WorldWideScience

Sample records for body taper conspire

  1. Controlled quantum dialogue robust against conspiring users

    Science.gov (United States)

    Kao, Shih-Hung; Hwang, Tzonelih

    2016-10-01

    This paper explores a new security problem in controlled quantum dialogue (CQD) protocols, where the communicants may try to conspire to communicate without the controller's permission. According to our survey, all the previous CQD protocols suffer from this attack. In order to resolve this problem, we also present an improvement protocol. The security analyses show that the improved scheme is secure under this and other well-known attacks.

  2. Controlled quantum dialogue robust against conspiring users

    Science.gov (United States)

    Kao, Shih-Hung; Hwang, Tzonelih

    2016-07-01

    This paper explores a new security problem in controlled quantum dialogue (CQD) protocols, where the communicants may try to conspire to communicate without the controller's permission. According to our survey, all the previous CQD protocols suffer from this attack. In order to resolve this problem, we also present an improvement protocol. The security analyses show that the improved scheme is secure under this and other well-known attacks.

  3. Parabolic tapers for overmoded waveguides

    Science.gov (United States)

    Doane, J.L.

    1983-11-25

    A waveguide taper with a parabolic profile, in which the distance along the taper axis varies as the square of the tapered dimension, provides less mode conversion than equal length linear tapers and is easier to fabricate than other non-linear tapers.

  4. Tapered structure construction

    Science.gov (United States)

    Smith, Eric D.; Takata, Rosalind K.; Slocum, Alexander H.; Nayfeh, Samir A.

    2016-04-05

    Feeding stock used to form a tapered structure into a curving device such that each point on the stock undergoes rotational motion about a peak location of the tapered structure; and the stock meets a predecessor portion of stock along one or more adjacent edges.

  5. Taper Hip Prosthesis

    Medline Plus

    Full Text Available ... We'll see if we can use a large curved retractor just posterior to the acetabulum. I ... old gentleman. Okay. So you're using a large head with very slim tapered head and neck ...

  6. Tapered GRIN fiber microsensor.

    Science.gov (United States)

    Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B

    2014-12-15

    The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach. PMID:25606989

  7. Taper Hip Prosthesis

    Medline Plus

    Full Text Available ... L Taper Hip Prosthesis with Modular Neck Kinectiv® Technology March 12, 2009 7:00 PM EDT Welcome ... hopefully you will see the benefits and the advantages of the new Zimmer Kinectiv System. Thank you. ...

  8. Compound taper milling machine

    Science.gov (United States)

    Campbell, N. R.

    1969-01-01

    Simple, inexpensive milling machine tapers panels from a common apex to a uniform height at panel edge regardless of the panel perimeter configuration. The machine consists of an adjustable angled beam upon which the milling tool moves back and forth above a rotatable table upon which the workpiece is held.

  9. Tapered capillary optics

    Science.gov (United States)

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  10. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block...... of the series first, the applying the standard wild bootstrap for independent and heteroscedastic distrbuted observations to overlapping tapered blocks in an appropriate way. Its perserves the favorable bias and mean squared error properties of the tapered block bootstrap, which is the state-of-the-art block......-order asymptotic validity of the tapered block bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution of the sample mean is also established when data are assumed to satisfy a near epoch dependent condition. The consistency of the bootstrap variance estimator for the sample...

  11. Verkeersgedrag bij taper-uitvoegingen

    NARCIS (Netherlands)

    Boekholt, B.J.

    1996-01-01

    In opdracht van de Directie Zuid-Holland van Rijkswaterstaat is een onderzoek verricht naar het verkeersgedrag bij taper-uitvoegingen. De vormgeving van de taper-uitvoeging maakt een aantal voertuigbeweging mogelijk die gezien de veiligheid en de doorstroming van het verkeer als ongewenst worden bes

  12. Research of Klopfenstein taper UWB monopole antenna

    OpenAIRE

    Wang, Nan-Nan; Qiu, Jinghui; Zhang, Zhi-Feng; Zong, Hua; Ling-Ling, Zhong; Wei-Bo, Deng

    2011-01-01

    The tapered line theory in circuit can be applied to the design of the special-shaped monopole antenna in order to obtain better electrical characteristics. So a novel Klopfenstein taper monopole antenna is proposed. The impedance matching characteristic of the Klopfenstein tapered line is the best, and the Klopfenstein taper monopole antenna is designed based on it. On this basis, the coplanar waveguide-fed planar Klopfenstein taper monopole antennas are designed. The simulation and measurem...

  13. Tapered undulators for SASE FELs

    CERN Document Server

    Fawley, W M; Vinokurov, N A

    2002-01-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  14. Controlling nanowire emission profile using conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper;

    2008-01-01

    The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics....

  15. Taper Preparation Variability Compared to Current Taper Standards Using Computed Tomography

    Directory of Open Access Journals (Sweden)

    Richard Gergi

    2012-01-01

    Full Text Available Introduction. The purpose of this study was to compare the taper variation in root canal preparations among Twisted Files and PathFiles-ProTaper .08 tapered rotary files to current standards. Methods. 60 root canals with severe angle of curvature (between 25∘ and 35∘ and short radius (<10 mm were selected. The canals were divided randomly into two groups of 30 each. After preparation with Twisted Files and PathFiles-ProTaper to size 25 taper .08, the diameter was measured using computed tomography (CT at 1, 3, and 16 mm. Canal taper preparation was calculated at the apical third and at the middle-cervical third. Results. Of the 2 file systems, both fell within the ±.05 taper variability. All preparations demonstrated variability when compared to the nominal taper .08. In the apical third, mean taper was significantly different between TF and PathFiles-ProTaper ( value < 0.0001; independent -test. Mean Taper was significantly higher with PathFile-ProTaper. In the middle-cervical third, mean Taper was significantly higher with TF ( value = 0.015; independent -test. Conclusion. Taper preparations of the investigated size 25 taper .08 were favorable but different from the nominal taper.

  16. Taper Preparation Variability Compared to Current Taper Standards Using Computed Tomography

    OpenAIRE

    Richard Gergi; Joe Abou Rjeily; Nada Osta; Joseph Sader; Alfred Naaman

    2012-01-01

    Introduction. The purpose of this study was to compare the taper variation in root canal preparations among Twisted Files and PathFiles-ProTaper .08 tapered rotary files to current standards. Methods. 60 root canals with severe angle of curvature (between 25∘ and 35∘) and short radius (

  17. On the construction of monotony preserving taper curves.

    OpenAIRE

    Lahtinen, Aatos

    1988-01-01

    A standard tree tapers off monotonically upwards. An algorithm is presented for constructing a monotony preserving taper curve using a quadratic spline. It is suggested that the resultant taper curve is better than the usual cubic spline.

  18. Mode field diameter preserving fiber tapers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Maack, M. D.; Skovgaard, P. M. W.;

    2011-01-01

    concentric dual-core fibers, which couple light from an inner core to an outer core through a taper. Fibers with a 6 μm MFD feedthrough and a 15 μm polarization maintaining feedthrough are demonstrated experimentally. Simulations of the MFD in the tapered dual-core fibers are also presented....

  19. Frequency coded sensors incorporating tapers

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor)

    2010-01-01

    A surface acoustic wave device includes a piezoelectric substrate on which is formed a transducer that generates acoustic waves on the surface of the substrate from electrical waves received by the transducer. The waves are carried along an acoustic track to either a second transducer or a reflector. The transducers or transducer and reflector are formed of subsections that are constructed to operate at mutually different frequencies. The subsections of at least one of the transducers or transducer and reflector are out of alignment with respect to one another relative to the transverse of the propagation direction. The out of aligned subsections provide not only a frequency component but also a time to the signal output signal. Frequency response characteristics are improved. An alternative embodiment provides that the transducers and/or reflectors are continuously tapered instead of having discrete frequency subsections.

  20. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger;

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  1. Endfire tapered slot antennas on dielectric substrates

    Science.gov (United States)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-01-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  2. A taper-fused microspherical laser source

    OpenAIRE

    Jonathan M. Ward; Féron, Patrice; Nic Chormaic, Síle

    2008-01-01

    We report on the realization of an integrated lasing device consisting of a microsphere optical resonator fused to a tapered optical fiber. A microsphere fabricated from Er: Yb-codoped phosphate glass is heated above its glass transition temperature of 375degC by pumping it at 977 nm with 70 mW via a tapered optical fiber. The onset of thermal stress in the glass at a maximum pumping power results in the sphere melting and fusing to the taper coupler, without inhibition of whispering gallery ...

  3. Tapered fiber based high power random laser.

    Science.gov (United States)

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  4. The advantages of a tapered whisker.

    Directory of Open Access Journals (Sweden)

    Christopher M Williams

    Full Text Available The role of facial vibrissae (whiskers in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker, and that this may explain why the taper has been preserved during the evolution of terrestrial mammals.

  5. Long-period cascaded fiber taper filters.

    Science.gov (United States)

    Martinez-Rios, A; Salceda-Delgado, G; Guerrero-Viramontes, J A

    2014-02-10

    Fiber filters based on periodic cascaded tapered fiber sections are demonstrated. The filters consist of up to seven tapered sections separated periodically by more than 3 mm from center to center, with nominal tapered sections of 1  mm×1  mm×1  mm longitudinal dimensions. The transmission spectrum consists of discrete notches, resembling those observed in long-period fiber gratings, which differs from the observed spectrum in Mach-Zender interferometers based on cascaded tapers. Its sensitivity to external perturbations, such as refractive index or mechanical stress, made the device potentially very useful as a sensor or tunable filter. PMID:24663276

  6. Vibration Analysis of Hollow Tapered Shaft Rotor

    OpenAIRE

    P. M. G. Bashir Asdaque; Behera, R. K.

    2014-01-01

    Shafts or circular cross-section beams are important parts of rotating systems and their geometries play important role in rotor dynamics. Hollow tapered shaft rotors with uniform thickness and uniform bore are considered. Critical speeds or whirling frequency conditions are computed using transfer matrix method and then the results were compared using finite element method. For particular shaft lengths and rotating speeds, response of the hollow tapered shaft-rotor system is determined for t...

  7. Analysis of Tapered Acoustical Directional Couplers

    Institute of Scientific and Technical Information of China (English)

    CHENMing; TANGTiantong

    2005-01-01

    The linearly tapered acoustic directional coupler is analyzed. Its size parameters are given using the local normal mode theory as usually done for tapered optical directional couplers, and modeling of the characteristic for this coupler is performed, with help of the transfer matrix method based on coupled wave theory. The modeling results show that bandwidth of the coupler is about 4MHz, its fiat pass about 2MHz, and better sidelobe suppression than acoustic directional coupler with constant gap is obtained.

  8. Characteristics of a Linearly Tapered Slot Antenna (LTSA) Conformed Longitudinally Around a Cylinder

    Science.gov (United States)

    Jordan, Jennifer L.; Ponchak, George E.; Tavassolian, Negar; Tentzeris, Manos M.

    2007-01-01

    The family of tapered slot antennas (TSA s) is suitable for numerous applications. Their ease of fabrication, wide bandwidth, and high gain make them desirable for military and commercial systems. Fabrication on thin, flexible substrates allows the TSA to be conformed over a given body, such as an aircraft wing or a piece of clothing for wearable networks. Previously, a Double Exponentially Tapered Slot Antenna (DETSA) was conformed around an exponential curvature, which showed that the main beam skewed towards the direction of curvature. This paper presents a Linearly Tapered Slot Antenna (LTSA) conformed longitudinally around a cylinder. Measured and simulated radiation patterns and the direction of maximum H co-polarization (Hco) as a function of the cylinder radius are presented.

  9. Rotational flow in tapered slab rocket motors

    Science.gov (United States)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  10. Turbine airfoil fabricated from tapered extrusions

    Science.gov (United States)

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  11. A New Method to Analyse Two-Side Tapered Waveguides

    Institute of Scientific and Technical Information of China (English)

    FAN Guo-Fang; NING Ji-Ping; SHANG Lian-Ju; HAN Qun; CHEN Zhi-Qiang

    2005-01-01

    @@ We discuss the characters of two-side tapered waveguides. Then, based on some approximations, a simple but practical and efficient method is developed to design the taper waveguide. The results are compared with other methods in a good agreement.

  12. Crystallographic Analysis of Tapering of ADP Crystallites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of crystallographic characteristics of ADP (ammonium dihydrogen phosphate) crystals and the selected growth conditions, the growth habit of ADP crystals was studied. In comparison with pyramidal planes, the growth rate of prismatic faces is slower and more sensitive to the additives and impurities for ADP crystals. When the supersaturation is low, the advance of growth steps on prismatic face can be blocked by ethanol or impurities, the crystal morphology is changed from the tetragonal prism to shuttle (i.e., the tapered shape). The tapering formation of ADP crystallites was structurally studied in a novel view.

  13. Exponentially tapered multi-mode interference couplers

    Institute of Scientific and Technical Information of China (English)

    Jijiang Wu; Bangren Shi; Mei Kong

    2006-01-01

    @@ Optical couplers are important components in photonic integrated circuits. The multi-mode interference (MMI) coupler is a good candidate because of its bandwidth, polarization properties, and manufacturing tolerances. A MMI coupler with the exponentially tapered multi-mode waveguide is proposed in order to reduce the scale of the MMI device. Compared with parabolically tapered structure which has been successfully used in the MMI devices, this structure can further reduce the length of devices. Simulation results by the beam propagation method for MMI couplers are given. The effectiveness of this structure for reducing MMI device length is proved.

  14. Optical transmittance degradation in tapered fibers

    CERN Document Server

    Fujiwara, Masazumi; Takeuchi, Shigeki

    2012-01-01

    We investigated the cause of optical transmittance degradation in tapered fibers. Degradation commences immediately after fabrication and it eventually reduces the transmittance to almost zero. It is a major problem that limits applications of tapered fibers. We systematically investigated the effect of the dust-particle density and the humidity on the degradation dynamics. The results clearly show that the degradation is mostly due to dust particles and that it is not related to the humidity. In a dust free environment it is possible to preserve the transmittance with a degradation of less than the noise (+/- ?0.02) over 1 week.

  15. Tapered photonic crystal fibers for blue-enhanced supercontinuum generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper;

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge.......Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge....

  16. Intermodal Energy Transfer in a Tapered Optical Fiber: Optimizing Transmission

    CERN Document Server

    Ravets, S; Kordell, P R; Wong-Campos, J D; Rolston, S L; Orozco, L A

    2013-01-01

    We present an experimental and theoretical study of the energy transfer between modes during the tapering process of an optical nanofiber through spectrogram analysis. The results allow optimization of the tapering process, and we measure transmission in excess of 99.95% for the fundamental mode. We quantify the adiabaticity condition through calculations and place an upper bound on the amount of energy transferred to other modes at each step of the tapering, giving practical limits to the tapering angle.

  17. Modeling of nonlinear propagation in fiber tapers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2012-01-01

    A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...

  18. Time series tapering for short data samples

    DEFF Research Database (Denmark)

    Kaimal, J.C.; Kristensen, L.

    1991-01-01

    We explore the effect of applying tapered windows on atmospheric data to eliminate overestimation inherent in spectra computed from short time series. Some windows are more effective than others in correcting this distortion. The Hamming window gave the best results with experimental data...

  19. Radiation losses of step-tapered channel waveguides.

    Science.gov (United States)

    Marcuse, D

    1980-11-01

    We compute the radiation losses of a rectangular dielectric waveguide (integrated optics channel waveguide) that is tapered so that its wider cross-sectional dimension increases by roughly a factor of three while its narrow dimension remains constant. As the waveguide widens its refractive index decreases to ensure that the waveguide supports only one guided mode. The taper is approximated by a discontinuous staircase curve. A rectangular waveguide taper of 2-microm thickness, tapering from 3- to 10-microm width through fourteen steps of 0.25-microm height, has a minimum loss (at 0.6328-microm wavelength) of 0.13 dB for a 200-microm taper length.

  20. The avian tectorial membrane: Why is it tapered?

    CERN Document Server

    Iwasa, Kuni H

    2015-01-01

    While the mammalian- and the avian inner ears have well defined tonotopic organizations as well as hair cells specialized for motile and sensing roles, the structural organization of the avian ear is different from its mammalian cochlear counterpart. Presumably this difference stems from the difference in the way motile hair cells function. Short hair cells, whose role is considered analogous to mammalian outer hair cells, presumably depends on their hair bundles, and not motility of their cell body, in providing the motile elements of the cochlear amplifier. This report focuses on the role of the avian tectorial membrane, specifically by addressing the question, "Why is the avian tectorial membrane tapered from the neural to the abneural direction?"

  1. Performance of a tapered pulse tube

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Allen, M.; Woolan, J.J. [Cryenco Inc., Denver, CO (United States)

    1998-02-01

    In a well instrumented pulse tube refrigerator having 1,500 W of cooling power at 125 K, the authors have measured the figure of merit of a tapered pulse tube at several operating points. At operating points near the operating point for which the taper was designed, the figure of merit is 0.96. This is close to the theoretical optimum figure of merit 0.97 calculated for this pulse tube considering only two loss mechanisms: heat conduction in the metal pulse tube wall and ordinary thermoacoustic heat transport in the gas within a few thermal penetration depths of the wall. At operating points farther from the design operating point, the measured figure of merit is much lower, as streaming driven convection adds a third loss mechanism.

  2. Orthogonal feeding techniques for tapered slot antennas

    Science.gov (United States)

    Lee, Richard Q.; Simons, Rainee N.

    1998-01-01

    For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.

  3. Wave breaking in tapered holey fibers

    Institute of Scientific and Technical Information of China (English)

    Shuguang Li; Lei Zhang; Bo Fu; Yi Zheng; Ying Han; Xingtao Zhao

    2011-01-01

    We numerically study the propagation of 1-ps laser pulse in three tapered holey fibers (THFs). The curvature indices of the concave, linear, and convex tapers are 2.0, 1.0, and 0.5, respectively. The central wavelength, located in the normal dispersion regime, is 800 nm. The nonlinear coefficient of the THFs increases from the initial 0.095 m-1· W-1 to the final 0.349 m-l·W-1. Wave breaking accompanied by oscillatory structures occurs near pulse edges, and sidelobes appear in the pulse spectrum. With the increase in propagation distance z, the pulse shape becomes broader and the pulse spectrum flattens. A concave THF is advantageous to the generation of wave breaking and enables easier achievement of super fiat spectra at short lengths.%@@ We numerically study the propagation of 1-ps laser pulse in three tapered holey fibers (THFs).The curvature indices of the concave, linear, and convex tapers are 2.0, 1.0, and 0.5, respectively.The central wavelength, located in the normal dispersion regime, is 800 nm.The nonlinear coefficient of the THFs increases from the initial 0.095 m-1.W-1 to the final 0.349 m-1.W-1.Wave breaking accompanied by oscillatory structures occurs near pulse edges, and sidelobes appear in the pulse spectrum.With the increase in propagation distance z, the pulse shape becomes broader and the pulse spectrum flattens.A concave THF is advantageous to the generation of wave breaking and enables easier achievement of super flat spectra at short lengths.

  4. Supercontinuum noise in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Moselund, Peter Morten;

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light. Picosecond SCG is initiated by modulation instability ...... and as such contains some noise. It is thus of significant interest to reduce the noise. Here we focus on the noise properties of such supercontinuum (SC) generated in tapered PCFs....

  5. Comparison between 50 W tapered laser arrays and tapered single emitters

    Science.gov (United States)

    Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart; Keleman, Marc T.; Weber, Jürgen; Mikulla, Michael; Weimann, Günter

    2006-02-01

    During the last few years high power diode laser arrays have become well established for direct material processing due to their high efficiency of more than 50%. But standard broad-area waveguide designs are susceptible to modal instabilities and filamentations resulting in low beam qualities. The beam quality increases by more than a factor of four by using tapered laser arrays, but so far they suffer from lower efficiencies. Therefore tapered lasers are mainly used today as single emitters in external resonator configurations. With increased output power and lifetime, they will be much more attractive for material processing and for pumping of fiber amplifiers. High efficiency tapered mini bars emitting at a wavelength of 980 nm are developed, and in order to qualify the bars, the characteristics of single emitters and mini bars from the same wafer have been compared. The mini bars have a width of 6 mm with 12 emitters. The ridge waveguide tapered lasers consist of a 500 μm long ridge and a 2000 μm long tapered section. The results show very similar behavior of the electro-optical characteristics and the beam quality for single emitters and bars. Due to different junction temperatures, different slope efficiencies were measured: 0.8 W/A for passively cooled mini bars and 1.0 W/A for actively cooled mini-bars and single emitters. The threshold current of 0.7 A per emitter is the same for single emitters and emitter arrays. Output powers of more than 50 W in continuous wave mode for a mini bar with standard packaging demonstrates the increased power of tapered laser bars.

  6. Concept modeling of tapered thin-walled tubes

    Institute of Scientific and Technical Information of China (English)

    Yu-cheng LIU; Michael L.DAY

    2009-01-01

    This paper presents a method to create concept models for the tapered thin-walled tubes using beam elements and spring elements. Developed concept tapered beam models with different taper angles and cross sections are compared with those detailed models through impact analyses. Important crash results are recorded and compared, and the relatively good agreement is achieved between these analyses. Concept modeling steps are illustrated in detail, and a general concept modeling method for such thin-walled tubes is summarized and presented.

  7. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range....... The spectral width of the tapered laser is significantly narrowed compared to the freely running laser....

  8. Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows

    Institute of Scientific and Technical Information of China (English)

    Yongzbao XU; Zhixin CHEN; Hongtao LI; Yanfen WEI

    2009-01-01

    We numerically studied supercontinuum generation in a tapered photonic crystal fiber with flattened dispersion properties.The fiber was weakly tapered to have normal dispersion at wavelengths around 1.55 μm after a certain distance.We pumped 4 ps pulses with low peakpower and found that flatly broadened, wideband supercontinuum was generated in telecommunication windows.Furthermore, we also demonstrated the effects of tapered length and pulse width of the pump pulse on supercontinuum generation.

  9. Trapping light into high orbital momentum modes of fiber tapers.

    Science.gov (United States)

    Strekalov, Dmitry V; Savchenkov, Anatoliy A; Savchenkova, Ekaterina A; Matsko, Andrey B

    2015-08-15

    A tapered cylindrical dielectric optical waveguide acts as a high quality factor white-light cavity providing high field concentration as well as long optical group delay. It is possible to optimize shape of a lossless taper to suppress reflection of the input light and to achieve infinitely high field concentration. These tapers can be used in sensing and optoelectronics applications instead of conventional microcavities. PMID:26274659

  10. Tapered Yagi-Uda Nanoantennas for Broadband Unidirectional Emission

    OpenAIRE

    Staude, Isabelle; Ivan S. Maksymov; Decker, Manuel; Miroshnichenko, Andrey E.; Neshev, Dragomir N.; Jagadish, Chennupati; Kivshar, Yuri S.

    2012-01-01

    We demonstrate experimentally the operation of tapered Yagi-Uda nanoantennas for broadband unidirectional emission enhancement. The measured transmittance spectra show that, in comparison to untapered reference structures, the tapered nanoantennas exhibit distinct wide-band spectral resonances. The performed full-vectorial numerical calculations are in good qualitative agreement with the measured spectra, further revealing how the near-field profiles of the tapered nanoantennas are directly r...

  11. Tapered Yagi-Uda Nanoantennas for Broadband Unidirectional Emission

    CERN Document Server

    Staude, Isabelle; Decker, Manuel; Miroshnichenko, Andrey E; Neshev, Dragomir N; Jagadish, Chennupati; Kivshar, Yuri S

    2012-01-01

    We demonstrate experimentally the operation of tapered Yagi-Uda nanoantennas for broadband unidirectional emission enhancement. The measured transmittance spectra show that, in comparison to untapered reference structures, the tapered nanoantennas exhibit distinct wide-band spectral resonances. The performed full-vectorial numerical calculations are in good qualitative agreement with the measured spectra, further revealing how the near-field profiles of the tapered nanoantennas are directly reflecting their broadband characteristics.

  12. Welding-fume-induced transmission loss in tapered optical fibers

    Science.gov (United States)

    Yi, Ji-Haeng

    2015-09-01

    This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.

  13. Measurement of Liquid Viscosities in Tapered or Parabolic Capillaries.

    Science.gov (United States)

    Ershov; Zorin; Starov

    1999-08-01

    The possibility of using tapered or parabolic capillaries for measurement of liquid viscosities is investigated both experimentally and theoretically. It is demonstrated that even small deviations in capillary radius from a constant value may substantially affect measurement results. Equations are derived which allow correct analysis of the measurement results in tapered or parabolic capillaries. The following cases are analyzed: a water imbibition into a tapered or parabolic capillary and displacement of one liquid by another immiscible liquid in tapered or parabolic capillaries. Two possibilities are considered: (a) the narrow end of the capillary as capillary inlet and (b) the wide end of the capillary as capillary inlet. Copyright 1999 Academic Press.

  14. Low-crosstalk Si arrayed waveguide grating with parabolic tapers.

    Science.gov (United States)

    Ye, Tong; Fu, Yunfei; Qiao, Lei; Chu, Tao

    2014-12-29

    A silicon arrayed waveguide grating (AWG) with low channel crosstalk was demonstrated by using ultra-short parabolic tapers to connect the AWG's free propagation regions and single-mode waveguides. The tapers satisfied the requirements of low-loss mode conversion and lower channel crosstalk from the coupling of neighboring waveguides in the AWGs. In this work, three different tapers, including parabolic tapers, linear tapers, and exponential tapers, were theoretically analyzed and experimentally investigated for a comparison of their effects when implemented in AWGs. The experimental results showed that the AWG with parabolic tapers had a crosstalk improvement up to 7.1 dB compared with the others. Based on the advantages of parabolic tapers, a 400-GHz 8 × 8 cyclic AWG with 2.4 dB on-chip loss and -17.6~-25.1 dB crosstalk was fabricated using a simple one-step etching process. Its performance was comparable with that of existing AWGs with bi-level tapers, which require complicated two-step etching fabrication processes.

  15. Laminar phase flow for an exponentially tapered Josephson oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    2000-01-01

    Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...... the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow...... oscillator, we suggest that this feature should be incorporated in future designs...

  16. Ultra-low-loss tapered optical fibers with minimal lengths

    CERN Document Server

    Nagai, Ryutaro

    2014-01-01

    We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.

  17. Optimum PCF tapers for blue-enhanced supercontinuum sources

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Sørensen, Simon Toft; Larsen, Casper;

    2012-01-01

    Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. In this article we will review the state-of-the-art in fiber tapers, and discuss the underlying mechanisms of supercontinuum gen...... and tapered fibers, and we demonstrate that the intensity noise at the spectral edges of the generated supercontinuum is at a constant level independent on the pump power in both tapered and uniform fibers....

  18. Improved Tennis Racquets Have Tapered Strings

    Science.gov (United States)

    Noever, David A.

    1995-01-01

    Design concept for better performing tennis racquet. Essence of concept to taper strings in such way as to shift center of percussion (also called "sweet spot") toward the toe (outer end of racquet, farthest from player's hand). In addition to increasing power on serves, also improves player's control and feel of racquet in player's hand. Racquet less likely to twist in player's hand on off-center shots. Important element of better feel is better absorption of vibrations; especially for players having chronic arm problems. String material nylon, animal gut, or other naturally or artifically spun threads. String can be attached to conventional racquet frame.

  19. Exponentially tapered Josephson flux-flow oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    1996-01-01

    We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias current the static solution becomes unstable and gives rise to a train...... of fluxons moving toward the unbiased smaller end, as in the standard flux-flow oscillator. An exponentially shaped junction provides several advantages over a rectangular junction including: (i) smaller linewidth, (ii) increased output power, (iii) no trapped flux because of the type of current injection...

  20. Hydrodynamic Behavior in a Tapered Bubble Column

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; ZHAO Yu-long; ZHANG Bi-jiang

    2004-01-01

    The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.

  1. Window taper functions for subaperture processing.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-12-01

    It is well known that the spectrum of a signal can be calculated with a Discrete Fourier Transform (DFT), where best resolution is achieved by processing the entire data set. However, in some situations it is advantageous to use a staged approach, where data is first processed within subapertures, and the results are then combined and further processed to a final result. An artifact of this approach is the creation of grating lobes in the final response. The nature of the grating lobes, including their amplitude and spacing, is an artifact of window taper functions, subaperture offsets, and subaperture processing parameters. We assess these factors and exemplify their effects.

  2. Enhanced emission and light control with tapered plasmonic nanoantennas

    OpenAIRE

    Maksymov, Ivan S.; Davoyan, Arthur R.; Kivshar, Yuri S.

    2011-01-01

    We introduce a design of Yagi-Uda plasmonic nanoantennas for enhancing the antenna gain and achieving control over the angular emission of light. We demonstrate that tapering of antenna elements allows to decrease spacing between the antenna elements tenfold also enhancing its emission directivity. We find the optimal tapering angle that provides the maximum directivity enhancement and the minimum end-fire beamwidth.

  3. Polarization of Tapered Semiconductor Travelling-Wave Amplifiers

    Institute of Scientific and Technical Information of China (English)

    焦明星; 张书练; 梁晋文

    2001-01-01

    The polarization of a tapered semi-conductor travelling-wave amplifier has been investigated with the transfer matrix method based on convective equation. It is shown that the apparent polarization mode competition exists, and polarization-independent tapered semiconductor travellingwave amplifiers can be obtained through the optimization of amplifier parameters.

  4. Comparison between coil and taper fibre-polarisers

    OpenAIRE

    Varnham, M.P.; Tarbox, E.J.; Payne, D. N.; Barlow, A.J.; Ragdale, C.M.; De Fornel, F.

    1984-01-01

    Experimental results are presented which compare the performance of both coil end taper polarisers made from high-birefringence fibre. Taper polarisers with 35dB extinction have been constructed, while coil polarisers have yielded up to 62dB

  5. Vertically tapered layers for optical applications fabricated using resist reflow

    NARCIS (Netherlands)

    Emadi, A.; Wu, H.; Grabarnik, S.; De Graaf, G.; Wolffenbuttel, R.F.

    2009-01-01

    This paper reports on the IC-compatible fabrication of vertically tapered optical layers for use in linear variable optical filters (LVOF). The taper angle is fully defined by a mask design. Only one masked lithography step is required for defining strips in a photoresist with trenches etched therei

  6. Gap and channeled plasmons in tapered grooves: a review

    DEFF Research Database (Denmark)

    Smith, C. L. C.; Stenger, Nicolas; Kristensen, Anders;

    2015-01-01

    ) that are confined laterally between the tapered groove sidewalls and propagate either along the groove axis or normal to the planar surface, and channeled plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment...

  7. 5 CFR 353.303 - Restoration rights of TAPER employees.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Restoration rights of TAPER employees... Restoration rights of TAPER employees. An employee serving in the competitive service under a temporary... employee serving in a position classified above GS-15), is entitled to be restored to the position he...

  8. Realization of Tapered Waveguide by Stretching the Rod Waveguide

    Institute of Scientific and Technical Information of China (English)

    XIA Ke-yu; YU Rong-jin; MENG Hua-mao

    2004-01-01

    By stretching the rod waveguide with different velocities in opposite directions,the tapered waveguide can be fabricated.In condition of taking no account of volume expansion caused by heating and under the assumptions of volume conservation,the rod waveguide can be stretched freely in the heated region without being stretched outside of the heated region. A model,which shows the relation of the transition shape and the two factors,that is the ratio of two velocity and the heated region length,is presented for the shape of the taper transition through mathematic deduction.Based on this model,a desired tapered waveguide can be fabricated.The tapered waveguide are widely used for fabricating tapered fiber couplers and sensors.In addition,the conclusion can be used for fabricating fused fiber coupler.

  9. Electromagnetic field tapering using all-dielectric gradient index materials.

    Science.gov (United States)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  10. Electromagnetic field tapering using all-dielectric gradient index materials

    Science.gov (United States)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  11. High power supercontinuum generation in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper;

    2012-01-01

    Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. In this contribution we will discuss the underlying mechanisms of supercontinuum generation in tapers. We show, by introducing...... the concept of a group-acceleration mismatch, that for a given taper length, the downtapering section should be as long as possible to enhance the amount of blueshifted light. We also discuss the noise properties of supercontinuum in uniform and tapered fibers and we demonstrate that the amplitude noise...... at the spectral edges of the generated supercontinuum is at a constant level independent on the pump power in both tapered and uniform fibers....

  12. Electromagnetic field tapering using all-dielectric gradient index materials

    Science.gov (United States)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  13. An Exact Analytical Solution to Exponentially Tapered Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    H. Salmani

    2015-01-01

    Full Text Available It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled equations into modal coordinates. The steady states harmonic solution results are verified both numerically and experimentally. Results show that there exist values for tapering parameter and electric resistance in a way that the output power per mass of the energy harvester will be maximized. Moreover it is concluded that the electric resistance must be higher than a specified value for gaining more power by tapering the beam.

  14. Tapering Practices of New Zealand's Elite Raw Powerlifters.

    Science.gov (United States)

    Pritchard, Hayden J; Tod, David A; Barnes, Matthew J; Keogh, Justin W; McGuigan, Michael R

    2016-07-01

    Pritchard, HJ, Tod, DA, Barnes, MJ, Keogh, JW, and McGuigan, MR. Tapering practices of New Zealand's elite raw powerlifters. J Strength Cond Res 30(7): 1796-1804, 2016-The major aim of this study was to determine tapering strategies of elite powerlifters. Eleven New Zealand powerlifters (28.4 ± 7.0 years, best Wilks score of 431.9 ± 43.9 points) classified as elite were interviewed, using semistructured interviews, about their tapering strategies. Interviews were transcribed verbatim and content analyzed. Total training volume peaked 5.2 ± 1.7 weeks from competition while average training intensity (of 1 repetition maximum) peaked 1.9 ± 0.8 weeks from competition. During tapering, volume was reduced by 58.9 ± 8.4% while intensity was maintained (or slightly reduced) and the final weight training session was performed 3.7 ± 1.6 days out from competition. Participants generally stated that tapering was performed to achieve full recovery; that accessory work was removed around 2 weeks out from competition; and deadlifting takes longer to recover from than other lifts. Typically participants stated that trial and error, and changes based on "feel" were the sources of tapering strategies; equipment used and movements performed during tapering are the same as in competition; nutrition was manipulated during the taper (for weight cutting or performance aims); and poor tapering occurred when too long (1 week or more) was taken off training. These results suggest that athletes may benefit from continuing to strength train before important events with reduced volume and maintained intensity. Only exercises that directly assist sports performance should remain in the strength program during tapering, to assist with reductions in fatigue while maintaining/improving strength expression and performance.

  15. Configuring the Mesh Size, Side Taper and Wing Depth of Penaeid Trawls to Reduce Environmental Impacts

    Science.gov (United States)

    Broadhurst, Matt K.; Sterling, David J.; Millar, Russell B.

    2014-01-01

    The effects of reducing mesh size while concomitantly varying the side taper and wing depth of a generic penaeid-trawl body were investigated to improve engineering performance and minimize bycatch. Five trawl bodies (with the same codends) were tested across various environmental (e.g. depth and current) and biological (e.g. species and sizes) conditions. The first trawl body comprised 41-mm mesh and represented conventional designs (termed the ‘41 long deep-wing'), while the remaining trawl bodies were made from 32-mm mesh and differed only in their side tapers, and therefore length (i.e. 1N3B or ‘long’ and ∼28o to the tow direction vs 1N5B or ‘short’ and ∼35o) and wing depths (‘deep’–97 T vs ‘shallow’–60 T). There were incremental drag reductions (and therefore fuel savings – by up to 18 and 12% per h and ha trawled) associated with reducing twine area via either modification, and subsequently minimizing otter-board area in attempts to standardize spread. Side taper and wing depth had interactive and varied effects on species selectivity, but compared to the conventional 41 long deep-wing trawl, the 32 short shallow-wing trawl (i.e. the least twine area) reduced the total bycatch by 57% (attributed to more fish swimming forward and escaping). In most cases, all small-meshed trawls also caught more smaller school prawns Metapenaeus macleayi but to decrease this effect it should be possible to increase mesh size slightly, while still maintaining the above engineering benefits and species selectivity. The results support precisely optimizing mesh size as a precursor to any other anterior penaeid-trawl modifications designed to improve environmental performance. PMID:24911786

  16. Numerical study of hub taper angle on podded propeller performance

    International Nuclear Information System (INIS)

    Presently, the majority of podded propulsion systems are of the pulling type, because this type provides better hydrodynamic efficiency than the pushing type. There are several possible explanations for the better overall performance of a puller type podded propulsor. One is related to the difference in hub shape. Puller and pusher propellers have opposite hub taper angles, hence different hub and blade root shape. These differences cause changes in the flow condition and possibly influence the overall performance. The current study focuses on the variation in performance of pusher and puller propellers with the same blade sections, but different hub taper angles. A hyperboloidal low order source doublet steady/unsteady time domain panel method code was modified and used to evaluate effects of hub taper angle on the open water propulsive performance of some fixed pitch screw propellers used in podded propulsion systems. The modified code was first validated against measurements of two model propellers in terms of average propulsive performance and good agreement was found. Major findings include significant effects of hub taper angle on propulsive performance of tapered hub propellers and noticeable effects of hub taper angle on sectional pressure distributions of tapered hub propeller blades. (author)

  17. Numerical study of hub taper angle on podded propeller performance

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.F.; Veitch, B.; Bose, N. [Memorial Univ. of Newfoundland, Faculty of Engineering and Applied Science, St. John' s, Newfoundland (Canada)]. E-mail: Mohammed.Islam@nrc-cnrc.gc.ca; Liu, P. [National Research Council of Canada, Inst. for Ocean Technology (IOT), St. John' s, Newfoundland (Canada)

    2005-07-01

    Presently, the majority of podded propulsion systems are of the pulling type, because this type provides better hydrodynamic efficiency than the pushing type. There are several possible explanations for the better overall performance of a puller type podded propulsor. One is related to the difference in hub shape. Puller and pusher propellers have opposite hub taper angles, hence different hub and blade root shape. These differences cause changes in the flow condition and possibly influence the overall performance. The current study focuses on the variation in performance of pusher and puller propellers with the same blade sections, but different hub taper angles. A hyperboloidal low order source doublet steady/unsteady time domain panel method code was modified and used to evaluate effects of hub taper angle on the open water propulsive performance of some fixed pitch screw propellers used in podded propulsion systems. The modified code was first validated against measurements of two model propellers in terms of average propulsive performance and good agreement was found. Major findings include significant effects of hub taper angle on propulsive performance of tapered hub propellers and noticeable effects of hub taper angle on sectional pressure distributions of tapered hub propeller blades. (author)

  18. Discontinuous Tapered Surface Plasmon Polariton Waveguides with Gap.

    Science.gov (United States)

    Lee, Dong Hun; Lee, Myung-Hyun

    2016-06-01

    We investigate characteristics of discontinuous tapered surface plasmon polariton waveguides with a gap (DTG-SPPWs) to control a guided surface plasmon polariton (SPP) at a telecommunication wavelength of 1.55 μm. The DTG-SPPWs are composed of an input 2 μm-wide and 10 μm-long reverse tapered IMI-W (RT-IMI-W) and a 10 μm-long tapered and output 2 μm-wide IMI-W (T-IMI-W) with the 8 μm-long gap. The width and length of the tapered regions in the RT-IMI-W and the T-IMI-W were varied from 2 to 10 μm and 1 to 8 μm, respectively. Gold is used as the metal in the insulator-metal-insulator waveguides (IMI-Ws). The thickness of the gold strips is fixed with 20 nm. A low-loss polymer is used for the 30 μm-thick upper and lower cladding layers. The coupling losses of the DTG-SPPWs are less than 0.055 dB with an 8 μm-long gap and various taper widths up to 10 μm. The normalized transmissions (NTs) of the DTG-SPPWs are less than about -0.060 dB with various taper widths up to 10 μm. The NTs of the DTG-SPPWs are less than about -0.069 dB with various taper lengths up to 8 μm. The maximum NT of about -0.042 dB was obtained using the 6 μm-wide taper width and the 3 μm-long taper length in the DTG-SPPW. The DTG-SPPWs have potential as a new plasmonic modulation device via control of the guided SPP through interaction with an applied force in the gap. PMID:27427702

  19. Group delay and dispersion tailoring in nonadiabatic tapered fibers

    Science.gov (United States)

    Mas, Sara; Palací, Jesús; Martí, Javier

    2016-09-01

    The dispersion profile of a nonadiabatic tapered singlemode fiber is characterized and dynamically tuned. Its group delay and dispersion parameters are measured and compared to those of a standard singlemode fiber. The dispersion profile can be tuned by introducing a phase shift through mechanical stretching. Coarse tuning is also obtained by varying the surrounding medium of the tapered fiber. Dispersion values up to 700 ps/nm·km in nonadiabatic tapered fibers are obtained for the first time. Dynamic tuning exposed here can be very useful in applications such as nonlinearities or soliton generation.

