body temperatures exceeding adjacent water temperatures to a maximum extent near dawn and usually falling below water temperatures during the afternoon and early evening hours. The physical properties and thermal inertia of the bodies of such large alligators, when placed in appropriate microclimates, may be sufficient in themselves to explain the general patterns and levels of body temperature changes observed at these low temperatures.

  20. Measuring entanglement entropy in a quantum many-body system

    Science.gov (United States)

    Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus

    2016-05-01

    The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.

  1. Comparison of rectal, tympanic membrane and axillary temperature measurement methods in dogs.

    Science.gov (United States)

    Lamb, V; McBrearty, A R

    2013-11-30

    The aim of this study was to compare axillary and tympanic membrane (TM) temperature measurements to rectal temperature in a large group of clinical canine patients. We also sought to ascertain whether certain factors affected the differences between the measurements and to compare the ease of measurement. Axillary temperatures were easy to obtain but tended to be lower than rectal readings (median difference 0.6°C). In 54.7 per cent of dogs there was a difference of >0.5°C between the two readings. Weight, coat length, body condition score and breed size were significantly associated with the difference between the rectal and axillary temperature. TM temperatures were more similar to rectal temperatures (median difference 0°C) but in 25 per cent of dogs, there was a difference of >0.5°C between rectal and TM readings. TM measurements were less well tolerated than axillary measurements. None of the factors assessed were associated with the difference between the rectal and TM temperature. As a difference of >0.5°C has previously been described as unacceptable for different methods of temperature measurement, neither axillary nor TM temperatures are interchangeable with rectal temperatures for the measurement of body temperature.

  2. Novel Analytic Methods Needed for Real-Time Continuous Core Body Temperature Data.

    Science.gov (United States)

    Hertzberg, Vicki; Mac, Valerie; Elon, Lisa; Mutic, Nathan; Mutic, Abby; Peterman, Katherine; Tovar-Aguilar, J Antonio; Economos, Eugenia; Flocks, Joan; McCauley, Linda

    2016-10-18

    Affordable measurement of core body temperature (Tc) in a continuous, real-time fashion is now possible. With this advance comes a new data analysis paradigm for occupational epidemiology. We characterize issues arising after obtaining Tc data over 188 workdays for 83 participating farmworkers, a population vulnerable to effects of rising temperatures due to climate change. We describe a novel approach to these data using smoothing and functional data analysis. This approach highlights different data aspects compared with describing Tc at a single time point or summaries of the time course into an indicator function (e.g., did Tc ever exceed 38 °C, the threshold limit value for occupational heat exposure). Participants working in ferneries had significantly higher Tc at some point during the workday compared with those working in nurseries, despite a shorter workday for fernery participants. Our results typify the challenges and opportunities in analyzing big data streams from real-time physiologic monitoring.

  3. Developing a Novel Measure of Body Satisfaction Using Virtual Reality.

    Science.gov (United States)

    Purvis, Clare K; Jones, Megan; Bailey, Jakki O; Bailenson, Jeremy; Taylor, C Barr

    2015-01-01

    Body image disturbance (BID), considered a key feature in eating disorders, is a pervasive issue among young women. Accurate assessment of BID is critical, but the field is currently limited to self-report assessment methods. In the present study, we build upon existing research, and explore the utility of virtual reality (VR) to elicit and detect changes in BID across various immersive virtual environments. College-aged women with elevated weight and shape concerns (n = 38) and a non-weight and shape concerned control group (n = 40) were randomly exposed to four distinct virtual environments with high or low levels of body salience and social presence (i.e., presence of virtual others). Participants interacted with avatars of thin, normal weight, and overweight body size (BMI of approximately 18, 22, and 27 respectively) in virtual social settings (i.e., beach, party). We measured state-level body satisfaction (state BD) immediately after exposure to each environment. In addition, we measured participants' minimum interpersonal distance, visual attention, and approach preference toward avatars of each size. Women with higher baseline BID reported significantly higher state BD in all settings compared to controls. Both groups reported significantly higher state BD in a beach with avatars as compared to other environments. In addition, women with elevated BID approached closer to normal weight avatars and looked longer at thin avatars compared to women in the control group. Our findings indicate that VR may serve as a novel tool for measuring state-level BID, with applications for measuring treatment outcomes. Implications for future research and clinical interventions are discussed.

  4. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  5. Relationship among eye temperature measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle

    Science.gov (United States)

    Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of...

  6. Interferometric measurement of many-body topological invariants using polarons

    Science.gov (United States)

    Grusdt, Fabian; Yao, Norman; Abanin, Dmitry; Demler, Eugene

    2014-05-01

    We present a scheme for the direct detection of many-body topological invariants in ultra cold quantum gases in optical lattices. We generalize single-particle interferometric schemes developed for the detection of topologically non-trivial band structures [Atala et al., Nature Physics 9, 795 (2013)] by coupling a spin-1/2 impurity to a (topological) excitation of an interacting many-body system. Performing Ramsey interferometry in combination with Bloch oscillations of the resulting polaronic particle allows to directly detect the many body-topological invariant. In particular we consider adiabatic Thouless pumps in the super-lattice Bose-Hubbard model, which transport a quantized amount of particles across a one-dimensional lattice. In the presence of inter-atomic interactions this quantized current is given by a many-body Chern number, which can be measured using our protocol. These systems also support symmetry-protected topological phases, the invariants of which can be obtained from our protocol as well.

  7. Selection does not favor larger body size at lower temperature in a seed-feeding beetle.

    Science.gov (United States)

    Stillwell, R Craig; Moya-Laraño, Jordi; Fox, Charles W

    2008-10-01

    Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,"Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.

  8. Temperature and body weight affect fouling of pig pens

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Schrama, J.W.; Heetkamp, M.J.W.; Stefanowska, J.; Huynh, T.T.T.

    2006-01-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) w

  9. Body temperatures and associated postures of the zebra-tailed lizard, Callisaurus draconoides

    Energy Technology Data Exchange (ETDEWEB)

    Muth, A.

    1977-01-01

    Body temperature and associated postures of the zebra-tailed lizard, Callisaurus draconoides, were examined in the field and laboratory. Three distinct postures are described: prostrate, tail-down and elevated. The mean body temperatures of the respective postures in the field were: 33.9, 40.5 and 42.7 C. In the laboratory, heating rates were greatest for the prostrate posture and least for the elevated posture. Body temperatures and heating rates are significantly correlated with posture. These correlations suggest that the postures are associated with behavioral thermoregulation in the field.

  10. Body temperature and oxygen uptake in the kinkajou (Potos flavus, Schreber), a nocturnal tropical carnivore.

    Science.gov (United States)

    Müller, E; Kulzer, E

    1978-02-01

    Two kinkajous (Potos flavus, Procyonidae) showed marked nycthemeral variations in their rectal temperature. The mean Tr at night was 38.1 +/- 0.4 degrees C SD and 36.0 +/- 0.6 degrees C SD while resting during the day. Body temperature and O2-consumption were measured at ambient temperatures from 5-35 degrees C. With one exception at 35 degrees C, hypo- or hyperthermia was never observed. At air temperatures above 30 degrees C the bears reacted with behavioural responses. O2-consumption was minimal at Ta's from 23-30 degrees C. The mean basal metabolic rate was 0.316 ml O2 g-1 h-1 which is only 65% of the expected value according to the Kleiber formula. Below 23 degrees C heat production followed the equation : y (ml O2 g-1 h-1) = 0.727--0.018 Ta. The minimal thermal conductance was 90% of the predicted value according to the formula : C (ml O2 g-1 h-1 degrees C-1) = 1.02 W-0.505 (HERREID & KESSEL, 1967). Kinkajous are another distinct exception to the mouse to elephant curve.

  11. Emperor penguin body surfaces cool below air temperature.

    Science.gov (United States)

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate.

  12. Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data

    CERN Document Server

    de Martino, I; Atrio-Barandela, F; Ebeling, H; Kashlinsky, A; Kocevski, D; Martins, C J A P

    2015-01-01

    We constrain the deviation of adiabatic evolution of the Universe using the data on the Cosmic Microwave Background (CMB) temperature anisotropies measured by the {\\it Planck} satellite and a sample of 481 X-ray selected clusters with spectroscopically measured redshifts. To avoid antenna beam effects, we bring all the maps to the same resolution. We use a CMB template to subtract the cosmological signal while preserving the Thermal Sunyaev-Zeldovich (TSZ) anisotropies; next, we remove galactic foreground emissions around each cluster and we mask out all known point sources. If the CMB black-body temperature scales with redshift as $T(z)=T_0(1+z)^{1-\\alpha}$, we constrain deviations of adiabatic evolution to be $\\alpha=-0.007\\pm 0.013$, consistent with the temperature-redshift relation of the standard cosmological model. This result could suffer from a potential bias associated with the CMB template, that we quantify it to be less than $-0.02$, but is free from those biases associated with using TSZ selected ...

  13. Effects of Body Weight and Water Temperature on Maximum Food Consumption of Juvenile Sebastodes fuscescens (Houttuyn)

    Institute of Scientific and Technical Information of China (English)

    谢松光; 杨红生; 周毅; 张福绥

    2004-01-01

    Maximum rate of food consumption (Cmax) was determined for juvenile Sebastodes fuscescens (Houttuyn) at water temperature of 10, 15, 20 and 25℃. The relationships of Cmax to the body weight (W) at each temperature were described by a power equation: lnCmax = a + b lnW. Covariance analysis revealed significant interaction of the temperature and body weight. The relationship of adjusted Cmax to water temperature (T) was described by a quadratic equation: Cmax =-0.369 + 0.456T - 0.0117T2. The optimal feeding temperature calculated from this equation was 19.5℃. The coefficients of the multiple regression estimation relating Cmax to body weight (W) and water temperature (T) were given in the Table 2.

  14. First investigations to refine video-based IR thermography as a non-invasive tool to monitor the body temperature of calves.

    Science.gov (United States)

    Hoffmann, G; Schmidt, M; Ammon, C

    2016-09-01

    In this study, a video-based infrared camera (IRC) was investigated as a tool to monitor the body temperature of calves. Body surface temperatures were measured contactless using videos from an IRC fixed at a certain location in the calf feeder. The body surface temperatures were analysed retrospectively at three larger areas: the head area (in front of the forehead), the body area (behind forehead) and the area of the entire animal. The rectal temperature served as a reference temperature and was measured with a digital thermometer at the corresponding time point. A total of nine calves (Holstein-Friesians, 8 to 35 weeks old) were examined. The average maximum temperatures of the area of the entire animal (mean±SD: 37.66±0.90°C) and the head area (37.64±0.86°C) were always higher than that of the body area (36.75±1.06°C). The temperatures of the head area and of the entire animal were very similar. However, the maximum temperatures as measured using IRC increased with an increase in calf rectal temperature. The maximum temperatures of each video picture for the entire visible body area of the calves appeared to be sufficient to measure the superficial body temperature. The advantage of the video-based IRC over conventional IR single-picture cameras is that more than one picture per animal can be analysed in a short period of time. This technique provides more data for analysis. Thus, this system shows potential as an indicator for continuous temperature measurements in calves.

  15. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle.

    Science.gov (United States)

    Alzahal, O; Alzahal, H; Steele, M A; Van Schaik, M; Kyriazakis, I; Duffield, T F; McBride, B W

    2011-07-01

    The objective of this study was to validate the efficacy of a radiotelemetric bolus (RTB) to detect changes in ruminal temperature resulting from (1) systemic illnesses that are associated with febrile responses and (2) subacute ruminal acidosis (SARA). Eight rumen-fistulated, lactating Holstein cows (586±37 kg of body weight, 106±18 d in milk) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement. Each period consisted of 21 d. The factors were 2 diets, a moderate forage:concentrate [MFC; 52:48; % of dry matter (DM)] or a high forage:concentrate (HFC; 65:35, % of DM) total mixed ration, and a challenge with a single intramammary injection of lipopolysaccharide (LPS; 100 μg derived from Escherichia coli 0111:B4) or no LPS (sterile saline). Thus, the 4 resulting treatments were (1) MFC with LPS challenge, (2) MFC with saline, (3) HFC with LPS challenge, and (4) HFC with saline. Cows were fed at 0800 and 1400 h daily. Cows received the intramammary injections at 0900 h of d 21. Ruminal pH and ruminal temperature were also measured on d 21 every minute via an indwelling logging system that resided in the ventral sac of the rumen and via a radiotelemetric bolus that resided in the reticulum. Vaginal temperature was also recorded every minute via temperature loggers. Prior to LPS injection, the duration of rumen pH below 5.6 (indicative of SARA) was higher in cows receiving MFC than cows receiving HFC (148±24 and 62±24 min/d, respectively). The temperature measured at the same time via RTB was higher for MFC than HFC cows (167±21 vs. 104 vs. 21 min/d above 38.8°C, respectively). The following day, cows challenged with LPS showed signs of mastitis within the injected quarters, depressed DM intake, decreased milk yield, and a peak vaginal temperature of 41.3±0.1°C 5.5h after the LPS injection. The RTB system successfully detected a fever response parallel to that measured by the vaginal loggers but temperature peak detected by

  16. Changes in body surface temperature during speed endurance work-out in highly-trained male sprinters

    Science.gov (United States)

    Korman, Paweł; Straburzyńska-Lupa, Anna; Kusy, Krzysztof; Kantanista, Adam; Zieliński, Jacek

    2016-09-01

    The mechanism of thermoregulatory adaptation to exercise cannot yet be fully explained, however, infrared thermography (IRT) seems to have potential for monitoring physiological changes during exercise and training. It is a non-contact and easy to use technology to measure heat radiation from the body surface. The objective of the study was to examine the temperature changes over time on lower limbs in sprinters during speed endurance training session. Eight sprinters, specialized in distances 100 m and 200 m, aged 21-29 years, members of the Polish national team, were evaluated during an outdoor speed endurance work-out. Their track session comprised of warm-up, specific drills for sprinting technique, and speed endurance exercise. The surface temperature of lower limbs was measured and thermal images were taken using infrared camera after each part of the session. The speed endurance training session brought about specific time course of body surface (legs) temperature. The warm-up induced a significant decline in surface temperature by ∼2.5 °C, measured both on the front and back of lower limbs (p Body surface temperature may help identify an individual optimal time to terminate warm up and start the main part of the training session. It may also be useful for the assessment of muscle activity symmetry in cyclical activities, such as sprint running. This is of particular relevance when a training session is performed outdoors in changeable weather conditions.

  17. High-temperature archeointensity measurements from Mesopotamia

    Science.gov (United States)

    Gallet, Yves; Le Goff, Maxime

    2006-01-01

    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  18. Is older colder or colder older? The association of age with body temperature in 18,630 individuals.

    Science.gov (United States)

    Waalen, Jill; Buxbaum, Joel N

    2011-05-01

    In animal studies, caloric restriction resulting in increased longevity is associated with a reduction in body temperature, which is strain specific and likely under genetic control. Small studies in humans have suggested that temperatures may be lower among elderly populations, usually attributed to loss of thermoregulation. We analyzed cross-sectional data from 18,630 white adults aged 20-98 years (mean 58.3 years) who underwent oral temperature measurement as part of a standardized health appraisal at a large U.S. health maintenance organization. Overall, women had higher mean temperatures (97.5 ± 1.2°F) than men (97.2 ± 1.1°F; p temperature decreased with age, with a difference of 0.3°F between oldest and youngest groups after controlling for sex, body mass index, and white blood cell count. The results are consistent with low body temperature as a biomarker for longevity. Prospective studies are needed to confirm whether this represents a survival advantage associated with lifetime low steady state temperature.

  19. The measurement of upper body alignment during the golf drive.

    Science.gov (United States)

    Wheat, J S; Vernon, T; Milner, C E

    2007-05-01

    Transverse plane rotations of the upper body are often estimated during the golf swing. The aim of this study was to determine the agreement between upper body alignments measured using markers attached to the thorax and markers on the acromion process during the golf drive. Three-dimensional coordinate data from nine markers were collected (300 Hz) during eight golf drives for 10 participants. The transverse plane alignment of the upper body was calculated using three techniques: inter-acromion vector, thorax vector, and Cardan angles. Agreement between the methods was then assessed using intra-class correlation and 95% limits of agreement. Our results suggested that the thorax vector can be used to provide an accurate estimation of thorax alignment at all stages of the golf swing (R > or = 0.97, systematic difference < 1.0 degrees , random difference < 3.8 degrees ). The inter-acromion vector gave an accurate estimation of thorax alignment at address (R = 0.90, systematic difference = 0.0 degrees , random difference = 4.3 degrees ) but it should not be used to estimate thorax alignment at the top of the backswing (R = 0.32, systematic difference = -16.0 degrees , random difference = 8.7 degrees ) or impact (R = 0.90, systematic difference = -5.1 degrees , random difference = 8.3 degrees ) during the golf drive.

  20. Immediate effects of reiki on heart rate variability, cortisol levels, and body temperature in health care professionals with burnout.

    Science.gov (United States)

    Díaz-Rodríguez, Lourdes; Arroyo-Morales, Manuel; Fernández-de-las-Peñas, Cesar; García-Lafuente, Francisca; García-Royo, Carmen; Tomás-Rojas, Inmaculada

    2011-10-01

    Burnout is a work-related mental health impairment comprising three dimensions: emotional exhaustion, depersonalization, and reduced personal accomplishment. Reiki aims to help replenish and rebalance the body's energetic system, thus stimulating the healing process. The objective of this placebo-controlled, repeated measures, crossover, single-blind, randomized trial was to analyze the immediate effects of Reiki on heart rate variability (HRV), body temperature, and salivary flow rate and cortisol level in health care professionals with burnout syndrome (BS). Participants included 21 health care professionals with BS, who were asked to complete two visits to the laboratory with a 1-week interval between sessions. They were randomly assigned the order in which they would receive a Reiki session applied by an experienced therapist and a placebo treatment applied by a therapist with no knowledge of Reiki, who mimicked the Reiki treatment. Temperature, Holter ECG recordings (standard deviation of the normal-to-normal interval [SDNN], square root of mean squared differences of successive NN intervals [RMSSD], HRV index, low frequency component [LF], and high frequency component [HF]), salivary flow rate and cortisol levels were measured at baseline and postintervention by an assessor blinded to allocation group. SDNN and body temperature were significantly higher after the Reiki treatment than after the placebo. LF was significantly lower after the Reiki treatment. The decrease in the LF domain was associated with the increase in body temperature. These results suggest that Reiki has an effect on the parasympathetic nervous system when applied to health care professionals with BS.

  1. Measuring adiposity in patients: the utility of body mass index (BMI, percent body fat, and leptin.

    Directory of Open Access Journals (Sweden)

    Nirav R Shah

    Full Text Available BACKGROUND: Obesity is a serious disease that is associated with an increased risk of diabetes, hypertension, heart disease, stroke, and cancer, among other diseases. The United States Centers for Disease Control and Prevention (CDC estimates a 20% obesity rate in the 50 states, with 12 states having rates of over 30%. Currently, the body mass index (BMI is most commonly used to determine adiposity. However, BMI presents as an inaccurate obesity classification method that underestimates the epidemic and contributes to failed treatment. In this study, we examine the effectiveness of precise biomarkers and duel-energy x-ray absorptiometry (DXA to help diagnose and treat obesity. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional study of adults with BMI, DXA, fasting leptin and insulin results were measured from 1998-2009. Of the participants, 63% were females, 37% were males, 75% white, with a mean age = 51.4 (SD = 14.2. Mean BMI was 27.3 (SD = 5.9 and mean percent body fat was 31.3% (SD = 9.3. BMI characterized 26% of the subjects as obese, while DXA indicated that 64% of them were obese. 39% of the subjects were classified as non-obese by BMI, but were found to be obese by DXA. BMI misclassified 25% men and 48% women. Meanwhile, a strong relationship was demonstrated between increased leptin and increased body fat. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the prevalence of false-negative BMIs, increased misclassifications in women of advancing age, and the reliability of gender-specific revised BMI cutoffs. BMI underestimates obesity prevalence, especially in women with high leptin levels (>30 ng/mL. Clinicians can use leptin-revised levels to enhance the accuracy of BMI estimates of percentage body fat when DXA is unavailable.

  2. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Liou, J.-C.

    2012-01-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources.

  3. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    Science.gov (United States)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  4. A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks.

    Science.gov (United States)

    Akram, Sana; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Imran, Muhammad; Guizani, Mohsen; Hayat, Amir; Ilahi, Manzoor

    2015-12-01

    As players and soldiers preform strenuous exercises and do difficult and tiring duties, they are usually the common victims of muscular fatigue. Keeping this in mind, we propose FAtigue MEasurement (FAME) protocol for soccer players and soldiers using in-vivo sensors for Wireless Body Area Sensor Networks (WBASNs). In FAME, we introduce a composite parameter for fatigue measurement by setting a threshold level for each sensor. Whenever, any sensed data exceeds its threshold level, the players or soldiers are declared to be in a state of fatigue. Moreover, we use a vibration pad for the relaxation of fatigued muscles, and then utilize the vibrational energy by means of vibration detection circuit to recharge the in-vivo sensors. The induction circuit achieves about 68 % link efficiency. Simulation results show better performance of the proposed FAME protocol, in the chosen scenarios, as compared to an existing Wireless Soccer Team Monitoring (WSTM) protocol in terms of the selected metrics.

  5. Body measurements and morphological evaluation of Italian Cane Corso

    Directory of Open Access Journals (Sweden)

    M. Polli

    2011-03-01

    Full Text Available Mastiff-like breeds are getting more and more popular due to their appearance and behaviour; within Italian breeds Cane Corso (CC, light mastiff-like type, is the one with the most positive entry trend in the last decade. CC is the 14th Italian breed; his original area is southern Italy. His standard has been officially recognised in 1994. CC standard, as every Italian dog breed standard, is very precise and objective giving a mathematical description of the main body region dimensions. The aim of this work is, through breed standard analysis and CC population study, to verify the closeness of the actual population to the standard mean values. Biometric investigation was applied as statistic method for biological problem analysis (Balasini, 1988. Collected data consist in body measurements and linear scoring applied to those anatomic regions and aspects difficult to be measured. A biometric study of a canine population could represent a valuable method to describe the breed condition in a given moment and could create a data bank for subsequent continuous studying to verify the morphological evolution of the breed..........

  6. Measurement of cloud point temperature in polymer solutions.

    Science.gov (United States)

    Mannella, G A; La Carrubba, V; Brucato, V

    2013-07-01

    A temperature-controlled turbidity measurement apparatus for the characterization of polymer solutions has been instrumented and set up. The main features are the coupled temperature-light transmittance measurement and the accurate temperature control, achieved by means of peltier cells. The apparatus allows to measure cloud point temperatures by adopting different cooling protocols: low rate for quasi-equilibrium measurements and high rate for detect kinetic effects. A ternary polymeric solution was adopted as case study system showing that cooling rate affects the measured cloud point temperature.

  7. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients

    Directory of Open Access Journals (Sweden)

    Asadian S

    2016-09-01

    Full Text Available Simin Asadian,1 Alireza Khatony,1 Gholamreza Moradi,2 Alireza Abdi,1 Mansour Rezaei,3 1Nursing and Midwifery School, Kermanshah University of Medical Sciences, 2Department of Anesthesiology, 3Biostatistics & Epidemiology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran Introduction: An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. Methods: In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients’ body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. Results: There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (P<0.001. Kappa coefficients showed good agreement between the temperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%. Paired t-test demonstrated an acceptable precision with forehead (P=0.132, left (P=0.18 and right (P=0.318 tympanic membranes, oral (P=1.00, and axillary (P=1.00 methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. Conclusion: The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left for

  8. [Hyperthermia. Modification of body temperature as clinical therapeutics].

    Science.gov (United States)

    Vicuña Urtasun, Berta; Villalgordo Ortin, Paola; Montes García, Yolanda; Marín, Fernández Blanca

    2011-04-01

    The application of heat or cold therapy is called thermotherapy Thermotherapy has been used since ancient times, Egyptians, Greeks and Romans used solar radiation or submersion in springs to apply heat and ice and snow for cold application. The first scientific references related to thermotherapy appear in late eighteenth century but the twentieth century when the introduction of new forms of deep heat therapy have expanded their capabilities and their operation with media surface more comfortable and effective. Thermotherapy although they require more experimentation to obtain a solid scientific proof that their use is raising great expectations in various fields such as oncology treatment, surgery neurology etc. In the surgical field thermal ablation has been used successfully in the treatment of various diseases, benign prostatic hyperplasia, liver and gynecological tumors, among others. In the field of oncology has been shown to improve outcomes diathermy applied in conjunction with chemo and radiation therapy Based on the literature review describing the main uses of the change in temperature as a therapeutic, the main indications for these techniques, as applicable, evidence of its benefits and complications arising from their use.

  9. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?

    DEFF Research Database (Denmark)

    Sinclair, Brent J.; Marshall, Katie E.; Sewell, Mary A.;

    2016-01-01

    Thermal performance curves (TPCs), which quantify how an ectotherm's body temperature (T-b) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying...... this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced T-b. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs....... For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions...

  10. Effects of GABA agonists on body temperature regulation in GABA(B(1))-/- mice.

    Science.gov (United States)

    Quéva, Christophe; Bremner-Danielsen, Marianne; Edlund, Anders; Ekstrand, A Jonas; Elg, Susanne; Erickson, Sven; Johansson, Thore; Lehmann, Anders; Mattsson, Jan P

    2003-09-01

    1. Activation of GABA(B) receptors evokes hypothermia in wildtype (GABA(B(1))+/+) but not in GABA(B) receptor knockout (GABA(B(1))-/-) mice. The aim of the present study was to determine the hypothermic and behavioural effects of the putative GABA(B) receptor agonist gamma-hydroxybutyrate (GHB), and of the GABA(A) receptor agonist muscimol. In addition, basal body temperature was determined in GABA(B(1))+/+, GABA(B(1))+/- and GABA(B(1))-/- mice. 2. GABA(B(1))-/- mice were generated by homologous recombination in embryonic stem cells. Correct gene targeting was assessed by Southern blotting, PCR and Western blotting. GABA(B) receptor-binding sites were quantified with radioligand binding. Measurement of body temperature was done using subcutaneous temperature-sensitive chips, and behavioural changes after drug administration were scored according to a semiquantitative scale. 3. GABA(B(1))-/- mice had a short lifespan, probably caused by generalised seizure activity. No histopathological or blood chemistry changes were seen, but the expression of GABA(B(2)) receptor protein was below the detection limit in brains from GABA(B(1))-/- mice, in the absence of changes in mRNA levels. 4. GABA(B) receptor-binding sites were absent in brain membranes from GABA(B(1))-/- mice. 5. GABA(B(1))-/- mice were hypothermic by approximately 1 degrees C compared to GABA(B(1))+/+ and GABA(B(1))+/- mice. 6. Injection of baclofen (9.6 mg kg-1) produced a large reduction in body temperature and behavioural effects in GABA(B(1))+/+ and in GABA(B(1))+/- mice, but GABA(B(1))-/- mice were unaffected. The same pattern was seen after administration of GHB (400 mg kg-1). The GABA(A) receptor agonist muscimol (2 mg kg-1), on the other hand, produced a more pronounced hypothermia in GABA(B(1))-/-mice. In GABA(B(1))+/+ and GABA(B(1))+/- mice, muscimol induced sedation and reduced locomotor activity. However, when given to GABA(B(1))-/- mice, muscimol triggered periods of intense jumping and wild

  11. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    Science.gov (United States)

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg

  12. Core Temperature and Surface Heat Flux During Exercise in Heat While Wearing Body Armor

    Science.gov (United States)

    2015-10-26

    Potter AW, Santee WR, Clements CM, Brooks KA, & Hoyt RW. Comparative analysis of metabolic cost equations: A review. Journal of Sport and Human...TECHNICAL REPORT NO. T16-1 DATE October 2015 ADA CORE TEMPERATURE AND SURFACE HEAT FLUX ...DURING EXERCISE IN HEAT WHILE WEARING BODY ARMOR USARIEM TECHNICAL REPORT T16-1 CORE TEMPERATURE AND SURFACE HEAT FLUX DURING EXERCISE

  13. Body temperature variation of South African antelopes in two climatically contrasting environments

    NARCIS (Netherlands)

    Shrestha, A.K.; Wieren, van S.E.; Langevelde, van F.; Fuller, A.; Hetem, R.S.; Meyer, L.C.R.; Bie, de S.; Prins, H.H.T.