  20. Fiber-diffraction Interferometer using Coherent Fiber Optic Taper

    OpenAIRE

    Kihm, Hagyong; Lee, Yun-Woo

    2010-01-01

    We present a fiber-diffraction interferometer using a coherent fiber optic taper for optical testing in an uncontrolled environment. We use a coherent fiber optic taper and a single-mode fiber having thermally-expanded core. Part of the measurement wave coming from a test target is condensed through a fiber optic taper and spatially filtered from a single-mode fiber to be reference wave. Vibration of the cavity between the target and the interferometer probe is common to both reference and me...

  1. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael;

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  2. Slow light in tapered slot photonic crystal waveguide

    Institute of Scientific and Technical Information of China (English)

    WU Jun; LI YanPing; YANG ChuanChuan; PENG Chao; WANG ZiYu

    2009-01-01

    A slotted single-mode photonic crystal waveguide with a linear tapered slot is presented to realize slow light, whose dispersion curve is shifted by changing the slot width. When the slot width is reduced, the band curve shifts in the tapered structure, and the group velocity of light approach zero at the cut-off frequency. Therefore, different frequency components of the guided light are slowed down even loca-lized along the propagation direction inside a tapered slot photonic crystal waveguide. Furthermore, this structure can confine slow light-wave in a narrow slot waveguide, which may effectively enhance the interaction between slow light and the low-index wave-guiding materials filled in the slot. In addition, this tapered slot structure can be used to compensate group velocity dispersion of slow light by mod-ifying the structure, thus opening the opportunity for ultra-wide bandwidth slow light.

  3. Low Loss S-Bend Structure With Tapered Curved Waveguides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel S-bend with tapered curved waveguides is proposed. The normalized transmitted power is greater than the conventional bend with weakly guided waveguides. Small size and low loss can be reached by the proposed S-bend.

  4. Design, Optimization & Evaluation of Tapered Waveguide With Cylindrical Waveguide

    Directory of Open Access Journals (Sweden)

    Harshukumar Khare

    2011-12-01

    Full Text Available Tapered Waveguide is a waveguide in which a physical or electrical characteristic changes continuously with distance along the axis of the waveguide. Tapered waveguide offer an excellent means of converting microwave mode sizes to connect Microwave devices of different cross-sectional dimensions. This paper discusses the waveguide component for interconnecting rectangular and circular waveguide using elliptical tapering. Model is designed for the frequency range from 2 to 4 GHz. Dominant Mode conversions ie from TE10 to TM11 is considered for tapering techniques. All simulations are done with CST Microwave studio. Simulation result shows that wave is properly propagated with no power reflection and low power loss. The resonant frequency is mainly varied with the diameter of cylindrical waveguide.

  5. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.

    Science.gov (United States)

    Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-02-01

    Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3  cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region. PMID:26907442

  6. A broadband tapered nanocavity for efficient nonclassical light emission.

    Science.gov (United States)

    Gregersen, Niels; McCutcheon, Dara P S; Mørk, Jesper; Gérard, Jean-Michel; Claudon, Julien

    2016-09-01

    We present the design of a tapered nanocavity, obtained by sandwiching a photonic wire section between a planar gold reflector and a few-period Bragg mirror integrated into the tapered wire. Thanks to its ultrasmall mode volume (0.71 λ3/n3), this hybrid nanocavity largely enhances the spontaneous emission rate of an embedded quantum dot (Purcell factor: 6), while offering a wide operation bandwidth (full-width half-maximum: 20 nm). In addition, the top tapered section shapes the cavity far-field emission into a very directive output beam, with a Gaussian spatial profile. For realistic taper dimensions, a total outcoupling efficiency to a Gaussian beam of 0.8 is predicted. Envisioned applications include bright sources of non-classical states of light, such as widely tunable sources of indistinguishable single photons and polarization-entangled photon pairs. PMID:27607694

  7. Perfluorinated Plastic Optical Fiber Tapers for Evanescent Wave Sensing

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2009-12-01

    Full Text Available In this work we describe the fabrication and the characterization of perfluorinated plastic-cladded optical fiber tapers. The heat-and-pull procedure has been used to fabricate symmetric tapers. Devices with different taper ratio have been produced and the repeatability of the process has been verified. The very low refractive indexes of the core-cladding perfluorinated polymers (n = 1.35–1.34 permit a strong enhancement of the evanescent wave power fraction in aqueous environments (n = 1.33, making them very attractive for evanescent wave sensing. The tapers have been characterized carrying out evanescent field absorbance measurements with different concentrations of methylene blue in water and fluorescence collection measurements in an aqueous solution containing Cy5 dye. A good sensitivity, tightly related to the low refractive index of the core-cladding materials and the geometrical profile, has been shown.

  8. Phase sensitive signal analysis for bi-tapered optical fibers

    Science.gov (United States)

    Ben Harush Negari, Amit; Jauregui, Daniel; Sierra Hernandez, Juan M.; Garcia Mina, Diego; King, Branden J.; Idehenre, Ighodalo; Powers, Peter E.; Hansen, Karolyn M.; Haus, Joseph W.

    2016-03-01

    Our study examines the transmission characteristics of bi-tapered optical fibers, i.e. fibers that have a tapered down and up span with a waist length separating them. The applications to aqueous and vapor phase biomolecular sensing demand high sensitivity. A bi-tapered optical fiber platform is suited for label-free biomolecular detection and can be optimized by modification of the length, diameter and surface properties of the tapered region. We have developed a phase sensitive method based on interference of two or more modes of the fiber and we demonstrate that our fiber sensitivity is of order 10-4 refractive index units. Higher sensitivity can be achieved, as needed, by enhancing the fiber design characteristics.

  9. Bamboo Taper Effect on Third Point Loading Bending Test

    OpenAIRE

    Naresworo Nugroho; Effendi Tri Bahtiar

    2013-01-01

    Geometrical shape of bamboo usually assumed as tapered hollow pipe. This study proved that the dimensional changes along the bamboo stem significantly affected to its Modulus of Rupture (SR) value which measured from third point loading bending test. Therefore if the bending test applied using third point loading configuration, the SR value should be adjusted by strength ratio of taper (Ct). Ct is theratio between (SR) calculated in the center span and the maximum bending stress along the bam...

  10. Gaussian Filtering with Tapered Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2006-01-01

    We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm......We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm...

  11. Highly efficient hybrid fiber taper coupled microsphere laser

    OpenAIRE

    Ming CAI; Vahala, Kerry

    2001-01-01

    A novel hybrid fiber taper is proposed and demonstrated as the coupler in a microsphere laser system. The pump wave and the laser emission, respectively, are more efficiently coupled to and from the sphere modes with this taper structure. A 980-nm pumped erbium–ytterbium codoped phosphate microsphere laser is demonstrated in the 1550-nm band. As much as 112 µW of single-frequency laser output power was measured, with a differential quantum efficiency of 12%.

  12. Vertical Dynamic Impedance of Tapered Pile considering Compacting Effect

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2013-01-01

    Full Text Available Based on complex stiffness transfer model, the vertical vibration of tapered pile embedded in layered soil is theoretically investigated by considering the compacting effect of the soil layer surrounding the tapered pile in the piling process. Allowing for the stratification of the surrounding soil and variable crosssection of the tapered pile, the pile-soil system is discretized into finite segments. By virtue of the complex stiffness transfer model to simulate the compacting effect, the complex stiffness of different soil segments surrounding the tapered pile is obtained. Then, substituting the complex stiffness into the vertical dynamic governing equation of tapered pile, the analytical solution of vertical dynamic impedance of tapered pile under vertical exciting force is derived by means of the Laplace technique and impedance function transfer method. Based on the presented solutions, the influence of compacting effect of surrounding soil on vertical dynamic impedance at the pile head is investigated within the low frequency range concerned in the design of dynamic foundation.

  13. A mechanical model of wing and theoretical estimate of taper factor for three gliding birds

    Indian Academy of Sciences (India)

    Moosarreza Shamsyeh Zahedi; Mir Yaseen Ali Khan

    2007-03-01

    We tested a mechanical model of wing, which was constructed using the measurements of wingspan and wing area taken from three species of gliding birds. In this model, we estimated the taper factors of the wings for jackdaw (Corrus monedula), Harris’ hawk (Parabuteo unicinctas) and Lagger falcon (Falco jugger) as 1.8, 1.5 and 1.8, respectively. Likewise, by using the data linear regression and curve estimation method, as well as estimating the taper factors and the angle between the humerus and the body, we calculated the relationship between wingspan, wing area and the speed necessary to meet the aerodynamic requirements of sustained flight. In addition, we calculated the relationship between the speed, wing area and wingspan for a specific angle between the humerus and the body over the range of stall speed to maximum speed of gliding flight. We then compared the results for these three species of gliding birds. These comparisons suggest that the aerodynamic characteristics of Harris’ hawk wings are similar to those of the falcon but different from those of the jackdaw. This paper also presents two simple equations to estimate the minimum angle between the humerus and the body as well as the minimum span ratio of a bird in gliding flight.

  14. Stem taper equations for poplars growing on farmland in Sweden

    Institute of Scientific and Technical Information of China (English)

    Birger Hjelm

    2013-01-01

    We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations.In Sweden there is an increasing interest in the use of poplar.Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations.In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland.The outputs of the polynomial taper equation were compared with five published equations.Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat.55-60° N).The mean age of the stands was 21 years (range 14-43),the mean density 984 stemsha-1 (198-3,493),and the mean diameter at breast height (outside bark) 25 cm (range 12-40).To verify the tested equations,performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed.Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended.The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management.The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked.Due to the statistical complexity of Kozak's equation,the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.

  15. Review on the Evolution of Co-conspirator Vicarious Liability Rule in American Criminal Law%美国刑法共谋者替代责任规则之演进述评

    Institute of Scientific and Technical Information of China (English)

    张淑芳; 林俊辉

    2012-01-01

    The issue as to whether a conspirator should be held liable for the substantive crimes committed by his co-conspirators has gone through a process of evolution from negativism to basical affirmativeness and finally to substantial restriction.The standard of attenuation in kind is the restatement of the standard of reasonable foreseeability.As a result,it could not impose strict limit on Pinkerton Rule.The standard of attenuation in fact or more than minor participation is better for imposing limit on conspiratorial vicarious liability and excluding the conspirators,who are minor participators in the conspiracy and attenuated from the substantive crimes,from the vicarious liability.It is necessary for Chinese Criminal Law to refer to the standard of attenuation in fact or more than minor participation to deal with the similar cases.%共谋者是否对共同共谋者实行的实体犯罪承担替代责任,美国刑法以平克顿案为分水岭,经历否定论→基本肯定论→实质限定论的演变历程。类型弱化标准是可合理预见性标准的重述,可能无法确保对平克顿规则的严格限制。事实弱化标准或超出轻微参与标准,更有利于限制共谋者替代责任的适用范围,将轻微参与共谋而与实体犯罪的实行存在弱化关系的共谋者排除在替代责任的适用范围之外。事实弱化或超出轻微参与标准,对我国处理类似案件具有借鉴意义。

  16. Single muscle fiber gene expression with run taper.

    Science.gov (United States)

    Murach, Kevin; Raue, Ulrika; Wilkerson, Brittany; Minchev, Kiril; Jemiolo, Bozena; Bagley, James; Luden, Nicholas; Trappe, Scott

    2014-01-01

    This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I) and fast-twitch (MHC IIa) muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1) during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax) while in heavy training (∼72 km/wk) and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14), Myostatin (MSTN), Heat shock protein 72 (HSP72), Muscle ring-finger protein-1 (MURF1), Myogenic factor 6 (MRF4), and Insulin-like growth factor 1 (IGF1) via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (Pfiber types and training states (Pfibers, respectively, regardless of training state (Ptapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes. PMID:25268477

  17. Temperature Distribution and Scuffing of Tapered Roller Bearing

    Institute of Scientific and Technical Information of China (English)

    WANG Ailin; WANG Jiugen

    2014-01-01

    In the field of aerospace, high-speed trains and automobile, etc, analysis of temperature filed and scuffing failure of tapered roller bearings are more important than ever, and the scuffing failure of elements of such rolling bearings under heavy load and high speed still cannot be effectively predicted yet. A simplified model of tapered roller bearings consisted of one inner raceway, one outer raceway and a tapered roller was established, in which the interaction of several heat sources is ignored. The contact mechanics model, temperature model and model of scuffing failure are synthesized, and the corresponding computer programs are developed to analyze the effects of bearings parameters, different material and operational conditions on thermal performance of bearings, and temperature distribution and the possibility of surface scuffing are obtained. The results show that load, speed, thermal conductivity and tapered roller materials influence temperature rise and scuffing failure of bearings. Ceramic material of tapered roller results in the decrease of scuffing possibility of bearings to a high extent than the conventional rolling bearing steel. Compared with bulk temperature, flash temperature on the surfaces of bearing elements has a little influence on maximum temperature rise of bearing elements. For the rolling bearings operated under high speed and heavy load, this paper proposes a method which can accurately calculate the possibility of scuffing failure of rolling bearings.

  18. 洛阳市出土元代防奸令牌诠释%A Study of the Anti-conspirator Decree Tablets of the Yuan Dynasty Unearthed from Luoyang City

    Institute of Scientific and Technical Information of China (English)

    蔡美彪

    2003-01-01

    In 2000, five anti-conspirator decree tablets of the Yuan Dynasty were discovered piled up on the site of the eastern city of Sui-Tang Luoyang. The obverse side is cast with Chinese characters: a large “令” in the center and “除伪防奸不许” and “借带违者治罪” on the right and left respectively. The reverse side bears Phagspa, Mongolo-Uighur and Persian scripts. The present paper deciphers the inscriptions and studies the nature and use of the tablets. These findings represent a type of decree tablet the local government issued to archers going on patrol or criminal-catching constables. Their caster may have been the Henan Prefectural Government of the late Yuan Dynasty.

  19. Does Taper Angle Clearance Influence Fretting and Corrosion Damage at the Head-Stem Interface? A Matched Cohort Retrieval Study

    OpenAIRE

    Kocagöz, Sevi B.; Richard J. Underwood; Sivan, Shiril; Gilbert, Jeremy L.; MacDonald, Daniel W.; Day, Judd S; Kurtz, Steven M.

    2013-01-01

    Previous studies have speculated that modular taper design may have an effect on the corrosion and material loss at the taper surfaces. We present a novel method to measure taper angle for retrieved head taper and stem trunnions using a roundness machine (Talyrond 585, Taylor Hobson, UK). We also investigated the relationship between taper angle clearance and visual fretting-corrosion score at the taper-trunnion junction using a matched cohort study of 50 ceramic and 50 metal head-stem pairs....

  20. Optically active mechanical modes of tapered optical fibers

    CERN Document Server

    Wuttke, Chrisitan; Rauschenbeutel, Arno

    2013-01-01

    Tapered optical fibers with a nanofiber waist are widely used tools for efficient coupling of light to photonic devices or quantum emitters via the nanofiber's evanescent field. In order to ensure well-controlled coupling, the phase and polarization of the nanofiber guided light field have to be stable. Here, we show that in typical tapered optical fibers these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that opto-mechanically couple to the nanofiber-guided light. We present a simple ab-initio theoretical model that quantitatively explains the torsional mode spectrum and that can be used to design tapered optical fibers with tailored mechanical properties.

  1. Enhanced plasmonic nanofocusing of terahertz waves in tapered graphene multilayers.

    Science.gov (United States)

    Liu, Weiwei; Wang, Bing; Ke, Shaolin; Qin, Chengzhi; Long, Hua; Wang, Kai; Lu, Peixiang

    2016-06-27

    We investigate the plasmonic nanofocusing of terahertz waves in tapered graphene multilayers separated by dielectrics. The nanofocusing effect is significantly enhanced in the graphene multilayer taper compared with that in a single layer graphene taper due to interlayer coupling between surface plasmon polaritons. The results are optimized by choosing an appropriate layer number of graphene and the field amplitude has been enhanced by 620 folds at λ = 50 μm. Additionally, the structure can slow light to a group velocity ~1/2815 of the light speed in vacuum. Our study provides a unique approach to compress terahertz waves into deep subwavelength scale and may find great applications in terahertz nanodevices for imaging, detecting and spectroscopy. PMID:27410629

  2. Tapered fiber optic sensor for potassium detection in distilled water

    Science.gov (United States)

    Yasin, M.; Pujiyanto, .; Apsari, R.; Tanjung, M.

    2015-01-01

    A simple sensor is proposed and demonstrated using a silica tapered fiber for sensing different concentration of potassium in de-ionized water. The tapered fiber is fabricated using a flame brushing technique to achieve a waist diameter and length of 10 μm and 80 mm, respectively. For a concentration change from 0 to 50 %, the ouput signal of the sensor decreases exponentially from -10.04 dBm to -11.11 dBm with linearity of more than 92%. The increment of potassium concentration increases the refractive index of the solution, which in turn reduces the index difference between core and cladding of the tapered fiber and thus allows more light to be leaked out from the fiber. This new potassium monitoring system provides numerous advantages such as simplicity of design and low cost of production.

  3. Fiber taper coupled high-quality-factor planar microdisk

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Wu; Yunfeng Xiao; Yong Yang; Chunhua Dong; Zhengfu Han; Guangcan Guo

    2007-01-01

    A fiber taper can evanescently couple to whispering gallery modes (WGMs) in a planar silica microdisk for observing the optical properties of the microdisk cavity. It is revealed that WGMs have very high quality (Q) factors by controlling the air gap between the taper and the microdisk. The best coupling efficiency from the taper to the microdisk is as high as 98%, and can be continuously adjusted from the under-coupling, critical-coupling to over-coupling regimes. The influence of the laboratory circumstance such as surface contamination on the microdisk is also discussed. It is experimentally shown that the high-Q-factor (105) modes can be kept for a long period in a general laboratory circumstance.

  4. Optical Tapers as White-Light WGM Resonators

    Science.gov (United States)

    Strekalov, Dmitry V.; Matsko, Andrey B.; Savchenkov, Anatoliy A.

    2010-01-01

    A theoretical analysis has revealed that tapered optical waveguides could be useful as white-light whispering-gallery-mode (WGM) optical resonators. The compactness and the fixed-narrow-frequency-band nature of the resonances of prior microdisk and microsphere WGM resonators are advantageous in low-power, fixed-narrow-frequency-band applications. However for optical-processing applications in which there are requirements for power levels higher and/or spectral responses broader than those of prior microdisk and microsphere WGM resonators, white-light WGM resonators in the form of optical tapers would be preferable. The theoretical analysis was performed for a multimode, axisymmetric, circular-cross-section waveguide having a taper sufficiently smooth and gradual to justify the approximation of adiabaticity. In this approximation, the equation for the dependence of the electromagnetic field upon the axial (longitudinal) waveguide coordinate can be separated from the equation for the dependence upon the radius and the azimuthal angle.

  5. Windows tapers effects on the impulse deconvolution filter

    International Nuclear Information System (INIS)

    The aim of the present paper is the study of the effect of window tapers on autocorrelation function, φgg(.), of seismic traces in the design of the important Wiener optimum impulse response filter. Systematic application of window class tapers and truncations, permitted to demonstrate that the resolution of the filter depends on the window type length. As a simple and convenient result, we found that the exponential taper with decaying coefficient β = 30 is one of the best values to start experimenting on processing, with the operator length 2-3 times source pulse length. Due to the non simplicity of the functions involved, the only way to obtain results is through numerical algorithms. (author)

  6. Single muscle fiber gene expression with run taper.

    Directory of Open Access Journals (Sweden)

    Kevin Murach

    Full Text Available This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I and fast-twitch (MHC IIa muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1 during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax while in heavy training (∼72 km/wk and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14, Myostatin (MSTN, Heat shock protein 72 (HSP72, Muscle ring-finger protein-1 (MURF1, Myogenic factor 6 (MRF4, and Insulin-like growth factor 1 (IGF1 via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05. MSTN was suppressed with exercise in both fiber types and training states (P<0.05 while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05. Robust induction of FN14 (previously shown to strongly correlate with hypertrophy and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.

  7. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  8. Bend sensors based on periodically-tapered soft glass fibers

    OpenAIRE

    Wang, Y.; Richardson, D. J.; Brambilla, G; Feng, X.; Petrovich, M.N.; Ding, M.; Song, Z.(Central China Normal University, Wuhan, China)

    2011-01-01

    We demonstrate a technique for tapering periodically an all-solid soft glass fiber consisting of two types of lead silicate glasses by the use of a CO2 laser and investigate the bend sensing applications of the periodically-tapered soft glass fiber. Such a soft glass fiber with periodic microtapers could be used to develop a promising bend sensor with a sensitivity of ?27.75 ?W/m-1 by means of measuring the bend-induced change of light intensity. The proposed bend sensor exhibits a very low m...

  9. FDML swept source at 1060 nm using a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang;

    2010-01-01

    We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain medium. These devices feature significantly higher saturation power than conventional semiconductor optical amplifiers and can thus improve the limited output power of swept sources...... in this wavelength range. We demonstrate that a tapered amplifier can be integrated into a fiber-based swept source and allows for high-speed FDML operation. The developed light source operates at a sweep rate of 116kHz with an effective average output power in excess of 30mW. With a total sweep range of 70 nm...

  10. Perambatan Gelombang Optik pada Grating Sinusoidal dengan Chirp dan Taper

    Directory of Open Access Journals (Sweden)

    Isnani Darti

    2009-11-01

    menggunakan MIL, dipelajari perubahan respon optik pada grating sinusoidal akibat variasi amplitudo modulasi indeks (taper dan variasi frekuensi spasial grating (chirp. Hasil simulasi menunjukkan bahwa taper menyebabkan adanya fenomena penghilangan side-lobe pada spektrum transmitansi. Adanya chirp menyebabkan penghalusan side-lobe pada spektrum transmitansi dengan semakin besar parameter chirp menyebabkan peningkatan transmitansi di sekitar pusat band-gap dari grating homogen. Selain implementasi integrasi numerik (Runge-Kutta, MIL merupakan metode eksak sehingga dapat digunakan untuk mengevaluasi validitas metode yang sering digunakan yaitu Persamaan Moda Tergandeng (PMT. Dari hasil perbandingan dapat disimpulkan bahwa secara umum PMT kurang akurat dalam menganalisis struktur grating sinusoidal baik homogen maupun tak-homogen.

  11. Reduced Amplitude Noise in Supercontinuum Generated in Tapered PCFs

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Moselund, P. M.;

    2011-01-01

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light [1]. Picosecond SCG is initiated by modulation instabil...... instability and as such contains some noise. It is thus of significant interest to reduce the noise. Here we therefore focus on the noise properties of such supercontinuum (SC) generated in tapered PCFs, and that the tapering reduces the noise at the spectral edge....

  12. Tapered amplifier laser with frequency-shifted feedback

    CERN Document Server

    Bayerle, A; Vlaar, P; Pasquiou, B; Schreck, F

    2016-01-01

    We present a frequency-shifted feedback (FSF) laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.

  13. An accurate RLGC circuit model for dual tapered TSV structure

    International Nuclear Information System (INIS)

    A fast RLGC circuit model with analytical expression is proposed for the dual tapered through-silicon via (TSV) structure in three-dimensional integrated circuits under different slope angles at the wide frequency region. By describing the electrical characteristics of the dual tapered TSV structure, the RLGC parameters are extracted based on the numerical integration method. The RLGC model includes metal resistance, metal inductance, substrate resistance, outer inductance with skin effect and eddy effect taken into account. The proposed analytical model is verified to be nearly as accurate as the Q3D extractor but more efficient. (semiconductor integrated circuits)

  14. Optimization of Tapered Photonic Crystal Fibers for Blue-Enhanced Supercontinuum Generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper;

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for blue-enhanced supercontinuum generation.......Tapering of photonic crystal fibers is an effective way of shifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for blue-enhanced supercontinuum generation....

  15. Pseudotumor of Ciliary Body

    Directory of Open Access Journals (Sweden)

    Mary Varghese

    2014-01-01

    Full Text Available Orbital pseudotumor is a benign disease involving the orbital structures. Pseudotumor of the ciliary body is rare. We present a case of a 27-year-old male who presented with gradual visual loss, pain, and redness in his left eye. On examination he was found to have a yellowish white mass at the periphery of anterior chamber in his left eye and ultrasound biomicroscopy (UBM revealed a ciliary body mass in the same eye. He was treated with systemic steroids, which was tapered over a period of 8 weeks. His symptoms improved and the ciliary body mass disappeared with no recurrence over the next 6 months. UBM is an important diagnostic tool for diagnosing ciliary body mass. Early diagnosis and prompt treatment with systemic steroids may help resolve pseudotumor of the ciliary body.

  16. Spontaneous radiation from relativistic electrons in a tapered Apple-Ⅱ undulator

    Institute of Scientific and Technical Information of China (English)

    CHEN Mingzhi; HE Jianhua

    2009-01-01

    This paper presents most properties of radiation from a tapered Apple-Ⅱ undulator.The study demonstrates that tapering an Apple-Ⅱ undulator can broaden the harmonic bandwidth and the performance of polarization is also excellent at the broadened energy range.So Apple-Ⅱ undulator can be tapered to provide more convenience for energy scan experiment.

  17. Linearly tapered slot antenna circular array for mobile communications

    Science.gov (United States)

    Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.

    1993-01-01

    The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.

  18. Tapered composite likelihood for spatial max-stable models

    KAUST Repository

    Sang, Huiyan

    2014-05-01

    Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.

  19. Opioid Abstinence Reinforcement Delays Heroin Lapse during Buprenorphine Dose Tapering

    Science.gov (United States)

    Greenwald, Mark K.

    2008-01-01

    A positive reinforcement contingency increased opioid abstinence during outpatient dose tapering (4, 2, then 0 mg/day during Weeks 1 through 3) in non-treatment-seeking heroin-dependent volunteers who had been maintained on buprenorphine (8 mg/day) during an inpatient research protocol. The control group (n = 12) received $4.00 for completing…

  20. Heat-and-pull rig for fiber taper fabrication

    NARCIS (Netherlands)

    Ward, Jonathan M.; O'Shea, Danny G.; Shortt, Brian J.; Morrissey, Michael J.; Deasy, Kieran; Chormaic, Sile G. Nic

    2006-01-01

    We describe a reproducible method of fabricating adiabatic tapers with 3-4 mu m diameter. The method is based on a heat-and-pull rig, whereby a CO(2) laser is continuously scanned across a length of fiber that is being pulled synchronously. Our system relies on a CO(2) mirror mounted on a geared ste

  1. Coherent multi-octave spanning supercontinuum in tapered sulphide fibres

    DEFF Research Database (Denmark)

    Kubat, Irnis; Mägi, Eric; Hu, Tomonori;

    A novel frequency comb design is proposed based on a newly developed ultrafast 3µm mid-infrared laser in conjunction with micro-taper chalcogenide fibre. The novel design allows for an all-fibre laser source yielding up to three octave coherent supercontinuum. The design is the first step...

  2. Terahertz field imaging inside tapered parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei;

    We present a non-invasive broadband air photonic method of terahertz field imaging inside a tapered parallel plate waveguide. The method is based on the terahertz-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We also demonstrate the direct...

  3. Length reduction factor of tapered multimode interference devices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multimode interference (MMI) devices are widely used in planar lightwave circuit (PLC). The device length can be well reduced with tapered multimode region. Traditional design formula shows large error for MMI devices based on weaklyrestricted waveguide. Based on the analysis with mode width as a substitution of waveguide width, a design formula with better precision was presented. Comparison with software simulation verified its exactness.

  4. Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Weirich, Johannes;

    2008-01-01

    A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at X=1364nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed...

  5. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    Science.gov (United States)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  6. Power dependence of supercontinuum noise in uniform and tapered PCFs

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Jakobsen, C.;

    2012-01-01

    We experimentally investigate the noise properties of picosecond supercontinuum spectra generated at different power levels in uniform and tapered photonic crystal fibers. We show that the noise at the spectral edges of the generated supercontinuum is at a constant level independent on the pump...

  7. Nonlinear Vibration of an Elastically Restrained Tapered Beam

    DEFF Research Database (Denmark)

    Karimpour, S; Ganji, S.S; Barari, Amin;

    2012-01-01

    This paper presents the analytical simulation of an elastically restrained tapered cantilever beam using the energy balance method (EBM) and the iteration perturbation method (IPM). To assess the accuracy of solutions, we compare the results with the harmonic balance method (HBM). The obtained re...

  8. Theoretic research on emergence angle of specialty solid coupled optical taper

    Institute of Scientific and Technical Information of China (English)

    FU Xing-hu; CHEN Zhen-yi; GUO Qiang; PANG Fu-fei; WANG Ting-yun

    2011-01-01

    The emergence angle of specialty solid coupled (SSC) optical taper is numerically studied by using ray-tracing method,which depends on the shape curve function. The relationships between the taper length, shape factor, large-end and smallend radii and the emergence angle are analyzed, respectively. The results show that the variation of small-end radius has great influence on the range of emergence angle for SSC optical taper, Therefore, given the shape curve function of the SSC optical taper, the emergence angle can be used for analyzing the transmission loss of SSC optical taper.

  9. Compact and broadband waveguide taper based on partial bandgap photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Jin Hou; Dingshan Gao; Huaming Wu; Zhiping Zhou

    2009-01-01

    Partial bandgap characteristics of parallelogram lattice photonic crystals are proposed to suppress the radiation modes in a compact dielectric waveguide taper so as to obtain high transmittance in a large wavelength range. Band structure of the photonic crystals shows that there exists a partial bandgap. The photonic crystals with partial bandgap are then used as the cladding of a waveguide taper to reduce the radiation loss efficiently. In comparison with the conventional dielectric taper and the complete bandgap photonic crystal taper, the partial bandgap photonic crystal taper has a high transmittance of above 85% with a wide band of 170 nm.

  10. Theoretical shape analysis of tapered fibers using a movable large-zone furnace

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-min; YUAN Ming; ZENG Xian-jin; T.A. Birks

    2011-01-01

    To estimate the shape of tapered fibers using tapering machines with movable large-zone furnaces, a new calculation method is proposed based on the discrete deducing method and the principle of the volume conservation of the fiber materials. This method can estimate the tapering results, i.e., the shape of the tapered fibers, based on arbitrary moving parameters of the large-zone furnace and the fiber holders. The theoretical estimated results agree with the experimental measuring shape of the tapered fibers quite well.

  11. Deep-blue supercontinnum sources with optimum taper profiles – verification of GAM

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe; Larsen, Casper;

    2012-01-01

    We use an asymmetric 2 m draw-tower photonic crystal fiber taper to demonstrate that the taper profile needs careful optimisation if you want to develop a supercontinuum light source with as much power as possible in the blue edge of the spectrum. In particular we show, that for a given taper...... length, the downtapering should be as long as possible. We argue how this may be explained by the concept of group-acceleration mismatch (GAM) and we confirm the results using conventional symmetrical short tapers made on a taper station, which have varying downtapering lengths....

  12. Less Is More: The Physiological Basis for Tapering in Endurance, Strength, and Power Athletes

    Directory of Open Access Journals (Sweden)

    Kevin A. Murach

    2015-08-01

    Full Text Available Taper, or reduced-volume training, improves competition performance across a broad spectrum of exercise modes and populations. This article aims to highlight the physiological mechanisms, namely in skeletal muscle, by which taper improves performance and provide a practical literature-based rationale for implementing taper in varied athletic disciplines. Special attention will be paid to strength- and power-oriented athletes as taper is under-studied and often overlooked in these populations. Tapering can best be summarized by the adage “less is more” because maintained intensity and reduced volume prior to competition yields significant performance benefits.

  13. Refractive index sensors based on the fused tapered special multi-mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  14. High-power green light generation by second harmonic generation of single-frequency tapered diode lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd;

    2010-01-01

    We demonstrate the generation of high power (>1.5W) and single-frequency green light by single-pass second harmonic generation of a high power tapered diode laser. The tapered diode laser consists of a DBR grating for wavelength selectivity, a ridge section and a tapered section. The DBR tapered...

  15. Coupled fiber taper extraction of 1.53 um photoluminescence from erbium doped silicon nitride photonic crystal cavities

    OpenAIRE

    Shambat, Gary; Gong, Yiyang; Lu, Jesse; Yerci, Selcuk; Li, Rui; Negro, Luca Dal; Vuckovic, Jelena

    2010-01-01

    Optical fiber tapers are used to collect photoluminescence emission at ~1.5 um from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. Photoluminescence collection via fiber taper is enhanced 2.5 times relative to free space, with a total taper collection efficiency of 53%. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength is obtained. This material system combined with fiber taper collection is promising for building on...

  16. Method for Characterization of Material Loss from Modular Head-Stem Taper Surfaces of Hip Replacement Devices

    OpenAIRE

    Racasan, Radu; Bills, Paul J.; Blunt, Liam; Hart, Alister; Skinner, John

    2015-01-01

    Assessment of the head-stem taper junction requires the estimation of material loss from the taper surfaces of both femoral head and stem. This paper describes a method for the measurement and analysis of material loss from the modular taper junction of hip replacements, in particular femoral stem tapers where generally the entire taper surface has been engaged. In such cases no direct unworn datum is readily identifiable to assess material loss. The highly anisotropic topology of some stem d...

  17. Optimized tapered dipole nanoantenna as efficient energy harvester.

    Science.gov (United States)

    El-Toukhy, Youssef M; Hussein, Mohamed; Hameed, Mohamed Farhat O; Heikal, A M; Abd-Elrazzak, M M; Obayya, S S A

    2016-07-11

    In this paper, a novel design of tapered dipole nanoantenna is introduced and numerically analyzed for energy harvesting applications. The proposed design consists of three steps tapered dipole nanoantenna with rectangular shape. Full systematic analysis is carried out where the antenna impedance, return loss, harvesting efficiency and field confinement are calculated using 3D finite element frequency domain method (3D-FEFD). The structure geometrical parameters are optimized using particle swarm algorithm (PSO) to improve the harvesting efficiency and reduce the return loss at wavelength of 500 nm. A harvesting efficiency of 55.3% is achieved which is higher than that of conventional dipole counterpart by 29%. This enhancement is attributed to the high field confinement in the dipole gap as a result of multiple tips created in the nanoantenna design. Furthermore, the antenna input impedance is tuned to match a wide range of fabricated diode based upon the multi-resonance characteristic of the proposed structure.

  18. Piezoelectric energy harvester having planform-tapered interdigitated beams

    Science.gov (United States)

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  19. Optimized tapered dipole nanoantenna as efficient energy harvester.

    Science.gov (United States)

    El-Toukhy, Youssef M; Hussein, Mohamed; Hameed, Mohamed Farhat O; Heikal, A M; Abd-Elrazzak, M M; Obayya, S S A

    2016-07-11

    In this paper, a novel design of tapered dipole nanoantenna is introduced and numerically analyzed for energy harvesting applications. The proposed design consists of three steps tapered dipole nanoantenna with rectangular shape. Full systematic analysis is carried out where the antenna impedance, return loss, harvesting efficiency and field confinement are calculated using 3D finite element frequency domain method (3D-FEFD). The structure geometrical parameters are optimized using particle swarm algorithm (PSO) to improve the harvesting efficiency and reduce the return loss at wavelength of 500 nm. A harvesting efficiency of 55.3% is achieved which is higher than that of conventional dipole counterpart by 29%. This enhancement is attributed to the high field confinement in the dipole gap as a result of multiple tips created in the nanoantenna design. Furthermore, the antenna input impedance is tuned to match a wide range of fabricated diode based upon the multi-resonance characteristic of the proposed structure. PMID:27410898

  20. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle;

    2011-01-01

    in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has......, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation......, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tunable in a range of 16 nm....

  1. A tapered poloidal gap for the reduction of field errors

    International Nuclear Information System (INIS)

    The conventional Reversed Field Pinch is surrounded by a toroidal conducting shell that provides wall stabilization for the plasma. Usually, this shell is made of aluminum or copper, and it must have an insulated poloidal gap to permit penetrations of toroidal loop voltage to the plasma. Many magnetic field perturbations will induce toroidal shell currents with poloidal Fourier components having mode numbers m ≥1. A butt-joint poloidal gap will mode convert all of these image currents into potentially damaging magnetic-field errors with large spectra of toroidal-mode numbers. Overlapping tapered gaps have been proposed and partially tested for reducing these field errors. The mathematical basis for minimizing the m = 1, n = 0 field errors for all frequencies using tapered gaps, is presented in this paper

  2. Influence of Root Canal Tapering on Smear Layer Removal.

    Science.gov (United States)

    Zarei, Mina; Javidi, Maryam; Afkhami, Farzaneh; Tanbakuchi, Behrad; Zadeh, Mohsen Movahed; Mohammadi, Marzieh Maghadam

    2016-04-01

    The purpose of the study presented here was to compare the influence of root canal taper on the efficacy of irrigants and chelating agents in smear layer removal. Eighty mesial roots of molar teeth were selected and prepared with rotary instruments. In group A, file 30/0.02 and in group B, file 30/0.4 were placed at working length and the smear layer was removed. In groups C and D, root canal preparation was the same as in groups A and B, respectively, except that the smear layer was not removed. The amount of the smear layer was quantified using a scanning electron microscope. Greater smear layer was detected in the apical portion of each group, whereas no significant difference was detected between groups in other portions. No statistical difference was found between canals with different tapers. PMID:27348950

  3. Comparative evaluation of apically extruded debris with V-Taper, ProTaper Next, and the Self-adjusting File systems

    Directory of Open Access Journals (Sweden)

    Nishant K Vyavahare

    2016-01-01

    Full Text Available Background: Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. Aim: To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF system. Materials and Methods: Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20, Group II - ProTaper Next (n = 20, Group III - SAF (n = 20. Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey′s test. Results: All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001. Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124. Conclusion: The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF.

  4. EFFECT OF TWO TAPERING METHODS ON INTERLEUKIN-6, CORTISOL AND PERFORMANCE IN ELITE MALE WRESTLER

    Directory of Open Access Journals (Sweden)

    Mehranpour A.B.

    2015-08-01

    Full Text Available Purpose : This study examined that effect of two types of tapering on interleukin-6(IL-6, cortisol and performance in elite male wrestler. Material : After 4 weeks of progressive training, wrestlers were randomly divided into three equal groups, 1-control group (N=10 continued performing progressive training for one week, 2-taper group 1 (N=10 continued with a 50% reduction in training volume for one week, 3-taper group 2 (N=10 continued with a 75% reduction in volume of training for one week .plasma blood IL-6 and cortisol levels were assayed from analysis obtained via standard ELISA. Also general strength of muscles was recorded as a performance test. All data were collected before and after progressive training and also after one week of tapering period. Results : There were significant reduction of IL-6 and cortisol levels in both tapering group comparing with control group (P≤0.05.There was significant reduction of IL-6 and cortisol levels among tapering 50% and tapering 75% after tapering period (P≤0.05. Also there was significant increase of general strength of muscles between tapering 75% and control group (P≤0.05. Conclusion : hence, one week tapering with 75% reduction in training volume after progressive training while the intensity kept high is effective strategy for reduction of IL-6, and cortisol levels and also increase performance. It seems that higher reduction of training volume when the intensity kept high is a good strategy for wrestler before main competition.

  5. Photo elastic analysis of stresses in the root canal walls around double taper and

    Directory of Open Access Journals (Sweden)

    Zafar Mahdavi Ezadi

    2013-10-01

    Full Text Available   Background and Aims : According to the common application of non-metal prefabricated posts in dentistry and lack of enough information about the stress distribution in the root canal walls by these posts, this study was performed to compare the effect of two simple taper and double taper posts on the stress distribution on root canal walls by photo elastic method .   Materials and Methods: The design of this study was experimental in photoelastic system. The posts, used in this investigation, were double taper and simple taper fiber posts with 0.9 mm diameter and 20 mm length and epoxy resin. First two photo elastic models with tooth dimensions were fabricated and the posts were placed inside the model. Then the core of the each post was fabricated on the model. Each models were loaded in polariscope and the formed fringe order colored ring were photographed.   Results: In 100 N, 90 degree angle loading in cervical and apical fringe order showed 2.50 and 1.39 in simple taper posts and 1.39 and 2.35 in double taper post. In 150 N, 30 degree angle loading in cervical and apical fringe order showed 4 and 2.65 in simple taper posts, and 4 and 2.5 in double taper post.   Conclusion: In the vertical and oblique loads, double taper fiber post showed better stress distribution than that of simple tapered posts.

  6. The structural damping of composite beams with tapered boundaries

    Science.gov (United States)

    Coni, M.; Benchekchou, B.; White, R. G.

    1994-11-01

    Most metallic and composite structures of conventional construction are lightly damped. It is obviously advantageous, in terms of response to in-service dynamic loading, if damping can be increased with minimal weight addition. This report describes finite element analyses and complementary experiments carried out on composite, carbon fiber reinforced plastic, beams with tapered boundaries composed of layers of highly damped composite material. It is shown that modal damping of the structure may be significantly increased by this method.

  7. Plasmonic Sensors Based on Doubly-Deposited Tapered Optical Fibers

    Directory of Open Access Journals (Sweden)

    Agustín González-Cano

    2014-03-01

    Full Text Available A review of the surface plasmon resonance (SPR transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced.

  8. Design optimization of a tapered mirror for microfocusing optics

    Institute of Scientific and Technical Information of China (English)

    MAO Cheng-Wen; XI Zai-Jun; YU Xiao-Han; XIAO Ti-Qiao

    2009-01-01

    A facile microfocusing optical design is presented which is optimized for less slope error against the traditional tapered mirror. The essential idea of the innovation is based on the characteristics of the slope-error curve for the prototype. The relationship between the mirror shape of the improved model and the driving moments is established. Analytical results have been compared with the results of the prototype. The design demonstrates theoretically that smaller slope error is obtained with longer active length.

  9. Tapered Diode-pumped continuous-wave alexandrite laser

    OpenAIRE

    Beyatlı, Ersen; Sennaroğlu, Alphan; Baali, Ilyes; Sumpf, Bernd; Erbert, Goetz; Leitenstorfer, Alfred; Demirbaş, Ümit

    2013-01-01

    Tapered diode-pumped continuous-wave alexandrite laser Ersen Beyatli,1 Ilyes Baali,2 Bernd Sumpf,3 Götz Erbert,3 Alfred Leitenstorfer,4 Alphan Sennaroglu,1 and Umit Demirbas2,4,* 1Laser Research Laboratory, Departments of Physics and Electrical-Electronics Engineering, Koç University, Rumelifeneri, Sariyer, Istanbul 34450, Turkey 2Laser Technology Laboratory, Department of Electrical and Electronics Engineering, Antalya International University, 07190 Dosemealti, Antalya,...

  10. Manipulating rogue wave triplet in optical waveguides through tapering

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rama [Department of Physics, DAV University, Jalandhar 144008 (India); Kumar, C.N., E-mail: cnkumar@pu.ac.in [Department of Physics, Panjab University, Chandigarh 160014 (India); Vyas, Vivek M. [Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113 (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research – Kolkata, Mohanpur, Nadia 741252 (India)

    2015-02-06

    Taking account of the results of the paper, published in [21] (Chabchoub and Akhmediev, 2013), containing experimental generation of rogue wave triplets in the water tank, we demonstrate a theoretical approach to coherently control the rogue wave triplet dynamics and spectral spread in a tapered index optical waveguide. The relative distance between the successive waves of the triplet, along both longitudinal and transverse axes, can be manipulated by modulating the tapering of the waveguide. This not only significantly enhances the possibility of observing these statistically rare events in the waveguide, but can also controllably amplify the intensity and spectral spread, the desired features for supercontinuum generation. The controlling of real Riccati parameter intrinsically arises from the allowed phase variation of the self-similar solutions of the nonlinear Schrödinger equation. - Highlights: • Manipulating rogue wave triplets in GNLSE using Riccati parameter is outlined. • Symmetric transformations used to scale mutual spacing in a triplet. • Results presented for sech{sup 2}-type tapered waveguides.

  11. Bamboo Taper Effect on Third Point Loading Bending Test

    Directory of Open Access Journals (Sweden)

    Naresworo Nugroho

    2013-06-01

    Full Text Available Geometrical shape of bamboo usually assumed as tapered hollow pipe. This study proved that the dimensional changes along the bamboo stem significantly affected to its Modulus of Rupture (SR value which measured from third point loading bending test. Therefore if the bending test applied using third point loading configuration, the SR value should be adjusted by strength ratio of taper (Ct. Ct is theratio between (SR calculated in the center span and the maximum bending stress along the bamboo beam. This study resulted mathematical formulae to calculate the Ct value for overall range of bamboo taper based on six species namely Tali (Gigantochloa apus (Bl.Ex Schult.f Kurz, Hitam (Gigantochloa atroviolaceae Widjaja, Andong (Gigantochloa psedorundinaceae, Ampel (Bambusa vulgaris Schrad, Gombong (Gigantochloa verticillata (Willd Munro, and Mayan (Gigantochloa robusta Kurz. The first tree species were obtained from the Bogor market, while the others were harvested from bamboo clumps in Arboretum Bamboo – Bogor Agricultural University. Then the formula was applied to sketch the graphical style in order to simplify the result.

  12. Thermomechanical Behavior in Continuous Bloom Casting with Different Mold Tapers

    Institute of Scientific and Technical Information of China (English)

    LUO Xin; CHEN Yong; SHEN Houfa

    2008-01-01

    A two-dimensional finite element model was used to analyze the thermal and mechanical behavior dunng solidification of the strand in a continuous bloom casting mold.The coupled heat transfer and defermation were analyzed to simulate the formation of the air gap between the mold and the strand.The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand.The results show that the air gap mainly forms around the strand corner,causing a hoRer and thinner solidifying shell in this region.The mold taper partially compensates for the strand shell shnnkage and reduces the infiuence of the air gap on the heat transfer.The mold taper compresses the shell and changes the stress state around the stmnd comer region.As the strand moves down into the mold,the mold constraint causes compressive stress beneath the comer surface.which reduces the hot tear that forms on the strand.

  13. Single-mode fiber linearly tapered planar waveguide tunable coupler

    Science.gov (United States)

    Das, Alok K.; Hussain, Anwar

    1997-09-01

    We developed a simple system of tunable fiber film coupler using a linearly tapered thin-film planar waveguide (PWG) evanescently coupled by a single-mode distributed fiber half-coupler. We investigate the characteristics of the coupler theoretically and experimentally taking into consideration the refractive index ( n f ) of nonuniform films, the magnitude of nonuniformity ( m ) of the films, and the source wavelength ( ). The thickness variation of the nonuniform film is along the direction of propagation of optical power. Tapered and plano concave thin films of a mix of oils as well as a plano concave poly(methyl methacrylate) film were fabricated to serve as nonuniform PWG s. Similar to single-mode fiber with a uniform thickness PWG coupler, such a coupler also provides light modulation with a change of n f . However, position shifting of a half-coupler in a tapered PWG structure along the direction of propagation exhibits the variation of fiber throughput power. This action serves as a simple system for a tunable fiber film coupler. Wavelength-dependent throughput fiber power for such a coupler also behaves as a filter. The center wavelength can be controlled by shifting the position of the half-coupler. A coupling fiber as a half-coupler can be used for efficient coupling. We performed a theoretical analysis of the structure using Marcuse s model and observed good agreement with the experimental results.

  14. A prospective evaluation of outcomes of two tapered implant systems.

    Science.gov (United States)

    Andreasi Bassi, M; Lopez, M A; Confalone, L; Gaudio, R M; Lombardo, L; Lauritano, D

    2016-01-01

    The purpose of this prospective clinical study was to evaluate survival rate (SVR - i.e. fixtures still in place at the end of the observation period) and success rate (SCR - i.e. bone resorption around the implant neck) of two tapered implant systems. Both systems were equipped with a tapered connection, one requiring bone-level (BL) placement, while the other required soft-tissue-level (STL) placement. In the period between January 1996 and October 2011, 133 fixtures were inserted, 90 in females and 43 in males, with a mean age of 60±11 years. The mean post-surgical follow-up was 64±38 months. Several clinical parameters were evaluated as potential outcome conditioners. An SPSS program was used for statistical analysis and a Cox analysis was performed. The SVR was 100% since no fixtures were lost. SCR, expressed through the mean marginal bone loss, was 88%. No significant differences were found, for most of the variables investigated with the exception of bone grafting and implant type: STL implants showed a better clinical outcome than BL implants when bone grafting was performed simultaneously with implant placement. Tapered implants are reliable devices for oral rehabilitation of jaws. PMID:27469541

  15. Large deflection of flexible tapered functionally graded beam

    Institute of Scientific and Technical Information of China (English)

    A.R.Davoodinik; G.H.Rahimi

    2011-01-01

    In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied.In order to derive the fully non-linear equations governing the non-linear deformation,a curvilinear coordinate system is introduced.A general non-linear second order differential equation that governs the shape of a deflected beam is derived based on the geometric nonlinearities,infinitesimal local displacements and local rotation concepts with remarkable physical properties of functionally graded materials.The solutions obtained from semi-analytical methods are numerically compared with the existing elliptic integral solution for the case of a flexible uniform cantilever functionally graded beam.The effects of taper ratio,inclined end load angle and material property gradient on large deflection of the beam are evaluated.The Adomian decomposition method will be useful toward the design of tapered functionally graded compliant mechanisms driven by smart actuators.

  16. Calculation of Taper Rolling Time in Plan View Pattern Control Process

    Institute of Scientific and Technical Information of China (English)

    JIAO Zhi-jie; HU Xian-lei; ZHAO Zhong; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    The forward slip model with adhesion was used to derive the formula of calculating taper rolling time. The relation between the rolling time and the taper length and the relation between the rolling time and the taper thickness can be obtained. The numerical solution for this formula was used on-site. According to the simulation result, the roll gap value should be changed linearly with rolling time.

  17. Vector rectangular-shape laser based on reduced graphene oxide interacting with long fiber taper

    OpenAIRE

    Gao, Lei; Zhu, Tao; Zeng, Jing; Huang, Wei; LIU Min

    2014-01-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where the nonlinearity is enhanced due to large evanescent-field-interacting length and strong field confinement of a 8 mm fiber taper with a waist diameter of 4 micronmeters. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with...

  18. Wear patterns of taper connections in retrieved large diameter metal-on-metal bearings.

    Science.gov (United States)

    Bishop, Nicholas; Witt, Florian; Pourzal, Robin; Fischer, Alfons; Rütschi, Marcel; Michel, Markus; Morlock, Michael

    2013-07-01

    Wear of the modular taper between head and shaft has been related to clinical failure resulting from adverse reactions to metallic debris. The problem has become pronounced in large metal-on-metal bearings, but the mechanism has not yet been fully understood. We analyzed retrieved components from five patients revised with various diagnoses. Two distinct wear patterns were observed for the head tapers. Three samples demonstrated "asymmetric" wear towards the inner end of the head taper. The other two showed "axisymmetric" radial wear (up to 65 µm) presenting the largest wear volumes (up to 20 mm(3)). Stem tapers demonstrated relatively little wear, and the fine thread on the stem taper surface was observed to be imprinted on the taper inside of the head. Our findings demonstrate that the cobalt-chrome head wears preferentially to the titanium stem taper. "asymmetric" wear suggests toggling due to the offset of the joint force vector from the taper. In contrast, samples with "axisymmetric" radial wear and a threaded imprint suggested that corrosion led to head subsidence onto the stem taper with gradual rotation. PMID:23440943

  19. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...

  20. Single quantum dot spectroscopy using a fiber taper waveguide near-field optic

    OpenAIRE

    Srinivasan, Kartik; Stintz, Andreas; Krishna, Sanjay; Painter, Oskar

    2007-01-01

    Photoluminescence spectroscopy of single InAs quantum dots at cryogenic temperatures (~14 K) is performed using a micron-scale optical fiber taper waveguide as a near-field optic. A lower bound on the measured collection efficiency of quantum dot spontaneous emission into the fundamental guided mode of the fiber taper is estimated at 0.1%, and spatially resolved measurements with ~600 nm resolution are obtained by varying the taper position with respect to the sample and using the fiber taper...

  1. Coupled-Cavity Traveling-Wave Tube Has Phase-Adjusted Taper

    Science.gov (United States)

    Wilson, Jeffrey D.

    1992-01-01

    In structure of improved coupled-cavity traveling-wave tube amplifier, lengths of cavities chosen according to computer-generated, nonlinear taper to increase efficiency of conversion of power from electron beam to microwave. Design calls for "phase-adjusted taper," calculated so phase of electron bunches with respect to phase of microwave changes gradually from value conducive to formation of strong bunches to value conducive to strong transfer of power to microwave at output of taper. Phase-adjusted taper significantly increases power capability of microwave transmission, enabling satellite-communication systems to have higher data-transmission rates.

  2. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.

    Science.gov (United States)

    Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut

    2015-09-15

    We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers. PMID:26371916

  3. Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures

    Science.gov (United States)

    Fujiwara, Masazumi; Zhao, Hong-Quan; Noda, Tetsuya; Ikeda, Kazuhiro; Sumiya, Hitoshi; Takeuchi, Shigeki

    2016-03-01

    We demonstrate successful cooling of ultrathin fiber tapers and their coupling with nitrogen vacancy (NV) centers in nanodiamonds at cryogenic temperatures. Nanodiamonds containing multiple NV centers are deposited on ultrathin fiber tapers with diameters ranging from 450-500 nm. The fiber tapers were successfully cooled down to 9 K with our special fiber mount and an optimization of cooling speed. The fluorescence coupled with the fiber tapers showed characteristic sharp zero-phonon lines of neutral and negatively charged NV centers. The present demonstration is important for the future NV-based quantum information devices and sensitive nanoscale cryogenic magnetometry.

  4. Nonlinear effects generation in non-adiabatically tapered fibres

    Science.gov (United States)

    Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier

    2015-12-01

    Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.

  5. Nanocoating effects on tapered long period fiber gratings

    Science.gov (United States)

    Pilla, P.; Cusano, A.; Cutolo, A.; Giordano, M.; Korwin-Pawlowski, M. L.; Bock, W. J.

    2007-07-01

    In this work, the experimental analysis of the response of nanocoated Tapered Long Period Gratings (TLPGs) to Surrounding Refractive Index (SRI) changes is presented. The modal transition is demonstrated to take place in this kind of devices and to be an effective method to improve their SRI sensitivity. The dip-coating method was carried out by an automated system and showed to be a reliable technique for the deposition of conformal coatings. A comparison with traditional UV-written LPGs revealed that a thicker overlay is necessary for the TLPG to tune the transition region in the same SRI range.

  6. Supercontinuum generation in dispersion-managed tapered-rib waveguide.

    Science.gov (United States)

    Hu, Hongyu; Li, Wenbo; Dutta, Niloy K

    2013-10-20

    We have designed a tapered-rib waveguide and numerically studied the generation of supercontinuum using such waveguides. The Air-SF57 glass-SiO(2) waveguide is 3 cm long, with a varying etched depth to manage the total dispersion. Numerical simulations are conducted for input pulses at a wavelength of 1.55 μm with a width of 150 fs and peak power of 5 kW. The proposed waveguide geometry greatly broadens the output spectrum, extending from ∼1 to ∼6  μm, caused by the continuous modification of the phase-matching condition for the generated waves. PMID:24216588

  7. Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation

    Science.gov (United States)

    Hu, Hongyu; Li, Wenbo; Dutta, Niloy K.

    We have designed a tapered planar rib waveguide and numerically studied supercontinuum generation by the propagation of input pulses at 1.55 μm. The Air-SF57 glass-SiO2 waveguide is 2 cm long, with a varying etch depth to manage the total dispersion. This proposed waveguide geometry significantly broadens the output spectrum caused by continuous modification of the phase matching condition for dispersive wave emission. The coherence property has also been investigated, demonstrating that fully coherent supercontinuum extending from ~1 μm to ~4.6 μm can be obtained with proper pumping conditions.

  8. Method of making tapered capillary tips with constant inner diameters

    Science.gov (United States)

    Kelly, Ryan T.; Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2009-02-17

    Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.

  9. Compound-taper feed horn for NASA 70-m antennas

    Science.gov (United States)

    Manshadi, Farzin; Hartop, Rob

    1988-01-01

    A novel X-band feedhorn was designed for the Deep Space Network (DSN) 70-meter antennas. The feedhorn is a compound-taper structure consisting of a corrugated flared section and a corrugated straight section. This feedhorn is designed to closely imitate the characteristics of the standard feedhorn, while providing the proper phase center location, without adding any significant loss to the system. The use of the existing feedhorn and the ease of manufacturing the corrugated straight section have resulted in major overall cost savings.

  10. Compound-taper feedhorn for the DSN 70-meter antennas

    Science.gov (United States)

    Manshadi, F.; Hartop, R.

    1987-01-01

    A novel X-band feedhorn was designed for the Deep Space Network (DSN) 70-meter antennas. The feedhorn is a compound-taper structure consisting of a corrugated flared section and a corrugated straight section. This feedhorn is designed to closely initiate the characteristics of the standard feedhorn, while providing the proper phase center location, without adding any significant loss to the system. The use of the existing feedhorn and the ease of manufacturing the corrugated straight section have resulted in major overall cost savings.

  11. Modeling taper charge with a non-linear equation

    Science.gov (United States)

    Mcdermott, P. P.

    1985-01-01

    Work aimed at modeling the charge voltage and current characteristics of nickel-cadmium cells subject to taper charge is presented. Work reported at previous NASA Battery Workshops has shown that the voltage of cells subject to constant current charge and discharge can be modeled very accurately with the equation: voltage = A + (B/(C-X)) + De to the -Ex where A, B, D, and E are fit parameters and x is amp-hr of charge removed during discharge or returned during charge. In a constant current regime, x is also equivalent to time on charge or discharge.

  12. Soliton blue-shift in tapered photonic crystal fiber

    CERN Document Server

    Stark, S P; Russell, P St J

    2010-01-01

    We show that solitons undergo a strong blue shift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards shorter wavelength. This accompanied by strong emission of radiation into the UV and IR spectral region. The experimental results are confirmed by numerical simulation.

  13. Characterization of tapered slot antenna feeds and feed arrays

    Science.gov (United States)

    Kim, Young-Sik; Yngvesson, K. Sigfrid

    1990-01-01

    A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.

  14. Spatial frequency multiplier with active linearly tapered slot antenna array

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1994-01-01

    A frequency multiplier with active linearly tapered slot antennas (LTSA's) has been demonstrated at the second harmonic frequency. In each antenna element, a GaAs monolithic microwave integrated circuit (MMIC) distributed amplifier is integrated with two LTSA's. The multiplier has a very wide bandwidth and large dynamic range. The fundamental-to-second harmonic conversion efficiency is 8.1 percent. The spatially combined second harmonic signal is 50 dB above the noise level. The design is suitable for constructing a large array using monolithic integration techniques.

  15. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  16. Ultra-low loss nano-taper coupler for Silicon-on-Insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler....

  17. Controlling the emission profile of a nanowire with a conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Claudon, J.;

    2008-01-01

    The influence of a tapering on nanowire light-emission profiles is studied. We show that, for nanowires with divergent output beams, the introduction of a conical tapering with a small opening angle reduces the beam divergence and increases transmission. This results in a dramatic increase in the...

  18. Low insertion loss SOI microring resonator integrated with nano-taper couplers

    DEFF Research Database (Denmark)

    Pu, Minhao; Frandsen, Lars Hagedorn; Ou, Haiyan;

    2009-01-01

    We demonstrate a microring resonator working at TM mode integrated with nano-taper couplers with 3.6dB total insertion loss. The measured insertion loss of the nano-taper coupler was only 1.3dB for TM mode....

  19. Spectral beam combining of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Ostendorf, Ralf;

    2010-01-01

    We demonstrate spectral beam combining of a 980 nm tapered diode laser bar. The combined beam from 12 tapered emitters on the bar yielded an output power of 9.3 W at 30 A of operating current. An M2 value of 5.3 has been achieved along the slow axis. This value is close to that of a free running...

  20. Tapering of Polymer Optical Fibers for Compound Parabolic Concentrator Fiber Tip Fabrication

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Fasano, Andrea; Nielsen, Kristian;

    2015-01-01

    We propose a process for Polymer Optical Fiber (POF) Compound Parabolic Compound (CPC) tip manufacturing using a heat and pull fiber tapering technique. The POF, locally heated above its glass transition temperature, is parabolically tapered down in diameter, after which it is cut to the desired...

  1. Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates

    Science.gov (United States)

    Babu, V. Ramesh; Vasudevan, R.

    2016-03-01

    In the present study, the dynamic performance of the sandwich plate with magneto rheological elastomer (MRE) as the core layer and tapered laminated composite plates as the face layers is investigated. Various MRE tapered laminated composite sandwich plate models are formulated by dropping-off the plies longitudinally in top and bottom composite layers to yield tapered plates as the face layers and uniform MRE layer as the core layer. The governing equations of motion of tapered composite MRE sandwich plates are derived using classical laminated plate theory and solved numerically. Further, silicon based MRE is being fabricated and tested to obtain the shear and loss moduli using MR rheometer. The efficacy of the finite element formulation is validated by carrying out experiments on the various prototypes of tapered composite silicon based MRE sandwich plates and comparing the results in terms of natural frequencies obtained at various magnetic fields with those obtained numerically and with available literature. Also, the effects of magnetic field, taper angle of the top and bottom layers, aspect ratio, ply orientations and various end conditions on the various dynamic properties of tapered laminated composite MRE sandwich plate are investigated. Further, the transverse vibration responses of three different tapered composite MRE based sandwich plates under harmonic force excitation are analyzed at various magnetic fields.

  2. In situ compression study of taper-free metallic glass nanopillars

    NARCIS (Netherlands)

    Kuzmin, O.V.; Pei, Y.T.; Hosson, J.T.M. De

    2011-01-01

    Because tapering leads to inevitable artifacts in the analyses of compression experiments on micrometer sized pillars, in this study taper-free nanosized pillars of Zr-based metallic glass of Zr61.8Cu18Ni10.2Al10 composition with diameter ranging from 600 to 90 nm were fabricated. These pillars were

  3. A High-Efficiency Photonic Nanowire Single-Photon Source Featuring An Inverted Conical Taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper;

    2011-01-01

    A photonic nanowire single-photon source design incorporating an inverted conical tapering is proposed. The inverted taper allows for easy electrical contacting and a high photon extraction efficiency of 89 %. Unlike cavity-based approaches, the photonic nanowire features broadband spontaneous...

  4. Aperture taper determination for the half-scale accurate antenna reflector

    Science.gov (United States)

    Lambert, Kevin M.

    1990-01-01

    A simulation is described of a proposed microwave reflectance measurement in which the half scale reflector is used in a compact range type of application. The simulation is used to determine an acceptable aperture taper for the reflector which will allow for accurate measurements. Information on the taper is used in the design of a feed for the reflector.

  5. Co-conspirators: Space, Molecules and Life

    Science.gov (United States)

    Jheeta, Sohan

    2012-07-01

    The field of astrobiology is rapidly becoming a discipline in its own right as it seeks to answer the following questions: What are the conditions under which life can develop?; How widespread are these conditions in the Universe?; and What are the mechanisms by which life evolves from basic `building blocks' into self replicating systems? It is believed that some of the necessary organic molecules may have been formed in the specialised areas of space (namely dark molecular clouds, eg Horsehead nebula) and delivered on to the Earth during the early period of its history, approximately 4.0 x 109 years ago. These organic molecules may have played a pivotal role in the formation of life on Earth. In addition it is believed that life on Earth was formed within a very short geological time frame of only 200-300 million years. So it is not unreasonable to suppose that these molecules were initially made in space as this could be, metaphorically speaking a huge laboratory when compared to the Earth. Currently we have very little definite knowledge of `how life began on Earth?' or whether `there is life elsewhere in the Universe?' These two questions are inextricably interlinked in that, as life exists on Earth, it is quite feasible that it should also flourish elsewhere in the Universe. To answer these questions, mechanisms have to be found whereby `non-living chemicals' could be transformed into 3-dimensional `first' living organisms. This process is often termed `chemical evolution.'~ The research being presented at this conference focuses on the formation of molecules under a variety of simulated space conditions (eg different temperatures, levels of radiation energies and different types of impinging radiations). Results pertaining to irradiation of methyl cyanide ice at 15 K with 200 keV protons and 1:1 mixture of NH _{3}:CO _{2} ice at 30 K with 1 keV electrons, and 1:1 mixture of NH _{3}:CH _{3}OH ice also at 30 K with 1 keV electrons will be presented. These molecules were chosen because they present in the interstellar medium (ISM) and on other satellites -- for example carbon dioxide (CO _{2}), ammonium (NH _{3}) and methanol (CH _{3}OH) are second, third and 5th most commonest compounds present in the ISM after water (Roush TL, 2001); and methyl cyanide (CH _{3}CN) is the simplest of the organic nitriles found in space. It was first identified in the molecular clouds, Sagittarius Sgr A and Sgr B (Solomon, Jefferts et al. 1971) through its emission lines in the vicinity of 2.7 mm from the J = 6 → 5 transition. In addition, CH _{3}CN along with HCN, HCCCN and NCCN, has been identified in the atmosphere of Saturn's satellite, Titan (Raulin and Owen 2002; Raulin 2008). It has also been shown in a theoretical paper that cytosine can be formed from isocyanic acid and cyanate. Cytosine, a pyrimidine derivative, is one of the four main bases found in DNA and RNA (Shapiro). The significance of this work for astrobiology and future experiments will be discussed at the conference. References Raulin, F. (2008). "Astrobiology and habitability of Titan." Space Science Reviews 135(1-4): 37-48. Raulin, F. and T. Owen (2002). "Organic chemistry and exobiology on Titan." Space Science Reviews 104(1-2): 377-394. Roush, T. L. (2001). "Physical state of ices in the outer solar system." Journal of Geophysical Research-Planets 106(E12): 33315-33323. Shapiro, R. (1999). "Prebiotic cytosine synthesis: A critical analysis and implications for the origin of life." Proceedings of the Academy of Sciences of the United States of America 96(GrindEQ__8_): 4396-4401. Solomon, P. M., K. B. Jefferts, et al. (1971). "Detection of Millimeter Emission Lines from Interstellar Methyl Cyanide." Astrophysical Journal 168, L107.

  6. Flow and acoustic features of a supersonic tapered nozzle

    Science.gov (United States)

    Gutmark, E.; Bowman, H. L.; Schadow, K. C.

    1992-05-01

    The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.

  7. Optimization of epitaxial layer design for high brightness tapered lasers

    Science.gov (United States)

    Tijero, J. M. G.; Rodriguez, D.; Borruel, L.; Sujecki, S.; Larkins, E. C.; Esquivias, I.

    2005-04-01

    A comparative simulation study of the optical output characteristics of tapered lasers with different epitaxial structure was performed. The simulation model self-consistently solves the steady state electrical and optical equations for the flared unstable resonator and was previously backed by experiments on one of the simulated structures. Three different epitaxial designs emitting at 975 nm were analyzed: a standard single quantum well symmetrically located in the confinement region (s-SQW), a double quantum well also symmetrically located (s-DQW) and an asymmetrically located double quantum well (a-DQW). The symmetric structures have different confinement factor but a similar ratio between the active layer thickness and the confinement factor, dQW/Γ, while the a-DQW has similar confinement factor than the s-SQW, but double dQW/Γ. A better performance is predicted for the a-DQW design, reaching considerably higher output power with good beam quality. The results are interpreted in terms of a lower density of power in the QW in the case of the a-DQW design, thus delaying to higher output power the onset of the non-linear effects that degrade the beam quality. The role of dQW/Γ as a figure of merit for high brightness tapered lasers is emphasized.

  8. Analysis of guided wave propagation in a tapered composite panel

    Science.gov (United States)

    Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw

    2015-03-01

    Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.

  9. Temperature control of ion guiding through tapered capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Elisabeth, E-mail: egruber@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien – Vienna University of Technology, 1040 Vienna (Austria); Stolterfoht, Nikolaus [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin (Germany); Allinger, Peter; Wampl, Stefan [Institute of Applied Physics, TU Wien – Vienna University of Technology, 1040 Vienna (Austria); Wang, Yuyu [Institute of Applied Physics, TU Wien – Vienna University of Technology, 1040 Vienna (Austria); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu (China); Simon, Marius J. [Labor für Ionenstrahlphysik, ETH Zürich, 8093 Zürich (Switzerland); Aumayr, Friedrich, E-mail: aumayr@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien – Vienna University of Technology, 1040 Vienna (Austria)

    2014-12-01

    We investigate the guiding of Ar{sup 7+} ions (kinetic energy of 4.5 keV) through a single macroscopic tapered glass capillary of conical shape as a function of capillary tilt angle with respect to the incident ion beam direction. At room temperature a minimum in the transmitted ion intensity appears around the forward direction, which was previously observed and interpreted by a blocking of the transmission by repulsive Coulomb forces due to a uniformly charged ring shaped region in the centre part of the capillary. By heating the tapered capillary to temperatures around 100 °C and thus drastically increasing the electrical conductivity of the capillary material we no longer observe a minimum in the transmission curve but the transmission curve now has its maximum in forward direction. Since the maximum transmission at high temperature in forward direction is still smaller than the minimum in transmitted intensity at room temperature, we conclude that even at room temperature and in forward direction the focusing effect due to guiding is dominant and only partially weakened by blocking. Our experimental results are well reproduced in simulations using a theoretical model originally developed for straight nano-capillaries.

  10. Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors

    Directory of Open Access Journals (Sweden)

    Lanying Zhou

    2011-05-01

    Full Text Available A fiber inline Mach-Zehnder interferometer (MZI consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10 made by stretching. The proposed fabrication method is very low cost, 1/20–1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30–350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3–5 fold by fabricating an inline micro–trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N2 is tested by the MZI sensor coated with MFI–type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.

  11. Moment method analysis of linearly tapered slot antennas

    Science.gov (United States)

    Koeksal, Adnan

    1993-01-01

    A method of moments (MOM) model for the analysis of the Linearly Tapered Slot Antenna (LTSA) is developed and implemented. The model employs an unequal size rectangular sectioning for conducting parts of the antenna. Piecewise sinusoidal basis functions are used for the expansion of conductor current. The effect of the dielectric is incorporated in the model by using equivalent volume polarization current density and solving the equivalent problem in free-space. The feed section of the antenna including the microstripline is handled rigorously in the MOM model by including slotline short circuit and microstripline currents among the unknowns. Comparison with measurements is made to demonstrate the validity of the model for both the air case and the dielectric case. Validity of the model is also verified by extending the model to handle the analysis of the skew-plate antenna and comparing the results to those of a skew-segmentation modeling results of the same structure and to available data in the literature. Variation of the radiation pattern for the air LTSA with length, height, and taper angle is investigated, and the results are tabulated. Numerical results for the effect of the dielectric thickness and permittivity are presented.

  12. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  13. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  14. Asymmetric Draw-Tower Tapers for Supercontinuum Generation and Verification of the Novel Concept of Group-Acceleration Matching

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe; Moselund, P. M.;

    2012-01-01

    We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum.......We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum....

  15. Group-Acceleration Matching in Tapered Optical Fibers for Maximising the Power in the Blue-Edge of a Supercontinuum

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Judge, Alex; Thomsen, Carsten L.;

    2011-01-01

    We show that the gradient of a tapered fiber has a major impact on the power actually available in the blueedge of a supercontinuum. We ascribe this to a groupacceleration mismatch induced by the taper.......We show that the gradient of a tapered fiber has a major impact on the power actually available in the blueedge of a supercontinuum. We ascribe this to a groupacceleration mismatch induced by the taper....

  16. Acousto-optic interaction in biconical tapered fibers: shaping of the stopbands

    Science.gov (United States)

    Ramírez-Meléndez, Gustavo; Bello-Jiménez, Miguel Ángel; Cuadrado-Laborde, Christian; Díez, Antonio; Cruz, José Luis; Rodríguez-Cobos, Amparo; Balderas-Navarro, Raúl; Andrés Bou, Miguel Vicente

    2016-03-01

    The effect of a gradual reduction of the fiber diameter on the acousto-optic (AO) interaction is reported. The experimental and theoretical study of the intermodal coupling induced by a flexural acoustic wave in a biconical tapered fiber shows that it is possible to shape the transmission spectrum, for example, substantially broadening the bandwidth of the resonant couplings. The geometry of the taper transitions can be regarded as an extra degree of freedom to design the AO devices. Optical bandwidths above 45 nm are reported in a tapered fiber with a gradual reduction of the fiber down to 70 μm diameter. The effect of including long taper transition is also reported in a double-tapered structure. A flat attenuation response is reported with 3-dB stopband bandwidth of 34 nm.

  17. Intensity modulated SMF cascaded tapers with a hollow core PCF based microcavity for curvature sensing

    Science.gov (United States)

    Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan

    2016-03-01

    We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.

  18. Comparison of debris extruded apically and working time used by ProTaper Universal rotary and ProTaper retreatment system during gutta-percha removal

    Directory of Open Access Journals (Sweden)

    Mary Kinue Nakamune Uezu

    2010-12-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the in vitro action of ProTaper retreatment files and ProTaper Universal in the retreatment of mandibular premolars. MATERIAL AND METHODS: The amount of debris extruded apically was measured and the time to reach the working length and to complete the removal of gutta-percha was observed. Thirty teeth had their canals prepared using ProTaper Universal files and were obturated by the single cone technique. The teeth were then stored at 37ºC in a humid environment for 7 days. During the use of the rotary instruments for root canal filling removal, the apical portions of the teeth were attached to the open end of a resin tube to collect the apically extruded debris. RESULTS: ProTaper Universal files were significantly faster (p=0.0011 than the ProTaper retreatment files to perform gutta-percha removal, but no significant difference was found between the files regarding the time to reach the working length or the amount of apical extrusion. CONCLUSIONS: ProTaper Universal rotary had better results for endodontic retreatment, and both techniques promote similar apical extrusion of debris.

  19. Design of Tapered Riser Using Basic Hydraulic Principles

    Directory of Open Access Journals (Sweden)

    Melody Chepkoech

    2016-06-01

    Full Text Available In sand casting, the design of gating and riser system plays an important role in the quality of the casting. Poor designs of these two parameters lead to major defects such as incomplete filling, porosity, and re-oxidation inclusions. These defects cause the castings to be susceptible to failure during their use. A riser system with high volume to surface area ratio gives a sound casting. The conventional casting setup used in many foundries incorporates the use of cylindrical risers. Improvement of the gating and riser system by use of computational analysis was carried out. Through several computational analyses, it was concluded that a casting with minimal defects could be obtained by modifying a cylindrical riser to form a tapered riser which has a higher volume to surface area ratio.

  20. Tapered joint design for power transmission of MW-grade wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jong Hun; Bae, Jun Woo; Oh, Han Yong [Dept. of Mechatronics, Jungwon University, Geosan (Korea, Republic of); Kwon, Yong Chul [Kyeongnam Technopark, Changwon (Korea, Republic of)

    2015-11-15

    This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

  1. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures.

    Science.gov (United States)

    Sun, Ya'nan; Dai, Shixun; Zhang, Peiqing; Wang, Xunsi; Xu, Yinsheng; Liu, Zijun; Chen, Feifei; Wu, Yuehao; Zhang, Yuji; Wang, Rongping; Tao, Guangming

    2015-09-01

    This paper reports on the fabrication and characterization of multimaterial chalcogenide fiber tapers that have high numerical apertures (NAs). We first fabricated multimaterial As(2)Se(3)-As(2)S(3) chalcogenide fiber preforms via a modified one-step coextrusion process. The preforms were drawn into multi- and single-mode fibers with high NAs (≈1.45), whose core/cladding diameters were 103/207 and 11/246 μm, respectively. The outer diameter of the fiber was tapered from a few hundred microns to approximately two microns through a self-developed automatic tapering process. Simulation results showed that the zero-dispersion wavelengths (ZDWs) of the tapers were shorter than 2 μm, indicating that the tapers can be conveniently pumped by commercial short wavelength infrared lasers. We also experimentally demonstrated the supercontinuum generation (SCG) in a 15-cm-long multimaterial As(2)Se(3)-As(2)S(3) chalcogenide taper with 1.9 μm core diameter and the ZDW was shifted to 3.3 μm. When pumping the taper with 100 fs short pulses at 3.4 µm, a 20 dB spectral of the generated supercontinuum spans from 1.5 μm to longer than 4.8 μm. PMID:26368447

  2. Wavelength-dependent femtosecond pulse amplification in wideband tapered-waveguide quantum well semiconductor optical amplifiers.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H

    2015-12-10

    In this paper, we study the wavelength-dependent amplification in three different wideband quantum well semiconductor optical amplifiers (QWAs) having conventional, exponentially tapered, and linearly tapered active region waveguide structures. A new theoretical model for tapered-waveguide QWAs considering the effect of lateral carrier density distribution and the strain effect in the quantum well is established based on a quantum well transmission line modeling method. The temporal and spectral characteristics of amplified femtosecond pulse are analyzed for each structure. It was found that, for the amplification of a single femtosecond pulse, the tapered-waveguide QWA provides higher saturation gain, and the output spectra of the amplified pulse in all three structures exhibit an apparent redshift and bandwidth narrowing due to the reduction of carrier density; however, the output spectrum in the tapered-waveguide amplifier is less distorted and exhibits smaller bandwidth narrowing. For the simultaneous amplification of two femtosecond pulses with different central frequencies, in all the three structures, two peaks appear in the output spectra while the peak at the frequency closer to the peak frequency of the QWA gain spectrum receives higher amplification due to the frequency (wavelength) dependence of the QWA gain. At a low peak power level of the input pulse, the bandwidth of each window in the tapered structure is larger than that of the conventional waveguide structure, which aggravates the spectrum alias in the amplification of femtosecond pulses with different central frequencies. As the peak powers of the two pulses increase, the spectrum alias in the conventional waveguide becomes more serious while there are small changes in the tapered structures. Also, we have found that in the amplification of a femtosecond pulse train, the linear-tapered QWAs exhibit the fastest gain recovery as compared with the conventional and exponentially tapered QWAs.

  3. Tapered dielectric structure in metal as a wavelength-selective surface plasmon polariton focuser

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Zhao Qing; Liao Zhi-Min; Yu Da-Peng

    2009-01-01

    Symmetric tapered dielectric structures in metal have demonstrated applications such as the nanofocusing of surface plasmon polaxitons, as well as the waveguiding of V-channel polaxitons. Yet the fabrication of smooth-surfaced tapered structure remains an obstacle to most researchers. We have successfully developed a handy method to fabricate metal-sandwiched tapered nanostructures simply with electron beam lithography. Though these structures are slightly different from conventional symmetric V-shaped structures, systematic simulations show that similar functionality of surface plasmon polaxiton nanofocusing can still be achieved, When parameters are properly selected, wavelengthselective nanofocusing of surface plasmon polaritons can be obtained.

  4. Hollow-core tapered coupler for large inner diameter hollow-core optical fibers

    Institute of Scientific and Technical Information of China (English)

    Guiyao Zhou(周桂耀); Zhiyun Hou(侯峙云); Lantian Hou(侯蓝田); Jigang Liu(刘继刚)

    2003-01-01

    A novel hollow-core tapered coupler has been theoretically designed and fabricated by fiber drawing machine. The coupler's inner wall is coated with a polycrystalline GeO2 film. The coupling loss of hollow-core tapered coupler is about 0.2 dB. Hollow-core tapered coupler reduces the transmission loss of hollow-core optical fiber (HCOF) by 0.5 dB/m, therefore the coupler is suitable for coupling high power CO2 laser in industrial application.

  5. Analytical Solution of a Tapering Cable Equation for Dendrites and Conformal Symmetry

    Science.gov (United States)

    Romero, Juan M.; Trenado, Carlos

    2015-09-01

    Progress towards detailed characterization of structural and biophysical properties of dendrites emphasizes the importance of finding analytical solutions for more realistic dendrite models with circular cross-section and varying diameter. In this regard, we employ symmetry methods and the passive cable theory to deduce a generalized analytical solution for electric propagation in a family of tapering dendrites. In particular, we study the effect of such tapering geometries on the obtained electric voltage. Simulations using the deduced analytical solution indicate that for a subfamily of tapering profiles neural integration is better than in the stereotypical profile given by a cylinder.

  6. Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses.

    Directory of Open Access Journals (Sweden)

    Florian Witt

    Full Text Available Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100% and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%. Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface.

  7. Riccati parameterized self-similar waves in tapered graded-index waveguides

    Science.gov (United States)

    Goyal, Amit; Gupta, Rama; Loomba, Shally; Kumar, C. N.

    2012-10-01

    We present a large family of self-similar waves by tailoring the tapering function, through Riccati parameter, in a tapered graded-index nonlinear waveguide amplifier. We show the existence of bright similaritons, self-similar Akhmediev breathers and self-similar rogue waves for generalized nonlinear Schrödinger equation with constant dispersion and nonlinearity, and a distributed gain. We illustrate the procedure to amplify the intensity of self-similar waves using isospectral Hamiltonian approach. This approach provides a handle to find analytically a wide class of tapering function and thus enabling one to control the self-similar wave structure and dynamical behavior.

  8. Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings

    Directory of Open Access Journals (Sweden)

    Choong Leng Ng

    2013-10-01

    Full Text Available We demonstrate a refractive index sensor based on a long period grating (LPG inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs differs from conventional LPG, and the refractive index detection limit is 1.67 × 10−5.

  9. Efficient formalism for treating tapered structures using the Fourier modal method

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; Gregersen, Niels

    2016-01-01

    We investigate the development of the mode occupations in tapered structures using the Fourier modal method. In order to use the Fourier modal method, tapered structures are divided into layers of uniform refractive index in the propagation direction and the optical modes are found within each...... layer. This is not very efficient and in this proceeding we take the first steps towards a more efficient formalism for treating tapered structures using the Fourier modal method. We show that the coupling coefficients through the structure are slowly varying and that only the first few modes...