    2012-01-01

    To understand the adaptive capacity of a species in response to rapid habitat destruction and climate change, we investigated variation in body temperature (Tb) of three species of antelope, namely eland, blue wildebeest and impala, using abdominally-implanted temperature data loggers. The study was

  14. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature.

    Science.gov (United States)

    Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc

    2016-09-28

    This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting.

  15. Perceived intensity of peripheral thermal stimuli is independent of internal body temperature.

    Science.gov (United States)

    Mower, G D

    1976-12-01

    Four adult male human subjects were tested under three conditions of internal body temperature: hypothermia, normal, and hyperthermia. Under each of these conditions, they judged the intensity (degree of warmness or coolness) and the hedonic quality (degree of pleasantness or unpleasantness) of a series of stimuli ranging from hot to cold. The results showed that whereas hedonic quality is greatly influenced by the value of internal body temperature, the perception of warmness or coolness is independent of internal temperature and dependent only on peripheral stimulation.

  16. Influence of elevated body temperature on circulating immunoglobulin-secreting cells

    DEFF Research Database (Denmark)

    Kappel, M; Barington, T; Gyhrs, A;

    1995-01-01

    . On another occasion they served as their own controls, being immersed into thermoneutral water (water temperature 34.5 degrees C) for 2 h. Blood samples were drawn before immersion, at body temperatures of 38, 39 and 39.5 degrees C, as well as 2 h after WI when their body temperatures were normalized....... In the control experiments, blood samples were drawn at identical time points. A significant increase in the number of IgM-secreting cells per fixed number of blood mononuclear cells (BMNC) occurred 2 h after WI, whereas the number of IgA-secreting cells per fixed number of BMNC did not change. When the possible...

  17. A noncontact temperature measurement method in polymerase chain reaction reactors

    Science.gov (United States)

    Sochivko, D. G.; Varlamov, D. A.; Fedorov, A. A.; Kurochkin, V. E.

    2016-04-01

    A new noncontact method for measuring temperatures of liquids, which is based on the fluorescent probes, is proposed. The method is intended for measuring temperatures of reaction media in reactors of devices for polymerase chain reactions in real time and can be used for determining dynamic temperature parameters.

  18. Design of High Precision Temperature Measurement System based on Labview

    OpenAIRE

    Weimin Zhu; Jin Liu; Haima Yang; Chaochao Yan

    2015-01-01

    Using the LabVIEW software platform, a high precision temperature measuring device is designed based on the principle of the thermocouple. The system uses the STM32 MCU as the main control chip, using AD7076 analog digital converter. The converter has 8 channel, synchronous sampling, and bipolar input. Improving the precision of temperature measurement by cold end compensation, fitting and other measures. The test results show that, the device temperature measurement precision can reach ±0.1 ...

  19. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers.

    Science.gov (United States)

    Lee, Y; Bok, J D; Lee, H J; Lee, H G; Kim, D; Lee, I; Kang, S K; Choi, Y J

    2016-02-01

    Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.

  20. Methodological aspects of EEG and Body dynamics measurements during motion.

    Directory of Open Access Journals (Sweden)

    Pedro eReis

    2014-03-01

    Full Text Available EEG involves recording, analysis, and interpretation of voltages recorded on the human scalp originating from brain grey matter. EEG is one of the favorite methods to study and understand processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements, that are performed in response to the environment. However, there are methodological difficulties when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions of how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determination of real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks.

  1. Body temperature changes induced by huddling in breeding male emperor penguins.

    Science.gov (United States)

    Gilbert, Caroline; Maho, Yvon Le; Perret, Martine; Ancel, André

    2007-01-01

    Huddling is the key energy-saving mechanism for emperor penguins to endure their 4-mo incubation fast during the Antarctic winter, but the underlying physiological mechanisms of this energy saving have remained elusive. The question is whether their deep body (core) temperature may drop in association with energy sparing, taking into account that successful egg incubation requires a temperature of about 36 degrees C and that ambient temperatures of up to 37.5 degrees C may be reached within tight huddles. Using data loggers implanted into five unrestrained breeding males, we present here the first data on body temperature changes throughout the breeding cycle of emperor penguins, with particular emphasis on huddling bouts. During the pairing period, core temperature decreased progressively from 37.5 +/- 0.4 degrees C to 36.5 +/- 0.3 degrees C, associated with a significant temperature drop of 0.5 +/- 0.3 degrees C during huddling. In case of egg loss, body temperature continued to decrease to 35.5 +/- 0.4 degrees C, with a further 0.9 degrees C decrease during huddling. By contrast, a constant core temperature of 36.9 +/- 0.2 degrees C was maintained during successful incubation, even during huddling, suggesting a trade-off between the demands for successful egg incubation and energy saving. However, such a limited drop in body temperature cannot explain the observed energy savings of breeding emperor penguins. Furthermore, we never observed any signs of hyperthermia in huddling birds that were exposed to ambient temperatures as high as above 35 degrees C. We suggest that the energy savings of huddling birds is due to a metabolic depression, the extent of which depends on a reduction of body surface areas exposed to cold.

  2. Thermogenic alterations in the woman. II. Basal body, afternoon, and bedtime temperatures.

    Science.gov (United States)

    Zuspan, K J; Zuspan, F P

    1974-10-15

    19 female college students aged 17-20 years volunteered to participate in an experiment whereby they took their temperatures on 1st rising, at 5 p.m., and at bedtime for a minimum of 1 complete ovulation cycle. 3 parallel curves were found with the afternoon temperature being .7 degrees Farenheit higher than the basal and .3 degrees higher than the bedtime temperature. Several graphs illustrate the curve patterns. It is concluded that either the afternoon or the evening temperature can be used instead of the rising (or basal body) temperature, with an adjustment of the correct amount.

  3. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  4. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-01-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937

  5. Pyrometric temperature measurements in the solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, H.-R; Mueller, Ch.

    2000-07-01

    Surface temperatures are key parameters in many applications of concentrated solar radiation. Pyrometric temperature determination is here hampered by the reflected solar radiation. Two approaches to solve this problem were experimentally tested with the TREMPER reactor in the solar furnace at PSI: the flash assisted multiwavelength pyrometry (FAMP) developed at PSI and a so called 'solar-blind' pyrometer developed by IMPAC Electronic GmbH in Frankfurt, Germany, in collaboration with PSI. Performance, advantages and disadvantages of the two different pyrometers are reported and discussed. (authors)

  6. Measuring the organizational effectiveness of National Sport Governing Bodies.

    Science.gov (United States)

    Frisby, W

    1986-06-01

    The purpose of this study was to analyze the relationship between the goal and systems models of organizational effectiveness in Canadian National Sport Governing Bodies. The major issue addressed was whether elite amateur sport organizations which are more successful at acquiring scarce financial resources, are also more successful at achieving goals of performance excellence. World rankings, changes in world rankings and an effectiveness ranking, which accounts for the number of competing countries, were used to measure the degree to which the organizations are achieving their goals of performance excellence. The 1982 total operating budget of each NSGB and the increase in financial support received from Fitness and Amateur Sport from 1970 to 1982 were used to measure the ability of the NSGBs to acquire scarce financial resources under the systems model of effectiveness. The results revealed that one of the goal model indicators, the effectiveness ranking, was positively and significantly correlated with one of the system model indicators, the total operating budget. This suggests that the ability to acquire scarce financial resources is related to the ability of an NSGB to achieve its goal of performance excellence. This also suggests that the goal and systems models may be complementary methods of measuring the concept of organizational effectiveness even though they are most often viewed as being alternative approaches in the literature.

  7. The effect of water temperature on the human body and the swimming effort

    Directory of Open Access Journals (Sweden)

    SERAFEIM ALEXIOU

    2014-10-01

    Full Text Available Although many research papers have dealt with the influence of environmental temperature on the various Human body functions during exercise in land, a few only informations exist for the equivalent alterations in water temperatures during immersion and swimming. The present preview research paper is referred on this subject. During swimming in the normal water temperature 26° ± 1° C (63, the functions of the human body respond regularly and the performance of swimmers tends to be improved. However, during swimming in cold water critical differences appear in human functions, such as bradycardia, angiospasm, hyperventilation and adaptations of thermoregulatory mechanism which influence the swimming performance and the life itself. Especially in very cold water temperature the disturbances of the cardiovascular system may lead in critical arrhythmia or sudden death. The cold water temperature, however, influences the kinetic and energy behavior related to the reduction of swimmers performance because of its possible influence on the neuromuscular function. In the increased water temperature up to 28° C appears tachycardia, vasodilation and other alternations which aim to better thermoregulation. The swimmers records are possibly equivalent with a tendency to be improved, to the records in normal temperature of championships 26° C and the increased temperature mainly in the speed events (3. Therefore, there is a differentiation on swimmers performances due to water temperature declination from normal. Also, body functions change during water immersion.

  8. To use or not to use torpor? Activity and body temperature as predictors

    Science.gov (United States)

    Christian, Nereda; Geiser, Fritz

    2007-06-01

    When food is limited and/or environmental conditions are unfavourable, many mammals reduce activity and use torpor to save energy. Nevertheless, reliable predictors for torpor occurrence, especially in the wild, are currently not available. Interrelations between torpor use and other energy conserving strategies are also poorly understood. We tested the hypothesis that reductions in normothermic body temperature ( T b) and the period of activity before torpor events could be used as predictors for torpor occurrence in sugar gliders, Petaurus breviceps (body mass, ˜125 g), known to display daily torpor in the wild. Occurrence of torpor was preceded by significant (˜10-25%) reductions of the duration of the activity phase. Moreover, the normothermic resting T b fell by an average of 1.2°C over 3 days before a torpor event, relative to individuals that did not display torpor. Our new findings suggest that before entering torpor, sugar gliders, which appear to use torpor as an emergency measure rather than a routine energy saving strategy, systematically reduce activity times and normothermic resting T bs to lower energy expenditure and perhaps to avoid employing torpor. Thus, reduced activity and normothermic T b may provide a predictive tool for the occurrence of daily torpor in the wild.

  9. An intelligent instrument for measuring exhaust temperature of marine engine

    Institute of Scientific and Technical Information of China (English)

    MA Nan-qi; SU Hua; LIU Jun

    2006-01-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple.Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer).The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually..

  10. Design of High Precision Temperature Measurement System based on Labview

    Directory of Open Access Journals (Sweden)

    Weimin Zhu

    2015-06-01

    Full Text Available Using the LabVIEW software platform, a high precision temperature measuring device is designed based on the principle of the thermocouple. The system uses the STM32 MCU as the main control chip, using AD7076 analog digital converter. The converter has 8 channel, synchronous sampling, and bipolar input. Improving the precision of temperature measurement by cold end compensation, fitting and other measures. The test results show that, the device temperature measurement precision can reach ±0.1 °C, has the advantages of small size, high precision, and reliable performance, this high precision temperature measurement can be widely used in industrial production.

  11. Restore good conditions of Incore temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Solanas, A.; Izquierdo, J.

    2014-07-01

    In the frame of life time extension of Nuclear Power plants, operators have to face numerous problems. Loss of too many incore temperature lines, for aging or obsolescence reasons, can be one of them. In such situation, large numbers of thermocouples could have to be replaced before starting this new operating period. (Author)

  12. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Science.gov (United States)

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  13. A new system for the analysis of thermal judgments: multipoint measurements of skin temperatures and temperature-related sensations and their joint visualization.

    Science.gov (United States)

    Nakamura, Mayumi; Esaki, Hidenori; Yoda, Tamae; Yasuhara, Saki; Kobayashi, Akiko; Konishi, Aki; Osawa, Naoki; Nagashima, Kei; Crawshaw, Larry I; Kanosue, Kazuyuki

    2006-12-01

    We report a new system for monitoring sensations of many body parts as well as comprehensively showing the distribution of overall skin temperature (T(sk)) and temperature-related sensations. The system consists of a console with 52 levers to report temperature-related sensations and software that facilitates the visualization of the distribution of T(sk) and temperature-related sensations by displaying them on a model of the human body. The system's utility was demonstrated with a physiological experiment involving three males and three females. They were exposed to step changes of ambient temperature from 23 degrees C to 33 degrees C. We measured T(sk) at 50 points, and the subjects concurrently provided estimates of local temperature sensation and thermal comfort/discomfort at 25 loci. This system greatly facilitates the perception and analysis of spatial relationships and differences in temperature and sensation in various areas of the body.

  14. Metabolism of polychaete Neanthes japonica Izuka: relations to temperature, salinity and body weight

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; XIAN Weiwei; SUN Shichun

    2009-01-01

    Polychaete Neanthesjaponica is a species geographically specific in China and Japan with important scientific implication and commercial value. In this study, the relations of body weight, salinity and temperature to oxygen consumption and ammonia excretion of N. japonica were determined. Threedifferent groups in body weight (large: 2.34±0.36 g, middle: 1.50±0.21 g and small: 0.62±0.12 g) were set for all experiments. Results show that the body weight is negatively related to the rates of oxygen consumption and ammonia excretion; and the relationship is significant. The oxygen consumption and ammonia excretion at 24℃ decreased at salinity from 5 to 30 and increased above 30, indicating that both lower and higher salinity are adverse and certain degree of salinity stress is necessary for enhancing the energy demand. At salinity 30, rising temperature from 18℃ to 30℃, the oxygen consumption increased before 27℃ and then decreased. However, the relation of ammonia excretion and temperature seems more complex. Two-way ANOVA shows that salinity, temperature and body weight all have a significant effect on the oxygen consumption and ammonia excretion of the worm. Moreover, interaction between salinity/temperature and body weight is also significant. O:N (oxygen/nitrogen) ratio varies greatly in this case from 5.97 to 463.22, indicating that N. japonica can regulate the type of metabolic substrate against environment changes.

  15. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.

    Science.gov (United States)

    Tsai, Yi-Chun; Li, Suming; Hu, Shiaw-Guang; Chang, Wen-Chi; Jeng, U-Ser; Hsu, Shan-hui

    2015-12-23

    Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and a second oligodiol containing amphiphilic blocks was synthesized in this study. The microstructure was characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and rheological measurement of the PU dispersion. The surface hydrophilicity measurement, infrared spectroscopy, wide-angle X-ray diffraction, mechanical and thermal analyses were conducted in solid state. It was observed that the presence of a small amount of amphiphilic blocks in the soft segment resulted in significant changes in microstructure. When 90 mol % PCL diol and 10 mol % amphiphilic blocks of poly(l-lactide)-poly(ethylene oxide) (PLLA-PEO) diol were used as the soft segment, the synthesized PU had a water contact angle of ∼24° and degree of crystallinity of ∼14%. The dispersion had a low viscosity below room temperature. As the temperature was raised to body temperature (37 °C), the dispersion rapidly (∼170 s) underwent sol-gel transition with excellent gel modulus (G' ≈ 6.5 kPa) in 20 min. PU dispersions with a solid content of 25-30% could be easily mixed with cells in sol state, extruded by a 3D printer, and deposited layer by layer as a gel. Cells remained alive and proliferating in the printed hydrogel scaffold. We expect that the development of novel thermoresponsive PU system can be used as smart injectable hydrogel and applied as a new type of bio-3D printing ink.

  16. 46 CFR 154.1340 - Temperature measuring devices.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the... level allowed under § 154.1844. (b) Each device required by paragraph (a) must have a readout at...

  17. 凸体的包含测度(Ⅱ)%Inclusion measures of convex bodies (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    熊革

    2007-01-01

    In this paper, several inequalities for inclusion measures of convex bodies were obtained. The inclusion measure was proved to have concavity by considering the property of relative inner parallel body.

  18. Methodology and factors influencing the association of body weight, performance parameters with linear body measurements assessment in poultry

    Directory of Open Access Journals (Sweden)

    Never Assan

    2015-10-01

    Full Text Available The preceding review gives some insight on different methods and factors which influence the association of live weight, performance parameters with linear body measurements assessment in poultry. The relationship existing among linear body parameters provides useful information on the performance and carcass value of poultry.  Linear body measurements  variability in poultry arises due to genotypic and environmental effects, and the magnitude of variability may differs under different management practices and environmental conditions. The knowledge of the relationship existing between live weight,  carcass traits  and other performance traits in poultry is crucial because it enable us to predict the body weight and performance  from linear body parts and vice versa. This is on the background that different methods have been employed to assess the association of live weight, performance parameters with linear body measurements in poultry. It is suffice to suggest that the understating of the relationship between linear body measurements and performance traits in poultry could be useful in designing appropriate management, selection and breeding  programs for utilization of poultry genetic resources. Therefore, the conclusion that linear body measurements information for a particular poultry species or breed is important for breed or species identification and economic valuation in its utilization, might be valid.

  19. Infrared measurement and simulation of magnesium alloy welding temperature field

    Institute of Scientific and Technical Information of China (English)

    LIU Liming; CHI Mingsheng; HUANG Ruisheng; SONG Gang; ZHOU Yang

    2005-01-01

    The welding temperature field of magnesium alloy AZ31 welded by TIG was measured with the uncooled infrared (IR) thermal imaging technology. The variables in the mathematic mode of welding temperature fields were revised by IR temperature data. Based on the results of simulation, the loss of temperature fields caused by arc interfered was compensated, and a whole temperature field was achieved, which provided a precise and powerful foundation for the investigation of microstructure of the joints.

  20. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    Directory of Open Access Journals (Sweden)

    Jeonggon Harrison Kim

    2008-11-01

    Full Text Available Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  1. Measuring the Electron Temperature in the Corona

    Science.gov (United States)

    Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson

    2008-01-01

    We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.

  2. Measurement of many-body chaos using a quantum clock

    Science.gov (United States)

    Zhu, Guanyu; Hafezi, Mohammad; Grover, Tarun

    2016-12-01

    There has been recent progress in understanding chaotic features in many-body quantum systems. Motivated by the scrambling of information in black holes, it has been suggested that the time dependence of out-of-time-ordered (OTO) correlation functions such as is a faithful measure of quantum chaos. Experimentally, these correlators are challenging to access since they apparently require access to both forward and backward time evolution with the system Hamiltonian. Here we propose a protocol to measure such OTO correlators using an ancilla that controls the direction of time. Specifically, by coupling the state of the ancilla to the system Hamiltonian of interest, we can emulate the forward and backward time propagation, where the ancilla plays the role of a quantum clock. Within this scheme, the continuous evolution of the entire system (the system of interest and the ancilla) is governed by a time-independent Hamiltonian. We discuss the implementation of our protocol with current circuit-QED technology for a class of interacting Hamiltonians. Our protocol is immune to errors that could occur when the direction of time evolution is externally controlled by a classical switch.

  3. Measurement of many-body chaos using a quantum clock

    CERN Document Server

    Zhu, Guanyu; Grover, Tarun

    2016-01-01

    There has been recent progress in understanding chaotic features in many-body quantum systems. Motivated by the scrambling of information in black holes, it has been suggested that the time dependence of out-of-time-ordered (OTO) correlation functions such as $\\langle O_2(t) O_1(0) O_2(t) O_1(0) \\rangle $ is a faithful measure of quantum chaos. Experimentally, these correlators are challenging to access since they apparently require access to both forward and backward time evolution with the system Hamiltonian. Here, we propose a protocol to measure such OTO correlators using an ancilla which controls the direction of time. Specifically, by coupling the state of ancilla to the system Hamiltonian of interest, we can emulate the forward and backward time propagation, where the ancilla plays the role of a 'quantum clock'. Within this scheme, the continuous evolution of the entire system (the system of interest and the ancilla) is governed by a time-independent Hamiltonian. Our protocol is immune to errors that c...

  4. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score

    DEFF Research Database (Denmark)

    Thorup, Vivi Mørkøre; Edwards, David; Friggens, N C

    2012-01-01

    Precise energy balance estimates for individual cows are of great importance to health, reproduction and feed management. Energy balance is usually calculated as energy input minus output (EBalinout), requiring measurements of feed intake and energy output sources (milk, maintenance, activity......, growth and pregnancy). Except milk yield, direct measurements of these are difficult to obtain in practice, and estimates involve considerable error sources, so limiting on-farm use. Alternatively, energy balance can be estimated from body reserve changes (EBalbody) using body weight (BW) and body...... repeated BW, a milk-free BW was derived, and from between milking repeated BW, a meal-related gutfill-free BW was derived. Changes in BW and BCS were used to calculate changes in body protein, body lipid, and thus EBalbody during the first 150 DIM. As there is no gold standard energy balance measurement...

  5. Body temperature daily rhythm adaptations in African savanna elephants (Loxodonta africana).

    Science.gov (United States)

    Kinahan, A A; Inge-moller, R; Bateman, P W; Kotze, A; Scantlebury, M

    2007-11-23

    The savanna elephant is the largest extant mammal and often inhabits hot and arid environments. Due to their large size, it might be expected that elephants have particular physiological adaptations, such as adjustments to the rhythms of their core body temperature (T(b)) to deal with environmental challenges. This study describes for the first time the T(b) daily rhythms in savanna elephants. Our results showed that elephants had lower mean T(b) values (36.2 +/- 0.49 degrees C) than smaller ungulates inhabiting similar environments but did not have larger or smaller amplitudes of T(b) variation (0.40 +/- 0.12 degrees C), as would be predicted by their exposure to large fluctuations in ambient temperature or their large size. No difference was found between the daily T(b) rhythms measured under different conditions of water stress. Peak T(b)'s occurred late in the evening (22:10) which is generally later than in other large mammals ranging in similar environmental conditions.

  6. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain.

    Science.gov (United States)

    Granger, Jill I; Ratti, Pietro-Luca; Datta, Subhash C; Raymond, Richard M; Opp, Mark R

    2013-07-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24-48 h. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6h to 72 h post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for

  7. Plasma, magnetic, and electromagnetic measurements at nonmagnetic bodies

    Science.gov (United States)

    Russell, C. T.; Luhmann, J. G.

    The need to explore the magnetospheres of the Earth and the giant planets is widely recognized and is an integral part of our planetary exploration program. The equal need to explore the plasma, magnetic, and electromagnetic environments of the nonmagnetic bodies is not so widely appreciated. The previous, albeit incomplete, magnetic and electric field measurements at Venus, Mars, and comets have proven critical to our understanding of their atmospheres and ionospheres in areas ranging from planetary lightning to solar wind scavenging and accretion. In the cases of Venus and Mars, the ionospheres can provide communication paths over the horizon for low-altitude probes and landers, but we know little about their lower boundaries. The expected varying magnetic fields below these planetary ionospheres penetrates the planetary crusts and can be used to sound the electrical conductivity and the thermal profiles of the interiors. However, we have no knowledge of the levels of such fields, let alone their morphology. Finally, we note that the absence of an atmosphere and an ionosphere does not make an object any less interesting for the purposes of electromagnetic exploration. Even weak remanent magnetism such as that found on the Moon during the Apollo program provides insight into the present and past states of planetary interiors. We have very intriguing data from our space probes during times of both close and distant passages of asteroids that suggest they may have coherent magnetization. If true, this observation will put important constraints on how the asteroids formed and have evolved. Our planetary exploration program must exploit its full range of exploration tools if it is to characterize the bodies of the solar system thoroughly. We should especially take advantage of those techniques that are proven and require low mass, low power, and low telemetry rates to undertake.

  8. 综合保温措施在晚期肝泡状棘球蚴病自体肝移植围术期的应用%Application of comprehensive thermal insulation measures for maintaining body temperature during period of liver transplantation

    Institute of Scientific and Technical Information of China (English)

    李丽; 罗新玲; 陈晓晴; 王梅新

    2015-01-01

    目的:探讨综合保温措施在晚期肝泡状棘球蚴病自体肝移植围术期的应用效果,为提高手术成功率提供理论依据。方法选取18例晚期肝泡状棘球蚴病行自体肝移植术的患者,采用适度提高室温、身体包裹、输液加温、湿敷料加温、冲洗液加温与铺置保温毯的综合保温措施,通过监测肛温、鼻咽温、心率、血压、pH值,验证此法是否有效。结果在新肝再灌注5 min时,患者鼻咽温、肛温分别为:(35.78±0.69),(35.97±0.65)℃,pH值为(7.29±0.08),均显著下降;心率加快为(100.58±5.47)次/min,差异有统计学意义(P<0.01)。在无肝期后30 min和新肝再灌注5 min时,收缩压分别为(82.21±10.45),(83.59±12.71)mmHg,均显著下降,差异有统计学意义(P<0.01);以上指标均在新肝再灌注30 min后恢复正常。结论在晚期肝泡状棘球蚴病自体肝移植围术期,综合保温措施的应用能有效地预防术中低体温的发生。%Objective To evaluate the effects of comprehensive thermal insulation measure for maintaining body temperature during perioperative period of liver transplantation for the late hepatic alveolar echinococcosis, and provide theoretical basis for improving the success rate of the operation. Methods A total of 18 patients undergoing liver transplantation for the late hepatic alveolar echinococcosis received comprehensive thermal insulation measure. The changes of nasopharyngeal and rectal temperature, pH, heart rate and blood pressure were monitored in the whole process of operation to justify the effective. Results After 5 min the new liver reperfusion, the nasopharyngeal and rectal temperature were (35. 78 ± 0. 69) and (35. 97 ± 0. 65)℃, and the value of pH decreased dramatically to (7. 29 ± 0. 08), but the heart rate increased to (100. 58 ± 5. 47) times/min (P<0. 01). The systolic blood pressure were (82. 21 ± 10. 45) and (83. 59 ± 12. 71) mmHg during no liver period and 5 min new liver

  9. Measurement of magnetic properties at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    This picture shows part of the low-mu permeameter to measure permeability of stainless steels and other low-mu materials used in superconducting magnets. The sample, a 5 mm diam., 45 mm long rod, is suspended to long leads before being inserted in the test cryostat. For the measurement the sample is surrounded by a flux- measuring coil and placed in the field of a superconducting solenoid. At a given field the sample is removed.During the removal, the voltage induced in the flux-measuring coil is time integrated giving the flux variation. This equipment was developed to select stainless steels and other low-mu materials used in the ISR Prototype Superconducting Qaudrupole. The person is W.Ansorge.

  10. Air Temperature Measurements Using Dantec Draught Probes

    DEFF Research Database (Denmark)

    Kristensen, Martin Heine; Jensen, Jakob Søland; Jensen, Rasmus Lund

    This technical report is written based on investigations of Dantec measurement equipment used in a master thesis project by the authors in the period September 2014 to June 2015 (Kristensen & Jensen, 2015)....

  11. Acoustic temperature measurement in a rocket noise field.

    Science.gov (United States)

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  12. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    Science.gov (United States)

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  13. [Measurement of human body fat by means of gravimetry. Application of Archimedes' principle].

    Science.gov (United States)

    Dettwiler, W; Ribordy, M; Donath, A; Scherrer, J R

    1978-12-02

    The weighing of the human body under water is an application of Archimedes' law. Fat being lighter than water or than the structures of lean body mass, body fat can be measured by determining the specific gravity of the human body; that is, by underwater weighing. Body fat has been determined in an "ideal" sample of 14 men and 23 women, all aged 20 years. Testing against a reference measure of body fat makes it possible to test the validity of some anthropometric measurements and of some indices of obesity. These indices offer no advantages over anthropometric measurements.

  14. Solar energy control system. [temperature measurement

    Science.gov (United States)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  15. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    Science.gov (United States)

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  16. Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stress.

    Science.gov (United States)

    Romero, Rosita Denny; Montero Pardo, Arnulfo; Montaldo, Hugo Horacio; Rodríguez, Ana Delia; Hernández Cerón, Joel

    2013-11-01

    Pelibuey and Suffolk sheep were compared as to their capacity to regulate body temperature under environmental hyperthermia by measuring their differences in cellular response to heat stress (HS). In a first experiment, seven Pelibuey and seven Suffolk ewes were kept in a climatic chamber for 6 h daily during 10 days (temperatures within the 18 to 39.5 °C range). As chamber temperature rose, sheep rectal temperature increased in both groups, but to a lesser extent in Pelibuey (0.3 °C) than in Suffolk sheep (0.7 °C) (P  0.05]. HS significantly increased HSP-70 average concentrations for both breeds at 43 °C. A significant effect was observed for the breed by temperature interaction (P  0.05). In conclusion, Pelibuey sheep show more effective body temperature regulation under conditions of environmental hyperthermia. Also, cell viability after HS was higher in Pelibuey than in Suffolk, an effect that could be mediated by an HSP-70-related mechanism.

  17. Microwave radiometric system for biomedical 'true temperature' and emissivity measurements.

    Science.gov (United States)

    Lüdeke, K M; Köhler, J

    1983-09-01

    A novel type of radiometer is described, which solves the problem of emissivity-(mismatch)-independent noise temperature measurements by simultaneous registration of an object's apparent temperature and its reflectivity with just one microwave receiver and real-time calculation of the object's emissivity and its actual temperature.

  18. The predicting value of postoperative body temperature on long-term survival in patients with rectal cancer.

    Science.gov (United States)

    Yu, Huichuan; Luo, Yanxin; Peng, Hui; Kang, Liang; Huang, Meijin; Luo, Shuangling; Chen, Wenhao; Yang, Zihuan; Wang, Jianping

    2015-09-01

    This study aimed to assess the association between postoperative body temperature and prognosis in patients with rectal cancer. Five hundred and seven patients with stage I to III rectal cancers were enrolled in the current study. Basal body temperature (BBT, measured at 6 am) and maximal body temperature (MBT) on each day after surgery were analyzed retrospectively. Patients were divided into two equal groups according to the median of BBT and MBT at each day. The primary end points were disease-free survival (DFS) and overall survival (OS). The univariate and multivariate analyses showed that patients with low D0-MBT (37.4 °C). In the subset of 318 patients with T3 stage tumor and the subgroup of 458 patients without blood transfusion as well, low D0-MBT continues to be an independent predictor of DFS/OS with an adjusted HR equal to 1.48 (95 % CI 1.02-2.24, P = 0.046)/1.68 (95 % CI 1.04-2.99, P = 0.048) and 1.45 (95 % CI 1.02-2.13, P = 0.048)/1.59 (95 % CI 1.01-2.74, P = 0.049), respectively. In addition, we found that patients have higher risk of 1-year recurrence if those were exhibiting low preoperative BBT (temperature (D0-MBT rectal cancer.

  19. Portable optical fiber probe for in vivo brain temperature measurements.

    Science.gov (United States)

    Musolino, Stefan; Schartner, Erik P; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M; Hutchinson, Mark R

    2016-08-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.

  20. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    ) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity......Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared...

  1. Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits.

    OpenAIRE

    Small, P M; Täuber, M G; Hackbarth, C J; Sande, M A

    1986-01-01

    We examined the role of fever as a host defense in experimental pneumococcal meningitis in rabbits. Twelve hours after intracisternal inoculation of an encapsulated type 3 Streptococcus pneumoniae strain, body temperature was manipulated by using two different anesthetic drugs: pentobarbital, which did not affect temperature, and urethane, which mitigated the febrile response to infection. Growth rates of pneumococci in cerebrospinal fluid were dramatically influenced by modification of the f...

  2. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score.

    Science.gov (United States)

    Thorup, V M; Edwards, D; Friggens, N C

    2012-04-01

    Precise energy balance estimates for individual cows are of great importance to monitor health, reproduction, and feed management. Energy balance is usually calculated as energy input minus output (EB(inout)), requiring measurements of feed intake and energy output sources (milk, maintenance, activity, growth, and pregnancy). Except for milk yield, direct measurements of the other sources are difficult to obtain in practice, and estimates contain considerable error sources, limiting on-farm use. Alternatively, energy balance can be estimated from body reserve changes (EB(body)) using body weight (BW) and body condition score (BCS). Automated weighing systems exist and new technology performing semi-automated body condition scoring has emerged, so frequent automated BW and BCS measurements are feasible. We present a method to derive individual EB(body) estimates from frequently measured BW and BCS and evaluate the performance of the estimated EB(body) against the traditional EB(inout) method. From 76 Danish Holstein and Jersey cows, parity 1 or 2+, on a glycerol-rich or a whole grain-rich total mixed ration, BW was measured automatically at each milking. The BW was corrected for the weight of milk produced and for gutfill. Changes in BW and BCS were used to calculate changes in body protein, body lipid, and EB(body) during the first 150 d in milk. The EB(body) was compared with the traditional EB(inout) by isolating the term within EB(inout) associated with most uncertainty; that is, feed energy content (FEC); FEC=(EB(body)+EMilk+EMaintenance+Eactivity)/dry matter intake, where the energy requirements are for milk produced (EMilk), maintenance (EMaintenance), and activity (EActivity). Estimated FEC agreed well with FEC values derived from tables (the mean estimate was 0.21 MJ of effective energy/kg of dry matter or 2.2% higher than the mean table value). Further, the FEC profile did not suggest systematic bias in EB(body) with stage of lactation. The EB(body

  3. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...

  4. Non-contact temperature measurement requirements for electronic materials processing

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    The requirements for non-contact temperature measurement capabilities for electronic materials processing in space are assessed. Non-contact methods are probably incapable of sufficient accuracy for the actual absolute measurement of temperatures in most such applications but would be useful for imaging in some applications.

  5. Optically Powered Temperature Measuring Instrument for Big Rotor①

    Institute of Scientific and Technical Information of China (English)

    ZHENGDezhong

    1997-01-01

    A micro-power consumption non-contact temperature measuring instrument for big rotos is introduced.As it solver very well the signal coupling under high speed rotation and power supply problem for probe,the instrument can realize persistent on-line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.

  6. Measurement of Temperature Fields in Long Span Concrete Bridges

    Directory of Open Access Journals (Sweden)

    J. Římal

    2001-01-01

    Full Text Available This paper deals with assesing of the influence of climate temperatures on deformations and stresses in a cross section of the Nusle Bridge. The main purpose is to describe the measurement of the thermal fields, to compare measured and computed temperature fields, and to provide a real estimation of the stresses that occur.

  7. Luminous Flame Temperature Distribution Measurement Using the Emission Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Flame temperature distribution is one of the most important characteristic parameters in combustion research. The emission method is a good way to measure the luminous flame temperature field. The maximum entropy method is introduced to the temperature distribution measurement of a luminous flame using the emission method. A simplified mathematical model was derived by combining the thermal radiation theory, reconstruction algorithm and maximum entropy method. Suitable parameters were selected in the computing process. Good experimental results were obtained with pulverized coal flames.

  8. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Science.gov (United States)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  9. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  10. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  11. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle.

    Science.gov (United States)

    George, W D; Godfrey, R W; Ketring, R C; Vinson, M C; Willard, S T

    2014-11-01

    Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of these experiments was to compare the temperature of the eye (EYE) or muzzle (MUZ) measured using DITI to vaginal (VT) and rectal temperature (RT) as measures of core body temperature in hair sheep and beef cattle. In Exp.1 EYE, VT and RT were measured in lactating, multiparous hair sheep ewes (St. Croix White, n = 10, and Dorper × St. Croix White, n = 10) in a non-febrile state 5 times over a 48-h period. Data loggers were used to measure VT and a digital veterinary thermometer was used to measure RT. There was a high correlation (P 0.10) between RT or VT and MUZ. The findings of these three studies indicate that temperature of the eye, measured using DITI, can be used as an indicator of core body temperature in hair sheep and beef cattle as an alternative to using vaginal or rectal temperature.

  12. Scan posture definition and hip girth measurement: the impact on clothing design and body scanning.

    Science.gov (United States)

    Gill, Simeon; Parker, Christopher J

    2016-11-15

    Ergonomic measurement is central to product design and development; especially for body worn products and clothing. However, there is a large variation in measurement definitions, complicated by new body scanning technology that captures measurements in a posture different to traditional manual methods. Investigations of hip measurement definitions in current clothing measurement practices supports analysis of the effect of scan posture and hip measurement definition on the circumferences of the hip. Here, the hip girth is a key clothing measurement that is not defined in current body scanning measurement standards. Sixty-four participants were scanned in the standard scan posture of a [TC](2) body scanner, and also in a natural posture similar to that of traditional manual measurement collection. Results indicate that scan posture affects hip girth circumferences, and that some current clothing measurement practices may not define the largest lower body circumference. Recommendations are made concerning how the hip is defined in measurement practice and within body scanning for clothing product development. Practitioner Summary: The hip girth is an important measurement in garment design, yet its measurement protocol is not currently defined. We demonstrate that body posture during body scanning affects hip circumferences, and that current clothing measurement practices may not define the largest lower body circumference. This paper also provides future measurement practice recommendations.

  13. Study on a transient optical fiber high temperature measurement system

    Science.gov (United States)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    High temperature is one of the most important parameters in the fields of scientific research and industrial production. At present, thermocouple, thermo resistive and radiance thermometer are already technologically mature which can be adopted to measure the general temperature, but when it comes to the transient high temperature that changes pretty quickly in wretched conditions, those traditional pyrometers can not meet the requirements any more. In this paper, we designed a transient optical high temperature measurement system. First, design of the temperature measurement probe. The system took blackbody cavity sensor together with optical fiber to receive the measured signal, here, the integrated emissivity model of the blackbody cavity was established and the optimum structure parameters were confirmed. Secondly, design of the entire temperature measurement system. A contact-noncontact measurement method was applied, which is to make the blackbody cavity and the measured high-temperature source contact, the fiber probe and the blackbody cavity noncontact, as a result, the error caused by contact measurement is overcame and the precision is guaranteed at the same time. In addition, a fiber grating was introduced as the wavelength filter device which can realize the dynamic filter of narrow-band signals and reduce the impact of background light. Thirdly, signal processing. In this part, we applied labVIEW software and wavelet analysis method. All of the signal acquisition and processing were realized in the labVIEW environment. Through calling matlab in labVIEW, the signals from optical fiber detector were wavelet denoised and decomposed, thus the temperature information was extracted, and the temperature value was obtained. On basis of wavelet transformation, the paper adopted the 4dB wavelet with horizontal scale of 5 to realize the feature extraction and noise removal, parts of the signals before and after the wavelet noise removal were given and analyzed

  14. A body temperature model for lizards as estimated from the thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.

    2012-01-01

    A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and re

  15. Differences in oral temperature and body shape in two populations with different propensities for obesity

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Bogardus, C;

    2002-01-01

    Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is...

  16. Changes in daily rhythms of body temperature and activity after a single social defeat in rats

    NARCIS (Netherlands)

    Meerlo, P; DeBoer, SF; Koolhaas, JM; Daan, S; VandenHoofdakker, RH

    1996-01-01

    The long-term consequences of social stress on daily rhythms of body temperature and activity in rats were studied by means of radiotelemetry with intraperitoneally implanted transmitters. Rats were subjected to a single social defeat by placing them into the territory of a male conspecific for 1 h.

  17. Intracerebral implantation of carbachol in the rat: Its effect on water intake and body temperature

    NARCIS (Netherlands)

    Hulst, S.G.Th.

    1972-01-01

    Intracerebral carbachol produces a fall in body temperature as well as drinking in the rat when implanted in various subcortical structures, related to the emotion-motivation limbic circuit. These effects are due to a central cholinergic stimulation since they can be prevented by the systemic admini

  18. Postmortem time estimation using body temperature and a finite-element computer model

    NARCIS (Netherlands)

    Hartog, E.A. den; Lotens, W.A.

    2004-01-01

    In the Netherlands most murder victims are found 2-24 h after the crime. During this period, body temperature decrease is the most reliable method to estimate the postmortem time (PMT). Recently, two murder cases were analysed in which currently available methods did not provide a su.ciently reliabl

  19. Forced desynchrony of circadian rhythms of body temperature and activity in rats

    NARCIS (Netherlands)

    Strijkstra, AM; Meerlo, P; Beersma, DGM

    1999-01-01

    The daily rhythm in body temperature is thought to be the result of the direct effects of activity and the effects of an endogenous circadian clock. Forced desynchrony (FD) is a tool used in human circadian rhythm research to disentangle endogenous and activity-related effects on daily rhythms. In t

  20. Reduction of body temperature governs neutrophil retention in hibernating and nonhibernating animals by margination

    NARCIS (Netherlands)

    Bouma, Hjalmar R.; Dugbartey, George J.; Boerema, Ate S.; Talaei, Fatemeh; Herwig, Annika; Goris, Maaike; van Buiten, Azuwerus; Strijkstra, Arjen M.; Carey, Hannah V.; Henning, Robert H.; Kroese, Frans G. M.

    2013-01-01

    Low body temperature leads to decrease of circulating neutrophils due to margination in hibernating and nonhibernating animals. Hibernation consists of periods of low metabolism, called torpor, interspersed by euthermic arousal periods. During deep and daily (shallow) torpor, the number of circulati

  1. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    1997-01-01

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7 +/

  2. Development of an Anti-Theft Device using Motion Detection and Body Temperature

    Directory of Open Access Journals (Sweden)

    Rhowel Dellosa

    2014-12-01

    Full Text Available –The researcher aimed to design, assemble and determine the performance of the anti-theft device using motion detection and body temperature. The study utilized developmental design to observe the functionality of the device. Study showed that the anti-theft device can detect motion from a moving object for those with body temperature like human being, animals. A signal from the sensor circuits will trigger the receiver circuit to produce an audible sound that served as alarm. It was also found out that the output of the study is accurate in terms of detecting moving objects with body temperature during day and night times. The researchers formulated an evaluation instrument to determine its performance. Results showed that the device had a good performance and acceptable in terms of functionality. It is strongly recommended that further studies be conducted to enrich the anti-theft device using motion detection and body temperature in a controlled environment like museum and banks to determine the effectiveness of the integration of the anti-theft device.

  3. Simultaneous collection of body temperature and activity data in burrowing mammals : a new technique

    NARCIS (Netherlands)

    Long, Ryan A.; Hut, Roelof A.; Barnes, Brian M.

    2007-01-01

    Integrating physiological and behavioral observations into ecological field studies of animals can provide novel insights into relationships among animal behavior, physiology, and ecology. We describe and evaluate a new technique for simultaneously collecting body temperature (T-b) and burrow use da

  4. Orexin-a regulates body temperature in coordination with control of arousal state

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Orexins, hypothalamic neuropeptieds, are involved in modulation of food intake and arousal state. To examine further physiological roles of orexin in brain function, the effects of centrally administered orexin- A on body temperature was investigated in rats. Assessed by a telemetry-sensor system implanted into the abdominal cavity, infusion of orexin-A into the third cerebroventricle increased body temperature in a dose-responsive manner. Cumulative ambulatory activity was concomitantly increased during 6 h but not 12 h after administration of orexin-A. Expression of uncoupling protein 1 (UCP1) mRNA in brown adipose tissue, as a marker for peripheal thermogenesis which affects body temperature, failed to increase after orexin-A administration. Expression of UCP3 mRNA in skeletal muscle but not UCP 2 in white adipose tissue was upregulated by infusion of orexin-A. The resulting information indicates that orexin neuron regulates body temperature in coordination with control of arousal system independently of peripheral thermogenesis through the BAT UCP1.

  5. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    CERN Document Server

    Molaro, Jamie L; Langer, Steve A

    2015-01-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

  6. A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangman Moh

    2013-08-01

    Full Text Available The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node’s circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  7. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  8. RADIOGRAPHIC MEASUREMENTS OF THE HEIGHTS OF VERTEBRAL BODIES IN THORACIC AND LUMBAR SPINE

    Institute of Scientific and Technical Information of China (English)

    戴力扬

    1996-01-01

    Radiographic measurements was performed on 124 normal adults for anterior, posterior and middle heights of the vertebral bodies in thoracic and lumbar spine. The normal ratios of vertebral height in one vertebral body and one with the adjacent bodies were presented. The method for measurement and its diagnostic value to osteoporodc vertebral fractures were discussed.

  9. Measuring orientation of human body segments using miniature gyroscopes and accelerometers

    NARCIS (Netherlands)

    Luinge, H.J.; Veltink, P.H.

    2005-01-01

    In the medical field, there is a need for small ambulatory sensor systems for measuring the kinematics of body segments. Current methods for ambulatory measurement of body orientation have limited accuracy when the body moves. The aim of the paper was to develop and validate a method for accurate me

  10. Pharmacological properties of traditional medicines. XXV. Effects of ephedrine, amygdalin, glycyrrhizin, gypsum and their combinations on body temperature and body fluid.

    Science.gov (United States)

    Yuan, D; Komatsu, K; Cui, Z; Kano, Y

    1999-02-01

    Effects of ephedrine, amygdalin, glycyrrhizin, gypsum and their combinations on body temperature and body fluid were studied in rats using the method developed in our previous reports. Ephedrine significantly increased respiratory evaporative water loss and heat loss in response to a marked elevation of body temperature. There was a small but significant increase in body temperature when amygdalin was orally given rats at a dose of 46.32 mg/kg. Glycyrrhizin and gypsum were unable to affect body temperature. However, gypsum was able to prevent the increased action of ephedrine on body temperature, amygdalin exhibited a preventive tendency to it, and glycyrrhizin did not affect it. The results are in good agreement with classical claims of Makyo-kanseki-to and the related crude drugs in traditional medicine. Moreover, a combination of the four components reproduced the effects of Makyo-kanseki-to on body temperature and body fluid. This report suggests that the co-administration of ephedrine and gypsum is physiologically more desirable than ephedrine alone for dry-type asthmatic patients with a fever. Also, it experimentally supports the clinical efficacy of Makyo-kanseki-to.

  11. Infrared thermoimages display of body surface temperature reaction in experimental cholecystitis

    Institute of Scientific and Technical Information of China (English)

    Dong Zhang; Yuan-Gen Zhu; Shu-You Wang; Hui-Min Ma; Yan-Yan Ye; Wei-Xing Fu; Wei-Guo Hu

    2002-01-01

    AIM: To display the thermoirnages of the body surface inexperimental cholecystitis, to observe the body surfacetemperature reaction in visceral disorders, and to study if the theory of body surface-viscera correlation is true and the mechanism of temperature changes along the meridians. METHODS: By injecting bacteria ssuspension into the stricturebile duct and gallbladder, 21 rabbits were prepared as acutepyogenic cholangiocholecystitis models, with another 8rabbits prepared by the same process except withoutinjection of bacteria suspension as control. The body surfaceinfrared thermoimages were continuously observed on thehair shaven rabbit skin with AGA-782 thermovision 24 hbefore, 1-11 d after and (2,3 wk) 4 wk after the operation witha total of over 10 records of thermoimages.RESULTS: Twelve cases out of 21 rabbits with cholecystitisrevealed bi-lsteral longitudinal high temperature lines in itstrunk; with negative findings in the control group. The high-temperature line appeared on d l-d2, first in the right trunk,after the preparation of the model, about 7 d after the modelpreparation, the lines appeared at the left side too,persisting for 4 wk. The hyper-temperature line revealed 1.1-2.7 ℃ higher than before the model preparation, 0.7-2.5 ℃higher than the surrounding skin. The length of the hightemperature line might reach a half length of the body trunk,or as long as the whole body itself.CONCLUSION: The appearance of the longitudinal hightemperature lines st the lateral aspects of the trunk in theexperimental group is directly bound up with theexperimental animals pyogenic cholecystitis, with itsrunning course quite similar to that of the GallbladderChannel of Foot Shaoyang, but different to the zones ofhyperalgesia and site of referred pain in cholecystitis.

  12. Penetrative convection in stratified fluids: velocity and temperature measurements

    Directory of Open Access Journals (Sweden)

    M. Moroni

    2006-01-01

    Full Text Available The flux through the interface between a mixing layer and a stable layer plays a fundamental role in characterizing and forecasting the quality of water in stratified lakes and in the oceans, and the quality of air in the atmosphere. The evolution of the mixing layer in a stably stratified fluid body is simulated in the laboratory when "Penetrative Convection" occurs. The laboratory model consists of a tank filled with water and subjected to heating from below. The methods employed to detect the mixing layer growth were thermocouples for temperature data and two image analysis techniques, namely Laser Induced Fluorescence (LIF and Feature Tracking (FT. LIF allows the mixing layer evolution to be visualized. Feature Tracking is used to detect tracer particle trajectories moving within the measurement volume. Pollutant dispersion phenomena are naturally described in the Lagrangian approach as the pollutant acts as a tag of the fluid particles. The transilient matrix represents one of the possible tools available for quantifying particle dispersion during the evolution of the phenomenon.

  13. Made-to-measure N-body systems

    CERN Document Server

    Syer, D

    1996-01-01

    We describe an algorithm for constructing N-body realisations of equilibrium stellar systems. The algorithm complements existing orbit-based modelling techniques using linear programming or other optimization algorithms. The equilibria are constructed by integrating an N-body system while slowly adjusting the masses of the particles until the time-averaged density field and other observables converge to a prescribed value. The procedure can be arranged to maximise a linear combination of the entropy of the system and the \\chi^2 statistic for the observables. The equilibria so produced may be useful as initial conditions for N-body simulations or for modelling observations of individual galaxies.

  14. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.

    Science.gov (United States)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-03-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.

  15. Thermo-voltage measurements of atomic contacts at low temperature

    Directory of Open Access Journals (Sweden)

    Ayelet Ofarim

    2016-05-01

    Full Text Available We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.

  16. Fast Response Temperature Measurements in Stirling Cycle Cryocooler Components

    Science.gov (United States)

    Kar, K.; Dadd, M. W.; Bailey, P. B.; Stone, C. R.

    2008-03-01

    One reason that heat transfer processes are not well understood is the difficulty of obtaining reliable temperature measurements when gas temperatures vary rapidly. In the work described here gas temperatures have been measured using a fine wire resistance thermometer with a 3.8 micron active sensor. The equipment represented the basic elements of a cryocooler: a clearance seal linear compressor and a wire mesh regenerator. Both were operated close to ambient temperature, with gas temperatures being measured close to the regenerator. The test rig was run at different volume ratios, frequencies (8-50 Hz), gases and filling pressures (1-26 bar). The waveforms of the gas temperature were found to vary dramatically for differing flow regimes. The results suggested that the thermometer was measuring the temperatures of two distinct volumes of gas, and that the gas must remain stratified in the compression space. A flow transition was identified from the cycle-by-cycle variations in temperature. The critical Reynolds number was determined to be 9.6-11. At the critical condition, the temperature was so unstable that fluctuations up to 250 Hz were observed. A series of validation tests have confirmed that the observed temperatures were not artifacts.

  17. Temperature lags of luminescence measurements in a commercial luminescence reader

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, George [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece); Kiyak, Nafiye G. [ISIK University, Faculty of Science and Arts, Physics Department, Sile, 34980 Istanbul (Turkey); Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr [Ankara University, Institute of Nuclear Sciences, Beşevler, 06100 Ankara (Turkey)

    2015-09-15

    The temperature recorded in thermoluminescence and optically stimulated luminescence equipments is not the temperature of the sample but that of the heating element on which the thermocouple is attached. Depending upon the rate of heating, a temperature difference appears between the samples and the heating element, termed as temperature lag, which could have serious effects on the curve shapes and trapping parameters. In the present work the temperature lag effect is studied in a newly developed luminescence equipment measuring both thermoluminescence and optically stimulated luminescence. It is found that the temperature lag could be large for heating rates above 2 K/s and it is strongly dependent upon the sample holder. A simple approximation method is proposed in order to both predict as well as correct for temperature lag effects in luminescence measurements.

  18. Whole-body counter intercomparison measurements in Hungary and Italy

    Energy Technology Data Exchange (ETDEWEB)

    Andrasi, A. [Atomic Energy Research Institute, Budapest (Hungary). KFKI; Tarroni, G. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Ambiente

    1999-01-01

    In the frame of a co-operation agreement between Austrian Research Center Seibersdorf, Italian ENEA Institute for Radiation Protection and Hungarian KFKI Atomic Energy Research Centre, an intercomparison on WBC measurements using a modular bottle phantom was performed during 1995 in Hungary, on May-July 1996 in the Northern part of Italy. Results related to the relative bias for the three body masses are reported, together with indication of their compliance with ANSI report N13.30. It turned out that majority of the results were found to be within the performance criteria of the ANSI report, however there were also few outfalling results which were a good indication to check and improve the reliability of calibration and/or other methodological procedures. In the contrary of the expectance, the results related to 20 kg phantom resulted not significantly worse than those obtained for the adult phantom indicating the capacity for the participating WBC centres of measuring people from the general population. [Italiano] Nell`ambito di un accordo di collaborazione tra il Centro di Ricerca di Seibersdorf (Austria), l`Istituto per la Radioprotezione dell`ENEA (ENEA AMB PRO IRP) ed il Centro di Ricerca per l`Energia Atomica KFKI di Budapest (Ungheria), si e` svolto un interconfronto su misure WBC basato sull`utilizzo di un unico fantoccio modulare a bottiglie cui hanno partecipato centri WBC Ungheresi (1995) ed Italiani (Maggio-Giugno 1996). Nel presente rapporto tecnico vengono presentati i risultati ottenuti ed una loro analisi impostata sui criteri di valutazione recentemente proposti dall`ANSI nel rapporto N. 13.30. Sulla base di tale criterio la maggior parte dei risultati dell`interconfronto rientra nell`intervallo di accettabilita`; nei pochi casi di non accettabilita` si rende invece necessaria una revisione dei dati di calibrazione e delle metodologie. Contrariamente a quanto si poteva prevedere, i risultati relativi al fantoccio da 20 kg appaiono sostanzialmente

  19. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per;

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both...