  10. Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders

    DEFF Research Database (Denmark)

    Sondergaard, T.; Bozhevolnyi, S. I.; Beermann, J.;

    2012-01-01

    Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited....... A study of the effect on transmission of different combinations of available transmission and reflection diffraction orders show optimum total transmission when only the fundamental reflection order and higher transmission diffraction orders are available. The optimum taper angle is shown...

  11. Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides

    OpenAIRE

    Srinivasan, Kartik; Stintz, Andreas; Krishna, Sanjay; Painter, Oskar

    2005-01-01

    Optical fiber taper waveguides are used to improve the efficiency of room temperature photoluminescence measurements of AlGaAs microdisk resonant cavities with embedded self-assembled InAs quantum dots. As a near-field collection optic, the fiber taper improves the collection efficiency from microdisk lasers by a factor of ∼15–100 times in comparison to conventional normal incidence free-space collection techniques. In addition, the fiber taper can serve as an efficient means for pumping thes...

  12. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler

    DEFF Research Database (Denmark)

    Ding, Yunhong; Liu, Liu; Peucheret, Christophe;

    2012-01-01

    A polarization splitter and rotator (PSR) based on a tapered directional coupler with relaxed fabrication tolerance is proposed and demonstrated on the silicon-on-insulator platform. The device is simply constructed by parallel-coupling a narrow silicon waveguide with a linearly tapered wider...... waveguide. Compared to previously reported PSRs based on a normal directional coupler, which suffer from stringent requirements on the accuracy of the narrow waveguide width, the introduced tapered structure of the wide waveguide can be used to compensate the fabrication errors of the narrow waveguide...

  13. Enhanced terahertz transmission through a periodic array of tapered rectangular apertures

    CERN Document Server

    Devi, Koijam Monika; Kumar, Gagan

    2016-01-01

    We numerically analyse extraordinary terahertz transmission properties of an array of rectangular shaped apertures perforated periodically on a thin metal film. The apertures are tapered at different angles to achieve higher field concentration at the tapered end. The periodic sub-wavelength scale apertures ensure plasmonic behaviour giving rise to the enhanced transmission of a specific frequency mode decided by the periodicity. We compare results of transmission with the rectangular shaped apertures of same parameters and observe a significant increase in the transmission for the tapered case. We have compared results of our numerical simulations with theory and have found them consistent.

  14. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.

    Science.gov (United States)

    Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing

    2014-10-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated. PMID:25322232

  15. Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite

    Science.gov (United States)

    Hynes, N. Rajesh Jesudoss; Nithin, Abeyram M.

    2016-05-01

    Friction taper plug welding a variant of friction welding is useful in welding of similar and dissimilar materials. It could be used for joining of composites to metals in sophisticated aerospace applications. In the present work numerical simulation of friction taper plug welding process is carried out using finite element based software. Graphite reinforced AA6063 is modelled using the software ANSYS 15.0 and temperature distribution is predicted. Effect of friction time on temperature distribution is numerically investigated. When the friction time is increased to 30 seconds, the tapered part of plug gets detached and fills the hole in the AA6063 plate perfectly.

  16. Analysis of Semi-conductor Laser Diode with Two-dimension Nonlinearly Tapered Waveguide

    Institute of Scientific and Technical Information of China (English)

    LI Hong; HAUNG Dexiu

    2001-01-01

    A novel semiconductor laser diode with a two-dimension nonlinearly tapered waveguide is proposed and its property is studied by Fourier expanding method. It is shown that coupling loss between the semiconductor laser diode and a single mode fiber is reduced effectively, the reduction role of the nonlinearly tapered waveguide is more apparent than that of a linearly tapered waveguide , the minimum coupling loss is 0.36 dB, and the far field divergence is decreased. The reduction mechanism is discussed.

  17. Asymmetric first order shear horizontal guided waves propagation in a tapered plate

    International Nuclear Information System (INIS)

    In this paper, through numerical simulation of the first order shear horizontal guided waves propagation in a homogeneous tapered plate, we have realized sound unidirectional transmission based on the mode conversion mechanism. We also find that the contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle of tapered edge. And the working frequency range of the asymmetric transmission can be easily controlled by the height of tapered surface or the thickness of slab. This asymmetric system shows potentially significant applications in various sound devices. - Highlights: • We study the sound unidirectional transmission for SH1 guided wave in a homogeneous tapered plate. • The contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle. • The working frequency range of unidirectional transmission can be easily controlled by structure parameters

  18. Corrosion on the acetabular liner taper from retrieved modular metal-on-metal total hip replacements.

    Science.gov (United States)

    Gascoyne, Trevor C; Dyrkacz, Richard M; Turgeon, Thomas R; Burnell, Colin D; Wyss, Urs P; Brandt, Jan-M

    2014-10-01

    Eight retrieved metal-on-metal total hip replacements displayed corrosion damage along the cobalt-chromium alloy liner taper junction with the Ti alloy acetabular shell. Scanning electron microscopy indicated the primary mechanism of corrosion to be grain boundary and associated crevice corrosion, which was likely accelerated through mechanical micromotion and galvanic corrosion resulting from dissimilar alloys. Coordinate measurements revealed up to 4.3mm(3) of the cobalt-chromium alloy taper surface was removed due to corrosion, which is comparable to previous reports of corrosion damage on head-neck tapers. The acetabular liner-shell taper appears to be an additional source of metal corrosion products in modular total hip replacements. Patients with these prostheses should be closely monitored for signs of adverse reaction towards corrosion by-products.

  19. Supercontinuum generation in Ge-doped Y-shaped microstructured tapered fiber

    Energy Technology Data Exchange (ETDEWEB)

    Cascante-Vindas, J [Escuela de Ingenieria Electrica, Universidad de Costa Rica (Costa Rica); DIez, A; Cruz, J L; Andres, M V [Departamento de Fisica Aplicada-ICMUV, Universidad de Valencia (Spain)

    2011-01-01

    We have investigated the generation of supercontinuum in tapered Y-shaped fibers in the nanosecond pump regime. This fiber used to fabricate the tapers has, in addition, a Ge-doped core which enhances the nonlinearity of the material and the Raman gain. The fiber was pumped at 1064 nm in the ns pump regime (0.6 ns pulses and up to 3.2 kW peak power). The taper had a uniform waist of 0.9 {mu}m diameter and 130 mm length, and the adiabatic transitions were 110 mm long. A flat spectrum spanning from 420 nm to 1870 nm was obtained using a single tapered fiber.

  20. Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; YU Da-Peng

    2009-01-01

    Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing.This is crucial to plazmonic research and industrial plasmonic device integration.We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL).When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures,steep edges can be transformed into a declining slope to form tapered PMMA structures,scaled from 10nm to 1000nm.Despite the simplicity of our method,patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers,which therefore gives scientists easy access to research on the properties of tapered structures.

  1. Study of mode propagation with 632.8-nm laser in tapered fiber

    Institute of Scientific and Technical Information of China (English)

    He Chen; Junliang Lu; Chengliang Zhao; Botao Cheng; Xuanhui Lu

    2009-01-01

    The material dispersion of a tapered fiber is described by Sellmeier's equation.The dependence of refractive index on wavelength and doping concentration is discussed.A He-Ne laser with the output wavelength of 632.8 nm is used in the experiment.When the cutoff frequency of the fiber is less than the laser frequency,the guiding modes of a single-mode fiber(at 1550 nm)are investigated.The results show that the original single-mode fiber becomes a multi-mode waveguide.The propagation and mode coupling of the light in the taper region are analyzed.By controlling the taper end size of the fiber,the unique tapered fiber can convert a multi-mode beam into a single-mode one.

  2. Analysis and Design of Tapered Slot Antenna for Ultra-Wideband Applications

    Institute of Scientific and Technical Information of China (English)

    YAO Yuan; CHEN Wenhua; HUANG Bin; FENG Zhenghe; ZHANG Zhijun

    2009-01-01

    The tapered slot antenna,such as Vivaldi,has been widely used due to its ultra-wideband,high gain,simple feed structure,and easy fabrication.However,there is no rigorous analytical theory for this type of antenna.This paper analyzed the metal parts of a tapered slot antenna in a conical coordinate system with the medium analyzed in rectangular coordinates.This mixed mode gave an approximate analytical form for the tapered slot antenna with the field distribution and radiation characteristics.A planar tapered slot antenna was proposed according to the results of the analysis methods.Measured and simulated results demonstrate the antenna performance.The antenna shows good impedance matching over a wide bandwidth of 9 GHz,from 2 GHz to 11 GHz,and good radiation patterns.It is suitable for ultra-wideband applications.

  3. Taper-Lok法兰在南海海管连接中的应用

    Institute of Scientific and Technical Information of China (English)

    刘贞飞; 张印桐; 严国华

    2010-01-01

    文中介绍了Taper-Lok法兰的结构原理和使用特点.结合南海西江合并项目中安装膨胀弯及立管作业对Taper-Lok法兰的应用,详细阐述了组对安装法兰技术,以及应用液压拉伸器对法兰液压紧固技术.Taper-Lok法兰在西江合并项目中的成功使用,再一次证明其在密封技术、安装特性和设计性能上的优势,表明了Taper-Lok法兰在中国海洋工程中应用的广阔前景.

  4. Performance of nonsynchronous noncommensurate impedance transformers in comparison to tapered line transformers

    DEFF Research Database (Denmark)

    Kim, Kseniya; Zhurbenko, Vitaliy; Johansen, Tom Keinicke;

    2012-01-01

    to a traditional tapered line impedance transformer. The increase in bandwidth of nonsynchronous noncommensurate impedance transformers typically leads to shortening the transformer length, which makes the transformer attractive for applications, where a wide operating band and high transformation ratios...

  5. High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber

    Science.gov (United States)

    Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong

    2016-05-01

    In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.

  6. Vector rectangular-shape laser based on reduced graphene oxide interacting with long fiber taper

    CERN Document Server

    Gao, Lei; Zeng, Jing; Huang, Wei; Liu, Min

    2014-01-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where the nonlinearity is enhanced due to large evanescent-field-interacting length and strong field confinement of a 8 mm fiber taper with a waist diameter of 4 micronmeters. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz exhibits fast polarization switching in two orthogonal polarization directions, and the temporal and spectral characteristics are investigated. The results suggest that the long taper-based graphene structure is an efficient choice for nonlinear devices.

  7. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    Science.gov (United States)

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  8. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Nunes

    Full Text Available Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  9. Biomechanical Analysis of Tapered Integrated Screw and Sensitivity Analysis on Abutment Loosening in Dental Implants

    OpenAIRE

    Milad Farzadi; Mohammadreza Mallakzadeh

    2013-01-01

    Background and Aims: Different mechanisms have been developed for connecting abutment to implant. One of the most popular mechanisms is Tapered Integrated Screw (TIS), which is a Tapered Interference Fit (TIF) with a screw integrated at the bottom of that. The aim of this study was to investigate the mechanism of TIS and effective factors in employing TIS during design and implementation processes using an analytic method.Materials and Methods: Relevant equations were developed to predict tig...

  10. Experimental and Analytical Investigation of the Shear Strength of Unstiffened Tapered Steel Members

    OpenAIRE

    Redmond, Nicholas A

    2007-01-01

    Tapered beams and columns are often used in single story gable framed steel buildings for reasons of economy. By varying the resistance to bending in similar proportion to the bending moments, more economical structures can be obtained. The beam and column connection, or knee area, is generally subject to the greatest bending moments. It is therefore comprised of the deepest sections of the tapered members, which also possess the least resistance to shear buckling. The web elementâ s str...

  11. Bone Remodeling Around Implants with External Hexagon and Morse-Taper Connections

    DEFF Research Database (Denmark)

    Pessoa, Roberto S; Sousa, Ravel M; Pereira, Leandro M;

    2016-01-01

    OBJECTIVES: To evaluate clinical, radiographic, microbiologic, and biomechanical parameters related to bone remodeling around implants with external hexagon (EH) and Morse-taper (MT) connections. MATERIALS AND METHODS: Twelve totally edentulous patients received four custom-made implants in the i......OBJECTIVES: To evaluate clinical, radiographic, microbiologic, and biomechanical parameters related to bone remodeling around implants with external hexagon (EH) and Morse-taper (MT) connections. MATERIALS AND METHODS: Twelve totally edentulous patients received four custom-made implants...

  12. Empirical Optimization of Undulator Tapering at FLASH2 and Comparison with Numerical Simulations

    CERN Document Server

    Mak, Alan; Faatz, Bart; Werin, Sverker

    2016-01-01

    In a free-electron laser equipped with variable-gap undulator modules, the technique of undulator tapering opens up the possibility to increase the radiation power beyond the initial saturation point, thus enhancing the efficiency of the laser. The effectiveness of the enhancement relies on the proper optimization of the taper profile. In this work, a multidimensional optimization approach is implemented empirically in the x-ray free-electron laser FLASH2. The empirical results are compared with numerical simulations.

  13. Enhanced soliton self-frequency shift in a longitudinally varying taper

    DEFF Research Database (Denmark)

    Judge, A.C.; Bang, Ole; Eggleton, B.J.;

    2009-01-01

    We propose a method for the enhancement of the soliton self-frequency shift in a tapered PCF with a carefully designed waist diameter profile which optimises the dispersion and nonlinearity at the soliton wavelength.......We propose a method for the enhancement of the soliton self-frequency shift in a tapered PCF with a carefully designed waist diameter profile which optimises the dispersion and nonlinearity at the soliton wavelength....

  14. Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix

    OpenAIRE

    Monifi, Faraz; Ozdemir, Sahin Kaya; Friedlein, Jacob; Yang, Lan

    2013-01-01

    We encapsulated a high-quality (Q) factor optical whispering gallery mode (WGM) microtoroid resonator together with its side coupled fiber taper inside a low refractive index polymer, achieving a final Q higher than 10^7. Packaging provides stable resonator-fiber taper coupling, long-term maintenance of high-Q, a protective layer against contaminants, and portability to microtoroid resonator based devices. We tested the robustness of the packaged device under various conditions and demonstrat...

  15. Optical Detection of Single Nanoparticles with a Sub-wavelength Fiber-Taper

    CERN Document Server

    Zhu, Jiangang; Yang, Lan

    2013-01-01

    A nanoparticle detection scheme with single particle resolution is presented. The sensor contains only a taper fiber thus offering the advantages of compactness and installation flexibility. Sensing method is based on monitoring the transmitted light power which shows abrupt jumps with each particle binding to the taper surface. The experimental validation of the sensor is demonstrated with polystyrene nanoparticles of radii 120 nm and 175 nm in the 1550 nm wavelength band.

  16. Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix

    CERN Document Server

    Monifi, Faraz; Friedlein, Jacob; Yang, Lan

    2013-01-01

    We encapsulated a high-quality (Q) factor optical whispering gallery mode (WGM) microtoroid resonator together with its side coupled fiber taper inside a low refractive index polymer, achieving a final Q higher than 10^7. Packaging provides stable resonator-fiber taper coupling, long-term maintenance of high-Q, a protective layer against contaminants, and portability to microtoroid resonator based devices. We tested the robustness of the packaged device under various conditions and demonstrated its capability for thermal sensing.

  17. Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides

    OpenAIRE

    Davanco, Marcelo; Srinivasan, Kartik

    2009-01-01

    A technique based on using optical fiber taper waveguides for probing single emitters embedded in thin dielectric membranes is assessed through numerical simulations. For an appropriate membrane geometry, photoluminescence collection efficiencies in excess of 10 % are predicted, exceeding the efficiency of standard free-space collection by an order of magnitude. Our results indicate that these fiber taper waveguides offer excellent prospects for performing efficient spectroscopy of single emi...

  18. An optical fiber-taper probe for wafer-scale microphotonic device characterization

    OpenAIRE

    Michael, C. P.; Borselli, M; Johnson, T. J.; Chrystal, C; Painter, O.

    2007-01-01

    A small depression is created in a straight optical fiber taper to form a local probe suitable for studying closely spaced, planar microphotonic devices. The tension of the "dimpled" taper controls the probe-sample interaction length and the level of noise present during coupling measurements. Practical demonstrations with high-Q silicon microcavities include testing a dense array of undercut microdisks (maximum Q = 3.3x10^6) and a planar microring (Q = 4.8x10^6).

  19. An optical fiber-taper probe for wafer-scale microphotonic device characterization

    CERN Document Server

    Michael, C P; Johnson, T J; Chrystal, C; Painter, O; 10.1364/OE.15.004745

    2009-01-01

    A small depression is created in a straight optical fiber taper to form a local probe suitable for studying closely spaced, planar microphotonic devices. The tension of the "dimpled" taper controls the probe-sample interaction length and the level of noise present during coupling measurements. Practical demonstrations with high-Q silicon microcavities include testing a dense array of undercut microdisks (maximum Q = 3.3x10^6) and a planar microring (Q = 4.8x10^6).

  20. Heater self-calibration technique for shape prediction of fiber tapers

    OpenAIRE

    Sorensen, Heidi L.; Polzik, Eugene S.; Appel, Jurgen

    2013-01-01

    In the production of tapered optical fibers, it is important to control the fiber shape according to application-dependent requirements and to ensure adiabatic tapers. Especially in the transition regions, the fiber shape depends on the heater properties. The axial viscosity profile of the fiber within the heater can, however, be hard to access and is therefore often approximated by assuming a uniform temperature distribution. We present a method for easy experimental calibration of the visco...

  1. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    OpenAIRE

    Arafat Shabaneh; Saad Girei; Punitha Arasu; Mohd Mahdi; Suraya Rashid; Suriati Paiman; Mohd Yaacob

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT se...

  2. Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range

    Institute of Scientific and Technical Information of China (English)

    FANG Yi-Jiao; CHEN Zhuo; WANG Zhen-Lin

    2011-01-01

    @@ A tapered waveguide composed of a one-dimensional periodic arrangement of dielectric materialis proposed for light trapping.The equifrequency contours(EFC) of silicon-air multilayer photonic crystals within the first bandgap region are first studied.A zero-group-velocity at the first Brillouin zone boundary along the grating vector is predicted.The propagation constants and eigenfrequencies of the first-order guiding modes are numerically investigated for photonic crystal waveguide structures with a finite thickness.Different frequency components of the guiding modes are found to slov and stop at different thicknesses inside such a tapered waveguide structure.In addition,the time-evolution of a femto-second pulse propagating in the tapered waveguide is also demonstrated.%A tapered waveguide composed of a one-dimensional periodic arrangement of dielectric material is proposed for light trapping. The equifrequency contours (EFC) of silicon-air multilayer photonic crystals within the first bandgap region are first studied. A zero-group-velocity at the first Brillouin zone boundary along the grating vector is predicted. The propagation constants and eigenfrequencies of the first-order guiding modes are numerically investigated for photonic crystal waveguide structures with a finite thickness. Different frequency components of the guiding modes are found to slow and stop at different thicknesses inside such a tapered waveguide structure. In addition, the time-evolution of a femto-second pulse propagating in the tapered waveguide is also demonstrated.

  3. Morse taper dental implants and platform switching: The new paradigm in oral implantology

    Science.gov (United States)

    Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.

    2016-01-01

    The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755

  4. Retention force of differently fabricated telescopic PEEK crowns with different tapers.

    Science.gov (United States)

    Stock, Veronika; Wagner, Christina; Merk, Susanne; Roos, Malgorzata; Schmidlin, Patrick R; Eichberger, Marlis; Stawarczyk, Bogna

    2016-01-01

    To assess the retention force between primary and secondary PEEK crowns made by different fabrication methods. Primary crowns with different tapers (0°, 1°, and 2°) were fabricated and secondary crowns that were either milled from breCam BioHPP blanks, pressed from pellets (BioHPP Pellet) or granules (BioHPP Granulat) were produced. Each specimen was measured 20 times in a pulloff-test and results were analyzed using 2-/1-way ANOVA and linear regression analyses (ptapered crowns milled secondary crowns showed lower retention forces compared to pressed pellet crowns. Crowns with a 1° taper, however, showed no impact of the fabrication method on retention force. At a 2° taper, granular pressed crowns displayed lower values than their milled counterparts. Within the milled group, a 0° taper showed lower retention values than the higher tapers, whereas in the pressed groups, no impact of taper angle on retention force was found. PMID:27477224

  5. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    Science.gov (United States)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  6. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla

    Directory of Open Access Journals (Sweden)

    Shrikar R Desai

    2013-01-01

    Full Text Available Aim: The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. Materials and Methods: A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45° to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. Results: The results of total deformation (micro-movement and Von mises stress were found to be lower for tapered long implant (10 mm than short implant (6 mm while using both vertical as well as oblique loading. Conclusion: Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.

  7. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    Science.gov (United States)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  8. Effects of intensified training and taper on immune function

    Directory of Open Access Journals (Sweden)

    Elena Papacosta

    2013-03-01

    Full Text Available Although resting immune function is not very different in athletes compared with non-athletes periods of intensified training (overreaching in already well trained athletes can result in a depression of immunity in the resting state. Illness-prone athletes appear to have an altered cytokine response to antigen stimulation and exercise. Having low levels of salivary IgA secretion also makes athletes more susceptible to upper respiratory tract infections. Overtraining is associated with recurrent infections and immunodepression is common, but immune functions do not seem to be reliable markers of impending overtraining. There are several possible causes of the diminution of immune function associated with periods of heavy training. One mechanism may simply be the cumulative effects of repeated bouts of intense exercise (with or without tissue damage with the consequent elevation of stress hormones, particularly glucocorticoids such as cortisol, causing temporary inhibition of TH-1 cytokines with a relative dampening of the cell-mediated response. When exercise is repeated frequently there may not be sufficient time for the immune system to recover fully. Tapering has been described as a gradual reduction in the training load which allows the recovery of physiological capacities that were impaired by previous intensive training and permits further training-induced adaptations to occur accompanied by competition performance enhancements. The majority of the studies that have examined the recovery of immunoendocrine responses during 1-3 week tapers in trained athletes have mainly reported enhanced performance, often accompanied by increased anabolic activity, reduced physiological stress and restoration of mucosal immunity and immune function.Quando se compara a função imune, em repouso, de atletas e não atletas, não se verificam grandes diferenças. Porém, períodos de treinamento intensificado ("overreaching" em atletas bem treinados podem

  9. Columnar mesophase from non-symmetrical tapered hydrazide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Bai Binglian, E-mail: baibinglian@jlu.edu.cn [Key Laboratory for Automobile Materials (JLU), Ministry of Education, Institute of Materials Science and Engineering, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Zhao Chengxiao; Wang Haitao; Ran Xia [Key Laboratory for Automobile Materials (JLU), Ministry of Education, Institute of Materials Science and Engineering, Jilin University, Changchun 130012 (China); Wang Dan [College of Physics, Jilin University, Changchun 130012 (China); Li Min, E-mail: minli@mail.jlu.edu.cn [Key Laboratory for Automobile Materials (JLU), Ministry of Education, Institute of Materials Science and Engineering, Jilin University, Changchun 130012 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We aimed at developing new liquid-crystalline hydrazide derivatives. Black-Right-Pointing-Pointer The columnar mesophases are observed in these hydrazide derivatives. Black-Right-Pointing-Pointer Experimental results revealed that the amide protons of the central hydrazide group participated in intermolecular double hydrogen bonds based on C=O and -NH in mesophase. Black-Right-Pointing-Pointer The intermolecular hydrogen-bonding interaction among dihydrazine units is the main driving force to form the mesophase. - Abstract: A new series of liquid-crystalline tapered hydrazide derivatives with an amino head group, e.g. N-(3,4,5-trialkoxylbenzoyl)-N Prime -(4 Prime -aminobenzoyl) hydrazine (Dn, where n is the number of carbon atoms in the alkyl chains, n = 6, 8, 16), were designed and synthesized. Results of {sup 1}H NMR diluting experiment and FTIR spectroscopy revealed that the amide protons of the central hydrazide group in Dn participated in intermolecular double hydrogen bonds based on C=O and -NH in liquid crystalline phase. Investigations on the liquid crystalline properties showed that the D6 exhibited non-mesophase, D8 exhibited monotropic hexagonal columnar mesophase, while D16 exhibited enantiotropic oblique columnar mesophase with increasing the length of the terminal chains.

  10. Characterization of a high-power tapered semiconductor amplifier system

    CERN Document Server

    Voigt, D; Spreeuw, R J C; Van Linden van den Heuvell, H B

    2001-01-01

    We have characterized a semiconductor amplifier laser system which provides up to 200mW output after a single-mode optical fiber at 780nm wavelength. The system is based on a tapered semiconductor gain element, which amplifies the output of a narrow-linewidth diode laser. Gain and saturation are discussed as a function of operating temperature and injection current. The spectral properties of the amplifier are investigated with a grating spectrometer. Amplified spontaneous emission (ASE) causes a spectral background with a width of 4nm FWHM. The ASE background was suppressed to below our detection limit by a proper choice of operating current and temperature, and by sending the light through a single-mode optical fiber. The final ASE spectral density was less than 0.1nW/MHz, i.e. less than 0.2 % of the optical power. Related to an optical transition linewidth of $\\Gamma/2\\pi=6$ MHz for rubidium, this gives a background suppression of better than -82dB. An indication of the beam quality is provided by the fibe...

  11. Effects of Tapered Betafunction in the LCLS Undulators

    CERN Document Server

    Goldammer, K; Huang, Z

    2005-01-01

    The Linac coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. With its nominal set of electron beam, focusing and undulator parameters, it is designed to achieve SASE saturation at an undulator length of about 100m with an average power of 10GW. In order to keep the electron beam focused in the undulators, a FODO lattice is integrated along the entire length of the undulators. Nominally, the quadrupoles strengths are chosen to produce nearly constant beta function and beam size along the undulator, optimized for the FEL interaction in the exponential growth regime. Since these quadrupoles are electromagnetic, it is possible to adjust the individual quadrupole strength to vary the beta function and the beam size along the undulator, tailoring the FEL interaction in the startup and the saturation regimes. In this paper, we present simulation studies of the tapered beta function in the LCLS undulator and discuss the generated x-ray properties.

  12. Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip.

    Science.gov (United States)

    Cai, Hong; Poon, Andrew W

    2012-10-01

    We study optical trapping of microparticles on an optofluidic chip using silicon nitride waveguide junctions and tapered-waveguide junctions. We demonstrate the trapping of single 1 μm-sized polystyrene particles using the evanescent field of waveguide junctions connecting a submicrometer-sized input-waveguide and a micrometer-sized output-waveguide. Particle trapping is localized in the vicinity of the junction. We also demonstrate trapping of one and two 1μm-sized polystyrene particles using tapered-waveguide junctions connecting a submicrometer-sized singlemode input-waveguide and a micrometer-sized multimode output-waveguide. Particle trapping occurs near the taper output end, the taper center and the taper input end, depending on the taper aspect ratio.

  13. Lumped-element model of a tapered transmission line for impedance matching in a pulsed power system

    Science.gov (United States)

    Lee, Kun-A.; Ko, Kwang-Cheol

    2016-07-01

    In a pulsed power system, impedance matching is one of the significant factors for increasing the efficiency of the system. One of the most general methods for impedance matching is to use a tapered transmission line. Because the characteristics of a tapered transmission line are changed continuously according to its position, modeling the tapered transmission line by using lumped elements is difficult. In this study, we investigated a tapered transmission line to match the impedance of power supply to that of a load by using lumped elements especially in a pulsed power system. In modeling the tapered transmission line, we used the concept of a transmission, and we introduced an efficient modeling method. We propose a simulation model based on the investigation results. The results of the study will be useful for research on tapered transmission lines.

  14. Effects of tapering structures on the characteristics of a coaxial-waveguide gyrotron backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C. L. [Department of Communication Engineering, National Penghu University of Science and Technology, Penghu 880, Taiwan (China); Chang, T. H. [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Yeh, Y. S. [Department of Electro-Optical Engineering, Southern Taiwan University, Tainan 710, Taiwan (China)

    2011-10-15

    This study analyzes the characteristics of a gyrotron backward-wave oscillator (gyro-BWO) with a longitudinally tapered coaxial-waveguide by using a single-mode, self-consistent nonlinear code. Simulation results indicate that although tapering the inner wall or the outer wall can significantly raise the start-oscillation current, the former is more suitable for mode selection than the latter because an increase of the start-oscillation current by a tapered inner wall heavily depends on the chosen C value (i.e., the average ratio of the outer radius to the inner radius over the axial waveguide length). Selective suppression of the competing mode by tapering the inner wall is numerically demonstrated. Moreover, efficiency of the coaxial gyro-BWO is increased by tapering the outer wall. Properly down-tapering the outer wall ensures that the coaxial gyro-BWO can reach a maximum efficiency over twice that with a uniform one.

  15. Analysis of elastic stiffness for the leaf type holddown spring assembly with uniformly tapered thickness considering the point of taper runout

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Nam [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-04-01

    In the case that the point of taper runout is outside the bent region of spring base, a formula to evaluate the elastic stiffness of the leaf type holddown spring (HDS) assembly with uniformly tapered thickness from t{sub 0} to t{sub 1} (t{sub 0}>t{sub 1}) has been analytically derived by applying the engineering beam theory and Casiliano`s theorem based on strain energy. It has found that taper runouts for the 14x14 and 17x17 type KOFA HDS were up to 2.2 mm and effects on their elastic stiffnesses were about 3.70%, and that the elastic stiffness of the HDS was mainly caused by bending moment. And in addition, for the HDS designed/manufactured from Westinghouse, elastic stiffnesses from the derived formula were in good agreement with those from the Westinghouse`s empirical formula. Therefore, the derived formula could be applicable to evaluating the elastic stiffness of any HDS with tapered thickness only with the informations of the geometric data and material properties of leaf springs regardness of the manufacturing companies. 11 tabs., 4 figs., 25 refs. (Author) .new.

  16. Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography

    Science.gov (United States)

    Takei, R.; Suzuki, M.; Omoda, E.; Manako, S.; Kamei, T.; Mori, M.; Sakakibara, Y.

    2013-03-01

    For ultralow-loss and polarization-insensitive spot-size converters (SSCs) on a silicon platform, we propose and demonstrate a silicon knife-edge taper waveguide with a gradual decrease in height as well as width toward the taper end. The taper was fabricated using a double-patterning method involving i-line stepper photolithography and angled sidewall dry-etching. The SSC, with the knife-edge taper covered with a polymer secondary core, exhibited mode conversion losses of 0.35 and 0.21 dB for transverse electric-like and transverse magnetic-like modes, respectively.

  17. Trapping and Propelling Microparticles at Long Range by Using an Entirely Stripped and Slightly Tapered No-Core Optical Fiber

    Directory of Open Access Journals (Sweden)

    Yen-Si Huang

    2013-02-01

    Full Text Available A stripped no-core optical fiber with a 125 µm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-µm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-µm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber.

  18. Optimal design and implementation of a temperature and strain optical transducer using FBGs and fiber taper hybrid structure

    OpenAIRE

    Quintela Incera, Antonio; Rodríguez Cobo, Luis; Barquín Cobo, María Inmaculada; Galíndez Jamioy, Carlos Augusto; Quintela Incera, María Ángeles; López Higuera, José Miguel

    2011-01-01

    A temperature and strain optical fiber transducer and its optimal design are presented. The hybrid structure is composed of two Fiber Bragg Gratings (FBG) in a fused taper. Using the same phase mask one of the FBG is written outside of the taper, and the other one in the middle of the taper, in the area with constant diameter. The taper diameter and the structure length play a key role on the transducer behaviour. Useful results to optimize the transducer structure design, from a theoretical ...

  19. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    Science.gov (United States)

    Murri, Gretchen B.; O''Brien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to nonlinear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending loads. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse flexbeam tip-displacement and flapping angle. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  20. The Nonlinear Dynamic Behaviour of Tapered Laminated Plates Subjected to Blast Loading

    Directory of Open Access Journals (Sweden)

    Sedat Susler

    2012-01-01

    Full Text Available In this study, the geometrically nonlinear dynamic behaviour of simply supported tapered laminated composite plates subjected to the air blast loading is investigated numerically. In-plane stiffness, inertia and the geometric nonlinearity effects are considered in the formulation of the problem. The equations of motion for the tapered laminated plate are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations of motion. Then, the Galerkin method is used to obtain the nonlinear algebraic differential equations in the time domain. The resulting equations are solved by using the finite difference approximation over the time. The effects of the taper ratio, the stacking sequence and the fiber orientation angle on the dynamic response are investigated. The displacement-time and strain-time histories are obtained on certain points in the tapered direction. The results obtained by using the present method are compared with the ones obtained by using a commercial finite element software ANSYS. The results are found to be in an agreement. The method presented here is able to determine the nonlinear dynamic response of simply supported tapered laminated plates to the air blast loading accurately.

  1. Experimental study of friction of tapered surfaces in keyless propeller. 2{sup nd} report. Effects of taper machining error and surface roughness; Keyless propeller ni okeru taper sesshokumen no masatsu ni kansuru-jikken. 2: taper kako gosa oyobi hyomen arasa no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, T.; Ura, A.; Nakashima, A. [Nagasaki Univ. (Japan)] Nishikido, S. [Mitsubishi Heavy Industries Ltd., Nagasaki (Japan). Nagasaki Shipyard and Engine Works

    1997-12-01

    About 25 years have passed since the development of the keyless propeller, however, recently, torque slip problem is cause in keyless propeller. In the previous report, from one of this factor, experiment was carried out concentrating on the friction behavior at elasto-plastic deformation region. This time, effect of taper machining error and surface roughness, that are the problems while manufacturing keyless propeller and axes on the friction behavior of taper contact surface was studied using a new grip coefficient. As a result, the friction behavior (specially the grip coefficient) during the pushing of keyless propeller was effected greatly by the taper machining error rather than surface roughness and the precision of the taper machining of axis and boss become important. Further, taper machining error is not considered in the design calculation of push-up distance, therefore, if low grip coefficient region is caused in push-up operation, it is preferred that push-up must be carried out up to the decided push-up distance excluding this. These were the clarified things. 6 refs., 10 figs.

  2. Analysis & Design of the Coupling Efficiency using Ion Exchange Tapered Waveguide

    Directory of Open Access Journals (Sweden)

    A. Agrebi

    2014-01-01

    Full Text Available This paper reports modeling and simulation of low-loss coupling between two different sections standard optical fiber. This Technique will use a Tapered waveguide made by ion exchange technique on glass substrate. The principle of ion exchange technology, to make a planar waveguides on glass, is explained. So we have developed a program that simulates diffusion with or without external electric field assistance to manufacture diffused waveguides. On the other hand, the numerical method used to compute the propagation in those waveguides, is the finite-difference vector beam propagation method (FD-VBPM. As an application, concave and convex ion exchange (IEx Tapers obtained by varying the parameter α, are analyzed. Length, input and output cross-section of this component, are also varied in order to investigate the effects of geometric parameters on coupling efficiency. The calculated coupling losses are reasonable and acceptable and prove that using convex Tapered waveguide is recommended.

  3. On the use of tapered bismuth germanate crystals in positron emission tomography

    International Nuclear Information System (INIS)

    An analytical model of gamma ray transport within the detectors of a positron camera, based on exponential absorption, has been developed and verified experimentally. The model has been used to study the intrinsic resolution obtained with scintillation detectors that have had their front corners removed. It is concluded that for crystals greater than 0.8 cm wide, tapering the face of the detector results in improved uniformity of resolution. Thus it is useful for medium and low resolution scanners. In these cases, it has been found that the loss in sensitivity resulting from the use of tapered crystals is less than that which occurs when septa are placed between crystals to achieve comparable uniformity of resolution. It has also been established that, in some instances, reducing the length of the detectors results in a more uniform resolution than that obtained with tapered crystals, although this leads to a loss in ring sensitivity and an increase in the detected scatter fraction. (orig.)

  4. Experimental stress-strain analysis of tapered silica optical fibers with nanofiber waist

    CERN Document Server

    Holleis, Sigrid; Wuttke, Christian; Schneeweiss, Philipp; Rauschenbeutel, Arno

    2014-01-01

    We experimentally determine tensile force-elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force-elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress-strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on the well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.

  5. Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist

    Energy Technology Data Exchange (ETDEWEB)

    Holleis, S.; Hoinkes, T.; Wuttke, C.; Schneeweiss, P.; Rauschenbeutel, A. [Vienna Center for Quantum Science and Technology, TU Wien—Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2014-04-21

    We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on the well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.

  6. Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh;

    2015-01-01

    We demonstrate a concept for visible laser sources based on sum-frequency generation of beam com- bined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from...... a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion ef fi ciency of 12.1%. As an example of potential applica- tions, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser...

  7. An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper

    Science.gov (United States)

    Chen, Z.; Ma, S.; Dutta, N. K.

    2010-08-01

    In this paper we theoretically study the broadband mid-IR supercontinuum generation (SCG) in a lead-silicate microstructured fiber (the glass for simulation is SF57). The total dispersion of the fiber can be tailored by changing the core diameter of the fiber so that dispersion profiles with two zero dispersion wavelengths (ZDWs) can be obtained. Numerical simulations of the SCG process in a 4 cm long SF57 fiber/fiber taper seeded by femto-second pulses at telecommunications wavelength of 1.55 µm are presented. The results show that a fiber taper features a continuous shift of the longer zero dispersion wavelength. This extends the generated continuum to a longer wavelength region compared to fibers with fixed ZDWs. The phase-matching condition (PMC) is continuously modified in the fiber taper and the bandwidth of the generated dispersive waves (DWs) is significantly broadened.

  8. A study of multi-trapping of tapered-tip single fiber optical tweezers

    International Nuclear Information System (INIS)

    We develop a pair of tapered-tip single fiber optical tweezers, and study its multi-trapping characteristic. The finite difference time domain method is employed to simulate the trapping force characteristic of this pair of single fiber optical tweezers, and the results show that the number of trapped particles depends on the refractive index and the size of the particles. The trapping force of this pair of tapered-tip single fiber optical tweezers is calibrated by the experimental method, and the experimental results are consistent with the theoretical calculation results. The multi-trapping capability realized by the tapered-tip single fiber optical tweezers will be practical and useful for applications in biomedical research fields. (interdisciplinary physics and related areas of science and technology)

  9. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  10. About the role of phase matching between a coated microsphere and a tapered fiber: experimental study.

    Science.gov (United States)

    Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio

    2013-09-01

    Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles. PMID:24103968

  11. Single-mode tapered terahertz quantum cascade lasers with lateral gratings

    Science.gov (United States)

    Yao, C.; Xu, T. H.; Wan, W. J.; Li, H.; Cao, J. C.

    2016-08-01

    We report on tapered terahertz quantum cascade lasers with lateral gratings. The proposed devices exhibit not only low horizontal divergence due to tapered structure but also single-mode operation by using lateral grating structure. The tapered region and lateral gratings can be fabricated with the ridged waveguide in one etching step without inducing complexity into the fabrication. Side-mode suppression ratio ∼20 dB is obtained for proposed devices from threshold to rollover currents at all measure temperatures, with the peak output power of ∼30 mW at 10 K in pulsed mode and lateral divergence angle reduced by half. The proposed devices are good candidates for high-power, single-mode operation and low-divergence laser with easy fabrication.

  12. Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement.

    Science.gov (United States)

    Kang, Zexin; Wen, Xiaodong; Li, Chao; Sun, Jiang; Wang, Jing; Jian, Shuisheng

    2014-04-20

    A novel all-fiber sensing configuration for simultaneous measurements of temperature and strain based on the up-taper Mach-Zehnder interferometer (MZI) with an in-line embedded fiber Bragg grating (FBG) is proposed and experimentally demonstrated. This configuration consists of two up-tapers fabricated by an excessive fusion splicing method and a short segment of inscribed FBG. Due to the different responses of the up-taper MZI and the FBG to the uniform variation of temperature and strain, the simultaneous measurement for these two variables could be achieved by real-time monitoring the transmission spectrum. For 0.01 nm wavelength resolution, a resolution of 0.311°C in temperature can be achieved, and the average strain resolution is 10.07 με. PMID:24787597

  13. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity.

    Science.gov (United States)

    Gong, Yuan; Zhang, Chenlin; Liu, Qun-Feng; Wu, Yu; Wu, Huijuan; Rao, Yunjiang; Peng, Gang-Ding

    2015-02-01

    We propose and demonstrate optofluidic tunable manipulation of polystyrene microparticles based on the combination of a graded-index fiber (GIF) taper and a microcavity. The tunability on the manipulation length is experimentally explored by changing the balance between the optical force and the microfluidic flow force, as well as by tuning the focus of light emitting from the GIF taper via adjusting the length of an air microcavity. By optimizing the geometric shape of the GIF taper, as well as the flow rate and laser power, a manipulation length of 177 μm is achieved, more than 4 times longer than the state-of-the-art optical fiber tweezers. This method has advantages of high flexibility, ease of fabrication and use, integration with microfluidics and has the potential for optofluidic sensing applications. PMID:25836228

  14. Trench-embedding fiber taper sensor fabricated by a femtosecond laser for gas refractive index sensing.

    Science.gov (United States)

    Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Peng; Zhang, Fei; Lu, Yongfeng

    2014-02-20

    A fiber in-line, multimode coupling interferometer with a trench-embedding, fiber taper probe is proposed and fabricated by femtosecond-laser-induced water breakdown. The reflection-type taper probe is used for gas refractive index (RI) detection from 1.0001143 to 1.0002187 and temperature sensing from 50°C to 500°C. The largest RI sensitivity of the taper probe embedded with a trench at a width of 18.4 μm is 669.502  nm/RIU for hybrid nitrogen and helium. Temperature sensitivity is 9.97  pm/°C and it shows good linearity through the whole testing range. The new-type multimode interferometer is appropriate for high-accuracy gas RI detection of micrometer-scale spaces and wide-range temperature compensation can be realized. PMID:24663297

  15. Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.