  20. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  1. RS trigger based relaxation oscillator for temperature measurement circuit

    Institute of Scientific and Technical Information of China (English)

    ZOU Zhi-ge; ZOU Xue-cheng; JIAN Wen-xiang; LEI Jian-ming

    2008-01-01

    Resistance-to-time converter is always used for digital temperature measurement. An reset-set (RS) trigger based, relaxation oscillator based temperature measurement circuit, which is used to convert the change of thermistor sensor into a frequency signal for later processing, has been presented in this article. The RS trigger, which is composed of two inverters designed with distinct logical transition threshold voltages by changing the metal-oxide-semiconductor (MOS) transistor gains, has the same function as the Schmitt trigger in the relaxation oscillator. The advantage of the RS trigger based Schmitt trigger is that it reduces the dependence to supply voltage, chip temperature, and process variation. This temperature measurement circuit has been applied in a clinical thermometer chip that can measure temperature to an accuracy of better than 0.05℃ down to 1.1 V battery voltage. It is fabricated in 0.5double metal single poly complementary MOS (CMOS) process.

  2. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  3. Application of Phosphor Thermometry to a Galvanneal Temperature Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Beshears, D.L.; Allison, S.W.; Andrews, W.H.; Cates, M.R.; Grann, E.B.; Manges, W.W.; McIntyre, T.J.; Scudiere, M.B.; Simpson, M.L.; Childs, R.M.; Vehec, J.; Zhang, L.

    1999-06-01

    The Galvanneal Temperature Measurement System (GTMS) was developed for the American Iron and Steel Institute by the Oak Ridge National Laboratory through a partnership with the National Steel Midwest Division in Portage, Indiana. The GTMS provides crucial on-line thermal process control information during the manufacturing of galvanneal steel. The system has been used with the induction furnaces to measure temperatures ranging from 840 to 1292 F with an accuracy of better than {+-}9 F. The GTMS provides accurate, reliable temperature information thus ensuring a high quality product, reducing waste, and saving energy. The production of uniform, high-quality galvanneal steel is only possible through strict temperature control.

  4. Do fentanyl and morphine influence body temperature after severe burn injury?

    Science.gov (United States)

    Kahn, Steven Alexander; Beers, Ryan J; Lentz, Christopher W

    2011-01-01

    Fentanyl lacks the antiinflammatory properties of morphine. Morphine attenuates the inflammatory response through differential stimulation of μ-receptor subtypes. Patients who receive morphine during coronary artery bypass graft have been shown to experience less postoperative fever than those who receive fentanyl. Patients who receive continuous fentanyl infusions in increased room temperatures after thermal injury may be at increased risk to experience higher body temperature than those who receive morphine. The records of 28 patients with >20%TBSA burn in 30 intensive care unit rooms (13 received fentanyl and 15 received morphine or hydromorphone) and 12 trauma patients who received fentanyl in 22°C intensive care unit rooms were reviewed. Mean maximum core temperature and percentage of temperature recordings > 39°C in the first 48 hours of admission were compared between burn patients who received fentanyl, those who did not, and with trauma patients. Burn patients exposed to fentanyl experienced significantly higher temperatures (40.1 ± 0.9°C) compared with those given morphine (38.7 ± 0.8°C) and compared with trauma patients (37.5 ± 2.4°C), P Burn patients on fentanyl had temperatures > 39°C for a higher percentage of time (33 ± 27%) than those without fentanyl (7.2 ± 13%) and trauma patients (1 ± 2.8%), P Burn patients who receive fentanyl in 30°C rooms experience higher body temperatures and are febrile for a higher percentage of time than those receiving morphine only. Morphine has well-established antiinflammatory properties and likely attenuates the postburn inflammatory response more than fentanyl, resulting in lower body temperatures. This phenomenon needs to be further investigated in additional studies.

  5. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    Science.gov (United States)

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions.

  6. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W

    2015-11-01

    There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of <0.4 °C when used to predict the temperature at the seat and skin interface 15 min ahead, but required 45 min data prior to give this accuracy. Although the 45 min front loading of data appears large (in proportion to the 15 min prediction), a relative strength derives from the fact that the same algorithm could be used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 min required to train the algorithm is transferable to other data from the same individual. This approach might be developed (along with incorporation of other measures such as movement and humidity) into a system that can give caregivers prior warning to help avoid

  7. The dynamic relationship between mu and kappa opioid receptors in body temperature regulation.

    Science.gov (United States)

    Chen, Xiaohong; McClatchy, Daniel B; Geller, Ellen B; Tallarida, Ronald J; Adler, Martin W

    2005-12-12

    Previous studies demonstrated that intracerebroventricular (icv) injection of a kappa opioid receptor agonist decreased, and a mu agonist increased, body temperature (Tb) in rats. A dose-response study with the selective kappa antagonist nor-binaltorphimine (nor-BNI) showed that a low dose (1.25 nmol, icv) alone had no effect, although a high dose (25 nmol, icv) increased Tb. It was hypothesized that the hyperthermia induced by nor-BNI was the result of the antagonist blocking the kappa opioid receptor and releasing its inhibition of mu opioid receptor activity. To determine whether the Tb increase caused by nor-BNI was a mu receptor-mediated effect, we administered the selective mu antagonist CTAP (1.25 nmol, icv) 15 min after nor-BNI (25 nmol, icv) and measured rectal Tb in unrestrained rats. CTAP significantly antagonized the Tb increase induced by icv injection of nor-BNI. Injection of 5 or 10 nmol of CTAP alone significantly decreased the Tb, and 1.25 nmol of nor-BNI blocked that effect, indicating that the CTAP-induced hypothermia was kappa-mediated. The findings strongly suggest that mu antagonists, in blocking the basal hyperthermia mediated by mu receptors, can unmask the endogenous kappa receptor-mediated hypothermia, and that there is a tonic balance between mu and kappa opioid receptors that serves as a homeostatic mechanism for maintaining Tb.

  8. Post-warmup strategies to maintain body temperature and physical performance in professional rugby union players.

    Science.gov (United States)

    West, Daniel J; Russell, Mark; Bracken, Richard M; Cook, Christian J; Giroud, Tibault; Kilduff, Liam P

    2016-01-01

    We compared the effects of using passive-heat maintenance, explosive activity or a combination of both strategies during the post-warmup recovery time on physical performance. After a standardised warmup, 16 professional rugby union players, in a randomised design, completed a counter-movement jump (peak power output) before resting for 20 min and wearing normal-training attire (CON), wearing a passive heat maintenance (PHM) jacket, wearing normal attire and performing 3 × 5 CMJ (with a 20% body mass load) after 12 min of recovery (neuromuscular function, NMF), or combining PHM and NMF (COMB). After 20 min, participants completed further counter-movement jump and a repeated sprint protocol. Core temperature (Tcore) was measured at baseline, post-warmup and post-20 min. After 20 min of recovery, Tcore was significantly lower under CON and NMF, when compared with both PHM and COMB (P union players.

  9. Design, Development and Implementation of the IR Signalling Techniques for Monitoring Ambient and Body Temperature in WBANs

    Directory of Open Access Journals (Sweden)

    Attiya Baqai

    2014-07-01

    Full Text Available Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks. This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes, TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags

  10. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm.

    Science.gov (United States)

    Jeong, Keun-Yeong; Seong, Jinsil

    2014-06-15

    The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1.

  11. [Body thermal status under low-temperature conditions in brewing production].

    Science.gov (United States)

    Vasileva-Todorova, L; Dimitrova-Toneva, I

    1992-01-01

    The purpose of the present study is to trace the thermal state of workers exposed to low temperatures in brewery production, establishing the heat loss and the stress of thermoregulation. The investigations are performed in the departments for fermentation, deposit, cask washing and filling of 3 brewery plants. In order to characterize the microclimate methods of thermometry, psychometry and catathermometry are used. The heat state is controlled by methods of subjective heat perception, skin temperature, average skin temperature, temperature gradients, oral, rectal and average body temperature and the thermal content. The results of the physiological examinations point out to significant loss, which affects not only the periphery but also the deep tissues. There is an expressed risk of supercooling of the organism. The data of the heat deficit impose a correction of the working clothes and limitation of the exposure.

  12. Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus)

    Energy Technology Data Exchange (ETDEWEB)

    Christian, K.; Tracy, C.R.; Porter, W.P.

    1983-06-01

    Seasonal differences in the body temperatures (T/sub b/) of free-ranging Galapagos land iguanas (Conolophus pallidus) were detected by temperature sensitive telemetry transmitters. Midday T/sub b/'s of iguanas average 4.4/sup 0/C lower in the Garua (cool) season than in the Hot season. Measured T/sub b/'s and those predicted from biophysical models permitted the following conclusions: (1) lower T/sub b/'s during the Garua season represent an active shift in thermoregulation by the iguanas rather than a passive result of a cooler season; (2) the average midday T/sub b/ selected by the iguanas in either season is the T/sub b/ that allows maintenance of a constant T/sub b/ for the longest possible portion of the day; (3) by exploiting the warmer microclimate created by a cliff face, the iguanas are able to maintain a constant T/sub b/ for a full hour longer than they could elsewhere in their home range. Census data demonstrated that the iguanas exploited the warmer microclimate created by the cliff extensively during the Garua season, and the cliff face was visited by the iguanas relatively infrequently during the Hot season. Thus, the exploitation of the microclimate created by the cliff results in seasonal differences in the pattern of space utilization within the home ranges of the iguanas. Within the Garua season the iguanas moved away from the cliff more often on sunny days than during cloudy days. It is concluded that the physical environment is an important determinant of patterns of space utilization both within and between seasons.

  13. The definition analyses of radiation temperature measurement area

    Institute of Scientific and Technical Information of China (English)

    Fu Tairan; Cheng Xiaofang; Zhong Maohua

    2008-01-01

    In the research of primary spectrum pyrometry, this paper discussed the definition problem of radiation tem-perature measurement area based on the measurement coordinates. For the linear spectrum emissivity model and im-proved monotonic spectrum emissivity model, the characteristics of radiation temperature measurement area restricted by the measurement coordinates were theoretically analyzed, through the investigations of the temperature and emissivity co-ordinate axes. Choosing the specific primary spectrum pyrometer as an example in applications, the theoretical area of radiation temperature measurement of this pyrometer was given and it was verified through blackbody experiments. The discussions of this paper will provide the necessary foundation for the theory research development of primary spectrum pyrometry and the realization of technical applications.

  14. Fully automated setup for high temperature Seebeck coefficient measurement

    CERN Document Server

    Patel, Ashutosh

    2016-01-01

    In this work, we report the fabrication of fully automated experimental setup for high temperature Seebeck coefficient ($\\alpha$) measurement. The K-type thermocouples are used to measure the average temperature of the sample and Seebeck voltage (SV) across it. The temperature dependence of the Seebeck coefficients of the thermocouple and its negative leg is taken care by using the integration method. Steady state based differential technique is used for $\\alpha$ measurement. Use of limited component and thin heater simplify the sample holder design and minimize the heat loss. The power supplied to the heater decides temperature difference across the sample and measurement is carried out by achieving the steady state. The LabVIEW based program is built to automize the whole measurement process. The complete setup is fabricated by using commonly available materials in the market. This instrument is standardized for materials with a wide range of $\\alpha$ and for the wide range of $\\Delta T$ across the specimen...

  15. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  16. Axillary temperature measurement: a less stressful alternative for hospitalised cats?

    Science.gov (United States)

    Girod, M; Vandenheede, M; Farnir, F; Gommeren, K

    2016-02-20

    Rectal temperature measurement (RTM) can promote stress and defensive behaviour in hospitalised cats. The aim of this study was to assess if axillary temperature measurement (ATM) could be a reliable and less stressful alternative for these animals. In this prospective study, paired rectal and axillary temperatures were measured in 42 cats, either by a veterinarian or a student. To assess the impact of these procedures on the cat's stress state, their heart rate was checked and a cat stress score (CSS) was defined and graded from 1 (relaxed) to 5 (terrified). A moderate correlation was found between RTM and ATM (r=0.52; Pcats.

  17. Optimal frequency range for medical radar measurements of human heartbeats using body-contact radar.

    Science.gov (United States)

    Brovoll, Sverre; Aardal, Øyvind; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-01-01

    In this paper the optimal frequency range for heartbeat measurements using body-contact radar is experimentally evaluated. A Body-contact radar senses electromagnetic waves that have penetrated the human body, but the range of frequencies that can be used are limited by the electric properties of the human tissue. The optimal frequency range is an important property needed for the design of body-contact radar systems for heartbeat measurements. In this study heartbeats are measured using three different antennas at discrete frequencies from 0.1 - 10 GHz, and the strength of the received heartbeat signal is calculated. To characterize the antennas, when in contact with the body, two port S-parameters(†) are measured for the antennas using a pork rib as a phantom for the human body. The results shows that frequencies up to 2.5 GHz can be used for heartbeat measurements with body-contact radar.

  18. Effects of water vapor density on cutaneous resistance to evaporative water loss and body temperature in green tree frogs (Hyla cinerea).

    Science.gov (United States)

    Wygoda, Mark L; Kersten, Constance A

    2013-01-01

    Increased cutaneous resistance to evaporative water loss (Rc) in tree frogs results in decreased water loss rate and increased body temperature. We examined sensitivity of Rc to water vapor density (WVD) in Hyla cinerea by exposing individual frogs and agar models to four different WVD environments and measuring cutaneous evaporative water loss rate and body temperature simultaneously using a gravimetric wind tunnel measuring system. We found that water loss rate varied inversely and body temperature directly with WVD but that models were affected to a greater extent than were animals. Mean Rc was significantly different between the highest WVD environment and each of the three drier environments but did not differ among the drier environments, indicating that Rc initially increases and then reaches a plateau in response to decreasing WVD. Rc was equivalent when calculated using either WVD difference or WVD deficit as the driving force for evaporation. We also directly observed secretions from cutaneous glands while measuring body temperature and tested secretions and skin samples for the presence of lipids. We found that irregular transient body temperature depressions observed during wind tunnel trials occur due to evaporative cooling from intermittent skin secretions containing lipids, although we were unable to identify lipid-secreting glands.

  19. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.

    Science.gov (United States)

    Yang, Chin-Lung; Zheng, Gou-Tsun

    2015-11-20

    This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm². The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is -3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  20. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band

    Directory of Open Access Journals (Sweden)

    Chin-Lung Yang

    2015-11-01

    Full Text Available This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC 0.18-μm complementary metal oxide semiconductor (CMOS process, and the chip area is 0.9 mm2. The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO core is less than 40 µW, and the output is −3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  1. Magnetometry and electrical transport measurements of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    Prior to preparing and performing measurements in pulsed magnetic fields, it is necessary to characterize them. For the cuprates such as HgBa2CuO4+δ (Hg1201), measurements of the superconducting temperature is essential. This experiment comprises just such a characterization of Hg1201 crystals to be used for pulsed magnetic field measurements.

  2. Three-body recombination in heteronuclear systems at finite temperature with a large positive scattering length

    Science.gov (United States)

    Emmons, Samuel; Acharya, Bijaya; Platter, Lucas

    2017-01-01

    For an ultracold heteronuclear mixture with a large positive interspecies scattering length and negligible intraspecies scattering length, we determine the three-body recombination rate as a function of collision energy using universal functions of a single scaling variable. We use the zero-range approximation and the Skorniakov -Ter-Martirosian equation to calculate these scaling functions for a range of collision energies. Further, we explore the effects that a nonzero temperature has on three-body recombination, as well as the effects of the formation of deep dimers, for experimentally relevant heteronuclear gases such as the 6Li-133Cs mixture. NSF Grant Nos. PHY-1516077 and PHY-1555030.

  3. Biphasic changes in body temperature produced by intracerebroventricular injections of histamine in the cat.

    Science.gov (United States)

    Clark, W G; Cumby, H R

    1976-09-01

    1. Intracerebroventricular administration of histamine to cats caused hypothermia followed by a rise in body temperature. 2-Methylhistamine caused a similar biphasic response, while 3-methylhistamine had no effect on body temperature and 4-methylhistamine produced a delayed hyperthermia. Some tolerance to the hypothermic activity developed when a series of closely spaced injections of histamine was given. 2. Doses of histamine and 2-methylhistamine which altered body temperature when given centrally were ineffective when infused or injected I.V. 3. Pyrilamine, an H1-receptor antagonist, prevented the hypothermic response to histamine. 4. Hypothermic responses to histamine at an environmental temperature of 22 degrees C were comparable to responses in a cold room at 4 degrees C in both resting animals and animals acting to depress a lever to escape an external heat load. A change in error signal from the thermostat could account for these results. However, lesser degrees of hypothermia developed when histamine was given to animals in a hot environment. In some, but not all animals, this smaller response could be attributed to inadequate heat loss in spite of maximal activation of heat-loss mechanisms. 5. The hyperthermic response to histamine was antagonized by central, but not peripheral, injection of metiamide, an H2-receptor antagonist. 6. The results indicate that histamine and related agents can act centrally to cause both hypothermia, mediated by H1-receptors, and hyperthermia, mediated by H2-receptors.

  4. No relation between body temperature and arterial recanalization at three days in patients with acute ischaemic stroke

    NARCIS (Netherlands)

    M. Geurts (Marjolein); H.B. Van Der Worp (H. Bart); A.D. Horsch (Alexander D.); L.J. Kappelle (Jaap); G.J. Biessels (Geert Jan); B.K. Velthuis (Birgitta); C.B. Majoie (Charles); Y.B.W.E.M. Roos; L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); K.E. Droogh-De Greve; H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); J. Bot (Joseph); M.C. Visser (Marieke); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); T. van Seeters (Tom); A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels; L.J. Kappelle; J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2015-01-01

    textabstractBackground: Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods: We included 278 patients with acute ischaemic stroke within nine

  5. Combined NMR moisture, temperature and pressure measurements during heating

    Directory of Open Access Journals (Sweden)

    Pel L.

    2013-09-01

    Full Text Available For model validation, quantitative measurements of the evolution of moisture, temperature, and pressure distributions in time are needed. For this purpose, we have developed an NMR setup to measure the moisture transport in heated building materials. The measured combined moisture content and temperature profiles give a unique insight in the moisture transport and dehydration kinetics inside concrete during fire. These measurements give the first quantitative proof for the build-up of a moisture peak due to the vapor pressure build-up. In this study we have also combined for the first time the measurement of the moisture and temperature profiles with the measurement of the pressure at one position, which show that the pressure build up is directly related to the moisture profiles.

  6. Body temperature null distributions in reptiles with nonzero heat capacity: seasonal thermoregulation in the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Seebacher, Frank; Elsey, Ruth M; Trosclair, Phillip L

    2003-01-01

    Regulation of body temperature may increase fitness of animals by ensuring that biochemical and physiological processes proceed at an optimal rate. The validity of current methods of testing whether or not thermoregulation in reptiles occurs is often limited to very small species that have near zero heat capacity. The aim of this study was to develop a method that allows estimation of body temperature null distributions of large reptiles and to investigate seasonal thermoregulation in the American alligator (Alligator mississippiensis). Continuous body temperature records of wild alligators were obtained from implanted dataloggers in winter (n=7, mass range: 1.6-53.6 kg) and summer (n=7, mass range: 1.9-54.5 kg). Body temperature null distributions were calculated by randomising behavioural postures, thereby randomly altering relative animal surface areas exposed to different avenues of heat transfer. Core body temperatures were predicted by calculations of transient heat transfer by conduction and blood flow. Alligator body temperatures follow regular oscillations during the day. Occasionally, body temperature steadied during the day to fall within a relatively narrow range. Rather than indicating shuttling thermoregulation, however, this pattern could be predicted from random movements. Average daily body temperature increases with body mass in winter but not in summer. Daily amplitudes of body temperature decrease with increasing body mass in summer but not in winter. These patterns result from differential exposure to heat transfer mechanisms at different seasons. In summer, alligators are significantly cooler than predictions for a randomly moving animal, and the reverse is the case in winter. Theoretical predictions show, however, that alligators can be warmer in winter if they maximised their sun exposure. We concluded that alligators may not rely exclusively on regulation of body temperature but that they may also acclimatise biochemically to seasonally

  7. Principle study of temperature measurement based on primary colors

    Institute of Scientific and Technical Information of China (English)

    程晓舫; 周洲

    1997-01-01

    The Plank law reflecting the actual radiation of an object is ingeniously combined with the principle of primary colors which is the basis of the object’s color reappearing and the principle of primary colors temperature measurement is established.

  8. Development of a multispectral sensor for crop canopy temperature measurement

    Science.gov (United States)

    Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric...

  9. Influence of high temperatures and relative humidity on heat exchange of miners subjected to measured physical load

    Energy Technology Data Exchange (ETDEWEB)

    Knapik, Z.; Lyubchin' ska-Koval' ska, V.; Kozerovski, Ch.; Yuzva, V.; Tsader, Ya.; Ponerevka, E.; Paradovski, L.; Stolyarska, B.

    1987-12-01

    Investigates influence of microclimate of mines (temperature and humidity) on health of miners. Two groups of healthy men (18 to 45 and 46 to 58 years of age) performed controlled amounts of physical work on a bicycle ergometer under conditions of microclimate of mines at temperatures of 28 to 34 C and relative humidity of 100%. Increase in body heat of miners was measured by a thermocouple in the external auditory meatus 1 to 2 mm from the eardrum. Results showed a significant increase in internal temperature of body and that internal temperature of body rises with increases in external temperatures from 28 to 34 C. Conditions of test in which healthy men carry out controlled work loads significantly decrease removal of endogenous heat from body. Humidity of 100% eliminates removal of body heat by evaporation, radiation and convection. Overheating of body produces exhaustion, loss of concentration, limits diuresis and thickens urine. Miners over 45 years of age overheat more than younger men under the same conditions and work loads; men of greater body weight exhibit the same response. Tables determining approximate energy demands at the time of carrying out controlled physical work loads must take into consideration size of body, temperature of work place and relative humidity of air. 6 refs.

  10. The effect of physical exercise on the daily rhythm of platelet aggregation and body temperature in horses.

    Science.gov (United States)

    Piccione, Giuseppe; Grasso, Fortunata; Fazio, Francesco; Giudice, Elisabetta

    2008-05-01

    The goal of this study was to investigate the influence of physical activity on the daily rhythm of platelet aggregation and body temperature in horses. Blood samples from 12 Thoroughbred horses, six sedentary animals and six athletes (studied both before and after a period of inactivity) were collected at 4h intervals for 48h via an intravenous cannula inserted into the jugular vein. Body temperature was recorded every 4h for 48h with a rectal probe. Platelet aggregation was measured with an aggregometer. Collagen was used to test the aggregation of the plasma samples. Statistical analysis of the data was performed by one-way repeated-measures analysis of variance (ANOVA) and by single cosinor method. Cosinor analysis identified the periodic parameters and their acrophases (expressed in hours) during the 2 days of monitoring. On each single day, there was a highly significant effect of time in all the horses, with P values Temperature rhythms were unaffected by exercise. Platelet aggregation in exercising horses differed from the sedentary horses, and this difference disappeared after a 2-week period of rest. The results could be interpreted as indicating that physical exercise has an influence on the daily rhythm of platelet aggregation in horses.

  11. Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How

    Directory of Open Access Journals (Sweden)

    A. Afaneh

    2011-01-01

    Full Text Available The paper describes two different approaches to ultrasonic measurements of temperature in aqueous solutions. The first approach uses two narrowband ultrasonic transducers and support electronics that form an oscillating sensor which output frequency is related to the measured temperature. This low-cost sensor demonstrated sensitivity of about 40 Hz/K at the distance of 190 mm and the operating frequency of about 25 kHz. The second approach utilised pulse-echo mode at the centre frequency of 20 MHz. The reflector featured a cavity that was filled with deionised water. The ultrasound propagation delay in the cavity was related to the temperature in the solution. The experiments were conducted for deionised water, and solutions of sodium persulfate, sodium chloride, and acetic acid with concentrations up to 0.5 M. In the experiments (conducted within the temperature range from 15 to 30°C, we observed increases in the ultrasound velocity for increased temperatures and concentrations as was expected. Measurement results were compared with literature data for pure and seawater. It was concluded that ultrasonic measurements of temperature were conducted with the resolution well below 0.1 K for both methods. Advantages of ultrasonic temperature measurements over conventional thermometers were discussed.

  12. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  13. High temperature thermographic measurements of laser heated silica

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  14. Comparison of digital holographic interferometry and constant temperature anemometry for measurement of temperature field in fluid

    Science.gov (United States)

    Doleček, Roman; Psota, Pavel; Lédl, Vít.; Vít, Tomáś; Dančová, Petra; Kopecký, Václav

    2015-05-01

    The presented paper shows possibility of using digital holographic interferometry (DHI) for temperature field measurement in moving fluids. This method uses a modified Twymann-Green setup having double sensitivity instead of commonly used Mach-Zehnder type of interferometer in order to obtain sufficient phases change of the field. On the other hand this setup is not light efficient as Mach-Zehnder interferometer. For measurement of the fast periodical phenomenon is not necessary to use always the high speed camera. One can consider this field to coherent phenomenon. With employing one digital camera synchronized to periodic field and external triggered one can capture whole period of the phenomenon. However the projections form one viewing direction of asymmetrical temperature field maybe misguided. Hence for sufficient examination of the asymmetrical field one should capture a large number of the phenomenon's projections from different viewing directions. This projections are later used for 3D tomographic reconstruction of the whole temperature field and its time evolution. One of the commonly used method for temperature field measurement in moving fluids is hot wire method - constant temperature anemometry (CTA). In contrast to whole field measurement of DHI it is an invasive point temperature measurement method. One of the limiting factor of using CTA in moving fluids is frequency of temperature changes. This changes should not exceed 1 kHz. This limitation could be overcome by using of optical methods such as DHI. The results of temperature field measurement achieved by both method are compared in the paper.

  15. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    It is well known that sorption characteristics of building materials exhibit hysteresis in the way the equilibrium curves develop between adsorption and desorption, and that the sorption curves are also somewhat temperature dependent. However, these two facts are most often neglected in models...... measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...

  16. Miniaturized implantable sensors for in vivo localized temperature measurements in mice during cold exposure.

    Science.gov (United States)

    Padovani, R; Lehnert, T; Cettour-Rose, P; Doenlen, R; Auwerx, J; Gijs, M A M

    2016-02-01

    We report on in vivo temperature measurements performed in mice at two specific sites of interest in the animal body over a period of several hours. In particular, the aim of this work was to monitor mouse metabolism during cold exposure, and to record possible temperature differences between the body temperature measured in the abdomen and the temperature of the brown adipose tissue (BAT) situated in the interscapular area. This approach is of biological interest as it may help unravelling the question whether biochemical activation of BAT is associated with local increase in metabolic heat production. For that purpose, miniaturized thermistor sensors have been accurately calibrated and implanted in the BAT and in the abdominal tissue of mice. After 1 week of recovery from surgery, mice were exposed to cold (6 °C) for a maximum duration of 6 h and the temperature was acquired continuously from the two sensors. Control measurements with a conventional rectal probe confirmed good performance of both sensors. Moreover, two different mouse phenotypes could be identified, distinguishable in terms of their metabolic resistance to cold exposure. This difference was analyzed from the thermal point of view by computational simulations. Our simple physical model of the mouse body allowed to reproduce the global evolution of hypothermia and also to explain qualitatively the temperature difference between abdomen and BAT locations. While with our approach, we have demonstrated the importance and feasibility of localized temperature measurements on mice, further optimization of this technique may help better identify local metabolism variations.