    Science.gov (United States)

    MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P

    2015-01-01

    We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK. PMID:25638072

  16. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang;

    2010-01-01

    chromatic dispersion in standard optical fiber. We developed a novel light source with a tapered amplifier as gain medium, and investigated the FDML performance comparing two fiber delay lines with different dispersion properties. We introduced an additional gain element into the resonator, and thereby...... achieved stable FDML operation, exploiting the full bandwidth of the tapered amplifier despite high dispersion. The light source operates at a repetition rate of 116 kHz with an effective average output power in excess of 30 mW. With a total sweep range of 70 nm, we achieved an axial resolution of 15 μm...... in air (~11 μm in tissue) in OCT measurements. As our work shows, tapered amplifiers are suitable gain media for swept sources at 1050 nm with increased output power, while high gain counteracts dispersion effects in an FDML laser....

  17. Analytical Model for the End-Bearing Capacity of Tapered Piles Using Cavity Expansion Theory

    Directory of Open Access Journals (Sweden)

    Suman Manandhar

    2012-01-01

    Full Text Available On the basis of evidence from model tests on increasing the end-bearing behavior of tapered piles at the load-settlement curve, this paper proposes an analytical spherical cavity expansion theory to evaluate the end-bearing capacity. The angle of tapering is inserted in the proposed model to evaluate the end-bearing capacity. The test results of the proposed model in different types of sands and different relative densities show good effects compared to conventional straight piles. The end-bearing capacity increases with increases in the tapering angle. The paper then propounds a model for prototypes and real-type pile tests which predicts and validates to evaluate the end-bearing capacity.

  18. Hydrolysis of Olive Oil with Immobilized Lipase in a Tapered Column Reactor

    Institute of Scientific and Technical Information of China (English)

    杨伯伦; 赵国胜; 林宏业

    2003-01-01

    Lipase was immobilized in ion exchange resin and then used in the hydrolysis of olive oil to produce fatty acids and glycerol. The time course of hydrolysis of olive oil was investigated in a stirred tank reactor using both of the free and immobilized lipases to find the yield of activity of immobilized enzyme. Continuous hydrolysis of olive oil was also carried out in a tapered column reactor and a cylindrical column reactor with a bottom ID of 10 mm at different upward flow rates. It can be known from experimental results that the degree of hydrolysis of olive oil in the tapered column reactor is moderately better than that in the cylindrical column reactor, the pressure drop in the tapered column reactor is much smaller than that in the cylindrical column reactor.

  19. Waveguide tapering for beam-width control in a waveguide transducer.

    Science.gov (United States)

    Kwon, Young Eui; Jeon, Hyun Joong; Kim, Hoe Woong; Kim, Yoon Young

    2014-03-01

    In a waveguide transducer that transmits an ultrasonic wave through a waveguide unit to a test structure, it is most preferred to send a non-dispersive ultrasonic wave of a narrow beam width. However, there is an unresolved conflict between the generation of the non- or less-dispersive wave and the transmission of a narrow-beam wave into a test structure. Among others, the thickness of the waveguide unit in a waveguide transducer is the key variable determining these two conflicting criteria, but the use of a uniformly-thick waveguide of any thickness cannot fulfill the two conflicting criteria simultaneously. In this study, we propose a specially-engineered tapered waveguide unit for the simultaneous satisfaction. An excitation unit is installed at the end of the thin region of the tapered waveguide and generates only the lowest non-dispersive shear-horizontal wave. Then the generated wave propagates through the tapered region of the waveguide unit and reaches the thick region of the waveguide with insignificant mode conversion to higher modes. If the tapered waveguide is used, the surviving lowest mode in the thick region of the waveguide is shown to carry most of the transmitted power and is finally propagated into a test structure. Because the beam size of the propagated wave and the thickness of the contacting waveguide region are inversely related, the thick contacting region of the tapered waveguide ensures narrow beam width. Numerical and experimental investigations were performed to check the effectiveness of the proposed waveguide-tapering approach.

  20. First Principles Studies of Tapered Silicon Nanowires: Fundamental Insights and Practical Applications

    Science.gov (United States)

    Wu, Zhigang

    2008-03-01

    Nanowires (NWs) are often observed experimentally to be tapered rather than straight-edged, with diameters (d) shrinking by as much as 1 nm per 10 nm of vertical growth. Previous theoretical studies have examined the electronic properties of straight-edged nanowires (SNWs), although the effects of tapering on quantum confinement may be of both fundamental and practical importance. We have employed ab initio calculations to study the structural and electronic properties of tapered Si NWs. As one may expect, tapered nanowires (TNWs) possess axially-dependent electronic properties; their local energy gaps vary along the wire axis, with the largest gap occurring at the narrowest point of the wire. In contrast to SNWs, where confinement tends to shift valence bands more than conduction bands away from the bulk gap, the unoccupied states in TNWs are much more sensitive to d than the occupied states. In addition, tapering causes the band-edge states to be spatially separated along the wire axis, a consequence of the interplay between a strong variation in quantum confinement strength with diameter and the tapering-induced charge transfer. This property may be exploited in electronic and optical applications, for example, in photovoltaic devices where the separation of the valence and conduction band states could be used to transport excited charges during the thermalization process. In order to gain insight into TNW photovoltaic properties, we have also carried out calculations of the dipole matrix elements near the band edges as well as the role of metal contacts on TNW electronic properties. Finally, a combination of ab initio total energy calculations and classical molecular dynamics (MD) simulations are employed to suggest a new technique for bringing nanoscale objects together to form ordered, ultra high-aspect ratio nanowires. This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  1. 77 FR 2031 - Tapered Roller Bearings and Parts Thereof, Finished and Unfinished From the People's Republic of...

    Science.gov (United States)

    2012-01-13

    ... Unfinished From the People's Republic of China: Initiation of Antidumping Duty New Shipper Review, 76 FR... International Trade Administration Tapered Roller Bearings and Parts Thereof, Finished and Unfinished From the... shipper review of the antidumping duty order on tapered roller bearings and parts thereof, finished...

  2. 76 FR 6397 - Tapered Roller Bearings and Parts Thereof, Finished and Unfinished From the People's Republic of...

    Science.gov (United States)

    2011-02-04

    ... China, 52 FR 22667 (June 15, 1987) (``Order''). On December 23, 2010, pursuant to section 751(a)(2)(B)(i... International Trade Administration Tapered Roller Bearings and Parts Thereof, Finished and Unfinished From the... shipper review (``NSR'') of the antidumping duty order on tapered roller bearings (``TRBs'') from...

  3. 78 FR 3396 - Tapered Roller Bearings and Parts Thereof, Finished and Unfinished, From the People's Republic of...

    Science.gov (United States)

    2013-01-16

    ..., 73 FR 8273, 8279 (February 13, 2008) (unchanged in Wooden Bedroom Furniture from the People's... Administrative Review, Rescission In Part, and Intent To Rescind in Part, 77 FR 40579 (July 10, 2012... incorporating tapered roller bearings; and tapered roller housings (except pillow blocks) incorporating...

  4. Computational fluid dynamics analysis of the oscillatory flow in a jet pump: the influence of taper angle

    NARCIS (Netherlands)

    Oosterhuis, Joris P.; Bühler, Simon; Wilcox, Douglas; Meer, van der Theo H.; Alemany, A.; Freibergs, J.

    2014-01-01

    A two-dimensional CFD model for predicting the oscillating flow through a jet pump is developed. Various taper angles are investigated and total minor loss coefficients are derived. A good correspondence is achieved with experimental results from the literature. However, at higher taper angles a dra

  5. Low-loss deposition of solgel-derived silica films on tapered fibers.

    Science.gov (United States)

    Kakarantzas, G; Leon-Saval, S G; Birks, T A; Russell, P St J

    2004-04-01

    Films of porous silica are deposited on the uniform waists of tapered fibers in minutes by a modified solgel dip coating method, inducing less than 0.2 dB of loss. The coated tapers are an ideal platform for realizing all-fiber devices that exploit evanescent-field interactions with the deposited porous film. As an example we demonstrate structural long-period gratings in which a periodic index variation in the film arises from the porosity variation produced by spatially varying exposure of the waist to a scanned CO2 laser beam. The long period grating is insensitive to temperature up to 800 degrees C. PMID:15072361

  6. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2010-01-01

    solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm......High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality...

  7. Interlaminar stresses and fracture behavior in thickness-tapered composite laminates

    Science.gov (United States)

    He, Kan

    Design and manufacture of a variable thickness composite laminate such as a helicopter yoke involves tapering the laminate by dropping individual plies at discrete internal locations, in order to tailor the stiffness of the laminate. The ply drop in the laminate creates large interlaminar stresses and initiates delamination. Therefore, there is a necessity to investigate the fundamental failure mechanisms and controlling parameters that account for the delamination mode of failure in tapered laminates. In this thesis, a numerical and experimental study on interlaminar stresses and delamination in tapered laminates is presented, including a critical and comprehensive review on earlier works on this type of structure. Numerical analyses performed involved development of partial hybrid stress finite elements needed to enhance computational efficiency, and development of a physical concept-based modified shear-lag model that is based on the essential assumptions that both plies and resin layers are treated as carriers of tensile stress and also to act as stress-transfer media. Experimental analysis was attempted to assess the accuracy of the numerical predictions. For this purpose, tapered NCT-301 Graphite/Epoxy specimens were manufactured using a ply in-fill technique for the cured consolidation and tested under quasi-static uniaxial tension. To perform strength and delamination analyses of the tapered laminate, the laminate was modeled as a generalized plane deformation problem, where all the variables involved in the model are independent of the coordinate system. Also quasi-three dimensional partial hybrid finite elements were used to quantify the analysis. In addition to the plies, the inter-ply resin at the critical ply interface was also modeled in order to have direct and realistic interlaminar responses. Stress-based criteria that have proved to be effective in determination of critical location and load of delamination onset were utilized in this study to

  8. Tapered Simplified Modal Method for Analysis of Non-rectangular Gratings

    CERN Document Server

    Li, Shuai; Barbastathis, George

    2016-01-01

    The Simplified Modal Method (SMM) provides a quick and intuitive way to analyze the performance of gratings of rectangular shapes. For non-rectangular shapes, a version of SMM has been developed, but it applies only to the Littrow-mounting incidence case and it neglects reflection. Here, we use the theory of mode-coupling in a tapered waveguide to improve SMM so that it applies to non-rectangular gratings at arbitrary angles of incidence. Moreover, this new 'Tapered Simplified Modal Method' (TSMM) allows us to properly account for reflected light. We present here the analytical development of the theory and numerical simulations, demonstrating the validity of the method.

  9. Temperature or strain induced adjustable-chirp characteristics of uniform fibre grating with tapered metal coating

    Institute of Scientific and Technical Information of China (English)

    Liu Yan; Li Bin; Zheng Kai; Tan Zhong-Wei; Chen Yong; Wang Yan Hua; Ren Wen-Hua; Jian Shui-Sheng

    2007-01-01

    Temperature and strain characteristics of uniform fibre grating with tapered metal coatings have been analysed theoretically, by which adjustable chirp characteristics of such gratings are shown. Electroplating is adopted to fabricate such gratings, and the tapered metal coating is obtained by gradually drawing the fibre grating out of the solution during the process of electroplating. The gradually changing cross-sectional area of the metal coating is calculated by a newly suggested numerical method. By combining the theoretical and numerical simulation analyses, the gratings' characteristics are given at various temperatures and strains. The results obtained using such a method are also testified by experiments.

  10. About the role of phase matching between a coated microsphere and a tapered fiber: experimental study

    OpenAIRE

    Ristic, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Nunzi-Conti, Gualtiero; Ivanda, Mile; Righini, Giancarlo; Cibiel, Gilles; Ferrari, Maurizio

    2013-01-01

    Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO2 - 30HfO2 glass doped with 0.3 mol% Er3+ ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er3+ emissi...

  11. Intensity-measurement bend sensors based on periodically tapered soft glass fibers

    OpenAIRE

    Wang, Y.; Richardson, D. J.; Brambilla, G; Feng, X.; Petrovich, M.N.; Ding, M.; Song, Z.(Central China Normal University, Wuhan, China)

    2011-01-01

    We demonstrate a novel technique for tapering periodically an all-solid soft glass fiber, consisting of two types of lead silicate glasses, by the use of a focused CO2 laser beam and investigate the bend sensing applications of the periodically-tapered soft glass fiber. Such a soft glass fiber with periodic microtapers could be used to develop promising bend sensors with a sensitivity of -27.75 ?W/m^-1 by means of measuring the bend-induced change of light intensity. The proposed bend sensor ...

  12. Study on Liquid-Phase Axial Dispersion in Converging Taper Liquid-Solid Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fiuidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.

  13. Widely Tunable High-Power Tapered Diode Laser at 1060 nm

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Sumpf, Bernd; Erbert, Götz;

    2011-01-01

    We report a large tuning range from 1018 to 1093 nm from a InGaAs single quantum-well 1060-nm external cavity tapered diode laser. More than 2.5-W output power has been achieved. The tuning range is to our knowledge the widest obtained from a high-power InGaAs single quantum-well tapered laser...... operating around 1060 nm. The light emitted by the laser has a nearly diffraction limited beam quality and a narrow linewidth of less than 6 pm everywhere in the tuning range....

  14. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle.

    Science.gov (United States)

    Huang, Yunyun; Tian, Zhuang; Sun, Li-Peng; Sun, Dandan; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2015-10-19

    A sensitive bio-probe to in situ detect unlabeled single-stranded DNA targets based on optical microfiber taper interferometer coated by a high ordered pore arrays conjugated polymer has been presented. The polymer coating serves as tentacles to catch single-stranded DNA molecules by π-π conjugated interaction and varies the surface refractive index of the optical microfiber. The microfiber taper interferometer translates the refractive index information into wavelength shift of the interference fringe. The sensor exhibits DNA concentration sensitivity of 2.393 nm/log M and the lowest detection ability of 10(-10) M or even lower. PMID:26480357

  15. ¿Cómo ajustar la carga de entrenamiento? : proceso de tapering en baloncesto

    OpenAIRE

    Muñoz Diez, Rubén

    2014-01-01

    El objetivo del trabajo es determinar cómo se puede ajustar la carga de entrena-miento durante el periodo competitivo en baloncesto. Se realiza una revisión bibliográ-fica del tapering para determinar cuáles son las variables más importantes a utilizar en una puesta a punto. Tras esto se adjuntan varias propuestas en función de la semana competitiva y se pretende aclarar si es factible la utilización de un tapering en deportes con un periodo de competición muy concentrado.

  16. Tapered and linearly chirped fiber Bragg gratings with co-directional and counter-directional resultant chirps

    Science.gov (United States)

    Osuch, Tomasz

    2016-05-01

    A method of spectral width tailoring of tapered fiber Bragg gratings is theoretically analyzed and experimentally verified. This concept is based on inscription grating structures in which synthesis of chirps comes from both taper profile and a linearly chirped phase mask used for grating inscription. It is shown that under UV exposure and depending on the orientation of the optical fiber taper relative to the variable-pitch phase mask, tapered and linearly chirped fiber Bragg gratings (TCFBG) with resultant co-directional or counter-directional chirps are achieved. Thus, both effects, those of reduction and enhancement of the grating chirp, as well as their influence on the grating spectral response, are presented. In particular, using the above approach TCFBG with significantly narrowed spectral width are shown. Moreover, fused tapered chirped FBG with relatively large waist diameter are shown having broad spectrum, something that prior to now was not attainable using previously developed techniques.

  17. Optimum fiber tapers for increasing the power in the blue-edge of a supercontinuum - group-acceleration matching

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Judge, Alexander; Thomsen, Carsten L.;

    2011-01-01

    We demonstrate how the gradient of the tapering in a tapered fiber can significantly affect the trapping and blueshift of dispersive waves (DWs) by a soliton. By modeling the propagation of a fundamental 10 fs soliton through tapered fibers with varying gradients, it is shown that the soliton traps...... generated in a tapered fiber and explain observations of a lack of power in the blue edge....... and blueshifts an increased fraction of the energy in its DW when the gradient is decreased. This is quantified by the group-acceleration mismatch between the soliton and DW at the entrance of the taper. These findings have direct implications for the achievable power in the blue edge of a supercontinuum...

  18. Augmented PMMA distribution: improvement of mechanical property and reduction of leakage rate of a fenestrated pedicle screw with diameter-tapered perforations.

    Science.gov (United States)

    Tan, Quan-Chang; Wu, Jian-Wei; Peng, Fei; Zang, Yuan; Li, Yang; Zhao, Xiong; Lei, Wei; Wu, Zi-Xiang

    2016-06-01

    OBJECTIVE This study investigated the optimum injection volume of polymethylmethacrylate (PMMA) to augment a novel fenestrated pedicle screw (FPS) with diameter-tapered perforations in the osteoporotic vertebral body, and how the distribution characteristics of PMMA affect the biomechanical performance of this screw. METHODS Two types of FPSs were designed (FPS-A, composed of 6 perforations with an equal diameter of 1.2 mm; and FPS-B, composed of 6 perforations each with a tapered diameter of 1.5 mm, 1.2 mm, and 0.9 mm from tip to head. Each of 28 human cadaveric osteoporotic vertebrae were randomly assigned to 1 of 7 groups: FPS-A1.0: FPS-A+1.0 ml PMMA; FPS-A1.5: FPS-A+1.5 ml PMMA; FPS-A2.0: FPS-A+2.0 ml PMMA; FPS-B1.0: FPS-B+1.0 ml PMMA; FPS-B1.5: FPS-B+1.5 ml PMMA; FPS-B2.0: FPS-B+2.0 ml PMMA; and conventional pedicle screws (CPSs) without PMMA. After the augmentation, 3D CT was performed to assess the cement distribution characteristics and the cement leakage rate. Axial pullout tests were performed to compare the maximum pullout force thereafter. RESULTS The CT construction images showed that PMMA bone cement formed a conical mass around FPS-A and a cylindrical mass around FPS-B. When the injection volume was increased from 1.0 ml to 2.0 ml, the distribution region of the PMMA cement was enlarged, the PMMA was distributed more posteriorly, and the risk of leakage was increased. When the injection volume reached 2.0 ml, the risk of cement leakage was lower for screws having diameter-tapered perforations. The pullout strengths of the augmented FPS-A groups and FPS-B groups were higher than that of the CPS group (p cement. The diameter-tapered design enabled PMMA to form larger bone-PMMA interfaces and achieve a relatively higher pullout strength, although statistical significance was not reached. Study results indicated 1.5-ml of PMMA was a conservative volume for PMMA augmentation; more cement injection would significantly increase the risk of cement leakage

  19. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    DEFF Research Database (Denmark)

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien;

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement ...

  20. Bond strengths of five tapered root posts regarding the post surface

    NARCIS (Netherlands)

    Nergiz, [No Value; Schmage, P; Platzer, U; Ozcan, M

    2002-01-01

    The advantage of tapered passive root posts is their homogenous force transmission without creating stress peaks on the root surface because of their anatomical root form. However, their expected retentive strengths are low compared with the other post systems. The objective of this in vitro study w

  1. Narrow line width operation of a 980 nm gain guided tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Barrientos-Barria, Jessica;

    2011-01-01

    We demonstrate two different schemes for the spectral narrowing of a 12 emitter 980 nm gain guided tapered diode laser bar. In the first scheme, a reflective grating has been used in a Littman Metcalf configuration and the wavelength of the laser emission could be narrowed down from more than 5.5...

  2. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2016-06-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  3. Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles

    Science.gov (United States)

    Choi, Sung-Hwan; Kim, Seong-Jin; Lee, Kee-Joon; Sung, Sang-Jin; Chun, Youn-Sic

    2016-01-01

    Objective The purpose of this study was to analyze stress distributions in the roots, periodontal ligaments (PDLs), and bones around cylindrical and tapered miniscrews inserted at different angles using a finite element analysis. Methods We created a three-dimensional (3D) maxilla model of a dentition with extracted first premolars and used 2 types of miniscrews (tapered and cylindrical) with 1.45-mm diameters and 8-mm lengths. The miniscrews were inserted at 30°, 60°, and 90° angles with respect to the bone surface. A simulated horizontal orthodontic force of 2 N was applied to the miniscrew heads. Then, the stress distributions, magnitudes during miniscrew placement, and force applications were analyzed with a 3D finite element analysis. Results Stresses were primarily absorbed by cortical bone. Moreover, very little stress was transmitted to the roots, PDLs, and cancellous bone. During cylindrical miniscrew insertion, the maximum von Mises stress increased as insertion angle decreased. Tapered miniscrews exhibited greater maximum von Mises stress than cylindrical miniscrews. During force application, maximum von Mises stresses increased in both groups as insertion angles decreased. Conclusions For both cylindrical and tapered miniscrew designs, placement as perpendicular to the bone surface as possible is recommended to reduce stress in the surrounding bone. PMID:27478796

  4. Optimization of line-tapered MMI devices using a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Xiao; Jianjiang Zhou; Shujing Li; Lizhen Huang; Dingshan Gao; Huaming Wu

    2009-01-01

    @@ We discuss the optimal design of line-tapered multimode interference (MMI) devices using a genetic al-gorithm (GA).A 1×4 MMI device is designed as a numerical example.Compared with the conventional design based on self-imaging theory, the present method demonstrates superior performance with low in-sertion loss and small non-uniformity.

  5. 77 FR 16859 - Tapered Roller Bearings From China; Scheduling of a Full Five-Year Review

    Science.gov (United States)

    2012-03-22

    ... that a full review pursuant to section 751(c)(5) of the Act should proceed (76 FR 72213, November 22... amended. The amendments took effect on November 7, 2011. See 76 FR 61937 (Oct. 6, 2011) and the newly... COMMISSION Tapered Roller Bearings From China; Scheduling of a Full Five- Year Review AGENCY: United...

  6. 77 FR 12326 - Tapered Roller Bearings From China; Scheduling of a Full Five-Year Review

    Science.gov (United States)

    2012-02-29

    ... to section 751(c)(5) of the Act should proceed (76 FR 72213, November 22, 2011). A record of the... amendments took effect on November 7, 2011. See 76 FR 61937 (Oct. 6, 2011) and the newly revised Commission's... COMMISSION Tapered Roller Bearings From China; Scheduling of a Full Five- Year Review AGENCY: United...

  7. A comparison between different propagative schemes for the simulation of tapered step index slab waveguides

    NARCIS (Netherlands)

    Haes, Jan; Baets, Roel; Weinert, C.M.; Gravert, M.; Nolting, H.P.; Andrade, M. Adelaide; Leite, A.; Bissessur, Hans K.; Davies, J.B.; Ettinger, Robert D.; Ctyroky, Jiri; Ducloux, E.; Ratovelomanana, F.; Vodjdani, N.; Helfert, Stefan; Pregla, Reinholt; Wijnands, F.H.G.M.; Hoekstra, H.J.W.M.; Krijnen, G.J.M.

    1996-01-01

    The performance and accuracy of a number of propagative algorithms are compared for the simulation of tapered high contrast step index slab waveguides. The considered methods include paraxial as well as nonparaxial formulations of optical field propagation. In particular attention is paid to the val

  8. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    Science.gov (United States)

    Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei

    2011-01-01

    This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair. PMID:22163821

  9. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions.

    Science.gov (United States)

    Schett, Georg; Emery, Paul; Tanaka, Yoshiya; Burmester, Gerd; Pisetsky, David S; Naredo, Esperanza; Fautrel, Bruno; van Vollenhoven, Ronald

    2016-08-01

    Improvements in the control of inflammation in rheumatoid arthritis (RA) by conventional synthetic and biologic disease-modifying antirheumatic drugs (DMARDs) have led to a substantial change in the clinical outcomes of patients during the last 30 years. Current treatment can lead to sustained remission in some patients raising questions about the optimal management strategies in this subgroup of patients. Today, tapering of DMARDs and even their discontinuation appears as an interesting concept for achieving a more tailored and dynamic treatment approach of RA, especially in patients, who achieved full disease control by DMARD treatment. In this review article, current developments of DMARD tapering are discussed. The article provides an overview of existing studies on this topic and addresses new strategies to reach drug-free remission. Furthermore, concepts for defining patients eligible for DMARD tapering are described and potential future strategies in using biomarkers in predicting the risk for disease relapse after initiation of DMARD tapering are addressed. These findings are finally considered in light of the vision to achieve cure as an ultimate goal in patients with RA achieving full control of inflammation. PMID:27261493

  10. Hypnotic Taper with or without Self-Help Treatment of Insomnia: A Randomized Clinical Trial

    Science.gov (United States)

    Belleville, Genevieve; Guay, Catherine; Guay, Bernard; Morin, Charles M.

    2007-01-01

    This study aimed to assess the efficacy of a minimal intervention focusing on hypnotic discontinuation and cognitive-behavioral treatment (CBT) for insomnia. Fifty-three adult chronic users of hypnotics were randomly assigned to an 8-week hypnotic taper program, used alone or combined with a self-help CBT. Weekly hypnotic use decreased in both…

  11. Biorheological Model on Flow of Herschel-Bulkley Fluid through a Tapered Arterial Stenosis with Dilatation

    Directory of Open Access Journals (Sweden)

    S. Priyadharshini

    2015-01-01

    Full Text Available An analysis of blood flow through a tapered artery with stenosis and dilatation has been carried out where the blood is treated as incompressible Herschel-Bulkley fluid. A comparison between numerical values and analytical values of pressure gradient at the midpoint of stenotic region shows that the analytical expression for pressure gradient works well for the values of yield stress till 2.4. The wall shear stress and flow resistance increase significantly with axial distance and the increase is more in the case of converging tapered artery. A comparison study of velocity profiles, wall shear stress, and flow resistance for Newtonian, power law, Bingham-plastic, and Herschel-Bulkley fluids shows that the variation is greater for Herschel-Bulkley fluid than the other fluids. The obtained velocity profiles have been compared with the experimental data and it is observed that blood behaves like a Herschel-Bulkley fluid rather than power law, Bingham, and Newtonian fluids. It is observed that, in the case of a tapered stenosed tube, the streamline pattern follows a convex pattern when we move from r/R=0 to r/R=1 and it follows a concave pattern when we move from r/R=0 to r/R=-1. Further, it is of opposite behaviour in the case of a tapered dilatation tube which forms new information that is, for the first time, added to the literature.

  12. Effects of Prosthesis Stem Tapers on Stress Distribution of Cemented Hip Arthroplasty

    International Nuclear Information System (INIS)

    Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3 deg. at anterior/posterior, 3 deg. at medial/lateral and 10 deg. from wide lateral to narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.

  13. Effect of length and diameter of tapered posts on the retention

    NARCIS (Netherlands)

    Nergiz, [No Value; Schmage, P; Ozcan, M; Platzer, U

    2002-01-01

    The force transmission of tapered unthreaded posts along the root has been reported to be homogenous but their retentive strength was found to be lower compared with those of parallel unthreaded or other kinds of threaded posts. The purpose of this in vitro study was to investigate the effect of len

  14. Effects of Tapered Diffuser Vane on the Flow Field and Noise of a Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    Yutaka OHTA; Takashi GOTO; Eisuke OUTA

    2007-01-01

    The effects of a three-dimensional tapered diffuser vane on the flow field and noise radiated from a centrifugal compressor are investigated by both CFD analyses and experiments. Tapered diffuser vanes are very useful not only for the reduction of the interaction tone noise but also for the improvement of the pressure recovery characteristics within the diffuser passage. By using tapered diffuser vanes, the interaction area between the impeller-discharge flow and diffuser vanes becomes small, and then the noise level of the discrete tone can be reduced remarkably as a result. Furthermore, by utilizing the visualization technique of vortical structures based on the CFD results, the scale of vortex shedding leaving from the leading edge of the diffuser vanes is found to be contracted and a tendency for the turbulence level to decrease is observed. This may be the cause of the attenuation of broadband noise components. The secondary flow, which is considered to be an obstruction of diffuser pressure recovery, can also be suppressed by the tapered diffuser vanes, and the pressure decrease observed in the throat part of the diffuser passage is further reducible.

  15. Theoretical Additional Span Loading Characteristics of Wings with Arbitrary Sweep, Aspect Ratio, and Taper Ratio

    Science.gov (United States)

    Deyoung, John

    1947-01-01

    The Weissinger method for determining additional span loading has been used to find the lift-curve slope, spanwise center of pressure, aerodynamic center location, and span loading coefficients of untwisted and uncambered wings having a wide range of plan forms characterized by various combinations of sweep, aspect ratio, and taper ratio. The results are presented as variations of the aerodynamic characteristics with sweep angle for various values of aspect ratio and taper ratio. Methods are also included for determining induced drag and the approximate effects of compressibility. Despite the limitations of a lifting line method such as Weissinger's, the good agreement found between experimentally and theoretically determined characteristics warrants confidence in the method. In particular, it is believed that trends observed in results of the Weissinger method should be reliable. One of the most significant results showed that for each angle of sweep there is a taper ratio for which aspect ratio has little effect on the span loading and for which the loading is practically elliptical. This elliptic loading is approached at a taper ratio of 1.39 for 30 degree of sweepforward, 0.45 for zero degree of sweepback. (author)

  16. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    Science.gov (United States)

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-08-15

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field.

  17. Novel Fused Taper 1x4 Star Coupler for Full-Band Operation

    Institute of Scientific and Technical Information of China (English)

    Masakazu; Ohashi; Hideki; Sasaki; Ryoukichi; Matsumoto; Daiichiro; Tanaka; Akira; Wada

    2003-01-01

    A novel fused taper 1×4 coupler for full-band operation is proposed. Wavelength flattened characteristics and excellent branching uniformity less than 0.4 dB have been achieved in wavelength range from 1200 nm to 1700 nm.

  18. Novel Fused Taper 1x4 Star Coupler for Full-Band Operation

    Institute of Scientific and Technical Information of China (English)

    Masakazu Ohashi; Hideki Sasaki; Ryoukichi Matsumoto; Daiichiro Tanaka; Akira Wada

    2003-01-01

    A novel fused taper 1x4 coupler for full-band operation is proposed. Wavelength flattened characteristics and excellent branching uniformity less than 0.4 dB have been achieved in wavelength range from 1200 nm to 1700 nm.

  19. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    Science.gov (United States)

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-01-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885

  20. Intrinsic size effects in the mechanical response of taper-free nanopillars of metallic glass

    NARCIS (Netherlands)

    Chen, Chang Qiang; Pei, Yu Tao; Kuzmin, Oleksii; Zhang, Zhe Feng; Ma, Evan; Hosson, Jeff Th.M. De

    2011-01-01

    Both quantitative stress-strain curves and in situ transmission electron microscope observations demonstrate intrinsically strong sample size effects on the deformation mode of taper-free metallic glass pillars. With the pillar diameter gradually decreasing from 640 to 70 nm, the deformation mode ev

  1. Tapering photonic crystal fibers for generating self-similar ultrashort pulses at 1550 nm

    Science.gov (United States)

    Manimegalai, Annamalai; Senthilnathan, Krishnamoorthy; Nakkeeran, Kaliyaperumal; Babu, Padmanabhan Ramesh

    2016-06-01

    The generation of high-quality self-similar ultrashort pulses at 1550 nm by tapering the photonic crystal fibers (PCFs) is numerically demonstrated. We taper the PCF to achieve the exponentially decreasing dispersion and exponentially increasing nonlinearity profiles, which turn out to be the fundamental requirements for generating the chirped self-similar pulses. Further, we find that the chirped solitons could also be generated with the other three possible exponential variations. Thus, for the first time, we attempt tapering the PCFs for bringing in these exponentially varying dispersion and nonlinear profiles. We carry out the detailed pulse compression studies for various decay rates of the dispersion profiles as the decay rates of dispersion depend on the initial chirp and hence on compression factor, too. The unique feature of this pulse compressor lies in the fact that the required length of the tapered PCF is about 20 times less than that of the previously reported pulse compressor operating at 850 nm.

  2. Thinning effects on taper of Eremanthus incanus (Less. Less. in natural stands

    Directory of Open Access Journals (Sweden)

    Gabriel William Dias Ferreira

    2014-09-01

    Full Text Available This study aimed to analyze the effect of different thinning intensities on stem taper of Eremanthus incanus in naturally regenerated stands. Data from an experiment located at Morro do Pilar/MG and installed in 2002 were used. About three years after a fire occurrence that provided an intense regeneration of Eremanthus incanus, five thinning intensities were applied and compared with a control treatment with no thinning. Seven and a half years after installation of the trial 360 standing trees in the different thinning treatments and diameter classes were scaled. Three taper equations were tested: Schöepfer (1966, Hradetzky (1976 and Kozak, Munro e Smith (1969, as well as the possibility of grouping the treatments into one equation using the identity test. The equation proposed by Schöepfer (1966 was the most accurate and precise in estimating the diameters along the stem. While the diameters at different stem height were satisfactorily estimated, the three equations tested tended to underestimate the volume of the larger trees. Using the identity test, it was possible to use one taper equation for the two lower thinning intensities, and another to represent the trees placed in the three treatments with higher thinning intensities. Trees grown at lower densities of plants per hectare were found to be more conical compared to the trees at higher densities. Trees of the control treatment were less conical and needed an exclusive taper equation.

  3. Apparently homogeneous but intrinsically intermittent flow of taper-free metallic glass nanopillars

    NARCIS (Netherlands)

    Chen, C. Q.; Pei, Y. T.; De Hosson, J. Th. M.

    2012-01-01

    Taper-free small pillars of a Cu-based metallic glass with aspect ratios of c = 3 and 0.7 were tested in situ. With c = 3, decreasing the diameter D to similar to 120 nm caused the pillars to show apparently homogeneous deformation that was intrinsically accommodated by many coordinating local shear

  4. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    Science.gov (United States)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  5. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2011-03-01

    Full Text Available This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG antibody-antigen pair.

  6. Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler

    DEFF Research Database (Denmark)

    Guo, Hairun; Pang, Fufei; Zeng, Xianglong;

    2013-01-01

    We theoretically analyzed the gain characteristics of an integrated semiconductor quantum dot (QD) fiber amplifier (SQDFA) by using a 2×2 tapered fiber coupler with a PbS QD-coated layer. The asymmetric structure of the fiber coupler is designed to have a maximum working bandwidth around 1550-nm...

  7. New Techniques for Exciting Linearly Tapered Slot Antennas with Coplanar Waveguide

    Science.gov (United States)

    Simons, R. N.; Lee, R. Q.; Perl, T. D.

    1992-01-01

    Two new techniques for exciting a linearly tapered slot antenna (LTSA) with coplanar waveguide (CPW) are introduced. In the first approach, an air bridge is used to couple power from a CPW to an LTSA. In the second approach, power is electromagnetically coupled from a finite CPW (FCPW) to an LTSA. Measured results at 18 GHz show excellent return loss and radiation patterns.

  8. Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber

    DEFF Research Database (Denmark)

    Judge, A.C.; Bang, Ole; Eggleton, B.J.;

    2009-01-01

    nonuniform waists, an additional enhancement of the SSFS is achieved by varying the taper waist diameter along its length in a carefully designed fashion in order to present an optimal level of group-velocity dispersion to the soliton at each point, thus avoiding the spectral recoil due to the emission...

  9. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    DEFF Research Database (Denmark)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian;

    2016-01-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper...

  10. Randomized clinical trial comparing blunt tapered and standard needles in closing abdominal fascia.

    NARCIS (Netherlands)

    Nordkam, R.A.; Bluyssen, S.J.; Goor, H. van

    2005-01-01

    Glove perforation frequently occurs during the course of surgical procedures, introducing risks for both surgeons and patients. The aim of this study was to compare the use of blunt tapered and "sharp" needles during abdominal wall closure with respect to the incidence of glove perforation and the c

  11. Survival Rate of Short, Locking Taper Implants with a Plateau Design: A 5-Year Retrospective Study

    OpenAIRE

    Kemal Özgür Demiralp; Nihat Akbulut; Sebnem Kursun; Didem Argun; Nilsun Bagis; Kaan Orhan

    2015-01-01

    Background. Short implants have become popular in the reconstruction of jaws, especially in cases with limited bone height. Shorter implants, those with locking tapers and plateau root shapes, tend to have longer survival times. We retrospectively investigated the cumulative survival rates of Bicon short implants (

  12. Effect of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ding Xueyong; Li Hongfan; Lv Zhensu [Polytechnic Institute of San Ya University, Sanya, Hainan 572022 (China)

    2012-09-15

    Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Bragg structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.

  13. THE EFFECT OF TAPERING PERIOD ON PLASMA PRO-INFLAMMATORY CYTOKINE LEVELS AND PERFORMANCE IN ELITE MALE CYCLISTS

    Directory of Open Access Journals (Sweden)

    Peter M. Tiidus

    2009-12-01

    Full Text Available The aim of this study was to investigate the effect of two different tapering period lengths on the concentration of plasma interleukin- 6 (IL-6, interleukin (IL-1β and tumor necrosis factor-? (TNF-α and performance in elite male cyclists. To this end, after completing 8 weeks progressive endurance exercise, twenty four high-level endurance cyclists were randomly assigned to one of two groups: a control group of cyclists (n = 12 continued performing progressive weekly training volume for 3 weeks while a taper group of cyclists (n = 12 proceeded with a 50% reduction in weekly training volume relative to the control group. A simulated 40 min time trial (40TT performance ride was used as the criterion index of performance before and after the tapering period to evaluate the physiological and performance effects of each protocol. Blood samples were collected immediately post-40TT from all participants at the beginning of week 1, and the end of weeks 4, 8, 9 and 11. IL-1β, IL-6 and TNFα were assayed using a standard commercial ELISA kits (Quantikine; R & D Systems, Minneapolis, MN. The mean time to complete the 40TT in the taper group decreased significantly (p < 0.01 after both 1 and 3 weeks with reduced training volume relative to the control group. There were significant reductions in (p < 0.001 IL-1β, IL-6 and TNFα concentrations in the taper group relative to the control group at the end of the 3 week tapering period, but not at the end of the 1 week tapering period. These results demonstrate that both a 1 and a 3 week taper period will result in improved physical performance in trained cyclists but only a 3 week taper period will result in attenuation of post-exercise pro- inflammatory cytokines when compared to those continuing a more intense training regimen

  14. Učinkovitost sustava ProTaper Universal Retreatment™ i ručne tehnike u endodontskoj reviziji

    OpenAIRE

    Aguiar, Carlos Menezes; de Assis Costa Lima, Grasiele; Damo Bernart, Fabiana; Cruz Câmara, Andréa

    2011-01-01

    Svrha istraživanja: Željela se procijeniti učinkovitost sustava ProTaper Universal Retreatment™ i ručnih instrumenata kod endodontske revizije korištenjem dvaju otapala gutaperki – Orange Oila i Eucalypthola. Materijali i metode: Odabrano je 40 meziobukalnih korijena. Podijeljeni su u četiri skupine po 10 uzoraka: I. skupina – punjenje je uklonjeno sustavom ProTaper Universal Retreatment ™ i otapalom Orange Oilom; II. skupina – korijeni su očišćeni sustavom ProTaper Universal Retreatment™ i o...

  15. Integration of an optical fiber taper with an optical microresonator fabricated in glass by femtosecond laser 3D micromachining

    CERN Document Server

    Song, Jiangxin; Tang, Jialei; Qiao, Lingling; Cheng, Ya

    2014-01-01

    We report on fabrication of a microtoroid resonator of a high-quality factor (i. e., Q-factor of ~3.24x10^6 measured under the critical coupling condition) using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber taper to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21x10^5 as measured in air.

  16. Complement activation capacity in plasma before and during high-dose prednisolone treatment and tapering in exacerbations of Crohn's disease and ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Baatrup Gunnar

    2005-09-01

    Full Text Available Abstract Background Ulcerative colitis (UC and Crohn's disease (CD are characterized by intestinal inflammation mainly caused by a disturbance in the balance between cytokines and increased complement (C activation. Our aim was to evaluate possible associations between C activation capacity and prednisolone treatment. Methods Plasma from patients with exacerbations of UC (n = 18 or CD (n = 18 were collected before and during high dose prednisolone treatment (1 mg/kg body weight and tapering. Friedman's two way analysis of variance, Mann-Whitney U test and Wilcoxon signed-rank sum test were used Results Before treatment, plasma from CD patients showed significant elevations in all C-mediated analyses compared to the values obtained from 38 healthy controls (p Conclusion Our findings indicate that C activation capacity is up-regulated significantly in plasma from CD patients. The decreases observed after prednisolone treatment reflect a general down-regulation in immune activation.

  17. 利用普通熔融拉锥机实现光子晶体光纤拉锥%Photonic crystal fibers tapering based on the conventional taper rig

    Institute of Scientific and Technical Information of China (English)

    奚小明; 孙桂林; 陈子伦; 侯静

    2012-01-01

    Photonic crystal fibers (PCF) tapering is one of the most important technologies to exploit the potential application value of PCFs. By optimizing the conventional tapering machine parameters, PCFs can be tapered using the "fast and cold" tapering method while preventing the hole collapse. Tapering of couple different PCFs were presented in the experiment, and the outer diameter of the PCFs were from 125 μm to 50 μm and 30 μm, respectively. The d/∧A of tapered PCFs was almost the same with the initial PCF and loss was less than 0.4 dB. Low loss tapering PCFs based on the conventional tapering machine lays a foundation for the manufacture of PCF devices.%光子晶体光纤的拉锥是实现光子晶体光纤潜在应用价值的重要技术手段.通过优化普通光纤拉锥机的参数,利用“快速低温”拉锥法有效控制了光子晶体光纤空气孔的相对塌缩.实验中实现了两种不同光子晶体光纤的拉锥,光纤外径分别从原来的125 μm拉锥到50μm和30μm,光纤的孔直径和孔间距之比基本保持不变,拉锥损耗小于0.4 dB.基于普通熔融拉锥机的光子晶体光纤低损耗拉锥为光纤器件的制作奠定了基础.

  18. Tapered ZnO Whiskers: {hkil}-Specific Mosaic Twinning VLS Growth from a Partially Molten Bottom Source

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2009-01-01

    Full Text Available Abstract Zn particulates overlaid with wurtzite (W-type ZnO condensates having nearly orthogonal and facets were found to self-catalyze unusual tapered W-ZnO whiskers upon isothermal atmospheric annealing, i.e., thermal oxidation, at 600 °C. Analytical electron microscopic observations indicated that such whiskers formed tapered slabs having mosaic and twinned domains. The tapered whiskers can be rationalized by an alternative vapor–liquid–solid growth, i.e., {hkil}-specific coalescence twinning growth from the ZnO condensates taking advantage of a partially molten bottom source of Zn and the adsorption of atoms at the whisker tips and ledges under the influence of capillarity effect. The tapered whiskers having strong photoluminescence at 391 nm and with a considerable flexibility could have potential applications.

  19. Effect of cyclic torsional preloading on cyclic fatigue resistance of ProTaper Next and Mtwo nickel–titanium instruments

    Directory of Open Access Journals (Sweden)

    Eugenio Pedullà

    2015-06-01

    Conclusions: Torsional preloads reduced the cyclic fatigue resistance of M-wire and conventional (as ProTaper Next and Mtwo NiTi rotary instruments except for Mtwo with 25% or 50% of torsional preloading.

  20. HSK工具锥柄的检测与动平衡%Test & Dynamic Balance of HSK Taper Shank

    Institute of Scientific and Technical Information of China (English)

    张铁铭

    2001-01-01

    The domestic HSK tooling system with hollow taper shank had a rapid development in recent years, but the manufacturing quality of the taper shanks has needs to improve. Taking HSK63-A shank and its mounting hole for example, the shape and position dimensions of HSK hollow taper shank are analyzed, and the quality testing and the dynamic balance of HSK hollow taper shank are introduced.%国产HSK空心锥柄工具系统近年来取得了较快发展,但其柄部制造质量还有待提高。以HSK63-A型柄部及其安装孔为例,分析了HSK空心锥柄的形位尺寸要求,介绍了HSK空心锥柄的质量检测及动平衡计算。

  1. A flat-topped etched diffraction grating demultiplexer with low polarization-dependent loss using a tapered MMI structure

    Institute of Scientific and Technical Information of China (English)

    Jun Song(宋军); Sailing He(何赛灵)

    2004-01-01

    A flat-topped etched diffraction grating(EDG)demultiplexer with a low polarization-dependent loss(PDL)is designed.A design and simulation method based on the method of moment(MoM)is proposed.A 65-channel EDG demultiplexer with channel spacing of 100 GHz is considered as a design example.A tapered multi-mode interferometer(MMI)is used to flatten the passband of the EDG demultiplexer.The numerical results show that the exit width of the tapered waveguide impacts the loss of the TE case more than that of the TM case.Based on this fact,the exit width of the taper is optimized to obtain the lowest PDL.The tapering angle is also optimized where the minimal ripple is obtained.The designed EDG demultiplexer has an excellent flat-topped spectral response and a very low PDL.

  2. Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices.

    Science.gov (United States)

    Almokhtar, Mohamed; Fujiwara, Masazumi; Takashima, Hideaki; Takeuchi, Shigeki

    2014-08-25

    Tapered optical fibers are promising one-dimensional nanophotonic waveguides that can provide efficient coupling between their fundamental mode and quantum nanoemitters placed inside them. Here, we present numerical studies on the coupling of single nitrogen-vacancy (NV) centers (single point dipoles) in nanodiamonds with tapered fibers. Our results lead to two important conclusions: (1) A maximum coupling efficiency of 53.4% can be realized for the two fiber ends when the NV bare dipole is located at the center of the tapered fiber. (2) NV centers even in 100-nm-sized nanodiamonds where bulk-like optical properties were reported show a coupling efficiency of 22% at the taper surface, with the coupling efficiency monotonically decreasing as the nanodiamond size increases. These results will be helpful in guiding the development of hybrid quantum devices for applications in quantum information science. PMID:25321215

  3. A Stereomicroscopic Evaluation of Dentinal Cracks at Different Instrumentation Lengths by Using Different Rotary Files (ProTaper Universal, ProTaper Next, and HyFlex CM: An Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Fauzia Ashraf

    2016-01-01

    Full Text Available Introduction. The aim of the present study was to evaluate the dentinal cracks after root canal preparation with rotary files: Gates Glidden, ProTaper Universal, ProTaper Next, and HyFlex CM at different instrumentation lengths. Methodology. Sixty-five mandibular premolars were mounted in the acrylic tube with simulated periodontal ligaments and the apex was exposed. The root canals were instrumented with different rotary files, namely, ProTaper Universal, ProTaper Next, and HyFlex CM, to the major apical foramen (AF, short AF, and beyond AF. The root apex was stained with 1% methylene blue dye and digital images of apical surface of every tooth were taken and development of dentinal defects was determined by using stereomicroscope. Multinomial logistic regression test was performed to identify influencing factors. Results. Instrumentation with rotary files terminated 2 mm short AF and did not cause any cracks. Significantly less cracks were seen when instrumentation with rotary files terminated 1 mm short apical foramen when compared with the instrumentation terminated at or beyond apical foramen (p<0.05. Conclusion. ProTaper Universal rotary files caused more dentinal cracks than ProTaper Next and HyFlex CM. Instrumentation short AF reduced the risk of dentinal defects.

  4. A Stereomicroscopic Evaluation of Dentinal Cracks at Different Instrumentation Lengths by Using Different Rotary Files (ProTaper Universal, ProTaper Next, and HyFlex CM): An Ex Vivo Study

    Science.gov (United States)

    Shankarappa, Pushpa; Misra, Abhinav; Sawhney, Asheesh; Sridevi, Nandamuri; Singh, Anu

    2016-01-01

    Introduction. The aim of the present study was to evaluate the dentinal cracks after root canal preparation with rotary files: Gates Glidden, ProTaper Universal, ProTaper Next, and HyFlex CM at different instrumentation lengths. Methodology. Sixty-five mandibular premolars were mounted in the acrylic tube with simulated periodontal ligaments and the apex was exposed. The root canals were instrumented with different rotary files, namely, ProTaper Universal, ProTaper Next, and HyFlex CM, to the major apical foramen (AF), short AF, and beyond AF. The root apex was stained with 1% methylene blue dye and digital images of apical surface of every tooth were taken and development of dentinal defects was determined by using stereomicroscope. Multinomial logistic regression test was performed to identify influencing factors. Results. Instrumentation with rotary files terminated 2 mm short AF and did not cause any cracks. Significantly less cracks were seen when instrumentation with rotary files terminated 1 mm short apical foramen when compared with the instrumentation terminated at or beyond apical foramen (p < 0.05). Conclusion. ProTaper Universal rotary files caused more dentinal cracks than ProTaper Next and HyFlex CM. Instrumentation short AF reduced the risk of dentinal defects.

  5. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier at 670 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, G.;

    2009-01-01

    A narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. 800 mW output power is obtained, and the laser system is tunable from 655 to 679 nm.......A narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. 800 mW output power is obtained, and the laser system is tunable from 655 to 679 nm....

  6. 1.38 W tunable high-power narrow-linewidth external-cavity tapered amplifier at 670 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.;

    2010-01-01

    A diffraction-limited narrow-linewidth diode laser system based on a tapered amplifier in external cavity is demonstrated. 1.38 W output power is obtained. The laser system is tunable from 659 to 675 nm.......A diffraction-limited narrow-linewidth diode laser system based on a tapered amplifier in external cavity is demonstrated. 1.38 W output power is obtained. The laser system is tunable from 659 to 675 nm....

  7. Evaluation of the flaring in mandibular molars danger zone using ProTaper rotatory system

    Directory of Open Access Journals (Sweden)

    Fernanda Missao Brugin MATSUBARA

    2005-11-01

    Full Text Available The aim of this study was to evaluate in vitro the flaring in mandibular molars danger zone, after root canal instrumentation with the ProTaper rotatory instrument system. Sixty extracted mandibular molars with fully formed apices had the mesial roots sectioned. The specimens were divided into four groups and instrumented until Shaping X, Shaping 1 and Shaping 2 files, respectively. One group was kept as control with no instrumentation. The results submitted to statistical analysis, showed a 1% significant differenceamong experimental groups, with an enlargement of the flaring in danger zone being directly proportional to the diameter of ProTaper instruments. It is concluded that the use of this instruments on the preparation of mandibular molars is safe because there isn’t any report of root perforation.

  8. Analysis of the polarization rotation effect in the inversely tapered spot size converter.

    Science.gov (United States)

    Jia, Lianxi; Zhou, Haifeng; Liow, Tsung-Yang; Song, Junfeng; Huang, Ying; Tu, Xiaoguang; Luo, Xianshu; Li, Chao; Fang, Qing; Yu, Mingbin; Lo, Guoqiang

    2015-10-19

    Inversely tapered spot size converter (SSC) is widely used to connect silicon waveguide with fiber in silicon photonics. However, the tapered structure may cause polarization rotation and further generate interference fluctuation in the transmission spectrum even of a straight waveguide. We analyzed the light propagation in a straight waveguide with SSC at the both ends with coupling matrix and transmission matrix methods. The analysis results matched with the phenomena we observed in the transmission spectrum. Combining the analysis with the measurement results, we calculated the polarization rotation efficiency of the SSC in different samples and analyzed the origin of the polarization rotation effect. Finally, we discussed the influence of the effect to the DP-QPSK signal and proposed several methods to release the impact. PMID:26480439

  9. Tapered acoustical directional couplers for integrated acousto-optical mode converters with weighted coupling

    Science.gov (United States)

    Herrmann, Harald; Rust, Ulrich; Schafer, Klaus

    1995-03-01

    Weighted coupling for strong sidelobe suppression of integrated acoustooptical mode converters in LiNbO3 using acoustical directional couplers has been studied theoretically and experimentally. A parameter free model for the propagation of surface acoustic waves in guiding structures has been developed based on a step-like variation of the acoustic velocity. Comparisons of theoretical results with experimental ones for acoustic waveguides and directional coupler structures confirm the applicability of the model. A coupled mode description of the acousto-optical polarization conversion in converters with acoustical directional couplers has been developed and applied to several tapered acoustical directional couplers. The model reveals that the conversion characteristics are usually strongly asymmetric. If the directional coupler is appropriately designed, a sidelobe suppression of about 30 dB can be achieved. First experimental results with tapered directional couplers confirm within some limits the theoretical predictions.

  10. Single microdroplet ejection using an ultrasonic longitudinal mode with a PZT/tapered glass capillary.

    Science.gov (United States)

    Lee, Chung-Hoon; Lal, Amit

    2004-11-01

    We have developed an ultrasonic PZT/tapered glass capillary resonant actuator that can eject a single droplet every acoustic cycle without also generating satellite droplets. The mechanism of the actuation is resonant longitudinal motion-induced squeezing of a tapered volume. The actuator is driven at 160 kHz and requires voltages less than 2 Vpp to operate. In this paper, the droplet generation of isopropanol and water mixtures, which have different densities, viscosities, and surface tensions, is investigated. It is determined that the geometrical squeezing mechanism and the ejected jet breakup makes the droplet size independent of frequency, but more a function of the ejecting orifice diameter that is much smaller than the capillary wavelength. PMID:15600097

  11. Efficiency Enhancement in a Tapered Free Electron Laser by Varying the Electron Beam Radius

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yi; Wu, J.; Cai, Y.; Chao, A.W.; Fawley, W.M.; Frisch, J.; Huang, Z.; Nuhn, H.-D.; /SLAC; Pellegrini, C.; /SLAC /UCLA; Reiche, S.; /PSI, Villigen

    2012-02-15

    Energy extraction efficiency of a free electron laser (FEL) can be increased when the undulator is tapered after the FEL saturation. By use of ray equation approximation to combine the one-dimensional FEL theory and optical guiding approach, an explicit physical model is built to provide insight to the mechanism of the electron-radiation coherent interaction with variable undulator parameters as well as electron beam radius. The contribution of variation in electron beam radius and related transverse effects are studied based on the presented model and numerical simulation. Taking a recent studied terawatt, 120 m long tapered FEL as an example, we demonstrate that a reasonably varied, instead of a constant, electron beam radius along the undulator helps to improve the optical guiding and thus the radiation output.

  12. Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials.

    Science.gov (United States)

    Nikitin, A Yu; Alonso-González, P; Hillenbrand, R

    2014-05-14

    Graphene plasmons promise exciting nanophotonic and optoelectronic applications. Owing to their extremely short wavelengths, however, the efficient coupling of photons to propagating graphene plasmons-critical for the development of future devices-can be challenging. Here, we propose and numerically demonstrate coupling between infrared photons and graphene plasmons by the compression of surface polaritons on tapered bulk slabs of both polar and doped semiconductor materials. Propagation of surface phonon polaritons (in SiC) and surface plasmon polaritons (in n-GaAs) along the tapered slabs compresses the polariton wavelengths from several micrometers to around 200 nm, which perfectly matches the wavelengths of graphene plasmons. The proposed coupling device allows for a 25% conversion of the incident energy into graphene plasmons and, therefore, could become an efficient route toward graphene plasmon circuitry. PMID:24773123

  13. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre

    Science.gov (United States)

    Wan, Noel H.; Meng, Fan; Schröder, Tim; Shiue, Ren-Jye; Chen, Edward H.; Englund, Dirk

    2015-07-01

    Optical spectroscopy is a fundamental tool in numerous areas of science and technology. Much effort has focused on miniaturizing spectrometers, but thus far at the cost of spectral resolution and broad operating range. Here we describe a compact spectrometer that achieves both high spectral resolution and broad bandwidth. The device relies on imaging multimode interference from leaky modes along a multimode tapered optical fibre, resulting in spectrally distinguishable spatial patterns over a wide range of wavelengths from 500 to 1,600 nm. This tapered fibre multimode interference spectrometer achieves a spectral resolution down to 40 pm in the visible spectrum and 10 pm in the near-infrared spectrum (corresponding to resolving powers of 104-105). Multimode interference spectroscopy is suitable in a variety of device geometries, including planar waveguides in a broad range of transparent materials.

  14. Supercontinuum generation in dispersion-tailored lead-silicate fiber taper

    Science.gov (United States)

    Hu, Hongyu; Li, Wenbo; Ma, Shaozhen; Dutta, Niloy K.

    2013-01-01

    In this paper we numerically study the coherence properties of the supercontinuum generated in a lead-silicate microstructured fiber taper, with an increasing core radius along the propagation distance which tailors the dispersion property. Simulations are conducted by adding quantum noise into the input pulse at 1.55 μm, and the complex degree of first-order coherence function and the overall spectral coherence degree are both calculated. Although the spectral broadening is comparable, the coherence degree is shown to vary with different pumping conditions. It decreases with higher peak power and longer duration due to the significant competition between the soliton-fission process and the noise-seeded modulation instability. By controlling the input pulse parameters, it is possible to generate perfectly coherent supercontinuum with a flat broadened spectrum extending to ~5μm in this fiber taper.

  15. Coherence Properties of Supercontinuum Generated in Dispersion-Tailored Lead-Silicate Microstructured Fiber Taper

    Science.gov (United States)

    Hu, Hongyu; Li, Wenbo; Ma, Shaozhen; Dutta, Niloy K.

    2013-05-01

    This article details the numerically studied coherence properties of the supercontinuum generated in a lead-silicate microstructured fiber taper, with an increasing core radius along the propagation distance that tailors the dispersion property. Simulations are conducted by adding quantum noise into the input pulse at 1.55 μm, and the complex degree of first-order coherence function and the overall spectral coherence degree are both calculated. Although the spectral broadening is comparable, the coherence degree is shown to vary with different pumping conditions. It decreases with higher peak power and longer duration due to the significant competition between the soliton-fission process and the noise-seeded modulation instability. By controlling the input pulse parameters, it is possible to generate a perfectly coherent supercontinuum with a flat broadened spectrum extending from ~1 μm to ~5μm in this fiber taper.

  16. Free Vibration and Stability of Axially Functionally Graded Tapered Euler-Bernoulli Beams

    Directory of Open Access Journals (Sweden)

    Ahmad Shahba

    2011-01-01

    Full Text Available Structural analysis of axially functionally graded tapered Euler-Bernoulli beams is studied using finite element method. A beam element is proposed which takes advantage of the shape functions of homogeneous uniform beam elements. The effects of varying cross-sectional dimensions and mechanical properties of the functionally graded material are included in the evaluation of structural matrices. This method could be used for beam elements with any distributions of mass density and modulus of elasticity with arbitrarily varying cross-sectional area. Assuming polynomial distributions of modulus of elasticity and mass density, the competency of the element is examined in stability analysis, free longitudinal vibration and free transverse vibration of double tapered beams with different boundary conditions and the convergence rate of the element is then investigated.

  17. Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser

    Institute of Scientific and Technical Information of China (English)

    李超然; 戴世勋; 张勤远; 沈祥; 王训四; 张培晴; 路来伟; 吴越豪; 吕社钦

    2015-01-01

    We report the applications of a low-cost and environmentally friendly chalcogenide glass, 75GeS2-15Ga2S3-10CsI, in building active microsphere laser oscillators. A silica fiber taper is used as the coupling mechanism. With an 808-nm laser diode as a pump source, we show that a high-Q (∼6×104) laser mode could be obtained from a 75-µm diameter microsphere that is coupled with a 1.77-µm waist-diameter fiber taper. The threshold of the incident pump power is 1.39 mW, which is considerably lower than those of previously reported free-space coupled chalcogenide microsphere lasers. We also note an apparent enhancement in laser power generated from this chalcogenide microsphere laser.

  18. Temperature-independent gas refractometer based on an S-taper fiber tailored fiber Bragg grating

    Science.gov (United States)

    Shao, Zhihua; Qiao, Xueguang; Bao, Weijia; Rong, Qiangzhou

    2016-09-01

    A fiber Bragg grating (FBG)-based gas refractometer is proposed and demonstrated experimentally. The configuration consists of a short section of S-type taper incorporated in the upstream of a FBG. The S-taper is capable to couple the core mode to cladding modes into the downstream single mode fiber (SMF), and the low-order cladding modes can be reflected back to the fiber core via the FBG. Because of the recoupling efficiency depending on surrounding refractive index (SRI), the reflection power of the device presents high response to gas RI change with the sensitivity of 172.7 dB/RIU. This power-referenced RI measurement and wavelength-referenced temperature measurement have been achieved via selective cladding modes monitoring.

  19. Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube

    Science.gov (United States)

    Fang, Guocheng; Jia, Pinggang; Liang, Ting; Tan, Qiulin; Hong, Yingping; Liu, Wenyi; Xiong, Jijun

    2016-07-01

    A miniature fiber-optic Fabry-Perot interferometer fabricated by splicing a diaphragm-free hollow silica tube to a single-mode fiber and fusing the inner core to a taper is presented. The tapered zone forces lights to propagate from the fiber core into the silica tube, and the lights is reflected from the end faces of the optical fiber and the hollow silica tube. The contrast ratio of the interference fringe is determined by the minimum inner diameter of hollow silica tube. The responses of the proposed interferometer to high-temperature, gas refractive index, liquid refractive index and pressure were measured and were found to be linear with sensitivities of 16.26 pm/°C, 610.47 nm/RIU, -122.36 dB/RIU and 1.56 pm/kPa, respectively.

  20. Graphene-Tapered ZnO Nanorods Array as a Flexible Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Taeseup Song

    2015-01-01

    Full Text Available Flexible solar cells have drawn a great deal of attention due to their various advantages including deformable and wearable characteristics. In the solar cells, the antireflection layer plays an important role in the improvement in the conversion efficiency by increasing the light transmission and suppressing the Fresnel refraction. For the successful implantation of the antireflection layer into the flexible solar cells, the flexible mechanical property of the antireflection layer is also necessary. However, the study on flexible antireflection layer for the flexible solar cells or optoelectronics is still lacking. In this study, we report the graphene-tapered ZnO nanorods array as a flexible antireflection layer for the application in flexible solar cells. Flexible two-dimensional graphene sheet and the tapered morphology of ZnO nanorods enable conformal coverage on the flexible substrate with curved surface and significant improvements in antireflection properties, respectively.

  1. Total Hip Arthroplasty Using a Polished Tapered Cemented Stem in Hereditary Multiple Exostosis

    Directory of Open Access Journals (Sweden)

    Akio Kanda

    2016-01-01

    Full Text Available A 61-year-old Japanese man underwent right total hip arthroplasty for hereditary multiple exostosis. At first presentation, he had suffered from coxalgia for a long time. On radiographic images, there was a gigantic femoral head, increased shaft angle, and large diameter of the femoral neck. He had also developed coxarthrosis and severe pain of the hip joint. The transformation of the proximal femur bone causes difficulty in setting a cementless total hip prosthesis. Therefore, total hip arthroplasty using a cemented polished tapered stem was performed via a direct lateral approach. Using a cemented polished tapered stem allowed us to deal with the femoral bone transformation and bone substance defectiveness due to exostosis and also minimized the invasiveness of the operation.

  2. Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper.

    Science.gov (United States)

    Schmidt, Slawa; Engelke, Pascal; Piglosiewicz, Björn; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Groß, Petra

    2013-11-01

    We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

  3. Method for mounting Gunn Diode in Active Tapered Slot-Ring Antenna

    Directory of Open Access Journals (Sweden)

    Somnath Chatterjee

    2013-03-01

    Full Text Available To find the optimum location of an active device i.e., Gunn diode in the Active tapered Slot-Ring Antenna (ASRA equivalent {ABCD} matrix parameters has been used, so that the best performance in antenna characteristics is realized in terms of power radiated and power received. Microstrip tapered slot-ring antenna was fabricated by using a 0.787mm thick Takonic TLY-5-0310-CH/CH substrate with $varepsilon_r$ = 2.2 and the active device used is commercially available low power MA/COM packaged Gunn diode (MA 49104 with typical dc to rf conversion efficiency of approximately 1.5% for experimental study. Radiation pattern and locking characteristics of the ASRA have been measure and presented in support of the analytical methods.

  4. Experimental measurement and numerical analysis of fused taper shape for optical fiber coupler

    Institute of Scientific and Technical Information of China (English)

    SHUAI Ci-jun; DUAN Ji-an; ZHONG Jue

    2007-01-01

    To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obtained from the shape of fused taper region measured with microscope, show that there is a close correlation between the cone angle and optical performance of fiber coupler. High-performance fiber coupler cannot be obtained until rheological shape is controlled accurately. The numerical analysis model, which was built based on generalized Maxwell viscoelastic theory, is resolved with ANSYS software. The calculated results accord with the experimental data. It can apply a theoretic basis for forecasting the shape of fiber coupler fabricated under the conditions of different technological parameters.

  5. A novel Spectrum Estimation Algorithm Based on Compressed Sensing and Multi-taper Method

    Directory of Open Access Journals (Sweden)

    Wang Keqing

    2013-04-01

    Full Text Available To estimate the wideband or multi-channel signals’ spectrum swiftly and exactly is a key technology to improve the performance of wideband spectrum sensing. The paper was proposed a novel spectrum estimation algorithm based on compressed sensing (CS and multi-taper method (MTM, which is called CS-MTM. The new algorithm was validated by single-tone, multi-tone and QPSK signals. Meanwhile, the paper has validated six common random meaurement matrixes which can be used in compressed spectrum estimation algorithm successfully. Simulation results show that the proposed approach can  potentially achieve better performance than multi-taper method combined with singular-value decomposition based on compressed sensing(CS-MTM-SVD in complexity, accuracy and real-time property.

  6. Investigation on spectral response of micro-cavity structure by symmetrical tapered fiber tips

    Science.gov (United States)

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2016-06-01

    We proposed and experimentally demonstrated a micro-cavity structure made of symmetrical tapered fiber tips. The waist of a conventional fiber taper fabricated from heating and stretching technique is symmetrically cleaved, and the aligned fiber tips with air gap constitute a Fabry-Perot micro-cavity due to the reflection at the tip facet. The spectral responses of such micro-cavity structure have been investigated both in beam propagation models and experiments. The multibeam interference in the micro-cavity and the impact of the waist diameter and cavity length on the spectral response has been successfully demonstrated. And a micro-cavity structure with 45 μm waist diameter was experimentally achieved, the measured spectra agree well with the simulation ones, indicating that the spectral response of the micro-cavity structure is contributed by both the multibeam interference and the Fabry-Perot micro-cavity.

  7. Performance evaluation of four-wave mixing in a graphene-covered tapered fiber

    Science.gov (United States)

    Jin, Qiang; Lu, Jiamei; Li, Xibin; Yan, Qiang; Gao, Qianyu; Gao, Shiming

    2016-07-01

    Four-wave mixing in a monolayer graphene-covered tapered fiber is theoretically analyzed by taking into account the influence of the graphene layer on the light-field distribution. A figure-of-merit (FOM) coefficient, considering both the high nonlinearity and the heavy absorption, is redefined to evaluate nonlinear performance. The fiber diameter and length are optimized to acquire a higher FOM. Using such a graphene-covered tapered fiber with an optimal diameter of 0.736 μm, a maximum conversion efficiency of ‑38.07 dB is numerically obtained for the 1.55 μm pump when the graphene length is 34.4 μm and the peak pump power is 10 W. Moreover, a 3 dB bandwidth as broad as 430 nm can be realized in the 1.55 μm telecommunication band.

  8. Refractometer based on a tapered Mach-Zehnder interferometer with Peanut-Shape structure

    Science.gov (United States)

    Huang, Ran; Ni, Kai; Ma, Qifei; Wu, Xueying

    2016-08-01

    A novel refractometer based on tapered Mach-Zehnder modal interferometer (MZI) is proposed and experimentally demonstrated. This sensor is composed of a pair of Peanut-Shape structures and an embedded taper - the former excites high-order cladding modes, while the latter enhances the evanescent field. As the effective refractive index (RI) of cladding is based on the changes of surrounding RI, thus extinction ratio will change due to the alteration of the distribution of power in the fiber which is induced by various differences of core and cladding for RI. As a result, the maximum RI sensitivity of 240.78 extinction ratio/RIU (refractive index unit) is achieved within the range from 1.3334 to 1.4081.

  9. Theoretical stability and control characteristics of wings with various amounts of taper and twist

    Science.gov (United States)

    Pearson, H. A.; Jones, R. T.

    1976-01-01

    Stability derivatives have been computed for twisted wings of different planforms that include variations in both the wing taper and the aspect ratio. Taper ratios of 1.0, 0.50, and 0.25 are considered for each of three aspect ratios: 6, 10, and 16. The specific derivatives for which results are given are the rolling moment and the yawing moment derivatives with respect to rolling velocity, yawing velocity, and angle of sideslip. In addition to the stability derivatives, results are included for determining the theoretical rolling moment due to aileron deflection and a series of influence lines is given by which the loading across the span may be determined for any angle-of-attack distribution that may occur on the wing planforms considered.

  10. Tunable Modulational Instability Sidebands via Parametric Resonance in Periodically Tapered Optical Fibers

    CERN Document Server

    Armaroli, Andrea

    2012-01-01

    We analyze the modulation instability induced by periodic variations of group velocity dispersion and nonlinearity in optical fibers, which may be interpreted as an analogue of the well-known parametric resonance in mechanics. We derive accurate analytical estimates of resonant detuning, maximum gain and instability margins, significantly improving on previous literature on the subject. We also design a periodically tapered photonic crystal fiber, in order to achieve narrow instability sidebands at a detuning of 35 THz, above the Raman maximum gain peak of fused silica. The wide tunability of the resonant peaks by variations of the tapering period and depth will allow to implement sources of correlated photon pairs which are far-detuned from the input pump wavelength, with important applications in quantum optics.

  11. Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.

    Science.gov (United States)

    Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G

    2014-10-15

    We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10  pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1  mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated. PMID:25361125

  12. Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper.

    Science.gov (United States)

    Cui, Wei; Si, Jinhai; Chen, Tao; Hou, Xun

    2015-05-01

    We propose and experimentally demonstrate a compact bending sensor. The head of the sensor is only 0.8 mm in length, and consists of an abrupt biconical fiber taper formed using a conventional fusion splicer, in which a fiber Bragg grating (FBG) is inscribed using a femtosecond laser. The biconical taper incorporating the FBG can couple light from the cladding to the backward-propagating core mode, which realizes an interferometer in reflection-mode. Bending of the structure can be detected from the contrast change of interference fringes. A configuration to measure curvature is investigated to demonstrate the sensing characteristics. The temperature cross-sensitivity of the sensor is studied, and the results demonstrate that it is insensitive to temperature. PMID:25969198

  13. Nonlinear Optics with Tapered Fibers and Magneto-Optically Trapped Rubidium

    Science.gov (United States)

    Little, Bethany; Mullarkey, Chris; Howell, John; Vamivakas, Nick; Lin, Qiang

    2016-05-01

    Tapered optical fibers of sub-wavelength diameter present a promising means of integrating the light-atom interaction into larger scale devices. We present work on a tapered fiber system loaded by a magneto optical trap of Rubidium atoms, in which a combination of red and blue detuned beams create a one-dimensional lattice trap along the fiber. The same fiber is used for interacting with the atoms in the trap via the evanescent fields of light propagating along the fiber. Light storage has been demonstrated in a similar system with Cesium, and we believe that much nonlinear optics remains to be explored in this regime. We also plan to see how these nonlinear effects can be enhanced with the addition of a micro-resonator such as the ones in.

  14. Fiber torsion sensor based on a twist taper in polarization-maintaining fiber.

    Science.gov (United States)

    Zhou, Quan; Zhang, Weigang; Chen, Lei; Yan, Tieyi; Zhang, Liyu; Wang, Li; Wang, Biao

    2015-09-01

    A novel optical fiber torsion sensor head is proposed. A section of polarization-maintaining fiber (PMF) is spliced between single mode fiber (SMF), and a twist taper is fabricated by a commercial electric-arc fusion splicer in the middle of the PMF. The asymmetric characteristics are obtained by the twist taper so that a fiber torsion sensor with directional discrimination is fabricated. Due to the characteristics of the asymmetric structure, the torsion sensitivity for the twist rate from 0 rad/m to -8 rad/m reaches 2.392 nm/rad·m-1, and for the twist rate from 0 rad/m to 8 rad/m reaches 1.071 nm/rad·m-1 respectively. PMID:26368481

  15. Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper

    CERN Document Server

    Schmidt, Slawa; Piglosiewicz, Bjoern; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Gross, Petra

    2013-01-01

    We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling ...

  16. The tapered slot antenna - A new integrated element for millimeter-wave applications

    Science.gov (United States)

    Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.

    1989-01-01

    Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.

  17. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    Directory of Open Access Journals (Sweden)

    Arafat Shabaneh

    2015-05-01

    Full Text Available Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%, the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s towards ethanol.

  18. Vibration analysis of tapered rotating composite beams using the hierarchical finite element

    Directory of Open Access Journals (Sweden)

    Ghayour R.

    2010-12-01

    Full Text Available A hierarchical finite element model is presented for the flapwise bending vibration analysis of a tapered rotating multi-layered composite beam. The shear and rotary inertia effects are considered based on the higher shear deformation theory to derive the stiffness and mass matrices of a tapered- wisted rotating and composite beam element. Certain non-composite beams for which comparative results are available in the literature are used to illustrate the application of the proposed technique. Dimensionless parameters are identified from the equations of motion and the combined effects of the dimensionless parameters on the modal characteristics of the rotating composite beams are investigated through numerical studies. The results indicate that, comparedwith the conventional finite element method, the hierarchical finite element has the advantage of using fewer elements to obtain a better accuracy in the calculation of the vibration characteristics of rotating beams such as natural frequencies and mode shapes.

  19. Tapering studies for Terawatt level X-ray FELs with a superconducting undulator

    CERN Document Server

    Emma, Claudio; Emma, Paul; Huang, Zhirong; Pellegrini, Claudio

    2015-01-01

    We study the tapering optimization scheme for a short period, less than two cm, superconducting undulator, and show that it can generate 4 keV X-ray pulses with peak power in excess of 1 terawatt, using LCLS electron beam parameters. We study the e?ect of undulator module length relative to the FEL gain length for continous and step-wise taper pro?les. For the optimal section length of 1.5m we study the evolution of the FEL process for two di?erent superconducting technologies NbTi and Nb3Sn. We discuss the major factors limiting the maximum output power, particle detrapping around the saturation location and time dependent detrapping due to generation and ampli?cation of sideband modes.

  20. Stress analysis on tapered joint surface of keyless propeller by computer simulation; Keyless propeller taper sesshokubu no rikigakuteki kyodo no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Takai, M. [Ministry of Transportation, Tokyo (Japan)

    1998-09-01

    Tapered joint or shrink fit joint have been used in the joint flange and so forth of keyless propeller or power transmission axis. In each case, the power is transmitted by the friction force of surface contact portion and is not only have simple structure as compared to key system but also there are advantages like not having strength reduction due to the stress concentration at the groove notched surface of key and so forth. On the other hand, higher technology is required whether in the case of press fitting of joint surface or the press fitting design of sliding combination and so forth or press fitting process control. As for keyless propeller system, research results regarding the study of the reliability of press fitting portion, reduction of cost by simplifying the press fitting process, reduction of thickness of press fitting portion or reduction of length of joint surface in order to make light shafting and increase the efficiency, effect of friction coefficient on the joint surface and so forth, are reported. In this report, the simulation results using FEM of practical propeller boss from the indentation process to the tapered shaft up to the slip torque process after the indentation are cited. 3 refs., 11 figs., 2 tabs.

  1. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    Science.gov (United States)

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.

  2. Reduction of Enterococcus faecalis in curved root canals after various sizes and tapers of canal preparation

    Directory of Open Access Journals (Sweden)

    Amir Abbas Moshari

    2015-01-01

    Full Text Available Aims: The aim of this study was to evaluate the reduction of Enterococcus faecalis in curved root canals after various sizes and tapers of the canal preparation. Materials and Methods: Mandibular first molars (n = 103 with curved mesiobuccal canals were divided into one control (n = 5 and 7 experimental (n = 14 groups, were inoculated with E. faecalis (ATTC 29212 and prepared with the following RaCe files (FKG Dentaire as master apical file: Groups: 25.04, 25.06, 30.04, 30.06, 35.04, 35.06 and 40.06. All the experimental groups were irrigated with 2 mL of 1% sodium hypochlorite during instrumentation and finally rinsed with 17% ethylenediaminetetraacetic acid (EDTA (2 mL followed by 5.25% NaOCl (2 mL and sterile distilled water. Colony counting was performed after incubation. Statistical Analysis Used: Resulting data were analyzed using one-way ANOVA and Tukey′s post-hoc test, (P < 0.05. Results and Conclusions: All the experimental groups showed significant bacterial reduction (P < 0.001. Although the greater the size/taper or both led to more decreased amount of bacteria, differences between the groups with the identical size and different tapers, and among the groups with the same taper and different sizes were not significant. Based on this study, 25.04 along with using 2 mL of 1% NaOCl during instrumentation, and using 17% EDTA and 5.25% NaOCl as final rinse successively after the termination of preparation, can effectively reduce intra-canal bacteria and preserve root structure.

  3. Investigation of an S-Band Tapered Magnetically Insulated Transmission Line Oscillator

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Qiang; ZHONG Hui-Huang; FAN Yu-Wei; SHU Tin; QIAN Bao-Liang; XU Liu-Rong; ZHAO Yan-Song

    2009-01-01

    We present an improved structure of the tapered magnetically insulated transmission line oscillator (MILO).Simulation results show that this structure can obtain more microwave power with higher efficiency. Studies indicate that the distance between the load support legs and the last vane can affect the operation characteristics of this device. In the experiments, we obtain microwave with peak power of 2 GW, frequency of 2.63 GHz, and mode TM01. The beam to microwave power efficiency is 11%.

  4. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy.

    Science.gov (United States)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2016-06-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source. PMID:26836298

  5. A novel temperature-insensitive strain sensor based on tapered fiber grating

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel temperature-insensitive strain sensor based on bandwidth demodulation of the reflected light from the tapered fiber grating is presented, which is simple and low-cost and has considerable potential particularly application for strain sensing,and with the development of the interrogation system, it can demodulate both the bandwidth and the center wavelength of the reflected light from TFG to measure strain and temperature simultaneously.

  6. Optical manipulation of particles and cells using a tapered fibre probe

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Hongbao Xin, Rui Xu & Baojun Li ### Abstract The protocol reported here describes an optical method for flexible manipulation of particles and cells. Using a tapered optical fibre probe launched with a laser at 980-nm wavelength, particles and cells can be stably trapped, targeted driven to designated positions, and flexibly arranged into desired patterns. This method provides a highly potential avenue for highly flexible and precise manipulation of biological objects. ...

  7. Mathematical Modelling of Blood Flow through a Tapered Overlapping Stenosed Artery with Variable Viscosity

    OpenAIRE

    Shit, G. C.; Roy, M.; Sinha, A

    2014-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions ...

  8. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    OpenAIRE

    Shit, G. C.; Roy, M.; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions ...

  9. The histological and elemental characterisation of corrosion particles from taper junctions

    Science.gov (United States)

    Oliver, R. A.; Zicat, B.; Walter, W. L.; Walter, W. K.; Walsh, W. R.

    2016-01-01

    Objectives This study aimed to characterise and qualitatively grade the severity of the corrosion particles released into the hip joint following taper corrosion. Methods The 26 cases examined were CoC/ABG Modular (n = 13) and ASR/SROM (n = 13). Blood serum metal ion levels were collected before and after revision surgery. The haematoxylin and eosin tissue sections were graded on the presence of fibrin exudates, necrosis, inflammatory cells and corrosion products. The corrosion products were identified based on visible observation and graded on abundance. Two independent observers blinded to the clinical patient findings scored all cases. Elemental analysis was performed on corrosion products within tissue sections. X-Ray diffraction was used to identify crystalline structures present in taper debris. Results The CoC/ABG Modular patients had a mean age of 64.6 years (49.4 to 76.5) and ASR/SROM patients had a mean age of 58.2 years (33.3 to 85.6). The mean time in situ for CoC/ABG was 4.9 years (2 to 6.4) and ASR/SROM was 6.1 years (2.5 to 8.1). The blood serum metal ion concentrations reduced following revision surgery with the exception of Cr levels within CoC/ABG. The grading of tissue sections showed that the macrophage response and metal debris were significantly higher for the ASR/SROM patients (p aluminium nitride. Conclusion This study characterised and qualitatively graded the severity of the corrosion particles released into the hip joint from tapers that had corrosion damage. Cite this article: S. Munir, R. A. Oliver, B. Zicat, W. L. Walter, W. K. Walter, W. R. Walsh. The histological and elemental characterisation of corrosion particles from taper junctions. Bone Joint Res 2016;5:370–378. DOI: 10.1302/2046-3758.59.2000507. PMID:27608650

  10. Modelling of Burning Surface Regression of Taper Convex Star Propellant Grain

    OpenAIRE

    Himanshu Shekhar

    2000-01-01

    The burn area calc,ulhtion of al propellant, grain with taper convex star Port is discussed and a software developed, usIng a new zoning definition of the star cross-section,is elaborated. The evolution of lengthwise conditions,inclusion of a coupled sustainer mode, real-time calculations andcalculation for sliver burrling part make this software a versatile tool for propellant grain design and parametric studies.

  11. Orthogonal Control of Stability and Tunable Dry Adhesion by Tailoring the Shape of Tapered Nanopillar Arrays.

    Science.gov (United States)

    Cho, Younghyun; Kim, Gyuseok; Cho, Yigil; Lee, Su Yeon; Minsky, Helen; Turner, Kevin T; Gianola, Daniel S; Yang, Shu

    2015-12-16

    Tapered nanopillar structures of different cross-sectional geometries including cone-, pencil-like, and stepwise are prepared from anodized aluminum oxide templates. The shape effect on the adhesion strength is investigated in experiments and simulation. Cone-shaped nanopillars are highly bendable under load and can recover after unloading, thus, warranting high adhesion strength, 34 N cm(-2) . The pencil-like and stepwise nano-pillars are, however, easily fractured and are not recoverable under the same conditions.

  12. Coupling of single NV Center to adiabatically tapered optical single mode fiber

    CERN Document Server

    Vorobyov, Vadim V; Bolshedvorskii, Stepan V; Javadzade, Javid; Lebedev, Nikolay; Smolyaninov, Andrey N; Sorokin, Vadim N; Akimov, Alexey V

    2016-01-01

    We demonstrated a simple and reliable technique of coupling diamond nanocrystal containing NV center to tapered optical fiber. We carefully studied fluorescence of the fiber itself and were able to suppress it to the level lower than single photon emission from the NV center. Single photon statistics was demonstrated at the fiber end as well as up to 3 times improvement in collection efficiency with respect to our confocal microscope

  13. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring

    OpenAIRE

    Zhong, Nianbing; Zhao, Mingfu; Li, Yishan

    2016-01-01

    To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed...

  14. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    Science.gov (United States)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2016-06-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.

  15. Tapered cladding diameter profile design for high-power tandem-pumped fiber lasers

    Science.gov (United States)

    Huang, Zhihua; Tang, Xuan; Lin, Honghuan; Wang, Jianjun

    2016-05-01

    The thermal effect has become the biggest limiting factor regarding the further power scaling of single mode fiber lasers, and it can lead to coating failure and transverse mode instability. A tapered cladding diameter profile design is proposed for the tandem-pumped fiber laser in this work, as it can smooth the temperature profile and reduce the maximum temperature rise within the fiber tremendously. The improvement in performance of the fiber design is verified by analytical and numerical results.

  16. Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon

    CERN Document Server

    Pittman, T B; Franson, J D

    2013-01-01

    We demonstrate nanowatt-level saturated absorption using a sub-wavelength diameter tapered optical fiber (TOF) suspended in a gas of metastable xenon atoms. This ultralow-power nonlinearity is enabled by a small optical mode area propagating over a relatively long distance through the Xe gas. The use of inert noble gasses in these kinds of TOF experiments may offer practical advantages over the use of reactive alkali vapors such as rubidium.

  17. Two-Element Tapered Slot Antenna Array for Terahertz Resonant Tunneling Diode Oscillators

    OpenAIRE

    Jianxiong Li; Yunxiang Li; Weiguang Shi; Haolin Jiang; Luhong Mao

    2014-01-01

    Two-element tapered slot antenna (TSA) array for terahertz (THz) resonant tunneling diode (RTD) oscillators is proposed in this paper. The proposed TSA array has the advantages of both the high directivity and high gain at the horizontal direction and hence can facilitate the horizontal communication between the RTD oscillators and other integrated circuit chips. A MIM (metal-insulator-metal) stub with a T-shaped slot is used to reduce the mutual coupling between the TSA elements. The validit...

  18. Detecting atoms trapped in an optical lattice using a tapered optical nanofiber

    CERN Document Server

    Hennessy, T

    2014-01-01

    Optical detection of structures with dimensions smaller than an optical wavelength requires devices that work on scales beyond the diffraction limit. Here we present the possibility of using a tapered optical nanofiber as a detector to resolve individual atoms trapped in an optical lattice in the Mott Insulator phase. We show that the small size of the fiber combined with an enhanced photon collection rate can allow for the attainment of large and reliable measurement signals.

  19. Evaluation of the flaring in mandibular molars danger zone using ProTaper rotatory system

    OpenAIRE

    Fernanda Missao Brugin MATSUBARA; Janaina Glaucia Trevizan PEREIRA; Flares BARATTO FILHO; Gisele Aihara HARAGUSHIKU; Flávia Sens FAGUNDES

    2005-01-01

    The aim of this study was to evaluate in vitro the flaring in mandibular molars danger zone, after root canal instrumentation with the ProTaper rotatory instrument system. Sixty extracted mandibular molars with fully formed apices had the mesial roots sectioned. The specimens were divided into four groups and instrumented until Shaping X, Shaping 1 and Shaping 2 files, respectively. One group was kept as control with no instrumentation. The results submitted to statistical analysis, showed ...

  20. John H. Dillon Medal: Tapered Block Copolymers: Tuning Self-Assembly and Properties by Manipulating Monomer Segment Distributions

    Science.gov (United States)

    Epps, Thomas

    The self-assembly of block copolymers (BCPs) presents unique opportunities to design materials with attractive chemical and mechanical properties based on the ability of BCPs to form periodic structures with nanoscale domain spacings. One area of recent progress in our group focuses on the behavior of tapered BCPs in which the segment distribution at the interface between blocks is synthetically varied to tune morphology, domain density profiles, thermal transitions as well as mechanical and transport properties. Two application targets for these materials are lithium-ion conducting membranes for batteries and nanostructured thin films for nanotemplates and barrier membranes. In the first target area, we found that the taper volume fraction and composition allow us to manipulate the self-assembly of salt-doped BCPs in a well-defined manner that permits optimization of morphology and ion-content. Additionally, we found that the tapered interfaces influence the glass-transition behavior of the ion-conducting block leading to significant changes in lithium-ion transport (ion conductivity). In the second target area, we found the taper content alters the rate of self-assembly as well as the rate of island/hole formation (and ultimate island/hole size) upon thermal annealing. Additionally, using reflectivity techniques, we probed the domain density profiles as a function of taper composition and linked these profiles to changes in domain spacing and glass transition temperature. Overall, these studies show the versatility of tapering to provide a unique handle for simultaneously optimizing multiple materials properties.

  1. Fixation strength of taper connection at head-neck junction in retrieved carbon fiber-reinforced PEEK hip stems.

    Science.gov (United States)

    Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Sugano, Nobuhiko

    2014-12-01

    Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) hip prostheses possess numerous advantages over metal prostheses; however, the security of the taper connection between the CFR-PEEK stem and the modular femoral head in vivo has not been verified. Therefore, we mechanically examined the taper connection of retrieved in vivo loaded CFR-PEEK stems in comparison with in vivo loaded titanium alloy stems. CFR-PEEK and titanium alloy femoral stems with a 12/14 taper trunnion were implanted in ovine hips. A 22-mm ceramic head was intraoperatively impacted to the stem. Retrieved specimens were obtained following weight-bearing conditions for up to 39 postoperative weeks and taper junction pull-off tests were conducted. Postoperative retrieved CFR-PEEK stem pull-off strength was significantly greater than that at time zero. Postoperative retrieved CFR-PEEK stem pull-off strength was also significantly higher than that of postoperative retrieved titanium alloy stem. Microscopic findings of the taper surface revealed no obvious damage in the retrieved CFR-PEEK stems, whereas fretting and corrosion were observed in the retrieved titanium alloy stems. The present findings suggest that the taper connection between the ceramic head and the 12/14 CFR-PEEK stem trunnion is more secure than that between the ceramic head and the titanium alloy trunnion. PMID:25190272

  2. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  3. Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler

    Institute of Scientific and Technical Information of China (English)

    Maryam Zahedian; B.Maraghechi; M.H.Rouhani

    2012-01-01

    A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented.The two beams are assumed to have different energies,and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam.By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams,coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method.The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs.By simulation,the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found.This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions.The effect of tapering on the dynamical stability of the fast electron beam is also studied.

  4. Tapered Optical Fiber Humidity Sensor Coated with Nano-crystalline ZnO Doped with KCI

    Directory of Open Access Journals (Sweden)

    Sivacoumar Rajalingam

    2015-03-01

    Full Text Available In this research study we have targeted to fabricate a tapered optical fiber coated with zinc oxide doped with KCl to improve the humidity sensing capability of zinc oxide. The optical fiber was tapered through chemical etching method by HF acid (49.5%. The nano-crystalline Zinc Oxide (ZnO was synthesized using single molecular precursor method doped with KCl. The resulting material was characterized with Fourier Transform Infrared spectroscopy (FTIR, X-Ray Diffractometry (XRD and Scanning Electron Microscopy (SEM. The sensing mechanism of this sensor is based on the change of the optical properties of the coating when the relative humidity increases. The humidity sensing characteristic has been estimated by measuring the Optical Permeability (OP as a function of percentage of Relative Humidity (%RH in the ranging from 5 to 98% inside a closed chamber. The tapered optical fiber tested with an overlay coating at the optimal working point achieves better sensitivity. The experimental results show that the 5.7 wt% KCl doped ZnO nano-fibers hold super-rapid response and recovery than normal ZnO coating.

  5. Influences of Taper Geometry Modified Oil-Grooves on Load Carrying Capacity of Crosshead Bearings

    Science.gov (United States)

    Kitahara, Tatsumi; Otsubo, Masaru; Nakahara, Daisuke

    The crosshead bearing in large two-stroke diesel engines operates under severe lubrication conditions, because the bearing oscillates within a small angle at a low speed and is always subject to a high downward load. The recent trend towards more compact engines with increased output raises the bearing specific load, thereby causing the lubrication severity to increase significantly. Thus it is very important to improve the load carrying capacity of the crosshead bearing. In the present study, experiments using a dynamically loaded bearing seizure test apparatus were carried out to clarify the influences of the clearance ratio and the oil-groove geometry on the load carrying capacity. The electrical resistance of the oil film was also measured to evaluate the extent of the oil film formation. The major results are: (1) A decrease in the clearance ratio is effective in enhancing squeeze action on the entirety of the bearing pads, thereby improving the load carrying capacity. When the clearance ratio becomes too low, however, the ability to form an adequate wedge film is degraded, causing the load carrying capacity to decrease; (2) A significant improvement in the load carrying capacity can be expected, because incorporating the taper geometry on both sides of the oil-groove promotes a thicker oil film; and (3) A taper geometry with a subtended length of 5 degrees and a taper angle of 0.1 degree produces the maximum load carrying capacity.

  6. The micropolar fluid model for blood flow through a tapered artery with a stenosis

    Institute of Scientific and Technical Information of China (English)

    Kh. S. Mekheimer; M. A. El Kot

    2008-01-01

    A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the axial shape of the stenosis can be changed easily just by varying a parameter (referred to as the shape parameter). The model is also used to study the effect of the taper angle φ. Flow parameters such as the velo-city, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis (stenosis throat) have been computed for different values of the shape parameter n, the taper angle φ, the coupling number N and the micropolar parameter m. It is shown that the resistance to flow decreases with increasing the shape parameter n and the micropolar parameter m while it increases with increasing the coupling number N. So, the magnitude of the resistance impedance is higher for a micropolar fluid than that for a Newtonian fluid model. Finally, the velocity profile, the wall shear stress distribution in the stenotic region and its magni-tude at the maximum height of the stenosis are discussed for different values of the parameters involved on the problem.

  7. Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers

    International Nuclear Information System (INIS)

    We investigate the manipulation of microscopic and nanoscopic particles using the evanescent optical field surrounding an optical fiber that is tapered to a micron-scale diameter, and propose that this scheme could be used to discriminate between, and thereby sort, metallic nanoparticles. First we show experimentally the concept of the transport of micron-sized spheres along a tapered fiber and measure the particle velocity. Having demonstrated the principle we then consider theoretically the application to the optical trapping and guiding of metallic nanoparticles, where the presence of a plasmon resonance is used to enhance optical forces. We show that the dynamics of the nanoparticles trapped by the evanescent field can be controlled by the state of polarization of the fiber mode, and by using more than one wavelength differently detuned from the nanoparticle plasmon resonance. Such a scheme could potentially be used for selectively trapping and transporting nano- or microscopic material from a polydisperse suspension. -- Highlights: ► We fabricate single-mode tapered optical fibers of sub-micron diameter. ► We demonstrate trapping of microparticles in the evanescent field of the . ► We demonstrate transport of microparticles along the fiber propelled by radiation pressure. ►We calculate the optical trapping and propelling forces on nanoparticles. ► We show these forces are enhanced by using a laser tuned close to a nanoparticle plasmon resonance.

  8. Modeling of stem taper models for Chamaecyparis obtusa in Jeju Island, Korea

    Science.gov (United States)

    SungCheol, Jung; YeonOk, Seo; Roscinto ian, Lumbres; SeongYoun, Lee; ChanSoo, Kim

    2016-04-01

    This study was conducted to fit the different commonly used stem taper models in predicting the diameter over bark at any given height (d) and total volume of Chamaecyparis obtusa in Jeju Island, Korea. The performance of the stem taper models were evaluated using four fit statistics and these were standard error of estimate (SEE), mean bias ( PIC ), absolute mean difference (AMD), and coefficient of determination (R2). Lack-of-fit statistics were also determine and in this study, SEE, AMD and PIC of the different models in predicting d in the different relative height classes and in predicting the total volume in the different diameter at breast height (DBH) classes were calculated. Results showed that the Kozak model 02 stem taper had the best performance in all fit statistics with SEE of 1.3327, PIC of 0.0020 cm, AMD of 0.9970 cm and R2of 0.9958. Based on the lack of fit statistics, this model also showed a good performance in predicting d in most of the relative height classes and in estimating the total volume in the different DBH classes. The result of this study could help forest managers to determine the d, merchantable stem volumes and total stem volumes of Chamaecyparis obtusa in Jeju Island, Korea.

  9. Fabrication of Submicron-Diameter and Taper Fibers Using Chemical Etching

    Institute of Scientific and Technical Information of China (English)

    Hani J.Kbashi

    2012-01-01

    The thin, long length and high smoothness silica photonic nanowires and taper optical fiber were fabricated using a simple and low cost chemical etching method. A two-steps wet etch process were used consisting of etching with 30% HF acid to remove cladding and 24% HF acid to decrease fiber core diameter. An approach for on-line monitoring of etching using 1300 nm light power transmitted in the optical fiber was used to determine the diameter of the remaining core and showed a transition between two different operation regimes of nanofiber from the embedded regime, where the mode was isolated from the environment, to the evanescent regime. The data indicated that the diameter of the silica fiber decreased linearly for both 30% and 24% HF acid with 1.2 and 0.1/zm/min grad diameter, respectively at room temperature, and more than 70% of the mode intensity could propagate outside fiber when the core diameter was less than 1μm. The results of fiber taper showed that the fiber was tapered by a factor of 20 while retaining a thin core structure and leaving about more than 85% of core structure.

  10. Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings.

    Science.gov (United States)

    Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz

    2016-06-10

    In this paper, a theoretical analysis of recently developed tapered chirped fiber Bragg gratings (TCFBG) written in co-directional and counter-directional configurations is presented. In particular, the effects of the synthesis of chirps resulting from both a fused taper profile and a linearly chirped fringe pattern of the induced refractive index changes within the fiber core are extensively examined. For this purpose, a numerical model based on the transfer matrix method (TMM) and the coupled mode theory (CMT) was developed for such a grating. The impact of TCFBG parameters, such as grating length and steepness of the taper transition, as well as the effect of the fringe pattern chirp rate on the spectral properties of the resulting gratings, are presented. Results show that, by using the appropriate design process, TCFBGs with reduced or enhanced resulting chirp, and thus with widely tailored spectral responses, can be easily achieved. In turn, it reveals a great potential application of such structures. The presented numerical approach provides an excellent tool for TCFBG design. PMID:27409005

  11. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.

    Science.gov (United States)

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun

    2015-06-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors. PMID:26072758

  12. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits.

    Science.gov (United States)

    Dai, Daoxin; Mao, Mao

    2015-11-01

    An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm(2) SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE(11), TE(21), TE(31), TE(41), TM(11), TM(12)) in a 1.4 × 0.22μm(2) multimode SOI waveguide and the six modes (like the LP(01), LP(11a), LP(11b) modes in a few-mode fiber) in a 3 × 3μm(2) SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future. PMID:26561108

  13. Biomechanical Analysis of Tapered Integrated Screw and Sensitivity Analysis on Abutment Loosening in Dental Implants

    Directory of Open Access Journals (Sweden)

    Milad Farzadi

    2013-02-01

    Full Text Available Background and Aims: Different mechanisms have been developed for connecting abutment to implant. One of the most popular mechanisms is Tapered Integrated Screw (TIS, which is a Tapered Interference Fit (TIF with a screw integrated at the bottom of that. The aim of this study was to investigate the mechanism of TIS and effective factors in employing TIS during design and implementation processes using an analytic method.Materials and Methods: Relevant equations were developed to predict tightening and loosening torques, contactpressure and preloads with and without bone tissue in this analysis. The efficiency is defined as the ratio of the loosening torque to the tightening torque. The effects of the change in elastic modulus and thickness of the bone on operation of this mechanism were investigated.Results: In this study, 14 independent parameters such as taper angle, friction coefficient, abutment and implantgeometry that are effective on performance of TIS mechanism were presented. The role of some factors was shown in the performance of ITI implant using sensitivity analysis.Conclusion: It was shown that friction coefficient, contact length, and implant radius play major roles on tightening and loosening torques and efficiency of the mechanism. Furthermore, the results revealed that the change in the elastic modulus and thickness of the bone influenced the efficiency of the mechanism less than 15%.

  14. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  15. Magnetically assisted gas-solid fluidization in a tapered vessel: Part Ⅱ Dimensionless bed expansion scaling

    Institute of Scientific and Technical Information of China (English)

    Jordan Hristov

    2009-01-01

    The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created con-cerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△DbL)1/3(√RgMQ) combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data cor-relations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.

  16. Body Hygiene

    Science.gov (United States)

    ... Home Diaper-Changing Steps for Childcare Settings Body Hygiene Dental Hygiene Water Fluoridation Facial Cleanliness Fish Pedicures and ... spread of hygiene-related diseases . Topics for Body Hygiene Facial Cleanliness Dental Hygiene Water Fluoridation Fish Pedicures and Fish Spas ...

  17. Body Image

    Science.gov (United States)

    ... Help your child have a healthy body image Cosmetic surgery Breast surgery Botox Liposuction Varicose or spider veins Body dysmorphic disorder (BDD) Eating disorders Anorexia nervosa Binge eating ... nervosa Cosmetics and your health Depression during and after pregnancy ...

  18. Body Basics

    Science.gov (United States)

    ... about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  19. RhoA, Rho kinase, JAK2, and STAT3 may be the intracellular determinants of longevity implicated in the progeric influence of obesity: Insulin, IGF-1, and leptin may all conspire to promote stem cell exhaustion.

    Science.gov (United States)

    Tapia, Patrick C

    2006-01-01

    seen with the inexorable passage of time. Besides the obvious utility for the management for human age-related dysfunction that investigation of pharmacologic inhibitors of these proteins would provide, interventions such as caloric restriction and possibly intermittent fasting may beneficially influence stem cell proliferation dynamics and reduce intracellular correlates of mitogenic drive. Integrating the findings present in the present body of research may reveal endocrinological states that are compatible with longevity, and will also provide novel insight into the specific proteomic determinants of age-related physiologic decline, ushering in a new epoch of medicine that fosters the management of the "pre-etiopathology" of chronic disease and disability of aging, therefore mitigating the suffering widely thought to be inherent in the latter stages of life.

  20. Body embellishment

    OpenAIRE

    Zellweger, Christoph

    2015-01-01

    The exhibition Body Embellishment explores the most innovative artistic expression in the 21st-century international arenas of body extension, augmentation, and modification, focusing on jewelry, tattoos, nail arts, and fashion. The areas of focus are jewelry, tattoos, nail arts, and fashion. Avant-garde jewelry consciously engages the body by intersecting and expanding the planes of the human form. Tattoos are at once on and in the body. Nail art, from manicures to pedicures, has humble ...

  1. Body Clock

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2000-01-01

    Body clocks” are biological methods of controling body activities.Every living thing has one. In humans, a body clock controls normal periods of sleeping and waking. It controls the time swhen you are most likely to feel pain.Eating, sleeping and exercising at about the same time each day will help keep body activities normal. But changes in your life, a new job, for example, destroy the balance and thus cause health problems.

  2. Comparison between full and tapered dosages of biologic therapies in psoriatic arthritis patients: clinical and ultrasound assessment.

    Science.gov (United States)

    Janta, Iustina; Martínez-Estupiñán, Lina; Valor, Lara; Montoro, María; Baniandres Rodriguez, Ofelia; Hernández Aragüés, Ignacio; Bello, Natalia; Hernández-Flórez, Diana; Hinojosa, Michelle; Martínez-Barrio, Julia; Nieto-González, Juan Carlos; Ovalles-Bonilla, Juan Gabriel; González, Carlos Manuel; López-Longo, Francisco Javier; Monteagudo, Indalecio; Naredo, Esperanza; Carreño, Luis

    2015-05-01

    The primary objective of this study was to describe and compare clinical and musculoskeletal (MS) ultrasound (US) features between psoriatic arthritis (PsA) patients treated with full and tapered dosage of biologic (b) disease-modified antirheumatic drugs (DMARDs). The secondary objective was to compare clinical and MSUS features between PsA patients treated with bDMARDs with and without concomitant synthetic (s) DMARDs. We evaluated 102 patients with PsA treated with bDMARDs. The bDMARD dosage tapering had been made in patients with a maintained remission or minimal disease activity (MDA) according to their attending rheumatologist and with the patient acceptance. The bDMARD tapering consisted of the following: increase the interval between doses for subcutaneous bDMARDs or reduction of the dose for intravenous bDMARDs. The clinical evaluation consisted of a dermatologic and rheumatologic assessment of disease activity. The presence of B-mode and Doppler synovitis, tenosynovitis, enthesopathy, and paratenonitis was investigated by a rheumatologist blinded to drug dosage, clinical assessments, and laboratory results. Seventy-four (72.5 %) patients received full dosage of bDMARDs and 28 (27.5 %) received tapered dosage. The duration with biologic therapy and with current biologic therapy was significantly higher in patients with tapered dosages (p = 0.008 and p = 0.001, respectively). We found no significant differences between clinical, laboratory, and US variables, both for BM and CD between patients with full and tapered dosage and between patients with and without concomitant sDMARD. Clinical assessment, MSUS variables, and MDA status are similar in patients receiving full and tapered dosage of bDMARDs. PMID:25636779

  3. Comparison of Pressure Changes by Head and Neck Position between High-Volume Low-Pressure and Taper-Shaped Cuffs: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Nobuyasu Komasawa

    2015-01-01

    Full Text Available The present study compared changes in cuff pressure by head and neck position between high-volume low-pressure (HVLP and taper-shaped (taper cuffs in a prospective randomized clinical trial. Methods. Forty patients were intubated using tracheal tubes with either HVLP (n=20; HVLP group or taper-shaped (n=20; Taper group cuffs. Initial cuff pressure was adjusted to 15, 20, or 25 cmH2O in the neutral position. Cuff pressure was evaluated after changing the head and neck positions to flexion, extension, and rotation. Results. Cuff pressure significantly increased with flexion in both HVLP and Taper groups at all initial cuff pressures. It significantly increased with extension in the HVLP group, but not in the Taper group. Cuff pressure did not significantly differ with rotation in either group and was significantly smaller in the Taper group during flexion and extension than in the HVLP group, regardless of initial cuff pressure. Conclusion. Cuff pressure changes with head and neck flexion and extension were smaller in the Taper group than in the HVLP group. Our results highlight the potential for taper cuffs to prevent excessive cuff pressure increases with positional changes in the head and neck. This trial is registered with UMIN000016119.

  4. Effect of Taper Ratio on the Low-speed Rolling Stability Derivatives of Swept and Unswept Wings of Aspect Ratio 2.61

    Science.gov (United States)

    Brewer, Jack D; Fisher, Lewis R

    1951-01-01

    Results of tests conducted in the 6-foot-diameter rolling-flow test section of the Langley stability tunnel to determine the effects of varying taper ratio on the rolling and static stability characteristics of a swept wing are presented; results are also given for the effects of varying taper ratio on an unswept wing and for the effects of sweep on a tapered wing. All the models were of aspect ratio 2.61 and had NACA 0012 sections normal to the quarter-chord line. Taper ratios of 1.00, 0.50, and 0.25 and sweep angles of 0 degrees and 45 degrees were investigated.

  5. Near-field fluorescence thermometry using highly efficient triple-tapered near-field optical fiber probe

    Science.gov (United States)

    Fujii, T.; Taguchi, Y.; Saiki, T.; Nagasaka, Y.

    2012-12-01

    A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.

  6. The effect of preparation height and taper on cement lute stress: a three-dimensional finite element analysis.

    Science.gov (United States)

    Jacobsen, P H; Wakefieldt, A J; O'Doherty, D M; Rees, J S

    2006-12-01

    Three dimensional finite element models of an upper second premolar and molar with full veneer gold crown preparations were developed from extracted samples. The cement lute width was kept constant at 40 microm, but the height and preparation taper were varied. For both models the preparation height was either 1.5 mm (short preparation) or 3 mm (long preparation). The preparation taper was either 10 degree or 30 degree, giving a total of eight models. Each model was loaded with a 10 N horizontal load, a 10 N vertical load or a 10 N load distributed across the occlusal surface. The maximum shear stress and the maximum Von Mises' stress in the cement lute of each model were recorded. For the premolar, the maximum shear stresses ranged from 0.3-5.43 MPa and the maximum Von Mises' stress ranged from 1.44-14.98 MPa. For the molar, the maximum shear stresses ranged from 0.15-5.22 MPa and the maximum Von Mises' stress ranged from 0.3 7-15.02 MPa. The stress fields were consistently higher in the premolar with a 30 degree preparation taper compared to the 10 degree taper. The attainment of a cavity taper of 100 is still important to minimise stress in the cement lute and is particularly important in teeth with a lower preparation surface area such as a premolar

  7. Acrylic-based 1×2 Y-Branch POF coupler with high index contrast waveguide taper

    Science.gov (United States)

    Ehsan, A. A.; Abd Rahman, M. K.

    2011-01-01

    An acrylic-based 1x2 Y-Branch POF coupler consists of input POF waveguide, a middle high index contrast waveguide taper and output POF waveguides has been developed. The optical device is based on a 1x2 Y-branch coupler design with a middle high index contrast waveguide taper. Device modeling has been performed using non-sequential ray tracing with an insertion loss of 4.68 dB and coupling ratio of 50:50. Low cost acrylic material has been used for the device substrate. This middle waveguide taper region is constructed on the acrylic block itself without using any additional optical waveguiding medium injected into the engraved taper region. Fabrication of the devices is done by producing the device structures on an acrylic block using high speed CNC machining tool. Input and output POF fibers are inserted in to this device structure in such a way that they are passively aligned to the middle waveguide taper structure. The measured insertion loss is 7.5 dB and with a splitting ratio of 50:50.

  8. Analysis and design of the taper in metal-grating periodic slow-wave structures for rectangular Cerenkov masers

    Institute of Scientific and Technical Information of China (English)

    Chen Ye; Zhao Ding; Wang Yong; Shu Wen

    2012-01-01

    The hybrid-mode dispersion equation of the metal-grating periodic slow-wave structure for a rectangular Cerenkov maser is derived by using the Borgnis function and field-matching methods.An equivalent-circuit model for the taper of the groove depth that matches the smooth waveguide to the metal-grating structure is proposed.By using the equivalentcircuit method,as well as the Ansoft high frequency structure simulator(HFSS)code,an appropriate electromagnetic mode for beam-wave interaction is selected and the equivalent-circuit analysis on the taper is given.The calculated results show that a cumulative reflection coefficient of 0.025 for the beam-wave interaction structure at a working frequency of 78.1 GHz can be reached by designing the exponential taper with a TEz10 rectangular waveguide mode as the input and the desired TEχ10 mode as the output.It is worth pointing out that by using the equivalent-circuit method,the complex field-matching problems from the traditional field-theory method for taper design can be avoided,so the taper analysis process is markedly simplified.

  9. An evaluation of factors influencing pore pressure in accretionary complexes: Implications for taper angle and wedge mechanics

    Science.gov (United States)

    Saffer, D.M.; Bekins, B.A.

    2006-01-01

    At many subduction zones, accretionary complexes form as sediment is off-scraped from the subducting plate. Mechanical models that treat accretionary complexes as critically tapered wedges of sediment demonstrate that pore pressure controls their taper angle by modifying basal and internal shear strength. Here, we combine a numerical model of groundwater flow with critical taper theory to quantify the effects of sediment and de??collement permeability, sediment thickness, sediment partitioning between accretion and underthrusting, and plate convergence rate on steady state pore pressure. Our results show that pore pressure in accretionary wedges can be viewed as a dynamically maintained response to factors which drive pore pressure (source terms) and those that limit flow (permeability and drainage path length). We find that sediment permeability and incoming sediment thickness are the most important factors, whereas fault permeability and the partitioning of sediment have a small effect. For our base case model scenario, as sediment permeability is increased, pore pressure decreases from near-lithostatic to hydrostatic values and allows stable taper angles to increase from ??? 2.5?? to 8??-12.5??. With increased sediment thickness in our models (from 100 to 8000 m), increased pore pressure drives a decrease in stable taper angle from 8.4??-12.5?? to 15?? to <4??) with increased sediment thickness (from <1 to 7 km). One key implication is that hydrologic properties may strongly influence the strength of the crust in a wide range of geologic settings. Copyright 2006 by the American Geophysical Union.

  10. Theoretical calculations and experimental verification for the pumping effect caused by the dynamic micro-tapered angle

    Science.gov (United States)

    Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng

    2016-05-01

    The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.

  11. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup, Birgitte

    2010-04-01

    High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality. By adapting a bar geometry, the output power could be scaled even up to several tens of watts. Unfortunately, the high divergence which is a characteristic feature of the bar geometry could lead to a degradation of the overall beam quality of the laser bar. However, spectral beam combining is an effective solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm between the emitters. An output power of 9 W has been achieved at an operating current of 30 A. The combined beam had an M2 value (1/e2) of 5.3 along the slow axis which is comparable to that of a single tapered emitter on the laser bar. The overall beam combining efficiency was measured to be 63%. The output spectrum of the individual emitters was narrowed considerably. In the free running mode, the individual emitters displayed a broad spectrum of the order of 0.5-1.0 nm while the spectral width has been reduced to 30-100 pm in the spectral beam combining mode.

  12. Comparison of stem taper equations for eight major tree species in the Spanish Plateau

    Directory of Open Access Journals (Sweden)

    Francisco Rodríguez

    2015-12-01

    Full Text Available Aim of study: A stem taper function and a compatible merchantable volume system are compared to evaluate which provides a better description of the stem profile for the main species in central Spain.Area of study: This research was carried out in the region of Castile-Leon, located in Central Spain.Material and Methods: A total of 6,357 trees were selected for destructive sampling. All models were fitted using a first-order continuous autoregressive error structure to address the problem of autocorrelation.Main results: In terms of accuracy, the root mean square error (RMSE in both models ranged from 0.75 to 2.72 depending on the species analyzed, presenting values similar to those reported in other studies. Small differences in the goodness-of-fit for both procedures were also found, and the Stud model provided better accuracy for 6 of the 8 species studied, with RMSE reductions of 0.5% to 8.6%. The RMSE obtained in the cross-validation phase was on average 1.22 times higher than what was obtained in the fitting phase.Research highlights: The non-linear extra sum of squares method indicated that the stem taper differs among the five softwood species and three hardwood species. In hardwoods, the first inflection point is lower than in softwoods (at around 5% and the second inflection point is higher (at around 85% than those of softwoods.Keywords: taper function; volume system; Central Spain; softwoods; hardwoods.

  13. Influence of Ply Waviness on Fatigue Life of Tapered Composite Flexbeam Laminates

    Science.gov (United States)

    Murri, Gretchen B.

    1999-01-01

    Nonlinear tapered flexbeam laminates, with significant ply waviness, were cut from a full-size composite rotor hub flexbeam. The specimens were tested under combined axial tension and cyclic bending loads. All of the specimens had wavy plies through the center and near the surfaces (termed marcelled areas), although for some of the specimens the surface marcels were very obvious, and for others they were much smaller. The specimens failed by first developing cracks through the marcels at the surfaces, and then delaminations grew from those cracks, in both directions. Delamination failure occurred in these specimens at significantly shorter fatigue lives than similar specimens without waviness, tested in ref. 2. A 2D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. In addition, the FE model duplicated the waviness observed in one of the test specimens. The model was analyzed using a geometrically nonlinear FE code. Modifications were made to the original model to reduce the amplitude of the marcels near the surfaces. The analysis was repeated for each modification. Comparisons of the interlaminar normal stresses, sigma(sub n), in the various models showed that under combined axial-tension and cyclic-bending loading, for marcels of the same aspect ratio, sigma(sub n) stresses increased as the distance along the taper, from thick to thin end, increased. For marcels of the same aspect ratio and at the same X-location along the taper, sigma(sub n) stresses decreased as the distance from the surface into the flexbeam interior increased. A technique was presented for determining the smallest acceptable marcel aspect ratio at various locations in the flexbeam.

  14. Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry

    Science.gov (United States)

    Macon, David J.

    2006-01-01

    An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.

  15. Polarization independent, integrated optical, acoustically tunable wavelength filters/switches with tapered acoustical directional coupler

    Science.gov (United States)

    Herrmann, H.; Schaefer, K.; Sohler, W.

    1994-11-01

    Enhanced sidelobe suppression of the filter characteristics of tunable acousto-optical mode converters in LiNbO3 has been achieved using for the first time tapered acoustical directional couplers. A sidelobe suppression of more than 15.5 dB could be demonstrated in a single stage device. By combining the mode converter with two integrated optical polarization splitters a polarization independent filter/wavelength selective switch has been fabricated with less than 3 dB intrinsic insertion loss, a polarization dependence of less than 1 dB, and a sidelobe suppression exceeding 14 dB.

  16. Magnetically assisted gas-solid fluidization in a tapered vessel: Part Ⅰ. Magnetization-LAST mode

    Institute of Scientific and Technical Information of China (English)

    Jordan Hristov

    2009-01-01

    This article presents further experimental results of the Magnetization-LAST mode in magnetically assisted gas-fluidized tapered beds, including external transverse magnetic field control of solid phase movement, central channel formation, spout depth and the pressure drop across the bed. Phase diagrams similar to those recently reported for the Magnetization-FIRST mode were also developed. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number pertinent to particle aggregate formation was applied to develop the scaling relationships.

  17. Plasmon-controlled excitonic emission from vertically-tapered organic nanowires

    Science.gov (United States)

    Chikkaraddy, Rohit; Patra, Partha Pratim; Tripathi, Ravi P. N.; Dasgupta, Arindam; Kumar, G. V. Pavan

    2016-08-01

    Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be modulated up to a factor of 6 by varying the excitation polarization state of surface plasmons. Our observations were corroborated with full-wave three-dimensional finite-difference time-domain calculations performed on vertically-tapered nanowire geometry. Our work introduces a new optical platform to study coupling between propagating plasmons and propagating excitons, and may have implications in emerging fields such as hybrid-polariton based light emitting devices and vertical-cavity nano-optomechanics.Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be

  18. Coupling between angled-facet amplifiers and tapered lens-ended fibers

    DEFF Research Database (Denmark)

    Wang, Zheng; Mikkelsen, Benny; Pedersen, Bo;

    1991-01-01

    is investigated with respect to the beam parameters of the amplifier waveguide and the tapered lens-ended fiber, and with respect to the fiber position. The excess coupling losses due to the facet angle and to the variation of the fiber lens radius are investigated theoretically and found to be in good agreement...... with experimental results. For optimized lens radii, the excess loss for a 10° facet angle is found to be less than 0.5 dB compared to a normal facet amplifier...

  19. Effect of Osteotomy Preparation on Osseointegration of Immediately Loaded, Tapered Dental Implants.

    Science.gov (United States)

    Stavropoulos, A; Cochran, D; Obrecht, M; Pippenger, B E; Dard, M

    2016-03-01

    The aim of the present preclinical in vivo study was to evaluate whether a modified "drill-only" protocol, involving slight underpreparation of the implant site, may have an effect on aspects of osseointegration of a novel bone-level tapered implant, compared with the "standard drilling" protocol involving taping and profiling of the marginal aspect of the implant socket. In each side of the edentulated and completely healed mandible of 11 minipigs, 2 tapered implants (8 mm long × 4.1 mm Ø, BLT; Institut Straumann AG, Basel, Switzerland) were installed either with the drill-only or the standard drilling protocol. Significantly lower average insertion torque values were recorded for the standard drilling protocol group (52 ± 29 Ncm) compared with the drill-only group (70 ± 27 Ncm) (t test, P ≤ 0.05); no significant difference was observed between the 2 groups regarding implant stability, by means of resonance frequency analysis (75 ± 8 vs. 75 ± 6, respectively). Half of the implants were immediately loaded and the rest were submerged, providing observation times of 8 or 4 wk, respectively. Non-decalcified histological and histomorphometric analysis of the implants with surrounding tissues showed no significant differences between the 2 drilling protocols regarding the distance from the implant platform to the first coronal bone-to-implant contact (f-BIC), the total bone-to-implant contact (BIC) as a percentage of the total implant perimeter, and the bone density in an area extending 1 mm laterally from the implant (BATA) within 2 rectangular regions of interest (ROIs) 4 mm in height, representing the coronal (parallel-walled) and apical (tapered) aspect of the implant (ROI 1 and ROI 2, respectively) in non-submerged implants. In general, marginal peri-implant bone levels were at or slightly apical to the implant platform, and large amounts of bone-to-implant contact were observed. In contrast, immediately loaded implants placed with the drill-only protocol

  20. Plasma Etching of Tapered Features in Silicon for MEMS and Wafer Level Packaging Applications

    International Nuclear Information System (INIS)

    This paper is a brief report of plasma etching as applied to pattern transfer in silicon. It will focus more on concept overview and strategies for etching of tapered features of interest for MEMS and Wafer Level Packaging (WLP). The basis of plasma etching, the dry etching technique, is explained and plasma configurations are described elsewhere. An important feature of plasma etching is the possibility to achieve etch anisotropy. The plasma etch process is extremely sensitive to many variables such as mask material, mask openings and more important the plasma parameters

  1. High efficiency energy extraction from a relativistic electron beam in a strongly tapered undulator

    CERN Document Server

    Sudar, Nicholas; Duris, Joe; Gadjev, Ivan; Polyaniy, Mikhail; Pogorelsky, Igor; Fedurin, Mikhail; Swinson, Christina; Babzien, Marcus; Kusche, Karl; Gover, Avi

    2016-01-01

    We present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54 cm long strongly tapered helical magnetic undulator, extracting over 30$\\%$ of the initial electron beam energy to coherent radiation. These results demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

  2. High light-extraction-efficiency OLED based on photonic crystal slab structures with taper unit cells

    Institute of Scientific and Technical Information of China (English)

    YAN Rong-jin; WANG Qing-kang

    2006-01-01

    To improve the light-extraction-efficiency of OLED,we introduced PCS (Photonic Crystal Slab) structures into the interface of ITO layer and glass substrate.PCS structures with Taper unit cells are proved to be effective in reducing the energy of guided wave trapped in high refractive index material,and an increase of light-extraction-efficiency to 95.26% is gained.This enhancement is much greater than the traditional PCS with cylinder unit cells (60%-70%).Physical mechanisms of light-extraction-efficiency enhancement in these structures are further discussed.

  3. Mechanical analysis of a $\\beta=0.09 $ 162.5MHz taper HWR cavity

    CERN Document Server

    Fan, Peiliang; Zhong, Hutianxiang; Quan, Shengwen; Liu, Kexin

    2015-01-01

    One superconducting taper-type half-wave resonator (HWR) with frequency of 162.5MHz, \\b{eta} of 0.09 has been developed at Peking University, which is used to accelerate high current proton ($\\sim$ 100mA) and $D^{+}$($\\sim$ 50mA). The radio frequency (RF) design of the cavity has been accomplished. Herein, we present the mechanical analysis of the cavity which is also an important aspect in superconducting cavity design. The frequency shift caused by bath helium pressure and Lorenz force, and the tuning by deforming the cavity along the beam axis will be analyzed in this paper.

  4. Effects of short-term altitude training and tapering on left ventricular morphology in elite swimmers.

    Science.gov (United States)

    Haykowsky, M J; Smith, D J; Malley, L; Norris, S R; Smith, E R

    1998-05-01

    Short or long-term athletic training has been associated with left ventricular (LV) morphological adaptations, including increases in wall thickness, cavity dimension and estimated LV mass. A limitation of previous studies assessing the 'athlete heart' was that exercise training was performed at sea level. Since the 1968 Olympic summer games a popular method of maximizing athletic performance has been to use altitude training (AT) as a means of improving sea level performance. However, the effects of short term AT and taper training on LV morphology have not been well studied. Based on this limitation, the effects of three weeks of intense AT (1848 m) or low level control training (CT) (1050 m) followed by two weeks of taper training were investigated in 15 elite swimmers between 16 and 21 years of age. Short term AT or CT training followed by two weeks of taper training was not associated with alterations in LV diastolic cavity dimension (AT pre 53.3 +/- 2.8 mm versus post 52.6 +/- 4.3 mm; CT pre 52.9 +/- 3.7 mm versus post 51.2 +/- 4.0 mm), ventricular septal wall thickness (AT pre 9.6 +/- 1.0 mm versus post 9.4 +/- 1.1 mm; CT pre 8.4 +/- 1.2 mm versus post 8.6 +/- 1.1 mm), estimated LV mass (AT pre 186.4 +/- 45.8 g versus post 190.0 +/- 48.2 g; CT pre 159.1 +/- 35.8 g versus post 160.1 +/- 40.8 g) or fractional shortening (AT pre 36.8 +/- 3.5% versus post 34.8 +/- 2.7%; CT pre 32.6 +/- 5.0% versus post 32.8 +/- 4.7%). However, a main time effect, independent of training intervention, was observed for posterior wall thickness (pre 8.7 +/- 1.4 mm versus post 9.3 +/- 1.1 mm, P < 0.05). Therefore, with the exception of posterior wall thickness, short term AT followed by two weeks of taper training appears not to be associated with alterations in LV morphology or systolic function. PMID:9627523

  5. Forced Response of Polar Orthotropic Tapered Circular Plates Resting on Elastic Foundation

    Directory of Open Access Journals (Sweden)

    A. H. Ansari

    2016-01-01

    Full Text Available Forced axisymmetric response of polar orthotropic circular plates of linearly varying thickness resting on Winkler type of elastic foundation has been studied on the basis of classical plate theory. An approximate solution of problem has been obtained by Rayleigh Ritz method, which employs functions based upon the static deflection of polar orthotropic circular plates. The effect of transverse loadings has been studied for orthotropic circular plate resting on elastic foundation. The transverse deflections and bending moments are presented for various values of taper parameter, rigidity ratio, foundation parameter, and flexibility parameter under different types of loadings. A comparison of results with those available in literature shows an excellent agreement.

  6. Supercontinuum generation and carrier envelope offset frequency measurement in a tapered single-mode fiber

    CERN Document Server

    Zhang, Long; Zhao, Yanying; Hou, Lei; Yu, Zijiao; Wei, Zhiyi

    2014-01-01

    We report supercontinuum generation by launching femtosecond Yb fiber laser pulses into a tapered single-mode fiber of 3 um core diameter. A spectrum of more than one octave, from 550 to 1400 nm, has been obtained with an output power of 1.3 W at a repetition rate of 250 MHz, corresponding to a coupling efficiency of up to 60%. By using a typical f-2f interferometer, the carrier envelope offset frequency was measured and found to have a signal-to-noise ratio of nearly 30 dB.

  7. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    CERN Document Server

    Meyer-Scott, Evan; Ahmad, Raja; Li, Lizhu; Rochette, Martin; Jennewein, Thomas

    2015-01-01

    Using tapered fibers of As2Se3 chalcogenide glass, we produce photon pairs at telecommunication wavelengths with pump power as low as 250 nW for a single pump, and 191 nW for the weak pump in a two-pump non-degenerate scheme. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  8. Saturation of atomic transitions using sub-wavelength diameter tapered optical fibers in rubidium vapor

    CERN Document Server

    Jones, D E; Pittman, T B

    2014-01-01

    We experimentally investigate ultralow-power saturation of the rubidium D2 transitions using a tapered optical fiber (TOF) suspended in a warm Rb vapor. A direct comparison of nonlinear absorption measurements for the TOF system with those obtained in a standard free-space vapor cell system highlights the differences in saturation behavior for the two systems. The effects of hyperfine pumping in the TOF system are found to be minimized due to the short atomic transit times through the highly confined evanescent optical mode guided by the TOF. The TOF system data is well-fit by a relatively simple empirical absorption model that indicates nanoWatt-level saturation powers.

  9. Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip

    CERN Document Server

    Garoli, Denis; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    We demonstrate the generation of far-field propagating optical beams with a desired orbital angular momentum by using a smooth optical mode transformation between a plasmonic vortex and free space Laguerre-Gaussian modes. This is obtained by means of an adiabatically tapered gold tip surrounded by a spiral slit. The proposed physical model, backed up by the numerical study, brings about an optimized structure which is fabricated by using highly reproducible secondary electron lithography technique. Optical measurements of the structure excellently agree with the theoretically predicted far-field distributions. This architecture provides a unique platform for a localized excitation of plasmonic vortices followed by its beaming.

  10. Chalcogenide Microsphere Fabricated from Fiber Tapers Using Contact With a High-Temperature Ceramic Surface

    OpenAIRE

    Wang, Pengfei; Murugan, Ganapathy; Bramilla, Gilberto; Ding, Ming; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald

    2012-01-01

    The fabrication 1 and characterization of a 2 chalcogenide glass microsphere resonator has been demonstrated. 3 At wavelengths near 1550 nm, whispering gallery mode 4 resonances can be efficiently excited in a 74-μm-diameter 5 chalcogenide glass microsphere via evanescent coupling using a 6 tapered silica glass fiber with a waist diameter of circa 2 μm. 7 Resonances with Q-factors greater than 105 were observed. 8 Due to the high nonlinearity properties of the chalcogenide 9 material and the ...

  11. Highly sensitive evanescent wave combination tapered fiber optic fluorosensor for protein detection

    Science.gov (United States)

    Nardone, Vincent; Kapoor, Rakesh

    2008-02-01

    In this paper we are reporting the development of a highly sensitive evanescent wave combination tapered fiber optic fluorosensor. We have demonstrated detection of 5 pM Bovine Serum Albumin (BSA) protein using these fiber optic sensors. The sensor can be easily adopted for detection of other proteins. Six identical probes were prepared and affinity pure Goat anti-BSA antibodies were immobilized on the probe surface. We could detect signal from all the probes kept in 5 pM to 1 nM BSA solution while no signal was detected from the probes kept in 20 nM labeled ESA solution.

  12. Influence of taper, Reynolds number and Mach number on the secondary flow field of a highly loaded turbine cascade

    Energy Technology Data Exchange (ETDEWEB)

    Duden, A.; Fottner, L. [Universitaet der Bundeswehr Muenchen (Germany). Inst. fuer Strahlentriebe

    1997-12-31

    The meridional divergence of low-pressure turbines has a strong influence on their secondary flow field. This paper describes experimental and numerical investigations on two highly loaded linear turbine cascades with the same blade profile and stacking but with parallel end walls and divergently tapered end walls respectively. The effects of taper, Reynolds number (1.2 x 10{sup 5}, 5 x 10{sup 5}) and Mach number (0.30, 0.59, 0.80) are discussed. Data were obtained using pneumatic probes, pressure tappings and surface flow visualizations. Calculations were performed with the three-dimensional Navier-Stokes solver BTOB3D. The investigations show a strong influence of the taper on the pressure distribution and an unexpected high rise in secondary loss. In both cascades the secondary loss coefficient rises with reduced Reynolds number and Mach number respectively. (author)

  13. Temperature-independent strain sensor based on a tapered Bragg fibre fabricated using a CO2 laser

    Science.gov (United States)

    Martins, T. J. M.; Marques, M. B.; Roy, P.; Jamier, R.; Février, S.; Frazão, O.

    2016-05-01

    Temperature-independent strain measurement is achieved resorting to a taper fabricated on a Bragg fibre using a CO2 laser. The characteristic bimodal interference of an untapered Bragg fibre is rendered multimode after taper fabrication and the resulting transmission spectra are analysed as temperature and strain change. The intrinsic strain sensitivity exhibited by the Bragg fibre is increased 15 fold after tapering and reaches 22.68 pm/μepsilon. The difference in wavelength shift promoted by variations in temperature and strain for the two fringes studied is examined and strain sensing with little temperature sensitivity is achieved, presenting a sensitivity of 2.86 pm/μepsilon, for strain values up to 400 μepsilon.

  14. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin;

    2011-01-01

    output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2- values of the laser with lowest spatial coherence. The principle......Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest...... of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future....

  15. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    Science.gov (United States)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  16. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.

    Science.gov (United States)

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-10-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.

  17. Multipacting simulation and analysis of a taper quarter wave cavity by using Analyst-PT3P

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cong; HE Yuan; ZHAO Hong-Wei; ZHANG Sheng-Hu

    2012-01-01

    Since the tapered quarter wave resonator (QWR) cavity is proven to have a much lower peak surface magnetic field in the short plate and a lower peak surface electric field near the beam tube compared with the straight outer conductor QWR,it has been recommended for the separated sector cyclotron linac injector system in the heavy ion research facility in Lanzhou.This paper is focused on the multipacting (MP)analysis for the tapered QWR with a frequency of 80.5 MHz and beta of 0.085.Using the Analyst program,MP bands can be simulated and analyzed with the Particle Tracking module to identify potential problems in the cavity design.This paper will present the simulation results of MP for the tapered QWR cavity.

  18. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.

    Science.gov (United States)

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-10-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber. PMID:26504650

  19. Three-dimensional modeling of CPA to the multimillijoule level in tapered Yb-doped fibers for coherent combining systems.

    Science.gov (United States)

    Andrianov, Alexey; Anashkina, Elena; Kim, Arkady; Meyerov, Iosif; Lebedev, Sergey; Sergeev, Alexander; Mourou, Gerard

    2014-11-17

    We developed a three-dimensional numerical model of Large-Mode-Area chirped pulse fiber amplifiers which includes nonlinear beam propagation in nonuniform multimode waveguides as well as gain spectrum dynamics in quasi-three-level active ions. We used our model in tapered Yb-doped fiber amplifiers and showed that single-mode propagation is maintained along the taper even in the presence of strong Kerr nonlinearity and saturated gain, allowing extraction of up to 3 mJ of output energy in 1 ns pulse. Energy scaling and its limitation as well as the influence of fiber taper bending and core irregularities on the amplifier performance were studied. We also investigated numerically the capabilities for compression and coherent combining of up to 36 perturbed amplifying channels and showed more than 70% combining efficiency, even with up to 11% of high-order modes in individual channels. PMID:25402067

  20. k-space Imaging of the Eigenmodes of Sharp Gold Tapers for Scanning Near-Field Optical Microscopy

    CERN Document Server

    Esmann, Martin; da Cunha, Bernard B; Brauer, Jens H; Vogelgesang, Ralf; Gross, Petra; Lienau, Christoph

    2013-01-01

    We investigate the radiation patterns of sharp conical gold tapers, designed as adiabatic nanofocusing probes for scanning near-field optical microscopy (SNOM). Field calculations show that only the lowest order eigenmode of such a taper can reach the very apex and thus induce the generation of strongly enhanced near-field signals. Higher order modes are coupled into the far field at finite distances from the apex. Here, we demonstrate experimentally how to distinguish and separate between the lowest and higher order eigenmodes of such a metallic taper by filtering in the spatial frequency domain. Our approach has the potential to considerably improve the signal-to-background ratio in spectroscopic experiments on the nanoscale.

  1. Development of a Compatible Taper Function and Stand-Level Merchantable Volume Model for Chinese Fir Plantations

    Science.gov (United States)

    Tang, Xiaolu; Pérez-Cruzado, César; Fehrmann, Lutz; Álvarez-González, Juan Gabriel; Lu, Yuanchang; Kleinn, Christoph

    2016-01-01

    Chinese fir (Cunninghamia lanceolata [Lamb.] Hook) is one of the most important plantation tree species in China with good timber quality and fast growth. It covers an area of 8.54 million hectare, which corresponds to 21% of the total plantation area and 32% of total plantation volume in China. With the increasing market demand, an accurate estimation and prediction of merchantable volume at tree- and stand-level is becoming important for plantation owners. Although there are many studies on the total tree volume estimation from allometric models, these allometric models cannot predict tree- and stand-level merchantable volume at any merchantable height, and the stand-level merchantable volume model was not seen yet in Chinese fir plantations. This study aimed to develop (1) a compatible taper function for tree-level merchantable volume estimation, and (2) a stand-level merchantable volume model for Chinese fir plantations. This “taper function system” consisted in a taper function, a merchantable volume equation and a total tree volume equation. 46 Chinese fir trees were felled to develop the taper function in Shitai County, Anhui province, China. A second-order continuous autoregressive error structure corrected the inherent serial autocorrelation of different observations in one tree. The taper function and volume equations were fitted simultaneously after autocorrelation correction. The compatible taper function fitted well to our data and had very good performances in diameter and total tree volume prediction. The stand-level merchantable volume equation based on the ratio approach was developed using basal area, dominant height, quadratic mean diameter and top diameter (ranging from 0 to 30 cm) as independent variables. At last, a total stand-level volume table using stand basal area and dominant height as variables was proposed for local forest managers to simplify the stand volume estimation. PMID:26799399

  2. Body punk

    DEFF Research Database (Denmark)

    Mogensen, Kevin

    BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along...... with an analysis of the embodied meaning of men‘s bodybuilding....

  3. Body punk

    DEFF Research Database (Denmark)

    Mogensen, Kevin

    BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along with an...... analysis of the embodied meaning of men‘s bodybuilding....

  4. Body Language

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    When we speak,we use much more than just words. We also communicate with our face. our hands,and even our own body. This Kind of communication ean be called “body language” or “non-verbal eommunieation”. Non-verbal

  5. Body Weight and Body Image

    OpenAIRE

    McFarlane Traci; Olmsted Marion P

    2004-01-01

    Abstract Health Issue Body weight is of physical and psychological importance to Canadian women; it is associated with health status, physical activity, body image, and self-esteem. Although the problems associated with overweight and obesity are indeed serious, there are also problems connected to being underweight. Weight prejudice and the dieting industry intensify body image concerns for Canadian women and can have a major negative impact on self-esteem. Key Findings Women have lower BMIs...

  6. 拉锥光纤产生超连续谱的研究进展%Research Progress on Supercontinuum Generation in Fiber Tapers

    Institute of Scientific and Technical Information of China (English)

    陈海寰; 陈子伦; 周旋风; 侯静

    2012-01-01

    随着拉锥理论的发展和拉锥工艺的提高,拉锥光纤中超连续谱的产生成为近年来的研究热点.通过拉锥,可以灵活调整光纤的色散和非线性效应,对超连续谱的产生具有重要意义.首先简要介绍了拉锥技术,然后分别介绍了拉锥普通光纤和拉锥光子晶体光纤中超连续谱产生的研究进展,最后对拉锥光纤产生超连续谱的发展和应用作了展望.%With the development of tapering theory and technology, supercontinuum (SC) generation in conventional fiber tapers or tapered photonic crystal fibers continues to attract significant interests. Tapers are efficient in SC generation at both short and long wavelength due to their special dispersion properties and nonlinearities. This paper introduces the tapering technology first, and then the research progresses of SC generation in both conventional fiber tapers and tapered photonic crystal fibers are reviewed. Finally the prospects and applications SC generated in tapered fiber are presented.

  7. Height-tapered double cantilever beam specimen for study of rate effects on fracture toughness of composites

    Science.gov (United States)

    Yaniv, Gershon; Daniel, Isaac M.

    1988-01-01

    Loading rate effects on the mode I delamination fracture toughness of AS4/3501-6 graphite/epoxy are presently studied by means of a height-tapered double-cantilever beam specimen whose height contour is designed to furnish a slightly decreasing compliance with increasing crack length, in order to yield a stable and smooth crack propagation at high loading rates. This specimen geometry also allows much higher crack propagation velocities to be obtained with either uniform or width-tapered double cantilever beam specimens.

  8. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor

    Science.gov (United States)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.

    2014-05-01

    Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.

  9. All-fiber modal interferometer based on an up-taper-core-offset structure for curvature sensing

    Institute of Scientific and Technical Information of China (English)

    马林; 齐艳辉; 孙将; 康泽新; 简水生

    2015-01-01

    A high-sensitivity curvature sensor based on an up-taper-core-offset structure is proposed and demonstrated in this paper. Here two specially designed cascaded up-tapers with maximum diameters of 247 µm and 251 µm, respectively, are used as a cladding mode exciting component. The excited cladding modes will propagate in the cladding and re-couplers with the core mode at the core-offset jointing point. When the curvature is changed, the dip wavelength of the sensor will shift to a blue wavelength and an average curvature sensitivity of more than−12.5 nm/m−1 is achieved within the measured curvature intervals.

  10. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarkissian, Raymond, E-mail: RaymondSark@gmail.com; O' Brien, John [Electrophysics department, University of Southern California, Los Angeles, California 90089 (United States)

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  11. Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelength

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole

    2005-01-01

    We numerically study supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths, weakly tapered to have normal dispersion at all wavelengths after a certain distance. We pump with 15 fs pulses with milliwatt average power and show that two distinct smooth spectral...... parts are generated, with improved stability due to the normal dispersion. We characterize the two spectral parts and show how the 3 dB bandwidth, the center wavelength, and the power of the two parts depend on the taper parameters and the pump power....

  12. Coupling Single-Mode Fiber to Uniform and Symmetrically Tapered Thin-Film Waveguide Structures Using Gadolinium Gallium Garnet

    Science.gov (United States)

    Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad

    1995-01-01

    The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.

  13. High efficiency 600-mW pHEMT distributed power amplifier employing drain impedance tapering technique

    DEFF Research Database (Denmark)

    Narendra, Kumar; Anand, Lokesh; Pragash, Sangaran;

    2008-01-01

    4-stage distributed power amplifier (DPA) employing tapering the drain load networks to achieve high efficiency is reported. The active device with enhancement mode pHEMT (pseudomorphic High Electron Mobility Transistor) technology is used. Measurement results of 600 mW, 30 % of power-aided-effic......4-stage distributed power amplifier (DPA) employing tapering the drain load networks to achieve high efficiency is reported. The active device with enhancement mode pHEMT (pseudomorphic High Electron Mobility Transistor) technology is used. Measurement results of 600 mW, 30 % of power...

  14. Costs and constraints conspire to produce honest signaling

    DEFF Research Database (Denmark)

    Holman, Luke

    2012-01-01

    that endocrine-mediated trade-offs preclude dishonesty. Several lines of evidence suggest that the realized cost of pheromone production may be nontrivial, and the antagonistic effects of juvenile hormone indicate the presence of significant evolutionary constraints. I conclude that the honesty of queen......Signal costs and evolutionary constraints have both been proposed as ultimate explanations for the ubiquity of honest signaling, but the interface between these two factors is unclear. Here, I propose a pluralistic interpretation, and use game theory to demonstrate that evolutionary constraints...

  15. Astrocytes conspire with neurons during progression of neurological disease

    OpenAIRE

    McGann, James C.; Lioy, Daniel T.; Mandel, Gail

    2012-01-01

    As astrocytes are becoming recognized as important mediators of normal brain function, studies into their roles in neurological disease have gained significance. Across mouse models for neurodevelopmental and neurodegenerative diseases, astrocytes are considered key regulators of disease progression. In Rett syndrome and Parkinson’s disease, astrocytes can even initiate certain disease phenotypes. Numerous potential mechanisms have been offered to explain these results, but research into the ...

  16. The visibility based Tapered Gridded Estimator (TGE) for the redshifted 21-cm power spectrum

    CERN Document Server

    Choudhuri, Samir; Chatterjee, Suman; Ali, Sk Saiyad; Roy, Nirupam; Ghosh, Abhik

    2016-01-01

    We present the improved visibility based Tapered Gridded Estimator (TGE) for the power spectrum of the diffuse sky signal. The visibilities are gridded to reduce the computation, and tapered through a convolution to suppress the contribution from the outer regions of the telescope's field of view. The TGE also internally estimates the noise bias, and subtracts this out to give an unbiased estimate of the power spectrum. An earlier version of the 2D TGE for the angular power spectrum $C_{\\ell}$ is improved and then extended to obtain the 3D TGE for the power spectrum $P({\\bf k})$ of the 21-cm brightness temperature fluctuations. Analytic formulas are also presented for predicting the variance of the binned power spectrum. The estimator and its variance predictions are validated using simulations of $150 \\, {\\rm MHz}$ GMRT observations. We find that the estimator accurately recovers the input model for the 1D Spherical Power Spectrum $P(k)$ and the 2D Cylindrical Power Spectrum $P(k_\\perp,k_\\parallel)$, and the...

  17. Survival Rate of Short, Locking Taper Implants with a Plateau Design: A 5-Year Retrospective Study

    Directory of Open Access Journals (Sweden)

    Kemal Özgür Demiralp

    2015-01-01

    Full Text Available Background. Short implants have become popular in the reconstruction of jaws, especially in cases with limited bone height. Shorter implants, those with locking tapers and plateau root shapes, tend to have longer survival times. We retrospectively investigated the cumulative survival rates of Bicon short implants (<8 mm according to patient variables over a 5-year period. Materials and Methods. This study included 111 consecutively treated patients with 371 implants supporting fixed or removable prosthetics. Data were evaluated to acquire cumulative survival rates according to gender, age, tobacco use, surgical procedure, bone quality, and restoration type. Statistics were performed using chi-square, Mann-Whitney, and Kruskal Wallis H tests. Results. The survival rate was 97.3% with, on average, 22.8 months of follow-up. Patients older than 60 years had higher failure rate than the other age groups (P<0.05. Placed region, age, and bone quality had adverse effects on survival rate in the <8 mm implant group with statistically significant difference (P<0.05. Conclusions. Approximately 23-month follow-up data indicate that short implants with locking tapers and plateau-type roots have comparable survival rates as other types of dental implants. However, due to limitations of study, these issues remain to be further investigated in future randomized controlled clinical trials.

  18. Study on self-imaging properties for line-tapered multimode interference couplers

    Science.gov (United States)

    Le, ZiChun; Huang, SunGang; Fu, MingLei; Dong, Wen; Zhang, Jie; Zhang, Ming

    2011-10-01

    The line-tapered multimode interference (MMI) couplers have advantage of compact dimension compared with conventional straight MMI couplers and then are more suitable for integrated optical components. In this paper, the self-imaging properties including general self-image and overlapping-image properties for the line-tapered MMI couplers are discussed thoroughly. Based on the width equation we defined, compact equations for the positions, amplitudes, phases of general images and overlapping images are deduced. Three disciplines for general self-imaging and four disciplines for overlapping-imaging are summarized and discussed. In addition, the overlapping-image properties are further studied by matrix analytic method and an inductive reasoning method of constructing phase and intensity matrix is developed based on it. Finally, all the theoretical results are compared with simulations results obtained by the finite-difference beam propagation method (FD-BPM). Both theoretical and simulation results are shown in this paper and demonstrated to be coincided with each other to a great extent.

  19. Plasmon-controlled excitonic emission from vertically-tapered organic nanowires.

    Science.gov (United States)

    Chikkaraddy, Rohit; Patra, Partha Pratim; Tripathi, Ravi P N; Dasgupta, Arindam; Kumar, G V Pavan

    2016-08-21

    Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be modulated up to a factor of 6 by varying the excitation polarization state of surface plasmons. Our observations were corroborated with full-wave three-dimensional finite-difference time-domain calculations performed on vertically-tapered nanowire geometry. Our work introduces a new optical platform to study coupling between propagating plasmons and propagating excitons, and may have implications in emerging fields such as hybrid-polariton based light emitting devices and vertical-cavity nano-optomechanics. PMID:27444822

  20. Torsional Vibrations of a Conic Shaft with Opposite Tapers Carrying Arbitrary Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Jia-Jang Wu

    2013-01-01

    Full Text Available The purpose of this paper is to present the exact solution for free torsional vibrations of a linearly tapered circular shaft carrying a number of concentrated elements. First of all, the equation of motion for free torsional vibration of a conic shaft is transformed into a Bessel equation, and, based on which, the exact displacement function in terms of Bessel functions is obtained. Next, the equations for compatibility of deformations and equilibrium of torsional moments at each attaching point (including the shaft ends between the concentrated elements and the conic shaft with positive and negative tapers are derived. From the last equations, a characteristic equation of the form is obtained. Then, the natural frequencies of the torsional shaft are determined from the determinant equation , and, corresponding to each natural frequency, the column vector for the integration constants, , is obtained from the equation . Substitution of the last integration constants into the associated displacement functions gives the corresponding mode shape of the entire conic shaft. To confirm the reliability of the presented theory, all numerical results obtained from the exact method are compared with those obtained from the conventional finite element method (FEM and good agreement is achieved.

  1. Tunable tapered waveguide for efficient compression of light to graphene surface plasmons

    Science.gov (United States)

    Cheng, Bo Han; Chen, Hong Wen; Jen, Yi-Jun; Lan, Yung-Chiang; Tsai, Din Ping

    2016-01-01

    Dielectric-graphene-dielectric (DGD) structure has been widely used to construct optical devices at infrared region with features of small footprint and low-energy dissipation. The optical properties of graphene can be manipulated by changing its chemical potential by applying a biased voltage onto graphene. However, the excitation efficiency of surface wave on graphene by end-fire method is very low because of large wavevector mismatch between infrared light and surface wave. In this paper, a dielectric-semiconductor-dielectric (DSD) tapered waveguide with magnetic tunability for efficient excitation of surface waves on DGD at infrared region is proposed and analyzed. Efficient excitation of surface waves on DGD with various chemical potentials in graphene layer and incident frequencies can be attained by merely changing the external magnetic field applied onto the DSD tapered waveguide. The electromagnetic simulations verify the design of the proposed structure. More importantly, the constituent materials used in the proposed structure are available in nature. This work opens the door toward various applications in the field of using surface waves. PMID:27353171

  2. Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser

    Science.gov (United States)

    Li, Chao-Ran; Dai, Shi-Xun; Zhang, Qing-Yuan; Shen, Xiang; Wang, Xun-Si; Zhang, Pei-Qing; Lu, Lai-Wei; Wu, Yue-Hao; Lv, She-Qin

    2015-04-01

    We report the applications of a low-cost and environmentally friendly chalcogenide glass, 75GeS2-15Ga2S3-10CsI, in building active microsphere laser oscillators. A silica fiber taper is used as the coupling mechanism. With an 808-nm laser diode as a pump source, we show that a high-Q (˜ 6×104) laser mode could be obtained from a 75-μm diameter microsphere that is coupled with a 1.77-μm waist-diameter fiber taper. The threshold of the incident pump power is 1.39 mW, which is considerably lower than those of previously reported free-space coupled chalcogenide microsphere lasers. We also note an apparent enhancement in laser power generated from this chalcogenide microsphere laser. Project supported by the National Natural Science Foundation of China (Grant Nos. 61177087 and 61435009), the National Key Basic Research Program of China (Grant No. 2012CB722703), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B21007) , the K. C. Wong Magna Fund in Ningbo University, the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology), China (Grant No. 2014-skllmd-01), and the Natural Science Foundation of Ningbo City, China (Grant No. 2014A610125).

  3. Electrochemical impedance spectroscopy investigation on the clinical lifetime of ProTaper rotary file system.

    Science.gov (United States)

    Penta, Virgil; Pirvu, Cristian; Demetrescu, Ioana

    2014-01-01

    The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.

  4. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    Science.gov (United States)

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  5. Tunable tapered waveguide for efficient compression of light to graphene surface plasmons

    Science.gov (United States)

    Cheng, Bo Han; Chen, Hong Wen; Jen, Yi-Jun; Lan, Yung-Chiang; Tsai, Din Ping

    2016-06-01

    Dielectric-graphene-dielectric (DGD) structure has been widely used to construct optical devices at infrared region with features of small footprint and low-energy dissipation. The optical properties of graphene can be manipulated by changing its chemical potential by applying a biased voltage onto graphene. However, the excitation efficiency of surface wave on graphene by end-fire method is very low because of large wavevector mismatch between infrared light and surface wave. In this paper, a dielectric-semiconductor-dielectric (DSD) tapered waveguide with magnetic tunability for efficient excitation of surface waves on DGD at infrared region is proposed and analyzed. Efficient excitation of surface waves on DGD with various chemical potentials in graphene layer and incident frequencies can be attained by merely changing the external magnetic field applied onto the DSD tapered waveguide. The electromagnetic simulations verify the design of the proposed structure. More importantly, the constituent materials used in the proposed structure are available in nature. This work opens the door toward various applications in the field of using surface waves.

  6. Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating.

    Science.gov (United States)

    Lv, Lingya; Wang, Sumei; Jiang, Lan; Zhang, Fei; Cao, Zhitao; Wang, Peng; Jiang, Yi; Lu, Yongfeng

    2015-12-20

    A compact optical fiber sensor for simultaneous measurement of strain and temperature is designed and experimentally investigated. The proposed sensor consists of a two-peanut-taper Mach-Zehnder interferometer (MZI) and in-line embedded fiber Bragg grating (FBG). The sensor at a length of 35 mm presents strain sensitivities 1.07  pm/με and 0.891  pm/με, the temperature sensitivities are 55.35  pm/°C and 10.85  pm/°C, for MZI and FBG, respectively. Through tapering the center of the sensor by a fusion splicer, the strain sensitivity of the MZI is improved to 1.93  pm/με. The resolutions for strain and temperature measurement are ±3.104  με and ±0.194°C with the wavelength resolution of 5 pm. The experimental results show that the sensor is able to simultaneously measure strain and temperature by sensitivity matrix with advantages such as simple structure, compact size, ease of fabrication, low cost, etc. PMID:26837035

  7. Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation.

    Science.gov (United States)

    Alonso-Ramos, Carlos; Nedeljkovic, Milos; Benedikovic, Daniel; Penadés, Jordi Soler; Littlejohns, Callum G; Khokhar, Ali Z; Pérez-Galacho, Diego; Vivien, Laurent; Cheben, Pavel; Mashanovich, Goran Z

    2016-09-15

    A broad transparency range of its constituent materials and compatibility with standard fabrication processes make germanium-on-silicon (Ge-on-Si) an excellent platform for the realization of mid-infrared photonic circuits. However, the comparatively large Ge waveguide thickness and its moderate refractive index contrast with the Si substrate hinder the implementation of efficient fiber-chip grating couplers. We report for the first time, to the best of our knowledge, a single-etch Ge-on-Si grating coupler with an inversely tapered access stage, operating at a 3.8 μm wavelength. Optimized grating excitation yields a coupling efficiency of -11  dB (7.9%), the highest value reported for a mid-infrared Ge-on-Si grating coupler, with reflectivity below -15  dB (3.2%). The large periodicity of our higher-order grating design substantially relaxes the fabrication constraints. We also demonstrate that a focusing geometry allows a 10-fold reduction in inverse taper length, from 500 to 50 μm. PMID:27628388

  8. Moment method analysis of linearly tapered slot antennas: Low loss components for switched beam radiometers

    Science.gov (United States)

    Koeksal, Adnan; Trew, Robert J.; Kauffman, J. Frank

    1992-01-01

    A Moment Method Model for the radiation pattern characterization of single Linearly Tapered Slot Antennas (LTSA) in air or on a dielectric substrate is developed. This characterization consists of: (1) finding the radiated far-fields of the antenna; (2) determining the E-Plane and H-Plane beamwidths and sidelobe levels; and (3) determining the D-Plane beamwidth and cross polarization levels, as antenna parameters length, height, taper angle, substrate thickness, and the relative substrate permittivity vary. The LTSA geometry does not lend itself to analytical solution with the given parameter ranges. Therefore, a computer modeling scheme and a code are necessary to analyze the problem. This necessity imposes some further objectives or requirements on the solution method (modeling) and tool (computer code). These may be listed as follows: (1) a good approximation to the real antenna geometry; and (2) feasible computer storage and time requirements. According to these requirements, the work is concentrated on the development of efficient modeling schemes for these type of problems and on reducing the central processing unit (CPU) time required from the computer code. A Method of Moments (MoM) code is developed for the analysis of LTSA's within the parameter ranges given.

  9. Computational fluid dynamics evaluation of incomplete stent apposition in a tapered artery

    Science.gov (United States)

    Poon, Eric; Thondapu, Vikas; Ooi, Andrew; Hayat, Umair; Barlis, Peter; Moore, Stephen

    2015-11-01

    Coronary stents are deployed to prop open blocked arteries and restore normal blood flow, however in-stent restenosis (ISR) and stent thrombosis (ST) remain possibly catastrophic complications. Computational fluid dynamics (CFD) analyses can elucidate the pathological impact of alterations in coronary hemodynamics and correlate wall shear stress (WSS) with atherosclerotic processes. The natural tapering of a coronary artery often leads to proximal incomplete stent apposition (ISA) where stent struts are not in contact with the vessel wall. By employing state-of-the-art computer-aided design (CAD) software, generic open-cell and closed-cell coronary stent designs were virtually deployed in an idealised tapered coronary artery. Pulsatile blood flow (80 mL/min at 75 beats/min) was carried out numerically on these CAD models using a finite volume solver. CFD results reveal significant fluctuations in proximal WSS and large recirculation regions in the setting of proximal ISA, resulting in regions of high wall shear stress gradient (WSSG) that have been previously linked to poor endothelial cell coverage and vascular injury. The clinical significance of these proximal high WSSG regions will be correlated with findings from high-resolution in-vivo imaging. Supported by the Australian Research Council (LP120100233) and Victorian Life Sciences Computation Initiative (VR0210).

  10. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    Science.gov (United States)

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples. PMID:26186260

  11. Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams

    Science.gov (United States)

    Piovan, Marcelo T.; Filipich, Carlos P.; Cortínez, Víctor H.

    2008-09-01

    In this paper, analytical solutions for the free vibration analysis of tapered thin-walled laminated-composite beams with both closed and open cross-sections are developed. The present study is based on a recently developed model that incorporates in a full form the shear flexibility. The model considers shear flexibility due to bending as well as warping related to non-uniform torsion. The theory is briefly reviewed with the aim to present the equilibrium equations, the related boundary conditions and the constitutive equations. The stacking sequences in the panels of the cross-sections are selected in order to behave according to certain elastic coupling features. Typical laminations for a box-beam such as circumferentially uniform stiffness (CUS) or circumferentially asymmetric stiffness (CAS) configurations are adopted. For open cross-sections, special laminations behaving elastically like the CAS and CUS configurations of closed sections are also taken into account. The exact values (i.e. with arbitrary precision) of frequencies are obtained by means of a generalized power series methodology. A recurrence scheme is introduced with the aim to simplify the algebraic manipulation by shrinking the number of unknown variables. A parametric analysis for different taper ratios, slenderness ratios and stacking sequences is performed. Numerical examples are also carried out focusing attention in the validation of the present theory with respect to 2D FEM computational approaches, as well as to serve as quality test and convergence test of former finite elements schemes.

  12. Biconically Tapered Fiber Optic Probes for Rapid Label-Free Immunoassays

    Directory of Open Access Journals (Sweden)

    John Miller

    2015-04-01

    Full Text Available We report use of U-shaped biconically tapered optical fibers (BTOF as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G-antigen (rabbit anti-mouse IgG reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method.

  13. Electrochemical Impedance Spectroscopy Investigation on the Clinical Lifetime of ProTaper Rotary File System

    Science.gov (United States)

    Pirvu, Cristian; Demetrescu, Ioana

    2014-01-01

    The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects. PMID:24605336

  14. Electrochemical Impedance Spectroscopy Investigation on the Clinical Lifetime of ProTaper Rotary File System

    Directory of Open Access Journals (Sweden)

    Virgil Penta

    2014-01-01

    Full Text Available The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.

  15. Design and performance analysis of InP/InGaAsP-MMI based 1310/1550-nm wavelength division demultiplexer with tapered waveguide geometry

    Science.gov (United States)

    Chack, D.; Kumar, V.; Raghuwanshi, S. K.

    2015-12-01

    The design and performance analysis of a 1310/1550-nm wavelength division demultiplexer with tapered geometry based on InP/InGaAsP multimode interference (MMI) coupler has been carried out. Wavelength response of demultiplexer of conventional MMI and tapered input and tapered output (tapered I/O) waveguides geometry of the MMI have been discussed. The demultiplexing function has been first performed by choosing a suitable refractive index of the guiding region and geometrical parameters such as the width and length of MMI structure have been achieved. Access width of tapered I/O waveguides have been adjusted to give a low insertion loss (IL) and high extinction ratio (ER) for the considered wavelengths of 1310 nm and 1550 nm. The total size of the demultiplexer has been significantly reduced over the existing MMI devices. Numerical simulations with finite difference beam propagation method are applied to design and optimize the operation of the proposed demultiplexer.

  16. Bog bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2015-01-01

    the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma...... and shrink, leading to potential pitfalls in paleopathological diagnostics. Bog bodies have in several instances been crucial in determining the last meal, as gut contents may be preserved, and thus augment our knowledge on pre-historic diet by adding to, for example, stable isotope analyses. This article...

  17. Body Language

    Institute of Scientific and Technical Information of China (English)

    王芳

    2008-01-01

    @@ For Teachers: The Wordless Language Spoken by Everyone by Pamela Osment An old saying goes:"Actions speak louder than words."That's true according to communication experts.Some studies show that up to 90 percent of communication is nonverbal.Though you might say one thing,your body movements may indicate something entirely different.This nonverbal way of communicating is called body language.The Universal(通用的)Language

  18. Strain analysis of different diameter Morse taper implants under overloading compressive conditions

    Directory of Open Access Journals (Sweden)

    Carolina Guimarães CASTRO

    2015-01-01

    Full Text Available The aim of this study was to evaluate the amount of deformation from compression caused by different diameters of Morse taper implants and the residual deformation after load removal. Thirty Morse taper implants lacking external threads were divided into 3 groups (n = 10 according to their diameter as follows: 3.5 mm, 4.0 mm and 5.0 mm. Two-piece abutments were fixed into the implants, and the samples were subjected to compressive axial loading up to 1500 N of force. During the test, one strain gauge remained fixed to the cervical portion of each implant to measure the strain variation. The strain values were recorded at two different time points: at the maximum load (1500 N and 60 seconds after load removal. To calculate the strain at the implant/abutment interface, a mathematical formula was applied. Data were analyzed using a one-way Anova and Tukey’s test (α = 0.05. The 5.0 mm diameter implant showed a significantly lower strain (650.5 μS ± 170.0 than the 4.0 mm group (1170.2 μS ± 374.7 and the 3.5 mm group (1388.1 μS ± 326.6 (p < 0.001, regardless of the load presence. The strain values decreased by approximately 50% after removal of the load, regardless of the implant diameter. The 5.0 mm implant showed a significantly lower strain at the implant/abutment interface (943.4 μS ± 504.5 than the 4.0 mm group (1057.4 μS ± 681.3 and the 3.5 mm group (1159.6 μS ± 425.9 (p < 0.001. According to the results of this study, the diameter influenced the strain around the internal and external walls of the cervical region of Morse taper implants; all diameters demonstrated clinically acceptable values of strain.

  19. The measurement of sucrose concentration by two-tapered all-fiber Mach-Zehnder interferometer employing different coupling structures and manufacture processes

    Science.gov (United States)

    Zhu, Yu-Sheng; Wang, Hsin-Wen; Hsu, Yi-Cheng

    2016-08-01

    The sucrose concentration measurement and characteristics of light coupling taper structure on sensitivity with various fabrication processes of taper structure for all-fiber Mach-Zehnder interferometer (AFMZI) are presented. Using fusion splicer with electrical discharge, the standard single-mode fiber is employed to be fabricated as conical coupling/decoupling taper structure. The basic two fabrication processes are designed as single fusion-stretching (SFS), multiple fusions without stretching (MF). The third advanced process is composed of SFS and multiple fusions without stretching processes, and called multiple fusions with single stretching (MFSS). Various types of coupling/decoupling taper structures were fabricated based on the three kinds of fabrication processes. The effects of geometry shape including taper waist, taper angle, and sensing length on sensing sensitivity of AFMZIs are estimated. The modifications of fiber core and cladding induced by thermal effect affect the refractive index distributions and shapes of taper structure. The effects of refractive index changes of fiber core and cladding on sensing sensitivity are also discussed. The AFMZI was tested by measuring aqueous sucrose solution of refractive index unit (RIU) from 1.333 to 1.420 RIU. The optical spectrums are measured by a spectrometer. The spectrum dip shifts and sensing sensitivity was measured and calculated, respectively. As shown in results, sensing sensitivities of AFMZIs of taper structure fabricated by MFSS and multiple fusions without stretching processing are generally higher than SFS. The reasons could be aimed on materials modification through thermal effect on blurring fiber core-cladding interface and proper taper angle of taper structure. The more homogeneous refractive index distribution on fiber core-cladding interface, the more detecting light power decoupled through core-cladding interface to interact with exterior environment and enhance the sensing sensitivity

  20. Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis

    Science.gov (United States)

    Nadeem, S.; Noreen Sher, Akbar

    2010-06-01

    We analyze the blood flow through a tapered artery, assuming the blood to be a second order fluid model. The resulting nonlinear implicit system of partial differential equations is solved by the perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The physical behavior of different parameters is also discussed, as are trapping phenomena.