  17. Ring to measure magnetic permeability at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    While for magn. permeability measurements at room temperature a split-coil permeameter is used (see photo 7708553X), for measurements at cryogenic temperatures the excitation and the flux-measuring coils are wound directly on the ring sample by means of a toroidal winding machine. The ring in the picture was made to select the mild steel for the ISR Prototype Superconducting Quadrupole(see photo 7702690X). The excitation coil was wound with 1 mm diam. copper wire and had about 2730 turns. For measurements at 4.2 K a max. current of 90 A was used. See also photos 7708553X,7708100,7708103.

  18. MPPT Technique Based on Current and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira Vicente

    2015-01-01

    Full Text Available This paper presents a new maximum power point tracking (MPPT method based on the measurement of temperature and short-circuit current, in a simple and efficient approach. These measurements, which can precisely define the maximum power point (MPP, have not been used together in other existing techniques. The temperature is measured with a low cost sensor and the solar irradiance is estimated through the relationship of the measured short-circuit current and its reference. Fast tracking speed and stable steady-state operation are advantages of this technique, which presents higher performance when compared to other well-known techniques.

  19. Artificial quantum thermal bath: Engineering temperature for a many-body quantum system

    Science.gov (United States)

    Shabani, Alireza; Neven, Hartmut

    2016-11-01

    Temperature determines the relative probability of observing a physical system in an energy state when that system is energetically in equilibrium with its environment. In this paper we present a theory for engineering the temperature of a quantum system different from its ambient temperature. We define criteria for an engineered quantum bath that, when coupled to a quantum system with Hamiltonian H , drives the system to the equilibrium state e/-H/TTr (e-H /T) with a tunable parameter T . This is basically an analog counterpart of the digital quantum metropolis algorithm. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. Our proposal opens the path to simulate thermodynamical properties of many-body quantum systems of size not accessible to classical simulations. Also we discuss how an artificial thermal bath can serve as a temperature knob for a hybrid quantum-thermal annealer.

  20. Temperature measurement methods during direct heat arterial tissue fusion.

    Science.gov (United States)

    Cezo, James D; Kramer, Eric; Taylor, Kenneth D; Ferguson, Virginia; Rentschler, Mark E

    2013-09-01

    Fusion of biological tissues through direct and indirect heating is a growing area of medical research, yet there are still major gaps in understanding this procedure. Several companies have developed devices which fuse blood vessels, but little is known about the tissue's response to the stimuli. The need for accurate measurements of tissue behavior during tissue fusion is essential for the continued development and improvement of energy delivery devices. An experimental study was performed to measure the temperatures experienced during tissue fusion and the resulting burst pressure of the fused arteries. An array of thermocouples was placed in the lumen of a porcine splenic artery segment and sealed using a ConMed Altrus thermal fusion device. The temperatures within the tissue, in the device, and at the tissue-device interface were recorded. These measurements were then analyzed to calculate the temperature profile in the lumen of the artery. The temperature in the artery at the site of tissue fusion was measured to range from 142 to 163 °C using the ConMed Altrus. The corresponding burst pressure for arteries fused at this temperature was measured as 416 ± 79 mmHg. This study represents the first known experimental measurement of temperature at the site of vessel sealing found in the literature.

  1. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  2. Low body temperature affects associative processes in long-trace conditioned flavor aversion.

    Science.gov (United States)

    Misanin, J R; Wilson, H A; Schwarz, P R; Tuschak, J B; Hinderliter, C F

    1998-12-01

    A series of experiments examined the effect of low body temperature on the associative process in long-trace conditioned flavor aversion. Experiment 1 demonstrated that maintaining a low body temperature between conditioned stimulus (CS) and unconditioned stimulus (US) administration facilitates the associative process and allows a flavor aversion to be conditioned in young rats over an interval that would normally not support conditioning. Experiments 2 and 3 demonstrated that this was due neither to lingering systemic saccharin serving as a CS nor to a cold induced enhancement of US intensity. Experiment 4 demonstrated that inducing hypothermia at various times during a 3-h CS-US interval results in an apparent delay of reinforcement gradient. We propose that a cold induced decrease in metabolic rate slows the internal clock that governs the perception of time and that the CS-US association depends upon perceived contiguity rather than upon an external clock-referenced contiguity.

  3. Finite-temperature second-order many-body perturbation theory revisited

    CERN Document Server

    Santra, Robin

    2016-01-01

    We present an algebraic, nondiagrammatic derivation of finite-temperature second-order many-body perturbation theory [FT-MBPT(2)], using techniques and concepts accessible to theoretical chemical physicists. We give explicit expressions not just for the grand potential but particularly for the mean energy of an interacting many-electron system. The framework presented is suitable for computing the energy of a finite or infinite system in contact with a heat and particle bath at finite temperature and chemical potential. FT-MBPT(2) may be applied if the system, at zero temperature, may be described using standard (i.e., zero-temperature) second-order many-body perturbation theory [ZT-MBPT(2)] for the energy. We point out that in such a situation, FT-MBPT(2) reproduces, in the zero-temperature limit, the energy computed within ZT-MBPT(2). In other words, the difficulty that has been referred to as the Kohn--Luttinger conundrum, does not occur. We comment, in this context, on a "renormalization" scheme recently ...

  4. Aluminum flame temperature measurements in solid propellant combustion.

    Science.gov (United States)

    Parigger, Christian G; Woods, Alexander C; Surmick, David M; Donaldson, A B; Height, Jonathan L

    2014-01-01

    The temperature in an aluminized propellant is determined as a function of height and plume depth from diatomic AlO and thermal emission spectra. Higher in the plume, 305 and 508 mm from the burning surface, measured AlO emission spectra show an average temperature with 1σ errors of 2980 ± 80 K. Lower in the plume, 152 mm from the burning surface, an average AlO emission temperature of 2450 ± 100 K is inferred. The thermal emission analysis yields higher temperatures when using constant emissivity. Particle size effects along the plume are investigated using wavelength-dependent emissivity models.

  5. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J. M.; Hernandez, A.

    1994-07-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01 % in the range 1 to 30, and 3 x 10{sup 6} for loss tangent values below 10{sup 2}, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99.9 % purity in the same temperature range are presented. (Author) 23 refs.

  6. Simultaneous measurement of temperature and strain using four connecting wires

    Science.gov (United States)

    Parker, Allen R., Jr.

    1993-01-01

    This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.

  7. [Analyses of spectral emissivity in radiation temperature measurement].

    Science.gov (United States)

    Fu, Tai-Ran; Cheng, Xiao-Fang; Zhong, Mao-Hua; Yang, Zang-Jian

    2008-01-01

    The complexity of the spectral emissivity of actual surfaces is the key point in the research and applications of radiation temperature measurement, resulting in the difficulty in the achievement of the temperature measurement. In the present paper, based on the discussions of the Taylor expansion, the non-dimension wavelength and the exponent, the authors describe the mathematical expression of the spectral emissivity of actual surfaces, and establish the general spectral emissivity function. Through the fitting of experimental data of the spectral emissivities of different metals at different temperatures, the applicability of the spectral emissivity function is verified which especially becomes the fundamental in the research of primary spectrum pyrometry.

  8. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    Science.gov (United States)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  9. Measurement of thermal expansion coefficient of nonuniform temperature specimen

    Institute of Scientific and Technical Information of China (English)

    Jingmin Dai; Chunsuo Kin; Xiaowa He

    2008-01-01

    A new technique is developed to measure the longitudinal thermal expansion coefficient of C/C composite material at high temperature. The measuring principle and components of the apparatus are described in detail. The calculation method is derived from the temperature dependence of the thermal expansion coefficient. The apparatus mainly consists of a high temperature environmental chamber, a power circuit of heating, two high-speed pyrometers, and a laser scanning system. A long solid specimen is resistively heated to a steady high-temperature state by a steady electrical current. The temperature profile of the specimen surface is not uniform because of the thermal conduction and radiation. The temperature profile and the total expansion are measured with a high-speed scanning pyrometer and a laser slit scanning measuring system, respectively. The thermal expansion coefficient in a wide temperature range (1000 - 3800 K) of the specimen can therefore be obtained. The perfect consistency between the present and previous results justifies the validity of this technique.

  10. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    Science.gov (United States)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  11. [Combustion temperature measurement of solid propellant by remote sensing FTIR].

    Science.gov (United States)

    Li, Yan; Wang, Jun-De; Sun, Xiu-Yun; Zhou, Xue-Tie

    2004-08-01

    The combustion temperature of solid propellant was measured in this paper. Emission spectra of the combustion flame were collected with remote sensing FTIR at the resolution of 4 cm(-1). The combustion temperatures with the burning time were calculated from the maximum spectral line intensity and the molecular rotation-vibration spectra of HF molecule, respectively. Combustion temperatures at each time were all 1 788.8 K from the maximum spectral line intensity method. For comparison, the temperatures calculated from the molecular rotation-vibration spectra were 1 859.7, 1 848. 3, 1 804.0 and 1 782.7 K, respectively. Results show that the two methods are all dependable in measuring combustion temperature of solid propellant. But the maximum spectral line intensity method is more convenient and rapid than the other when the combustion is relatively stable.

  12. Vibrational and rotational temperature measurements in a shock tube

    Science.gov (United States)

    Sharma, S. P.

    1992-01-01

    Vibrational and rotational temperatures in nitrogen test gas relaxing behind a normal shock are measured using the emission spectra of N2(+)(1-) and N2(2+) band systems in an electric-arc driven shock tube, at a shock velocity of 6.2 km/sec. The results are compared with similar data obtained by AVCO-Everett Research Laboratory during the 1960s. The vibrational and rotational temperatures in the equilibrium region obtained in the present experiment agreed with those of AVCO, but those in the nonequilibrium region are greatly different from the AVCO results. The measured rotational temperature seems to be in nonequilibrium with the translational temperature, contradicting the two-temperature model widely used in CFD. Also, the relaxation rates for both N2(+) and N2 molecules seem to be of the same order.

  13. Temperature measurement in laminar free convective flow using digital holography.

    Science.gov (United States)

    Hossain, Md Mosarraf; Shakher, Chandra

    2009-04-01

    A method for measurement of temperature in laminar free convection flow of water is presented using digital holographic interferometry. The method is relatively simple and fast because the method uses lensless Fourier transform digital holography, for which the reconstruction algorithm is simple and fast, and also the method does not require use of any extra experimental efforts as in phase shifting. The quantitative unwrapped phase difference is calculated experimentally from two digital holograms recorded in two different states of water--one in the quiescent state, the other in the laminar free convection. Unknown temperature in laminar free convection is measured quantitatively using a known value of temperature in the quiescent state from the unwrapped phase difference, where the equation by Tilton and Taylor describing the variation of refractive index of water with temperature is used to connect the phase with temperature. Experiments are also performed to visualize the turbulent free convection flow.

  14. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    Science.gov (United States)

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  15. Central inhibitory effect of α-methyldopa on blood pressure, heart rate and body temperature of renal hypertensive rats

    NARCIS (Netherlands)

    Nijkamp, F.P.; Ezer, Joseph; Jong, Wybren de

    1975-01-01

    The central inhibitory effect of α-methyldopa on blood pressure, heart rate and body temperature was studied in conscious renal hypertensive rats. Systemic administration of α-methyldopa decreased mean arterial blood pressure and body temperature and caused a short lasting increase in heart rate fol

  16. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  17. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.

    Science.gov (United States)

    Blad, B; Persson, B; Lindström, K

    1992-01-01

    The objective of this study is a non-invasive assessment of the thermal dose in hyperthermia. Electrical impedance tomography (EIT) has previously been given a first trial as a temperature monitoring method together with microwave-induced hyperthermia treatment, but it has not been thoroughly investigated. In the present work we have examined this method in order to investigate the correlation in vitro between the true spatial temperature distribution and the corresponding measured relative resistivity changes. Different hyperthermia techniques, such as interstitial water tubings, microwave-induced, laser-induced and ferromagnetic seeds have been used. The results show that it is possible to find a correlation between the measured temperature values and the tomographically measured relative resistivity changes in tissue-equivalent phantoms. But the uncertainty of the temperature coefficients, which has been observed, shows that the method has to be improved before it can be applied to clinical in vivo applications.

  18. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  19. Device for measurement of thermal emissivity at cryogenic temperatures

    CERN Document Server

    Kralik, Tomas; Musilova, Vera; Srnka, Ales

    2016-01-01

    In the described device, the thermal emissivity or absorptivity of the sample is measured by substitution of the radiative heat flow between two parallel surfaces by thermal output of a heater. Fast measurements of the mutual emissivity for the range of the temperature of the radiating surface 25 K-150 K are possible. The absorbing surface has a temperature between 5 K and 10 K when LHe is used as cryoliquid. The desired measurement sensitivity is 1 mK for temperature and 0.1 {\\mu}W for heat power, respectively. The diameter of the whole device is 50 mm and so it is possible to use a commercial dewar can for the cooling. The form of the sample is a round plate 40 mm in diameter and 1 mm in thickness with one tested side. The emissivity and its temperature dependency for various surface treatments can be checked immediately before application in a cryogenic system.

  20. Simuluating quantum many-body systems subject to measurements

    DEFF Research Database (Denmark)

    Gammelmark, Søren

    is found. The technique is exemplified by numerical simulations of the antiferromagnetic Heisenberg spin-chain model subject to various instances of the measurement model. In particular, we focus on local measurements with small support and nonlocal measurements, which induce long-range correlations....

  1. Simulating quantum many-body systems subject to measurements

    DEFF Research Database (Denmark)

    Gammelmark, Søren

    is found. The technique is exemplified by numerical simulations of the antiferromagnetic Heisenberg spin-chain model subject to various instances of the measurement model. In particular, we focus on local measurements with small support and nonlocal measurements, which induce long-range correlations....

  2. Technique for Measuring Body Circumferences and Skinfold Thicknesses.

    Science.gov (United States)

    1984-08-01

    of the tape measure. Technique For ease and accuracy of measurement, male subjects ( persons being measured) should wear swim suits or shorts and female...are now touching the second costo -sternal joint (Figure 3a). There is usually a slight bulge or prominence on the sternum at this level. This

  3. Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures?

    Science.gov (United States)

    Shine, Richard

    2004-08-01

    Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution.

  4. In utero heat stress increases postnatal core body temperature in pigs.

    Science.gov (United States)

    Johnson, J S; Sanz Fernandez, M V; Seibert, J T; Ross, J W; Lucy, M C; Safranski, T J; Elsasser, T H; Kahl, S; Rhoads, R P; Baumgard, L H

    2015-09-01

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics.

  5. High temperature internal friction measurements of 3YTZP zirconia polycrystals. High temperature background and creep

    OpenAIRE

    Simas, P.; Castillo-Rodríguez, Miguel; Nó, M. L.; De-Bernardi, S.; Gómez-García, D.; Domínguez-Rodríguez, Alejandro; San Juan, J.

    2014-01-01

    This work focuses on the high-temperature mechanic properties of a 3 mol % yttria zirconia polycrystals (3YTZP), fabricated by hot-pressureless sintering. Systematic measurements of mechanical loss as a function of temperature and frequency were performed. An analytical method, based on the generalised Maxwell rheological model, has been used to analyse the high temperature internal friction background (HTB). This method has been previously applied to intermetallic compounds...

  6. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  7. Online junction temperature measurement using peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    A new method for junction temperature measurement of MOS-gated power semiconductor switches is presented. The measurement method involves detecting the peak voltage over the external gate resistor of an IGBT or MOSFET during turn-on. This voltage is directly proportional to the peak gate current...

  8. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  9. Self-calibrated active pyrometer for furnace temperature measurements

    Science.gov (United States)

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  10. Pulsed Raman measurements of lattice temperature: Validity tests

    Science.gov (United States)

    Compaan, A.; Lee, M. C.; Lo, H. W.; Trott, G. J.; Aydinli, A.

    1983-10-01

    We measure the temperature dependence of the Raman correction factors and present data on the spot size and transverse beam quality of lasers used in the pulsed Raman measurements of lattice temperature in Si. Recent criticisms are also evaluated and shown to be inappropriate or in error. Finally we measure the shift of the 520-cm-1 Raman line and find it also to be consistent with the observed Stokes/anti-Stokes ratios indicating optic phonon populations characteristic of ˜450 °C.

  11. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  12. Body condition score, morphometric measurements and estimation of body weight in mature Icelandic horses in Denmark

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bovbjerg; Danielsen, Signe H.; Tauson, Anne-Helene

    2016-01-01

    Background: Obesity is related to the development of several diseases like insulin resistance and laminitis in horses. The prevalence of obesity among mature Icelandic horses in Denmark has not been investigated previously. This study aimed to find the prevalence of obesity, to compare body condi......, and that owners tend to underestimate the BCS of their Icelandic horses. The GC:HW ratio might indicate overweight or obesity, however, the ratio for Icelandic horses is different than reported for horses and ponies of other breeds....

  13. [Development of skin moisture and body fat measurement system for mobile application].

    Science.gov (United States)

    Huang, Naihan; Chen, Xiang; Wang, Congzheng; Dong, Zhongfei

    2014-03-01

    Integrating physiological parameters measurement into mobile devices is a development tendency of mobile healthcare. Measurement methods for skin moisture and body fat content are studied in this paper. Electrodes are designed for easy integration into mobile devices, and can be embedded in the cover of the mobile phone. Experiments were conducted to obtain a fast and easy measurement method. The results of evaluation show that the measurement system can achieve the same accuracy as commercial products (with correlation above 0.9 and root mean squared error below 4%) in skin moisture and body fat content measurement. Measurement of local-area body fat content showed a nearly linear positive correlation between local-area body fat content and local-area body impedance.

  14. Influence of body temperature on the development of fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    1999-01-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature...... (Tes) = 35.9 ± 0.2, 37.4 ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40°C) until volitional exhaustion. To determine...... the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40.1-40.2°C, muscle...

  15. Innovations in plantar pressure and foot temperature measurements in diabetes.

    Science.gov (United States)

    Bus, S A

    2016-01-01

    Plantar pressure and temperature measurements in the diabetic foot primarily contribute to identifying abnormal values that increase risk for foot ulceration, and they are becoming increasingly more integrated in clinical practice and daily life of the patient. While plantar pressure measurements have long been present, only recently evidence shows their importance in ulcer prevention, as a data-driven approach to therapeutic footwear provision. The long-term monitoring of plantar pressures with the option to provide feedback, when alarming pressure levels occur, is a promising development in this area, although more technical and clinical validation is required. Shear is considered important in ulcer aetiology but is technically difficult to measure. Innovative research is underway to assess if foot temperature can act as a useful surrogate for shear. Because the skin heats up before it breaks down, frequent monitoring of foot temperature can identify these warning signals. This approach has shown to be effective in preventing foot ulcers. Innovation in diagnostic methods for foot temperature monitoring and evidence on cost effectiveness will likely facilitate implementation. Finally, monitoring of adherence to offloading treatment using temperature-based sensors has proven to be a feasible and relevant method with a wide range of possible research and patient care applications. These innovations in plantar pressure and temperature measurements illustrate an important transfer in diabetic foot care from subjective to objective evaluation of the high-risk patient. They demonstrate clinical value and a large potential in helping to reduce the patient and economic burden of diabetic foot disease.

  16. [Combustion temperature measurement of solid propellant and the effect of organic compound on combustion temperature].

    Science.gov (United States)

    Zhou, Xue-tie; Li, Yan; Chen, Zuo-ru; Wang, Jun-de

    2003-06-01

    The FTIR emission spectra in the spectral range of 4,500-300 cm-1 for the solid propellants were measured by a remote sensing FTIR system. The P-branch of fine structure of HCl fundamental band lying at 3.46 microns was used for precise combustion temperature measurement of the solid propellant. The effect of the organic compound in the solid propellant on the combustion temperature was discussed.

  17. Measurements of the total-body potassium contents. Application of reference value with the whole-body counter

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tetsuo [Chiba Univ. (Japan). Inst. for Training Radiological Technicians; Saegusa, Kenji; Arimizu, Noboru; Kuniyasu, Yoshio; Itoh, Hisao

    2001-08-01

    The total-body potassium contents were measured in 405 healthy volunteers and 186 patients with whole body counter in Chiba University Hospital. The total-body potassium contents was expressed by the reference value (R value). The R value was calculated as measured potassium contents (g) divided by the body surface area (m{sup 2}) and adjusted by age and sex of healthy persons. The R value was 100.65{+-}9.22% in 405 healthy volunteers. Those of each disease were as follows: liver cirrhosis; 94.24{+-}11.22%, chronic hepatitis; 95.74{+-}11.24%, hyperthyroidism; 99.37{+-}10.8%, periodic paralysis; 82.0{+-}9.01%, Barter's syndrome; 93.99{+-}9.86%, myasthenia gravis; 97.34{+-}6.42% and hypo-potassemia; 90.64{+-}11.76%, respectively. The R values of other diseases such as uterine cancer, breast cancer, anemia, hypertension were 97.78{+-}11.5%, 99.22{+-}8.88%, 96.64{+-}12.73%, 98.5{+-}9.63% respectively. Fourteen patients showed especially lower R values under 75%. These were 1 liver cirrhosis, 3 hypertension, 1 diabetes mellitus, 3 hypo-potassemia, 1 periodic paralysis, 2 Barter's syndrome, 2 chemical poisoning, and 1 breast cancer. Follow-up study was performed in some patients with the lower R values. The result of follow-up study showed that there was a relationship between improvement of symptoms and increase of total body potassium contents. (author)

  18. Fast sweep-rate plastic Faraday force magnetometer with simultaneous sample temperature measurement.

    Science.gov (United States)

    Slobinsky, D; Borzi, R A; Mackenzie, A P; Grigera, S A

    2012-12-01

    We present a design for a magnetometer capable of operating at temperatures down to 50 mK and magnetic fields up to 15 T with integrated sample temperature measurement. Our design is based on the concept of a Faraday force magnetometer with a load-sensing variable capacitor. A plastic body allows for fast sweep rates and sample temperature measurement, and the possibility of regulating the initial capacitance simplifies the initial bridge balancing. Under moderate gradient fields of ~1 T/m our prototype performed with a resolution better than 1 × 10(-5) emu. The magnetometer can be operated either in a dc mode, or in an oscillatory mode which allows the determination of the magnetic susceptibility. We present measurements on Dy(2)Ti(2)O(7) and Sr(3)Ru(2)O(7) as an example of its performance.

  19. Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron

    Science.gov (United States)

    Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels

    2016-06-01

    The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.

  20. Effects of wearing two different types of clothing on body temperatures during and after exercise

    Science.gov (United States)

    Jeong, Woon Seon; Tokura, Hiromi

    1989-06-01

    The experiment was conducted to investigate the human thermoregulatory responses during rest, exercise and recovery at T a 20°C and 60% R.H. under the conditions of wearing two different types of clothing. Six healthy men wore two types of clothing: one covering the whole body area except the head (Type A, weight 1656 g), and the other covering only the trunk, upper arms and thighs (Type B, weight 996 g). The level of rectal temperature was kept significantly higher in Type B than in Type A during rest and recovery. The increased and decreased rates of rectal temperature during exercise and recovery were significantly greater in Type A than in Type B, respectively. These findings are discussed from the viewpoint of the differences of skin temperatures of the extremities between Type A and Type B.

  1. 7 CFR 3300.10 - Measurement of the K-coefficient of an insulated body.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Measurement of the K-coefficient of an insulated body... insulated body. The K-coefficient shall be measured according to the procedures in ATP, Annex 1, Appendix 2... body shall be interpreted to mean between +19 °C (+66 °F) and 21 °C (+70 °F). (c) A report of each...

  2. Spectral measurements of underwater downwelling radiance of inland water bodies

    Directory of Open Access Journals (Sweden)

    Miguel Potes

    2013-11-01

    Full Text Available The apparatus exploited in this work is composed of an optical cable linked to a portable FieldSpec UV/VNIR that records the spectral downwelling radiance in underwater environment, allowing us to calculate the shortwave attenuation coefficient in water. Results for three inland water bodies are presented under different atmospheric conditions (sun zenith angle and wind speed and water composition (chlorophyll α concentration and turbidity. We show that the spectral downwelling zenith radiance profiles under high sun elevations present a positive slope in the upper layers due to relatively high scattering of direct sunlight compared to attenuation. For deeper layers, attenuation overcomes the scattering of sunlight leading to a constant negative logarithmic slope. For low sun elevations, a negative slope is observed in the entire water column since the scattering of direct sunlight is always lower than attenuation. Whenever a negative logarithmic constant slope is observed, the attenuation coefficient was computed. A relation was observed between attenuation coefficient in the photosynthetically active radiation (PAR spectral region and water turbidity, for the three water bodies under study.

  3. Density and Temperature Measurements in a Solar Active Region

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  4. Dynamic measurement of temperature using neutron resonance spectroscopy (NRS)

    Energy Technology Data Exchange (ETDEWEB)

    Funk, D.J.; Asay, B.W.; Bennett, B.I.; Bowman, J.D.; Boat, R.M.; Dickson, P.M.; Henson, B.F.; Hull, L.M.; Idar, D.J.; Laabs, G.W.; London, R.K.; Mace, J.L.; Morgan, G.L.; Murk, D.M.; Rabie, R.L.; Ragan, C.E.; Stacy, H.L.; Yuan, V.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-07-01

    Accurate temperature measurements in dynamic systems have been pursued for decades and have usually relied on optical techniques. These approaches are generally hampered by insufficient information regarding the emissivity of the system under study. We are developing NRS techniques to measure temperature in dynamic systems and overcome these limitations. Many neutron resonances have narrow intrinsic Breit-Wigner widths such that the resonance is substantially broadened by the atomic motion even at room temperature. Thus, accurate measurement of the Doppler contribution allows one to infer the material temperature, and for the conditions achieved using standard high explosives, the probe itself is not perturbed by the high temperature and pressure. Experiments are conducted using a pulsed spallation source at LANSCE with time-of-flight measurement of the neutron spectra. In initial experiments, we have demonstrated that measurements with ten percent accuracy are possible. We have fielded dynamic tests, most of which were neutron-flux limited. An overview of the approach and the status of our experimental campaign are discussed. {copyright} {ital 1998 American Institute of Physics.}

  5. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    Science.gov (United States)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  6. Convergence of Algorithms for Reconstructing Convex Bodies and Directional Measures

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus; Milanfar, Peyman

    2006-01-01

    approximates the given measurements in the directions u1, . . . , uk (in the least squares sense). The measurement errors are assumed to be stochastically independent and Gaussian. It is shown that this procedure is (strongly) consistent, meaning that almost surely, Pk tends to K in the Hausdor metric as k ! 1...

  7. Airborne compact rotational Raman lidar for temperature measurement.

    Science.gov (United States)

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-05

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research.

  8. Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors.

    Science.gov (United States)

    Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi

    2013-01-01

    The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system.

  9. Digital technique for the simultaneous measurement of velocity and temperature.

    Science.gov (United States)

    Keffer, J F; Budny, R S; Kawall, J G

    1978-09-01

    A computer-oriented, hot-wire anemometer technique for the simultaneous measurement of velocity and temperature in heated turbulent flows is described. This technique involves conversion of analogue anemometer voltage signals into digital forms and processing of these latter on a digital computer, in accordance with the anemometer response equations, to obtain instantaneous temperature and velocity. The technique was tested with a heated plane jet and found to be satisfactory.

  10. Low field magnetic measurements on high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G.; Murphy, S.D.; Li, Z.Y.; Stewart, A.M.; Bhagat, S.M. (Maryland Univ., College Park, MD (USA). Dept. of Physics and Astronomy)

    1989-09-01

    The authors report dc magnetization and ac susceptibility measurements on both micron size powders and sintered samples of several high temperature superconductors. The powder data confirm previous findings that the materials can be treated as conventional superconductors with s-wave pairing. The ac results on sintered slabs ar interpreted using Bean's model and yield the temperature dependence of the shielding current.

  11. Precise measurement of stellar temperatures using line-depth ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.F.; Johanson, H.L. (Western Ontario, University, London (Canada))

    1991-05-01

    The ratio of line depth for two spectral lines is used to determine stellar temperatures with a precision = 10 K = 0.2 percent. For stars between late-F and early-K spectral types, the V I 6251 to Fe I 6253 depth ratio is easy to measure. It is also applicable to other temperature regimes if suitable lines can be found. 14 refs.

  12. Temperature and Density Measurements in a Quiet Coronal Streamer

    Science.gov (United States)

    Warren, Harry P.; Warshall, Andrew D.

    2002-06-01

    Many previous studies have used emission line or broadband filter ratios to infer the presence of temperature gradients in the quiet solar corona. Recently it has been suggested that these temperature gradients are not real, but result from the superposition of isothermal loops with different temperatures and density scale heights along the line of sight. A model describing this hydrostatic weighting bias has been developed by Aschwanden & Acton. In this paper we present the application of the Aschwanden & Acton differential emission measure model to Solar and Heliospheric Observatory Solar Ultraviolet Measurement of Emitted Radiation (SUMER) observations of a quiet coronal streamer. Simultaneous Yohkoh soft X-ray telescope (SXT) observations show increases in the filter ratios with height above the limb, indicating an increase in temperature. The application of the Aschwanden & Acton model to these SUMER data, however, show that the temperature is constant with height and that the distribution of temperatures in the corona is much too narrow for the hydrostatic weighting bias to have any effect on the SXT filter ratios. We consider the possibility that there is a tenuous hot component (~3 MK) that accounts for the SXT observations. We find that a hot plasma with an emission measure sufficient to reproduce the observed SXT fluxes would also produce significant count rates in the high-temperature emission lines in the SUMER wavelength range. These lines are not observed, and we conclude that the SUMER spectra are not consistent with the SXT filter ratio temperatures. Calculations from a hydrodynamic loop model suggest that nonuniform footpoint heating may be consistent with the temperatures and densities observed at most heights, consistent with the recent analysis of relatively cool (~1 MK) active region loops. We also find, however, that at the lowest heights the observed densities are smaller than those predicted by uniform or footpoint heating.

  13. Temperature calibration of Pico-Rad detectors for radon measurement.

    Science.gov (United States)

    Bem, H; Bem, E M; Chruścielewski, W; Skalski, H

    2000-01-01

    A simple mathematical equation linking the activity of adsorbed radon in the vials to the time and temperature of its exposure is discussed. The calibration coefficient--Ks, defined as activity measured in cpm after saturation time, corresponding to radon air concentration of 1 Bq m-3, was determined for four temperatures: 284, 291, 294 and 298 K. A linear relationship of ln Ks values versus T-1 was found. The relatively high difference in Ks values: 2.12 and 1.24 cpm/Bq m-3 for the temperatures of 284 and 298 K, respectively, was observed. It indicates that temperature fluctuations during Pico-Rad vial exposure may lead to erroneous results if the constant average temperature of exposure is introduced into a commonly used computer programme for calculating Rn concentration.

  14. Snow water content estimation from measured snow temperature

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The vertical temperature profiles of snow and sea ice have been measured in the Arctic during the 2nd Chinese National Arctic Research Expedition in 2003 (CHINARE2003). The high-resolution temperature profile in snow is solved by one-dimensional heat transfer equation. The effective heat diffusivity, internal heat sources are identified. The internal heat source refers to the penetrated solar radiation which usually warms the lower part of the snow layer in summer. By temperature gradient analysis, the zero level can be clarified quantitatively as the boundary of the dry and wet snow. According to the in situ time series of vertical temperature profile, the time series of water content in snow is obtained based on an evaluation method of snow water content associated with the snow and ice physical parameters. The relationship of snow water content and snow temperature and temporal-spatial distribution of snow water content are presented

  15. Temperatures stabilization of a field instrument for uranium enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R.; Wawrowski, S.; Charland, M. [Canberra Industries, Inc., Meriden, CT (United States)] [and others

    1996-12-31

    Enrichment measurements with sodium iodide (NaI) detectors are hampered with a number of problems related to the temperature behavior of NaI crystals and the associated electronics. This problem is of particular concern in applications requiring the use of fixed regions of interest; such applications are used by the International Atomic Energy Agency (IAEA) in Vienna. The Canberra IMCA is a new portable instrument for such applications which can use either a NaI or a Ge detector. In developing the IMCA to meet the IAEA requirements for NaI detectors, Canberra has designed a system with a new temperature stabilization method capable of maintaining the detector stability at 0.5% over a temperature range of -10 to +50{degrees}C. This paper includes a detailed description of this IMCA temperature stabilization system, as well as test results for a range of temperatures using uranium standards.

  16. Time-resolved, local temperature measurements during pulsed laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, Ralf S; Li Chen; Butt, Hans-Juergen; Gutmann, Jochen S, E-mail: kappes@mpip-mainz.mpg.d [Max Planck Institute for Polymer Research, D-55128 Mainz (Germany)

    2010-08-15

    To analyse processes during laser heating, one needs to be able to measure temperatures of about 1000 K within one microsecond and with micrometre resolution. To achieve this accuracy, we set up a high-performance optical detection system with a microsecond gated camera in combination with selected interference filters to detect the thermal emission spectrum in the visible range. By fitting the emission spectrum to Planck's law, we are able to collect an area temperature profile for time intervals as short as one microsecond. Thus we can show that a polymer film, which is doped with an organic dye for energy conversion, can reach temperatures of at least 900 K, which is high above its 'normal' decomposition temperature. It is, furthermore, possible to relate the temperature to the effect of the laser beam on the polymer film.

  17. TEMPERATURE MEASUREMENT OF REFLECTED SHOCK WAVE BY USING CHEMICAL INDICATOR

    Institute of Scientific and Technical Information of China (English)

    Cui Jiping; He Yuzhong; Wang Su; Wang Jing; Fan Bingcheng

    2000-01-01

    This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube,corresponding to the reservoir temperature of a shock tunnel,based on the chemical reaction of small amount of CF4 premixed in the test gas.The final product C2F4 is used as the temperature indicator,which is sampled and detected by a gas chromatography in the experiment.The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P1 and test time γas parameters in the temperature range 3300K<T<5600K,pressure range 5kPa<P1<12kPa andγ≈0.4ms.

  18. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    Science.gov (United States)

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7–8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms. PMID:20685867

  19. A dual measurement method of strain and temperature

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-li; SUN Wei-min; ZHANG Cong; LIU Zhi-hai; JIANG Fu-qiang; ZHANG Yang

    2007-01-01

    With the rapid development of China's foreign trade, the coastal and inland waterway transport has been increased rapidly. The potential market for marine engines is more and more obvious.The measurement of the engine temperature and strain becomes very important. The fluorescence fiber sensors are broadly used to measure temperature, concentration, and pH value, etc. The fluorescence sensing systems are based on different principles, namely fluorescence intensity, fluorescence intensity ratio, and fluorescence lifetime. The fluorescence lifetime is an effective parameter for sensing purpose,because it is independent of the intensity of the pumping source and does not need expensive narrow-band filters. An experiment system has been established, in which some samples were produced to measure the fluorescence lifetime and temperature characteristics and the relationship of the strain and temperature versus the fluorescence lifetime was achieved at the same time. The experiment result was fitted and analyzed. The test results show that the fluorescence lifetime decreases with the increasing of temperature. The change of fluorescence lifetime with the strain is inconspicuous comparing to that with the temperature.

  20. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  1. Cryogenic tunnel measurement of total temperature and pressure

    Science.gov (United States)

    Ng, W.-F.; Rosson, J. C.

    1986-01-01

    A newly developed, 3-mm-diam, dual hot-wire aspirating probe was used to measure the time-resolved stagnation temperature and pressure in a transonic cryogenic wind tunnel. Measurements were taken in the freestream of the settling chamber and test section. Data were also obtained in the unsteady wake shed from an airfoil oscillating at 5 Hz. The investigation revealed the presence of large fluctuations in the settling chamber occuring at the blade passing frequency of the driving fan of the tunnel. These fluctuations decrease at the test section. The rms value of the fluctuating stagnation pressure decreased from 17.5 percent in the settling chamber to 3.7 percent in the test section. Fluctuating stagnation temperature decreased from 12.3 percent to 8.4 percent. Measurements in the wake of the oscillating airfoil showed a fluctuating stagnation temperature of as much as 42 K in rms value.

  2. Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection

    CERN Document Server

    Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F

    2015-01-01

    We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...

  3. Measurement of deuterium ion temperature profiles at TEXTOR-94

    Energy Technology Data Exchange (ETDEWEB)

    Busche, E.; Euringer, H. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany). Inst. fuer Plasmaphysik; Jaspers, R. [FOM Inst. voor Plasmafysica `Rijnhuizen`, Association EURATOM-FOM, Nieuwegein (Netherlands)

    1997-09-01

    Charge-exchange recombination spectroscopy (CXRS) has been used to compare results on ion temperatures from several diagnostics at TEXTOR-94. The question of whether the typically measured width of impurity spectral lines is representative for the main ion temperature T{sub I}, is addressed by applying CXRS to the Balmer-alpha spectrum of deuterium. The importance of the halo effect is found not to be severe for the T{sub I} measurements. T{sub I} is lower than the impurity temperatures for low-density discharges with neutral beam heating. The time evolution of T{sub I} and the toroidal rotation were also measured during sawtooth oscillations. From this a lower bound for the ion heat diffusivity {chi}{sub I}{sup HP} of {approx} 2 m{sup 2} s{sup -1} has been deduced. (author).

  4. Effects of meal size, meal type, body temperature, and body size on the specific dynamic action of the marine toad, Bufo marinus.

    Science.gov (United States)

    Secor, Stephen M; Faulkner, Angela C

    2002-01-01

    Specific dynamic action (SDA), the accumulated energy expended on all physiological processes associated with meal digestion, is strongly influenced by features of both the meal and the organism. We assessed the effects of meal size, meal type, body temperature, and body size on the postprandial metabolic response and calculated SDA of the marine toad, Bufo marinus. Peak postprandial rates of O(2) consumption (.V(O2)) and CO(2) production (.V(CO2)) and SDA increased with meal size (5%-20% of body mass). Postprandial metabolism was impacted by meal type; the digestion of hard-bodied superworms (Zophobas larva) and crickets was more costly than the digestion of soft-bodied earthworms and juvenile rats. An increase in body temperature (from 20 degrees to 35 degrees C) altered the postprandial metabolic profile, decreasing its duration and increasing its magnitude, but did not effect SDA, with the cost of meal digestion remaining constant across body temperatures. Allometric mass exponents were 0.69 for standard metabolic rate, 0.85 for peak postprandial .V(O2), and 1.02 for SDA; therefore, the factorial scope of peak postprandial .V(O2) increased with body mass. The mass of nutritive organs (stomach, liver, intestines, and kidneys) accounted for 38% and 20% of the variation in peak postprandial .V(O2) and SDA, respectively. Toads forced to exercise experienced 25-fold increases in .V(O2) much greater than the 5.5-fold increase experience during digestion. Controlling for meal size, meal type, and body temperature, the specific dynamic responses of B. marinus are similar to those of the congeneric Bufo alvarius, Bufo boreas, Bufo terrestris, and Bufo woodhouseii.

  5. Association between Body Temperature Patterns and Neurological Outcomes after Extracorporeal Cardiopulmonary Resuscitation

    Science.gov (United States)

    Ryu, Jeong-Am; Park, Taek Kyu; Chung, Chi Ryang; Cho, Yang Hyun; Sung, Kiick; Suh, Gee Young; Lee, Tae Rim; Sim, Min Seob; Yang, Jeong Hoon

    2017-01-01

    We evaluated the association of body temperature patterns with neurological outcomes after extracorporeal cardiopulmonary resuscitation (ECPR). Between December 2013 and December 2015, we enrolled 48 patients with cardiac arrest who survived for at least 24 hours after ECPR. Based on their body temperature patterns and the intention to control fever, we divided the patients into those in whom fever was actively controlled (N = 25), those with normothermia (N = 17), and those with unintended hypothermia (N = 6). The primary outcome was the Cerebral Performance Categories (CPC) scale at discharge. Of the 48 ECPR patients, 23 patients (47.9%) had good neurological outcomes (CPC 1 and 2) and 27 patients (56.3%) survived to discharge. The normothermia group showed a pattern of higher temperatures compared with the other groups during 48 hours after ECPR. Not only poor neurological outcomes but also intensive care unit (ICU) mortality occurred more often in the unintended hypothermia group than in the other two groups, regardless of the fever control strategy (p = 0.023 and p = 0.002, respectively). There were no differences in neurological outcomes and ICU mortality between the actively controlled fever group and the normothermia group (p = 0.845 and p = 0.616, respectively). Unintentionally sustained hypothermia may be associated with poor neurological outcomes after ECPR. These findings suggest that patients who are unable to generate a fever following ECPR may incur severe hypoxic brain injury. PMID:28114337

  6. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.

    Science.gov (United States)

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  7. Quantum three-body calculation of the nonresonant triple-\\alpha reaction rate at low temperatures

    CERN Document Server

    Ogata, Kazuyuki; Kamimura, Masayasu

    2009-01-01

    The triple-\\alpha reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. Accurate description of the \\alpha-\\alpha nonresonant states significantly quenches the Coulomb barrier between the two-\\alpha's and the third \\alpha particle. Consequently, the \\alpha-\\alpha nonresonant continuum states below the resonance at 92.04 keV, i.e., the ground state of 8Be, give markedly larger contribution at low temperatures than in foregoing studies. We find about 20 orders-of-magnitude enhancement of the triple-\\alpha reaction rate around 10^7 K compared to the rate of the NACRE compilation.

  8. Comparison of the Body Condition Score and Body Measurements of Purebred and Crossbred Kids Fattening in Different Systems

    Directory of Open Access Journals (Sweden)

    Hacer Tüfekci

    2016-12-01

    Full Text Available In this study was aimed to crossbred male kids of the Hair goat and Saanen x Hair kids (G1 body condition score and compare their body size intensive, semi-intensive and extensive conditions. In the research, 30 Hair goat and 30 Saanen x Hair goat (G1 crossbred single male kids was used. When the research findings were evaluated, in terms of body condition scores of 30, 60 and 90th days high values in the semi-intensive were detected in fattening Saanen x Hair goat (G1 crossbred kids. However, at the end of fattening in semi-intensive fattening group of Hair goat it is determined that the value of the highest condition score. This situation is thought to be caused by more growth of environment and width measurements in Hair goat kids in the later stages of fattening according to the Saanen x Hair goats (G1 crossbred. In study in terms of body length during whole fattening, in terms of the height at the withers data obtained from the 60th and 90th day was found statistically significant. At the end of the fattening in semi-intensive fattening group of Saanen x Hair goat (G1 crossbred it was observed to have higher body length and height at the withers value of crossbred kids. When chest width measurements between paddles in kids were examined, in all periods seems to be an increase in Hair goat kids than the Saanen x Hair goat (G1 crossbred kids. At the end of fattening in terms of height rump Hair goats has shown higher values than Saanen x Hair goat (G1 crossbred kids but the highest values of the semi-intensive group has shown. As a result, semi-intensive feeding group of kids of body condition score and body size was higher than intensive and extensive fattening group kids, in terms of length and height measurements Saanen x Hair goat (G1 crossbred kids in terms of width and environmental measures has shown higher values than Hair goat kids.

  9. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    Science.gov (United States)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  10. Optimization of a pain model: effects of body temperature and anesthesia on bladder nociception in mice.

    Science.gov (United States)

    Sadler, Katelyn E; Stratton, Jarred M; DeBerry, Jennifer J; Kolber, Benedict J

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  11. A lidar system for measuring atmospheric pressure and temperature profiles

    Science.gov (United States)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  12. Dinosaur body temperatures determined from isotopic (¹³C-¹⁸O) ordering in fossil biominerals.

    Science.gov (United States)

    Eagle, Robert A; Tütken, Thomas; Martin, Taylor S; Tripati, Aradhna K; Fricke, Henry C; Connely, Melissa; Cifelli, Richard L; Eiler, John M

    2011-07-22

    The nature of the physiology and thermal regulation of the nonavian dinosaurs is the subject of debate. Previously, arguments have been made for both endothermic and ectothermic metabolisms on the basis of differing methodologies. We used clumped isotope thermometry to determine body temperatures from the fossilized teeth of large Jurassic sauropods. Our data indicate body temperatures of 36° to 38°C, which are similar to those of most modern mammals. This temperature range is 4° to 7°C lower than predicted by a model that showed scaling of dinosaur body temperature with mass, which could indicate that sauropods had mechanisms to prevent excessively high body temperatures being reached because of their gigantic size.

  13. Body condition score, morphometric measurements and estimation of body weight in mature Icelandic horses in Denmark

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bovbjerg; Danielsen, Signe H.; Tauson, Anne-Helene

    2016-01-01

    were included. All horses were assigned a BCS on a scale from 1 to 9 (1 is poor, 5 is moderate and 9 is extremely fat) by their owner and by an experienced person. Two weight tapes were used to assess BW. Girth circumference (GC), neck circumference (NC) and height at withers (HW) were measured...

  14. Elevational variation in body-temperature response to immune challenge in a lizard

    Directory of Open Access Journals (Sweden)

    Francisco Javier Zamora-Camacho

    2016-04-01

    Full Text Available Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1 hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2 fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain, by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment.

  15. Prediction of thermal environment via revision of PMV index with body temperature

    Institute of Scientific and Technical Information of China (English)

    Mao Yan; Liu Jiaping; Kubota Hideki

    2007-01-01

    PMV (Predicted Mean Vote) is a widely used index for evaluating the thermal environment. However, few studies have been conducted to take physiological values directly as evaluating indices. This paper assumes a linear relation between body temperature and both sweating rate and heat produced by shivering, and introduces the linear relation into the human heat balance equation to revise the classic PMV. And the assumption of linear relation is subsequently proved. The revised PMV possesses the same characteristic of dependent heat load as that of the classic one, and moreover it is convenient to be calculated.

  16. Equipment and Experimental Technique For Temperature Measurements In Deep Boreholes

    Science.gov (United States)

    Khristoforov, A.

    The technique of temperature measurements is highly informative since any dynami- cal processes in the boreholes and in the vicinities are accompanied by thermal effects. Electronics and equipment for remote measurements in the boreholes are briefly dis- cussed in the report. It includes a deep instrument, cable winch and surface recording unit placed onboard a car. The temperature dependent frequency modulated signal is used in deep instrument. A cable of original construction was developed for chute-lift operations. It has a signal and power channel at the same time and play the depth me- ter. The surface recording unit includes power supply for deep instruments, receiver, frequency meter and indicator. A personal computer is used for the measurement nu- merical control. Energy for the electronics is supplied by a car battery. Self sufficiency and high accuracy are specialities of the equipment. Using the technique and equip- ment we made the experimental study of temperature in the boreholes of the East European platform, Middle Asia, West Siberia, Kamchatka and other regions. Most of our temperatures and temperature gradients have been used for mapping.

  17. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    Science.gov (United States)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-01

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg-1 is 0.25 °C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 °C was 4.5 W kg-1 in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0

  18. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg{sup -1} is 0.25 {sup 0}C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 {sup 0}C was 4.5 W kg{sup -1} in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the

  19. Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring

    Science.gov (United States)

    Schenato, Luca; Aneesh, Rajendran; Palmieri, Luca; Galtarossa, Andrea; Pasuto, Alessandro

    2016-08-01

    An optical fiber sensor for the simultaneous measurement of hydrostatic pressure and temperature in soil embankments is presented. It exploits the differential strain induced on a fiber in a dual-chamber case, constituting the sensor body. The strain, either induced by the pressure or by the temperature, is optically measured by means of coherent frequency domain reflectometry and variations induced by the two physical phenomena are discriminated because of the different behavior of the two chambers. Characterization of the sensor is presented and discussed. The prototype shows promising performance: temperature and pressure sensitivities are approximately -7 GHz/°C and -3.2 GHz/kPa, respectively, with accuracies of 0.5 °C and 0.3 kPa.

  20. Radon measurements with charcoal canisters temperature and humidity considerations

    Directory of Open Access Journals (Sweden)

    Živanović Miloš Z.

    2016-01-01

    Full Text Available Radon testing by using open-faced charcoal canisters is a cheap and fast screening method. Many laboratories perform the sampling and measurements according to the United States Environmental Protection Agency method - EPA 520. According to this method, no corrections for temperature are applied and corrections for humidity are based on canister mass gain. The EPA method is practiced in the Vinča Institute of Nuclear Sciences with recycled canisters. In the course of measurements, it was established that the mass gain of the recycled canisters differs from mass gain measured by Environmental Protection Agency in an active atmosphere. In order to quantify and correct these discrepancies, in the laboratory, canisters were exposed for periods of 3 and 4 days between February 2015 and December 2015. Temperature and humidity were monitored continuously and mass gain measured. No significant correlation between mass gain and temperature was found. Based on Environmental Protection Agency calibration data, functional dependence of mass gain on humidity was determined, yielding Environmental Protection Agency mass gain curves. The results of mass gain measurements of recycled canisters were plotted against these curves and a discrepancy confirmed. After correcting the independent variable in the curve equation and calculating the corrected mass gain for recycled canisters, the agreement between measured mass gain and Environmental Protection Agency mass gain curves was attained. [Projekat Ministarstva nauke Republike Srbije, br. III43009: New Technologies for Monitoring and Protection of Environment from Harmful Chemical Substances and Radiation Impact

  1. Low temperature magnetoresistance measurements on bismuth nanowire arrays.

    Science.gov (United States)

    Kaiser, Ch; Weiss, G; Cornelius, T W; Toimil-Molares, M E; Neumann, R

    2009-05-20

    We present low temperature resistance R(T) and magnetoresistance measurements for Bi nanowires with diameters between 100 and 500 nm, which are close to being single-crystalline. The nanowires were fabricated by electrochemical deposition in pores of polycarbonate membranes. R(T) varies as T(2) in the low temperature range 1.5 Kwire diameter. An unexpected effect is observed in R(T) when a magnetic field is present. It can be related to the temperature dependence of the magnetoresistance. The transverse magnetoresistance of all samples shows a clear B(1.5) variation. Its size depends strongly on the diameter of the wires but only weakly on temperature. Finally, a steplike increase in the magnetoresistance of our sample with a wire diameter of 100 nm was found and this might be attributed to a transition from one-dimensional to three-dimensional localization.

  2. Temperature calibration of PICO-RAD detectors for radon measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bem, H.; Bem, E.M.; Chruscielewski, W.; Skalski, H. [Politechnika Lodzka, Lodz (Poland)

    1996-10-01

    A simple mathematical equation linking the activity of adsorbed radon in the vials to the time of its exposure has been discussed. The calibration coefficient K{sub s}, defined as a measured activity in cpm after a saturation time, corresponding to a radon air concentration of 1 Bq m{sup -3} has been determined for four temperatures: 284, 291, 294 and 298 K. A linear relationship of ln K{sub s} values versus T{sup -1} has been found. The relatively high difference in K{sub s} values: 2.12 and 1.24 cpm/Bq m{sup 3} for the temperatures of 284 and 298 K, respectively, was observed. It indicates that temperature fluctuations during Pico-Rad vial exposure may lead to erroneous results if the constant average temperature of exposure is introduced into a commonly used computer program for calculating Rn concentration. (author). 6 refs, 4 figs.

  3. Temperature measuring analysis of the nuclear reactor fuel assembly

    Science.gov (United States)

    F., Urban; Ľ., Kučák; Bereznai, J.; Závodný, Z.; Muškát, P.

    2014-08-01

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  4. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    Science.gov (United States)

    Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko

    2009-09-01

    A mini-thermometer based on the 35Cl nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO3 and NaClO3 was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm3 active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR spectrometer input tank circuit, (b) to use a single crystal of KClO3 or NaClO3 (of 1-2 mm3 size) in one coil as a mini-thermometer with a resolution of 0.03 K and (c) to construct a system for measuring temperature gradients when the spatial coordinates of each chlorate single crystal within an individual coil are known.

  5. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    Science.gov (United States)

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  6. Measuring cues for stand-off deception detection based on full-body nonverbal features in body-worn cameras

    Science.gov (United States)

    Bouma, Henri; Burghouts, Gertjan; den Hollander, Richard; van der Zee, Sophie; Baan, Jan; ten Hove, Johan-Martijn; van Diepen, Sjaak; van den Haak, Paul; van Rest, Jeroen

    2016-10-01

    Deception detection is valuable in the security domain to distinguish truth from lies. It is desirable in many security applications, such as suspect and witness interviews and airport passenger screening. Interviewers are constantly trying to assess the credibility of a statement, usually based on intuition without objective technical support. However, psychological research has shown that humans can hardly perform better than random guessing. Deception detection is a multi-disciplinary research area with an interest from different fields, such as psychology and computer science. In the last decade, several developments have helped to improve the accuracy of lie detection (e.g., with a concealed information test, increasing the cognitive load, or measurements with motion capture suits) and relevant cues have been discovered (e.g., eye blinking or fiddling with the fingers). With an increasing presence of mobile phones and bodycams in society, a mobile, stand-off, automatic deception detection methodology based on various cues from the whole body would create new application opportunities. In this paper, we study the feasibility of measuring these visual cues automatically on different parts of the body, laying the groundwork for stand-off deception detection in more flexible and mobile deployable sensors, such as body-worn cameras. We give an extensive overview of recent developments in two communities: in the behavioral-science community the developments that improve deception detection with a special attention to the observed relevant non-verbal cues, and in the computer-vision community the recent methods that are able to measure these cues. The cues are extracted from several body parts: the eyes, the mouth, the head and the fullbody pose. We performed an experiment using several state-of-the-art video-content-analysis (VCA) techniques to assess the quality of robustly measuring these visual cues.

  7. Neutron scattering effects on fusion ion temperature measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  8. Spectroscopic measurements of electron temperature on VX-10

    Science.gov (United States)

    Sciamma, Ella; Lee, Charles; Bengtson, Roger; Jacobson, Verlin; Lavagni-Bolanos, Frank; McCaskill, Greg

    2004-11-01

    We have made spectroscopic measurements at several locations in the VX-10 experiment in the near UV, visible, and near IR spectral region. We estimate electron temperatures using a collisional radiative model. Residual gas analysis is also performed with plasma discharges. Quantitative estimates of plasma composition are also discussed.

  9. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    OpenAIRE

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight cal...

  10. Interactive influence of biotic and abiotic cues on the plasticity of preferred body temperatures in a predator-prey system.

    Science.gov (United States)

    Smolinský, Radovan; Gvoždík, Lumír

    2012-09-01

    The ability to modify phenotypes in response to heterogeneity of the thermal environment represents an important component of an ectotherm's non-genetic adaptive capacity. Despite considerable attention being dedicated to the study of thermally-induced developmental plasticity, whether or not interspecific interactions shape the plastic response in both a predator and its prey remains unknown. We tested several predictions about the joint influence of predator/prey scents and thermal conditions on the plasticity of preferred body temperatures (T (p)) in both actors of this interaction, using a dragonfly nymphs-newt larvae system. Dragonfly nymphs (Aeshna cyanea) and newt eggs (Ichthyosaura alpestris) were subjected to fluctuating cold and warm thermal regimes (7-12 and 12-22°C, respectively) and the presence/absence of a predator or prey chemical cues. Preferred body temperatures were measured in an aquatic thermal gradient (5-33°C) over a 24-h period. Newt T (p) increased with developmental temperature irrespective of the presence/absence of predator cues. In dragonflies, thermal reaction norms for T (p) were affected by the interaction between temperature and prey cues. Specifically, the presence of newt scents in cold regime lowered dragonfly T (p). We concluded that predator-prey interactions influenced thermally-induced plasticity of T (p) but not in a reciprocal fashion. The occurrence of frequency-dependent thermal plasticity may have broad implications for predator-prey population dynamics, the evolution of thermal biology traits, and the consequences of sustaining climate change within ecological communities.

  11. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    OpenAIRE

    2015-01-01

    A mini-thermometer based on the ▫$^{35}Cl$▫ nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO▫$_3$▫ and NaClO▫$_3$▫ was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm▫$^3$▫ active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR ...

  12. Designing virtual environments to measure behavioral correlates of state-level body satisfaction.

    Science.gov (United States)

    Purvis, Clare K; Jones, Megan; Bailey, Jakki; Bailenson, Jeremy; Taylor, C Barr

    2013-01-01

    Virtual reality (VR) offers a unique method for eliciting state-variable fluctuations in body satisfaction and associated behaviors by allowing near-perfect control over environmental factors. Greater variability in momentary body satisfaction is associated with more problematic eating behavior and cognitive styles predictive of eating disorders. The field currently lacks a model for understanding environmental variables and everyday events that tend to influence fluctuations in state body satisfaction. This study proposes a model of state-level body satisfaction and presents a method for measuring changes as they occur. We aim to investigate body comparison, selective attention and body checking behaviors in relation to self-report levels of state body satisfaction. We additionally assess interpersonal correlates of state body satisfaction using VR to measure personal distance between subjects and avatars of varying body sizes. 80 female college students with varying levels of weight and shape concerns will be exposed to five virtual environments designed to elicit varying levels of body dissatisfaction: (a) an empty room; (b) an empty beach; (c) a beach populated with avatars; (d) an empty party scene; (e) a party scene populated with avatars. Self-report body satisfaction was measured immediately following each exposure. A tracking system automatically tracked subjects' head orientation and body translation to measure visual gaze and personal space behavior relative to each virtual human within the environment. Data collection is currently underway and expected to be completed by May 2013. Preliminary data and development of the VR model for state-variable assessment will be presented.

  13. Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Mohammad A.K. Alia

    2007-01-01

    Full Text Available Recent developments in temperature measurement have encouraged researchers to develop low-cost, simple structure, computerized generic transducers for environmental monitoring and industrial process control. The research presents a computerized technique which allows to measure temperature according to the variation of acoustic velocity (frequency in a closed waveguide. Signal conditioning and processing was carried out using labVIEW (G Language VIs. In order to evaluate the time characteristic of the transducer its response was compared with that of a reference detector (PT 100 for the same step input. Static characteristics of the transducer show a quasi-linear relationship between the measured temperature and the resonance frequency. Results of practical experiments show that in order to improve the response curve of the transducer and decrease the rising time interval it is advisable to implement thin-wall glass tubes or another material with lower thermal impedance.

  14. Signal measurement system for intra-body communication using optical isolation method

    Science.gov (United States)

    Matsumoto, Kazuki; Katsuyama, Jun; Sugiyama, Ryo; Takizawa, Yasuaki; Ishii, Seita; Shinagawa, Mitsuru; Kado, Yuichi

    2014-09-01

    In this paper, we describe an induced signal measurement on the human body for developing a high-performance transceiver of an intra-body communication system. It is important to isolate awearable transceiver from an electrical instrument for precise measurement. We have developed a probe system using an optical isolation method including a laser diode, photo-diode, and optical fiber. The probe system can be successfully applied to the precise measurement of a receiving signal power at a wearable transceiver. We verify that the experimental results agree with the simulation results based on our previous channel model of intra-body communication.

  15. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating

  16. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    Science.gov (United States)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is

  17. Kv4.2 mediates histamine modulation of preoptic neuron activity and body temperature.

    Directory of Open Access Journals (Sweden)

    Jasmine Sethi

    Full Text Available Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K⁺ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2⁻/⁻ preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle.

  18. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Science.gov (United States)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  19. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    Razenkov Ilya I.

    2016-01-01

    Full Text Available The High Spectral Resolution Lidar (HSRL designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm.

  20. Comparison of live weight and body measurements of adult brood mares from different genotypes in Hungary

    Directory of Open Access Journals (Sweden)

    Szabolcs Bene

    2014-06-01

    Full Text Available Live weight and 21 body measurements of 110 Thoroughbred, 75 Gidran, 109 Nonius, 97 Hungarian Sport Horse, 172 Hungarian Cold Blooded Horse and 20 Murinsulaner type adult brood mares in 28 studs were evaluated in Hungary. One way ANOVA was used to compare the genotypes. Some body measure indices were determined. Phenotypic correlation coefficients between the live weight and body measurements were estimated. Regression equations were developed to estimate the live weight from body measurements. Significant differences were found between the live weight and 21 body measurements of different genotypes. The rank of the investigated genotypes according to live weight was as follows: Hungarian Cold Blooded Horse (742.1 kg, Murinsulaner type (649.3 kg, Nonius (614.9 kg, Hungarian Sport Horse (600.9 kg, Gidran (563.4 kg and Thoroughbred (542.0 kg. The results of girth measurements for the warm blooded breeds were similar to the data found in the literature. Considerable difference was found between the genotypes in body measure indices. The absolute and relative body size values prove clearly and objectively, that there are significant differences in the conformation of Thoroughbred, Gidran, Nonius, Hungarian Sport Horse, Hungarian Cold Blooded Horse and Murinsulaner type adult brood mares. The most close relationship with the live weight (r=0.89-0.92; P<0.01 was shown the body condition and nutritional status related measurements (heart girth, 2nd width of rump. For the estimation of live weight with regression model the necessary data are as follows: hearth girth, 2nd width of rump and length of body (R2=0.91; P<0.01.

  1. Performance measurements of multilayer insulation at variable cold temperature

    Science.gov (United States)

    Funke, Thomas; Haberstroh, Christoph

    2012-06-01

    Multilayer insulation (MLI) is commonly used in most cryogenic devices such as LHe-cryostats or superconductive cables. Typically thermal performance measurements have been carried out using bath cryostats. Inherent to all this devices is a fixed cold temperature at the boiling point of the particular cryogenic liquid. A recent approach for cryogenic pressure vessels covers a broad temperature range, i.e. hydrogen storage from 20 K to ambient temperature. Thus, a new calorimeter cryostat has been designed at TU Dresden to meet these requirements. The design as a flow cryostat allows the measurement of the thermal performance with variable cold temperature between 20 K and 300 K. It can be operated in vertical as well as in horizontal orientation. The insulation material is wrapped around a nearly isothermal cylinder which is held at the desired temperature by a cooling fluid. Preferably LHe respectively helium cold gas is used. Several design features reduce undesired interference errors. It is reported about design and equipment of this cryostat plus first experiences in operation

  2. Experimental evaluation of IGBT junction temperature measurement via peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    Temperature sensitive electrical parameters allow junction temperature measurements on power semiconductors without modification to module packaging. The peak gate current has recently been proposed for IGBT junction temperature measurement and relies on the temperature dependent resistance of th...

  3. Attachment of Free Filament Thermocouples for Temperature Measurements on CMC

    Science.gov (United States)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1997-01-01

    Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.

  4. Body conscious? Interoceptive awareness, measured by heartbeat perception, is negatively correlated with self-objectification.

    Directory of Open Access Journals (Sweden)

    Vivien Ainley

    Full Text Available BACKGROUND: 'Self-objectification' is the tendency to experience one's body principally as an object, to be evaluated for its appearance rather than for its effectiveness. Within objectification theory, it has been proposed that self-objectification accounts for the poorer interoceptive awareness observed in women, as measured by heartbeat perception. Our study is, we believe, the first specifically to test this relationship. METHODOLOGY/PRINCIPAL FINDINGS: Using a well-validated and reliable heartbeat perception task, we measured interoceptive awareness in women and compared this with their scores on the Self-Objectification Questionnaire, the Self-Consciousness Scale and the Body Consciousness Questionnaire. Interoceptive awareness was negatively correlated with self-objectification. Interoceptive awareness, public body consciousness and private body consciousness together explained 31% of the variance in self-objectification. However, private body consciousness was not significantly correlated with interoceptive awareness, which may explain the many nonsignificant results in self-objectification studies that have used private body consciousness as a measure of body awareness. CONCLUSIONS/SIGNIFICANCE: We propose interoceptive awareness, assessed by heartbeat perception, as a measure of body awareness in self-objectification studies. Our findings have implications for those clinical conditions, in women, which are characterised by self-objectification and low interoceptive awareness, such as eating disorders.

  5. Measurement of Constant Acceleration of a Body: Moment of Inertia. Laboratory Manual.

    Science.gov (United States)

    Villamoran, E. P.

    This document provides a laboratory manual for an experiment whose objectives are: (1) measure the constant acceleration of a body; (2) calculate the moment of inertia for various symmetrical shape objects; and (3) use the moment of inertia to solve for the constant acceleration of the body. The paper includes a list of materials needed, theory,…

  6. Core Temperature Measurement During Submaximal Exercise: Esophageal, Rectal, and Intestinal Temperatures

    Science.gov (United States)

    Lee, Stuart M. C.; Williams, W. Jon; Schneider, Suzanne M.

    2000-01-01

    The purpose of this study was to determine if intestinal temperature (Tin) might be in acceptable alternative to esophageal (Tes) and rectal temperature (Trec) to assess thermoregulation during supine exercise. We hypothesized that Tin would have values similar to Tes and a response time similar to Trec, but the rate of temperature change across time would not be different between measurement sites. Seven subjects completed a continuous supine protocol of 20 min of rest, 20 min of cycle exercise at 40% peak oxygen consumption (VO2pk), 20 min of cycle exercise at 65% V02pk, and 20 min of recovery. Tes, Trec, and Tin were recorded each min throughout the test. Temperatures were not different after 20 min of rest, but Trec was less than the Tes and Tin at the end of the 40% and 65% VO2pk stages. After 20 min of recovery, Tes was less than either Trec or Tin, which were not different from each other. Time to threshold for increased temperature from rest was greater for Trec than Tes but not different from Tin. Time to reach peak temperature was greater for Tin and Trec than Tes. Similarly, time to a decrease in temperature after exercise was greater for Trec than Tes, but not different from Tin. The rate of temperature change from threshold to the end of the 40% VO2pk stage was not different between measurement sites. However, the rate of change during recovery was more negative for Tes than Tin and Trec, which were different from each other. Measurement of Tin may he an acceptable alternative to Tes and Trec with an understanding of its limitations.

  7. Temperature Measurement in WTE Boilers Using Suction Pyrometers

    Directory of Open Access Journals (Sweden)

    Fabio Rinaldi

    2013-11-01

    Full Text Available The temperature of the flue-gas in the post combustion zone of a waste to energy (WTE plant has to be maintained within a fairly narrow range of values, the minimum of which is prescribed by the European Waste Directive 2000/76/CE, whereas the maximum value must be such as to ensure the preservation of the materials and the energy efficiency of the plant. A high degree of accuracy in measuring and controlling the aforementioned temperature is therefore required. In almost the totality of WTE plants this measurement process is carried out by using practical industrial thermometers, such as bare thermocouples and infrared radiation (IR pyrometers, even if affected by different physical contributions which can make the gas temperature measurements incorrect. The objective of this paper is to analyze errors and uncertainties that can arise when using a bare thermocouple or an IR pyrometer in a WTE plant and to provide a method for the in situ calibration of these industrial sensors through the use of suction pyrometers. The paper describes principle of operation, design, and uncertainty contributions of suction pyrometers, it also provides the best estimation of the flue-gas temperature in the post combustion zone of a WTE plant and the estimation of its expanded uncertainty.

  8. Cutaneous noradrenaline measured by microdialysis in complex regional pain syndrome during whole-body cooling and heating

    DEFF Research Database (Denmark)

    Terkelsen, Astrid Juhl; Gierthmühlen, Janne; Petersen, Lars J.

    2013-01-01

    noradrenaline, vasoconstriction, and reduction in skin temperature. The main findings were that the noradrenaline response did not differ between patients and controls or between the CRPS hand and the contralateral unaffected hand, suggesting that the evoked noradrenaline release from the cutaneous sympathetic......Complex regional pain syndrome (CRPS) is characterised by autonomic, sensory, and motor disturbances. The underlying mechanisms of the autonomic changes in CPRS are unknown. However, it has been postulated that sympathetic inhibition in the acute phase with locally reduced levels of noradrenaline...... and in healthy volunteers. Seven patients and nine controls completed whole-body cooling (sympathetic activation) and heating (sympathetic inhibition) induced by a whole-body thermal suit with simultaneous measurement of the skin temperature, skin blood flow, and release of dermal noradrenaline. CRPS pain...

  9. Effects of niacin supplementation and dietary concentrate proportion on body temperature, ruminal pH and milk performance of primiparous dairy cows.

    Science.gov (United States)

    Lohölter, Malte; Meyer, Ulrich; Rauls, Caroline; Rehage, Jürgen; Dänicke, Sven

    2013-06-01

    The objective of this study was to investigate the effects of niacin and dietary concentrate proportion on body temperature, ruminal pH and milk production of dairy cows. In a 2 × 2 factorial design, 20 primiparous Holstein cows (179 ± 12 days in milk) were assigned to four dietary treatments aimed to receive either 0 or 24 g niacin and 30% (low) or 60% (high) concentrate with the rest being a partial mixed ration (PMR) composed of 60% corn and 40% grass silage (on dry matter basis). Ambient temperature and relative humidity were determined and combined by the calculation of temperature humidity index. Respiration rates, rectal, skin and subcutaneous temperatures were measured. Milk production and composition were determined. Ruminal pH and temperature were recorded at a frequency of 5 min using wireless devices for continuous intra-ruminal measurement (boluses). pH values were corrected for pH sensor drift. The climatic conditions varied considerably but temporarily indicated mild heat stress. Niacin did not affect skin, rectal and subcutaneous temperatures but tended to increase respiration rates. High concentrate reduced skin temperatures at rump, thigh and neck by 0.1-0.3°C. Due to the technical disturbances, not all bolus data could be subjected to statistical evaluation. However, both niacin and high concentrate influenced mean ruminal pH. High concentrate increased the time spent with a pH below 5.6 and ruminal temperatures (0.2-0.3°C). Niacin and high concentrate enhanced milk, protein and lactose yield but reduced milk fat and protein content. Milk fat yield was slightly reduced by high concentrate but increased due to niacin supplementation. In conclusion, niacin did not affect body temperature but stimulated milk performance. High concentrate partially influenced body temperatures and had beneficial effects on milk production.

  10. Measurements of fluctuating gas temperatures using compensated fine wire thermocouples

    Science.gov (United States)

    Nina, M. N. R.; Pita, G. P.

    1985-09-01

    Thermocouples with three different wire diameters (15, 40 and 50 microns) were used in association with an analog compensation circuit connected to a data acquisition system. Measurements of the time constant were performed using two different heating techniques; Joule effect and external heating by laser beam. The thermocouples were used to quantify the fluctuating temperature field in a hot air jet and in a premixed propane flame. In the reacting case the catalytic effect was evaluated by comparing coated and uncoated wires. Conclusions were also obtained regarding frequency spectra, temperature probability distribution function and time constant.

  11. Methods for calculating phase angle from measured whole body bioimpedance modulus

    Science.gov (United States)

    Nordbotten, Bernt J.; Martinsen, Ørjan G.; Grimnes, Sverre

    2010-04-01

    Assuming the Cole equation we have developed a method to calculate the Cole parameters (R0, R∞, α, τZ) and the phase angle from four frequency measurements of impedance modulus values. The values obtained compare well with impedance measurements obtained using the Solatron 1294/1260 as obtained when making whole body measurements on five persons. We have also performed calculations using an algorithm based on the Kramers-Kronig approach. The results which are presented show that it is possible to obtain complete body impedance data combining relatively simple measurements with advanced calculation using a laptop. This extends the potential of portable equipment, since the measurements will require less instrumentation.

  12. Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study

    Directory of Open Access Journals (Sweden)

    Amanda L Brearley

    2015-10-01

    Full Text Available Question: What is the body temperature response of healthy pregnant women exercising at moderate intensity in an aqua-aerobics class where the water temperature is in the range of 28 to 33 degrees Celsius, as typically found in community swimming pools? Design: An observational study. Participants: One hundred and nine women in the second and third trimester of pregnancy who were enrolled in a standardised aqua-aerobics class. Outcome measures: Tympanic temperature was measured at rest pre-immersion (T1, after 35 minutes of moderate-intensity aqua-aerobic exercise (T2, after a further 10 minutes of light exercise while still in the water (T3 and finally on departure from the facility (T4. The range of water temperatures in seven indoor community pools was 28.8 to 33.4 degrees Celsius. Results: Body temperature increased by a mean of 0.16 degrees Celsius (SD 0.35, p < 0.001 at T2, was maintained at this level at T3 and had returned to pre-immersion resting values at T4. Regression analysis demonstrated that the temperature response was not related to the water temperature (T2 r = –0.01, p = 0.9; T3 r = –0.02, p = 0.9; T4 r = 0.03, p = 0.8. Analysis of variance demonstrated no difference in body temperature response between participants when grouped in the cooler, medium and warmer water temperatures (T2 F = 0.94, p = 0.40; T3 F = 0.93, p = 0.40; T4 F = 0.70, p = 0.50. Conclusions: Healthy pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic exercise conducted in pools heated up to 33 degrees Celsius. The study provides evidence to inform guidelines for safe water temperatures for aqua-aerobic exercise during pregnancy. [Brearley AL, Sherburn M, Galea MP, Clarke SJ, (2015 Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study. Journal of

  13. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    Science.gov (United States)

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  14. Validation of bioelectrical-impedance analysis as a measurement of change in body composition in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, R.F.; Kunigk, A.; Alspaugh, M.; Andronis, P.T.; Leitch, C.A.; Schoeller, D.A. (Univ. of Chicago, IL (USA))

    1990-08-01

    The bioelectrical-impedance-analysis (BIA) method accurately measures body composition in weight-stable subjects. This study validates the use of BIA to measure change in body composition. Twelve obese females underwent weight loss at a mean rate of 1.16 kg/wk. Body composition was measured by deuterium oxide dilution (D2O), BIA, and skinfold anthropometry (SFA) at baseline and at 5% decrements in weight. Highly significant correlations were obtained between D2O and BIA (r = 0.971) and between D2O and SFA (r = 0.932). Overall, BIA predicted change in fat-free mass with greater accuracy (to 0.4 kg) and precision (+/- 1.28 kg) than did anthropometry (to 0.8 kg and +/- 2.58 kg, respectively). We conclude that BIA is a useful clinical method for measuring change in body composition.

  15. Bioimpedance index for measurement of total body water in severely malnourished children

    DEFF Research Database (Denmark)

    Girma, Tsinuel; Kæstel, Pernille; Workeneh, Netsanet

    2016-01-01

    . SUBJECTS/METHODS: Children with SAM (mid-arm circumference nutritional oedema) admitted to Jimma University Hospital were included. Tetrapolar-whole-body impedance (Z), resistance (R) and reactance (Xc) were measured at 50 and 200 k...

  16. Spatially and temporally resolved temperature measurement in laser media.

    Science.gov (United States)

    Körner, Jörg; Yue, Fangxin; Hein, Joachim; Kaluza, Malte C

    2016-06-01

    A technique to measure the spatially resolved temperature distribution in a laser medium is presented. It is based on the temperature dependence of the absorption cross section close to the zero-phonon line of the active medium. Since other materials in the beam path exhibit a high (and constant) transmission at this wavelength, the method can easily be applied in realistic amplifier setups. The method was successfully tested on three different samples, which were pumped by a pulsed laser diode with up to 150 W average power: side-cooled Yb:YAG and Yb:fluoride-phosphate glass at room temperature and face-cooled Yb:CaF2 at 120 K.

  17. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Science.gov (United States)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  18. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2003-09-01

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalized room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.

  19. High temperature measurements in irradiated environment using Raman fiber optics distributed temperature sensing

    Science.gov (United States)

    Lecomte, Pierre; Blairon, Sylvain; Boldo, Didier; Taillade, Frédéric; Caussanel, Matthieu; Beauvois, Gwendal; Duval, Hervé; Grieu, Stéphane; Laffont, Guillaume; Lainé, Frédéric; Carrel, Frédéric

    2016-04-01

    Optical fiber temperature sensors using Raman effect are a promising technology for temperature mapping of nuclear power plant pipes. These pipes are exposed to high temperature (350 °C) and gamma radiations, which is a harsh environment for standard telecom fibers. Therefore metal coated fibers are to be used to perform measurement over 300 °C. Temperature variations can affect the attenuation of the metallic coated fiber before irradiation. The latter induces an extra attenuation, due to light absorption along the fiber by radiation-induced defects. The recombination of these defects can be strongly accelerated by the high temperature value. As backscattered Raman signal is weak it is important to test optical fibers under irradiation to observe how it gets attenuated. Different experiments are described in this conference paper: two in situ irradiation campaigns with different dose rates at, both ambient and high temperature. We observe that the tested off-the-shelf metallic coated fibers have a high attenuation under irradiation. We also noticed the fact that thermal annealing plays a massive role in the +300 °C temperature range.

  20. Measure of Segments which Intersect a Convex Body from Rotational Formulae

    Institute of Scientific and Technical Information of China (English)

    Ximo GUAL-ARNAU; Silena HEROLD-GARC´IA

    2015-01-01

    Classical problems in integral geometry and geometric probability involve the kinematic measure of congruent segments of fixed length within a convex body in R3. We give this measure from rotational formulae; that is, from isotropic plane sections through a fixed point. From this result we also obtain a new rotational formula for the volume of a convex body;which is proved to be equivalent to the wedge formula for the volume.

  1. Regression analysis between body and head measurements of Chinese alligators (Alligator sinensis in the captive population

    Directory of Open Access Journals (Sweden)

    Wu, X. B.

    2006-06-01

    Full Text Available Four body-size and fourteen head-size measurements were taken from each Chinese alligator (Alligator sinensis according to the measurements adapted from Verdade. Regression equations between body-size and head-size variables were presented to predict body size from head dimension. The coefficients of determination of captive animals concerning body- and head-size variables can be considered extremely high, which means most of the head-size variables studied can be useful for predicting body length. The result of multivariate allometric analysis indicated that the head elongates as in most other species of crocodilians. The allometric coefficients of snout length (SL and lower ramus (LM were greater than those of other variables of head, which was considered to be possibly correlated to fights and prey. On the contrary, allometric coefficients for the variables of obita (OW, OL and postorbital cranial roof (LCR, were lower than those of other variables.

  2. Analysis of measured data of human body based on error correcting frequency

    Science.gov (United States)

    Jin, Aiyan; Peipei, Gao; Shang, Xiaomei

    2014-04-01

    Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.

  3. Nocturnal loss of body reserves reveals high survival risk for subordinate great tits wintering at extremely low ambient temperatures.

    Science.gov (United States)

    Krams, Indrikis; Cīrule, Dina; Vrublevska, Jolanta; Nord, Andreas; Rantala, Markus J; Krama, Tatjana

    2013-06-01

    Winter acclimatization in birds is a complex of several strategies based on metabolic adjustment accompanied by long-term management of resources such as fattening. However, wintering birds often maintain fat reserves below their physiological capacity, suggesting a cost involved with excessive levels of reserves. We studied body reserves of roosting great tits in relation to their dominance status under two contrasting temperature regimes to see whether individuals are capable of optimizing their survival strategies under extreme environmental conditions. We predicted less pronounced loss of body mass and body condition and lower rates of overnight mortality in dominant great tits at both mild and extremely low ambient temperatures, when ambient temperature dropped down to -43 °C. The results showed that dominant great tits consistently maintained lower reserve levels than subordinates regardless of ambient temperature. However, dominants responded to the rising risk of starvation under low temperatures by increasing their body reserves, whereas subdominant birds decreased reserve levels in harsh conditions. Yet, their losses of body mass and body reserves were always lower than in subordinate birds. None of the dominant great tits were found dead, while five young females and one adult female were found dead in nest boxes during cold spells when ambient temperatures dropped down to -43 °C. The dead great tits lost up to 23.83 % of their evening body mass during cold nights while surviving individuals lost on average 12.78 % of their evening body mass. Our results show that fattening strategies of great tits reflect an adaptive role of winter fattening which is sensitive to changes in ambient temperatures and differs among individuals of different social ranks.

  4. Temperature measurement on neurological pulse generators during MR scans

    Directory of Open Access Journals (Sweden)

    Alesch François

    2002-09-01

    Full Text Available Abstract According to manufacturers of both magnetic resonance imaging (MRI machines, and implantable neurological pulse generators (IPGs, MRI is contraindicated for patients with IPGs. A major argument for this restriction is the risk to induce heat in the leads due to the electromagnetic field, which could be dangerous for the surrounding brain parenchyma. The temperature change on the surface of the case of an ITREL-III (Medtronic Inc., Minneapolis, MN and the lead tip during MRI was determined. An anatomical realistic and a cubic phantom, filled with phantom material mimicking human tissue, and a typical lead configuration were used to imitate a patient who carries an IPG for deep brain stimulation. The measurements were performed in a 1.5 T and a 3.0 T MRI. 2.1°C temperature increases at the lead tip uncovered the lead tip as the most critical part concerning heating problems in IPGs. Temperature increases in other locations were low compared to the one at the lead tip. The measured temperature increase of 2.1°C can not be considered as harmful to the patient. Comparison with the results of other studies revealed the avoidance of loops as a practical method to reduce heating during MRI procedures.

  5. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  6. Multi-stage temperature compensation method for Lamb wave measurements

    Science.gov (United States)

    Dworakowski, Ziemowit; Ambrozinski, Lukasz; Stepinski, Tadeusz

    2016-11-01

    One of the important issues related to the applications of Lamb waves for structural health monitoring is their undesired sensitivity to variation of environmental conditions. Temperature is the main factor that can affect wave propagation and hence significantly reduce performance of a SHM system. Therefore, there is a need for development of robust monitoring methods with low sensitivity to temperature variations. This paper is aimed at verification of efficiency of four methods designed for damage detection using Lamb wave measurements performed in variable environmental conditions. The methods investigated in the comparison are the following: optimal baseline selection approach, the damage index based on a signal alignment with respect to instantaneous phase, and a group measurement approach capable of distinguishing local damage-related changes from temperature-induced global ones. The fourth method relies on fusion all these solutions simultaneously. The methods' ability to damage detection is compared using a specimen that is subjected to large temperature changes. It is found that although all the methods have their strengths and weaknesses, a cooperation of all solutions allows for significant increase of the damage detection efficiency.

  7. Temperature measurements of a high-power microwave feedhorn window

    Science.gov (United States)

    Hoppe, Daniel J.; Perez, Raul M.; Glazer, Stuart D.

    1990-06-01

    Temperature measurements of a high-power microwave feedhorn window, obtained using an imaging IR radiometer during transmitter operation at 365 kW CW and 8.5 GHz, are discussed. The window under investigation was constructed of HTP-6, a high-thermal-performance material developed to shield the Space Shuttle Orbiter from the heat of reentry. The measurement technique is described, and experimental results are presented. The window performed adequately at 365 kW CW with a center temperature of 475 C. The tests verify that HTP-6 can be used as a window material or a support structure in high-power waveguides at power densities of 1.47 kW/sq cm for extended periods of time, with no change in its mechanical characteristics.

  8. [Detonation temperature measurement of epoxypropane using instantaneous spectrum method].

    Science.gov (United States)

    Li, Ying; Li, Ping; Xiao, Hai-Bo; Hu, Dong; Yuan, Chang-Ying

    2008-03-01

    After solving the problems of synchronization of the measuring system and the avoidance of false trigger signal, the instantaneous emission spectrum of epoxypropane with an exposure time of 2 micros and a resolution of 0.2 nm was acquired from a side window of a shock tube at the very moment when the epoxypropane transformed from deflagration to detonation. The measuring system consists of an advanced intensified charge-coupled-device spectroscopic detector, a digital delay generator DG535, an explosion shock tube and optical fibers. The DDT process was monitored by pressure transducers. After correcting the intensity of the spectrum obtained, the background curve of the heat radiation intensity of the detonation was given immediately. The detonation temperature of 2 416 K for epoxypropane was derived from fitting the curve with Planck blackbody formula by least squares principle. The detonation temperature of epoxypropane can provide an experimental datum for analyzing the microscopic mechanism of DDT process.

  9. Measurement of Laser Weld Temperatures for 3D Model Input.

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl; GROSSETETE, GRANT; Maccallum, Danny O.

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  10. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2015-06-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306.7nm. Measurements were performed under pseudo-first-order conditions. The measured rate constants, inferred using a mechanism-fitting approach, can be expressed in Arrhenius form as:k1=2.93×1013exp(-1350.3/T)cm3mol-1s-1(890-1406K)k2=3.49×1013exp(-1449.3/T)cm3mol-1s-1(906-1391K)k3=3.5×1013exp(-1407.5/T)cm3mol-1s-1(908-1383K)This paper presents, to our knowledge, first high-temperature measurements of the rate constants of the reactions of xylene isomers with OH radicals. Low-temperature rate-constant measurements by Nicovich et al. (1981) were combined with the measurements in this study to obtain the following Arrhenius expressions, which are applicable over a wider temperature range:k1=2.64×1013exp(-1181.5/T)cm3mol-1s-1(508-1406K)k2=3.05×109exp(-400/T)cm3mol-1s-1(508-1391K)k3=3.0×109exp(-440/T)cm3mol-1s-1(526-1383K) © 2015 The Combustion Institute.

  11. Temperature Measurement and Control System for Transtibial Prostheses: Functional Evaluation.

    Science.gov (United States)

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Lee, Tat Hing; Safari, Mohammad Reza

    2016-10-03

    The accumulation of heat inside the prosthetic socket increases skin temperature and fosters perspiration, which consequently leads to high tissue stress, friction blister, discomfort, unpleasant odor, and decreased prosthesis suspension and use. In the present study, the prototype of a temperature measurement and control (TM&C) system was designed, fabricated, and functionally evaluated in a phantom model of the transtibial prosthetic socket. The TM&C system was comprised of 12 thermistors divided equally into two groups that arranged internal and external to a prosthetic silicone liner. Its control system was programmed to select the required heating or cooling function of a thermal pump to provide thermal equilibrium based on the amount of temperature difference from a defined set temperature, or the amount of difference between the mean temperature recorded by inside and outside thermistors. A thin layer of aluminum was used for thermal conduction between the thermal pump and different sites around the silicone liner. The results showed functionality of the TM&C system for thermoregulation inside the prosthetic socket. However, enhancing the structure of this TM&C system, increasing its thermal power, and decreasing its weight and cost are main priorities before further development.

  12. Positional Repeatability Measurements Of Stepper Motors At Cryogenic Temperatures

    Science.gov (United States)

    Pompea, Stephen M.; Hall, Michael S.; Bartko, Frank; Houck, James R.

    1983-08-01

    Stepper motors operating at liquid helium temperature have multiple applications in cryogenically-cooled telescopes such as the Shuttle Infrared Telescope Facility (SIRTF). These SIRTF applications include driving cryogen flow valves, operating the Multiple Instrument Chamber (MIC) beam splitter mechanism, and operating filters and grating wheel mechanisms in the scientific instruments. The positional repeatability of the beam splitter drive mechanism is especially critical since it feeds the optical beam to the scien-tific instruments. Despite these important applications, no significant data on the positional repeatability of stepper motors at cryogenic temperatures has been available. Therefore, we conducted a series of measurements to determine the positional repeatability of a modified, off-the-shelf Berger/Lahr stepper motor (model RDM 253/25, step angle 3.6°) which had demonstrated excellent performance in previous endurance testing at LHe temperature. These test results indicated that the positional repeatability of the motor was excellent at all temperatures, with somewhat better performance at cryogenic temperatures. Another important result was that the motor could be repeatedly turned off and on while still accurately retaining its rotor position.

  13. High temperature measurements of martensitic transformations using digital holography.

    Science.gov (United States)

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures.

  14. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  15. Experimental temperature measurements for the energy amplifier test

    Energy Technology Data Exchange (ETDEWEB)

    Calero, J. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Cennini, P. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland); Gallego, E. [Universidad Politecnica de Madrid (UPM), E-28040 Madrid (Spain); Galvez, J. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland)]|[Universidad Autonoma de Madrid (UAM), E-28049 Madrid (Spain); Garcia Tabares, L. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Gonzalez, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), E-28040 Madrid (Spain); Jaren, J. [Universidad Autonoma de Madrid (UAM), E-28049 Madrid (Spain); Lopez, C. [Universidad Autonoma de Madrid (UAM), E-28049 Madrid (Spain); Lorente, A. [Universidad Politecnica de Madrid (UPM), E-28040 Madrid (Spain); Martinez Val, J.M. [Universidad Politecnica de Madrid (UPM), E-28040 Madrid (Spain); Oropesa, J. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland); Rubbia, C. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland); Rubio, J.A. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland)]|[Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), E-28040 Madrid (Spain); Saldana, F. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland); Tamarit, J. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Vieira, S. [Universidad Autonoma de Madrid (UAM), E-28049 Madrid (Spain)

    1996-06-21

    A uranium thermometer has been designed and built in order to make local power measurements in the first energy amplifier test (FEAT). Due to the experimental conditions power measurements of tens to hundreds of nW were required, implying a sensitivity in the temperature change measurements of the order of 1 mK. A uranium thermometer accurate enough to match that sensitivity has been built. The thermometer is able to determine the absolute energetic gain obtained in a tiny subcritical uranium assembly exposed to a proton beam of kinetic energies between 600 MeV and 2.75 GeV. In addition, the thermometer measurements have provided information about the spatial power distribution and the shape of the neutron spallation cascade. (orig.).

  16. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  17. Field temperature measurements at Erta'Ale Lava Lake, Ethiopia

    Science.gov (United States)

    Burgi, Pierre-Yves; Caillet, Marc; Haefeli, Steven

    2002-06-01

    The shield volcano Erta'Ale, situated in the Danakil Depression, Ethiopia, is known for its active lava lake. In February 2001, our team visited this lake, located inside an 80-m-deep pit, to perform field temperature measurements. The distribution and variation of temperature inside the lake were obtained on the basis of infrared radiation measurements performed from the rim of the pit and from the lake shores. The crust temperature was also determined from the lake shores with a thermocouple to calibrate the pyrometer. We estimated an emissivity of the basalt of 0.74 from this experiment. Through the application of the Stefan-Boltzmann law, we then obtained an estimate of the total radiative heat flux, constrained by pyrometer measurements of the pit, and visual observations of the lake activity. Taking into account the atmospheric convective heat flux, the convected magma mass flux needed to balance the energy budget was subsequently derived and found to represent between 510 and 580 kg s-1. The surface circulation of this mass flux was also analyzed through motion processing techniques applied to video images of the lake. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00445-002-0224-3.

  18. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity

    Science.gov (United States)

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  19. DIGESTION IN AN ECTOTHERMIC HERBIVORE, THE GREEN IGUANA (IGUANA-IGUANA) - EFFECT OF FOOD COMPOSITION AND BODY-TEMPERATURE

    NARCIS (Netherlands)

    LICHTENBELT, WDV

    1992-01-01

    In laboratory experiments, the effect of food composition and body temperature on digestive efficiency was investigated in the lizard Iguana iguana on Curacao (Netherlands Antilles). In a series of experiments the animals were kept in cages with a temperature gradient and different foods were offere

  20. The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L

    DEFF Research Database (Denmark)

    Tirsgaard, Bjørn; Behrens, Jane; Steffensen, John Fleng

    2015-01-01

    Changes in ambient temperature affect the physiology and metabolism and thus the distribution of fish. In this study we used intermittent flow respirometry to determine the effect of temperature (2, 5, 10, 15 and 20 °C) and wet body mass (BM) (~30–460 g) on standard metabolic rate (SMR, mg O2 h−1...

  1. Between-centre variability versus variability over time in DXA whole body measurements evaluated using a whole body phantom

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Olivia [Department of Radiology, AZ-VUB, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel (Belgium)]. E-mail: olivia.louis@az.vub.ac.be; Verlinde, Siska [Belgian Study Group for Pediatric Endocrinology (Belgium); Thomas, Muriel [Belgian Study Group for Pediatric Endocrinology (Belgium); De Schepper, Jean [Department of Pediatrics, AZ-VUB, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel (Belgium)

    2006-06-15

    This study aimed to compare the variability of whole body measurements, using dual energy X-ray absorptiometry (DXA), among geographically distinct centres versus that over time in a given centre. A Hologic-designed 28 kg modular whole body phantom was used, including high density polyethylene, gray polyvinylchloride and aluminium. It was scanned on seven Hologic QDR 4500 DXA devices, located in seven centres and was also repeatedly (n = 18) scanned in the reference centre, over a time span of 5 months. The mean between-centre coefficient of variation (CV) ranged from 2.0 (lean mass) to 5.6% (fat mass) while the mean within-centre CV ranged from 0.3 (total mass) to 4.7% (total area). Between-centre variability compared well with within-centre variability for total area, bone mineral content and bone mineral density, but was significantly higher for fat (p < 0.001), lean (p < 0.005) and total mass (p < 0.001). Our results suggest that, even when using the same device, the between-centre variability remains a matter of concern, particularly where body composition is concerned.

  2. Tourette syndrome associated with body temperature dysregulation: possible involvement of an idiopathic hypothalamic disorder.

    Science.gov (United States)

    Kessler, Abraham R

    2002-10-01

    Tourette syndrome is a neuropsychiatric disorder that holds the potential to afflict the emotional, familial, social, or scholastic performances of patients with Tourette syndrome in day-to-day life functioning. The disorder is today characterized mainly and diagnosed by clinical observations, yet false-negative results obtained in the diagnosis of Tourette syndrome are numerous and well documented. There is still no laboratory or imaging technique available for the diagnosis of Tourette syndrome. This article reports on changes of the ambient thermal perception (38%) and a circadian dysregulation of the body-temperature profile present in Tourette syndrome probands, irrespective of their chronologic age, sex, or comorbid symptoms. An involvement of idiopathic hypothalamic dysfunctions associated with Tourette syndrome is proposed. Such a phenomenon, if substantiated, could lead to a better understanding of Tourette syndrome and the development of unbiased physical diagnostic criteria of Tourette syndrome and potentiate possible production of novel therapeutic possibilities.

  3. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior.

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  4. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  5. Body mass index and measures of body fat for defining obesity and underweight: a cross-sectional, population-based study

    OpenAIRE

    Pasco, Julie A; Kara L. Holloway; Amelia G. Dobbins; Kotowicz, Mark A; Lana J Williams; Brennan, Sharon L

    2014-01-01

    Background The body mass index (BMI) is commonly used as a surrogate marker for adiposity. However, the BMI indicates weight-for-height without considering differences in body composition and the contribution of body fat to overall body weight. The aim of this cross-sectional study was to identify sex-and-age-specific values for percentage body fat (%BF), measured using whole body dual energy x-ray absorptiometry (DXA), that correspond to BMI 18.5 kg/m2 (threshold for underweight), 25.0 kg/m2...

  6. Face and eyes localization algorithm in thermal images for temperature measurement of the inner canthus of the eyes

    Science.gov (United States)

    Budzan, Sebastian; Wyżgolik, Roman

    2013-09-01

    In this paper, a novel algorithm for the detection and localization of the face and eyes in thermal images is presented, particularly the temperature measurement of the human body by measuring the eye corner (inner canthus) temperature. The algorithm uses a combination of the template-matching, knowledge-based and morphological methods, particularly the modified Randomized Hough Transform (RHT) in the localization process, also growing segmentation to increase accuracy of the localization algorithm. In many solutions, the localization of the face and/or eyes is made by manual selection of the regions of the face and eyes and then the average temperature in the region is measured. The paper also discusses experimental studies and the results, which allowed the evaluation of the effectiveness of the developed algorithm. The standardization of measurement, necessary for proper temperature measurement with the use of infrared thermal imaging, are also presented.

  7. Methylphenidate alters flash-evoked potentials, body temperature, and behavior in Long-Evans rats.

    Science.gov (United States)

    Hetzler, Bruce E; Meckel, Katherine R; Stickle, Bruce A

    2014-01-01

    This experiment examined the effects of methylphenidate hydrochloride on flash-evoked potentials (FEPs) recorded from the visual cortex (VC) and superior colliculus (SC) of chronically implanted male Long-Evans rats, as well as on body temperature and open field behavior. FEPs were recorded at 10, 20 and 40 min following intraperitoneal injections of saline, and of doses of 0.7, 2.9, and 11.6 mg/kg methylphenidate on separate days. The 0.7 mg/kg dose did not produce significant effects. In the VC, following administration of the 11.6 mg/kg dose of methylphenidate the amplitude of components P83, N146, and P232 decreased, the amplitude of component N64 briefly increased and components P23, N30, N40, and P48 were unchanged in amplitude. In the SC, component P29 was unaffected, while components P38 and N51 were reduced in amplitude by the 11.6 mg/kg dose of methylphenidate. Peak latencies of components N40, P48, P83, and N146 in the VC and component P38 in the SC were increased by the 11.6 mg/kg dose of methylphenidate. When body temperature was recorded 45 min after drug administration, a mild dose-dependent hypothermia was found with the 2.9 and 11.6 mg/kg methylphenidate doses, suggesting that this may have contributed to the increased latencies. In subsequent open field observations, both line crossings and rearings were significantly increased by the 11.6 mg/kg dose. Increased movement into the center of the testing area was also observed, which could be a sign of increased exploration and reduced anxiety following methylphenidate.

  8. Influence of body position, food and beverage consumption on BIS measurements

    Science.gov (United States)

    Medrano, G.; Eitner, F.; Ismail, A. H.; Pikkemaat, R.; Cordes, A.; Floege, J.; Leonhardt, S.

    2010-04-01

    Continuous monitoring of fluid changes using bioimpedance spectroscopy (BIS) during hemodialysis could help to predict hypotensive complications and extend the patient's life. Food and beverage consumption during the treatment may influence the measurements and the calculated fluid removal. In the present article the change observed in whole body and segmental (knee-to-knee, abdomen) BIS measurements following a sequence similar to the one of dialysis treatment (lying down, sitting and eating, lying down) on healthy subjects is presented. The measurements have been performed using a commercial bioimpedance device with a frequency range of 5 kHz to 1 MHz. Knee-to-knee measurements seem to be less sensitive to these influences, compared to the standard whole body and the alternative abdomen BIS measurements. The results indicate that the individual influence of both body posture and food and beverage consumption may be superposed when combined.

  9. Fabrication of setup for high temperature thermal conductivity measurement

    Science.gov (United States)

    Patel, Ashutosh; Pandey, Sudhir K.

    2017-01-01

    In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi0.36Sb1.45Te3, polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.

  10. Development of a novel scheme for long-term body temperature monitoring: a review of benefits and applications.

    Science.gov (United States)

    Cuesta-Frau, David; Varela-Entrecanales, Manuel; Valor-Perez, Raul; Vargas, Borja

    2015-04-01

    Body temperature is a health or disease marker that has been in clinical use for centuries. The threshold currently applied to define fever, with small variations, is 38 °C. However, current approaches do not provide a full picture of the thermoregulation process and its correlation with disease. This paper describes a new non-invasive body temperature device that improves the understanding of the pathophysiology of diseases by integrating a variety of temperature data from different body locations. This device enables to gain a deeper insight into fever, endogenous rhythms, subject activity and ambient temperature to provide anticipatory and more efficient treatments. Its clinical use would be a big step in the overcoming of the anachronistic febrile/afebrile dichotomy and walking towards a system medicine approach to certain diseases. This device has already been used in some clinical applications successfully. Other possible applications based on the device features and clinical requirements are also described in this paper.

  11. Temperature measurements in thermal plasmas; Mesures de temperatures dans les plasmas thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Fauchais, P.; Coudert, J.F. [Limoges Univ., 87 (France)

    1996-05-01

    Thermal plasmas are characterized by a high pressure (10{sup 4} to 10{sup 6} Pa) and a high density of particles. Plasmas considered in this paper are produced by electric discharges, arcs, injection torches with cold or hot cathodes, water vortex torches, RF devices and are characterized by temperatures ranging from 6000 to 40000 K and ionization energies ranging from 13.5 and 16 eV (in argon, argon-hydrogen, nitrogen, nitrogen-hydrogen, argon-helium, air, oxygen, CO{sub 2} or water). Temperature measurements in thermal plasmas are difficult due to their extreme luminosity, flow rate and thermal flux, and to their temperature and flow rate gradients. The most common measurement methods are the emission spectroscopy, the laser scattering (Rayleigh, Thomson and coherent anti-Stokes Raman scattering) and the enthalpy probes. The first two methods are non-intrusive, while the last method is intrusive. This paper gives first some general remarks about the principles of each technique and focusses on the problem of fluctuations due to the plasma jet instabilities. Then, it describes briefly each technique and gives some examples of results. Finally, it compares the spectroscopic measurements with other measurements. (J.S.) 80 refs.

  12. Temperature and magnetization-dependent band-gap renormalization and optical many-body effects in diluted magnetic semiconductors

    OpenAIRE

    2005-01-01

    We calculate the Coulomb interaction induced density, temperature and magnetization dependent many-body band-gap renormalization in a typical diluted magnetic semiconductor GaMnAs in the optimally-doped metallic regime as a function of carrier density and temperature. We find a large (about 0.1 eV) band gap renormalization which is enhanced by the ferromagnetic transition. We also calculate the impurity scattering effect on the gap narrowing. We suggest that the temperature, magnetization, an...

  13. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  14. Reliability and validity of the lung volume measurement made by the BOD POD body composition system.

    Science.gov (United States)

    Davis, James A; Dorado, Silvia; Keays, Kathleen A; Reigel, Kimberly A; Valencia, Kristoffer S; Pham, Patrick H

    2007-01-01

    The BOD POD Body Composition System uses air-displacement plethysmography to measure body volume. To correct the body volume measurement for the subject's lung volume, the BOD POD utilizes pulmonary plethysmography to measure functional residual capacity (FRC) at mid-exhalation as that is the subject's lung volume during the body volume measurement. Normally, FRC is measured at end-exhalation. The BOD POD FRC measurement can be corrected to an end-exhalation volume by subtracting approximately one-half of the measured tidal volume. Our purpose was to determine the reliability and validity of the BOD POD FRC measurement at end-exhalation. Ninety-two healthy adults (half female) underwent duplicate FRC measurements by the BOD POD and one FRC measurement by a traditional gas dilution technique. The latter method was used as the reference method for the validity component of the study. The order of the FRC measurements by the two methods was randomized. The test-retest correlation coefficients for the duplicate BOD POD FRC measurements for the male and female subjects were 0.966 and 0.948, respectively. The mean differences between the BOD POD FRC trial #1 measurement and gas dilution FRC measurement for the male and female subjects were -32 and -23 ml, respectively. Neither difference was statistically significant. The correlation coefficients for these two measurements in the male and female subjects were 0.925 and 0.917, respectively. Based on these results, we conclude that the BOD POD FRC measurement in healthy males and females is both reliable and valid.

  15. Pain Measurement through Temperature Changes in Children Undergoing Dental Extractions

    Directory of Open Access Journals (Sweden)

    Eleazar S. Kolosovas-Machuca

    2016-01-01

    Full Text Available Background and Objective. Pain evaluation in children can be a difficult task, since it possesses sensory and affective components that are often hard to discriminate. Infrared thermography has previously been used as a diagnostic tool for pain detection in animals; therefore, the aim of this study was to assess the presence of temperature changes during dental extractions and to evaluate its correlation with heart rate changes as markers of pain and discomfort. Methods. Thermographic changes in the lacrimal caruncle and heart rate measurements were recorded in healthy children scheduled for dental extraction before and during the procedure and compared. Afterwards, correlation between temperature and heart rate was assessed. Results. We found significant differences in temperature and heart rate before the procedure and during the dental extraction (mean difference 4.07°C, p<0.001, and 18.11 beats per minute, p<0.001 and no evidence of correlation between both measurements. Conclusion. Thermographic changes in the lacrimal caruncle can be detected in patients who undergo dental extractions. These changes appear to be stable throughout time and to possess very little intersubject variation, thus making them a candidate for a surrogate marker of pain and discomfort. Future studies should be performed to confirm this claim.

  16. Registered Report: Measuring Unconscious Deception Detection by Skin Temperature

    Directory of Open Access Journals (Sweden)

    Anna Elisabeth Van 't Veer

    2014-05-01

    Full Text Available Findings from the deception detection literature suggest that although people are not skilled in consciously detecting a liar, they may intuit that something about the person telling a lie is off. In the current proposal, we argue that observing a liar influences the observer’s physiology even though the observer may not be consciously aware of being lied to (i.e., the observers’ direct deception judgment does not accurately differentiate between liars and truth-tellers. To test this hypothesis, participants’ finger temperature will be measured while they watch videos of persons who are either honest or dishonest about their identity. We hypothesize that skin temperature will be lower when observing a liar than when observing a truth-teller. Additionally, we test whether perceiving a liar influences finger skin temperature differently when an individual is, or is not, alerted to the possibility of deceit. We do this by varying participants’ awareness of the fact that they might be lied to. Next to measuring physiological responses to liars and truth-tellers, self-reported direct and indirect veracity judgments (i.e., trustworthiness and liking of the target persons will be assessed. We hypothesize that indirect veracity judgments will better distinguish between liars and truth-tellers than direct veracity judgments.

  17. Evolution of microstructure in flyash-containing porcelain body on heating at different temperatures

    Indian Academy of Sciences (India)

    Kausik Dana; Swapan Kumar Das

    2004-04-01

    15 wt% flyash (a calcined byproduct of thermal power plant) was incorporated in a normal triaxial kaolin–quartz–feldspar system by replacing equivalent amount of quartz. The differences in microstructural evolution on heating the compact mass of both normal and flyash-containing porcelain at different temperatures (1150–1300°C) were examined using scanning electron microscopy (SEM) operating in secondary electron image (SEI) mode. Microstructure of normal porcelain did not show the presence of mullite and quartz grains at 1200°C and the viscosity of silica-rich glass restricted the growth of mullite crystals at 1250°C. Flyash porcelain, on the other hand, shows the presence of primary mullite aggregates in the clay relict and a significant growth of mullite crystals in a low viscosity glassy matrix at 1200°C itself. At 1300°C, both the bodies show a larger region of more elongated (> 1 m) secondary mullite along with clusters of smaller sized primary mullite (< 1 m). Small primary mullite crystals in the clay relict can be distinguished from elongated secondary mullite crystals in the feldspar relict in their size. Primary mullite aggregates remain stable also at higher temperatures. XRD studies were carried out for quantitative estimation of quartz, mullite and glass, which supported the SEM observations. An attempt was also made to correlate their mechanical strength with the constituent phases.

  18. High temperature Hall measurement setup for thin film characterization

    Science.gov (United States)

    Adnane, L.; Gokirmak, A.; Silva, H.

    2016-07-01

    Hall measurement using the van der Pauw technique is a common characterization approach that does not require patterning of contacts. Measurements of the Hall voltage and electrical resistivity lead to the product of carrier mobility and carrier concentration (Hall coefficient) which can be decoupled through transport models. Based on the van der Paw method, we have developed an automated setup for Hall measurements from room temperature to ˜500 °C of semiconducting thin films of a wide resistivity range. The resistivity of the film and Hall coefficient is obtained from multiple current-voltage (I-V) measurements performed using a semiconductor parameter analyzer under applied constant "up," zero, and "down" magnetic field generated with two neodymium permanent magnets. The use of slopes obtained from multiple I-Vs for the three magnetic field conditions offer improved accuracy. Samples are preferred in square shape geometry and can range from 2 mm to 25 mm side length. Example measurements of single-crystal silicon with known doping concentration show the accuracy and reliability of the measurement.

  19. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    Energy Technology Data Exchange (ETDEWEB)

    Luznik, Janko; Pirnat, Janez; Trontelj, Zvonko [Institute of Mathematics, Physics and Mechanics, Ljubljana (Slovenia)

    2009-09-15

    A mini-thermometer based on the {sup 35}Cl nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO{sub 3} and NaClO{sub 3} was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm{sup 3} active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR spectrometer input tank circuit, (b) to use a single crystal of KClO{sub 3} or NaClO{sub 3} (of 1-2 mm{sup 3} size) in one coil as a mini-thermometer with a resolution of 0.03 K and (c) to construct a system for measuring temperature gradients when the spatial coordinates of each chlorate single crystal within an individual coil are known. (orig.)

  20. Embedded DAQ System Design for Temperature and Humidity Measurement

    Directory of Open Access Journals (Sweden)

    Tarique Rafique Memon

    2016-05-01

    Full Text Available In this work, we have proposed a cost effective DAQ (Data Acquisition system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench. The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity. Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays