WorldWideScience

Sample records for body signal suppression

  1. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Muertz, Petra, E-mail: petra.muertz@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Kaschner, Marius, E-mail: marius.kaschner@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Traeber, Frank, E-mail: frank.traeber@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Kukuk, Guido M., E-mail: guido.kukuk@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Buedenbender, Sarah M., E-mail: sarah_m_buedenbender@yahoo.de [Department of Radiology, University of Bonn (Germany); Skowasch, Dirk, E-mail: dirk.skowasch@ukb.uni-bonn.de [Department of Medicine, University of Bonn (Germany); Gieseke, Juergen, E-mail: juergen.gieseke@philips.com [Philips Healthcare, Best (Netherlands); Department of Radiology, University of Bonn (Germany); Schild, Hans H., E-mail: hans.schild@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Willinek, Winfried A., E-mail: winfried.willinek@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany)

    2012-11-15

    Purpose: To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Materials and methods: Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n = 5), thorax (n = 8), abdomen (n = 6) and pelvis (n = 21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as 'improved', 'equal', 'worse' or 'ambiguous'. Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. Results: By the use of TX, signal homogeneity was 'improved' in 25/40 and 'equal' in 15/40 cases. Fat suppression was 'improved' in 17/40 and 'equal' in 23/40 cases. These improvements were statistically significant (p < 0.001, Wilcoxon signed-rank test). In five patients, fluid-related dielectric shading was present, which improved remarkably. The ADC values did not significantly differ for the two RF excitation methods (p = 0.630 over all data, pairwise Student's t-test). Conclusion: Dual-source parallel RF excitation improved image quality of DWIBS at 3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values.

  2. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ying-Yi Chen

    2012-01-01

    Full Text Available Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea, a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP- 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2 increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002, ERK1/2 (PD98059, JNK (SP600125, and p38 MAPK (SB203580 decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells.

  3. Amplitude suppression and chaos control in epileptic EEG signals.

    Science.gov (United States)

    Majumdar, Kaushik; Myers, Mark H

    2006-03-01

    In this paper we have proposed a novel amplitude suppression algorithm for EEG signals collected during epileptic seizure. Then we have proposed a measure of chaoticity for a chaotic signal, which is somewhat similar to measuring sensitive dependence on initial conditions by measuring Lyapunov exponent in a chaotic dynamical system. We have shown that with respect to this measure the amplitude suppression algorithm reduces chaoticity in a chaotic signal (EEG signal is chaotic). We have compared our measure with the estimated largest Lyapunov exponent measure by the largelyap function, which is similar to Wolf's algorithm. They fit closely for all but one of the cases. How the algorithm can help to improve patient specific dosage titration during vagus nerve stimulation therapy has been outlined.

  4. Amplitude Suppression and Chaos Control in Epileptic EEG Signals

    Directory of Open Access Journals (Sweden)

    Kaushik Majumdar

    2006-01-01

    Full Text Available In this paper we have proposed a novel amplitude suppression algorithm for EEG signals collected during epileptic seizure. Then we have proposed a measure of chaoticity for a chaotic signal, which is somewhat similar to measuring sensitive dependence on initial conditions by measuring Lyapunov exponent in a chaotic dynamical system. We have shown that with respect to this measure the amplitude suppression algorithm reduces chaoticity in a chaotic signal (EEG signal is chaotic. We have compared our measure with the estimated largest Lyapunov exponent measure by the largelyap function, which is similar to Wolf's algorithm. They fit closely for all but one of the cases. How the algorithm can help to improve patient specific dosage titration during vagus nerve stimulation therapy has been outlined.

  5. Arsenite suppression of BMP signaling in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Marjorie A.; Qin, Qin [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States); Hu, Qin; Zhao, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Rice, Robert H., E-mail: rhrice@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States)

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  6. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer.

    This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal

  7. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  8. Artifact suppression and analysis of brain activities with electroencephalography signals

    Institute of Scientific and Technical Information of China (English)

    Md. Rashed-Al-Mahfuz; Md. Rabiul Islam; Keikichi Hirose; Md. Khademul Islam Molla

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  9. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  10. Techniques for Clutter Suppression in the Presence of Body Movements during the Detection of Respiratory Activity through UWB Radars

    Directory of Open Access Journals (Sweden)

    Antonio Lazaro

    2014-02-01

    Full Text Available This paper focuses on the feasibility of tracking the chest wall movement of a human subject during respiration from the waveforms recorded using an impulse-radio (IR ultra-wideband radar. The paper describes the signal processing to estimate sleep apnea detection and breathing rate. Some techniques to solve several problems in these types of measurements, such as the clutter suppression, body movement and body orientation detection are described. Clutter suppression is achieved using a moving averaging filter to dynamically estimate it. The artifacts caused by body movements are removed using a threshold method before analyzing the breathing signal. The motion is detected using the time delay that maximizes the received signal after a clutter removing algorithm is applied. The periods in which the standard deviations of the time delay exceed a threshold are considered macro-movements and they are neglected. The sleep apnea intervals are detected when the breathing signal is below a threshold. The breathing rate is determined from the robust spectrum estimation based on Lomb periodogram algorithm. On the other hand the breathing signal amplitude depends on the body orientation respect to the antennas, and this could be a problem. In this case, in order to maximize the signal-to-noise ratio, multiple sensors are proposed to ensure that the backscattered signal can be detected by at least one sensor, regardless of the direction the human subject is facing. The feasibility of the system is compared with signals recorded by a microphone.

  11. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models.

    Science.gov (United States)

    Johansson, Jenny U; Woodling, Nathaniel S; Wang, Qian; Panchal, Maharshi; Liang, Xibin; Trueba-Saiz, Angel; Brown, Holden D; Mhatre, Siddhita D; Loui, Taylor; Andreasson, Katrin I

    2015-01-01

    Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer's disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aβ peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aβ clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD.

  12. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    Science.gov (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  13. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    Science.gov (United States)

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  14. Body-contact self-bias effect in partially depleted SOI-CMOS and alternatives to suppress floating body effect

    Institute of Scientific and Technical Information of China (English)

    Zhou Jianhua; Gao Minghui; S.K.Pang; Zou Shichang

    2011-01-01

    As SOI-CMOS technology nodes reach the tens of nanometer regime, body-contacts become more and more ineffective to suppress the floating body effect In this paper self-bias effect as the cause for this failure is analyzed and discussed in depth with respect to different structures and conditions Other alterative approaches to suppressing the floating body effect are also introduced and discussed.

  15. A paradoxical signal intensity increase in fatty livers using opposed-phase gradient echo imaging with fat-suppression pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mulkern, Robert V.; Voss, Stephan [Harvard Medical School, Department of Radiology, Children' s Hospital Boston, Boston, MA (United States); Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S. [Harvard Medical School, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States)

    2008-10-15

    With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14{+-}2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the

  16. Salinomycin Suppresses PDGFRβ, MYC, and Notch Signaling in Human Medulloblastoma.

    Science.gov (United States)

    Zhou, Shuang; Wang, Fengfei; Zhang, Ying; Johnson, Max R; Qian, Steven; Wu, Min; Wu, Erxi

    2014-01-01

    Medulloblastoma (MB) is the most common childhood brain tumor. Despite improved therapy and management, approximately 30% of patients die of the disease. To search for a more effective therapeutic strategy, the effects of salinomycin were tested on cell proliferation, cell death, and cell cycle progression in human MB cell lines. The results demonstrated that salinomycin inhibits cell proliferation, induces cell death , and disrupts cell cycle progression in MB cells. Salinomycin was also tested on the expression levels of key genes involved in proliferation and survival signaling and revealed that salinomycin down-regulates the expression of PDGFRβ, MYC, p21 and Bcl-2 as well as up-regulates the expression of cyclin A. In addition, the results reveal that salinomycin suppresses the expression of Hes1 and Hes5 in MB cells. Our data shed light on the potential of using salinomycin as a novel therapeutic agent for patients with MB.

  17. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.

    Science.gov (United States)

    Krishna Reddy, Srirama; Finlayson, Scott A

    2014-03-01

    Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud's ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching.

  18. Solvent signal suppression for high-resolution MAS-DNP

    Science.gov (United States)

    Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël

    2017-05-01

    Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.

  19. Puerarin Suppress Apoptosis of Human Osteoblasts via ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ling-juan Liu

    2013-01-01

    Full Text Available Puerarin, the main isoflavone glycoside extracted from Radix Puerariae, is an isoflavone traditional Chinese herb. Previous studies have demonstrated that puerarin could regulate osteoblast proliferation and differentiation to promote bone formation. However, the effect of puerarin on the process of human osteoblasts (hOBs apoptosis is still unclear. In this study, we detected the function of puerarin on serum-free-induced cell apoptosis using ELISA and TUNEL arrays and then found that the mortality of hOBs was significantly decreased after exposure to 10−10–10−6 M puerarin and reached the maximal antiapoptotic effect at the concentration of 10−8 M. In addition, compared with the control group, puerarin notably increased the Bcl-2 protein levels while it decreased the Bax protein levels in the hOBs in a dose-dependent way. 10−7 M puerarin decreased the Bax/Bcl-2 ratio with a maximal decrease to 0.08. Moreover, puerarin activated ERK signaling pathways in hOBs, and the antiapoptotic effect induced by puerarin was abolished by incubation of ERK inhibitor PD98059. Similarly, the estrogen receptor antagonist ICI182780 also suppressed the inhibitory effect of puerarin on hOBs apoptosis. In conclusion, puerarin could prevent hOBs apoptosis via ERK signaling pathway, which might be effective in providing protection against bone loss and bone remolding associated with osteoporosis.

  20. Algorithm for Active Suppression of Radiation and Acoustical Scattering Fields by Some Physical Bodies in Liquids

    Directory of Open Access Journals (Sweden)

    Vladimir V. Arabadzhi

    2009-03-01

    Full Text Available An algorithm for the suppression of the radiation and scattering fields created by vibration of the smooth closed surface of a body of arbitrary shape placed in a liquid is designed and analytically explored. The frequency range of the suppression allows for both large and small wave sizes on the protected surface. An active control system is designed that consists of: (a a subsystem for fast formation of a desired distribution of normal oscillatory velocities or displacements (on the basis of pulsed Huygens' sources and (b a subsystem for catching and targeting of incident waves on the basis of a grid (one layer of monopole microphones, surrounding the surface to be protected. The efficiency and stability of the control algorithm are considered. The algorithm forms the control signal during a time much smaller than the minimum time scale of the waves to be damped. The control algorithm includes logical and nonlinear operations, thus excluding interpretation of the control system as a traditional combination of linear electric circuits, where all parameters are constant (in time. This algorithm converts some physical body placed in a liquid into one that is transparent to a special class of incident waves. The active control system needs accurate information on its geometry, but does not need either prior or current information about the vibroacoustical characteristics of the protected surface, which in practical cases represents a vast amount of data.

  1. Mushroom Bodies Suppress Locomotor Activity in Drosophila melanogaster

    Science.gov (United States)

    Martin, Jean-René; Ernst, Roman; Heisenberg, Martin

    1998-01-01

    Locomotor activity of single, freely walking flies in small tubes is analyzed in the time domain of several hours. To assess the influence of the mushroom bodies on walking activity, three independent noninvasive methods interfering with mushroom body function are applied: chemical ablation of the mushroom body precursor cells; a mutant affecting Kenyon cell differentiation (mushroom body miniature1); and the targeted expression of the catalytic subunit of tetanus toxin in subsets of Kenyon cells. All groups of flies with mushroom body defects show an elevated level of total walking activity. This increase is attributable to the slower and less complete attenuation of activity during the experiment. Walking activity in normal and mushroom body-deficient flies is clustered in active phases (bouts) and rest periods (pauses). Neither the initiation nor the internal structure, but solely the termination of bouts seems to be affected by the mushroom body defects. How this finding relates to the well-documented role of the mushroom bodies in olfactory learning and memory remains to be understood. PMID:10454382

  2. Selective SWS suppression does not affect the time course of core body temperature in men

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Dijk, Derk-Jan

    1992-01-01

    In eight healthy middle-aged men, sleep and core body temperature were recorded under baseline conditions, during all-night SWS suppression by acoustic stimulation, and during undisturbed recovery sleep. SWS suppression resulted in a marked reduction of sleep stages 3 and 4 but did not affect the

  3. Signal Enhancement and Suppression During Visual-Spatial Selective Attention

    OpenAIRE

    Couperus, J. W.; Mangun, G.R.

    2010-01-01

    Selective attention involves the relative enhancement of relevant versus irrelevant stimuli. However, whether this relative enhancement involves primarily enhancement of attended stimuli, or suppression of irrelevant stimuli, remains controversial. Moreover, if both enhancement and suppression are involved, whether they result from a single mechanism or separate mechanisms during attentional control or selection is not known. In two experiments using a spatial cuing paradigm with task-relevan...

  4. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana.

    Science.gov (United States)

    Cui, Songkui; Hayashi, Yasuko; Otomo, Masayoshi; Mano, Shoji; Oikawa, Kazusato; Hayashi, Makoto; Nishimura, Mikio

    2016-09-16

    Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis.

  5. Brief Report: Signals Enhance the Suppressive Effects of Noncontingent Reinforcement

    Science.gov (United States)

    Ringdahl, Joel E.; Call, Nathan A.; Christensen, Tory; Boelter, Eric W.

    2010-01-01

    The effects of noncontingent reinforcement (NCR) schedules on responding were assessed across two parameters: presence of signal and schedule density. Results indicated that signaled NCR schedules were correlated with greater overall reductions in responding and quicker reductions relative to NCR schedules without a signal. The clinical…

  6. Signal enhancement and suppression during visual-spatial selective attention.

    Science.gov (United States)

    Couperus, J W; Mangun, G R

    2010-11-04

    Selective attention involves the relative enhancement of relevant versus irrelevant stimuli. However, whether this relative enhancement involves primarily enhancement of attended stimuli, or suppression of irrelevant stimuli, remains controversial. Moreover, if both enhancement and suppression are involved, whether they result from a single mechanism or separate mechanisms during attentional control or selection is not known. In two experiments using a spatial cuing paradigm with task-relevant targets and irrelevant distractors, target, and distractor processing was examined as a function of distractor expectancy. Additionally, in the second study the interaction of perceptual load and distractor expectancy was explored. In both experiments, distractors were either validly cued (70%) or invalidly cued (30%) in order to examine the effects of distractor expectancy on attentional control as well as target and distractor processing. The effects of distractor expectancy were assessed using event-related potentials recorded during the cue-to-target period (preparatory attention) and in response to the task-relevant target stimuli (selective stimulus processing). Analyses of distractor-present displays (anticipated versus unanticipated), showed modulations in brain activity during both the preparatory period and during target processing. The pattern of brain responses suggest both facilitation of attended targets and suppression of unattended distractors. These findings provide evidence for a two-process model of visual-spatial selective attention, where one mechanism (facilitation) influences relevant stimuli and another (suppression) acts to filter distracting stimuli.

  7. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo

    National Research Council Canada - National Science Library

    Titchenell, Paul M; Chu, Qingwei; Monks, Bobby R; Birnbaum, Morris J

    2015-01-01

    .... Liver-specific deletion of Foxo1 (L-IRFoxo1DKO) rescues glucose tolerance and allows for normal suppression of HGP and gluconeogenic gene expression in response to insulin, despite lack of autonomous liver insulin signalling...

  8. Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner.

    Science.gov (United States)

    Zhao, S; Kanoski, S E; Yan, J; Grill, H J; Hayes, M R

    2012-12-01

    The physiological control of feeding behavior involves modulation of the intake inhibitory effects of gastrointestinal satiation signaling via endogenous hindbrain leptin receptor (LepR) and glucagon-like-peptide-1 receptor (GLP-1R) activation. Using a variety of dose-combinations of hindbrain delivered (4th intracerebroventricular; i.c.v.) leptin and the GLP-1R agonist exendin-4, experiments demonstrate that hindbrain LepR and GLP-1R signaling interact to control food intake and body weight in an additive manner. In addition, the maximum intake suppressive response that could be achieved by 4th i.c.v. leptin alone in non-obese rats (∼33%) was shown to be further suppressed when exendin-4 was co-administered. Importantly, it was determined that the interaction between hindbrain LepR signaling and GLP-1R signaling is relevant to endogenous food intake control, as hindbrain GLP-1R blockade by the selective antagonist exendin-(9-39) attenuated the intake inhibitory effects of hindbrain leptin delivery. Collectively, the findings reported here show that hindbrain LepR and GLP-1R activation interact in at least an additive manner to control food intake and body weight. As evidence is accumulating that combination pharmacotherapies offer greater sustained food intake and body weight suppression in obese individuals when compared with mono-drug therapies or lifestyle modifications alone, these findings highlight the need for further examination of combined central nervous system GLP-1R and LepR signaling as a potential drug target for obesity treatment.

  9. Body charge modelling for accurate simulation of small-signal behaviour in floating body SOI

    Science.gov (United States)

    Benson, James; Redman-White, William; D'Halleweyn, Nele V.; Easson, Craig A.; Uren, Michael J.

    2002-04-01

    We show that careful modelling of body node elements in floating body PD-SOI MOSFET compact models is required in order to obtain accurate small-signal simulation results in the saturation region. The body network modifies the saturation output conductance of the device via the body-source transconductance, resulting in a pole/zero pair being introduced in the conductance-frequency response. We show that neglecting the presence of body charge in the saturation region can often yield inaccurate values for the body capacitances, which in turn can adversely affect the modelling of the output conductance above the pole/zero frequency. We conclude that the underlying cause of this problem is the use of separate models for the intrinsic and extrinsic capacitances. Finally, we present a simple saturation body charge model which can greatly improve small-signal simulation accuracy for floating body devices.

  10. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  11. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  12. SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro.

    Science.gov (United States)

    Zhou, Yuanfei; Song, Tongxing; Peng, Jie; Zhou, Zheng; Wei, Hongkui; Zhou, Rui; Jiang, Siwen; Peng, Jian

    2016-11-22

    Sirtuin 1 (SIRT1) regulates adipocyte and osteoblast differentiation. However, the underlying mechanism should be investigated. This study revealed that SIRT1 acts as a crucial repressor of adipogenesis. RNA-interference-mediated SIRT1 knockdown or genetic ablation enhances adipogenic potential, whereas SIRT1 overexpression inhibits adipogenesis in mesenchymal stem cells (MSCs). SIRT1 also deacetylates the histones of sFRP1, sFRP2, and Dact1 promoters; inhibits the mRNA expression of sFRP1, sFRP2, and Dact1; activates Wnt signaling pathways; and suppresses adipogenesis. SIRT1 deacetylates β-catenin to promote its accumulation in the nucleus and thus induces the transcription of genes that block MSC adipogenesis. In mice, the partial absence of SIRT1 promotes the formation of white adipose tissues without affecting the development of the body of mice. Our study described the regulatory role of SIRT1 in Wnt signaling and proposed a regulatory mechanism of adipogenesis.

  13. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice

    NARCIS (Netherlands)

    Bleuming, Sylvia A.; He, Xi C.; Kodach, Liudmila L.; Hardwick, James C.; Koopman, Frieda A.; ten Kate, Fiebo J.; van Deventer, Sander J. H.; Hommes, Daniel W.; Peppelenbosch, Maikel P.; Offerhaus, G. Johan; Li, Linheng; van den Brink, Gijs R.

    2007-01-01

    Bone morphogenetic protein (BMP) signaling is known to suppress oncogenesis in the small and large intestine of mice and humans. We examined the role of Bmpr1a signaling in the stomach. On conditional inactivation of Bmpr1a, mice developed neoplastic lesions specifically in the squamocolumnar and ga

  14. Losartan prevents acquired epilepsy via TGF-β signaling suppression.

    Science.gov (United States)

    Bar-Klein, Guy; Cacheaux, Luisa P; Kamintsky, Lyn; Prager, Ofer; Weissberg, Itai; Schoknecht, Karl; Cheng, Paul; Kim, Soo Young; Wood, Lydia; Heinemann, Uwe; Kaufer, Daniela; Friedman, Alon

    2014-06-01

    Acquired epilepsy is frequently associated with structural lesions after trauma, stroke, and infections. Although seizures are often difficult to treat, there is no clinically applicable strategy to prevent the development of epilepsy in patients at risk. We have recently shown that vascular injury is associated with activation of albumin-mediated transforming growth factor β (TGF-β) signaling, and followed by local inflammatory response and epileptiform activity ex vivo. Here we investigated albumin-mediated TGF-β signaling and tested the efficacy of blocking the TGF-β pathway in preventing epilepsy. We addressed the role of TGF-β signaling in epileptogenesis in 2 different rat models of vascular injury, combining in vitro and in vivo biochemical assays, gene expression, and magnetic resonance and direct optical imaging for blood-brain barrier permeability and vascular reactivity. Long-term electrocorticographic recordings were acquired in freely behaving animals. We demonstrate that serum-derived albumin preferentially induces activation of the activin receptor-like kinase 5 pathway of TGF-β receptor I in astrocytes. We further show that the angiotensin II type 1 receptor antagonist, losartan, previously identified as a blocker of peripheral TGF-β signaling, effectively blocks albumin-induced TGF-β activation in the brain. Most importantly, losartan prevents the development of delayed recurrent spontaneous seizures, an effect that persists weeks after drug withdrawal. TGF-β signaling, activated in astrocytes by serum-derived albumin, is involved in epileptogenesis. We propose losartan, a drug approved by the US Food and Drug Administration, as an efficient antiepileptogenic therapy for epilepsy associated with vascular injury. © 2014 American Neurological Association.

  15. Suppressing ringing caused by large photomultiplier tube signals

    Institute of Scientific and Technical Information of China (English)

    JIANG Wen-Qi; GU Shu-Di; John Joseph; LIU Da-Wei; Kam-Biu Luk; Herbert Steiner; WANG Zheng; WU Qun

    2012-01-01

    We describe here the characteristic features of the ringing we observed following large PMT signalsin the Daya Bay reactor antineutrino experiment.We conclude that the ceramic capacitors used in the circuitryof the PMT bases and the HV-signal decouplers are the primary cause for this ringing.We present some possibleschemes to reduce the ringing when replacing these ceramic capacitors is not feasible.

  16. On the distribution of signal phase in body area networks

    NARCIS (Netherlands)

    Cotton, Simon L.; Dias, Ugo S.; Scanlon, William G.; Yacoub, Michel D.

    2010-01-01

    In this letter, we investigate the distribution of the phase component of the complex received signal observed in practical experiments using body area networks. Two phase distributions, the recently proposed κ-μ and η-μ probability densities, which together encompass the most widely used fading mod

  17. WNT signaling suppression in the senescent human thymus.

    Science.gov (United States)

    Ferrando-Martínez, Sara; Ruiz-Mateos, Ezequiel; Dudakov, Jarrod A; Velardi, Enrico; Grillari, Johannes; Kreil, David P; Muñoz-Fernandez, M Ángeles; van den Brink, Marcel R M; Leal, Manuel

    2015-03-01

    Human thymus is completely developed in late fetal stages and its function peaks in newborns. After the first year of life, the thymus undergoes a progressive atrophy that dramatically decreases de novo T-lymphocyte maturation. Hormonal signaling and changes in the microRNA expression network are identified as underlying causes of human thymus involution. However, specific pathways involved in the age-related loss of thymic function remain unknown. In this study, we analyzed differential gene-expression profile and microRNA expression in elderly (70 years old) and young (less than 10 months old and 11 years old) human thymic samples. Our data have shown that WNT pathway deregulation through the overexpression of different inhibitors by the nonadipocytic component of the human thymus stimulates the age-related involution. These results are of particular interest because interference of WNT signaling has been demonstrated in both animal models and in vitro studies, with the three major hallmarks of thymic involution: (i) epithelial structure disruption, (ii) adipogenic process, and (iii) thymocyte development arrest. Thus, our results suggest that secreted inhibitors of the WNT pathway could be explored as a novel therapeutical target in the reversal of the age-related thymic involution.

  18. Cuckoo search based optimal mask generation for noise suppression and enhancement of speech signal

    Directory of Open Access Journals (Sweden)

    Anil Garg

    2015-07-01

    Full Text Available In this paper, an effective noise suppression technique for enhancement of speech signals using optimized mask is proposed. Initially, the noisy speech signal is broken down into various time–frequency (TF units and the features are extracted by finding out the Amplitude Magnitude Spectrogram (AMS. The signals are then classified based on quality ratio into different classes to generate the initial set of solutions. Subsequently, the optimal mask for each class is generated based on Cuckoo search algorithm. Subsequently, in the waveform synthesis stage, filtered waveforms are windowed and then multiplied by the optimal mask value and summed up to get the enhanced target signal. The experimentation of the proposed technique was carried out using various datasets and the performance is compared with the previous techniques using SNR. The results obtained proved the effectiveness of the proposed technique and its ability to suppress noise and enhance the speech signal.

  19. Evaluation of novel ECG signal processing on quantification of transient ischemia and baseline wander suppression.

    Science.gov (United States)

    Kostic, Marko N; Fakhar, Sina; Foxall, Tom; Drakulic, Budimir S; Krucoff, Mitchell W

    2007-01-01

    The performance assessment of a novel ECG signal processing technology in Fidelity 100 (test) and four modern ECG systems (controls) was conducted. A quantitative evaluation for one control and a test system was done by simultaneous recordings on 54 patients undergoing percutaneous coronary intervention (PCI) and on a biological reference signal from an ECG simulator. A qualitative performance of baseline wander suppression was done on all five systems. The results showed that the Fidelity 100 system provided excellent detection and quantification of transient ischemia and baseline wander suppression.

  20. Suppression of gliadins results in altered protein body morphology in wheat.

    Science.gov (United States)

    Gil-Humanes, Javier; Pistón, Fernando; Shewry, Peter R; Tosi, Paola; Barro, Francisco

    2011-08-01

    Wheat gluten proteins, gliadins and glutenins, are of great importance in determining the unique biomechanical properties of wheat. Studies have therefore been carried out to determine their pathways and mechanisms of synthesis, folding, and deposition in protein bodies. In the present work, a set of transgenic wheat lines has been studied with strongly suppressed levels of γ-gliadins and/or all groups of gliadins, using light and fluorescence microscopy combined with immunodetection using specific antibodies for γ-gliadins and HMW glutenin subunits. These lines represent a unique material to study the formation and fusion of protein bodies in developing seeds of wheat. Higher amounts of HMW subunits were present in most of the transgenic lines but only the lines with suppression of all gliadins showed differences in the formation and fusion of the protein bodies. Large rounded protein bodies were found in the wild-type lines and the transgenic lines with reduced levels of γ-gliadins, while the lines with all gliadins down-regulated had protein bodies of irregular shape and irregular formation. The size and number of inclusions, which have been reported to contain triticins, were also higher in the protein bodies in the lines with all the gliadins down-regulated. Changes in the protein composition and PB morphology reported in the transgenic lines with all gliadins down-regulated did not result in marked changes in the total protein content or instability of the different fractions.

  1. The Use of Green Leaf Membranes to Promote Appetite Control, Suppress Hedonic Hunger and Loose Body Weight.

    Science.gov (United States)

    Erlanson-Albertsson, Charlotte; Albertsson, Per-Åke

    2015-09-01

    On-going research aims at answering the question, which satiety signal is the most potent or which combination of satiety signals is the most potent to stop eating. There is also an aim at finding certain food items or food additives that could be used to specifically reduce food intake therapeutically. Therapeutic attempts to normalize body weight and glycaemia with single agents alone have generally been disappointing. The success of bariatric surgery illustrates the rationale of using several hormones to treat obesity and type-2-diabetes. We have found that certain components from green leaves, the thylakoids, when given orally have a similar rationale in inducing the release of several gut hormones at the same time. In this way satiety is promoted and hunger suppressed, leading to loss of body weight and body fat. The mechanism is a reduced rate of intestinal lipid hydrolysis, allowing the lipolytic products to reach the distal intestine and release satiety hormones. The thylakoids also regulate glucose uptake in the intestine and influences microbiota composition in the intestine in a prebiotic direction. Using thylakoids is a novel strategy for treatment and prevention of obesity.

  2. Analysis of small-signal intensity modulation of semiconductor lasers taking account of gain suppression

    Indian Academy of Sciences (India)

    Moustafa Ahmed; Ali El-Lafi

    2008-07-01

    This paper demonstrates theoretical characterization of intensity modulation of semiconductor lasers (SL’s). The study is based on a small-signal model to solve the laser rate equations taking into account suppression of optical gain. Analytical forms of the small-signal modulation response and modulation bandwidth are derived. Influences of the bias current, modulation index and modulation frequency as well as gain suppression on modulation characteristics are examined. Computer simulation of the model is applied to 1.55-m InGaAsP lasers. The results show that when the SL is biased far-above threshold, the increase of gain suppression increases both the modulation response and its peak frequency. The modulation bandwidth also increases but the laser damping rate decreases. Quantitative description of the relationships of both modulation bandwidth vs. relaxation frequency and maximum modulation bandwidth vs. nonlinear gain coefficient are presented.

  3. Signal agnostic compressive sensing for Body Area Networks: comparison of signal reconstructions.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2012-01-01

    Compressive sensing is a lossy compression technique that is potentially very suitable for use in power constrained sensor nodes and Body Area Networks as the compression process has a low computational complexity. This paper investigates the reconstruction performance of compressive sensing when applied to EEG, ECG, EOG and EMG signals; establishing the performance of a signal agnostic compressive sensing strategy that could be used in a Body Area Network monitoring all of these. The results demonstrate that the EEG, ECG and EOG can all be reconstructed satisfactorily, although large inter- and intra- subject variations are present. EMG signals are not well reconstructed. Compressive sensing may therefore also find use as a novel method for the identification of EMG artefacts in other electro-physiological signals.

  4. Minocycline treatment suppresses juvenile development and growth by attenuating insulin/TOR signaling in Drosophila animal model

    Science.gov (United States)

    Yun, Hyun Myoung; Noh, Sujin; Hyun, Seogang

    2017-01-01

    Minocycline is a broad spectrum, semi-synthetic tetracycline analog that is used to treat bacterial infection. Recently, this drug has been receiving increasing attention for its non-antibiotic properties, including anti-inflammatory, tumor suppressive, and neuroprotective effects. Drosophila is a useful model organism for studying human metabolism and disease. In this study, we investigated the effects of minocycline on juvenile development and growth in Drosophila. Feeding minocycline to Drosophila larvae suppresses larval body growth and delays the timing of pupation in a dose-dependent manner. We found that the drug treatment decreased the activated form of Akt and S6K in peripheral tissues, which suggested that the insulin/target of rapamycin (TOR) signaling had been attenuated. Specifically enhancing TOR activity in the prothoracic gland (PG), the ecdysone-generating organ, attenuated the drug-induced developmental delay, which is consistent with the critical role of PG’s TOR signaling in determining pupation time. Our results reveal previously unrecognized effects of minocycline and offer a new potential therapeutic opportunity for various pathological conditions associated with insulin/TOR signaling. PMID:28317899

  5. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou, E-mail: xinzhou_yang@hotmail.com

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  6. Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    Science.gov (United States)

    Dick, G. J.; Saunders, J.

    1989-01-01

    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices.

  7. Resolution of abnormal cardiac MRI T2 signal following immune suppression for cardiac sarcoidosis.

    Science.gov (United States)

    Crouser, Elliott D; Ruden, Emily; Julian, Mark W; Raman, Subha V

    2016-08-01

    Cardiac MR (CMR) with late gadolinium enhancement is commonly used to detect cardiac damage in the setting of cardiac sarcoidosis. The addition of T2 mapping to CMR was recently shown to enhance cardiac sarcoidosis detection and correlates with increased cardiac arrhythmia risk. This study was conducted to determine if CMR T2 abnormalities and related arrhythmias are reversible following immune suppression therapy. A retrospective study of subjects with cardiac sarcoidosis with abnormal T2 signal on baseline CMR and a follow-up CMR study at least 4 months later was conducted at The Ohio State University from 2011 to 2015. Immune suppression treated participants had a significant reduction in peak myocardial T2 value (70.0±5.5 vs 59.2±6.1 ms, pretreatment vs post-treatment; p=0.017), and 83% of immune suppression treated subjects had objective improvement in cardiac arrhythmias. Two subjects who had received inadequate immune suppression treatment experienced progression of cardiac sarcoidosis. This report indicates that abnormal CMR T2 signal represents an acute inflammatory manifestation of cardiac sarcoidosis that is potentially reversible with adequate immune suppression therapy.

  8. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  9. Water suppression without signal loss in HR-MAS 1H NMR of cells and tissues

    Science.gov (United States)

    Chen, Jin-Hong; Sambol, Elliot B.; Kennealey, Peter T.; O'Connor, Rachael B.; DeCarolis, Penelope L.; Cory, David G.; Singer, Samuel

    2004-11-01

    In cell and tissue samples, water is normally three orders of magnitude more abundant than other metabolites. Thus, water suppression is required in the acquisition of NMR spectra to overcome the dynamic range problem and to recover metabolites that overlap with the broad baseline of the strong water resonance. However, the heterogeneous cellular environment often complicates water suppression and the strong coupling of water to membrane lipids interferes with the NMR detection of membrane associated lipid components. The widely used water suppression techniques including presaturation and double pulsed field gradient selective echo result in more than a 70% reduction in membrane associated lipid components in proton spectra of cells and tissues compared to proton spectra acquired in the absence of water suppression. A water suppression technique based on the combination of selective excitation pulses and pulsed field gradients is proposed to use in the acquisition of high resolution MAS NMR spectra of tissue specimens and cell samples. This pulse sequence methodology enables efficient water suppression for intact cells and tissue samples and eliminates signal loss from cellular metabolites.

  10. Decentralized Inter-User Interference Suppression in Body Sensor Networks with Non-cooperative Game

    CERN Document Server

    Wu, Guowei; Xia, Feng; Yao, Lin; Xu, Zichuan

    2010-01-01

    Body Sensor Networks (BSNs) provide continuous health monitoring and analysis of physiological parameters. A high degree of Quality-of-Service (QoS) for BSN is extremely required. Inter-user interference is introduced by the simultaneous communication of BSNs congregating in the same area. In this paper, a decentralized inter-user interference suppression algorithm for BSN, namely DISG, is proposed. Each BSN measures the SINR from other BSNs and then adaptively selects the suitable channel and transmission power. By utilizing non-cooperative game theory and no regret learning algorithm, DISG provides an adaptive inter-user interference suppression strategy. The correctness and effectiveness of DISG is theoretically proved, and the experimental results show that DISG can reduce the effect of inter-user interference effectively.

  11. Role of oxytocin signaling in the regulation of body weight.

    Science.gov (United States)

    Blevins, James E; Ho, Jacqueline M

    2013-12-01

    Obesity and its associated metabolic disorders are growing health concerns in the US and worldwide. In the US alone, more than two-thirds of the adult population is classified as either overweight or obese [1], highlighting the need to develop new, effective treatments for these conditions. Whereas the hormone oxytocin is well known for its peripheral effects on uterine contraction during parturition and milk ejection during lactation, release of oxytocin from somatodendrites and axonal terminals within the central nervous system (CNS) is implicated in both the formation of prosocial behaviors and in the control of energy balance. Recent findings demonstrate that chronic administration of oxytocin reduces food intake and body weight in diet-induced obese (DIO) and genetically obese rodents with impaired or defective leptin signaling. Importantly, chronic systemic administration of oxytocin out to 6 weeks recapitulates the effects of central administration on body weight loss in DIO rodents at doses that do not result in the development of tolerance. Furthermore, these effects are coupled with induction of Fos (a marker of neuronal activation) in hindbrain areas (e.g. dorsal vagal complex (DVC)) linked to the control of meal size and forebrain areas (e.g. hypothalamus, amygdala) linked to the regulation of food intake and body weight. This review assesses the potential central and peripheral targets by which oxytocin may inhibit body weight gain, its regulation by anorexigenic and orexigenic signals, and its potential use as a therapy that can circumvent leptin resistance and reverse the behavioral and metabolic abnormalities associated with DIO and genetically obese models.

  12. Signaling mechanisms underlying group I mGluR-induced persistent AHP suppression in CA3 hippocampal neurons.

    Science.gov (United States)

    Young, Steven R; Bianchi, Riccardo; Wong, Robert K S

    2008-03-01

    Activation of group I metabotropic glutamate receptors (mGluRs) leads to a concerted modulation of spike afterpotentials in guinea pig hippocampal neurons including a suppression of both medium and slow afterhyperpolarizations (AHPs). Suppression of AHPs may be long-lasting, in that it persists after washout of the agonist. Here, we show that persistent AHP suppression differs from short-term, transient suppression in that distinct and additional signaling processes are required to render the suppression persistent. Persistent AHP suppression followed DHPG application for 30 min, but not DHPG application for 5 min. Persistent AHP suppression was temperature dependent, occurring at 30-31 degrees C, but not at 25-26 degrees C. Preincubation of slices in inhibitors of protein synthesis (cycloheximide or anisomycin) prevented the persistent suppression of AHPs by DHPG. Similarly, preincubation of slices in an inhibitor of p38 MAP kinase (SB 203580) prevented persistent AHP suppression. In contrast, a blocker of p42/44 MAP kinase activation (PD 98059) had no effect on persistent AHP suppression. Additionally, we show that the mGluR5 antagonist MPEP, but not the mGluR1 antagonist LY 367385, prevented DHPG-induced persistent AHP suppression. Thus persistent AHP suppression by DHPG in hippocampal neurons requires activation of mGluR5. In addition, activation of p38 MAP kinase signaling and protein synthesis are required to impart persistence to the DHPG-activated AHP suppression.

  13. Surface-wave-enabled darkfield aperture for background suppression during weak signal detection.

    Science.gov (United States)

    Zheng, Guoan; Cui, Xiquan; Yang, Changhuei

    2010-05-18

    Sensitive optical signal detection can often be confounded by the presence of a significant background, and, as such, predetection background suppression is substantively important for weak signal detection. In this paper, we present a novel optical structure design, termed surface-wave-enabled darkfield aperture (SWEDA), which can be directly incorporated onto optical sensors to accomplish predetection background suppression. This SWEDA structure consists of a central hole and a set of groove pattern that channels incident light to the central hole via surface plasmon wave and surface-scattered wave coupling. We show that the surface wave component can mutually cancel the direct transmission component, resulting in near-zero net transmission under uniform normal incidence illumination. Here, we report the implementation of two SWEDA structures. The first structure, circular-groove-based SWEDA, is able to provide polarization-independent suppression of uniform illumination with a suppression factor of 1230. The second structure, linear-groove-based SWEDA, is able to provide a suppression factor of 5080 for transverse-magnetic wave and can serve as a highly compact (5.5 micrometer length) polarization sensor (the measured transmission ratio of two orthogonal polarizations is 6100). Because the exact destructive interference balance is highly delicate and can be easily disrupted by the nonuniformity of the localized light field or light field deviation from normal incidence, the SWEDA can therefore be used to suppress a bright background and allow for sensitive darkfield sensing and imaging (observed image contrast enhancement of 27 dB for the first SWEDA).

  14. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    Science.gov (United States)

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  15. miR-612 suppresses the stemness of liver cancer via Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032 (China); Tao, Zhong-Hua [Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032 (China); Wen, Duo; Wan, Jin-Liang; Liu, Dong-Li; Zhang, Shu; Cui, Jie-Feng; Sun, Hui-Chuan; Wang, Lu [Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032 (China); Zhou, Jian; Fan, Jia [Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032 (China); Institute of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wu, Wei-Zhong, E-mail: wu.weizhong@zs-hospital.sh.cn [Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032 (China)

    2014-04-25

    Highlights: • miR-612 suppresses tumorsphere and clone formation of HCC cells. • miR-612 reduces drug resistance of HCC cells. • miR-612 suppresses tumorigenesis of HCC in NOD/SCID mice. • miR-612 inhibits an invasive frontier of HCC xenografts. • miR-612 suppresses Wnt/β-catenin signaling. - Abstract: Previous research showed that microRNA-612 (miR-612) has inhibitory effects on cell proliferation, migration, invasion, and metastasis of hepatocellular carcinoma (HCC). AKT2 was confirmed to be a direct target of miR-612, through which the epithelial–mesenchymal transition (EMT) and metastasis of HCC were inhibited. Our present findings reveal that miR-612 is able to suppress the stemness of HCC by reducing the number and size of tumorspheres as well as clone formation in soft agar, and to relieve drug resistance to cisplatin and 5-fluorouracil. In addition, miR-612 hampered the capacity of tumorigenesis in NOD/SCID mice and redistributed the tumor invasive frontier of miR-612-modulating cells. Finally, our findings suggest that Wnt/β-catenin signaling is required in the regulation of EMT-associated stem cell-like traits by miR-612.

  16. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  17. Monocyte bioenergetic function is associated with body composition in virologically suppressed HIV-infected women

    Directory of Open Access Journals (Sweden)

    Amanda L. Willig

    2017-08-01

    Full Text Available Women living with HIV may present with high levels of body fat that are associated with altered bioenergetic function. Excess body fat may therefore exacerbate the bioenergetic dysfunction observed with HIV infection. To determine if body fat is associated with bioenergetic function in HIV, we conducted a cross-sectional study of 42 women with HIV who were virologically suppressed on antiretroviral therapy. Body composition was determined via dual-energy x-ray absorptiometry. Oxygen consumption rate (OCR of monocytes was sorted from peripheral blood mononuclear cells obtained from participants in the fasting state. Differences in bioenergetic function, as measured by OCR, was assessed using Kruskal-Wallis tests and Spearman correlations adjusted for age, race, and smoking status. Participants were 86% Black, 45.5 years old, 48% current smokers, and 57% were obese (body mass index ≥30. Nearly all women (93% had >30% total fat mass, while 12% had >50% total fat mass. Elevated levels of total fat mass, trunk fat, and leg fat were inversely correlated with measures of bioenergetic health as evidenced by lower maximal and reserve capacity OCR, and Bioenergetic Health Index. Measures of extracellular acidification (ECAR in the absence (basal or maximal (with oligomycin were positively correlated with measures of bioenergetics, except proton leak, and were negatively correlated with fat mass. Despite virological suppression, women with HIV present with extremely high levels of adiposity that correlate with impaired bioenergetic health. Without effective interventions, this syndemic of HIV infection and obesity will likely have devastating consequences for our patients, potentially mediated through altered mitochondrial and glycolytic function.

  18. Chemical Suppression of the Reactivated Androgen Signaling Pathway in Androgen-Independent Prostate Cancer

    Science.gov (United States)

    2011-07-01

    of cyclopamine on androgen signaling in LNCaP cells. (A) Real time qPCR was used to measure relative expression of KLK3, KLK2, PGC or SHH mRNA in...response to Shh signaling . Science 1998, 280:1603-1607. 20. Chen JK, Taipale J, Cooper MK, Beachy PA: Inhibition of Hedgehog signaling by direct...body, although all can simi- larly engage with receptor to initiate the signaling process. Shh is synthesized as a propolypeptide that is processed

  19. Homemade notch filter to suppress strong FM or DAB - T/DVB - T signals

    Science.gov (United States)

    Monstein, Christian

    2016-04-01

    Many of the current 116 solar radio spectrometer instruments in the e-Callisto network are suffering from strong interference from FM-radio, DAB-T or DVB-T broadcast stations. With simple surface mount device (SMD) components a cheap notch (trap)filter can be produced to suppress these strong signals that otherwise may saturate the low noise amplifier and/or the receiver.

  20. P50 suppression in human discrimination fear conditioning paradigm using danger and safety signals.

    Science.gov (United States)

    Kurayama, Taichi; Matsuzawa, Daisuke; Komiya, Zen; Nakazawa, Ken; Yoshida, Susumu; Shimizu, Eiji

    2012-04-01

    Auditory P50 suppression, which is assessed using a paired auditory stimuli (S1 and S2) paradigm to record the P50 mid-latency evoked potential, is assumed to reflect sensory gating. Recently, P50 suppression deficits were observed in patients with anxiety disorders, including panic disorder, post-traumatic stress disorder and obsessive-compulsive disorder, as we previously reported. The processes of fear conditioning are thought to play a role in the pathophysiology of anxiety disorders. In addition, we found that the P50 sensory gating mechanism might be physiologically associated with fear conditioning and extinction in a simple human fear-conditioning paradigm that involved a light signal as a conditioned stimulus (CS+). Our objective was to investigate the different patterns of P50 suppression in a discrimination fear-conditioning paradigm with both a CS+ (danger signal) and a CS- (safety signal). Twenty healthy volunteers were recruited. We measured the auditory P50 suppression in the control (baseline) phase, in the fear-acquisition phase, and in the fear-extinction phase using a discrimination fear-conditioning paradigm. Two-way (CSs vs. phase) Analysis of variance with repeated measures demonstrated a significant interaction between the two factors. Post-hoc LSD analysis indicated that the P50 S2/S1 ratio in the CS+ acquisition phase was significantly higher than that in the CS- acquisition phase. These results suggest that the auditory P50 sensory gating might differ according to the cognition of the properties (potentially dangerous or safe) of the perceived signal.

  1. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation.

    Science.gov (United States)

    Hilton, Matthew J; Tu, Xiaolin; Wu, Ximei; Bai, Shuting; Zhao, Haibo; Kobayashi, Tatsuya; Kronenberg, Henry M; Teitelbaum, Steven L; Ross, F Patrick; Kopan, Raphael; Long, Fanxin

    2008-03-01

    Postnatal bone marrow houses mesenchymal progenitor cells that are osteoblast precursors. These cells have established therapeutic potential, but they are difficult to maintain and expand in vitro, presumably because little is known about the mechanisms controlling their fate decisions. To investigate the potential role of Notch signaling in osteoblastogenesis, we used conditional alleles to genetically remove components of the Notch signaling system during skeletal development. We found that disruption of Notch signaling in the limb skeletogenic mesenchyme markedly increased trabecular bone mass in adolescent mice. Notably, mesenchymal progenitors were undetectable in the bone marrow of mice with high bone mass. As a result, these mice developed severe osteopenia as they aged. Moreover, Notch signaling seemed to inhibit osteoblast differentiation through Hes or Hey proteins, which diminished Runx2 transcriptional activity via physical interaction. These results support a model wherein Notch signaling in bone marrow normally acts to maintain a pool of mesenchymal progenitors by suppressing osteoblast differentiation. Thus, mesenchymal progenitors may be expanded in vitro by activating the Notch pathway, whereas bone formation in vivo may be enhanced by transiently suppressing this pathway.

  2. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yelin [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Hu, Chen; Cheng, Jun [Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Chen, Binquan [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Ke, Qinghong; Lv, Zhen; Wu, Jian [Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Zhou, Yanfeng, E-mail: zyfhdj@yahoo.com [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China)

    2014-04-18

    Highlights: • MiR-145 expression is down-regulated in HCC tissues and inversely related with IRS1 levels. • MiR-145 directly targets IRS1 in HCC cells. • Restored expression of miR-145 suppressed HCC cell proliferation and growth. • MiR-145 induced IRS1 under-expression potentially reduced downstream AKT signaling. - Abstract: Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.

  3. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia.

    Science.gov (United States)

    Murase, Takatoshi; Yokoi, Yuka; Misawa, Koichi; Ominami, Hideo; Suzuki, Yasuto; Shibuya, Yusuke; Hase, Tadashi

    2012-06-01

    Postprandial energy metabolism, including postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia, is related to the risk for developing obesity and CVD. In the present study, we examined the effects of polyphenols purified from coffee (coffee polyphenols (CPP)) on postprandial carbohydrate and lipid metabolism, and whole-body substrate oxidation in C57BL/6J mice. In mice that co-ingested CPP with a lipid-carbohydrate (sucrose or starch)-mixed emulsion, the respiratory quotient determined by indirect calorimetry was significantly lower than that in control mice, whereas there was no difference in VO2 (energy expenditure), indicating that CPP modulates postprandial energy partitioning. CPP also suppressed postprandial increases in plasma glucose, insulin, glucose-dependent insulinotropic polypeptide and TAG levels. Inhibition experiments on digestive enzymes revealed that CPP inhibits maltase and sucrase, and, to a lesser extent, pancreatic lipase in a concentration-dependent manner. Among the nine kinds of polyphenols (caffeoyl quinic acids (CQA), di-CQA, feruloyl quinic acids (FQA)) contained in CPP, di-CQA showed more potent inhibitory activity than CQA or FQA on these digestive enzymes, suggesting a predominant role of di-CQA in the regulation of postprandial energy metabolism. These results suggest that CPP modulates whole-body substrate oxidation by suppressing postprandial hyperglycaemia and hyperinsulinaemia, and these effects are mediated by inhibiting digestive enzymes.

  4. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Xianying [Department of Endocrinology and Metabolism, Hainan Provincial Nong Ken Hospital, Hainan (China); Lv, Chaoyang [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Yi, Xilu [Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Shanghai (China); Zhang, Yao; Xue, Mengjuan; He, Shunmei [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Zhu, Guoying [Institute of Radiation Medicine, Fudan University, Shanghai (China); Wang, Hongfu, E-mail: hfwang@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  5. Eviprostat Activates cAMP Signaling Pathway and Suppresses Bladder Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Masayuki Takeda

    2013-06-01

    Full Text Available Eviprostat is a popular phytotherapeutic agent for the treatment of lower urinary tract symptoms (LUTS. At present, the signaling mechanisms underlying its therapeutic effects are still poorly understood. Given that cAMP has been reported to suppress cell hyperplasia and hypertrophy in various pathological situations, we asked whether the effect of Eviprostat could be ascribed to the activation of the cAMP signaling pathway. In the study, exposure of cAMP response element (CRE-secreted alkaline phosphatase (SEAP (CRE-SEAP-reporter cells to Eviprostat elevated SEAP secretion, which was associated with an increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP and cAMP-response element-binding protein (CREB, as well as enhanced expression of CRE-regulated protein connexin43, indicating an activation of the cAMP signaling pathway. Consistent with these observations, Eviprostat-induced expression of Cx43 was abolished in the presence of adenylyl cyclase inhibitor SQ22536 or PKA inhibitor H89, whereas it was mimicked by adenylyl cyclase activator, forskolin. Further analysis demonstrated that Eviprostat significantly potentiated the effect of phosphodiesterase 3 (PDE3 inhibitor, but not that of PDE4 inhibitor, on CRE activation. Moreover, Eviprostat suppressed PDGF-induced activation of ERK and Akt and inhibited cell proliferation and hillock formation in both mesangial cells and bladder smooth muscle cells. Collectively, activation of the cAMP signaling pathway could be an important mechanism by which Eviprostat exerts its therapeutic effects for LUTS.

  6. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    Science.gov (United States)

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  7. Selective suppression of rod signal transmission by cobalt ions of low levels in carp retina

    Institute of Scientific and Technical Information of China (English)

    袁澧涟; 杨雄里

    1997-01-01

    Selective suppression of rod signal transmission by cobalt ions was reported in carp retina. Using 10 μmol/L Co2+ , rod-driven horizontal cells were hyperpolarized and light responses were completely suppressed in super-fused, isolated retina, while cone-driven horizontal cells were almost unaffected. Similarly, scotopic electroretino-graphic b-wave was suppressed by 10 μmol/L Co2+ , while the photopic b-wave remained unaffected. Furthermore, the glutamate-isolated receptor potential (PIII) was not altered by low Co2+ under dark-adapted conditions. Other di-valent ions with high affinity to calcium channels, such as cadmium and manganese ions, did not show similar suppres-sive effect on the rod horizontal cells. When rod horizontal cells were hyperpolarized by 10 μmol/L Co2+ , the use of 3 mmol/L glutamate caused a significant depolarization of the cells, indicating that Co2+ application did not impair the ability of these cells to respond to glutamate. On the other hand, application of 200 μmol/L ?

  8. Pharmacologic inhibition of Notch signaling suppresses food antigen-induced mucosal mast cell hyperplasia.

    Science.gov (United States)

    Honjo, Asuka; Nakano, Nobuhiro; Yamazaki, Susumu; Hara, Mutsuko; Uchida, Koichiro; Kitaura, Jiro; Nishiyama, Chiharu; Yagita, Hideo; Ohtsuka, Yoshikazu; Ogawa, Hideoki; Okumura, Ko; Shimizu, Toshiaki

    2017-03-01

    Mucosal mast cells (MMCs) play a central role in the development of symptoms associated with IgE-mediated food allergy. Recently, Notch2-mediated signaling was shown to be involved in proper MMC distribution in the intestinal tract. This study aimed to clarify the mechanism by which Notch signaling regulates MMC distribution in the intestinal mucosa. Furthermore, pharmacologic inhibition of Notch signaling was evaluated as a treatment for symptoms associated with experimental food allergy. Bone marrow-derived mast cells generated from mice were cultured with Notch ligands, and then expression of genes associated with MMCs was measured in the cells. In addition, the effect of an inhibitor of Notch signaling on food antigen-induced allergic reactions was examined in a mouse model of food allergy. Notch signaling induced MMC differentiation through upregulation of expression of genes characteristic of MMCs in the presence of IL-3. Some lamina propria cells isolated from the mouse small intestine expressed Notch ligands and were able to upregulate MMC markers in bone marrow-derived mast cells through Notch signaling. In a mouse model of food allergy, administration of a Notch signaling inhibitor led to suppression of food antigen-induced hyperplasia of intestinal MMCs, resulting in alleviation of allergic diarrhea and systemic anaphylaxis. Notch signaling contributes to differentiation and accumulation of MMCs in the intestinal mucosa. Thus inhibition of Notch signaling alleviates symptoms associated with experimental food allergy. These results raise the possibility that Notch signaling in mast cells is a novel target for therapy in patients with food allergy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. ERK Signal Suppression and Sensitivity to CH5183284/Debio 1347, a Selective FGFR Inhibitor.

    Science.gov (United States)

    Nakanishi, Yoshito; Mizuno, Hideaki; Sase, Hitoshi; Fujii, Toshihiko; Sakata, Kiyoaki; Akiyama, Nukinori; Aoki, Yuko; Aoki, Masahiro; Ishii, Nobuya

    2015-12-01

    Drugs that target specific gene alterations have proven beneficial in the treatment of cancer. Because cancer cells have multiple resistance mechanisms, it is important to understand the downstream pathways of the target genes and monitor the pharmacodynamic markers associated with therapeutic efficacy. We performed a transcriptome analysis to characterize the response of various cancer cell lines to a selective fibroblast growth factor receptor (FGFR) inhibitor (CH5183284/Debio 1347), a mitogen-activated protein kinase kinase (MEK) inhibitor, or a phosphoinositide 3-kinase (PI3K) inhibitor. FGFR and MEK inhibition produced similar expression patterns, and the extracellular signal-regulated kinase (ERK) gene signature was altered in several FGFR inhibitor-sensitive cell lines. Consistent with these findings, CH5183284/Debio 1347 suppressed phospho-ERK in every tested FGFR inhibitor-sensitive cell line. Because the mitogen-activated protein kinase (MAPK) pathway functions downstream of FGFR, we searched for a pharmacodynamic marker of FGFR inhibitor efficacy in a collection of cell lines with the ERK signature and identified dual-specificity phosphatase 6 (DUSP6) as a candidate marker. Although a MEK inhibitor suppressed the MAPK pathway, most FGFR inhibitor-sensitive cell lines are insensitive to MEK inhibitors and we found potent feedback activation of several pathways via FGFR. We therefore suggest that FGFR inhibitors exert their effect by suppressing ERK signaling without feedback activation. In addition, DUSP6 may be a pharmacodynamic marker of FGFR inhibitor efficacy in FGFR-addicted cancers.

  10. Signaling Circuits and Regulation of Immune Suppression by Ovarian Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Martin J. Cannon

    2015-05-01

    Full Text Available The barriers presented by immune suppression in the ovarian tumor microenvironment present one of the biggest challenges to development of successful tumor vaccine strategies for prevention of disease recurrence and progression following primary surgery and chemotherapy. New insights gained over the last decade have revealed multiple mechanisms of immune regulation, with ovarian tumor-associated macrophages/DC likely to fulfill a central role in creating a highly immunosuppressive milieu that supports disease progression and blocks anti-tumor immunity. This review provides an appraisal of some of the key signaling pathways that may contribute to immune suppression in ovarian cancer, with a particular focus on the potential involvement of the c-KIT/PI3K/AKT, wnt/β-catenin, IL-6/STAT3 and AhR signaling pathways in regulation of indoleamine 2,3-dioxygenase expression in tumor-associated macrophages. Knowledge of intercellular and intracellular circuits that shape immune suppression may afford insights for development of adjuvant treatments that alleviate immunosuppression in the tumor microenvironment and enhance the clinical efficacy of ovarian tumor vaccines.

  11. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

    Science.gov (United States)

    Wang, Angela; Leong, Daniel J.; He, Zhiyong; Xu, Lin; Liu, Lidi; Kim, Sun Jin; Hirsh, David M.; Hardin, John A.; Cobelli, Neil J.; Sun, Hui B.

    2016-01-01

    Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark), orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling. PMID:27941690

  12. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

    Directory of Open Access Journals (Sweden)

    Angela Wang

    2016-12-01

    Full Text Available Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark, orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.

  13. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wakao, Kazufumi [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Takadama, Tadatoshi; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Shigemi, Zenpei; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Higashi, Chizuka; Ohga, Rie; Taira, Takahiro [Department of Molecular Cell Biology, Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-02-07

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  14. A New Range Sidelobe Suppression Technique for Randomly Intermittent Spectra HF Radar Signal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong-po; LIU Xing-zhao

    2005-01-01

    The randomly intermittent spectra (RIS) signal is employed to combat spectrum congestion in radar and other radio services to evade the external interferences in high-frequency (HF) and ultrahigh-frequency (UHF)bands. However, the spectra discontinuity of the signal gets rise to high range sidelobes when matching the refleeted echo, which is much more difficult for targets detection. So it is indispensable to investigate the technique for sidelobes suppression of the range profile when RIS signal is utilized, This paper introduced a new processing technique based on time domain filtering to lower the range sidelobes. A robust and effetive algorithm is adopted to solve the coefficients of the filter, and the restriction on the desired response of the filter is derived. The simulation results show that the peak range sidelobe can be reduced to -27 dB from -9.5 dB while the frequency band span (FBS) is 200 kHz.

  15. Radar signal pre-processing to suppress surface bounce and multipath

    Science.gov (United States)

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  16. Body composition and bone mineral density after ovarian hormone suppression with or without estradiol treatment.

    Science.gov (United States)

    Shea, Karen L; Gavin, Kathleen M; Melanson, Edward L; Gibbons, Ellie; Stavros, Anne; Wolfe, Pamela; Kittelson, John M; Vondracek, Sheryl F; Schwartz, Robert S; Wierman, Margaret E; Kohrt, Wendy M

    2015-10-01

    Suppression of ovarian hormones in premenopausal women on gonadotropin-releasing hormone agonist (GnRH(AG)) therapy can cause fat mass (FM) gain and fat-free mass (FFM) loss. Whether this is specifically caused by a decline in serum estradiol (E2) is unknown. This study aims to evaluate the effects of GnRH(AG) with placebo (PL) or E2 add-back therapy on FM, FFM, and bone mineral density (BMD). Our exploratory aim was to evaluate the effects of resistance exercise training on body composition during the drug intervention. Seventy healthy premenopausal women underwent 5 months of GnRH(AG) therapy and were randomized to receive transdermal E2 (GnRH(AG) + E2, n = 35) or PL (GnRH(AG) + PL, n = 35) add-back therapy. As part of our exploratory aim to evaluate whether exercise can minimize the effects of hormone suppression, some women within each drug arm were randomized to undergo a resistance exercise program (GnRH(AG) + E2 + Ex, n = 12; GnRH(AG) + PL + Ex, n = 12). The groups did not differ in mean (SD) age (36 [8] and 35 [9] y) or mean (SD) body mass index (both 28 [6] kg/m). FFM declined in response to GnRH(AG) + PL (mean, -0.6 kg; 95% CI, -1.0 to -0.3) but not in response to GnRH(AG) + E2 (mean, 0.3 kg; 95% CI, -0.2 to 0.8) or GnRH(AG) + PL + Ex (mean, 0.1 kg; 95% CI, -0.6 to 0.7). Although FM did not change in either group, visceral fat area increased in response to GnRH(AG) + PL but not in response to GnRH(AG) + E2. GnRH(AG) + PL induced a decrease in BMD at the lumbar spine and proximal femur that was prevented by E2. Preliminary data suggest that exercise may have favorable effects on FM, FFM, and hip BMD. Suppression of ovarian E2 results in loss of bone and FFM and expansion of abdominal adipose depots. Failure of hormone suppression to increase total FM conflicts with previous studies of the effects of GnRH(AG). Further research is necessary to understand the role of estrogen in energy balance regulation and fat distribution.

  17. Distributed digital signal processors for multi-body flexible structures

    Science.gov (United States)

    Lee, Gordon K. F.

    1992-01-01

    Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.

  18. Visual input signaling threat gains preferential access to awareness in a breaking continuous flash suppression paradigm.

    Science.gov (United States)

    Gayet, Surya; Paffen, Chris L E; Belopolsky, Artem V; Theeuwes, Jan; Van der Stigchel, Stefan

    2016-04-01

    Visual input that signals threat is inherently relevant for survival. Accordingly, it has been demonstrated that threatening visual input elicits faster behavioral responses than non-threatening visual input. Considering that awareness is a prerequisite for performing demanding tasks and guiding novel behavior, we hypothesized that threatening visual input would gain faster access to awareness than non-threatening visual input. In the present study, we associated one of two basic visual stimuli, that were devoid of intrinsic relevance (colored annuli), with aversive stimulation (i.e., electric shocks) following a classical fear conditioning procedure. In the subsequent test phase no more electric shocks were delivered, and a breaking continuous flash suppression task was used to measure how fast these stimuli would access awareness. The results reveal that stimuli that were previously paired with an electric shock break through suppression faster than comparable stimuli that were not paired with an electric shock.

  19. CD81 interacts with the T cell receptor to suppress signaling.

    Directory of Open Access Journals (Sweden)

    Safak Isil Cevik

    Full Text Available CD81 (TAPA-1 is a ubiquitously expressed tetraspanin protein identified as a component of the B lymphocyte receptor (BCR and as a receptor for the Hepatitis C Virus. In an effort to identify trans-membrane proteins that interact with the T-cell antigen receptor (TCR, we performed a membrane yeast two hybrid screen and identified CD81 as an interactor of the CD3delta subunit of the TCR. We found that in the absence of CD81, in thymocytes from knockout mice, TCR engagement resulted in stronger signals. These results were recapitulated in T cell lines that express low levels of CD81 through shRNA mediated silencing. Increased signaling did not result from alterations in the levels of TCR on the surface of T lymphocytes. Although CD81 is not essential for normal T lymphocyte development, it plays an important role in regulating TCR and possibly pre-TCR signal transduction by controlling the strength of signaling. CD81 dependent alterations in thymocyte signaling are evident in increased CD5 expression on CD81 deficient double positive (DP thymocytes. We conclude that CD81 interacts with the T cell receptor to suppress signaling.

  20. Interferon regulatory factor 4 attenuates Notch signaling to suppress the development of chronic lymphocytic leukemia.

    Science.gov (United States)

    Shukla, Vipul; Shukla, Ashima; Joshi, Shantaram S; Lu, Runqing

    2016-07-05

    Molecular pathogenesis of Chronic Lymphocytic Leukemia (CLL) is not fully elucidated. Genome wide association studies have linked Interferon Regulatory Factor 4 (IRF4) to the development of CLL. We recently established a causal relationship between low levels of IRF4 and development of CLL. However, the molecular mechanism through which IRF4 suppresses CLL development remains unclear. Deregulation of Notch signaling pathway has been identified as one of the most recurrent molecular anomalies in the pathogenesis of CLL. Yet, the role of Notch signaling as well as its regulation during CLL development remains poorly understood. Previously, we demonstrated that IRF4 deficient mice expressing immunoglobulin heavy chain Vh11 (IRF4-/-Vh11) developed spontaneous CLL with complete penetrance. In this study, we show that elevated Notch2 expression and the resulting hyperactivation of Notch signaling are common features of IRF4-/-Vh11 CLL cells. Our studies further reveal that Notch signaling is indispensable for CLL development in the IRF4-/-Vh11 mice. Moreover, we identify E3 ubiquitin ligase Nedd4, which targets Notch for degradation, as a direct target of IRF4 in CLL cells and their precursors. Collectively, our studies provide the first in vivo evidence for an essential role of Notch signaling in the development of CLL and establish IRF4 as a critical regulator of Notch signaling during CLL development.

  1. Revisiting cAMP signaling in the carotid body

    Directory of Open Access Journals (Sweden)

    Ana Rita eNunes

    2014-10-01

    Full Text Available Chronic carotid body (CB activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase (AMPK and O2-sensitive K+ channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca2+ levels, and is intimately related to the cellular energetic status (AMP/ATP ratio. Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review provides an outline on 1 the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O2/CO2 sensing mechanism, 2 present recent evidence on CB cAMP neuromodulation and 3 discuss how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A2A/A2B receptors and roflumilast (PDE4 inhibitors. cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations.

  2. Interleukin-10 Signaling in Regulatory T Cells Is Required for Suppression of Th17 Cell-Mediated Inflammation

    National Research Council Canada - National Science Library

    Chaudhry, Ashutosh; Samstein, Robert M; Treuting, Piper; Liang, Yuqiong; Pils, Marina C; Heinrich, Jan-Michael; Jack, Robert S; Wunderlich, F. Thomas; Brüning, Jens C; Müller, Werner; Rudensky, Alexander Y

    2011-01-01

    .... Here, we showed that anti-inflammatory interleukin-10 (IL-10), and not proinflammatory IL-6 and IL-23 cytokine signaling, endowed Treg cells with the ability to suppress pathogenic Th17 cell responses...

  3. Suppression of the HPA Axis During Cholestasis Can Be Attributed to Hypothalamic Bile Acid Signaling.

    Science.gov (United States)

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Divan, Ali; Grant, Stephanie; Patel, Nisha; Newell-Rogers, Karen; DeMorrow, Sharon

    2015-12-01

    Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease.

  4. Efficacy of Mesenchymal Stem Cells in Suppression of Hepatocarcinorigenesis in Rats: Possible Role of Wnt Signaling

    LENUS (Irish Health Repository)

    Abdel Aziz, Mohamed T

    2011-05-05

    Abstract Background The present study was conducted to evaluate the tumor suppressive effects of bone marrow derived mesenchymal stem cells (MSCs) in an experimental hepatocellular carcinoma (HCC) model in rats and to investigate the possible role of Wnt signaling in hepato-carcinogenesis. Methods Ninety rats were included in the study and were divided equally into: Control group, rats which received MSCs only, rats which received MSCs vehicle only, HCC group induced by diethylnitroseamine (DENA) and CCl 4 , rats which received MSCs after HCC induction, rats which received MSCs before HCC induction. Histopathological examination and gene expression of Wnt signaling target genes by real time, reverse transcription-polymerase chain reaction (RT-PCR) in rat liver tissue, in addition to serum levels of ALT, AST and alpha fetoprotein were performed in all groups. Results Histopathological examination of liver tissue from animals which received DENA-CCl4 only, revealed the presence of anaplastic carcinoma cells and macro-regenerative nodules type II with foci of large and small cell dysplasia. Administration of MSCs into rats after induction of experimental HCC improved the histopathological picture which showed minimal liver cell damage, reversible changes, areas of cell drop out filled with stem cells. Gene expression in rat liver tissue demonstrated that MSCs downregulated β-catenin, proliferating cell nuclear antigen (PCNA), cyclin D and survivin genes expression in liver tissues after HCC induction. Amelioration of the liver status after administration of MSCs has been inferred by the significant decrease of ALT, AST and Alpha fetoprotein serum levels. Administration of MSCs before HCC induction did not show any tumor suppressive or protective effect. Conclusions Administration of MSCs in chemically induced HCC has tumor suppressive effects as evidenced by down regulation of Wnt signaling target genes concerned with antiapoptosis, mitogenesis, cell proliferation

  5. Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro.

    Science.gov (United States)

    You, Min; Varona-Santos, Javier; Singh, Samer; Robbins, David J; Savaraj, Niramol; Nguyen, Dao M

    2014-01-01

    The present study sought to determine whether the Hedgehog (Hh) pathway is active and regulates the cell growth of cultured malignant pleural mesothelioma (MPM) cells and to evaluate the efficacy of pathway blockade using smoothened (SMO) antagonists (SMO inhibitor GDC-0449 or the antifungal drug itraconazole [ITRA]) or Gli inhibitors (GANT61 or the antileukemia drug arsenic trioxide [ATO]) in suppressing MPM viability. Selective knockdown of SMO to inhibit Hh signaling was achieved by small interfering RNA in 3 representative MPM cells. The growth inhibitory effect of GDC-0449, ITRA, GANT61, and ATO was evaluated in 8 MPM lines, with cell viability quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was determined by annexinV/propidium iodide staining and flow cytometry. SMO small interfering RNA mediated a two- to more than fivefold reduction of SMO and Gli1 gene expression as determined by real-time quantitative reverse-transcriptase polymerase chain reaction, indicating significant Hh pathway blockade. This was associated with significantly reduced cell viability (34% ± 7% to 61% ± 14% of nontarget small interfering RNA controls; P = .0024 to P = .043). Treating MPM cells with Hh inhibitors resulted in a 1.5- to 4-fold reduction of Gli1 expression. These 4 Hh antagonists strongly suppressed MPM cell viability. More importantly, ITRA, ATO, GANT61 induced significant apoptosis in the representative MPM cells. Hh signaling is active in MPM and regulates cell viability. ATO and ITRA were as effective as the prototypic SMO inhibitor GDC-0449 and the Gli inhibitor GANT61 in suppressing Hh signaling in MPM cells. Pharmaceutical agents Food and Drug Administration-approved for other indications but recently found to have anti-Hh activity, such as ATO or ITRA, could be repurposed to treat MPM. Copyright © 2014 The American Association for Thoracic Surgery. All rights reserved.

  6. Efficacy of Mesenchymal Stem Cells in Suppression of Hepatocarcinorigenesis in Rats: Possible Role of Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Sabry Dina

    2011-05-01

    Full Text Available Abstract Background The present study was conducted to evaluate the tumor suppressive effects of bone marrow derived mesenchymal stem cells (MSCs in an experimental hepatocellular carcinoma (HCC model in rats and to investigate the possible role of Wnt signaling in hepato-carcinogenesis. Methods Ninety rats were included in the study and were divided equally into: Control group, rats which received MSCs only, rats which received MSCs vehicle only, HCC group induced by diethylnitroseamine (DENA and CCl4, rats which received MSCs after HCC induction, rats which received MSCs before HCC induction. Histopathological examination and gene expression of Wnt signaling target genes by real time, reverse transcription-polymerase chain reaction (RT-PCR in rat liver tissue, in addition to serum levels of ALT, AST and alpha fetoprotein were performed in all groups. Results Histopathological examination of liver tissue from animals which received DENA-CCl4 only, revealed the presence of anaplastic carcinoma cells and macro-regenerative nodules type II with foci of large and small cell dysplasia. Administration of MSCs into rats after induction of experimental HCC improved the histopathological picture which showed minimal liver cell damage, reversible changes, areas of cell drop out filled with stem cells. Gene expression in rat liver tissue demonstrated that MSCs downregulated β-catenin, proliferating cell nuclear antigen (PCNA, cyclin D and survivin genes expression in liver tissues after HCC induction. Amelioration of the liver status after administration of MSCs has been inferred by the significant decrease of ALT, AST and Alpha fetoprotein serum levels. Administration of MSCs before HCC induction did not show any tumor suppressive or protective effect. Conclusions Administration of MSCs in chemically induced HCC has tumor suppressive effects as evidenced by down regulation of Wnt signaling target genes concerned with antiapoptosis, mitogenesis, cell

  7. Suppression of AC railway power-line interference in ECG signals recorded by public access defibrillators

    Directory of Open Access Journals (Sweden)

    Dotsinsky Ivan

    2005-11-01

    Full Text Available Abstract Background Public access defibrillators (PADs are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Method Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed. This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. Results The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. Conclusion The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression.

  8. Emodin inhibits coxsackievirus B3 replication via multiple signalling cascades leading to suppression of translation.

    Science.gov (United States)

    Zhang, Huifang M; Wang, Fengping; Qiu, Ye; Ye, Xin; Hanson, Paul; Shen, Hongxing; Yang, Decheng

    2016-02-15

    CVB3 (coxsackievirus 3) is a primary causal agent of viral myocarditis. Emodin is a natural compound isolated from certain plant roots. In the present study, we found that emodin inhibited CVB3 replication in vitro and in mice, and now we report an unrecognized mechanism by which emodin inhibits CVB3 replication through suppression of viral protein translation via multiple pathways. On one hand, emodin treatment inhibited Akt/mTOR (mammalian target of rapamycin) signalling and activated 4EBP1 (eukaryotic initiation factor 4R-binding protein 1), leading to suppression of translation initiation of ribosomal protein L32 encoded by a 5'-TOP (terminal oligopyrimidine) mRNA. On the other hand, emodin treatment differentially regulated multiple signal cascades, including Akt/mTORC1/p70(S6K) (p70 S6 kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2)/p90(RSK) (p90 ribosomal S6 kinase) and Ca(2+)/calmodulin, leading to activation of eEF2K (eukaryotic elongation factor 2 kinase) and subsequent inactivation of eEF2 (eukaryotic elongation factor 2), resulting in inhibition of CVB3 VP1 (viral protein 1) synthesis. These data imply that eEF2K is a major factor mediating cross-talk of different arms of signalling cascades in this signal network. This notion was verified by either overexpressing eEF2K or treating the cells with siRNAs or eEF2K inhibitor A484954. We showed further that the emodin-induced decrease in p70(S6K) phosphorylation plays a dominant positive role in activation of eEF2K and in turn in conferring the antiviral effect of emodin. This finding was further solidified by expressing constitutively active and dominant-negative Akt. Collectively, our data reveal that emodin inhibits viral replication through impairing translational machinery and suppression of viral translation elongation. © 2016 Authors; published by Portland Press Limited.

  9. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Ju [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Kim, Soo Yeon [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Han, Seong Su [University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA (United States); Kim, Chan Woo [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Kumar, Sandeep [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Park, Byeoung Soo [Nanotoxtech Co., Ansan (Korea, Republic of); Lee, Sung Eun [Division of Applied Biology and Chemistry, Kyungpook National University, Daegu (Korea, Republic of); Yun, Yeo Pyo [College of Pharmacy, Chungbuk National University, Cheongju (Korea, Republic of); Jo, Hanjoong, E-mail: hjo@emory.edu [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Park, Young Hyun, E-mail: pyh012@sch.ac.kr [Department of Food Science and Nutrition, College of Natural Sciences, Soonchunhyang University, Asan (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  10. The Pseudomonas syringae pv. tomato type III effector HopM1 suppresses Arabidopsis defenses independent of suppressing salicylic acid signaling and of targeting AtMIN7.

    Directory of Open Access Journals (Sweden)

    Anju Gangadharan

    Full Text Available Pseudomonas syringae pv tomato strain DC3000 (Pto delivers several effector proteins promoting virulence, including HopM1, into plant cells via type III secretion. HopM1 contributes to full virulence of Pto by inducing degradation of Arabidopsis proteins, including AtMIN7, an ADP ribosylation factor-guanine nucleotide exchange factor. Pseudomonas syringae pv phaseolicola strain NPS3121 (Pph lacks a functional HopM1 and elicits robust defenses in Arabidopsis thaliana, including accumulation of pathogenesis related 1 (PR-1 protein and deposition of callose-containing cell wall fortifications. We have examined the effects of heterologously expressed HopM1Pto on Pph-induced defenses. HopM1 suppresses Pph-induced PR-1 expression, a widely used marker for salicylic acid (SA signaling and systemic acquired resistance. Surprisingly, HopM1 reduces PR-1 expression without affecting SA accumulation and also suppresses the low levels of PR-1 expression apparent in SA-signaling deficient plants. Further, HopM1 enhances the growth of Pto in SA-signaling deficient plants. AtMIN7 contributes to Pph-induced PR-1 expression. However, HopM1 fails to degrade AtMIN7 during Pph infection and suppresses Pph-induced PR-1 expression and callose deposition in wild-type and atmin7 plants. We also show that the HopM1-mediated suppression of PR-1 expression is not observed in plants lacking the TGA transcription factor, TGA3. Our data indicate that HopM1 promotes bacterial virulence independent of suppressing SA-signaling and links TGA3, AtMIN7, and other HopM1 targets to pathways distinct from the canonical SA-signaling pathway contributing to PR-1 expression and callose deposition. Thus, efforts to understand this key effector must consider multiple targets and unexpected outputs of its action.

  11. Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways.

    Science.gov (United States)

    Seifert, Lena; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Werba, Gregor; Pansari, Mridul; Pergamo, Matthew; Ochi, Atsuo; Torres-Hernandez, Alejandro; Levie, Elliot; Tippens, Daniel; Greco, Stephanie H; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Eisenthal, Andrew; van Heerden, Eliza; Avanzi, Antonina; Barilla, Rocky; Zambirinis, Constantinos P; Rendon, Mauricio; Daley, Donnele; Pachter, H Leon; Hajdu, Cristina; Miller, George

    2015-12-01

    Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Lena Seifert

    2015-12-01

    Full Text Available Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1–/– mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis.

  13. Tuberatolide B Suppresses Cancer Progression by Promoting ROS-Mediated Inhibition of STAT3 Signaling.

    Science.gov (United States)

    Choi, Youn Kyung; Kim, Junseong; Lee, Kang Min; Choi, Yu-Jeong; Ye, Bo-Ram; Kim, Min-Sun; Ko, Seong-Gyu; Lee, Seung-Hong; Kang, Do-Hyung; Heo, Soo-Jin

    2017-02-25

    Tuberatolide B (TTB, C27H34O₄) is a diastereomeric meroterpenoid isolated from the Korean marine algae Sargassum macrocarpum. However, the anticancer effects of TTB remain unknown. In this study, we demonstrate that TTB inhibits tumor growth in breast, lung, colon, prostate, and cervical cancer cells. To examine the mechanism by which TTB suppresses cell growth, we determined the effect of TTB on apoptosis, ROS generation, DNA damage, and signal transduction. TTB induced ROS production in MDA-MB-231, A549, and HCT116 cells. Moreover, TTB enhanced DNA damage by inducing γH2AX foci formation and the phosphorylation of DNA damage-related proteins such as Chk2 and H2AX. Furthermore, TTB selectively inhibited STAT3 activation, which resulted in a reduction in cyclin D1, MMP-9, survivin, VEGF, and IL-6. In addition, TTB-induced ROS generation caused STAT3 inhibition, DNA damage, and apoptotic cell death. Therefore, TTB suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling, suggesting that TTB is useful for the treatment of cancer.

  14. Tuberatolide B Suppresses Cancer Progression by Promoting ROS-Mediated Inhibition of STAT3 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2017-02-01

    Full Text Available Tuberatolide B (TTB, C27H34O4 is a diastereomeric meroterpenoid isolated from the Korean marine algae Sargassum macrocarpum. However, the anticancer effects of TTB remain unknown. In this study, we demonstrate that TTB inhibits tumor growth in breast, lung, colon, prostate, and cervical cancer cells. To examine the mechanism by which TTB suppresses cell growth, we determined the effect of TTB on apoptosis, ROS generation, DNA damage, and signal transduction. TTB induced ROS production in MDA-MB-231, A549, and HCT116 cells. Moreover, TTB enhanced DNA damage by inducing γH2AX foci formation and the phosphorylation of DNA damage-related proteins such as Chk2 and H2AX. Furthermore, TTB selectively inhibited STAT3 activation, which resulted in a reduction in cyclin D1, MMP-9, survivin, VEGF, and IL-6. In addition, TTB-induced ROS generation caused STAT3 inhibition, DNA damage, and apoptotic cell death. Therefore, TTB suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling, suggesting that TTB is useful for the treatment of cancer.

  15. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling.

    Directory of Open Access Journals (Sweden)

    Carissa M Thomas

    Full Text Available Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA, histidine/histamine antiporter (hdcP, and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H(2 receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases.

  16. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guofeng [Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China); Xu, Jingren [Department of Traditional Chinese Orthopaedics, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China); Li, Zengchun, E-mail: lizc.2007@yahoo.com.cn [Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer RAGE overexpression suppresses cell proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer RAGE overexpression decreases Wnt/{beta}-catenin signaling. Black-Right-Pointing-Pointer RAGE overexpression decreases ERK and PI3K signaling. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes PI3K signaling restored by RAGE blockade. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes ERK signaling restored by RAGE blockade. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a crucial role in bone metabolism. However, the role of RAGE in the control of osteoblast proliferation is not yet evaluated. In the present study, we demonstrate that RAGE overexpression inhibits osteoblast proliferation in vitro. The negative regulation of RAGE on cell proliferation results from suppression of Wnt, PI3K and ERK signaling, and is restored by RAGE neutralizing antibody. Prevention of Wnt signaling using Sfrp1 or DKK1 rescues RAGE-decreased PI3K and ERK signaling and cell proliferation, indicating that the altered cell growth in RAGE overexpressing cells is in part secondary to alterations in Wnt signaling. Consistently, RAGE overexpression inhibits the expression of Wnt targets cyclin D1 and c-myc, which is partially reversed by RAGE blockade. Overall, these results suggest that RAGE inhibits osteoblast proliferation via suppression of Wnt, PI3K and ERK signaling, which provides novel mechanisms by which RAGE regulates osteoblast growth.

  17. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging.

    Directory of Open Access Journals (Sweden)

    W Edward Visser

    Full Text Available DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/- or intermediate (Ercc1-/Δ-7 progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.

  18. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores.

    Science.gov (United States)

    Gobin, V; De Bock, M; Broeckx, B J G; Kiselinova, M; De Spiegelaere, W; Vandekerckhove, L; Van Steendam, K; Leybaert, L; Deforce, D

    2015-09-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have recently been shown to exert anti-inflammatory and immunosuppressive effects. Although the effects on cytokine secretion, proliferation and viability of T lymphocytes have been extensively characterized, little is known about the mechanism behind these effects. It is well known that Ca(2+) signaling is an important step in the signaling transduction pathway following T cell receptor activation. Therefore, we investigated if fluoxetine interferes with Ca(2+) signaling in Jurkat T lymphocytes. Fluoxetine was found to suppress Ca(2+) signaling in response to T cell receptor activation. Moreover, fluoxetine was found to deplete intracellular Ca(2+) stores, thereby leaving less Ca(2+) available for release upon IP3- and ryanodine-receptor activation. The Ca(2+)-modifying effects of fluoxetine are not related to its capability to block the serotonin transporter, as even a large excess of 5HT did not abolish the effects. In conclusion, these data show that fluoxetine decreases IP3- and ryanodine-receptor mediated Ca(2+) release in Jurkat T lymphocytes, an effect likely to be at the basis of the observed immunosuppression.

  19. 瞬变电磁信号降噪算法%Improved ICA Solutions for TEM Signal Noise Suppression

    Institute of Scientific and Technical Information of China (English)

    罗倩; 朱希安

    2013-01-01

    Useful information of underground anomalies bodies can be deduced using transient electromagnetic method.However,due to the need of outside field data acquisition,the received transient electromagnetic signals are usually superimposed electromagnetic interference and noise which seriously affect underground anomaly data mapping and geological conditions explanation using the transient electromagnetic signals.The traditional noise reduction methods for the received transient electromagnetic secondary field attenuation signal can not get good results.To this issue,a new algorithm was proposed based on improved ICA of noise reduction for the received transient electromagnetic signals.This method builds multi-dimensional observation vectors from the transient electromagnetic signals received,researches on basis vectors of signal spaces using independent component analysis,and then uses kurtosis criterion to separate the signal space and noise space in order to achieve the purpose of noise suppression.The noise processed transient electromagnetic signal can be better applied in the inversion calculation of underground information.By measured data verification,it was proved that the proposed algorithm has better effects being applied to the signal noise suppression of transient electromagnetic method.It can effectively reduce the noise as well as separate the useful information from the secondary field signal,and has better effects in improving the quality of transient electromagnetic data mapping and geological condition explanation.%研究地下异常体的有用信息,由于需要野外采集,所接收的瞬变电磁信号会叠加各种电磁干扰和噪声,而传统的降噪方法不能较好地对瞬变电磁接收的二次场衰减信号降噪,严重影响了利用信号对地下异常体特征的数据成图和地质状况解释.针对上述问题,提出了改进的基于独立成分分析的瞬变电磁接收信号降噪处理算法.由接收的瞬变电磁信

  20. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.

  1. New all-optical RIN suppressing, image rejection receiver with efficient use of LO- and signal-power

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Ebskamp, F.

    1993-01-01

    An all-optical method of achieving a heterodyne signal is presented whereby the local oscillator (LO) relative intensity noise (RIN) and the image channel have been suppressed while efficient use of both LO and signal power is made. This is achieved with only one photodetector, compared to four...

  2. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  3. Phospholipase Cγ1 suppresses foreign body giant cell formation by maintaining RUNX1 expression in macrophages.

    Science.gov (United States)

    Kim, Ye Seon; Ok, Chang Youp; Park, Joon Seong; Lee, Ha Young; Bae, Yoe-Sik

    2017-01-22

    Foreign body giant cell (FBGC) formation is associated with the inflammatory response following material implantation. However, the intracellular signaling events that regulate the process remain unclear. Here, we investigated the potential role of phospholipase C (PLC)γ1, a crucial enzyme required for growth factor-induced signaling, on FBGC formation. Knock-down of PLCγ1 using shRNA induced FBGC formation accompanied by increased expression of cathepsin K, DC-STAMP and CD36. Re-addition of PLCγ1 decreased FBGC formation. PLCγ1-deficiency caused a decrease in RUNX1 and subsequent PU.1 upregulation while subsequent rescue of RUNX1 in sh-PLCγ1-transfected cells strongly inhibited FBGC formation. FBGC generated by knock-down of PLCγ1 using shRNA resulted in strongly increased TNF-α production, with augmented activation of ERK, p38 MAPK and JNK, and subsequently NF-κB. Taken together, we suggest that PLCγ1 plays a role in the foreign body response by regulating the RUNX1/PU.1/DC-STAMP axis in macrophages. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Epstein - Barr virus latent membrane protein 1 suppresses reporter activity through modulation of promyelocytic leukemia protein-nuclear bodies

    Directory of Open Access Journals (Sweden)

    Flemington Erik K

    2011-10-01

    Full Text Available Abstract The Epstein-Barr virus (EBV encoded Latent Membrane Protein 1 (LMP1 has been shown to increase the expression of promyelocytic leukemia protein (PML and the immunofluorescent intensity of promyelocytic leukemia nuclear bodies (PML NBs. PML NBs have been implicated in the modulation of transcription and the association of reporter plasmids with PML NBs has been implicated in repression of reporter activity. Additionally, repression of various reporters in the presence of LMP1 has been noted. This study demonstrates that LMP1 suppresses expression of reporter activity in a dose responsive manner and corresponds with the LMP1 induced increase in PML NB intensity. Disruption of PML NBs with arsenic trioxide or a PML siRNA restores reporter activity. These data offer an explanation for previously conflicting data on LMP1 signaling and calls attention to the possibility of false-positives and false-negatives when using reporter assays as a research tool in cells expressing LMP1.

  5. Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice

    DEFF Research Database (Denmark)

    Köhnke, Rickard; Lindqvist, Andreas; Göransson, Nathanael

    2009-01-01

    affect food intake and body weight during long-term feeding in mice. Female apolipoprotein E-deficient mice were fed a high-fat diet containing 41% of fat by energy with and without thylakoids for 100 days. Mice fed the thylakoid-enriched diet had suppressed food intake, body weight gain and body fat...... fat mass. There was no sign of desensitization in the animals treated with thylakoids. The results suggest that thylakoids are useful to suppress appetite and body weight gain when supplemented to a high-fat food during long-term feeding....... compared with the high-fat fed control mice. Reduced serum glucose, serum triglyceride and serum free fatty acid levels were found in the thylakoid-treated animals. The satiety hormone cholecystokinin was elevated, suggesting this hormone mediates satiety. Leptin levels were reduced, reflecting a decreased...

  6. Recurrent MLK4 Loss-of-Function Mutations Suppress JNK Signaling to Promote Colon Tumorigenesis

    Science.gov (United States)

    Marusiak, Anna A.; Stephenson, Natalie L.; Baik, Hayeon; Trotter, Eleanor W.; Li, Yaoyong; Blyth, Karen; Mason, Susan; Chapman, Phil; Puto, Lorena A.; Read, Jon A.; Brassington, Claire; Pollard, Hannah K.; Phillips, Chris; Green, Isabelle; Overman, Ross; Collier, Matthew; Testoni, Ewelina; Miller, Crispin J.; Hunter, Tony; Sansom, Owen J.; Brognard, John

    2015-01-01

    MLK4 is a member of the mixed-lineage family of kinases that regulate the JNK, p38, and ERK kinase signaling pathways. MLK4 mutations have been identified in various human cancers including frequently in colorectal cancer, where their function and pathobiological importance has been uncertain. In this study, we assessed the functional consequences of MLK4 mutations in colon tumorigenesis. Biochemical data indicated that a majority of MLK4 mutations are loss-of-function (LOF) mutations that can exert dominant negative effects. In seeking to understand the abrogated activity of these mutants, we elucidated a new MLK4 catalytic domain structure. To determine whether MLK4 is required to maintain the tumorigenic phenotype, we reconstituted its signaling axis in colon cancer cells harboring MLK4 inactivating mutations. We found that restoring MLK4 activity reduced cell viability, proliferation, and colony formation in vitro and delayed tumor growth in vivo. Mechanistic investigations established that restoring the function of MLK4 selectively induced the JNK pathway and its downstream targets, cJUN, ATF3 and the cyclin-dependent kinase inhibitors CDKN1A and CDKN2B. Our work indicates that MLK4 is a novel tumor suppressing kinase harboring frequent LOF mutations that lead to diminished signaling in the JNK pathway and enhanced proliferation in colon cancer. PMID:26637668

  7. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    Science.gov (United States)

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  8. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC Induces Trophoblast Dysfunction

    Directory of Open Access Journals (Sweden)

    Xinwen Chang

    2017-06-01

    Full Text Available Aims: Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC, the major component of marijuana, on trophoblast function, placental development, and birth outcomes. Methods: The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3 were detected by western blot. Results: We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Conclusion: Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction.

  9. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    Science.gov (United States)

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  10. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shubham Dayal

    2017-03-01

    Full Text Available The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1 to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase activity to increase cell migration. Activity of matrix metalloproteinase (MMP-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  11. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity.

    Science.gov (United States)

    Zhang, S; Qi, Q; Chan, C B; Zhou, W; Chen, J; Luo, H R; Appin, C; Brat, D J; Ye, K

    2016-01-01

    The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which are mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.

  12. Administration of reconstituted polyphenol oil bodies efficiently suppresses dendritic cell inflammatory pathways and acute intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Elisabetta Cavalcanti

    Full Text Available Polyphenols are natural compounds capable of interfering with the inflammatory pathways of several in vitro model systems. In this study, we developed a stable and effective strategy to administer polyphenols to treat in vivo models of acute intestinal inflammation. The in vitro suppressive properties of several polyphenols were first tested and compared for dendritic cells (DCs production of inflammatory cytokines. A combination of the polyphenols, quercetin and piperine, were then encapsulated into reconstituted oil bodies (OBs in order to increase their stability. Our results showed that administration of low dose reconstituted polyphenol OBs inhibited LPS-mediated inflammatory cytokine secretion, including IL-6, IL-23, and IL-12, while increasing IL-10 and IL-1Rα production. Mice treated with the polyphenol-containing reconstituted OBs (ROBs were partially protected from dextran sodium sulfate (DSS-induced colitis and associated weight loss, while mortality and inflammatory scores revealed an overall anti-inflammatory effect that was likely mediated by impaired DC immune responses. Our study indicates that the administration of reconstituted quercetin and piperine-containing OBs may represent an effective and potent anti-inflammatory strategy to treat acute intestinal inflammation.

  13. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression.

    Science.gov (United States)

    Rashidian, Juliet; Le Scolan, Erwan; Ji, Xiaodan; Zhu, Qingwei; Mulvihill, Melinda M; Nomura, Daniel; Luo, Kunxin

    2015-02-10

    Ski, the transforming protein of the avian Sloan-Kettering retrovirus, inhibits transforming growth factor-β (TGF-β)/Smad signaling and displays both pro-oncogenic and anti-oncogenic activities in human cancer. Inhibition of TGF-β signaling is likely responsible for the pro-oncogenic activity of Ski. We investigated the mechanism(s) underlying the tumor suppressor activity of Ski and found that Ski suppressed the activity of the Hippo signaling effectors TAZ and YAP to inhibit breast cancer progression. TAZ and YAP are transcriptional coactivators that can contribute to cancer by promoting proliferation, tumorigenesis, and cancer stem cell expansion. Hippo signaling activates the the Lats family of kinases, which phosphorylate TAZ and YAP, resulting in cytoplasmic retention and degradation and inhibition of their transcriptional activity. We showed that Ski interacted with multiple components of the Hippo pathway to facilitate activation of Lats2, resulting in increased phosphorylation and subsequent degradation of TAZ. Ski also promoted the degradation of a constitutively active TAZ mutant that is not phosphorylated by Lats, suggesting the existence of a Lats2-independent degradation pathway. Finally, we showed that Ski repressed the transcriptional activity of TAZ by binding to the TAZ partner TEAD and recruiting the transcriptional co-repressor NCoR1 to the TEAD-TAZ complex. Ski effectively reversed transformation and epithelial-to-mesenchyme transition in cultured breast cancer cells and metastasis in TAZ-expressing xenografted tumors. Thus, Ski inhibited the function of TAZ through multiple mechanisms in human cancer cells.

  14. Traditional Chinese medicine suppresses left ventricular hypertrophy by targeting extracellular signal-regulated kinases signaling pathway in spontaneously hypertensive rats

    Science.gov (United States)

    Xiong, Xingjiang; Yang, Xiaochen; Duan, Lian; Liu, Wei; Zhang, Yun; Liu, Yongmei; Wang, Pengqian; Li, Shengjie; Li, Xiaoke

    2017-01-01

    Chinese herbal medicine Bu-Shen-Jiang-Ya decoction (BSJYD) is reported to be beneficial for hypertension. Over expression of extracellular signal regulated kinases (ERK) pathway plays an important role in left ventricular hypertrophy (LVH). This study aimed to observe effects of BSJYD on LVH in spontaneously hypertensive rats (SHRs) and explore its possible mechanism on regulation of ERK pathway. Sixty 12-week-old SHRs were randomly allocated into 5 groups: BSJYD high dose group, middle dose group, low dose group, captopril group, and control group. Besides, a control group of Wistar-Kyoto rats was established. All rats were treated for 8 weeks. Systolic blood pressure (SBP), heart rate (HR), pathology, and left ventricular mass index (LVMI) were measured. Western blotting and Real-time PCR were used to assess the expressions of BDNF, Ras, ERK1/2, and c-fox levels. SBP and HR were significantly decreased compared with the control group and LVMI was markedly improved by BSJYD treatment in a dose-dependent manner. BSJYD inhibited the expression of BDNF, Ras, ERK1/2, and c-fox mRNA in LVH. In conclusion, BSJYD suppressed hypertension-induced cardiac hypertrophy by inhibiting the expression of ERK pathway. These changes in gene expression may be a possible mechanism by which BSJYD provides myocardial protection from hypertension. PMID:28225023

  15. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells.

    Science.gov (United States)

    Sławińska-Brych, Adrianna; Zdzisińska, Barbara; Dmoszyńska-Graniczka, Magdalena; Jeleniewicz, Witold; Kurzepa, Jacek; Gagoś, Mariusz; Stepulak, Andrzej

    2016-05-16

    Aberrant activation of the Ras/MEK/ERK signaling pathway has been frequently observed in non-small-cell lung carcinoma (NSCLC) and its important role in cancer progression and malignant transformation has been documented. Hence, the ERK1/2 kinase cascade becomes a potential molecular target in cancer treatment. Xanthohumol (XN, a prenylated chalcone derived from hope cones) is known to possess a broad spectrum of chemopreventive and anticancer activities. In our studies, the MTT and BrdU assays revealed that XN demonstrated greater antiproliferative activity against A549 lung adenocarcinoma cells than against the lung adenocarcinoma H1563 cell line. We observed that XN was able to suppress the activities of ERK1/2 and p90RSK kinases, followed by inhibition of phosphorylation and activation of the CREB protein. Additionally, the XN treatment of the cancer cells caused upregulation of key cell cycle regulators p53 and p21 as well as downregulation of cyclin D1. As a result, the cytotoxic effect of XN was attributed to the cell cycle arrest at G1 phase and induction of apoptosis indicated by increased caspase-3 activity. Thus, XN might be a promising anticancer drug candidate against lung carcinomas.

  16. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force.

    Science.gov (United States)

    Proske, Uwe; Gandevia, Simon C

    2012-10-01

    This is a review of the proprioceptive senses generated as a result of our own actions. They include the senses of position and movement of our limbs and trunk, the sense of effort, the sense of force, and the sense of heaviness. Receptors involved in proprioception are located in skin, muscles, and joints. Information about limb position and movement is not generated by individual receptors, but by populations of afferents. Afferent signals generated during a movement are processed to code for endpoint position of a limb. The afferent input is referred to a central body map to determine the location of the limbs in space. Experimental phantom limbs, produced by blocking peripheral nerves, have shown that motor areas in the brain are able to generate conscious sensations of limb displacement and movement in the absence of any sensory input. In the normal limb tendon organs and possibly also muscle spindles contribute to the senses of force and heaviness. Exercise can disturb proprioception, and this has implications for musculoskeletal injuries. Proprioceptive senses, particularly of limb position and movement, deteriorate with age and are associated with an increased risk of falls in the elderly. The more recent information available on proprioception has given a better understanding of the mechanisms underlying these senses as well as providing new insight into a range of clinical conditions.

  17. Application of the Radon-FCL approach to seismic random noise suppression and signal preservation

    Science.gov (United States)

    Meng, Fanlei; Li, Yue; Liu, Yanping; Tian, Yanan; Wu, Ning

    2016-08-01

    The fractal conservation law (FCL) is a linear partial differential equation that is modified by an anti-diffusive term of lower order. The analysis indicated that this algorithm could eliminate high frequencies and preserve or amplify low/medium-frequencies. Thus, this method is quite suitable for the simultaneous noise suppression and enhancement or preservation of seismic signals. However, the conventional FCL filters seismic data only along the time direction, thereby ignoring the spatial coherence between neighbouring traces, which leads to the loss of directional information. Therefore, we consider the development of the conventional FCL into the time-space domain and propose a Radon-FCL approach. We applied a Radon transform to implement the FCL method in this article; performing FCL filtering in the Radon domain achieves a higher level of noise attenuation. Using this method, seismic reflection events can be recovered with the sacrifice of fewer frequency components while effectively attenuating more random noise than conventional FCL filtering. Experiments using both synthetic and common shot point data demonstrate the advantages of the Radon-FCL approach versus the conventional FCL method with regard to both random noise attenuation and seismic signal preservation.

  18. Catalytic inhibitors of DNA topoisomerase II suppress the androgen receptor signaling and prostate cancer progression.

    Science.gov (United States)

    Li, Haolong; Xie, Ning; Gleave, Martin E; Dong, Xuesen

    2015-08-21

    Although the new generation of androgen receptor (AR) antagonists like enzalutamide (ENZ) prolong survival of metastatic castration-resistant prostate cancer (CRPC), AR-driven tumors eventually recur indicating that additional therapies are required to fully block AR function. Since DNA topoisomerase II (Topo II) was demonstrated to be essential for AR to initiate gene transcription, this study tested whether catalytic inhibitors of Topo II can block AR signaling and suppress ENZ-resistant CRPC growth. Using multiple prostate cancer cell lines, we showed that catalytic Topo II inhibitors, ICRF187 and ICRF193 inhibited transcription activities of the wild-type AR, mutant ARs (F876L and W741C) and the AR-V7 splice variant. ICRF187 and ICRF193 decreased AR recruitment to target promoters and reduced AR nuclear localization. Both ICRF187 and ICRF193 also inhibited cell proliferation and delayed cell cycling at the G2/M phase. ICRF187 inhibited tumor growth of castration-resistant LNCaP and 22RV1 xenografts as well as ENZ-resistant MR49F xenografts. We conclude that catalytic Topo II inhibitors can block AR signaling and inhibit tumor growth of CRPC xenografts, identifying a potential co-targeting approach using these inhibitors in combination with AR pathway inhibitors in CRPC.

  19. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression

    DEFF Research Database (Denmark)

    Rocha, Nuno; Bulger, David A; Frontini, Andrea

    2017-01-01

    body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial...... normal in skin fibroblasts. These findings suggest that specific MFN2 mutations cause tissue-selective mitochondrial dysfunction with increased adipocyte proliferation and survival, confirm a novel form of excess adiposity with paradoxical suppression of leptin expression, and suggest potential targeted...

  20. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration.

  1. Analysis of squaring circuit mechanizations in Costas and squaring loops. [for suppressed carrier tracking binary PSK signals

    Science.gov (United States)

    Lindsey, W. C.; Woo, K. T.

    1978-01-01

    The paper discusses implementations of the carrier recovery loop for suppressed carrier binary phase shift keyed signals. The tracking performance of a practical squaring loop where the times-two multiplier is mechanized as a limiter/multiplier combination is developed. This produces the absolute value of the arriving signal which is practical in terms of low signal-to-noise ratios, a wide dynamic range of signal level, and temperature variations. The approach is compared to the usual squaring loop whose squaring circuit is the times-two multiplier exhibiting a square law characteristic.

  2. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jinlan Gao

    Full Text Available Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.

  3. Liraglutide reduces lipogenetic signals in visceral adipose of db/db mice with AMPK activation and Akt suppression

    Directory of Open Access Journals (Sweden)

    Shao Y

    2015-02-01

    Full Text Available Yimin Shao, Geheng Yuan, Junqing Zhang, Xiaohui Guo Department of Endocrinology, Peking University First Hospital, Beijing, People’s Republic of China Abstract: Liraglutide, a glucagon-like peptide-1 analog, has been proved to reduce body weight and visceral adipose tissue (VAT in human studies. In this study, we aimed at examining lipogenetic signal changes in VAT after weight-loss with liraglutide in db/db mice. The mice were divided into two groups: liraglutide-treated group (n=14, 8-week-old, fasting glucose. >10 mmol/L, liraglutide 300 µg/kg twice a day for 4 weeks and control group (n=14, saline. We found body weight gain and food intake were reduced after liraglutide treatment (P<0.05. Compared to the control group, the VAT weights were significantly lower in the treated group (2.32±0.37 g versus 3.20±0.30 g, P<0.01 than that in control group. In VAT, compared with control group, the lipogenetic transcription factors PPARγ and C/EBPα expressions were both reduced with pAMPK and pACC increased 3.5-fold and 2.31-fold respectively, while pAkt and pP38MAPK were reduced 0.38-fold and 0.62-fold respectively (P<0.01. In conclusion, VAT was reduced after weight loss with AMPK activation and Akt suppression with liraglutide treatment, which was associated with reduction of lipogenetic process in VAT. Keywords: liraglutide, visceral adipose tissue, AMP-activated protein kinase, lipogenesis

  4. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling.

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xiao

    Full Text Available Quercetin, a polyphenolic bioflavonoid, possesses multiple pharmacological actions including anti-inflammatory and antitumor properties. However, the precise action mechanisms of quercetin remain unclear. Here, we reported the regulatory actions of quercetin on cyclooxygenase-2 (COX-2, an important mediator in inflammation and tumor promotion, and revealed the underlying mechanisms. Quercetin significantly suppressed COX-2 mRNA and protein expression and prostaglandin (PG E(2 production, as well as COX-2 promoter activation in breast cancer cells. Quercetin also significantly inhibited COX-2-mediated angiogenesis in human endothelial cells in a dose-dependent manner. The in vitro streptavidin-agarose pulldown assay and in vivo chromatin immunoprecipitation assay showed that quercetin considerably inhibited the binding of the transactivators CREB2, C-Jun, C/EBPβ and NF-κB and blocked the recruitment of the coactivator p300 to COX-2 promoter. Moreover, quercetin effectively inhibited p300 histone acetyltransferase (HAT activity, thereby attenuating the p300-mediated acetylation of NF-κB. Treatment of cells with p300 HAT inhibitor roscovitine was as effective as quercetin at inhibiting p300 HAT activity. Addition of quercetin to roscovitine-treated cells did not change the roscovitine-induced inhibition of p300 HAT activity. Conversely, gene delivery of constitutively active p300 significantly reversed the quercetin-mediated inhibition of endogenous HAT activity. These results indicate that quercetin suppresses COX-2 expression by inhibiting the p300 signaling and blocking the binding of multiple transactivators to COX-2 promoter. Our findings therefore reveal a novel mechanism of action of quercetin and suggest a potential use for quercetin in the treatment of COX-2-mediated diseases such as breast cancers.

  5. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.

    Directory of Open Access Journals (Sweden)

    Hui Feng

    Full Text Available BACKGROUND: The specific interaction between hepatitis B virus (HBV polymerase (P protein and the ε RNA stem-loop on pregenomic (pg RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP, to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.

  6. Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone.

    Science.gov (United States)

    Cho, Hyun-Ji; Kang, Jeong-Han; Kim, Teoan; Park, Kwang-Kyun; Kim, Cheorl-Ho; Lee, In-Seon; Min, Kwan-Sik; Magae, Junji; Nakajima, Hiroo; Bae, Young-Seuk; Chang, Young-Chae

    2009-05-15

    Fibrosis in glomerulosclerosis causes progressive loss of renal function. Transforming growth factor (TGF)-beta, one of the major profibrotic cytokines, induces the synthesis of plasminogen activator inhibitor (PAI)-1, a factor that plays a crucial role in the development of fibrosis. Here, we found that an isoprenoid antibiotic, ascofuranone, suppresses expression of profibrotic factors including matrix proteins and PAI-1 induced by TGF-beta in renal fibroblasts. Ascofuranone selectively inhibits phosphorylation of epidermal growth factor receptor (EGFR), and downstream kinases such as Raf-1, MEK-1/2, and ERK-1/2. PAI-1 transcription also is suppressed by treatment with kinase inhibitors for MEK-1/2 or EGFR, and with small interfering RNA for EGFR. Ascofuranone inhibits cellular metalloproteinase activity, and an inhibitor of metalloproteinases suppresses EGFR phosphorylation and PAI-1 transcription. These results suggest that ascofuranone suppresses expression of profibrotic factors through the inhibition of an EGFR-dependent signal transduction pathway activated by metalloproteinases.

  7. Suppression of phase-induced intensity noise in fibre optic delay line signal processors using an optical phase modulation technique.

    Science.gov (United States)

    Chan, Erwin H W

    2010-10-11

    A technique that can suppress the dominant phase-induced intensity noise in fibre optic delay line signal processors is presented. It is based on phase modulation of the optical carrier to distribute the phase noise at the information band into a high frequency band which can be filtered out. This technique is suitable for suppressing the phase noise in various delay line structures and for integrating in the conventional fibre optic links. It can also suppress the coherent interference effect at the same time. A model for predicting the amount of phase noise reduction in various delay line structures using the optical phase modulation technique is presented for the first time and is experimentally verified. Experimental results demonstrate the technique can achieve a large phase noise reduction in various fibre optic delay line signal processors.

  8. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Chapa-Rodriguez, Adrian; Liu, Wensheng; Nugent, Colleen A; Tsompana, Maria; Mastrandrea, Lucy; Buck, Michael J; Baker, Robert D; Genco, Robert J; Zhu, Ruixin; Zhu, Lixin

    2017-08-03

    Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na(+)-taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome. © Article

  9. Distributed digital signal processors for multi-body structures

    Science.gov (United States)

    Lee, Gordon K.

    1990-01-01

    Several digital filter designs were investigated which may be used to process sensor data from large space structures and to design digital hardware to implement the distributed signal processing architecture. Several experimental tests articles are available at NASA Langley Research Center to evaluate these designs. A summary of some of the digital filter designs is presented, an evaluation of their characteristics relative to control design is discussed, and candidate hardware microcontroller/microcomputer components are given. Future activities include software evaluation of the digital filter designs and actual hardware inplementation of some of the signal processor algorithms on an experimental testbed at NASA Langley.

  10. KCTD1 suppresses canonical Wnt signaling pathway by enhancing β-catenin degradation.

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    Full Text Available The canonical Wnt signaling pathway controls normal embryonic development, cellular proliferation and growth, and its aberrant activity results in human carcinogenesis. The core component in regulation of this pathway is β-catenin, but molecular regulation mechanisms of β-catenin stability are not completely known. Here, our recent studies have shown that KCTD1 strongly inhibits TCF/LEF reporter activity. Moreover, KCTD1 interacted with β-catenin both in vivo by co-immunoprecipitation as well as in vitro through GST pull-down assays. We further mapped the interaction regions to the 1-9 armadillo repeats of β-catenin and the BTB domain of KCTD1, especially Position Ala-30 and His-33. Immunofluorescence analysis indicated that KCTD1 promotes the cytoplasmic accumulation of β-catenin. Furthermore, protein stability assays revealed that KCTD1 enhances the ubiquitination/degradation of β-catenin in a concentration-dependent manner in HeLa cells. And the degradation of β-catenin mediated by KCTD1 was alleviated by the proteasome inhibitor, MG132. In addition, KCTD1-mediated β-catenin degradation was dependent on casein kinase 1 (CK1- and glycogen synthase kinase-3β (GSK-3β-mediated phosphorylation and enhanced by the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP. Moreover, KCTD1 suppressed the expression of endogenous Wnt downstream genes and transcription factor AP-2α. Finally, we found that Wnt pathway member APC and tumor suppressor p53 influence KCTD1-mediated downregulation of β-catenin. These results suggest that KCTD1 functions as a novel inhibitor of Wnt signaling pathway.

  11. BMPR2 expression is suppressed by signaling through the estrogen receptor

    Directory of Open Access Journals (Sweden)

    Austin Eric D

    2012-02-01

    Full Text Available Abstract Background Studies in multiple organ systems have shown cross-talk between signaling through the bone morphogenetic protein receptor type 2 (BMPR2 and estrogen pathways. In humans, pulmonary arterial hypertension (PAH has a female predominance, and is associated with decreased BMPR2 expression. The goal of this study was to determine if estrogens suppress BMPR2 expression. Methods A variety of techniques were utilized across several model platforms to evaluate the relationship between estrogens and BMPR2 gene expression. We used quantitative RT-PCR, gel mobility shift, and luciferase activity assays in human samples, live mice, and cell culture. Results BMPR2 expression is reduced in lymphocytes from female patients compared with male patients, and in whole lungs from female mice compared with male mice. There is an evolutionarily conserved estrogen receptor binding site in the BMPR2 promoter, which binds estrogen receptor by gel-shift assay. Increased exogenous estrogen decreases BMPR2 expression in cell culture, particularly when induced to proliferate. Transfection of increasing quantities of estrogen receptor alpha correlates strongly with decreasing expression of BMPR2. Conclusions BMPR2 gene expression is reduced in females compared to males in live humans and in mice, likely through direct estrogen receptor alpha binding to the BMPR2 promoter. This reduced BMPR2 expression may contribute to the increased prevalence of PAH in females.

  12. Omega-3 Polyunsaturated Fatty Acids Attenuate Fibroblast Activation and Kidney Fibrosis Involving MTORC2 Signaling Suppression

    Science.gov (United States)

    Zeng, Zhifeng; Yang, Haiyuan; Wang, Ying; Ren, Jiafa; Dai, Yifan; Dai, Chunsun

    2017-01-01

    Epidemiologic studies showed the correlation between the deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the progression of chronic kidney diseases (CKD), however, the role and mechanisms for n-3 PUFAs in protecting against kidney fibrosis remain obscure. In this study, NRK-49F cells, a rat kidney interstitial fibroblast cell line, were stimulated with TGFβ1. A Caenorhabditis elegans fat-1 transgenic mouse model in which n-3 PUFAs are endogenously produced from n-6 PUFAs owing to the expression of n-3 fatty acid desaturase were deployed. Docosahexaenoic acid (DHA), one member of n-3 PUFAs family, could suppress TGFβ1-induced fibroblast activation at a dose and time dependent manner. Additionally, DHA could largely inhibit TGFβ1-stimulated Akt but not S6 or Smad3 phosphorylation at a time dependent manner. To decipher the role for n-3 PUFAs in protecting against kidney fibrosis, fat-1 transgenic mice were operated with unilateral ureter obstruction (UUO). Compared to the wild types, fat-1 transgenics developed much less kidney fibrosis and inflammatory cell accumulation accompanied by less p-Akt (Ser473), p-Akt (Thr308), p-S6 and p-Smad3 in kidney tissues at day 7 after UUO. Thus, n-3 PUFAs can attenuate fibroblast activation and kidney fibrosis, which may be associated with the inhibition of mTORC2 signaling. PMID:28393852

  13. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.

    Science.gov (United States)

    Lefort, Karine; Ostano, Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, G Paolo; Chiorino, Giovanna

    2016-07-26

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer.

  14. Search for CP violation in singly Cabibbo suppressed four-body D decays

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, Maurizio [Univ. of Bari Aldo Moro (Italy)

    2011-02-01

    We search for CP violation in a sample of 4.7 x 104 singly Cabibbo suppressed D0 → K+ K- π+π- decays and 1.8(2.6) x 104 D(s)+ → KS0 K+ π+ π- decays. CP violation is searched for in the difference between the T-odd asymmetries, obtained using triple product correlations, measured for D and D decays. The measured CP violation parameters are AT(D0) = (1.0 ± 5.1(stat) ± 4.4(syst)) x 10-3, AT(D+) = (-11.96 ± 10.04(stat) ± 4.81(syst)) x 10-3 and AT(Ds+) = (-13.57 ± 7.67(stat) ± 4.82(syst)) x 10-3. This search for CP violation showed that the T-odd correlations are a powerful tool to measure the CP violating observable AT. The relative simplicity of an analysis based on T-odd correlations and the high quality results that can be obtained, allow to consider this tool as fundamental to search for CP violation in four-body decays. Even if the CP violation has not been found, excluding any New Physics effect to the sensitivity of about 0.5%, it is still worth to search for CP violation in D decays. The high statistics that can be obtained at the LHC or by the proposed high luminosity B-factories, make this topic to be considered in high consideration by experiments such as LHCb, SuperB or SuperBelle. The results outlined in this thesis strongly suggest to include a similar analysis into the Physics program of these experiments.

  15. Does vivid emotional imagery depend on body signals?

    Science.gov (United States)

    Vianna, Eduardo Paulo Morawski; Naqvi, Nasir; Bechara, Antoine; Tranel, Daniel

    2009-04-01

    The recall and re-experiencing of a personal emotional event (emotional imagery) are thought to evoke neural activity in the central nervous system that can affect the physiology of bodily states. It has been proposed that the more active the neural systems previously engaged in the emotional experience, and the more active the bodily state associated with that experience, the more vivid the emotional imagery is. The sympathetic nervous system (SNS) and the gastrointestinal system (GI) are engaged in emotional reactions. On this basis, we hypothesized that vivid emotional imagery would be accompanied by strong increases in gastrointestinal and sympathetic nervous system activity. To test this hypothesis, 17 healthy participants performed emotional imagery of strong autobiographical memories involving various emotional states (happy, fear, disgust, sadness, anger). SNS and GI changes, measured by skin conductance and electrogastrogram, respectively, correlated positively with subjective ratings of arousal during the imagery. However, the SNS changes did not correlate with ratings of emotional imagery vividness, and even more intriguingly, the GI changes correlated strongly and negatively with vividness ratings. To account for these findings, we propose that in highly vivid imagery experience, the central nervous system is simulating the whole emotional experience strongly, and bodily information plays a lesser role. In low vivid imagery experience, the central nervous system is not simulating very strongly the emotional experience, and information coming from the body (including the GI system) plays a greater role. This interpretation is set forth in the context of Damasio's [Damasio, A., (1999) The feeling of what happens: body and emotion in the making of consciousness, Orlando, Fl, Harcourt.] theoretical framework, which predicts such a dissociation between a "body loop" and an "as if body loop" for the experiencing and re-experiencing of emotions and feelings.

  16. Suppression of sustained and transient ON signals of amacrine cells by GABA is mediated by different receptor subtypes

    Institute of Scientific and Technical Information of China (English)

    张道启; 杨如; 杨雄里

    1999-01-01

    Intracellular recordings were made from amacrine cells in the isolated, superfused carp retina, and the effects of γ-aminobutyric acid (GABA) on sustained and transient ON signals of these cells were studied. Exogenous GABA application partially suppressed the sustained response of ON amacrine cells, which could be completely reversed by picrotoxin (PTX), a chloride channel blocker, and by bicuculline (BCC), a specific GABA_A receptor antagonist. On the other hand, suppression by GABA of the ON response which was predominantly driven by rod signals in a certain portion of transient ON-OFF amacrine cells was completely blocked by PTX, but not by BCC, indicating that GABA_C receptors may be involved in the effect. These results suggest that GABA_A and GABA_C receptors may be respectively involved in mediating the transmission of sustained and transient signals in the carp inner retina.

  17. Evaluation of the effect of signalment and body conformation on activity monitoring in companion dogs.

    Science.gov (United States)

    Brown, Dorothy Cimino; Michel, Kathryn E; Love, Molly; Dow, Caitlin

    2010-03-01

    To evaluate the effect of signalment and body conformation on activity monitoring in companion dogs. 104 companion dogs. While wearing an activity monitor, each dog was led through a series of standard activities: lying down, walking laps, trotting laps, and trotting up and down stairs. Linear regression analysis was used to determine which signalment and body conformation factors were associated with activity counts. There was no significant effect of signalment or body conformation on activity counts when dogs were lying down, walking laps, and trotting laps. However, when dogs were trotting up and down stairs, there was a significant effect of age and body weight such that, for every 1-kg increase in body weight, there was a 1.7% (95% confidence interval, 1.1% to 2.4%) decrease in activity counts and for every 1-year increase in age, there was a 4.2% (95% confidence interval, 1.4% to 6.9%) decrease in activity counts. When activity was well controlled, there was no significant effect of signalment or body conformation on activity counts recorded by the activity monitor. However, when activity was less controlled, older dogs and larger dogs had lower activity counts than younger and smaller dogs. The wide range in body conformation (eg, limb or body length) among dogs did not appear to significantly impact the activity counts recorded by the monitor, but age and body weight did and must be considered in analysis of data collected from the monitors.

  18. HHX-5, a derivative of sesquiterpene from Chinese agarwood, suppresses innate and adaptive immunity via inhibiting STAT signaling pathways.

    Science.gov (United States)

    Zhu, Zhixiang; Zhao, Yunfang; Huo, Huixia; Gao, Xiaoli; Zheng, Jiao; Li, Jun; Tu, Pengfei

    2016-11-15

    Induction of excessive, prolonged, or dysregulated immune responses causes immunological disorders, such as inflammatory diseases, autoimmune diseases, allergic diseases, and organ-graft rejections. In the present study, we investigated the inhibitory effects of HHX-5, a derivative of sesquiterpene from Chinese agarwood, on innate and adaptive immunity for revealing its potential to treat above immunological disorders. The results showed that HHX-5 significantly inhibited the activation of macrophages and neutrophils which play important roles in innate immunity. Furthermore, HHX-5 strongly suppressed adaptive immunity via inhibiting differentiation of naive CD4(+) T cells into Th1, Th2, and Th17 cells and suppressing activation, proliferation and differentiation of CD8(+) T cells and B cells. The mechanism study showed that HHX-5 significantly inhibited STAT1 signaling pathway in macrophages and suppressed STAT1, STAT4, STAT5, and STAT6 signaling pathways in naive CD4(+) T cells. In conclusion, we demonstrated that HHX-5 can strongly inhibit innate and adaptive immunity via suppressing STAT signaling pathways and has potential to be developed into therapeutic drug for treat immunological disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells.

    Science.gov (United States)

    Kim, Haesung; Seo, Eun-Min; Sharma, Ashish R; Ganbold, Bilguun; Park, Jongbong; Sharma, Garima; Kang, Young-Hee; Song, Dong-Keun; Lee, Sang-Soo; Nam, Ju-Suk

    2013-10-01

    Quercetin is a promising chemopreventive agent against cancer that inhibits tumor progression by inducing cell cycle arrest and promoting apoptotic cell death. Recently, the Wnt/β-catenin signaling pathway has been implicated in mammary tumorigenesis, where its abnormal activation is associated with the development of breast cancer. Thus, the objective of this study was to examine the biological activities of quercetin against mammary cancer cells, and to determine whether quercetin could regulate the Wnt/β-catenin signaling pathway. Quercetin showed dose-dependent inhibition of cell growth and induced apoptosis in 4T1 cells. Treatment of 20 µM quercetin suppressed ~50% of basal TopFlash luciferase activity. Moreover, the inhibitory effect of quercetin on the Wnt/β-catenin signaling pathway was confirmed by the reduced stabilization of the β-catenin protein. Among various antagonists screened for the Wnt/β-catenin signaling pathway, the expression of DKK1, 2 and 3 was induced after treatment with 20 µM of quercetin. Stimulation with recombinant DKK1 protein, showed suppressive cell growth of mammary cancer cells instead of quercetin. When 4T1 cells were treated with recombinant Wnt3a or LiCl along with quercetin, both stimulators for the Wnt/β-catenin signaling pathway were able to restore the suppressed cell viability by quercetin. Thus, our data suggest that quercetin exerts its anticancer activity through the downregulation of Wnt/β-catenin signaling activity. These results indicate for the first time that quercetin decreases cell viability and induces apoptosis in murine mammary cancer cells, which is possibly mediated by DKK-dependent inhibition of the Wnt/β-catenin signaling pathway. In conclusion, our findings suggest that quercetin has great potential value as chemotherapeutic agent for cancer treatment, especially in breast cancer controlled by Wnt/β-catenin signaling activity.

  20. Body signals during social play in free-ranging rhesus macaques (Macaca mulatta): A systematic analysis.

    Science.gov (United States)

    Yanagi, Akie; Berman, Carol M

    2014-02-01

    Social play involves one of the most sophisticated types of communication, that is, the use of play signals. Most primate research on play signals has focused on the use of the play face. However, some species appear to exhibit a variety of play signals. For example, rhesus monkeys (Macaca mulatta) have been reported to use body movements or postures that might have signal value during social play, in addition to the play face. However, it is not clear whether these body signals actually meet several criteria necessary to label them as "play signals." Here we examine the forms and possible functions of seven candidate signals that we observed exclusively during social play contexts among free-ranging rhesus monkeys on Cayo Santiago. We aim to (1) distinguish them from actual play behavior (play involving contact or chasing) using loglinear analysis and (2) determine whether they predict playful behavior using modified PC-MC methods. Two candidate signals did not resemble any behaviors used in actual play. The other five signals contained elements that lasted longer or increased their conspicuousness over similar play behaviors, suggesting ritualized characteristics. Youngsters were likely to initiate contact or chasing play significantly sooner after candidate signals than in their absence. Thus, these candidate signals appear to meet critical criteria of signals that promote, moderate or facilitate play. As such, these findings open the door to questions about why multiple play signals have evolved. © 2013 Wiley Periodicals, Inc.

  1. The Use of Green Leaf Membranes to Promote Appetite Control, Suppress Hedonic Hunger and Loose Body Weight

    OpenAIRE

    Erlanson-Albertsson, Charlotte; Albertsson, Per-Åke

    2015-01-01

    On-going research aims at answering the question, which satiety signal is the most potent or which combination of satiety signals is the most potent to stop eating. There is also an aim at finding certain food items or food additives that could be used to specifically reduce food intake therapeutically. Therapeutic attempts to normalize body weight and glycaemia with single agents alone have generally been disappointing. The success of bariatric surgery illustrates the rationale of using seve...

  2. Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal.

    Science.gov (United States)

    Sawaki, Risa; Luck, Steven J

    2010-08-01

    There is considerable controversy about whether salient singletons capture attention in a bottom-up fashion, irrespective of top-down control settings. One possibility is that salient singletons always generate an attention capture signal, but this signal can be actively suppressed to avoid capture. In the present study, we investigated this issue by using event-related potential recordings, focusing on N2pc (N2-posterior-contralateral; a measure of attentional deployment) and Pd (distractor positivity; a measure of attentional suppression). Participants searched for a specific letter within one of two regions, and irrelevant color singletons were sometimes present. We found that the irrelevant singletons did not elicit N2pc but instead elicited Pd; this occurred equally within the attended and unattended regions. These findings suggest that salient singletons may automatically produce an attend-to-me signal, irrespective of top-down control settings, but this signal can be overridden by an active suppression process to prevent the actual capture of attention.

  3. Emotional signals from faces, bodies and scenes influence observers' face expressions, fixations and pupil-size

    NARCIS (Netherlands)

    Kret, M.E.; Roelofs, K.; Stekelenburg, J.J.; de Gelder, B.

    2013-01-01

    We receive emotional signals from different sources, including the face, the whole body, and the natural scene. Previous research has shown the importance of context provided by the whole body and the scene on the recognition of facial expressions. This study measured physiological responses to face

  4. Emotional signals from faces, bodies and scenes influence observers' face expressions, fixations and pupil-size

    NARCIS (Netherlands)

    Kret, M.E.; Roelofs, K.; Stekelenburg, J.J.; de Gelder, B.

    2013-01-01

    We receive emotional signals from different sources, including the face, the whole body, and the natural scene. Previous research has shown the importance of context provided by the whole body and the scene on the recognition of facial expressions. This study measured physiological responses to

  5. A search for two body muon decay signals

    CERN Document Server

    Bayes, R; Davydov, Yu I; Depommier, P; Faszer, W; Fujiwara, M C; Gagliardi, C A; Gaponenko, A; Gill, D R; Grossheim, A; Gumplinger, P; Hasinoff, M D; Henderson, R S; Hillairet, A; Hu, J; Koetke, D D; MacDonald, R P; Marshall, G M; Mathie, E L; Mischke, R E; Olchanski, K; Olin, A; Openshaw, R; Poutissou, J -M; Poutissou, R; Selivanov, V; Sheffer, G; Shin, B; Stanislaus, T D S; Tacik, R; Tribble, R E

    2014-01-01

    Lepton family number violation is tested by searching for $\\mu^+\\to e^+X^0$ decays among the 5.8$\\times 10^8$ positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive $X^0$ bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic $\\mu^+\\to e^+X^0$ decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order $10^{-5}$\\ are obtained for boson masses of 10 - 80 MeV/c$^2$ and different asymmetries. For lighter bosons the asymmetry dependence is much stronger and the branching ratio limit varies up to $5.8 \\times 10^{-5}$. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.

  6. Emotional signals from faces, bodies and scenes influence observers' face expressions, fixations and pupil-size.

    Science.gov (United States)

    Kret, Mariska E; Roelofs, Karin; Stekelenburg, Jeroen J; de Gelder, Beatrice

    2013-01-01

    We receive emotional signals from different sources, including the face, the whole body, and the natural scene. Previous research has shown the importance of context provided by the whole body and the scene on the recognition of facial expressions. This study measured physiological responses to face-body-scene combinations. Participants freely viewed emotionally congruent and incongruent face-body and body-scene pairs whilst eye fixations, pupil-size, and electromyography (EMG) responses were recorded. Participants attended more to angry and fearful vs. happy or neutral cues, independent of the source and relatively independent from whether the face body and body scene combinations were emotionally congruent or not. Moreover, angry faces combined with angry bodies and angry bodies viewed in aggressive social scenes elicited greatest pupil dilation. Participants' face expressions matched the valence of the stimuli but when face-body compounds were shown, the observed facial expression influenced EMG responses more than the posture. Together, our results show that the perception of emotional signals from faces, bodies and scenes depends on the natural context, but when threatening cues are presented, these threats attract attention, induce arousal, and evoke congruent facial reactions.

  7. Signal measurement system for intra-body communication using optical isolation method

    Science.gov (United States)

    Matsumoto, Kazuki; Katsuyama, Jun; Sugiyama, Ryo; Takizawa, Yasuaki; Ishii, Seita; Shinagawa, Mitsuru; Kado, Yuichi

    2014-09-01

    In this paper, we describe an induced signal measurement on the human body for developing a high-performance transceiver of an intra-body communication system. It is important to isolate awearable transceiver from an electrical instrument for precise measurement. We have developed a probe system using an optical isolation method including a laser diode, photo-diode, and optical fiber. The probe system can be successfully applied to the precise measurement of a receiving signal power at a wearable transceiver. We verify that the experimental results agree with the simulation results based on our previous channel model of intra-body communication.

  8. New therapy with ASC-J9® to suppress the prostatitis via altering the cytokine CCL2 signals.

    Science.gov (United States)

    Lin, Shin-Jen; Chou, Fu-Ju; Lin, Chang-Yi; Chang, Hong-Chiang; Yeh, Shuyuan; Chang, Chawnshang

    2016-10-11

    Prostatitis is a common disease contributing to 8% of all urologist visits. Yet the etiology and effective treatment remain to be further elucidated. Using a non-obese diabetes mouse model that can be induced by autoimmune response for the spontaneous development of prostatitis, we found that injection of the ASC-J9® at 75 mg/Kg body weight/48 hours led to significantly suppressed prostatitis that was accompanied with reduction of lymphocyte infiltration with reduced CD4+ T cells in prostate. In vitro studies with a co-culture system also confirmed that ASC-J9® treatment could suppress the CD4+ T cell migration to prostate stromal cells. Mechanisms dissection indicated that ASC-J9® can suppress CD4+ T cell migration via decreasing the cytokine CCL2 in vitro and in vivo, and restoring CCL2 could interrupt the ASC-J9® suppressed CD4+ T cell migration. Together, results from in vivo and in vitro studies suggest that ASC-J9® can suppress prostatitis by altering the autoimmune response induced by CD4+ T cell recruitment, and using ASC-J9® may help us to develop a potential new therapy to battle the prostatitis with little side effects.

  9. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  10. False ventricular tachycardia alarm suppression in the ICU based on the discrete wavelet transform in the ECG signal.

    Science.gov (United States)

    Salas-Boni, Rebeca; Bai, Yong; Harris, Patricia Rae Eileen; Drew, Barbara J; Hu, Xiao

    2014-01-01

    Over the past few years, reducing the number of false positive cardiac monitor alarms (FA) in the intensive care unit (ICU) has become an issue of the utmost importance. In our work, we developed a robust methodology that, without the need for additional non-ECG waveforms, suppresses false positive ventricular tachycardia (VT) alarms without resulting in false negative alarms. Our approach is based on features extracted from the ECG signal 20 seconds prior to a triggered alarm. We applied a multi resolution wavelet transform to the ECG data 20seconds prior to the alarm trigger, extracted features from appropriately chosen scales and combined them across all available leads. These representations are presented to a L1-regularized logistic regression classifier. Results are shown in two datasets of physiological waveforms with manually assessed cardiac monitor alarms: the MIMIC II dataset, where we achieved a false alarm (FA) suppression of 21% with zero true alarm (TA) suppression; and a dataset compiled by UCSF and General Electric, where a 36% FA suppression was achieved with a zero TA suppression. The methodology described in this work could be implemented to reduce the number of false monitor alarms in other arrhythmias. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Ligation of Signal Inhibitory Receptor on Leukocytes-1 Suppresses the Release of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus

    OpenAIRE

    Kristof Van Avondt; Ruth Fritsch-Stork; Derksen, Ronald H W M; Linde Meyaard

    2013-01-01

    Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. Signal Inhibitory Receptor on Leuk...

  12. St. John's Wort Attenuates Colorectal Carcinogenesis in Mice through Suppression of Inflammatory Signaling.

    Science.gov (United States)

    Manna, Soumen K; Golla, Srujana; Golla, Jaya Prakash; Tanaka, Naoki; Cai, Yan; Takahashi, Shogo; Krausz, Kristopher W; Matsubara, Tsutomu; Korboukh, Ilia; Gonzalez, Frank J

    2015-09-01

    Despite widespread use as well as epidemiologic indications, there have been no investigations into the effect of St. John's wort (SJW) extract on colorectal carcinogenesis in vivo. This study reports a systematic evaluation of the impact of dietary supplementation of SJW extract on azoxymethane-induced colorectal carcinogenesis in mice. Mice were fed with either AIN-93G (control) diet or SJW extract-supplemented diet (SJW diet) prior to azoxymethane treatment. SJW diet was found to significantly improve the overall survival of azoxymethane-treated mice. Pretreatment with the SJW diet significantly reduced body weight loss as well as decrease of serum albumin and cholesterol levels associated with azoxymethane-induced colorectal tumorigenesis. SJW diet-fed mice showed a significant decrease in tumor multiplicity along with a decrease in incidence of large tumors and a trend toward decreased total tumor volume in a dose-dependent manner. A short-term study, which examined the effect of SJW prior to rectal bleeding, also showed decrease in colorectal polyps in SJW diet-fed mice. Nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase (ERK1/2) pathways were attenuated by SJW administration. SJW extract resulted in early and continuous attenuation of these pathways in the colon epithelium of SJW diet-fed mice under both short-term and long-term treatment regimens. In conclusion, this study demonstrated the chemopreventive potential of SJW extract against colorectal cancer through attenuation of proinflammatory processes.

  13. Patterning of mutually interacting bacterial bodies: close contacts and airborne signals

    Directory of Open Access Journals (Sweden)

    Markoš Anton

    2010-05-01

    Full Text Available Abstract Background Bacterial bodies (colonies can develop complex patterns of color and structure. These patterns may arise as a result of both colony-autonomous developmental and regulatory processes (self-patterning and environmental influences, including those generated by neighbor bodies. We have studied the interplay of intra-colony signaling (self-patterning and inter-colony influences in related clones of Serratia rubidaea grown on rich media. Results Colonies are shaped by both autonomous patterning and by signals generated by co-habitants of the morphogenetic space, mediating both internal shaping of the body, and communication between bodies sharing the same living space. The result of development is affected by the overall distribution of neighbors in the dish. The neighbors' presence is communicated via at least two putative signals, while additional signals may be involved in generating some unusual patterns observed upon encounters of different clones. A formal model accounting for some aspects of colony morphogenesis and inter-colony interactions is proposed. Conclusions The complex patterns of color and texture observed in Serratia rubidaea colonies may be based on at least two signals produced by cells, one of them diffusing through the substrate (agar and the other carried by a volatile compound and absorbed into the substrate. Differences between clones with regard to the interpretation of signals may result from different sensitivity to signal threshold(s.

  14. Fasting induced kisspeptin signaling suppression is regulated by glutamate mediated cues in adult male rhesus macaque (Macaca mulatta).

    Science.gov (United States)

    Shamas, Shazia; Khan, Saeed-Ul-Hassan; Khan, Muhammad Yousaf; Shabbir, Nadia; Zubair, Hira; Shafqat, Saira; Wahab, Fazal; Shahab, Muhammad

    2015-08-01

    Kisspeptin signaling is suppressed by short term fasting. It has been reported that hypothalamic Kiss1 and Kiss1r mRNA expression decreased after 48h of fasting in male rhesus monkey. But the mechanism involved in the reduction of kisspeptin signaling after 48h of fasting is unknown. Recent studies have suggested the role of afferent excitatory and inhibitory pathways in the regulation of kisspeptin neurons. Therefore, this study was designed to observe the changes in the glutamate and GABA signaling during fed and 48h fasting states by performing immunofluorescence to examine the interaction of kisspeptin neurons with NR1 subunit of NMDA receptors and by performing SYBR green qRT-PCR to measure and quantify the levels of Kiss1, Kiss1r, NR1 and GAD67 mRNA in the POA and MBH of adult male rhesus macaque (Macaca mulatta) during 48h of fasting (n=2) and fed ad libitum (n=2). Plasma testosterone (pfasting. Our results clearly showed that expression of hypothalamic Kiss1, Kiss1r and NR1 mRNA was significantly (pfasting. These observations suggest that decreased kisspeptin signaling during fasting may occur due to reduction in glutamatergic inputs to kisspeptin neurons. Our results also suggest that fasting induced suppression of kisspeptin signaling is not mediated through GABAergic neurons.

  15. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors.

    Science.gov (United States)

    Kaneko, Masahiro; Takimoto, Hiroaki; Sugiyama, Tsuyoshi; Seki, Yoko; Kawaguchi, Kiichiro; Kumazawa, Yoshio

    2008-01-01

    Quercetin (QUER) and luteolin (LUTE) are dietary flavonoids capable of regulating the production of cytokines, such as tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). However, their mechanisms of action are not fully understood. In lipopolysaccharide-triggered (LPS)-triggered signaling via Toll-like receptor 4 (TLR4), QUER and LUTE suppresses not only the degradation of the inhibitor of kappaB (IkappaB), with resultant activation of nuclear factor-kappaB (NF-kappaB), but also the phosphorylation of p38 and Akt in bone marrow-derived macrophages that have been stimulated with LPS. We report here that, in TNF-alpha-induced signaling, QUER and LUTE significantly suppressed the production of IL-6 and activation of NF-kappaB. Accumulation of lipid rafts, the initial step in the signaling pathway, was significantly inhibited when macrophages were treated with QUER or with LUTE prior to exposure to LPS. Similarly, the accumulation of lipid rafts was inhibited by the flavonoids when B cells were activated via the membrane IgM and when T cells were activated via CD3. In contrast, QUER and LUTE did not inhibit the activation of phorbol myristate acetate-induced NF-kappaB in macrophages. Our observations suggest that QUER and LUTE interact with receptors on the cell surface and suppress the accumulation of lipid rafts that occurs downstream of the activation of the receptors.

  16. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation.

    Science.gov (United States)

    Guo, Jun; Liu, Minlin; Yang, Dehong; Bouxsein, Mary L; Saito, Hiroaki; Galvin, R J Sells; Kuhstoss, Stuart A; Thomas, Clare C; Schipani, Ernestina; Baron, Roland; Bringhurst, F Richard; Kronenberg, Henry M

    2010-02-03

    Parathyroid hormone (PTH) suppresses Dickkopf 1 (Dkk1) expression in osteoblasts. To determine whether this suppression is essential for PTH-mediated Wnt signaling and bone formation, we examined mice that overexpress Dkk1 in osteoblasts (Dkk1 mice). Dkk1 mice were osteopenic due to abnormal osteoblast and osteoclast activity. When fed a low-calcium diet, and in two other models of hyperparathyroidism, these mice failed to develop the peritrabecular stromal cell response ("osteitis fibrosis") and new bone formation seen in wild-type mice. Despite these effects of Dkk1 overexpression, PTH still activated Wnt signaling in Dkk1 mice and in osteoblastic cells cultured from these mice. In cultured MC3T3E1 preosteoblastic cells, PTH dramatically suppressed Dkk1 expression, induced PKA-mediated phosphorylation of beta-catenin, and significantly enhanced Lef1 expression. Our findings indicate that the full actions of PTH require intact Wnt signaling but that PTH can activate the Wnt pathway despite overexpression of Dkk1.

  17. Ectodermal Wnt signaling regulates abdominal myogenesis during ventral body wall development.

    Science.gov (United States)

    Zhang, Lingling; Li, Hanjun; Yu, Jian; Cao, Jingjing; Chen, Huihui; Zhao, Haixia; Zhao, Jianzhi; Yao, Yiyun; Cheng, Huihui; Wang, Lifang; Zhou, Rujiang; Yao, Zhengju; Guo, Xizhi

    2014-03-01

    Defects of the ventral body wall are prevalent birth anomalies marked by deficiencies in body wall closure, hypoplasia of the abdominal musculature and multiple malformations across a gamut of organs. However, the mechanisms underlying ventral body wall defects remain elusive. Here, we investigated the role of Wnt signaling in ventral body wall development by inactivating Wls or β-catenin in murine abdominal ectoderm. The loss of Wls in the ventral epithelium, which blocks the secretion of Wnt proteins, resulted in dysgenesis of ventral musculature and genito-urinary tract during embryonic development. Molecular analyses revealed that the dermis and myogenic differentiation in the underlying mesenchymal progenitor cells was perturbed by the loss of ectodermal Wls. The activity of the Wnt-Pitx2 axis was impaired in the ventral mesenchyme of the mutant body wall, which partially accounted for the defects in ventral musculature formation. In contrast, epithelial depletion of β-catenin or Wnt5a did not resemble the body wall defects in the ectodermal Wls mutant. These findings indicate that ectodermal Wnt signaling instructs the underlying mesodermal specification and abdominal musculature formation during ventral body wall development, adding evidence to the theory that ectoderm-mesenchyme signaling is a potential unifying mechanism for the origin of ventral body wall defects.

  18. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation.

    Directory of Open Access Journals (Sweden)

    Takashi Koyama

    2016-02-01

    Full Text Available In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR signaling, and produces an unidentified humoral factor(s to regulate insulin-like peptide (ILP synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1 and CG11395 (GBP2, are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size.

  19. The Role of Dendritic Signaling in the Anesthetic Suppression of Consciousness

    National Research Council Canada - National Science Library

    Meyer, Kaspar

    2015-01-01

    Despite considerable progress in the identification of the molecular targets of general anesthetics, it remains unclear how these drugs affect the brain at the systems level to suppress consciousness...

  20. Mesenchymal Wnt signaling promotes formation of sternum and thoracic body wall.

    Science.gov (United States)

    Snowball, John; Ambalavanan, Manoj; Cornett, Bridget; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2015-05-15

    Midline defects account for approximately 5% of congenital abnormalities observed at birth. However, the molecular mechanisms underlying the formation of the ventral body wall are not well understood. Recent studies linked mutations in Porcupine-an O-acetyl transferase mediating Wnt ligand acylation-with defects in the thoracic body wall. We hypothesized that anomalous Wnt signaling is involved in the pathogenesis of defective closure of the thoracic body wall. We generated a mouse model wherein Wntless (Wls), which encodes a cargo receptor mediating secretion of Wnt ligands, was conditionally deleted from the developing mesenchyme using Dermo1Cre mice. Wls(f/f);Dermo1(Cre/+) embryos died during mid-gestation. At E13.5, skeletal defects were observed in the forelimbs, jaw, and rib cage. At E14.5, midline defects in the thoracic body wall began to emerge: the sternum failed to fuse and the heart protruded through the body wall at the midline (ectopia cordis). To determine the molecular mechanism underlying the phenotype observed in Wls(f/f);Dermo1(Cre/+) embryos, we tested whether Wnt/β-catenin signaling was operative in developing the embryonic ventral body wall using Axin2(LacZ) and BatGal reporter mice. While Wnt/β-catenin signaling activity was observed at the midline of the ventral body wall before sternal fusion, this pattern of activity was altered and scattered throughout the body wall after mesenchymal deletion of Wls. Mesenchymal cell migration was disrupted in Wls(f/f);Dermo1(Cre/+) thoracic body wall partially due to anomalous β-catenin independent Wnt signaling as determined by in vitro assays. Deletion of Lrp5 and Lrp6 receptors, which mediate Wnt/β-catenin signaling in the mesenchyme, partially recapitulated the phenotype observed in the chest midline of Wls(f/f);Dermo1(Cre/+) embryos supporting a role for Wnt/β-catenin signaling activity in the normal formation of the ventral body wall mesenchyme. We conclude that Wls-mediated secretion of Wnt

  1. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3*

    Science.gov (United States)

    Lin, Kun-Yang; Kao, Shih-Han; Lai, Chun-Ming; Chen, Ciao-Ting; Wu, Chang-Yi; Hsu, Hwei-Jan; Wang, Wen-Der

    2015-01-01

    Wnt/β-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of β-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear β-catenin in ventral cells, in which β-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of β-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of β-catenin degradation. PMID:26475862

  2. Modulation of the gut microbiota with antibiotic treatment suppresses whole body urea production in neonatal pigs

    DEFF Research Database (Denmark)

    Puiman, Patrycja; Stoll, Barbara; Mølbak, Lars

    2013-01-01

    administered antibiotics, or probiotics affects whole body nitrogen and amino acid turnover. We quantified whole body urea kinetics, threonine fluxes, and threonine disposal into protein, oxidation, and tissue protein synthesis with stable isotope techniques. Compared with controls, antibiotics reduced...... the number and diversity of bacterial species in the distal small intestine (SI) and colon. Antibiotics decreased plasma urea concentrations via decreased urea synthesis. Antibiotics elevated threonine plasma concentrations and turnover, as well as whole body protein synthesis and proteolysis. Antibiotics...... in the proximal SI but not in other tissues. In conclusion, modulation of the gut microbiota by antibiotics and probiotics reduced hepatic ureagenesis and intestinal protein synthesis, but neither altered whole body net threonine balance. These findings suggest that changes in amino acid and nitrogen metabolism...

  3. Increased Akt signaling in the mosquito fat body increases adult survivorship.

    Science.gov (United States)

    Arik, Anam J; Hun, Lewis V; Quicke, Kendra; Piatt, Michael; Ziegler, Rolf; Scaraffia, Patricia Y; Badgandi, Hemant; Riehle, Michael A

    2015-04-01

    Akt signaling regulates diverse physiologies in a wide range of organisms. We examine the impact of increased Akt signaling in the fat body of 2 mosquito species, the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Overexpression of a myristoylated and active form of A. stephensi and Ae. aegypti Akt in the fat body of transgenic mosquitoes led to activation of the downstream signaling molecules forkhead box O (FOXO) and p70 S6 kinase in a tissue and blood meal-specific manner. In both species, increased Akt signaling in the fat body after blood feeding significantly increased adult survivorship relative to nontransgenic sibling controls. In A. stephensi, survivorship was increased by 15% to 45%, while in Ae. aegypti, it increased 14% to 47%. Transgenic mosquitoes fed only sugar, and thus not expressing active Akt, had no significant difference in survivorship relative to nontransgenic siblings. Expression of active Akt also increased expression of fat body vitellogenin, but the number of viable eggs did not differ significantly between transgenic and nontransgenic controls. This work demonstrates a novel mechanism of enhanced survivorship through increased Akt signaling in the fat bodies of multiple mosquito genera and provides new tools to unlock the molecular underpinnings of aging in eukaryotic organisms.

  4. Celecoxib and 2,5-dimethylcelecoxib inhibit intestinal cancer growth by suppressing the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Egashira, Issei; Takahashi-Yanaga, Fumi; Nishida, Risa; Arioka, Masaki; Igawa, Kazunobu; Tomooka, Katsuhiko; Nakatsu, Yoshimichi; Tsuzuki, Teruhisa; Nakabeppu, Yusaku; Kitazono, Takanari; Sasaguri, Toshiyuki

    2017-01-01

    We previously reported that celecoxib, a selective COX-2 inhibitor, strongly inhibited human colon cancer cell proliferation by suppressing the Wnt/β-catenin signaling pathway. 2,5-Dimethylcelecoxib (DM-celecoxib), a celecoxib analog that does not inhibit COX-2, has also been reported to have an antitumor effect. In the present study, we elucidated whether DM-celecoxib inhibits intestinal cancer growth, and its underlying mechanism of action. First, we compared the effect of DM-celecoxib with that of celecoxib on the human colon cancer cell lines HCT-116 and DLD-1. 2,5-Dimethylcelecoxib suppressed cell proliferation and inhibited T-cell factor 7-like 2 expression with almost the same strength as celecoxib. 2,5-Dimethylcelecoxib also inhibited the T-cell factor-dependent transcription activity and suppressed the expression of Wnt/β-catenin target gene products cyclin D1 and survivin. Subsequently, we compared the in vivo effects of celecoxib and DM-celecoxib using the Mutyh(-/-) mouse model, in which oxidative stress induces multiple intestinal carcinomas. Serum concentrations of orally administered celecoxib and DM-celecoxib elevated to the levels enough to suppress cancer cell proliferation. Repeated treatment with celecoxib and DM-celecoxib markedly reduced the number and size of the carcinomas without showing toxicity. These results suggest that the central mechanism for the anticancer effect of celecoxib derivatives is the suppression of the Wnt/β-catenin signaling pathway but not the inhibition of COX-2, and that DM-celecoxib might be a better lead compound candidate than celecoxib for the development of novel anticancer drugs.

  5. Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol's control of energy homeostasis.

    Science.gov (United States)

    Mamounis, Kyle J; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A

    2014-03-01

    The steroid 17β-estradiol (E2) modulates energy homeostasis by reducing feeding behavior and increasing energy expenditure primarily through estrogen receptor α (ERα)-mediated mechanisms. Intact ERαKO female mice develop obesity as adults exhibiting decreased energy expenditure and increased fat deposition. However, intact transgenic female mice expressing a DNA-binding-deficient ERα (KIKO) are not obese and have similar energy expenditure, activity and fat deposition as to wild type (WT) females, suggesting that non-estrogen response element (ERE)-mediated signaling is important in E2 regulation of energy homeostasis. Initial reports did not examine the effects of ovariectomy on energy homeostasis or E2's attenuation of post-ovariectomy body weight gain. Therefore, we sought to determine if low physiological doses of E2 (250 ng QOD) known to suppress post-ovariectomy body weight gain in WT females would suppress body weight gain in ovariectomized KIKO females. We observed that the post-ovariectomy increase in body weight was significantly greater in WT females than in KIKO females. Furthermore, E2 did not significantly attenuate the body weight gain in KIKO females as it did in WT females. E2 replacement suppressed food intake and fat accumulation while increasing nighttime oxygen consumption and activity only in WT females. E2 replacement also increased arcuate POMC gene expression in WT females only. These data suggest that in the intact female, ERE-independent mechanisms are sufficient to maintain normal energy homeostasis and to partially restore the normal response to ovariectomy. However, they are not sufficient for E2's suppression of post-ovariectomy body weight gain and its effects on metabolism and activity.

  6. Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol’s control of energy homeostasis

    Science.gov (United States)

    Mamounis, Kyle J.; Yang, Jennifer A.; Yasrebi, Ali; Roepke, Troy A.

    2013-01-01

    The steroid 17β-estradiol (E2) modulates energy homeostasis by reducing feeding behavior and increasing energy expenditure primarily through estrogen receptor α (ERα)-mediated mechanisms. Intact ERαKO female mice develop obesity as adults exhibiting decreased energy expenditure and increased fat deposition. However, intact transgenic female mice expressing a DNA-binding-deficient ERα (KIKO) are not obese and have similar energy expenditure, activity and fat deposition to wild type (WT) females, suggesting that non-Estrogen Response Element (ERE)-mediated signaling is important in E2 regulation of energy homeostasis. However, initial reports did not examine the effects of ovariectomy on energy homeostasis or E2’s attenuation of post-ovariectomy body weight gain. Therefore, we sought to determine if low physiological doses of E2 (250 ng QOD) known to suppress post-ovariectomy body weight gain in WT females, would suppress body weight gain in ovariectomized KIKO females. We observed that the post-ovariectomy increase in body weight was significantly greater in WT females than in KIKO females. Furthermore, E2 did not significantly attenuate the body weight gain in KIKO females as it did in WT females. E2 replacement suppressed food intake and fat accumulation while increasing nighttime oxygen consumption and activity only in WT females. E2 replacement also increased arcuate POMC gene expression in WT females only. These data suggest that in the intact female, ERE-independent mechanisms are sufficient to maintain normal energy homeostasis and to partially restore the normal response to ovariectomy. However, they are not sufficient for E2’s suppression of post-ovariectomy body weight gain and attenuation of decreases in metabolism and activity. PMID:24252383

  7. Periodic Noise Suppression from ECG Signal using Novel Adaptive Filtering Techniques

    Directory of Open Access Journals (Sweden)

    Yogesh Sharma

    2012-03-01

    Full Text Available Electrocardiogram signal most commonly known recognized and used biomedical signal for medical examination of heart. The ECG signal is very sensitive in nature, and even if small noise mixed with original signal, the various characteristics of the signal changes, Data corrupted with noise must either filtered or discarded, filtering is important issue for design consideration of real time heart monitoring systems. Various filters used for removing the noise from ECG signals, most commonly used filters are Notch Filters, FIR filters, IIR filters, Wiener filter, Adaptive filters etc. Performance analysis shows that the best result is obtained by using Adaptive filter to remove various noises from ECG signal and get significant SNR andMSE results. In this paper a novel adaptive approach by using LMS algorithm and delay has shown whichcan be used for pre-processing of ECG signal and give appreciable result.

  8. Artificial neural network-based classification of body movements in ambulatory ECG signal.

    Science.gov (United States)

    Darji, Sachin T; Kher, Rahul K

    2013-11-01

    Abstract Ambulatory ECG monitoring provides electrical activity of the heart when a person is involved in doing normal routine activities. Thus, the recorded ECG signal consists of cardiac signal along with motion artifacts introduced due to a person's body movements during routine activities. Detection of motion artifacts due to different physical activities might help in further cardiac diagnosis. Ambulatory ECG signal analysis for detection of various motion artifacts using adaptive filtering approach is addressed in this paper. We have used BIOPAC MP 36 system for acquiring ECG signal. The ECG signals of five healthy subjects (aged between 22-30 years) were recorded while the person performed various body movements like up and down movement of the left hand, up and down movement of the right hand, waist twisting movement while standing and change from sitting down on a chair to standing up movement in lead I configuration. An adaptive filter-based approach has been used to extract the motion artifact component from the ambulatory ECG signal. The features of motion artifact signal, extracted using Gabor transform, have been used to train the artificial neural network (ANN) for classifying body movements.

  9. Sarcopenia and change in body composition following maximal androgen suppression with abiraterone in men with castration-resistant prostate cancer.

    Science.gov (United States)

    Pezaro, C; Mukherji, D; Tunariu, N; Cassidy, A M; Omlin, A; Bianchini, D; Seed, G; Reid, A H M; Olmos, D; de Bono, J S; Attard, G

    2013-07-23

    Standard medical castration reduces muscle mass. We sought to characterize body composition changes in men undergoing maximal androgen suppression with and without exogenous gluocorticoids. Cross-sectional areas of total fat, visceral fat and muscle were measured on serial CT scans in a post-hoc analysis of patients treated in Phase I/II trials with abiraterone followed by abiraterone and dexamethasone 0.5 mg daily. Linear mixed regression models were used to account for variations in time-on-treatment and baseline body mass index (BMI). Fifty-five patients received a median of 7.5 months abiraterone followed by 5.4 months abiraterone and dexamethasone. Muscle loss was observed on single-agent abiraterone (maximal in patients with baseline BMI >30, -4.3%), but no further loss was observed after addition of dexamethasone. Loss of visceral fat was also observed on single-agent abiraterone, (baseline BMI >30 patients -19.6%). In contrast, addition of dexamethasone led to an increase in central visceral and total fat and BMI in all the patients. Maximal androgen suppression was associated with loss of muscle and visceral fat. Addition of low dose dexamethasone resulted in significant increases in visceral and total fat. These changes could have important quality-of-life implications for men treated with abiraterone.

  10. Neural Substrates of Social Emotion Regulation: A fMRI Study on Imitation and Expressive Suppression to Dynamic Facial Signals

    Directory of Open Access Journals (Sweden)

    Pascal eVrticka

    2013-02-01

    Full Text Available Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI in 20 healthy participants who saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task. fMRI results revealed higher activity in regions associated with emotion (e.g., the insula, motor function (e.g., motor cortex, and theory of mind during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and expressive suppression modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.

  11. Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions.

    Science.gov (United States)

    Yoshimaru, Tetsuro; Komatsu, Masato; Tashiro, Etsu; Imoto, Masaya; Osada, Hiroyuki; Miyoshi, Yasuo; Honda, Junko; Sasa, Mitsunori; Katagiri, Toyomasa

    2014-12-08

    Xanthohumol (XN) is a natural anticancer compound that inhibits the proliferation of oestrogen receptor-α (ERα)-positive breast cancer cells. However, the precise mechanism of the antitumour effects of XN on oestrogen (E2)-dependent cell growth, and especially its direct target molecule(s), remain(s) largely unknown. Here, we focus on whether XN directly binds to the tumour suppressor protein prohibitin 2 (PHB2), forming a novel natural antitumour compound targeting the BIG3-PHB2 complex and acting as a pivotal modulator of E2/ERα signalling in breast cancer cells. XN treatment effectively prevented the BIG3-PHB2 interaction, thereby releasing PHB2 to directly bind to both nuclear- and cytoplasmic ERα. This event led to the complete suppression of the E2-signalling pathways and ERα-positive breast cancer cell growth both in vitro and in vivo, but did not suppress the growth of normal mammary epithelial cells. Our findings suggest that XN may be a promising natural compound to suppress the growth of luminal-type breast cancer.

  12. Simultaneous Suppression of IMD3 and IMD5 in Space TWT by IMD3 and 2HD Signal Injection

    Directory of Open Access Journals (Sweden)

    Dongming Zhao

    2017-01-01

    Full Text Available This paper presents a signal injection technology showing significant reductions in both 3rd-order and 5th-order intermodulation distortions (IMD3 and IMD5 in space traveling wave tube (STWT. By applying the IMD3 to the IMD5 ratio (TFR as measures of location, the simultaneous suppressions of IMD3 and IMD5 in TWT are achieved by second harmonic distortion (2HD and IMD3 injection. According to the research on theoretical analysis and computer simulation, the optimum amplitude and phase parameters of the injected signal for maximum simultaneous suppressions are obtained. Then an experiment system is established based on vector network analyzer, optimum TFR are 2.1 dB and 12.5 dB, respectively, by second harmonic and IM3 injection, and the output powers of IMD3 and IMD5 were decreased. TFR with IMD3 injection is smaller than that with second harmonic injection in STWT, and the experiment system is more straightforward and easy to operate. Thus, the IMD3 injection performs better than that of second harmonic injection to suppress IMD5s for the narrow-band STWT.

  13. MR imaging of degenerative lumbar disc disease emphasizing on signal intensity changes in vertebral body

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Keiko; Ida, Masahiro; Murakami, Yoshitaka; Harada, Junta; Tada, Shimpei (Jikei Univ., Tokyo (Japan). School of Medicine)

    1992-12-01

    Magnetic resonance imaging was performed in 400 patients with degenerative disc disease. Signal changes and their sites in the vertebral body were classified and referred to narrowing of the intervertebral disc space. MR findings were compared with those of plain roentgenograms of the lumbar spine. Signal changes in the vertebral body were noted in 83 cases (102 vertebral bodies). Low-intensity abnormality on both T1- and T2-weighted images (WI) was the most common finding, and was most frequently seen at the end plate and/or the angle. These changes were correlated with narrowing of the disc space and osteosclerosis on the plain roentgenogram of the lumbar spine. Signal changes occasionally occurred in the inner region of the vertebral body, and these lesions tended to show a high-intensity abnormality on T1-WI. We conclude that signal changes in degenerative disc disease are not specific, but are sometimes difficult to distinguish from the signal changes in other conditions such as spinal tumor or bone marrow disorder. (author).

  14. Suppression of prolactin signaling by pyrrolidine dithiocarbamate is alleviated by N-acetylcysteine in mammary epithelial cells.

    Science.gov (United States)

    Wang, Jen-Hsing; Du, Jyun-Yi; Wu, Yi-Ying; Chen, Meng-Chi; Huang, Chun-Hao; Shen, Hsin-Ju; Lee, Chin-Feng; Lin, Ting-Hui; Lee, Yi-Ju

    2014-09-05

    Prolactin is the key hormone to stimulate milk synthesis in mammary epithelial cells. It signals through the Jak2-Stat5 pathway to induce the expression of β-casein, a milk protein which is often used as a marker for mammary differentiation. Here we examined the effect of pyrrolidine dithiocarbamate (PDTC) on prolactin signaling. Our results show that PDTC downregulates prolactin receptor levels, and inhibits prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. This is not due to its inhibitory action on NF-κB since application of another NF-κB inhibitor, BAY 11-7082, and overexpression of I-κBα super-repressor do not lead to the same results. Instead, the pro-oxidant activity of PDTC is involved as inclusion of the antioxidant N-acetylcysteine restores prolactin signaling. PDTC triggers great extents of activation of ERK and JNK in mammary epithelial cells. These do not cause suppression of prolactin signaling but confer serine phosphorylation of insulin receptor substrate-1, thereby perturbing insulin signal propagation. As insulin facilitates optimal β-casein expression, blocking insulin signaling by PDTC might pose additional impediment to β-casein expression. Our results thus imply that lactation will be compromised when the cellular redox balance is dysregulated, such as during mastitis.

  15. Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling.

    Science.gov (United States)

    Fu, Wei-Ming; Zhu, Xiao; Wang, Wei-Mao; Lu, Ying-Fei; Hu, Bao-Guang; Wang, Hua; Liang, Wei-Cheng; Wang, Shan-Shan; Ko, Chun-Hay; Waye, Mary Miu-Yee; Kung, Hsiang-Fu; Li, Gang; Zhang, Jin-Fang

    2015-10-01

    Long non-coding RNA Hotair has been considered as a pro-oncogene in multiple cancers. Although there is emerging evidence that reveals its biological function and the association with clinical prognosis, the precise mechanism remains largely elusive. We investigated the function and mechanism of Hotair in hepatocellular carcinoma (HCC) cell models and a xenograft mouse model. The regulatory network between miR-218 and Hotair was elucidated by RNA immunoprecipitation and luciferase reporter assays. Finally, the correlation between Hotair, miR-218 and the target gene Bmi-1 were evaluated in 52 paired HCC specimens. In this study, we reported that Hotair negatively regulated miR-218 expression in HCC, which might be mediated through an EZH2-targeting-miR-218-2 promoter regulatory axis. Further investigation revealed that Hotair knockdown dramatically inhibited cell viability and induced G1-phase arrest in vitro and suppressed tumorigenicity in vivo by promoting miR-218 expression. Oncogene Bmi-1 was shown to be a functional target of miR-218, and the main downstream targets signaling, P16(Ink4a) and P14(ARF), were activated in Hotair-suppressed tumorigenesis. In primary human HCC specimens, Hotair and Bmi-1 were concordantly upregulated whereas miR-218 was downregulated in these tissues. Furthermore, Hotair was inversely associated with miR-218 expression and positively correlated with Bmi-1 expression in these clinical tissues. Hotair silence activates P16(Ink4a) and P14(ARF) signaling by enhancing miR-218 expression and suppressing Bmi-1 expression, resulting in the suppression of tumorigenesis in HCC. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  16. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation.

    Science.gov (United States)

    Yoshinaga, Ayana; Kajiya, Natsuki; Oishi, Kazuki; Kamada, Yuko; Ikeda, Asami; Chigwechokha, Petros Kingstone; Kibe, Toshiro; Kishida, Michiko; Kishida, Shosei; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2016-07-05

    Naringin, which is one of the flavonoids contained in citrus fruits, is well known to possess various healthy functions to humans. It has been reported that naringin suppresses cancer cell growth in vitro and in vivo, although the underlying mechanisms are not fully understood. Recently, the roles of glycoconjugates, such as gangliosides, in cancer cells have been focused because of their regulatory effects of malignant phenotypes. Here, to clarify the roles of naringin in the negative-regulation of cancer cell growth, the alteration of glycoconjugates induced by naringin exposure and its significance on cell signaling were investigated. Human cancer cells, HeLa and A549, were exposed to various concentrations of naringin. Naringin treatment induced the suppression of cell growth toward HeLa and A549 cells accompanied with an increase of apoptotic cells. In naringin-exposed cells, GM3 ganglioside was drastically increased compared to the GM3 content prior to the treatment. Furthermore, naringin inhibited NEU3 sialidase, a GM3 degrading glycosidase. Similarly, NEU3 inhibition activities were also detected by other flavanone, such as hesperidin and neohesperidin dihydrocalcone, but their aglycones showed less inhibitions. Naringin-treated cancer cells showed suppressed EGFR and ERK phosphorylation levels. These results suggest a novel mechanism of naringin in the suppression of cancer cell growth through the alteration of glycolipids. NEU3 inhibitory effect of naringin induced GM3 accumulation in HeLa and A549 cells, leading the attenuation of EGFR/ERK signaling accompanied with a decrease in cell growth.

  17. Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway.

    Science.gov (United States)

    Tang, Bo; Chow, Jimmy Y C; Dong, Tobias Xiao; Yang, Shi-Ming; Lu, De-Sheng; Carethers, John M; Dong, Hui

    2016-07-10

    The calcium sensing receptor (CaSR) is functionally expressed in normal human pancreases, but its pathological role in pancreatic tumorigenesis is currently unknown. We sought to investigate the role of CaSR in pancreatic cancer (PC) and the underlying molecular mechanisms. We revealed that the expression of CaSR was consistently downregulated in the primary cancer tissues from PC patients, which was correlated with tumor size, differentiation and poor survival of the patients. CaSR activation markedly suppressed pancreatic tumorigenesis in vitro and in vivo likely through the Ca(2+) entry mode of Na(+)/Ca(2+) exchanger 1 (NCX1) to induce Ca(2+) entry into PC cells. Moreover, NCX1-mediated Ca(2+) entry resulted in Ca(2+)-dependent inhibition of β-catenin signaling in PC cells, eventually leading to the inhibition of pancreatic tumorigenesis. Collectively, we demonstrate for the first time that CaSR exerts a suppressive function in pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway. Targeting this specific signaling pathway could be a potential therapeutic strategy for PC.

  18. Suppressing TGFβ signaling in regenerating epithelia in an inflammatory microenvironment is sufficient to cause invasive intestinal cancer.

    Science.gov (United States)

    Oshima, Hiroko; Nakayama, Mizuho; Han, Tae-Su; Naoi, Kuniko; Ju, Xiaoli; Maeda, Yusuke; Robine, Sylvie; Tsuchiya, Kiichiro; Sato, Toshiro; Sato, Hiroshi; Taketo, Makoto Mark; Oshima, Masanobu

    2015-02-15

    Genetic alterations in the TGFβ signaling pathway in combination with oncogenic alterations lead to cancer development in the intestines. However, the mechanisms of TGFβ signaling suppression in malignant progression of intestinal tumors have not yet been fully understood. We have examined Apc(Δ716) Tgfbr2(ΔIEC) compound mutant mice that carry mutations in Apc and Tgfbr2 genes in the intestinal epithelial cells. We found inflammatory microenvironment only in the invasive intestinal adenocarcinomas but not in noninvasive benign polyps of the same mice. We thus treated simple Tgfbr2(ΔIEC) mice with dextran sodium sulfate (DSS) that causes ulcerative colitis. Importantly, these Tgfbr2(ΔIEC) mice developed invasive colon cancer associated with chronic inflammation. We also found that TGFβ signaling is suppressed in human colitis-associated colon cancer cells. In the mouse invasive tumors, macrophages infiltrated and expressed MT1-MMP, causing MMP2 activation. These results suggest that inflammatory microenvironment contributes to submucosal invasion of TGFβ signaling-repressed epithelial cells through activation of MMP2. We further found that regeneration was impaired in Tgfbr2(ΔIEC) mice for intestinal mucosa damaged by DSS treatment or X-ray irradiation, resulting in the expansion of undifferentiated epithelial cell population. Moreover, organoids of intestinal epithelial cells cultured from irradiated Tgfbr2(ΔIEC) mice formed "long crypts" in Matrigel, suggesting acquisition of an invasive phenotype into the extracellular matrix. These results, taken together, indicate that a simple genetic alteration in the TGFβ signaling pathway in the inflamed and regenerating intestinal mucosa can cause invasive intestinal tumors. Such a mechanism may play a role in the colon carcinogenesis associated with inflammatory bowel disease in humans.

  19. Phenethyl isothiocyanate suppresses EGF-stimulated SAS human oral squamous carcinoma cell invasion by targeting EGF receptor signaling.

    Science.gov (United States)

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Amagaya, Sakae; Lin, Yung-Chang; Yang, Jai-Sing

    2013-08-01

    Phenethyl isothiocyanate (PEITC) is a natural compound that is involved in chemoprevention as well as inhibition of cell growth and induction of apoptosis in several types of cancer cells. Previous studies have revealed that PEITC suppresses the invasion of AGS gastric and HT-29 colorectal cancer cells. However, the effects of PEITC on the metastasis of SAS oral cancer cells remain to be determined. Our results showed that PEITC treatment inhibited the invasion of EGF-stimulated SAS cells in a concentration-dependent manner, but appeared not to affect the cell viability. The expression and enzymatic activities of matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) were suppressed by PEITC. Concomitantly, we observed an increase in the protein expression of both tissue inhibitor of metalloproteinase-1 (TIMP-1) and -2 (TIMP-2) in treated cells. Furthermore, PEITC treatments decreased the protein phosphorylation of epidermal growth factor receptor (EGFR) and downstream signaling proteins including PDK1, PI3K (p85), AKT, phosphorylated IKK and IκB to inactivate NF-κB for the suppression of MMP-2 and MMP-9 expression. In addition, PEITC can trigger the MAPK signaling pathway through the increase in phosphorylated p38, JNK and ERK in treated cells. Our data indicate that PEITC is able to inhibit the invasion of EGF-stimulated SAS oral cancer cells by targeting EGFR and its downstream signaling molecules and finally lead to the reduced expression and enzymatic activities of both MMP-2 and MMP-9. These results suggest that PEITC is promising for the therapy of oral cancer metastasis.

  20. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    Science.gov (United States)

    Lin, Xiaojing; Fang, Qin; Chen, Shuya; Zhe, Nana; Chai, Qixiang; Yu, Meisheng; Zhang, Yaming; Wang, Ziming; Wang, Jishi

    2015-05-01

    There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.

  1. A Digital Signal Processing Method for Gene Prediction with Improved Noise Suppression

    Directory of Open Access Journals (Sweden)

    Carreira Alex

    2004-01-01

    Full Text Available It has been observed that the protein-coding regions of DNA sequences exhibit period-three behaviour, which can be exploited to predict the location of coding regions within genes. Previously, discrete Fourier transform (DFT and digital filter-based methods have been used for the identification of coding regions. However, these methods do not significantly suppress the noncoding regions in the DNA spectrum at . Consequently, a noncoding region may inadvertently be identified as a coding region. This paper introduces a new technique (a single digital filter operation followed by a quadratic window operation that suppresses nearly all of the noncoding regions. The proposed method therefore improves the likelihood of correctly identifying coding regions in such genes.

  2. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L. [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States); Piroli, Gerardo G.; Frizzell, Norma [Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tseng, Yu-Hua; Goodyear, Laurie J. [Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 (United States); Koh, Ho-Jin, E-mail: kohh@mailbox.sc.edu [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States)

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  3. Why "Anomalous" $J/\\psi$ Suppression in $Pb + Pb$ Collisions Signals High-density Parton Matter

    CERN Document Server

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1998-01-01

    We argue that the A-dependence of absorption of J/\\psi by (partonic) comovers is steeper than assumed in most phenomenological models, because the absorption process is dominated by quasi-perturbative QCD interactions. Our argument is supported by results recently obtained in the framework of the parton cascade model. We predict significant ``anomalous'' suppression for Pb+Pb collisions at the CERN-SPS, but not for S+U collisions.

  4. A review on botanical species and chemical compounds with appetite suppressing properties for body weight control.

    Science.gov (United States)

    Astell, Katie J; Mathai, Michael L; Su, Xiao Q

    2013-09-01

    As obesity has reached epidemic proportions, the management of this global disease is of clinical importance. The availability and popularity of natural dietary supplements for the treatment of obesity has risen dramatically in recent years. The purpose of this paper was to review the effect of commonly available over the counter plant-derived supplements used to suppress appetite for obesity control and management. The data were obtained from the electronic databases PubMed, SpringerLink, Google Scholar, ScienceDirect, and MEDLINE with full text (via EBSCOHost) and the databases were accessed during late 2012 - early January 2013. The botanical species discussed in this review include Camellia sinensis, Caralluma fimbriata, Citrus aurantium, Coleus forskohlii, Garcinia cambogia and Phaseolus vulgaris. This review found that many botanical species including crude extracts and isolated compounds from plants have been shown to provide potentially promising therapeutic effects including appetite control and weight loss. However, many of these crude extracts and compounds need to be further investigated to define the magnitude of the effects, optimal dosage, mechanisms of action, long term safety, and potential side effects.

  5. Dimension-specific signal modulation in visual search: evidence from inter-stimulus surround suppression.

    Science.gov (United States)

    Chan, Louis K H; Hayward, William G

    2012-04-18

    A fundamental task for the visual system is to determine where to attend next. In general, attention is guided by visual saliency. Computational models suggest that saliency values are estimated through an iterative process in which each visual item suppresses each other item's saliency, especially for those with close proximity. To investigate this proposal, we tested the effect of two salient distractors on visual search for a size target. While fixing the target-to-distractor distance, we manipulated the distance between two distractors. If two salient distractors suppressed each other when they were close together, they should interfere with search less; this was exactly what we found. However, we observed such a distance effect only for distractors of the same dimension (e.g., both defined in color) but not for those of different dimensions (e.g., one defined in color and the other in shape), displaying specificity to a perceptual dimension. Therefore, we conclude that saliency in visual search is calculated through a surround suppression process that occurs at a dimension-specific level.

  6. crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans.

    Science.gov (United States)

    Fung, Wong Yan; Fat, Ko Frankie Chi; Eng, Cheah Kathryn Song; Lau, Chow King

    2007-11-01

    We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.

  7. Hippo signaling: A hub of growth control, tumor suppression andpluripotency maintenance

    Institute of Scientific and Technical Information of China (English)

    Mengxin Yin; Lei Zhang

    2011-01-01

    The molecular mechanisms of organ size control and regulation remain one of the major unsolved mysteries of development biology.Almost a decade ago,the discovery of the Hippo signaling pathway in Drosophila shed some light on this puzzling issue.The Hippo signaling pathway is highly conserved in both invertebrates and vertebrates,and plays critical roles in animal development.It controls organ size and growth by inhibiting cell proliferation and by promoting apoptosis.Malfunction of the Hippo signaling pathway leads to cancer development and tumorigenesis.Although the core of the signaling pathway is well understood,the upstream inputs and downstream transcriptional regulation are still obscure to us.In this review,we summarize the current understanding of the mechanism and the function of the Hippo signaling pathway and compare its differences between flies and mammals.We underline the crosstalk between the Hippo signaling pathway and other signaling pathways,and the possible roles of the Hippo pathway in stem cell proliferation and self-renewal.

  8. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling.

    Science.gov (United States)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L; Piroli, Gerardo G; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J; Koh, Ho-Jin

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function.

  9. Experimental Study of Three-body Cabibbo-suppressed D0 Decays and Extraction of Cp Violation Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kalanand; /Nehru U.

    2008-02-22

    The authors present measurements of the relative branching ratios, Dalitz plot structures and CP-asymmetry values in the three-body singly Cabibbo-suppressed decays D{sup 0} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0} {yields} K{sup -}K{sup +}{pi}{sup 0} using data collected by the BABAR detector at the PEP-II asymmetric-energy ring at SLAC. The author applies the results of the D{sup 0} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup 0} analysis to extracting CP-violation parameters related to the CKM angle {gamma} (or {phi}{sub 3}) using the decay B{sup -} {yields} D{sub {pi}{sup +}{pi}{sup -}{pi}{sup 0}} K{sup -}.

  10. Xanthohumol-Mediated Suppression of Notch1 Signaling Is Associated with Antitumor Activity in Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Kunnimalaiyaan, Selvi; Trevino, Jose; Tsai, Susan; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2015-06-01

    Pancreatic cancer remains a lethal disease with limited treatment options. At the time of diagnosis, approximately 80% of these patients present with unresectable tumors caused by either locally advanced lesions or progressive metastatic growth. Therefore, development of novel treatment strategies and new therapeutics is needed. Xanthohumol (XN) has emerged as a potential compound that inhibits various types of cancer, but the molecular mechanism underlying the effects of XN remains unclear. In the present study, we have assessed the efficacy of XN on pancreatic cancer cell lines (AsPC-1, PANC-1, L3.6pl, MiaPaCa-2, 512, and 651) against cell growth in real time and using colony-forming assays. Treatment with XN resulted in reduction in cellular proliferation in a dose- and time-dependent manner. The growth suppression effect of XN in pancreatic cancer cell lines is due to increased apoptosis via the inhibition of the Notch1 signaling pathway, as evidenced by reduction in Notch1, HES-1, and survivin both at mRNA as well as protein levels. Notch1 promoter reporter analysis after XN treatment indicated that XN downregulates Notch promoter activity. Importantly, overexpression of active Notch1 in XN-treated pancreatic cancer cells resulted in negation of growth suppression. Taken together, these findings demonstrate, for the first time, that the growth suppressive effect of XN in pancreatic cancer cells is mainly mediated by Notch1 reduction.

  11. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling.

    Science.gov (United States)

    Sliva, D; Jedinak, A; Kawasaki, J; Harvey, K; Slivova, V

    2008-04-22

    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer cells. The growth inhibition of MDA-MB-231 cells is mediated by the cell cycle arrest at S phase through the upregulation of p27(Kip1) expression. Phellinus linteus also suppressed invasive behaviour of MDA-MB-231 cells by the inhibition of cell adhesion, cell migration and cell invasion through the suppression of secretion of urokinase-plasminogen activator from breast cancer cells. In addition, PL markedly inhibited the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells, through the downregulation of secretion of vascular endothelial growth factor from MDA-MB-231 cells. These effects are mediated by the inhibition of serine-threonine kinase AKT signalling, because PL suppressed phosphorylation of AKT at Thr(308) and Ser(473) in breast cancer cells. Taken together, our study suggests potential therapeutic effect of PL against invasive breast cancer.

  12. Laricitrin ameliorates lung cancer-mediated dendritic cell suppression by inhibiting signal transducer and activator of transcription 3.

    Science.gov (United States)

    Chang, Wei-An; Hung, Jen-Yu; Jian, Shu-Fang; Lin, Yi-Shiuan; Wu, Cheng-Ying; Hsu, Ya-Ling; Kuo, Po-Lin

    2016-12-20

    Natural polyphenolic compounds of grapes and their seeds are thought to be therapeutic adjuvants in a variety of diseases, including cancer prevention. This study was carried out to investigate the effect of grape phenolic compounds on the regulation of cancer-mediated immune suppression. Laricitrin exhibits the greatest potential to ameliorate the suppressive effects of lung cancer on dendritic cells' (DCs') differentiation, maturation and function. Human lung cancer A549 and CL1-5 cells change the phenotype of DCs that express to high levels of IL-10 and prime T cells towards an immune suppression type-2 response (Th2). Laricitrin treatment stimulated DC differentiation and maturation in the condition media of cancer cells, a finding supported by monocyte marker CD14's disappearance and DC marker CD1a's upregulation. Laricitrin decreases expression of IL-10 in cancer-conditioned DCs, and subsequently switches CD4+ T cell response from Th2 to Th1 in vitro and in vivo. Reversal of laricitrin on lung cancer-induced DCs' paralysis was via inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Laricitrin also potentiated the anticancer activity of cisplatin in mouse models. Thus, laricitrin could be an efficacious immunoadjuvant and have a synergistic effect when combined with chemotherapy.

  13. NBBA, a synthetic small molecule, inhibits TNF-{alpha}-induced angiogenesis by suppressing the NF-{kappa}B signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hee; Jung, Hye Jin [Chemical Genomics Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Shibasaki, Futoshi [Translation Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-01-15

    Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effect of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.

  14. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent.

    Science.gov (United States)

    Liu, Lingling; Lu, Yun; Martinez, Jennifer; Bi, Yujing; Lian, Gaojian; Wang, Tingting; Milasta, Sandra; Wang, Jian; Yang, Mao; Liu, Guangwei; Green, Douglas R; Wang, Ruoning

    2016-02-01

    As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1- or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.

  15. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice.

    Science.gov (United States)

    Mellor, Kimberley M; Bell, James R; Young, Morag J; Ritchie, Rebecca H; Delbridge, Lea M D

    2011-06-01

    Fructose intake is linked with the increasing prevalence of insulin resistance and there is now evidence for a specific insulin-resistant cardiomyopathy. The aim of this study was to determine the cardiac-specific myocardial remodeling effects of high fructose dietary intake. Given the links between insulin signaling, reactive oxygen species generation and autophagy induction, we hypothesized that autophagy contributes to pathologic remodeling in the insulin-resistant heart, and in particular may be a feature of high fructose diet-induced cardiac phenotype. Male C57Bl/6 mice were fed a high fructose (60%) diet or nutrient-matched control diet for 12 weeks. Systemic and myocardial insulin-resistant status was characterized. Superoxide production (lucigenin) and cellular growth and death signaling pathways were examined in myocardial tissue. Myocardial structural remodeling was evaluated by measurement of heart weight indices and histological analysis of collagen deposition (picrosirius red). Fructose-fed mice exhibited hyperglycemia and glucose intolerance, but plasma insulin and blood pressure were unchanged. High fructose intake suppressed the myocardial Akt cell survival signaling coincident with increased cardiac superoxide generation (21% increase, pFructose feeding induced elevated autophagy (LC3B-II: LC3B-I ratio: 46% increase, pfructose-fed mice. We provide the first evidence that myocardial autophagy activation is associated with systemic insulin resistance, and that high level fructose intake inflicts direct cardiac damage. Upregulated autophagy is associated with elevated cardiac superoxide production, suppressed cell survival signaling and fibrotic infiltration in fructose-fed mice. The novel finding that autophagy contributes to cardiac pathology in insulin resistance identifies a new therapeutic target for diabetic cardiomyopathy.

  16. Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression.

    Science.gov (United States)

    Lim, Chae Woo; Lee, Young Woo; Hwang, Cheol Ho

    2011-09-01

    The number of nodules formed in the roots of leguminous plants is systemically controlled by autoregulation of nodulation (AON). This study characterized two of the CLAVATA3/endosperm-surrounding region (CLE) genes involved in AON signal transduction. The GmRIC1 and GmRIC2 genes initiated expression solely in the roots at approximately 3 days after inoculation (DAI) with Nod factor-producing rhizobia, corresponding to the time point of AON, and the expression was up-regulated by cytokinins. Levels of GmRIC1 and GmRIC2 gene expression were much higher in the supernodulation mutant, SS2-2, than in wild-type (WT) soybeans during nodule development, even after initiation of nitrogen fixation. At 3 DAI, GmRIC2 was induced in the cells of the pericycle and the outer cortex, which undergo cell division to form nodule primordia and spreads from the central region to the whole nodule as it develops. Overexpression of GmRIC1 and GmRIC2 strongly suppressed the nodulation of WT roots as well as transgenic hairy roots in a GmNARK-dependent manner. This systemic suppression of nodulation was caused by the secretion of two CLE proteins into the extracellular space. Double grafting between WT and SS2-2 soybeans showed that signal Q is larger in SS2-2 than in WT roots during nodulation. The results of this study suggest that GmRIC1 and GmRIC2 are good candidates for root-derived signal Q in AON signal transduction.

  17. Increased PLEKHO1 within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging.

    Science.gov (United States)

    Liu, Jin; Liang, Chao; Guo, Baosheng; Wu, Xiaohao; Li, Defang; Zhang, Zongkang; Zheng, Kang; Dang, Lei; He, Xiaojuan; Lu, Changwei; Peng, Songlin; Pan, Xiaohua; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2017-04-01

    Emerging evidence indicates that the dysregulation of protein ubiquitination plays a crucial role in aging-associated diseases. Smad-dependent canonical BMP signaling pathway is indispensable for osteoblastic bone formation, which could be disrupted by the ubiquitination and subsequent proteasomal degradation of Smad1/5, the key molecules for BMP signaling transduction. However, whether the dysregulation of Smad1/5 ubiquitination and disrupted BMP signaling pathway is responsible for the age-related bone formation reduction is still underexplored. Pleckstrin homology domain-containing family O member 1 (PLEKHO1) is a previously identified ubiquitination-related molecule that could specifically target the linker region between the WW domains of Smurf1 to promote the ubiquitination of Smad1/5. Here, we found an age-related increase in the expression of PLEKHO1 in bone specimens from either fractured patients or aging rodents, which was associated with the age-related reduction in Smad-dependent BMP signaling and bone formation. By genetic approach, we demonstrated that loss of Plekho1 in osteoblasts could promote the Smad-dependent BMP signaling and alleviated the age-related bone formation reduction. In addition, osteoblast-specific Smad1 overexpression had beneficial effect on bone formation during aging, which could be counteracted after overexpressing Plekho1 within osteoblasts. By pharmacological approach, we showed that osteoblast-targeted Plekho1 siRNA treatment could enhance Smad-dependent BMP signaling and promote bone formation in aging rodents. Taken together, it suggests that the increased PLEKHO1 could suppress Smad-dependent BMP signaling to inhibit bone formation during aging, indicating the translational potential of targeting PLEKHO1 in osteoblast as a novel bone anabolic strategy for reversing established osteoporosis during aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D.

    2014-10-01

    Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.

  19. Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise

    Directory of Open Access Journals (Sweden)

    Michael Hinczewski

    2014-10-01

    Full Text Available Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.

  20. Emerin suppresses Notch signaling by restricting the Notch intracellular domain to the nuclear membrane.

    Science.gov (United States)

    Lee, Byongsun; Lee, Tae-Hee; Shim, Jaekyung

    2017-02-01

    Emerin is an inner nuclear membrane protein that is involved in maintaining the mechanical integrity of the nuclear membrane. Increasing evidence supports the involvement of emerin in the regulation of gene expression; however, its precise function remains to be elucidated. Here, we show that emerin downregulated genes downstream of Notch signaling, which are activated exclusively by the Notch intracellular domain (NICD). Deletion mutant experiments revealed that the transmembrane domain of emerin is important for the inhibition of Notch signaling. Emerin interacted directly and colocalized with the NICD at the nuclear membrane. Emerin knockdown induced the phosphorylation of ERK and AKT, increased endogenous Notch signaling, and inhibited hydrogen peroxide-induced apoptosis in HeLa cells. Notably, the downregulation of barrier-to-autointegration factor (BAF) or lamin A/C increased Notch signaling by inducing the release of emerin into the cytosol, implying that nuclear membrane-bound emerin acts as an endogenous inhibitor of Notch signaling. Taken together, our results indicate that emerin negatively regulates Notch signaling by promoting the retention of the NICD at the nuclear membrane. This mechanism could constitute a new therapeutic target for the treatment of emerin-related diseases.

  1. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor.

    Science.gov (United States)

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-11-30

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  2. Signal Transmission in a Human Body Medium-Based Body Sensor Network Using a Mach-Zehnder Electro-Optical Sensor

    Directory of Open Access Journals (Sweden)

    Yong Song

    2012-11-01

    Full Text Available The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  3. RYBP Inhibits Progression and Metastasis of Lung Cancer by Suppressing EGFR Signaling and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dinglin

    2017-04-01

    Full Text Available Lung cancer (LC is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

  4. Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells.

    Science.gov (United States)

    Itoh, Tomohiro; Fujita, Yasunori; Ito, Mikako; Masuda, Akio; Ohno, Kinji; Ichihara, Masatoshi; Kojima, Toshio; Nozawa, Yoshinori; Ito, Masafumi

    2009-11-27

    Molecular hydrogen ameliorates oxidative stress-associated diseases in animal models. We found that oral intake of hydrogen-rich water abolishes an immediate-type allergic reaction in mice. Using rat RBL-2H3 mast cells, we demonstrated that hydrogen attenuates phosphorylation of the FcepsilonRI-associated Lyn and its downstream signal transduction, which subsequently inhibits the NADPH oxidase activity and reduces the generation of hydrogen peroxide. We also found that inhibition of NADPH oxidase attenuates phosphorylation of Lyn in mast cells, indicating the presence of a feed-forward loop that potentiates the allergic responses. Hydrogen accordingly inhibits all tested signaling molecule(s) in the loop. Hydrogen effects have been solely ascribed to exclusive removal of hydroxyl radical. In the immediate-type allergic reaction, hydrogen exerts its beneficial effect not by its radical scavenging activity but by modulating a specific signaling pathway. Effects of hydrogen in other diseases are possibly mediated by modulation of yet unidentified signaling pathways. Our studies also suggest that hydrogen is a gaseous signaling molecule like nitric oxide.

  5. Notch signalling suppresses regulatory T-cell function in murine experimental autoimmune uveitis.

    Science.gov (United States)

    Rong, Hua; Shen, Hongjie; Xu, Yueli; Yang, Hai

    2016-12-01

    Autoimmune uveitis is an intraocular inflammatory disorder in developed countries. Understanding the mechanisms underlying the development and modulation of immune reaction in uveitic eyes is critical for designing therapeutic interventions. Here we investigated the role of Notch signalling in regulatory T-cell (Treg cell) function during experimental autoimmune uveitis (EAU). Using the Foxp3-GFP reporter mouse strain, the significance of Notch signalling for the function of infiltrating Treg cells was characterized in an EAU model. We found that infiltrating Treg cells substantially expressed Notch-1, Notch-2, JAG1 and DLL1 in uveitic eyes. Activation of Notch signalling, represented by expression of HES1 and HES5, was enhanced in infiltrating Treg cells. Treatment with JAG1 and DLL1 down-regulated Foxp3 expression and immunosuppressive activity of isolated infiltrating Treg cells in vitro, whereas neutralizing antibodies against JAG1 and DLL1 diminished Notch ligand-mediated negative effects on Treg cells. To investigate the significance of Notch signalling for Treg cell function in vivo, lentivirus-derived Notch short hairpin RNAs were transduced into in vitro expanded Treg cells before adoptive transfer of Treg cells into EAU mice. Transfer of Notch-1-deficient Treg cells remarkably reduced pro-inflammatory cytokine production and inflammatory cell infiltration in uveitic eyes. Taken together, Notch signalling negatively modulates the immunosuppressive function of infiltrating Treg cells in mouse EAU.

  6. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  7. A Novel Ultra-Wide Band Signal Generation Scheme Based on Carrier Interference and Dynamics Suppression

    Directory of Open Access Journals (Sweden)

    Zhang Luyong

    2010-01-01

    Full Text Available This paper initiatively puts forward a novel synthesis design for generating UWB narrow pulse by using CI (Carrier Interference subcarrier waveform synthesis and Bessel function expansion. Through adaptively adjusting the initial phases of multiple sub-carriers according to the location information, CI (Carrier Interference sub-carrier waveform synthesis signal could achieve better performance. More specifically, when the carrier arrives at the receiver with a particular phase, the dynamic change of this signal amplitude can be significantly reduced by introducing sinusoidal frequency modulation signals. The method has significance for improving the overall performance of UWB communication system. This paper gives theoretical analysis and computer simulation results as well as the functional block diagram.

  8. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  9. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls.......Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors...

  10. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls.......Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors...

  11. C. elegans ADAMTS ADT-2 regulates body size by modulating TGFβ signaling and cuticle collagen organization

    Science.gov (United States)

    Fernando, Thilini; Flibotte, Stephane; Xiong, Sheng; Yin, Jianghua; Yzeiraj, Edlira; Moerman, Donald G.; Meléndez, Alicia; Savage-Dunn, Cathy

    2011-01-01

    Organismal growth and body size are influenced by both genetic and environmental factors. We have utilized the strong molecular genetic techniques available in the nematode C. elegans to identify genetic determinants of body size. In C. elegans, DBL-1, a member of the conserved family of secreted growth factors known as the Transforming Growth Factor β superfamily, is known to play a major role in growth control. The mechanisms by which other determinants of body size function, however, is less well understood. To identify additional genes involved in body size regulation, a genetic screen for small mutants was previously performed. One of the genes identified in that screen was sma-21. We now demonstrate that sma-21 encodes ADT-2, a member of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases. ADAMTS proteins are believed to remodel the extracellular matrix and may modulate the activity of extracellular signals. Genetic interactions suggest that ADT-2 acts in parallel with or in multiple size regulatory pathways. We demonstrate that ADT-2 is required for normal levels of expression of a DBL-1-responsive transcriptional reporter. We further demonstrate that adt-2 regulatory sequences drive expression in glial-like and vulval cells, and that ADT-2 activity is required for normal cuticle collagen fibril organization. We therefore propose that ADT-2 regulates body size both by modulating TGFβ signaling activity and by maintaining normal cuticle structure. PMID:21256840

  12. Concurrent inhibition of kit- and FcepsilonRI-mediated signaling: coordinated suppression of mast cell activation

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Beaven, Michael A; Iwaki, Shoko

    2008-01-01

    Although primarily required for the growth, differentiation, and survival of mast cells, Kit ligand (stem cell factor) is also required for optimal antigen-mediated mast cell activation. Therefore, concurrent inhibition of Kit- and FcepsilonRI-mediated signaling would be an attractive approach fo...

  13. Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm

    DEFF Research Database (Denmark)

    Hamilton, William B; Brickman, Joshua M

    2014-01-01

    Fgf signaling via Erk activation has been associated with both neural induction and the generation of a primed state for the differentiation of embryonic stem cells (ESCs) to all somatic lineages. To dissect the role of Erk in both ESC self-renewal and lineage specification, we explored...

  14. Cartilage Intermediate Layer Protein 1 Suppresses TGF-β Signaling in Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Kazuhiro Shindo

    2017-06-01

    Conclusion: We identified CILP1 as a potential regulator of cardiac fibrosis by inhibiting TGF-β signaling, and these results suggest the promise of CILP1 as a novel therapeutic target for preventing cardiac fibrosis and heart failure in MI patients.

  15. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Li, Zhanguo [Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People' s Hospital, No. 11 Xizhimen South Street, Beijing 100044 (China); Yuan, Huihui, E-mail: huihui_yuan@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Zhao, Wenming, E-mail: zhao-wenming@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China)

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  16. Wireless Body Area Network in a Ubiquitous Healthcare System for Physiological Signal Monitoring and Health Consulting

    Directory of Open Access Journals (Sweden)

    Joonyoung Jung

    2008-12-01

    Full Text Available We developed a ubiquitous healthcare system consisted of aphysiological signal devices, a mobile system, a device provider system, a healthcare service provider system, a physician system, and a healthcare personal system. In this system, wireless body area network (WBAN such as ZigBee is used to communicate between physiological signal devices and the mobile system. WBAN device needs a specific function for ubiquitous healthcare application. We propose a scanning algorithm, dynamic discovery and installation, reliable data transmission, device access control, and a healthcare profile for ubiquitous healthcare system.

  17. Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation.

    Science.gov (United States)

    Trombly, Daniel J; Woodruff, Teresa K; Mayo, Kelly E

    2009-02-01

    Notch signaling directs cell fate during embryogenesis by influencing cell proliferation, differentiation, and apoptosis. Notch genes are expressed in the adult mouse ovary, and roles for Notch in regulating folliculogenesis are beginning to emerge from mouse genetic models. We investigated how Notch signaling might influence the formation of primordial follicles. Follicle assembly takes place when germ cell syncytia within the ovary break down and germ cells are encapsulated by pregranulosa cells. In the mouse, this occurs during the first 4-5 d of postnatal life. The expression of Notch family genes in the neonatal mouse ovary was determined through RT-PCR measurements. Jagged1, Notch2, and Hes1 transcripts were the most abundantly expressed ligand, receptor, and target gene, respectively. Jagged1 and Hey2 mRNAs were up-regulated over the period of follicle formation. Localization studies demonstrated that JAGGED1 is expressed in germ cells prior to follicle assembly and in the oocytes of primordial follicles. Pregranulosa cells that surround germ cell nests express HES1. In addition, pregranulosa cells of primordial follicles expressed NOTCH2 and Hey2 mRNA. We used an ex vivo ovary culture system to assess the requirement for Notch signaling during early follicle development. Newborn ovaries cultured in the presence of gamma-secretase inhibitors, compounds that attenuate Notch signaling, had a marked reduction in primordial follicles compared with vehicle-treated ovaries, and there was a corresponding increase in germ cells that remained within nests. These data support a functional role for Notch signaling in regulating primordial follicle formation.

  18. Control of body size in C. elegans dependent on food and insulin/IGF-1 signal.

    Science.gov (United States)

    So, Shuhei; Miyahara, Kohji; Ohshima, Yasumi

    2011-06-01

    The body size of an organism is governed by genetic and environmental factors. As an environmental factor, food appears to be the most important for body size control in animals. C. elegans worms are usually grown on an E. coli strain OP50. We show that the wild-type worms fed on another E. coli strain HB101 grow 1.6 times as large as those fed on OP50. The regression line representing the relationship between the sizes of worms grown on each food for over 30 mutants was drawn, indicating that small mutants tend to be more affected by the change in food. Mutants for the DAF-2 insulin/IGF-1 receptor and downstream SGK-1, a homolog of the serum- and glucocorticoid-inducible kinase, grow less or little larger on HB101, indicating control of body size by these factors. Results on the suppression of mutations in these factors by a mutation in the DAF-16/FOXO transcription factor indicate both DAF-16-dependent and DAF-16-independent control. Furthermore, we show that the food-dependent body size change is because of a change in cell size that is closely related to the protein content per cell.

  19. Artificial Neural Network based Body Posture Classification from EMG signal analysis

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Tripathy

    2013-04-01

    Full Text Available  This paper deals with the body posture Classification from EMG signal analysis using artificial neural network (ANN. The various statistical features extracted from each EMG signal corresponding to different muscles associated with the different body postures are framed using LABVIEW software. Further-more, these features are taken as the input towards the ANN classifier and thus the corresponding output for the respective classifier predicts the postures like Bowing, Handshaking, and Hugging. The performance of the classifier is determined by the classification rate (CR. The outcome of result indicates that the CR of Multilayer Feed Forward Neural Network (MFNN type of ANN is rounded up to a percentage of 71.02%.

  20. Inhibition of endoplasmic reticulum stress signaling pathway: A new mechanism of statins to suppress the development of abdominal aortic aneurysm

    Science.gov (United States)

    Li, Yuanyuan; Lu, Gangsheng; Sun, Dating; Zuo, Houjuan; Wang, Dao Wen; Yan, Jiangtao

    2017-01-01

    Background Abdominal aortic aneurysm (AAA) is a potentially lethal disease with extremely poor survival rates once the aneurysm ruptures. Statins may exert beneficial effects on the progression of AAA. However, the underlying mechanism is still not known. The purpose of the present study is to investigate whether statin could inhibit AAA formation by inhibiting the endoplasmic reticulum (ER) stress signal pathway. Methods A clinically relevant AAA model was induced in Apolipoprotein E-deficient (ApoE−/−) mice, which were infused with angiotensin II (Ang II) for 28 days. These mice were randomly divided into following 4 groups: saline infusion alone; Ang II infusion alone; Ang II infusion plus Atorvastatin (20mg/kg/d); and Ang II infusion plus Atorvastatin (30mg/kg/d). Besides, another AAA model was induced in C57 mice with extraluminal CaCl2, which were divided into 3 groups: sham group, CaCl2-induced AAA group, and CaCl2-induced AAA plus atorvastatin (20mg/kg/d) group. Then, aortic tissue was excised for further examinations, respectively. In vitro studies, Ang II with or without simvastatin treatment were applied to the vascular smooth muscle cells (VSMCS) and Raw 264.7 cells. The ER stress signal pathway, apoptosis and inflammatory response were evaluated by in vivo and in vitro assays. Results We found that higher dose of atorvastatin can effectively suppress the development and progression of AAA induced by Ang II or CaCl2. Mechanistically, the activation of ER stress and inflammatory response were found involved in Ang II-induced AAA formation. The atorvastatin infusion significantly reduced ER stress signaling proteins, the number of apoptotic cells, and the activation of Caspase12 and Bax in the Ang II-induced ApoE−/− mice, compared with mice treated by Ang II alone. Furthermore, proinflammatory cytokines such as IL-6, IL-8, IL-1β were all remarkably inhibited after atorvastatin treatment. In vitro, the inhibitory effect of simvastatin on the ER

  1. Functional suppression of HAMP domain signaling defects in the E. coli serine chemoreceptor.

    Science.gov (United States)

    Lai, Run-Zhi; Parkinson, John S

    2014-10-23

    HAMP domains play key signaling roles in many bacterial receptor proteins. The four-helix HAMP bundle of the homodimeric Escherichia coli serine chemoreceptor (Tsr) interacts with an adjoining four-helix sensory adaptation bundle to regulate the histidine autokinase CheA bound to the cytoplasmic tip of the Tsr molecule. The adaptation helices undergo reversible covalent modifications that tune the stimulus-responsive range of the receptor: unmodified E residues promote kinase-off output, and methylated E residues or Q replacements at modification sites promote kinase-on output. We used mutationally imposed adaptational modification states and cells with various combinations of the sensory adaptation enzymes, CheR and CheB, to characterize the signaling properties of mutant Tsr receptors that had amino acid replacements in packing layer 3 of the HAMP bundle and followed in vivo CheA activity with an assay based on Förster resonance energy transfer. We found that an alanine or a serine replacement at HAMP residue I229 effectively locked Tsr output in a kinase-on state, abrogating chemotactic responses. A second amino acid replacement in the same HAMP packing layer alleviated the I229A and I229S signaling defects. Receptors with the suppressor changes alone mediated chemotaxis in adaptation-proficient cells but exhibited altered sensitivity to serine stimuli. Two of the suppressors (S255E and S255A) shifted Tsr output toward the kinase-off state, but two others (S255G and L256F) shifted output toward a kinase-on state. The alleviation of locked-on defects by on-shifted suppressors implies that Tsr-HAMP has several conformationally distinct kinase-active output states and that HAMP signaling might involve dynamic shifts over a range of bundle conformations.

  2. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer

    OpenAIRE

    Lefort, Karine; Ostano, Gian Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, Gian Paolo; Chiorino, Giovanna

    2016-01-01

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is signi...

  3. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer

    OpenAIRE

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDA) remains a lethal human malignancy with historically limited success in treatment. The role of aberrant Notch signaling, which requires the constitutive activation of γ-secretase, in the initiation and progression of PDA is well defined and inhibitors of this pathway are currently in clinical trials. Here we investigated the in vivo therapeutic effect of PF-03084014, a selective γ-secretase inhibitor, alone and in combination with gemcitabine in pancreati...

  4. A New Structure of Silicon-on-Insulator Metal-Oxide-Semiconductor Field Effect Transistor to Suppress the Floating Body Effect

    Institute of Scientific and Technical Information of China (English)

    朱鸣; 林青; 张正选; 林成鲁

    2003-01-01

    Considering that the silicon-on-insulator (SOI) devices have an inherent floating body effect, which may cause substantial influences in the performance of SOI device and circuit, we propose a novel device structure to suppress the floating body effect. In the new structure there is a buried p+ region under the n+ source and that region is extended to outside of the source, and this additional p+ region provides a path for accumulated holes to flow out of the body. Numerical simulations were carried out with Medici, and the output characteristics and gate characteristics were compared with those of conventional SOI counterparts. The simulated results show the suppression of floating body effect in the novel SOI device as expected.

  5. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Ling Shao

    Full Text Available Colon carcinogenesis consists of a multistep process during which a series of genetic and epigenetic adaptations occur that lead to malignant transformation. Here, we have studied the role of A20 (also known as TNFAIP3, a ubiquitin-editing enzyme that restricts NFκB and cell death signaling, in intestinal homeostasis and tumorigenesis. We have found that A20 expression is consistently reduced in human colonic adenomas than in normal colonic tissues. To further investigate A20's potential roles in regulating colon carcinogenesis, we have generated mice lacking A20 specifically in intestinal epithelial cells and interbred these with mice harboring a mutation in the adenomatous polyposis coli gene (APC(min. While A20(FL/FL villin-Cre mice exhibit uninflamed intestines without polyps, A20(FL/FL villin-Cre APC(min/+ mice contain far greater numbers and larger colonic polyps than control APC(min mice. We find that A20 binds to the β-catenin destruction complex and restricts canonical wnt signaling by supporting ubiquitination and degradation of β-catenin in intestinal epithelial cells. Moreover, acute deletion of A20 from intestinal epithelial cells in vivo leads to enhanced expression of the β-catenin dependent genes cyclinD1 and c-myc, known promoters of colon cancer. Taken together, these findings demonstrate new roles for A20 in restricting β-catenin signaling and preventing colon tumorigenesis.

  6. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development.

    Science.gov (United States)

    Mueller, Kristina M; Themanns, Madeleine; Friedbichler, Katrin; Kornfeld, Jan-Wilhelm; Esterbauer, Harald; Tuckermann, Jan P; Moriggl, Richard

    2012-09-25

    Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5-GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development.

  7. Antidepressant indatraline induces autophagy and inhibits restenosis via suppression of mTOR/S6 kinase signaling pathway

    Science.gov (United States)

    Cho, Yoon Sun; Yen, Chih-na; Shim, Joong Sup; Kang, Dong Hoon; Kang, Sang Won; Liu, Jun O.; Kwon, Ho Jeong

    2016-01-01

    Indatraline is an antidepressive agent and a non-selective monoamine transporter inhibitor that blocks the reuptake of neurotransmitters (dopamine, serotonin, and norepinephrine). In this study, we report that indatraline induces autophagy via the suppression of mTOR/S6 kinase signaling. Autophagy induction was examined by a cell-based high content screening system using LysoTracker, which was followed by monodansylcadaverine staining and transmission electron microscope observation. Indatraline increased the number of EGFP-LC3 cells expressing autophagosomes in the cytoplasm. Conversion of LC3 was further validated by immunoblotting. Indatraline induced autophagy by affecting the AMPK/mTOR/S6K signaling axis and had no influence on the PI3K/AKT/ERK signaling. Moreover, indatraline induced autophagy in smooth muscle cells (SMCs); further, it exhibited therapeutic potential for restenosis by inhibiting SMC accumulation in a rat restenosis model. These results provide new insights into the role of monoamine transporters in autophagy regulation and identify indatraline as a novel agent for inducing autophagy. PMID:27694974

  8. Escargot controls the sequential specification of two tracheal tip cell types by suppressing FGF signaling in Drosophila.

    Science.gov (United States)

    Miao, Guangxia; Hayashi, Shigeo

    2016-11-15

    Extrinsic branching factors promote the elongation and migration of tubular organs. In the Drosophila tracheal system, Branchless (Drosophila FGF) stimulates the branching program by specifying tip cells that acquire motility and lead branch migration to a specific destination. Tip cells have two alternative cell fates: the terminal cell (TC), which produces long cytoplasmic extensions with intracellular lumen, and the fusion cell (FC), which mediates branch connections to form tubular networks. How Branchless controls this specification of cells with distinct shapes and behaviors is unknown. Here we report that this cell type diversification involves the modulation of FGF signaling by the zinc-finger protein Escargot (Esg), which is expressed in the FC and is essential for its specification. The dorsal branch begins elongation with a pair of tip cells with high FGF signaling. When the branch tip reaches its final destination, one of the tip cells becomes an FC and expresses Esg. FCs and TCs differ in their response to FGF: TCs are attracted by FGF, whereas FCs are repelled. Esg suppresses ERK signaling in FCs to control this differential migratory behavior.

  9. Ursolic acid inhibits leucine-stimulated mTORC1 signaling by suppressing mTOR localization to lysosome.

    Directory of Open Access Journals (Sweden)

    Xiang Ou

    Full Text Available Ursolic acid (UA, a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1 signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2, and Ras homolog enriched in brain (Rheb, suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function.

  10. Aberrant JAK/STAT Signaling Suppresses TFF1 and TFF2 through Epigenetic Silencing of GATA6 in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Cheng-Shyong Wu

    2016-09-01

    Full Text Available Aberrant Janus kinase (JAK/signal transducer and activator of transcription (STAT signaling is crucial to the development of gastric cancer. In this study, we examined the role of STAT3 in the expression and methylation of its targets in gastric cancer patients. Results from RNA sequencing identified an inverse correlation between the expression of STAT3 and GATA6 in 23 pairs of gastric cancer patient samples. We discovered that the expression of GATA6 is epigenetically silenced through promoter methylation in gastric cancer cell lines. Interestingly, the inhibition of STAT3 using a novel STAT3 inhibitor restored the expression of GATA6 and its targets, trefoil factors 1 and 2 (TFF1/2. Moreover, disruption of STAT3 binding to GATA6 promoter by small hairpin RNA restored GATA6 expression in AGS cells. A clinically significant correlation was also observed between the expression of GATA6 and TFF1/2 among tissue samples from 60 gastric cancer patients. Finally, bisulfite pyrosequencing revealed GATA6 methylation in 65% (39/60 of the patients, and those with higher GATA6 methylation tended to have shorter overall survival. In conclusion, we demonstrated that aberrant JAK/STAT signaling suppresses TFF1/2 partially through the epigenetic silencing of GATA6. Therapeutic intervention of STAT3 in reversing the epigenetic status of GATA6 could benefit the treatment of gastric cancer and is worthy of further investigation.

  11. The Ayurvedic Medicine Salacia oblonga Attenuates Diabetic Renal Fibrosis in Rats: Suppression of Angiotensin II/AT1 Signaling

    Directory of Open Access Journals (Sweden)

    Lan He

    2011-01-01

    Full Text Available In human diabetic nephropathy, the extent of tubulointerstitial fibrosis is the leading cause of end-stage renal disease; fibrosis is closely correlated with renal dysfunction. Although a wide array of medicinal plants play a role in the prevention and treatment of diabetes, there are few reports of the application of herbal medicines in amelioration of renal fibrosis, or the underlying mechanisms by which such benefits are mediated. The efficacy of the Ayurvedic antidiabetic medicine Salacia oblonga (SO root on rat renal fibrosis was investigated. An aqueous extract from SO (100 mg/kg, p.o., 6 weeks diminished renal glomerulosclerosis and interstitial fibrosis in Zucker diabetic fatty (ZDF rats, as revealed by van Giesen-staining. SO also reduced renal salt-soluble, acid-soluble and salt-insoluble collagen contents. These changes were accompanied by normalization of hypoalbuminemia and BUN. Gene profiling revealed that the increase in transcripts encoding the glomerulosclerotic mediators collagen I, collagen IV, fibronectin, angiotensin II type 1 receptor (AT1, transforming growth factor (TGF-β1, plasminogen activator inhibitor (PAI-1 observed in ZDF rat kidney was suppressed by SO. In rat-derived mesangial cells, similar to the effect of the AT1 antagonist telmisartan, SO and its major component mangiferin suppressed the stimulatory effect of angiotensin II on proliferation and increased mRNA expression and/or activities of collagen I, collagen IV, fibronectin, AT1, TGF-β1 and PAI-1. Considered together the present findings demonstrate that SO attenuates diabetic renal fibrosis, at least in part by suppressing anigiotensin II/AT1 signaling. Further, it now emerges that mangiferin is an effective antifibrogenic agent.

  12. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP.

    Science.gov (United States)

    Miller, Russell A; Chu, Qingwei; Xie, Jianxin; Foretz, Marc; Viollet, Benoit; Birnbaum, Morris J

    2013-02-14

    Glucose production by the liver is essential for providing a substrate for the brain during fasting. The inability of insulin to suppress hepatic glucose output is a major aetiological factor in the hyperglycaemia of type-2 diabetes mellitus and other diseases of insulin resistance. For fifty years, one of the few classes of therapeutics effective in reducing glucose production has been the biguanides, which include phenformin and metformin, the latter the most frequently prescribed drug for type-2 diabetes. Nonetheless, the mechanism of action of biguanides remains imperfectly understood. The suggestion a decade ago that metformin reduces glucose synthesis through activation of the enzyme AMP-activated protein kinase (AMPK) has recently been challenged by genetic loss-of-function experiments. Here we provide a novel mechanism by which metformin antagonizes the action of glucagon, thus reducing fasting glucose levels. In mouse hepatocytes, metformin leads to the accumulation of AMP and related nucleotides, which inhibit adenylate cyclase, reduce levels of cyclic AMP and protein kinase A (PKA) activity, abrogate phosphorylation of critical protein targets of PKA, and block glucagon-dependent glucose output from hepatocytes. These data support a mechanism of action for metformin involving antagonism of glucagon, and suggest an approach for the development of antidiabetic drugs.

  13. Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway.

    Science.gov (United States)

    Ershun, Zhou; Yunhe, Fu; Zhengkai, Wei; Yongguo, Cao; Naisheng, Zhang; Zhengtao, Yang

    2014-04-01

    Cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of CEP on a mouse model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms remain to be elucidated. The purpose of the present study was to investigate the effects of CEP on LPS-induced mouse mastitis. The mouse model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. CEP was administered intraperitoneally at 1 h before and 12 h after induction of LPS. The results show that CEP significantly attenuates the infiltration of neutrophils, suppresses myeloperoxidase activity, and reduces the levels of TNF-α, IL-1β, and IL-6 in LPS-induced mouse mastitis. Furthermore, CEP inhibited the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that CEP exerts potent anti-inflammatory effects on LPS-induced mouse mastitis. Accordingly, CEP might be a potential therapeutic agent for mastitis.

  14. North American ginseng (Panax quinquefolius) suppresses β-adrenergic-dependent signalling, hypertrophy, and cardiac dysfunction.

    Science.gov (United States)

    Tang, Xilan; Gan, Xiaohong Tracey; Rajapurohitam, Venkatesh; Huang, Cathy Xiaoling; Xue, Jenny; Lui, Edmund M K; Karmazyn, Morris

    2016-12-01

    There is increasing evidence for a beneficial effect of ginseng on cardiac pathology. Here, we determined whether North American ginseng can modulate the deleterious effects of the β-adrenoceptor agonist isoproterenol on cardiac hypertrophy and function using in vitro and in vivo approaches. Isoproterenol was administered for 2 weeks at either 25 mg/kg per day or 50 mg/kg per day (ISO25 or ISO50) via a subcutaneously implanted osmotic mini-pump to either control rats or those receiving ginseng (0.9 g/L in the drinking water ad libitum). Isoproterenol produced time- and dose-dependent left ventricular dysfunction, although these effects were attenuated by ginseng. Improved cardiac functions were associated with reduced heart masses, as well as prevention in the upregulation of the hypertrophy-related fetal gene expression. Lung masses were similarly attenuated, suggesting reduced pulmonary congestion. In in vitro studies, ginseng (10 μg/mL) completely suppressed the hypertrophic response to 1 μmol/L isoproterenol in terms of myocyte surface area, as well as reduction in the upregulation of fetal gene expression. These effects were associated with attenuation in both protein kinase A and cAMP response element-binding protein phosphorylation. Ginseng attenuates adverse cardiac adrenergic responses and, therefore, may be an effective therapy to reduce hypertrophy and heart failure associated with excessive catecholamine production.

  15. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chian-Jiun Liou

    2015-01-01

    Full Text Available Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK, resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C, ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.

  16. Fasciola hepatica tegumental coat antigen suppresses MAPK signalling in dendritic cells and up-regulates the expression of SOCS3.

    Science.gov (United States)

    Vukman, K V; Adams, P N; O'Neill, S M

    2013-07-01

    Fasciola hepatica tegumental coat antigen (FhTeg) suppresses dendritic cell maturation and function by inhibiting IL-6, tumour necrosis factor (TNF)-α, IL-10 and IL-12 production and CD80, CD86 and CD40 cell surface marker expression in TLR4-stimulated dendritic cells. Fasciola hepatica also impairs dendritic cell function by inhibiting its phagocytic capacity and its ability to prime T cells. We have shown previously that activation of mast cells with bacterial ligands is also inhibited by FhTeg. Fasciola hepatica suppresses LPS-induced NF-κB and MAPK pathway (ERK) activation in these cells. Previously, we demonstrated that FhTeg induces expression of suppressor of cytokine signalling (SOCS)3, a negative regulator of the TLR pathway in mast cells. In this study, we show the same inhibitory effect of FhTeg on the activation of the other members of the MAPKs pathway (ERK, p38, JNK) in dendritic cells and demonstrate an enhanced expression of SOCS3, but not SOCS1, SOCS5 or PIAS3 in this process. These studies enhance our understanding of the immunomodulatory effect of helminth molecules on the TLR pathway.

  17. Four-Wave Mixing Crosstalk Suppression Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals

    Directory of Open Access Journals (Sweden)

    Haider Abd

    2014-01-01

    Full Text Available A new approach to suppressing the four-wave mixing (FWM crosstalk by using the pairing combinations of differently linear-polarized optical signals was investigated. The simulation was conducted using a four-channel system, and the total data rate was 40 Gb/s. A comparative study on the suppression of FWM for existing and suggested techniques was conducted by varying the input power from 2 dBm to 14 dBm. The robustness of the proposed technique was examined with two types of optical fiber, namely, single-mode fiber (SMF and dispersion-shifted fiber (DSF. The FWM power drastically reduced to less than −68 and −25 dBm at an input power of 14 dBm, when the polarization technique was conducted for SMF and DSF, respectively. With the conventional method, the FWM powers were, respectively, −56 and −20 dBm. The system performance greatly improved with the proposed polarization approach, where the bit error rates (BERs at the first channel were 2.57×10-40 and 3.47×10-29 at received powers of −4.90 and −13.84 dBm for SMF and DSF, respectively.

  18. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway

    Directory of Open Access Journals (Sweden)

    Jinhui Wu

    2017-05-01

    Full Text Available Chondrosarcomas (CS is the second most frequent tumors of cartilage origin. A small compound extracted from Thunder God Vine (Tripterygium wilfordii Hook. F. called celastrol can directly bound CIP2A protein and effectively inhibit cell proliferation and induce apoptosis in several cancer cells. However, little knowledge is concern about the important role of CIP2A in CS patients and the therapeutic value of celastrol on CS. Our results showed that CIP2A and c-MYC were verified to be oncoproteins by detecting their mRNA and protein expression in 10 human CS tissues by qRT-PCR and Western blots. After treatment of celastrol, the proliferation, migration and invasion were significantly inhibited; whereas the apoptosis was largely induced in human CS cell lines. In addition, celastrol inhibited the expression of CIP2A, c-MYC, and suppressed apoptotic proteins BAX and caspase-8 in human CS cells, on the other hand, it induced the expression of antiapoptotic protein Bcl-2. Finally, knockdown of CIP2A also inhibited the migration and invasion and induced apoptosis of human CS cells. To sum up, we found that celastrol had effects on inhibiting proliferation, migration, invasion and inducing apoptosis through suppression CIP2A/c-MYC signaling pathway in vitro, which may provide a new therapeutic regimen for CS.

  19. The naphthoquinone plumbagin suppresses ADP-induced rat platelet aggregation through P2Y1-PLC signaling pathway.

    Science.gov (United States)

    Zhang, Qianrui; Liao, Xiaoyan; Wu, Fangjian

    2017-03-01

    Plumbagin (PLB) isolated from Plumbago zeylanica L (Plumbaginaceae) was evaluated for the suppressive effect and mechanism on ADP induced rat platelet aggregation. Adult male SD rats were randomly divided into control group, clopidogrel group, PLB 25mg/kg group and PLB 50mg/kg group. Clopidogrel (13.5mg/kg per day) and PLB (25 and 50mg/kg per day) were orally given to experimental rats by gavage for seven consecutive days. The antiplatelet properties were assessed by measuring the ADP-induced platelet aggregation rate (Aggmax). The level of cAMP in platelets before aggregation was determined by ELISA. The protein expression of pAkt, Akt, pPLC β3 and PLC β3 in platelets was measured by western blot. Our data indicated that PLB (25 and 50mg/kg) significantly inhibited ADP-induced rat platelet aggregation as well as clopidogrel (13.5mg/kg) in a dose dependent manner compared with the control group. PLB (25 and 50mg/kg) remarkably reduced the ADP-induced PLC β3 phosphorylation but not Akt in platelets as compared with the control group. The present study suggests that PLB exerts a suppressive effect on ADP-induced rat platelet aggregation, at least in part, through P2Y1-PLC signaling pathway.

  20. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

    Directory of Open Access Journals (Sweden)

    Andreas Stengel

    2017-04-01

    Full Text Available Corticotropin-releasing factor (CRF is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  1. Discovery of an Orally Bioavailable Benzimidazole Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitor That Suppresses Body Weight Gain in Diet-Induced Obese Dogs and Postprandial Triglycerides in Humans.

    Science.gov (United States)

    Nakajima, Katsumasa; Chatelain, Ricardo; Clairmont, Kevin B; Commerford, Renee; Coppola, Gary M; Daniels, Thomas; Forster, Cornelia J; Gilmore, Thomas A; Gong, Yongjin; Jain, Monish; Kanter, Aaron; Kwak, Youngshin; Li, Jingzhou; Meyers, Charles D; Neubert, Alan D; Szklennik, Paul; Tedesco, Vivienne; Thompson, James; Truong, David; Yang, Qing; Hubbard, Brian K; Serrano-Wu, Michael H

    2017-06-08

    Modification of a gut restricted class of benzimidazole DGAT1 inhibitor 1 led to 9 with good oral bioavailability. The key structural changes to 1 include bioisosteric replacement of the amide with oxadiazole and α,α-dimethylation of the carboxylic acid, improving DGAT1 potency and gut permeability. Since DGAT1 is expressed in the small intestine, both 1 and 9 can suppress postprandial triglycerides during acute oral lipid challenges in rats and dogs. Interestingly, only 9 was found to be effective in suppressing body weight gain relative to control in a diet-induced obese dog model, suggesting the importance of systemic inhibition of DGAT1 for body weight control. 9 has advanced to clinical investigation and successfully suppressed postprandial triglycerides during an acute meal challenge in humans.

  2. Andrographolide suppress tumor growth by inhibiting TLR4/NF-κB signaling activation in insulinoma.

    Science.gov (United States)

    Zhang, Qian-Qian; Ding, Yi; Lei, Yan; Qi, Cui-Ling; He, Xiao-Dong; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Yang, Xuesong; Geng, Jian-Guo; Wang, Li-Jing

    2014-01-01

    Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma.

  3. Andrographolide Inhibits Ovariectomy-Induced Bone Loss via the Suppression of RANKL Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-11-01

    Full Text Available Osteoporosis is a debilitating skeletal disorder with an increased risk of low-energy fracture, which commonly occurs among postmenopausal women. Andrographolide (AP, a natural product isolated from Andrographis paniculata, has been found to have anti-inflammatory, anti-cancer, anti-asthmatic, and neuro-protective properties. However, its therapeutic effect on osteoporosis is unknown. In this study, an ovariectomy (OVX mouse model was used to evaluate the therapeutic effects of AP on post-menopausal osteoporosis by using micro-computed tomography (micro-CT. Bone marrow-derived osteoclast culture was used to examine the inhibitory effect of AP on osteoclastogenesis. Real time PCR was employed to examine the effect of AP on the expression of osteoclast marker genes. The activities of transcriptional factors NF-κB and NFATc1 were evaluated using a luciferase reporter assay, and the IκBα protein level was analyzed by Western blot. We found that OVX mice treated with AP have greater bone volume (BV/TV, trabecular thickness (Tb.Th, and trabecular number (Tb.N compared to vehicle-treated OVX mice. AP inhibited RANKL-induced osteoclastogenesis, the expression of osteoclast marker genes including cathepsin K (Ctsk, TRACP (Acp5, and NFATc1, as well as the transcriptional activities of NF-κB and NFATc1. In conclusion, our results suggest that AP inhibits estrogen deficiency-induced bone loss in mice via the suppression of RANKL-induced osteoclastogensis and NF-κB and NFATc1 activities and, thus, might have therapeutic potential for osteoporosis.

  4. Nanostructure Secondary-Mirror Apodizing Mask for Transmitter Signal Suppression in a Duplex Telescope

    Science.gov (United States)

    Hagopian, John; Livas, Jeffrey; Shiri, Shahram; Getty, Stephanie; Tveekrem, June; Butler, James

    2012-01-01

    A document discusses a nanostructure apodizing mask, made of multi-walled carbon nanotubes, that is applied to the centers (or in and around the holes) of the secondary mirrors of telescopes that are used to interferometrically measure the strain of space-time in response to gravitational waves. The shape of this ultra-black mask can be adjusted to provide a smooth transition to the clear aperture of the secondary mirror to minimize diffracted light. Carbon nanotubes grown on silicon are a viable telescope mirror substrate, and can absorb significantly more light than other black treatments. The hemispherical reflectance of multi-walled carbon nanotubes grown at GSFC is approximately 3 to 10 times better than a standard aerospace paint used for stray light control. At the LISA (Laser Interferometer Space Antenna) wavelength of 1 micron, the advantage over paint is a factor of 10. Primarily, in the center of the secondary mirror (in the region of central obscuration, where no received light is lost) a black mask is applied to absorb transmitted light that could be reflected back into the receiver. In the LISA telescope, this is in the center couple of millimeters. The shape of this absorber is critical to suppress diffraction at the edge. By using the correct shape, the stray light can be reduced by approximately 10 to the 9 orders of magnitude versus no center mask. The effect of the nanotubes has been simulated in a stray-light model. The effect of the apodizing mask has been simulated in a near-field diffraction model. Specifications are geometry-dependent, but the baseline design for the LISA telescope has been modeled as well. The coatings are somewhat fragile, but work is continuing to enhance adhesion.

  5. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway.

    Science.gov (United States)

    Zhang, Tianzhu; Yan, Tianhua; Du, Juan; Wang, Shumin; Yang, Huilin

    2015-05-25

    Sepsis is a cluster of heterogeneous syndromes associated with progressive endotoxemic developments, ultimately leading to damage of multiple organs, including the heart. This study is to investigate the effects of apigenin on heart injury in lipopolysaccharide-induced endotoxemic rat model. Normal Wistar rats were randomly divided into four groups: control group, LPS group (15 mg/kg), LPS plus apigenin groups with different apigenin doses (50 mg/kg, 100 mg/kg). Serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) were measured after the rats were sacrificed. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax and Bcl-2 in heart were measured by Western blot. In vitro, we evaluated the protective effect of apigenin on rat embryonic heart-derived myogenic cell line H9c2 induced by LPS. Apigenin decreased serum levels of CK-MB, LDH, TNF-α, IL-6, IL-1β. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax in heart were found inhibited and Bcl-2 increased in the apigenin groups in vivo. In addition, apigenin inhibited intracellular calcium, the MAPK pathway and SphK1/S1P signaling pathway in vitro. Apigenin exerts pronounced cardioprotection in rats subjected to LPS likely through suppressing myocardial apoptosis and inflammation by inhibiting the SphK1/S1P signaling pathway.

  6. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells

    Science.gov (United States)

    Suh, Yewseok; Afaq, Farrukh; Khan, Naghma; Johnson, Jeremy J.; Khusro, Fatima H.; Mukhtar, Hasan

    2010-01-01

    The mammalian target of rapamycin (mTOR) kinase is an important component of PTEN/PI3K/Akt signaling pathway, which is frequently deregulated in prostate cancer (CaP). Recent studies suggest that targeting PTEN/PI3K/Akt and mTOR signaling pathway could be an effective strategy for the treatment of hormone refractory CaP. Here, we show that the treatment of androgen-independent and PTEN-negative human CaP PC3 cells with fisetin, a dietary flavonoid, resulted in inhibition of mTOR kinase signaling pathway. Treatment of cells with fisetin inhibited mTOR activity and downregulated Raptor, Rictor, PRAS40 and GβL that resulted in loss of mTOR complexes (mTORC)1/2 formation. Fisetin also activated the mTOR repressor TSC2 through inhibition of Akt and activation of AMPK. Fisetin-mediated inhibition of mTOR resulted in hypophosphorylation of 4EBP1 and suppression of Cap-dependent translation. We also found that fisetin treatment leads to induction of autophagic-programmed cell death rather than cytoprotective autophagy as shown by small interfering RNA Beclin1-knockdown and autophagy inhibitor. Taken together, we provide evidence that fisetin functions as a dual inhibitor of mTORC1/2 signaling leading to inhibition of Cap-dependent translation and induction of autophagic cell death in PC3 cells. These results suggest that fisetin could be a useful chemotherapeutic agent in treatment of hormone refractory CaP. PMID:20530556

  7. Processing of proprioceptive and vestibular body signals and self-transcendence in Ashtanga yoga practitioners

    Directory of Open Access Journals (Sweden)

    Francesca eFiori

    2014-09-01

    Full Text Available In the rod and frame test (RFT, participants are asked to set a tilted visual linear marker (i.e. a rod, embedded in a square, to the subjective vertical, irrespective of the surrounding frame. People not influenced by the frame tilt are defined as field-independent, while people biased in their rod verticality perception are field-dependent. Performing RFT requires the integration of proprioceptive, vestibular and visual signals with the latter accounting for field-dependency. Studies indicate that motor experts in body-related, balance-improving disciplines tend to be field-independent, i.e. better at verticality perception, suggesting that proprioceptive and vestibular expertise acquired by such exercise may weaken the influence of irrelevant visual signals. What remains unknown is whether the effect of body-related expertise in weighting perceptual information might also be mediated by personality traits, in particular those indexing self-focusing abilities. To explore this issue, we tested field-dependency in a class of body experts, namely yoga practitioners and in non-expert participants. Moreover we explored any link between performance on RFT and self-transcendence, a complex personality construct, which refers to tendency to experience spiritual feelings and ideas. As expected, yoga practitioners (i were more accurate in assessing the rod’s verticality on the RFT, and (ii expressed significantly higher self-transcendence. Interestingly, the performance in these two tests was negatively correlated. More specifically, when asked to provide verticality judgments, highly self-transcendent yoga practitioners were significantly less influenced by a misleading visual context. Our results suggest that being highly self-transcendent may enable yoga practitioners to optimize verticality judgment tasks by relying more on internal (vestibular and proprioceptive signals coming from their own body, rather than on exteroceptive, visual cues.

  8. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis

    Science.gov (United States)

    Boyle, D L; Soma, K; Hodge, J; Kavanaugh, A; Mandel, D; Mease, P; Shurmur, R; Singhal, A K; Wei, N; Rosengren, S; Kaplan, I; Krishnaswami, S; Luo, Z; Bradley, J; Firestein, G S

    2015-01-01

    Objective Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). The pathways affected by tofacitinib and the effects on gene expression in situ are unknown. Therefore, tofacitinib effects on synovial pathobiology were investigated. Methods A randomised, double-blind, phase II serial synovial biopsy study (A3921073; NCT00976599) in patients with RA with an inadequate methotrexate response. Patients on background methotrexate received tofacitinib 10 mg twice daily or placebo for 28 days. Synovial biopsies were performed on Days -7 and 28 and analysed by immunoassay or quantitative PCR. Clinical response was determined by disease activity score and European League Against Rheumatism (EULAR) response on Day 28 in A3921073, and at Month 3 in a long-term extension study (A3921024; NCT00413699). Results Tofacitinib exposure led to EULAR moderate to good responses (11/14 patients), while placebo was ineffective (1/14 patients) on Day 28. Tofacitinib treatment significantly reduced synovial mRNA expression of matrix metalloproteinase (MMP)-1 and MMP-3 (p<0.05) and chemokines CCL2, CXCL10 and CXCL13 (p<0.05). No overall changes were observed in synovial inflammation score or the presence of T cells, B cells or macrophages. Changes in synovial phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3 strongly correlated with 4-month clinical responses (p<0.002). Tofacitinib significantly decreased plasma CXCL10 (p<0.005) at Day 28 compared with placebo. Conclusions Tofacitinib reduces metalloproteinase and interferon-regulated gene expression in rheumatoid synovium, and clinical improvement correlates with reductions in STAT1 and STAT3 phosphorylation. JAK1-mediated interferon and interleukin-6 signalling likely play a key role in the synovial response. Trial registration number NCT00976599. PMID:25398374

  9. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.

    Science.gov (United States)

    Winter, Peter S; Sarosiek, Kristopher A; Lin, Kevin H; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C

    2014-12-23

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2(V617F) mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2(V617F) hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal-regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2(V617F) cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2(V617F) mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.

  10. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling.

    Science.gov (United States)

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-03-25

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS.

  11. Hedgehog signalling in myeloid cells impacts on body weight, adipose tissue inflammation and glucose metabolism.

    Science.gov (United States)

    Braune, Julia; Weyer, Ulrike; Matz-Soja, Madlen; Hobusch, Constance; Kern, Matthias; Kunath, Anne; Klöting, Nora; Kralisch, Susann; Blüher, Matthias; Gebhardt, Rolf; Zavros, Yana; Bechmann, Ingo; Gericke, Martin

    2017-05-01

    Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo (-/-)). Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.

  12. Cyanidin Chloride Inhibits Ovariectomy-Induced Osteoporosis by Suppressing RANKL-mediated Osteoclastogenesis and Associated Signaling Pathways.

    Science.gov (United States)

    Cheng, Jianwen; Zhou, Lin; Liu, Qian; Tickner, Jennifer; Tan, Zhen; Li, Xiaofeng; Liu, Mei; Lin, Xixi; Wang, Tao; Pavlos, Nathan J; Zhao, Jinmin; Xu, Jiake

    2017-08-03

    Over-production and activation of osteoclasts is a common feature of osteolytic conditions such as osteoporosis, tumor-associated osteolysis, and inflammatory bone erosion. Cyanidin Chloride, a subclass of anthocyanin, displays antioxidant and anti-carcinogenesis properties, but its role in osteoclastic bone resorption and osteoporosis is not well understood. In this study, we showed that Cyanidin Chloride inhibits osteoclast formation, hydroxyapatite resorption, and receptor activator of NF-κB ligand (RANKL)-induced osteoclast marker gene expression; including ctr, ctsk and trap. Further investigation revealed that Cyanidin Chloride inhibits RANKL-induced NF-κB activation, suppresses the degradation of IκB-α and attenuates the phosphorylation of extracellular signal-regulated kinases (ERK). In addition, Cyanidin Chloride abrogated RANKL-induced calcium oscillations, the activation of nuclear factor of activated T cells calcineurin-dependent 1 (NFATc1), and the expression of c-Fos. Further, we showed that Cyanidin Chloride protects against ovariectomy-induced bone loss in vivo. Together our findings suggest that Cyanidin Chloride is capable of inhibiting osteoclast formation, hydroxyapatite resorption and RANKL-induced signal pathways in vitro and OVX-induced bone loss in vivo, and thus might have therapeutic potential for osteolytic diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Notch4 Signaling Induces a Mesenchymal–Epithelial–like Transition in Melanoma Cells to Suppress Malignant Behaviors

    Science.gov (United States)

    Rad, Ehsan Bonyadi; Hammerlindl, Heinz; Wels, Christian; Popper, Ulrich; Menon, Dinoop Ravindran; Breiteneder, Heimo; Kitzwoegerer, Melitta; Hafner, Christine; Herlyn, Meenhard; Bergler, Helmut; Schaider, Helmut

    2016-01-01

    The effects of Notch signaling are context-dependent and both oncogenic and tumor-suppressive functions have been described. Notch signaling in melanoma is considered oncogenic, but clinical trials testing Notch inhibition in this malignancy have not proved successful. Here, we report that expression of the constitutively active intracellular domain of Notch4 (N4ICD) in melanoma cells triggered a switch from a mesenchymal-like parental phenotype to an epithelial-like phenotype. The epithelial-like morphology was accompanied by strongly reduced invasive, migratory, and proliferative properties concomitant with the downregulation of epithelial–mesenchymal transition markers Snail2 (SNAI2), Twist1, vimentin (VIM), and MMP2 and the reexpression of E-cadherin (CDH1). The N4ICD-induced phenotypic switch also resulted in significantly reduced tumor growth in vivo. Immunohistochemical analysis of primary human melanomas and cutaneous metastases revealed a significant correlation between Notch4 and E-cadherin expression. Mechanistically, we demonstrate that N4ICD induced the expression of the transcription factors Hey1 and Hey2, which bound directly to the promoter regions of Snail2 and Twist1 and repressed gene transcription, as determined by EMSA and luciferase assays. Taken together, our findings indicate a role for Notch4 as a tumor suppressor in melanoma, uncovering a potential explanation for the poor clinical efficacy of Notch inhibitors observed in this setting. PMID:26801977

  14. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells

    Indian Academy of Sciences (India)

    Forum Kayastha; Kaid Johar; Devarshi Gajjar; Anshul Arora; Hardik Madhu; Darshini Ganatra; Abhay Vasavada

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers -SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  15. Role of non-genomic androgen signalling in suppressing proliferation of fibroblasts and fibrosarcoma cells.

    Science.gov (United States)

    Castoria, G; Giovannelli, P; Di Donato, M; Ciociola, A; Hayashi, R; Bernal, F; Appella, E; Auricchio, F; Migliaccio, A

    2014-12-04

    The functions of androgen receptor (AR) in stromal cells are still debated in spite of the demonstrated importance of these cells in organ development and diseases. Here, we show that physiological androgen concentration (10 nM R1881 or DHT) fails to induce DNA synthesis, while it consistently stimulates cell migration in mesenchymal and transformed mesenchymal cells. Ten nanomolar R1881 triggers p27 Ser10 phosphorylation and its stabilization in NIH3T3 fibroblasts. Activation of Rac and its downstream effector DYRK 1B is responsible for p27 Ser10 phosphorylation and cell quiescence. Ten nanomolar androgen also inhibits transformation induced by oncogenic Ras in NIH3T3 fibroblasts. Overexpression of an AR mutant unable to interact with filamin A, use of a small peptide displacing AR/filamin A interaction, and filamin A knockdown indicate that the androgen-triggered AR/filamin A complex regulates the pathway leading to p27 Ser10 phosphorylation and cell cycle arrest. As the AR/filamin A complex is also responsible for migration stimulated by 10 nM androgen, our report shows that the androgen-triggered AR/filamin A complex controls, through Rac 1, the decision of cells to halt cell cycle and migration. This study reveals a new and unexpected role of androgen/AR signalling in coordinating stromal cell functions.

  16. Agrimol B suppresses adipogenesis through modulation of SIRT1-PPAR gamma signal pathway.

    Science.gov (United States)

    Wang, Shifeng; Zhang, Qiao; Zhang, Yuxin; Shen, Cheng; Wang, Zhen; Wu, Qinghua; Zhang, Yanling; Li, Shiyou; Qiao, Yanjiang

    2016-08-26

    Studies of human genetics have implicated the role of SIRT1 in regulating obesity, insulin resistance, and longevity. These researches motivated the identification of novel SIRT1 activators. The current study aimed to investigate the potential efficacy of agrimol B, a polyphenol derived from Agrimonia pilosa Ledeb., on mediating SIRT1 activity and fat metabolism. Results showed that agrimol B significantly induced cytoplasm-to-nucleus shuttle of SIRT1. Furthermore, we confirmed that agrimol B dramatically inhibited 3T3-L1 adipocyte differentiation by reducing PPARγ, C/EBPα, FAS, UCP-1, and apoE expression. Consequently, adipogenesis was blocked by treatment of agrimol B at the early stage of differentiation in a dose-dependent manner, the IC50 value was determined as 3.35 ± 0.32 μM. Taken together, our data suggest a therapeutic potential of agrimol B on alleviating obesity, through modulation of SIRT1-PPARγ signal pathway. Copyright © 2016. Published by Elsevier Inc.

  17. Caffeine suppresses exercise-enhanced long-term and location memory in middle-aged rats: Involvement of hippocampal Akt and CREB signaling.

    Science.gov (United States)

    Cechella, José L; Leite, Marlon R; da Rocha, Juliana T; Dobrachinski, Fernando; Gai, Bibiana M; Soares, Félix A A; Bresciani, Guilherme; Royes, Luiz F F; Zeni, Gilson

    2014-11-05

    The cognitive function decline is closely related with brain changes generated by age. The ability of caffeine and exercise to prevent memory impairment has been reported in animal models and humans. The purpose of the present study was to investigate whether swimming exercise and caffeine administration enhance memory in middle-aged Wistar rats. Male Wistar rats (18months) received caffeine at a dose of 30mg/kg, 5days per week by a period of 4weeks. Animals were subjected to swimming training with a workload (3% of body weight, 20min per day for 4weeks). After 4weeks, the object recognition test (ORT) and the object location test (OLT) were performed. The results of this study demonstrated that caffeine suppressed exercise-enhanced long-term (ORT) and spatial (OLT) memory in middle-aged and this effect may be related to a decrease in hippocampal p-CREB signaling. This study also provided evidence that the effects of this protocol on memory were not accompanied by alterations in the levels of activated Akt. The [(3)H] glutamate uptake was reduced in hippocampus of rats administered with caffeine and submitted to swimming protocol.

  18. Bispecific antibody suppresses osteosarcoma aggressiveness through regulation of NF-κB signaling pathway.

    Science.gov (United States)

    Yu, Gui-Hua; Li, Ai-Min; Li, Xiang; Yang, Zhong; Peng, Hao

    2017-06-01

    Osteosarcoma is one of the most lethal malignancies, and the prognosis remains dismal due to the paucity of effective therapeutic targets. Bmi-1 and TRIM-14 are associated with the initiation and progression of osteosarcoma, which could promote angiogenesis, invasion, and apoptotic resistance in bone cancer tissue. In this study, we constructed a bispecific antibody of BsAbBmi/TRIM targeting Bmi-1 and TRIM-14 and investigated the therapeutic value in bone carcinoma cells and xenograft mice. Our results showed that Bmi-1 and TRIM-14 expression levels were markedly upregulated correlated with nuclear factor-κB nuclear translocation in bone cancer cells and clinical carcinoma tissues. Results have demonstrated that overexpression of Bmi-1 and TRIM-14 promoted growth, proliferation, aggressiveness, and apoptosis resistance of osteosarcoma cells. BsAbBmi/TRIM administration significantly inhibited nuclear factor-κB expression derived by matrix metalloproteinase-9 promoter. BsAbBmi/TRIM administration inhibited growth of osteosarcoma cells and downregulated Bmi-1 and TRIM-14 expression levels. Data also demonstrated that migration and invasion of osteosarcoma cells were also inhibited by BsAbBmi/TRIM. In addition, results illustrated that BsAbBmi/TRIM inhibited tumor growth and tumorigenicity by blockaded sensor expression in nuclear factor-κB signal pathway. Furthermore, in vivo study showed that BsAbBmi/TRIM treatment markedly inhibited the tumorigenicity and growth of osteosarcoma cells compared to either AbBmi-1 or AbTRIM-14 treatment. Notably, survival of xenograft mice was prolonged by BsAbBmi/TRIM treatment compared to either AbBmi-1 or AbTRIM-14 treatment. In conclusion, these results provided new evidence that BsAbBmi/TRIM inhibited the progression of osteosarcoma, which suggest that BsAbBmi/TRIM may be a novel anti-cancer agent for osteosarcoma therapy.

  19. Grape seed extract inhibits angiogenesis via suppression of the vascular endothelial growth factor receptor signaling pathway.

    Science.gov (United States)

    Wen, Wei; Lu, Jianming; Zhang, Keqiang; Chen, Shiuan

    2008-12-01

    Blockade of angiogenesis is an important approach for cancer treatment and prevention. Vascular endothelial growth factor (VEGF) is one of the most critical factors that induce angiogenesis and has thus become an attractive target for antiangiogenesis treatment. However, most current anti-VEGF agents often cause some side effects when given chronically. Identification of naturally occurring VEGF inhibitors derived from diet would be one alternative approach with an advantage of known safety. Grape seed extract (GSE), a widely used dietary supplement, is known to have antitumor activity. In this study, we have explored the activity of GSE on VEGF receptor and angiogenesis. We found that GSE could directly inhibit the kinase activity of purified VEGF receptor 2, a novel activity of GSE that has not been characterized. GSE could also inhibit the VEGF receptor/mitogen-activated protein kinase-mediated signaling pathway in endothelial cells. As a result, GSE could inhibit VEGF-induced endothelial cell proliferation and migration as well as sprout formation from aorta ring. In vivo assay further showed that GSE could inhibit tumor growth and tumor angiogenesis of MDA-MB-231 breast cancer cells in mice. Consistent with the in vitro data, GSE treatment of tumor-bearing mice led to concomitant reduction of blood vessel density and phosphorylation of mitogen-activated protein kinase. Depletion of polyphenol with polyvinylpyrrolidone abolished the antiangiogenic activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the antiangiogenic activity. Taken together, this study indicates that GSE is a well-tolerated and inexpensive natural VEGF inhibitor and could potentially be useful in cancer prevention or treatment.

  20. The tumor suppressive role of RASSF1A in osteosarcoma through the Wnt signaling pathway.

    Science.gov (United States)

    Wang, Wei-Guo; Chen, Shi-Jie; He, Jin-Shen; Li, Jing-Song; Zang, Xiao-Fang

    2016-07-01

    Ras-association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene and its expression is lost in numerous types of cancer cells, including primary osteosarcoma cells. However, its functional significance in osteosarcoma has not been well defined. The messenger RNA (mRNA) expression of RASSF1A in osteosarcoma tissues and corresponding non-tumoral tissues was measured by real-time PCR. Overexpression of RASSF1A was established by an adenoviral vector expressing RASSF1A. Cell migration and invasion were analyzed in transwells. Apoptosis and cell cycle were analyzed using flow cytometry. Wnt/β-catenin activity was measured by TCF reporter dual-luciferase assay. Cell viability was measured by MTT assay. Protein expression was detected by Western blot. RASSF1A mRNA expression was significantly lower in osteosarcoma tissues than that in the corresponding non-tumoral tissues. The lowered RASSF1A expression correlated with the clinical severity of osteosarcoma. rAd-RASSF1A injection significantly inhibited the growth of xenograft MNNG/HOS tumors in mice. Overexpression of RASSF1A resulted in significant inhibition of the proliferation, migration, and invasion; induced apoptosis; and arrested cell cycle at G0/G1 phase in both the MNNG/HOS and SaOS2 cells. Overexpression of RASSF1A inhibited the Wnt/β-catenin activity, decreased phosphorylation of Akt/glycogen synthase kinase-3-β (GSK3-β), and increased phosphorylation of mammalian sterile 20-like kinase 1 (MST1). Overexpression of RASSF1A downregulated the cyclin D1, c-Myc, and matrix metalloproteinase-7 (MMP-7) protein levels. RASSF1A functions as a tumor suppressor in osteosarcoma and exerts anti-cancer roles through regulating Akt/GSK-3-Wnt/β-catenin signaling.

  1. Bajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT

    Science.gov (United States)

    Hong, Guoju; Zhou, Lin; Shi, Xuguang; He, Wei; Wang, Haibin; Wei, Qiushi; Chen, Peng; Qi, Longkai; Tickner, Jennifer; Lin, Li; Xu, Jiake

    2017-01-01

    Pathological osteolysis is commonly associated with osteoporosis, bone tumors, osteonecrosis, and chronic inflammation. It involves excessive resorption of bone matrix by activated osteoclasts. Suppressing receptor activator of NF-κB ligand (RANKL) signaling pathways has been proposed to be a good target for inhibiting osteoclast differentiation and bone resorption. Bajijiasu—a natural compound derived from Morinda officinalis F. C. How—has previously been shown to have anti-oxidative stress property; however, its effect and molecular mechanism of action on osteoclastogenesis and bone resorption remains unclear. In the present study, we found that Bajijiasu dose-dependently inhibited RANKL-induced osteoclast formation and bone resorption from 0.1 mM, and reached half maximal inhibitory effects (IC50) at 0.4 mM without toxicity. Expression of RANKL-induced osteoclast specific marker genes including cathepsin K (Ctsk), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP), vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2), and (matrix metalloproteinase-2 (MMP2) was inhibited by Bajijiasu treatment. Luciferase reporter gene studies showed that Bajijiasu could significantly reduce the expression and transcriptional activity of NFAT as well as RANKL-induced NF-κB activation in a dose-dependent manner. Further, Bajijiasu was found to decrease the RANKL-induced phosphorylation of extracellular signal-regulated kinases (ERK), inhibitor of κB-α (IκB-α), NFAT, and V-ATPase d2. Taken together, this study revealed Bajijiasu could attenuate osteoclast formation and bone resorption by mediating RANKL signaling pathways, indicative of a potential effect of Bajijiasu on osteolytic bone diseases. PMID:28106828

  2. Insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling.

    Science.gov (United States)

    Paula-Gomes, S; Gonçalves, D A P; Baviera, A M; Zanon, N M; Navegantes, L C C; Kettelhut, I C

    2013-11-01

    Insulin is an important regulator of the ubiquitin-proteasome system (UPS) and of lysosomal proteolysis in cardiac muscle. However, the role of insulin in the regulation of the muscle atrophy-related Ub-ligases atrogin-1 and MuRF1 as well as in autophagy, a major adaptive response to nutritional stress, in the heart has not been characterized. We report here that acute insulin deficiency in the cardiac muscle of rats induced by streptozotocin increased the expression of atrogin-1 and MuRF1 as well as LC3 and Gabarapl1, 2 autophagy-related genes. These effects were associated with decreased phosphorylation levels of Akt and its downstream target Foxo3a; this phenomenon is a well-known effect that permits the maintenance of Foxo in the nucleus to activate protein degradation by proteasomal and autophagic processes. The administration of insulin increased Akt and Foxo3a phosphorylation and suppressed the diabetes-induced expression of Ub-ligases and autophagy-related genes. In cultured neonatal rat cardiomyocytes, nutritional stress induced by serum/glucose deprivation strongly increased the expression of Ub-ligases and autophagy-related genes; this effect was inhibited by insulin. Furthermore, the addition of insulin in vitro prevented the decrease in Akt/Foxo signaling induced by nutritional stress. These findings demonstrate that insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes, most likely through the phosphorylation of Akt and the inactivation of Foxo3a. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Cardiotoxin III suppresses MDA-MB-231 cell metastasis through the inhibition of EGF/EGFR-mediated signaling pathway.

    Science.gov (United States)

    Tsai, Pei-Chien; Hsieh, Chi-Ying; Chiu, Chien-Chih; Wang, Chih-Kuang; Chang, Long-Sen; Lin, Shinne-Ren

    2012-10-01

    Cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity. Epidermal growth factor (EGF) and its receptor, EGFR, play roles in cancer metastasis in various tumors. We use EGF as a metastatic inducer of MDA-MB-231 cells to investigate the effect of CTX III on cell migration. CTX III inhibited the EGF-induced activation of matrix metalloproteinase-9 (MMP-9), and further suppressed cell invasion and migration without obvious cellular cytotoxicity. CTX III suppressed EGF-induced nuclear factor-kappaB (NF-κB) nuclear translocation and also abrogated the EGF-induced phosphorylation of EGFR, phosphatidylinositol 3-kinase (PI3K)/Akt, and extracellular regulated kinase (ERK)1/2. In addition, CTX III similar to wortmannin (a PI3K inhibitor) and U0126 (an up-stream kinase regulating ERK1/2 inhibitor) attenuated cell migration and invasion induced by EGF. Furthermore, the EGFR inhibitor AG1478 inhibited EGF-induced MMP-9 expression, cell migration and invasion, as well as the activation of ERK1/2 and PI3K/Akt, suggesting that ERK1/2 and PI3K/Akt activation occur downstream of EGFR activation. These findings suggest that CTX III inhibited the EGF-induced invasion and migration of MDA-MB-231 cells via EGFR-dependent PI3K/Akt, ERK1/2, and NF-κB signaling, leading to the down-regulation of MMP-9 expression. These results provide a novel mechanism to explain the role of CTX III as a potent anti-metastatic agent in MDA-MB-231 cells.

  4. An Online Full-Body Motion Recognition Method Using Sparse and Deficient Signal Sequences

    Directory of Open Access Journals (Sweden)

    Chengyu Guo

    2014-01-01

    Full Text Available This paper presents a method to recognize continuous full-body human motion online by using sparse, low-cost sensors. The only input signals needed are linear accelerations without any rotation information, which are provided by four Wiimote sensors attached to the four human limbs. Based on the fused hidden Markov model (FHMM and autoregressive process, a predictive fusion model (PFM is put forward, which considers the different influences of the upper and lower limbs, establishes HMM for each part, and fuses them using a probabilistic fusion model. Then an autoregressive process is introduced in HMM to predict the gesture, which enables the model to deal with incomplete signal data. In order to reduce the number of alternatives in the online recognition process, a graph model is built that rejects parts of motion types based on the graph structure and previous recognition results. Finally, an online signal segmentation method based on semantics information and PFM is presented to finish the efficient recognition task. The results indicate that the method is robust with a high recognition rate of sparse and deficient signals and can be used in various interactive applications.

  5. Chromium-Insulin Reduces Insulin Clearance and Enhances Insulin Signaling by Suppressing Hepatic Insulin-Degrading Enzyme and Proteasome Protein Expression in KKAy Mice.

    Science.gov (United States)

    Wang, Zhong Q; Yu, Yongmei; Zhang, Xian H; Komorowski, James

    2014-01-01

    JDS-chromium-insulin (CRI)-003 is a novel form of insulin that has been directly conjugated with chromium (Cr) instead of zinc. Our hypothesis was that CRI enhances insulin's effects by altering insulin-degrading enzyme (IDE) and proteasome enzymes. To test this hypothesis, we measured hepatic IDE content and proteasome parameters in a diabetic animal model. Male KKAy mice were randomly divided into three groups (n = 8/group); Sham (saline), human regular insulin (Reg-In), and chromium conjugated human insulin (CRI), respectively. Interventions were initiated at doses of 2 U insulin/kg body weight daily for 8-weeks. Plasma glucose and insulin were measured. Hepatic IDE, proteasome, and insulin signaling proteins were determined by western blotting. Insulin tolerance tests at week 7 showed that both insulin treatments significantly reduced glucose concentrations and increased insulin levels compared with the Sham group, CRI significantly reduced glucose at 4 and 6 h relative to Reg-In (P < 0.05), suggesting the effects of CRI on reducing glucose last longer than Reg-In. CRI treatment significantly increased hepatic IRS-1 and Akt1 and reduced IDE, 20S as well as 19S protein abundance (P < 0.01, P < 0.05, and P < 0.001, respectively), but Reg-In only significantly increased Akt1 (P < 0.05). Similar results were also observed in Reg-In- and CRI-treated HepG2 cells. This study, for the first time, demonstrates that CRI reduces plasma insulin clearance by inhibition of hepatic IDE protein expression and enhances insulin signaling as well as prevents degradation of IRS-1 and IRS-2 by suppressing ubiquitin-proteasome pathway in diabetic mice.

  6. Chromium-insulin reduces insulin clearance and enhances insulin signaling by suppressing hepatic insulin-degrading enzyme and proteasome protein expression in KKAy mice

    Directory of Open Access Journals (Sweden)

    Zhong Q Wang

    2014-07-01

    Full Text Available JDS-CRI-003 (CRI is a novel form of insulin that has been directly conjugated with chromium (Cr instead of zinc. Our hypothesis was that CRI enhances insulin’s effects by altering insulin degrading enzyme (IDE and proteasome enzymes. To test this hypothesis, we measured hepatic IDE content and proteasome parameters in a diabetic animal model. Male KKAy mice were randomly divided into three groups (n=8/group; Sham (saline, human insulin (Reg-In and chromium conjugated human insulin (CRI, respectively. Interventions were initiated at doses of 2 U insulin/kg body weight daily for eight-weeks. Plasma glucose and insulin were measured. Hepatic IDE, proteasome and insulin signaling proteins were determined by western blotting. Insulin tolerance tests at week 7 showed that both insulin treatments significantly reduced glucose concentrations and increased insulin levels compared with the Sham group, CRI significantly reduced glucose at 4 and 6 hours relative to Reg-In (P<0.05, suggesting the effects of CRI on reducing glucose last longer than Reg-In. CRI treatment significantly increased hepatic IRS-1 and Akt1 and reduced IDE, 20S as well as 19S protein abundance (P<0.01, P<0.05, and P<0.001, respectively, but Reg-In only significantly increased Akt1 (P<0.05. Similar results were also observed in Reg-In and CRI treated HepG2 cells. This study, for the first time, demonstrates that CRI reduces plasma insulin clearance by inhibition of hepatic IDE protein expression and enhances insulin signaling as well as prevents degradation of IRS-1 and IRS-2 by suppressing ubiquitin-proteasome pathway in diabetic mice.

  7. 4-1BB Signaling in Conventional T Cells Drives IL-2 Production That Overcomes CD4+CD25+FoxP3+ T Regulatory Cell Suppression.

    Directory of Open Access Journals (Sweden)

    Hampartsoum B Barsoumian

    Full Text Available Costimulation with the recombinant SA-4-1BBL agonist of 4-1BB receptor on conventional CD4+ T cells (Tconvs overcomes the suppression mediated by naturally occurring CD4+CD25+FoxP3+ T regulatory cells (Tregs. The mechanistic basis of this observation has remained largely unknown. Herein we show that Tconvs, but not Tregs, are the direct target of SA-4-1BBL-mediated evasion of Treg suppression. IL-2 produced by Tconvs in response to 4-1BB signaling is both necessary and sufficient for overcoming Treg suppression. Supernatant from Tconvs stimulated with SA-4-1BBL contains high levels of IL-2 and overcomes Treg suppression in ex vivo Tconv:Treg cocultures. Removal of IL-2 from such supernatant restores Treg suppression and repletion of Tconv:Treg cocultures with exogenous recombinant IL-2 overcomes suppression. This study establishes 4-1BB signaling as a key circuit that regulates physical and functional equilibrium between Tregs and Tconvs with important implications for immunotherapy for indications where a fine balance between Tregs and Teffs plays a decisive role.

  8. The suppressor of cytokine signalling 3, SOCS3, may be one critical modulator of seasonal body weight changes in the Siberian hamster, Phodopus sungorus.

    Science.gov (United States)

    Tups, A; Barrett, P; Ross, A W; Morgan, P J; Klingenspor, M; Mercer, J G

    2006-02-01

    The Siberian hamster, Phodopus sungorus, exhibits a remarkable cycle of body weight, reproduction and leptin sensitivity in response to a seasonal change in photoperiod. In the present study, we investigated the hypothesis that the suppressor of cytokine signalling 3 (SOCS3) plays a critical role in the regulation of the seasonal body weight cycle. We analysed arcuate nucleus SOCS3 gene expression in short day length (SD; 8 : 16 h light/dark) acclimated Siberian hamsters that were transferred back to long day length (LD; 16 : 8 h light/dark) and in hamsters that spontaneously became photorefractory to SD induced by prolonged exposure. SD acclimated hamsters that were transferred back to LD for 1, 2, 3, 4 or 6 weeks, increased arcuate nucleus SOCS3 gene expression to the LD level within 2 weeks, and maintained this higher level thereafter. The early increase of SOCS3 gene expression preceded the LD-induced rise in body weight by approximately 3 weeks. Hamsters kept in SD for an extended period (25 weeks), began to become refractory to SD and to increase body weight. By this time, there was no difference in level of SOCS3 gene expression between LD and SD photoperiods, although body weight was still suppressed in SD hamsters. Finally, we addressed whether SOCS3 gene expression is related to SD-induced gonadal regression or to body weight decrease by comparing Siberian hamsters with Syrian hamsters. The latter exhibited substantial SD-induced gonadal regression but only limited seasonal changes in body weight. Acclimation to either LD or SD for 14 weeks had no effect on SOCS3 gene expression. This implies that arcuate nucleus SOCS3 gene expression is unlikely to be related to seasonal cycles in reproductive activity. Taken together, the findings further strengthen our hypothesis that SOCS3 may be one molecular trigger of seasonal cycles in body weight.

  9. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  10. Overexpression of a minimal domain of calpastatin suppresses IL-6 production and Th17 development via reduced NF-κB and increased STAT5 signals.

    Directory of Open Access Journals (Sweden)

    Mikiko Iguchi-Hashimoto

    Full Text Available Calpain, a calcium-dependent cysteine protease, is reportedly involved in the pathophysiology of autoimmune diseases such as rheumatoid arthritis (RA. In addition, autoantibodies against calpastatin, a natural and specific inhibitor of calpain, are widely observed in RA. We previously reported that E-64-d, a membrane-permeable cysteine protease inhibitor, is effective in treating experimental arthritis. However, the exact role of the calpastatin-calpain balance in primary inflammatory cells remains unclear. Here we investigated the effect of calpain-specific inhibition by overexpressing a minimal functional domain of calpastatin in primary helper T (Th cells, primary fibroblasts from RA patients, and fibroblast cell lines. We found that the calpastatin-calpain balance varied during Th1, Th2, and Th17 development, and that overexpression of a minimal domain of calpastatin (by retroviral gene transduction or the inhibition of calpain by E-64-d suppressed the production of IL-6 and IL-17 by Th cells and the production of IL-6 by fibroblasts. These suppressions were associated with reductions in RORγt expression and STAT3 phosphorylation. Furthermore, inhibiting calpain by silencing its small regulatory subunit (CPNS suppressed Th17 development. We also confirmed that overexpressing a minimal domain of calpastatin suppressed IL-6 by reducing NF-κB signaling via the stabilization of IκBα, without affecting the upstream signal. Moreover, our findings indicated that calpastatin overexpression suppressed IL-17 production by Th cells by up-regulating the STAT5 signal. Finally, overexpression of a minimal domain of calpastatin suppressed IL-6 production efficiently in primary fibroblasts derived from the RA synovium. These findings suggest that inhibiting calpain by overexpressing a minimal domain of calpastatin could coordinately suppress proinflammatory activities, not only those of Th cells but also of synovial fibroblasts. Thus, this strategy may

  11. Brazilian Propolis Suppresses Angiogenesis by Inducing Apoptosis in Tube-Forming Endothelial Cells through Inactivation of Survival Signal ERK1/2.

    Science.gov (United States)

    Kunimasa, Kazuhiro; Ahn, Mok-Ryeon; Kobayashi, Tomomi; Eguchi, Ryoji; Kumazawa, Shigenori; Fujimori, Yoshihiro; Nakano, Takashi; Nakayama, Tsutomu; Kaji, Kazuhiko; Ohta, Toshiro

    2011-01-01

    We recently reported that propolis suppresses tumor-induced angiogenesis through tube formation inhibition and apoptosis induction in endothelial cells. However, molecular mechanisms underlying such angiogenesis suppression by propolis have not been fully elucidated. The aim of this study was to investigate the effects of ethanol extract of Brazilian propolis (EEBP) on two major survival signals, extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, and to elucidate whether changes in these signals were actually involved in antiangiogenic effects of the propolis. Detection by western blotting revealed that EEBP suppressed phosphorylation of ERK1/2, but not that of Akt. Pharmacological inhibition by U0126 demonstrated that ERK1/2 inactivation alone was enough to inhibit tube formation and induce apoptosis. It was also shown that EEBP and U0126 similarly induced activation of caspase-3 and cleavage of poly ADP-ribose polymerase (PARP) and lamin A/C, all of which are molecular markers of apoptosis. These results indicate that inhibition of survival signal ERK1/2, and subsequent induction of apoptosis, is a critical mechanism of angiogenesis suppression by EEBP.

  12. Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway.

    Directory of Open Access Journals (Sweden)

    Huijuan Guo

    Full Text Available Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2 levels. We tested the hypothesis that elevated CO(2 would reduce resistance (i.e., the ability to prevent damage but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO(2 reduced resistance by decreasing the jasmonic acid (JA level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO(2. Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height was also reduced by elevated CO(2. Under ambient CO(2, the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype plants, but elevated CO(2 reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO(2 will simultaneously reduce the resistance and tolerance of tomato plants.

  13. Consumption of pork-liver protein hydrolysate reduces body fat in Otsuka Long-Evans Tokushima Fatty rats by suppressing hepatic lipogenesis.

    Science.gov (United States)

    Shimizu, Muneshige; Tanabe, Soichi; Morimatsu, Fumiki; Nagao, Koji; Yanagita, Teruyoshi; Kato, Norihisa; Nishimura, Toshihide

    2006-01-01

    This study was performed to examine the effect of consumption of pork-liver protein hydrolysate (PLH) on body fat accumulation in Otsuka Long-Evans Tokushima Fatty (OLETF) rats as a non-insulin-dependent diabetes mellitus model and in Long-Evans Tokushima Otsuka (LETO) rats as a control. Male 20-week-old OLETF and LETO rats were pair-fed either PLH or casein containing diet for 14 weeks. In the OLETF rats, dietary PLH significantly reduced the growth and weight of fat pad including perirenal and epididymal adipose tissues. Consumption of PLH markedly suppressed hepatic activities of lipogenesis enzymes such as glucose-6-phosphate dehydrogenase and fatty acid synthase and slightly elevated fecal excretion of total fat. In the LETO rats, growth and adipose tissue weight were unaffected by dietary treatment. The results suggest that PLH is a novel ingredient suppressing body fat in genetically obese rats by reducing lipogenesis.

  14. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5.

    Science.gov (United States)

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L; Noy, Noa

    2015-11-23

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer.

  15. Stem signal suppression in fiber-coupled Al2O3:C dosimetry for 192Ir brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus Erik; Edmund, J.M.

    2011-01-01

    was adapted for on-line in-vivo dosimetry using fiber-coupled carbon doped aluminum oxide (Al2O3:C). The technique involved a two-channel optical filtration of the radioluminescence (RL) emitted from a pre-irradiated Al2O3:C crystal with enhanced sensitivity. The system responded linearly in the absorbed dose......The stem signal, composed of fluorescence and Čerenkov light, becomes a significant source of uncertainty in fiber-coupled afterloaded brachytherapy dosimetry when the source dwells near the fiber cable but far from the detector. A stem suppression technique originally developed for scintillators...... range 0.05–50 Gy, as needed under high dose rate (HDR) conditions. The dosimeter was irradiated in a water phantom using a 37 GBq 192Ir source at source-to-crystal distances ranging from 0.5 cm to 6.7 cm. For irradiation conditions that generated a stem component in the range 4%–15% in the unfiltered...

  16. A nuclear localized protein ZCCHC9 is expressed in cerebral cortex and suppresses the MAPK signal pathway

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The CCHC-type zinc finger motif has numerous biological activities (such as DNA binding and RNA binding) and can also mediate protein-protein interaction. This article gives a primary report about the human ZCCHC9 gene. Protein ZCCHC9 contains four CCHC motifs and is highly conserved in humans, mice, and rats. The whole cDNA sequence of the ZCCHC9 gene has been amplified by PCR and a number of plasmids have been constructed for further study. The results show that ZCCHC9 is localized in the nucleus, and especially concentrated in the nucleolus. It is highly expressed in the brain and testicles of the mouse. This has been confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). In situ hybridization of the mouse brain indicates that ZCCHC9 is mainly expressed in the cerebral cortex. Reporter gene assay shows that ZCCHC9 suppresses the transcription activities of NF-kappa B and SRE,and may play roles in the Mitogen-Activated Protein Kinase (MAPK) signaling transduction pathway.

  17. Matrine derivative WM130 inhibits hepatocellular carcinoma by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways.

    Science.gov (United States)

    Qian, Liqiang; Liu, Yan; Xu, Yang; Ji, Weidan; Wu, Qiuye; Liu, Yongjing; Gao, Quangen; Su, Changqing

    2015-11-01

    Matrine, a sophora alkaloid, has been demonstrated to exert antitumor effects on many types of cancer. However, its bioactivity is weak and its potential druggability is low. We modified the structure of matrine and obtained a new matrine derivative, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities than matrine. In this study, we investigated the antitumor activity and the underlying mechanisms of WM130 on hepatocellular carcinoma (HCC) cells in vitro and in vivo, and found that WM130 inhibited the proliferation, invasion, migration and induced apoptosis of HCC cells in a dose-dependent manner. Furthermore, after treatment with WM130, the expressions of p-EGFR, p-ERK, p-AKT, MMP-2 and the ratio of Bcl-2/Bax were significantly down-regulated, whereas the expression of PTEN was increased in HCC cells. Moreover, WM130 inhibited Huh-7 xenograft tumor growth in a dose-dependent manner after intravenous administration. Immunohistochemistry results demonstrated that WM130 treatment resulted in down-regulation of p-EGFR, MMP-2, and Ki67 and up-regulation of PTEN. The findings indicated that WM130 could inhibit cell proliferation, invasion, migration and induced apoptosis in HCC cells by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways and may be a novel effective candidate for HCC treatment.

  18. Fucoidan from Fucus vesiculosus suppresses hepatitis B virus replication by enhancing extracellular signal-regulated Kinase activation.

    Science.gov (United States)

    Li, Huifang; Li, Junru; Tang, Yuan; Lin, Lin; Xie, Zhanglian; Zhou, Jia; Zhang, Liyun; Zhang, Xiaoyong; Zhao, Xiaoshan; Chen, Zhengliang; Zuo, Daming

    2017-09-16

    Hepatitis B virus (HBV) infection is a serious public health problem leading to cirrhosis and hepatocellular carcinoma. As the clinical utility of current therapies is limited, the development of new therapeutic approaches for the prevention and treatment of HBV infection is imperative. Fucoidan is a natural sulfated polysaccharide that extracted from different species of brown seaweed, which was reported to exhibit various bioactivities. However, it remains unclear whether fucoidan influences HBV replication or not. The HBV-infected mouse model was established by hydrodynamic injection of HBV replicative plasmid, and the mice were treated with saline or fucoidan respectively. Besides, we also tested the inhibitory effect of fucoidan against HBV infection in HBV-transfected cell lines. The result showed that fucoidan from Fucus vesiculosus decreased serum HBV DNA, HBsAg and HBeAg levels and hepatic HBcAg expression in HBV-infected mice. Moreover, fucoidan treatment also suppressed intracellular HBcAg expression and the secretion of the HBV DNA as well as HBsAg and HBeAg in HBV-expressing cells. Furthermore, we proved that the inhibitory activity by fucoidan was due to the activation of the extracellular signal-regulated kinase (ERK) pathway and the subsequent production of type I interferon. Using specific inhibitor of ERK pathway abrogated the fucoidan-mediated inhibition of HBV replication. This study highlights that fucoidan might be served as an alternative therapeutic approach for the treatment of HBV infection.

  19. Vision of the body increases interference on the somatic signal detection task.

    Science.gov (United States)

    Mirams, Laura; Poliakoff, Ellen; Brown, Richard J; Lloyd, Donna M

    2010-05-01

    Research suggests that attention has a significant effect on somatic perception in both healthy people and those who suffer from somatic disturbance. The current study investigates the effects of attending to the body on somatic awareness and a particular type of somatic disturbance: erroneous reports of touch sensation, as measured by the Somatic Signal Detection Task (SSDT). During the SSDT, participants are required to detect near-threshold tactile stimulation at their fingertip. Previous research has found that healthy participants erroneously report touch sensations in the absence of a stimulus on this task and that such false alarms are increased when a simultaneous light flash is presented next to their fingertip. Thirty-seven participants completed the SSDT under two conditions: non-informative vision of the hand and no vision of the hand. False alarms were significantly higher in light trials in the non-informative vision condition compared to light trials in the no-vision condition. However, hit rates, sensitivity (d') and response criterion (c) were not affected by non-informative vision of the hand. Using the SSDT, we found that viewing the body increased somatic interference, possibly due to raised awareness of internal bodily sensations. This work provides evidence that viewing the body can have a detrimental effect on simple detection of near-threshold tactile stimulation.

  20. Association between regulator of G protein signaling 9-2 and body weight.

    Directory of Open Access Journals (Sweden)

    Jeffrey L Waugh

    Full Text Available Regulator of G protein signaling 9-2 (RGS9-2 is a protein that is highly enriched in the striatum, a brain region that mediates motivation, movement and reward responses. We identified a naturally occurring 5 nucleotide deletion polymorphism in the human RGS9 gene and found that the mean body mass index (BMI of individuals with the deletion was significantly higher than those without. A splicing reporter minigene assay demonstrated that the deletion had the potential to significantly decrease the levels of correctly spliced RGS9 gene product. We measured the weights of rats after virally transduced overexpression of RGS9-2 or the structurally related RGS proteins, RGS7, or RGS11, in the nucleus accumbens (NAc and observed a reduction in body weight after overexpression of RGS9-2 but not RGS7 or 11. Conversely, we found that the RGS9 knockout mice were heavier than their wild-type littermates and had significantly higher percentages of abdominal fat. The constituent adipocytes were found to have a mean cross-sectional area that was more than double that of corresponding cells from wild-type mice. However, food intake and locomotion were not significantly different between the two strains. These studies with humans, rats and mice implicate RGS9-2 as a factor in regulating body weight.

  1. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards

    Science.gov (United States)

    Cadena, Viviana; Porter, Warren P.; Kearney, Michael R.

    2016-01-01

    Many terrestrial ectotherms are capable of rapid colour change, yet it is unclear how these animals accommodate the multiple functions of colour, particularly camouflage, communication and thermoregulation, especially when functions require very different colours. Thermal benefits of colour change depend on an animal's absorptance of solar energy in both UV–visible (300–700 nm) and near-infrared (NIR; 700–2600 nm) wavelengths, yet colour research has focused almost exclusively on the former. Here, we show that wild-caught bearded dragon lizards (Pogona vitticeps) exhibit substantial UV–visible and NIR skin reflectance change in response to temperature for dorsal but not ventral (throat and upper chest) body regions. By contrast, lizards showed the greatest temperature-independent colour change on the beard and upper chest during social interactions and as a result of circadian colour change. Biophysical simulations of heat transfer predicted that the maximum temperature-dependent change in dorsal reflectivity could reduce the time taken to reach active body temperature by an average of 22 min per active day, saving 85 h of basking time throughout the activity season. Our results confirm that colour change may serve a thermoregulatory function, and competing thermoregulation and signalling requirements may be met by partitioning colour change to different body regions in different circumstances.

  2. Hypertensive stretch regulates endothelial exocytosis of Weibel-Palade bodies through VEGF receptor 2 signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Zhenqian Hu; Xiaofan Han; Beibei Jiang; Rongli Zhang; Xiaoyu Zhang; Yao Lu

    2013-01-01

    Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs),the first stage in leukocyte trafficking,plays a pivotal role in inflammation and injury.Acute mechanical stretch has been closely associated with vascular inflammation,although the precise mechanism is unknown.Here,we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial ceils (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways.Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs,promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane.We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo.Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCy1/calcium pathway.Interestingly,stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway.Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments,as well as in acute hypertensive mouse models.These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis,which is modulated by VEGFR2 signaling.Thus,VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.

  3. Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body.

    Science.gov (United States)

    Sitaraman, Divya; Aso, Yoshinori; Jin, Xin; Chen, Nan; Felix, Mario; Rubin, Gerald M; Nitabach, Michael N

    2015-11-16

    The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class. Here, we deploy a combination of neurogenetic, behavioral, and physiological approaches to identify and mechanistically dissect sleep-controlling circuits of the MB. Our studies reveal the existence of two segregated excitatory synaptic microcircuits that propagate homeostatic sleep information from different populations of intrinsic MB "Kenyon cells" (KCs) to specific sleep-regulating MBONs: sleep-promoting KCs increase sleep by preferentially activating the cholinergic MBONs, while wake-promoting KCs decrease sleep by preferentially activating the glutamatergic MBONs. Importantly, activity of the sleep-promoting MB microcircuit is increased by sleep deprivation and is necessary for homeostatic rebound sleep (i.e., the increased sleep that occurs after, and in compensation for, sleep lost during deprivation). These studies reveal for the first time specific functional connections between subsets of KCs and particular MBONs and establish the identity of synaptic microcircuits underlying transmission of homeostatic sleep signals in the MB.

  4. Hypertensive stretch regulates endothelial exocytosis of Weibel-Palade bodies through VEGF receptor 2 signaling pathways.

    Science.gov (United States)

    Xiong, Yan; Hu, Zhenqian; Han, Xiaofan; Jiang, Beibei; Zhang, Rongli; Zhang, Xiaoyu; Lu, Yao; Geng, Chenyang; Li, Wei; He, Yulong; Huo, Yingqing; Shibuya, Masabumi; Luo, Jincai

    2013-06-01

    Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs), the first stage in leukocyte trafficking, plays a pivotal role in inflammation and injury. Acute mechanical stretch has been closely associated with vascular inflammation, although the precise mechanism is unknown. Here, we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial cells (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways. Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs, promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane. We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo. Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCγ1/calcium pathway. Interestingly, stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway. Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments, as well as in acute hypertensive mouse models. These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis, which is modulated by VEGFR2 signaling. Thus, VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.

  5. Design and analysis of low-power body area networks based on biomedical signals

    Science.gov (United States)

    Hu, Fengye; Li, Shasha; Xue, Tao; Li, Guofeng

    2012-06-01

    A body area network (BAN) as one branch of Sensor Networks, is an inter-disciplinary area which holds great promises for revolutionising the current health care systems. BAN combines the real-time updating of biomedical data with the continuous and dynamic health care monitoring closely. A number of intelligence biomedical sensors can be integrated into a wireless BAN system, and the system can be used for prevention, diagnosis and timely treatment of various medical conditions. In this article, we propose a data fusion technique for a BAN based on biomedical signals. This proposed solution is of much lower complexity than conventional techniques and hence can significantly reduce the power consumption in the BAN. The technology is carried out by removing redundant and unnecessary sample information and shifting a large portion of processing and control loads to the remote control centre in an asymmetric manner. This approach not only reduces the power consumption of biosensor nodes in a BAN, but also ensures the integrity of the biomedical information. In addition, we present a self-designed distributed time-space correlation compressive sensing model and propose an efficient algorithm based on biomedical signals. Simulation results show that the proposed algorithm can not only reconstruct the original signal with high accuracy and but also achieve significant reduction in power consumption.

  6. On the suppression of background signals originating from NMR hardware components. Application to zero echo time imaging and relaxation time analysis.

    Science.gov (United States)

    Dreher, Wolfgang; Bardenhagen, Ingo; Huang, Li; Bäumer, Marcus

    2016-04-01

    Modern NMR imaging systems used for biomedical research are equipped with B0 gradient systems with strong maximum gradient strength and short switching time enabling (1)H NMR measurements of samples with very short transverse relaxation times. However, background signal originating from non-optimized RF coils may hamper experiments with ultrashort delays between RF excitation and signal reception. We demonstrate that two simple means, outer volume suppression and the use of shaped B0 fields produced by higher-order shim coils, allow a considerable suppression of disturbing background signals. Thus, the quality of NMR images acquired at ultrashort or zero echo time is improved and systematic errors in quantitative data evaluation are avoided. Fields of application comprise MRI with ultrashort echo time or relaxation time analysis, for both biomedical research and characterizing porous media filled with liquids or gases.

  7. Puerarin suppresses proliferation of endometriotic stromal cells partly via the MAPK signaling pathway induced by 17ß-estradiol-BSA.

    Directory of Open Access Journals (Sweden)

    Wen Cheng

    Full Text Available BACKGROUND: Puerarin is a major isoflavonoid compound extracted from Radix puerariae. It has a weak estrogenic action by binding to estrogen receptors (ERs. In our early clinical practice to treat endometriosis, a better therapeutic effect was achieved if the formula of traditional Chinese medicine included Radix puerariae. The genomic and non-genomic effects of puerarin were studied in our Lab. This study aims to investigate the ability of puerarin to bind competitively to ERs in human endometriotic stromal cells (ESCs, determine whether and how puerarin may influence phosphorylation of the non-genomic signaling pathway induced by 17ß-estradiol conjugated to BSA (E(2-BSA. METHODOLOGY: ESCs were successfully established. Binding of puerarin to ERs was assessed by a radioactive competitive binding assay in ESCs. Activation of the signaling pathway was screened by human phospho-kinase array, and was further confirmed by western blot. Cell proliferation was analyzed according to the protocol of CCK-8. The mRNA and protein levels of cyclin D1, Cox-2 and Cyp19 were determined by real-time PCR and western blotting. Inhibitor of MEK1/2 or ER antagonist was used to confirm the involved signal pathway. PRINCIPAL FINDINGS: Our data demonstrated that the total binding ability of puerarin to ERs on viable cells is around 1/3 that of 17ß-estradiol (E(2. E(2-BSA was able to trigger a rapid, non-genomic, membrane-mediated activation of ERK1/2 in ESCs and this phenomenon was associated with an increased proliferation of ESCs. Treating ESCs with puerarin abrogated the phosphorylation of ERK and significantly decreased cell proliferation, as well as related gene expression levels enhanced by E(2-BSA. CONCLUSIONS/SIGNIFICANCE: Puerarin suppresses proliferation of ESCs induced by E(2-BSA partly via impeding a rapid, non-genomic, membrane-initiated ERK pathway, and down-regulation of Cyclin D1, Cox-2 and Cyp19 are involved in the process. Our data further show

  8. Comparative effects of the long-acting GLP-1 receptor ligands, liraglutide and exendin-4, on food intake and body weight suppression in rats.

    Science.gov (United States)

    Hayes, Matthew R; Kanoski, Scott E; Alhadeff, Amber L; Grill, Harvey J

    2011-07-01

    The glucagon-like-peptide-1 receptor (GLP-1R) agonists, liraglutide (Victoza) and the synthetic product of exendin-4 (Byetta), are approved for type II diabetes mellitus (T2DM) treatment and may be efficacious in obesity treatment as well, in part, due to the drugs' resistance to enzymatic degradation and prolonged half-life relative to endogenous GLP-1. To address the need to directly compare the food intake- and body weight-suppressive effects of these two GLP-1R ligands, acute and chronic dosing experiments were performed. Once-daily (q.d.) exendin-4 (0, 0.33, 1.5, and 3.0 µg/kg) and liraglutide (0, 50, 100, and 300 µg/kg, q.d.) both reduced the chow intake in nonobese rats in a dose-dependent fashion following either intraperitoneal (IP) or subcutaneous (SC) administration, whereas only liraglutide reduced 24 and 48 h body weight in nonobese, chow-maintained rats. Chow intake and body weight suppression by liraglutide were of greater magnitude and shorter latency following IP compared to SC delivery, whereas for exendin-4, the magnitude of intake-suppression was similar for IP and SC administration. The effects of chronic delivery (7 consecutive days; IP) of liraglutide (25 and 50 µg/kg; q.d.) and exendin-4 (3 µg/kg; q.d. and twice-daily (b.i.d.)) on food intake and body weight were also examined in diet-induced obese (DIO) rats. Liraglutide (50 µg/kg q.d.) and exendin-4 (3 µg/kg b.i.d.) were comparable in suppressing overall high fat/sucrose diet (HFS; 60% kcal from fat) intake. Both drugs regimens yielded marked weight loss over the 7-day period. The weight loss effect of liraglutide was achieved in the first 2 days and remained stable for the duration of the experiment; weight loss with exendin-4 appeared more linear over the 7-day period. In conclusion, administration of the GLP-1R ligands, exendin-4 (b.i.d.) and liraglutide (q.d.), lead to comparable and pronounced suppression of food intake and body weight in DIO rats, suggesting a potential role

  9. N(6)-(2-Hydroxyethyl)adenosine in the Medicinal Mushroom Cordyceps cicadae Attenuates Lipopolysaccharide-Stimulated Pro-inflammatory Responses by Suppressing TLR4-Mediated NF-κB Signaling Pathways.

    Science.gov (United States)

    Lu, Meng-Ying; Chen, Chin-Chu; Lee, Li-Ya; Lin, Ting-Wei; Kuo, Chia-Feng

    2015-10-23

    Natural products play an important role in promoting health with relation to the prevention of chronic inflammation. N(6)-(2-Hydroxyethyl)adenosine (HEA), a physiologically active compound in the medicinal mushroom Cordyceps cicadae, has been identified as a Ca(2+) antagonist and shown to control circulation and possess sedative activity in pharmacological tests. The fruiting body of C. cicadae has been widely applied in Chinese medicine. However, neither the anti-inflammatory activities of HEA nor the fruiting bodies of C. cicadae have been carefully examined. In this study, we first cultured the fruiting bodies of C. cicadae and then investigated the anti-inflammatory activities of water and methanol extracts of wild and artificially cultured C. cicadae fruiting bodies. Next, we determined the amount of three bioactive compounds, adenosine, cordycepin, and HEA, in the extracts and evaluated their synergistic anti-inflammatory effects. Moreover, the possible mechanism involved in anti-inflammatory action of HEA isolated from C. cicadae was investigated. The results indicate that cordycepin is more potent than adenosine and HEA in suppressing the lipopolysaccharide (LPS)-stimulated release of pro-inflammatory cytokines by RAW 264.7 macrophages; however, no synergistic effect was observed with these three compounds. HEA attenuated the LPS-induced pro-inflammatory responses by suppressing the toll-like receptor (TLR)4-mediated nuclear factor-κB (NF-κB) signaling pathway. This result will support the use of HEA as an anti-inflammatory agent and C. cicadae fruiting bodies as an anti-inflammatory mushroom.

  10. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.

    Science.gov (United States)

    Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S

    2010-04-01

    Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.

  11. Merlin/NF2 Suppresses Pancreatic Tumor Growth and Metastasis by Attenuating the FOXM1-Mediated Wnt/β-Catenin Signaling.

    Science.gov (United States)

    Quan, Ming; Cui, Jiujie; Xia, Tian; Jia, Zhiliang; Xie, Dacheng; Wei, Daoyan; Huang, Suyun; Huang, Qian; Zheng, Shaojiang; Xie, Keping

    2015-11-15

    Merlin, the protein encoded by the NF2 gene, is a member of the band 4.1 family of cytoskeleton-associated proteins and functions as a tumor suppressor for many types of cancer. However, the roles and mechanism of Merlin expression in pancreatic cancer have remained unclear. In this study, we sought to determine the impact of Merlin expression on pancreatic cancer development and progression using human tissue specimens, cell lines, and animal models. Decreased expression of Merlin was pronounced in human pancreatic tumors and cancer cell lines. Functional analysis revealed that restored expression of Merlin inhibited pancreatic tumor growth and metastasis in vitro and in vivo. Furthermore, Merlin suppressed the expression of Wnt/β-catenin signaling downstream genes and the nuclear expression of β-catenin protein, and overexpression of Forkhead box M1 (FOXM1) attenuated the suppressive effect of Merlin on Wnt/β-catenin signaling. Mechanistically, Merlin decreased the stability of FOXM1 protein, which plays critical roles in nuclear translocation of β-catenin. Collectively, these findings demonstrated that Merlin critically regulated pancreatic cancer pathogenesis by suppressing FOXM1/β-catenin signaling, suggesting that targeting novel Merlin/FOXM1/β-catenin signaling is an effective therapeutic strategy for pancreatic cancer.

  12. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    Full Text Available Ursolic acid (UA, a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viability and clone formation and changes in cell morphology and spreading. UA also suppressed colon cancer cell migration by inhibiting MMP9 and upregulating CDH1 expression. Further studies showed that UA inhibited the phosphorylation of Akt and ERK proteins. Pretreatment with an Akt or ERK-specific inhibitor considerably abrogated the proliferation inhibition by UA. UA also significantly inhibited colon cancer cell COX-2 expression and PGE2 production. Pretreatment with a COX-2 inhibitor (celecoxib abrogated the UA-induced cell proliferation. Moreover, we found that UA effectively promoted NF-κB and p300 translocation from cell nuclei to cytoplasm, and attenuated the p300-mediated acetylation of NF-κB and CREB2. Pretreatment with a p300 inhibitor (roscovitine abrogated the UA-induced cell proliferation, which is reversed by p300 overexpression. Furthermore, UA treatment induced colon cancer cell apoptosis, increased the cleavage of PARP, caspase-3 and 9, and trigged the release of cytochrome c from mitochondrial inter-membrane space into cytosol. These results indicate that UA inhibits cell proliferation and induces apoptosis in colon cancer cells through simultaneous modulation of the multiple signaling pathways such as MMP9/CDH1, Akt/ERK, COX-2/PGE2, p300/NF-κB/CREB2, and cytochrome c/caspase pathways.

  13. IL-4 confers resistance to IL-27-mediated suppression on CD4+ T cells by impairing STAT1 signaling

    Science.gov (United States)

    Chen, Zhihong; Wang, Shanze; Erekosima, Nkiruka; Li, Yapeng; Hong, Jessie; Qi, Xiaopeng; Merkel, Patricia; Nagabhushanam, Vijaya; Choo, Eugene; Katial, Rohit; Alam, Rafeul; Trikha, Anita; Chu, HongWei; Zhuang, Yonghua; Jin, Meiling; Bai, Chunxue; Huang, Hua

    2013-01-01

    Background Th2 cells play a critical role in the pathogenesis of allergic asthma. Established Th2 cells have been shown to resist reprogramming into Th1 cells. The inherent stability of Th2 cells poses a significant barrier to treating allergic diseases. Objective We sought to understand the mechanisms by which CD4+ T cells from asthmatic patients resist the IL-27-mediated inhibition. Methods We isolated and cultured CD4+ T cells from both healthy individuals and allergic asthmatic patients in order to test whether IL-27 can inhibit IL-4 production by the cultured CD4+ T cells using ELISA. Culturing conditions that resulted in resistance to IL-27 were determined using both murine and human CD4+ T cell culture systems. STAT1 phosphorylation was analyzed by Western blot and flow cytometry. Suppressor of cytokine signaling (Socs) mRNA expression was measured by quantitative PCR. The small interfering RNA method was used to knockdown the expression of Socs3 mRNA. Main Results We demonstrated that CD4+ T cells from asthmatic patients resisted the suppression of IL-4 production mediated by IL-27. We observed that repeated exposure to Th2-inducing conditions rendered healthy human CD4+ T cells resistant to IL-27-mediated inhibition. Using an in vitro murine culture system, we further demonstrated that repeated or higher doses of IL-4 stimulation, but not IL-2 stimulation, upregulated Socs3 mRNA expression and impaired IL-27-induced STAT1 phosphorylation. The Knockdown of Socs3 mRNA expression restored IL-27-induced STAT1 phosphorylation and IL-27-mediated inhibition of IL-4-production. Conclusions Our findings demonstrate that differentiated Th2 cells can resist IL-27-induced reprogramming toward Th1 cells by downregulating STAT1 phosphorylation and likely explain why the CD4+ T cells of asthmatic patients are resistant to IL-27-mediated inhibition. PMID:23958647

  14. MicroRNA-590 is an EMT-suppressive microRNA involved in the TGFβ signaling pathway.

    Science.gov (United States)

    Liu, Tianming; Nie, Fang; Yang, Xianggui; Wang, Xiaoyan; Yuan, Yue; Lv, Zhongshi; Zhou, Li; Peng, Rui; Ni, Dongsheng; Gu, Yuping; Zhou, Qin; Weng, Yaguang

    2015-11-01

    Over the last few decades, the epithelial-to-mesenchymal transition (EMT) has been identified as being involved in a number of aspects of physiological processes and various pathological events, including embryonic development and renal fibrosis. Transforming growth factor‑β receptor 2 (TGFβR2) is a widely studied gene, which fulfils a vital role in the TGFβ signaling pathway and exerts a crucial function in the progression of EMT. Previous studies demonstrated that the dysregulation of microRNAs (miRNAs) is considered to be associated with the EMT process. However, the precise functional involvement of miRNAs in EMT remains to be fully elucidated. In the present study, the level of miR‑590 was decreased in an EMT model in vitro and in vivo. Furthermore, the overexpression of miR‑590 inhibited EMT by upregulating the epithelial marker, E‑cadherin, and downregulating the mesenchymal markers, laminin, α‑smooth muscle actin (α‑SMA) and collagen, in the human kidney 2 (HK2) cell line. Furthermore, TGFβR2 was negatively regulated by miR‑590. In addition, performing a knockdown of TGFβR2 with small‑interfering RNA had an effect similar to miR‑590 on EMT in the HK2 cell line, whereas the transfection of pCMV‑tag2B‑TGFβR2 reversed the effect of miR‑590 on EMT in HK2 cells. Taken together, the present study demonstrated that miR-590 is a novel EMT-suppressive microRNA, which targets TGFβR2.

  15. Evaluation of body appendage injuries to juvenile signal crayfish (Pacifastacus leniusculus: relationships and consequences

    Directory of Open Access Journals (Sweden)

    Kouba A.

    2011-05-01

    Full Text Available Aggressive behaviour occurs frequently in crayfish and commonly results in injuries to body appendages. This study aimed to evaluate injuries to antennae, chelae, and walking legs of juvenile signal crayfish after seven months of rearing at high stocking density. We suggest that the high incidence of antennae injuries (66.8% is related to their delicate structure and exposed position, which makes them vulnerable to damage. Chelae were more frequently injured (45.5% than walking legs (7.8–23.6%. Considering the robustness of these structures and the scarcity of animals with both chelae missing and/or regenerating (4.9%, it seemed that injured animals were often killed by less injured ones. Antennae of crayfish with a single injured chela were more frequently injured on the side of the body with the damaged chela, and a similar pattern was observed for walking legs. Expanding on previous research reporting a negative relationship only between incidence of chela injury and crayfish size, we found this relationship to be significant for all evaluated appendages. We hypothesize that any injury and accompanying regeneration may have significant impact on subsequent injuries, overall growth, and reproductive success, and may result in death through cannibalism.

  16. UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal

    Science.gov (United States)

    Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.

    2016-05-01

    This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.

  17. Multi-modal signal acquisition using a synchronized wireless body sensor network in geriatric patients.

    Science.gov (United States)

    Pflugradt, Maik; Mann, Steffen; Tigges, Timo; Görnig, Matthias; Orglmeister, Reinhold

    2016-02-01

    Wearable home-monitoring devices acquiring various biosignals such as the electrocardiogram, photoplethysmogram, electromyogram, respirational activity and movements have become popular in many fields of research, medical diagnostics and commercial applications. Especially ambulatory settings introduce still unsolved challenges to the development of sensor hardware and smart signal processing approaches. This work gives a detailed insight into a novel wireless body sensor network and addresses critical aspects such as signal quality, synchronicity among multiple devices as well as the system's overall capabilities and limitations in cardiovascular monitoring. An early sign of typical cardiovascular diseases is often shown by disturbed autonomic regulations such as orthostatic intolerance. In that context, blood pressure measurements play an important role to observe abnormalities like hypo- or hypertensions. Non-invasive and unobtrusive blood pressure monitoring still poses a significant challenge, promoting alternative approaches including pulse wave velocity considerations. In the scope of this work, the presented hardware is applied to demonstrate the continuous extraction of multi modal parameters like pulse arrival time within a preliminary clinical study. A Schellong test to diagnose orthostatic hypotension which is typically based on blood pressure cuff measurements has been conducted, serving as an application that might significantly benefit from novel multi-modal measurement principles. It is further shown that the system's synchronicity is as precise as 30 μs and that the integrated analog preprocessing circuits and additional accelerometer data provide significant advantages in ambulatory measurement environments.

  18. Structural and functional characterization of human telomerase RNA processing and cajal body localization signals.

    Science.gov (United States)

    Theimer, Carla A; Jády, Beáta E; Chim, Nicholas; Richard, Patricia; Breece, Katherine E; Kiss, Tamás; Feigon, Juli

    2007-09-21

    The RNA component of human telomerase (hTR) includes H/ACA and CR7 domains required for 3' end processing, localization, and accumulation. The terminal loop of the CR7 domain contains the CAB box (ugAG) required for targeting of scaRNAs to Cajal bodies (CB) and an uncharacterized sequence required for accumulation and processing. To dissect out the contributions of the CR7 stem loop to hTR processing and localization, we solved the solution structures of the 3' terminal stem loops of hTR CR7 and U64 H/ACA snoRNA, and the 5' terminal stem loop of U85 C/D-H/ACA scaRNA. These structures, together with analysis of localization, processing, and accumulation of hTRs containing nucleotide substitutions in the CR7 domain, identified the sequence and structural requirements of the hTR processing and CB localization signals and showed that these signals are functionally independent. Further, 3' end processing was found to be a prerequisite for translocation of hTR to CBs.

  19. Regulator of G protein signaling 1 suppresses CXCL12-mediated migration and AKT activation in RPMI 8226 human plasmacytoma cells and plasmablasts.

    Science.gov (United States)

    Pak, Hyo-Kyung; Gil, Minchan; Lee, Yoonkyung; Lee, Hyunji; Lee, A-Neum; Roh, Jin; Park, Chan-Sik

    2015-01-01

    Migration of plasma cells to the bone marrow is critical factor to humoral immunity and controlled by chemokines. Regulator of G protein signaling 1 (RGS1) is a GTPase-activating protein that controls various crucial functions such as migration. Here, we show that RGS1 controls the chemotactic migration of RPMI 8226 human plasmacytoma cells and human plasmablasts. LPS strongly increased RGS1 expression and retarded the migration of RPMI 8226 cells by suppressing CXCL12-mediated AKT activation. RGS1 knockdown by siRNA abolished the retardation of migration and AKT suppression by LPS. RGS1-dependent regulation of migration via AKT is also observed in cultured plasmablasts. We propose novel functions of RGS1 that suppress AKT activation and the migration of RPMI 8226 cells and plasmablasts in CXCL12-mediated chemotaxis.

  20. Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals.

    Science.gov (United States)

    Liang, Shuwei; Chen, Zhuojia; Jiang, Guanmin; Zhou, Yan; Liu, Qiao; Su, Qiao; Wei, Weidong; Du, Jun; Wang, Hongsheng

    2017-02-01

    Triple-negative breast cancer (TNBC) is characterized by high vascularity and frequent metastasis. Here, we found that activation of G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 can significantly inhibit interleukin 6 (IL-6) and vascular endothelial growth factor A (VEGF-A). TNBC tissue microarrays from 100 TNBC patients revealed GPER is negatively associated with IL-6 levels and higher grade and stage. Activation of GPER or anti-IL-6 antibody can inhibit both in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and migration of TNBC cells. While recombinant IL-6 supplementary can significantly reverse the inhibitory effects of G-1, suggesting the essential role of IL-6 in G-1 induced suppression of angiogenesis and invasiveness of TNBC cells. G-1 treatment decreased the phosphorylation, nuclear localization, transcriptional activities of NF-κB and suppressed its binding with IL-6 promoter. BAY11-7028, the inhibitor of NF-κB, can mimic the effect of G-1 to suppression of IL-6 and VEGF-A. While over expression of p65 can attenuate the inhibitory effects of G-1 on IL-6 and VEGF expression. The suppression of IL-6 by G-1 can further inhibit HIF-1α and STAT3 signals in TNBC cells by inhibition their expression, phosphorylation and/or nuclear localization. Moreover, G-1 also inhibited the in vivo NF-κB/IL-6 signals and angiogenesis and metastasis of MDA-MB-231 xenograft tumors. In conclusion, our study demonstrated that activation of GPER can suppress migration and angiogenesis of TNBC via inhibition of NF-κB/IL-6 signals, therefore it maybe act as an important target for TNBC treatment.

  1. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Lee, Mee-Hee [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Lee, Yoo-Hyun [Department of Food Science and Nutrition, The University of Suwon, Kyunggi-do (Korea, Republic of); Lee, Jeongmin [Department of Medical Nutrition, Kyung Hee University, Kyunggi-do (Korea, Republic of); Jun, Woojin [Department of Food and Nutrition, Chonnam National University, Gwangju (Korea, Republic of); Kim, Sunoh, E-mail: sunoh@korea.ac.kr [Jeollanamdo Institute of Natural Resources Research, Jeonnam (Korea, Republic of); Yoon, Ho-Geun, E-mail: yhgeun@yuhs.ac [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  2. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daqing [Department of Respiration, Xi’an Children’s Hospital, Xi’an 710003 (China); Wang, Jing [Department of Neonatology, Xi’an Children’s Hospital, Xi’an 710003 (China); Yang, Niandi [Outpatient Department, School of Aerospace Engineering, Air Force Engineering University, Xi’an 710038 (China); Ma, Haixin, E-mail: drhaixinma@163.com [Department of Quality Control, Xi’an Children’s Hospital, Xi’an 710003 (China)

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  3. Minocycline suppresses interleukine-6, its receptor system and signaling pathways and impairs migration, invasion and adhesion capacity of ovarian cancer cells: in vitro and in vivo studies.

    Directory of Open Access Journals (Sweden)

    Parvin Ataie-Kachoie

    Full Text Available Interleukin (IL-6 has been shown to be a major contributing factor in growth and progression of ovarian cancer. The cytokine exerts pro-tumorigenic activity through activation of several signaling pathways in particular signal transducer and activator of transcription (STAT3 and extracellular signal-regulated kinase (ERK1/2. Hence, targeting IL-6 is becoming increasingly attractive as a treatment option in ovarian cancer. Here, we investigated the effects of minocycline on IL-6 and its signaling pathways in ovarian cancer. In vitro, minocycline was found to significantly suppress both constitutive and IL-1β or 4-hydroxyestradiol (4-OH-E2-stimulated IL-6 expression in human ovarian cancer cells; OVCAR-3, SKOV-3 and CAOV-3. Moreover, minocycline down-regulated two major components of IL-6 receptor system (IL-6Rα and gp130 and blocked the activation of STAT3 and ERK1/2 pathways leading to suppression of the downstream product MCL-1. In female nude mice bearing intraperitoneal OVCAR-3 tumors, acute administration (4 and 24 h of minocycline (30 mg/kg led to suppression of IL-6. Even single dose of minocycline was effective at significantly lowering plasma and tumor IL-6 levels. In line with this, tumoral expression of p-STAT3, p-ERK1/2 and MCL-1 were decreased in minocycline-treated mice. Evaluation of the functional implication of minocycline on metastatic activity revealed the capacity of minocycline to inhibit cellular migration, invasion and adhesion associated with down-regulation of matrix metalloproteinases (MMP-2 and 9. Thus, the data suggest a potential role for minocycline in suppressing IL-6 expression and activity. These effects may prove to be an important attribute to the upcoming clinical trials of minocycline in ovarian cancer.

  4. TRAF6 mediates IL-1β/LPS-induced suppression of TGF-β signaling through its interaction with the type III TGF-β receptor.

    Directory of Open Access Journals (Sweden)

    Seunghwan Lim

    Full Text Available Transforming growth factor-β1 (TGF-β1 is an important anti-inflammatory cytokine that modulates and resolves inflammatory responses. Recent studies have demonstrated that inflammation enhances neoplastic risk and potentiates tumor progression. In the evolution of cancer, pro-inflammatory cytokines such as IL-1β must overcome the anti-inflammatory effects of TGF-β to boost pro-inflammatory responses in epithelial cells. Here we show that IL-1β or Lipopolysaccharide (LPS suppresses TGF-β-induced anti-inflammatory signaling in a NF-κB-independent manner. TRAF6, a key molecule in IL-1β signaling, mediates this suppressive effect through interaction with the type III TGF-β receptor (TβRIII, which is TGF-β-dependent and requires type I TGF-β receptor (TβRI kinase activity. TβRI phosphorylates TβRIII at residue S829, which promotes the TRAF6/TβRIII interaction and consequent sequestration of TβRIII from the TβRII/TβRI complex. Our data indicate that IL-1β enhances the pro-inflammatory response by suppressing TGF-β signaling through TRAF6-mediated sequestration of TβRIII, which may be an important contributor to the early stages of tumor progression.

  5. Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice.

    Science.gov (United States)

    Messerli, Shanta M; Ahn, Mok-Ryeon; Kunimasa, Kazuhiro; Yanagihara, Miyako; Tatefuji, Tomoki; Hashimoto, Ken; Mautner, Victor; Uto, Yoshihiro; Hori, Hitoshi; Kumazawa, Shigenori; Kaji, Kazuhiko; Ohta, Toshiro; Maruta, Hiroshi

    2009-03-01

    There are mainly three types of propolis whose major anticancer ingredients are entirely different: (1) CAPE (caffeic acid phenethyl ester)-based propolis in Europe, Far East and New Zealand, (2) artepillin C (ARC)-based Brazilian green propolis and (3) Brazilian red propolis. It was shown previously that NF (neurofibromatosis)-associated tumors require the kinase PAK1 for their growth, and CAPE-based propolis extracts such as Bio 30 suppress completely the growth of NF tumors in vivo by blocking PAK1 signaling. Also it was demonstrated that ARC suppresses angiogenesis, suggesting the possibility that ARC also blocks oncogenic PAK1 signaling. Here it is shown for the first time that both ARC and green propolis extract (GPE) indeed block the PAK1 signaling selectively, without affecting another kinase known as AKT. Furthermore, it was confirmed that ARC as well as GPE suppress almost completely the growth of human NF tumor xenografts in mice, as does Bio 30. These results suggest that both CAPE-based and ARC-based propolis extracts are natural anti-PAK1 remedies and could be among the first effective NF therapeutics available on the market. Since more than 70% of human cancers such as breast and prostate cancers require the kinase PAK1 for their growth, it is quite possible that GPE could be potentially useful for the treatment of these cancers, as is Bio 30. (c) 2008 John Wiley & Sons, Ltd.

  6. Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation.

    Directory of Open Access Journals (Sweden)

    Isabel Olivera-Martinez

    Full Text Available The endogenous mechanism that determines vertebrate body length is unknown but must involve loss of chordo-neural-hinge (CNH/axial stem cells and mesoderm progenitors in the tailbud. In early embryos, Fibroblast growth factor (FGF maintains a cell pool that progressively generates the body and differentiation onset is driven by retinoid repression of FGF signalling. This raises the possibility that FGF maintains key tailbud cell populations and that rising retinoid activity underlies cessation of body axis elongation. Here we show that sudden loss of the mesodermal gene (Brachyury from CNH and the mesoderm progenitor domain correlates with FGF signalling decline in the late chick tailbud. This is accompanied by expansion of neural gene expression and a similar change in cell fate markers is apparent in the human tailbud. Fate mapping of chick tailbud further revealed that spread of neural gene expression results from continued ingression of CNH-derived cells into the position of the mesoderm progenitor domain. Using gain and loss of function approaches in vitro and in vivo, we then show that attenuation of FGF/Erk signalling mediates this loss of Brachyury upstream of Wnt signalling, while high-level FGF maintains Brachyury and can induce ectopic CNH-like cell foci. We further demonstrate a rise in endogenous retinoid signalling in the tailbud and show that here FGF no longer opposes retinoid synthesis and activity. Furthermore, reduction of retinoid signalling at late stages elevated FGF activity and ectopically maintained mesodermal gene expression, implicating endogenous retinoid signalling in loss of mesoderm identity. Finally, axis termination is concluded by local cell death, which is reduced by blocking retinoid signalling, but involves an FGFR-independent mechanism. We propose that cessation of body elongation involves loss of FGF-dependent mesoderm identity in late stage tailbud and provide evidence that rising endogenous retinoid

  7. Loss of FGF-Dependent Mesoderm Identity and Rise of Endogenous Retinoid Signalling Determine Cessation of Body Axis Elongation

    Science.gov (United States)

    Halley, Pamela A.; Storey, Kate G.

    2012-01-01

    The endogenous mechanism that determines vertebrate body length is unknown but must involve loss of chordo-neural-hinge (CNH)/axial stem cells and mesoderm progenitors in the tailbud. In early embryos, Fibroblast growth factor (FGF) maintains a cell pool that progressively generates the body and differentiation onset is driven by retinoid repression of FGF signalling. This raises the possibility that FGF maintains key tailbud cell populations and that rising retinoid activity underlies cessation of body axis elongation. Here we show that sudden loss of the mesodermal gene (Brachyury) from CNH and the mesoderm progenitor domain correlates with FGF signalling decline in the late chick tailbud. This is accompanied by expansion of neural gene expression and a similar change in cell fate markers is apparent in the human tailbud. Fate mapping of chick tailbud further revealed that spread of neural gene expression results from continued ingression of CNH-derived cells into the position of the mesoderm progenitor domain. Using gain and loss of function approaches in vitro and in vivo, we then show that attenuation of FGF/Erk signalling mediates this loss of Brachyury upstream of Wnt signalling, while high-level FGF maintains Brachyury and can induce ectopic CNH-like cell foci. We further demonstrate a rise in endogenous retinoid signalling in the tailbud and show that here FGF no longer opposes retinoid synthesis and activity. Furthermore, reduction of retinoid signalling at late stages elevated FGF activity and ectopically maintained mesodermal gene expression, implicating endogenous retinoid signalling in loss of mesoderm identity. Finally, axis termination is concluded by local cell death, which is reduced by blocking retinoid signalling, but involves an FGFR-independent mechanism. We propose that cessation of body elongation involves loss of FGF-dependent mesoderm identity in late stage tailbud and provide evidence that rising endogenous retinoid activity mediates this

  8. Inositol Hexaphosphate Inhibits Proliferation and Induces Apoptosis of Colon Cancer Cells by Suppressing the AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Małgorzata Kapral

    2017-10-01

    Full Text Available Abstract: AKT, a serine/threonine protein kinase and mammalian target of rapamycin (mTOR plays a critical role in the proliferation and resistance to apoptosis that are essential to the development and progression of colon cancer. Therefore, AKT/mTOR signaling pathway has been recognized as an attractive target for anticancer therapy. Inositol hexaphosphate (InsP6, a natural occurring phytochemical, has been shown to have both preventive and therapeutic effects against various cancers, however, its exact molecular mechanisms of action are not fully understood. The aim of the in vitro study was to investigate the anticancer activity of InsP6 on colon cancer with the focus on inhibiting the AKT1 kinase and p70S6K1 as mTOR effector, in relation to proliferation and apoptosis of cells. The colon cancer Caco-2 cells were cultured using standard techniques and exposed to InsP6 at different concentrations (1 mM, 2.5 mM and 5 mM. Cellular proliferative activity was monitored by 5-bromo-2′-deoxyuridine (BrdU incorporation into cellular DNA. Flow cytometric analysis was performed for cell cycle progression and apoptosis studies. Real-time RT-qPCR was used to validate mRNA levels of CDNK1A, CDNK1B, CASP3, CASP9, AKT1 and S6K1 genes. The concentration of p21 protein as well as the activities of caspase 3, AKT1 and p70S6K1 were determined by the ELISA method. The results revealed that IP6 inhibited proliferation and stimulated apoptosis of colon cancer cells. This effect was mediated by an increase in the expression of genes encoding p21, p27, caspase 3, caspase 9 as well a decrease in transcription of AKT1 and S6K1. InsP6 suppressed phosphorylation of AKT1 and p70S6K1, downstream effector of mTOR. Based on these studies it may be concluded that InsP6 can reduce proliferation and induce apoptosis through inhibition of the AKT/mTOR pathway and mTOR effector followed by modulation of the expression and activity of several key components of these pathways in

  9. Application of an E. coli signal sequence as a versatile inclusion body tag.

    Science.gov (United States)

    Jong, Wouter S P; Vikström, David; Houben, Diane; van den Berg van Saparoea, H Bart; de Gier, Jan-Willem; Luirink, Joen

    2017-03-21

    Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs.

  10. Impaired cross-talk between mesolimbic food reward processing and metabolic signaling predicts body mass index

    Directory of Open Access Journals (Sweden)

    Joe J Simon

    2014-10-01

    Full Text Available The anticipation of the pleasure derived from food intake drives the motivation to eat, and hence facilitate overconsumption of food which ultimately results in obesity. Brain imaging studies provide evidence that mesolimbic brain regions underlie both general as well as food related anticipatory reward processing. In light of this knowledge, the present study examined the neural responsiveness of the ventral striatum in participants with a broad BMI spectrum. The study differentiated between general (i.e. monetary and food related anticipatory reward processing. We recruited a sample of volunteers with greatly varying body weights, ranging from a low BMI (below 20 kg/m² over a normal (20 to 25 kg/m² and overweight (25 to 30 kg/m² BMI, to class I (30 to 35 kg/m² and class II (35 to 40 kg/m² obesity. A total of 24 participants underwent functional magnetic resonance imaging whilst performing both a food and monetary incentive delay task, which allows to measure neural activation during the anticipation of rewards. After the presentation of a cue indicating the amount of food or money to be won, participants had to react correctly in order to earn snack points or money coins which could then be exchanged for real food or money, respectively, at the end of the experiment. During the anticipation of both types of rewards, participants displayed activity in the ventral striatum, a region that plays a pivotal role in the anticipation of rewards. Additionally, we observed that specifically anticipatory food reward processing predicted the individual BMI (current and maximum lifetime. This relation was found to be mediated by impaired hormonal satiety signaling, i.e. increased leptin levels and insulin resistance. These findings suggest that heightened food reward motivation contributes to obesity through impaired metabolic signaling.

  11. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction.

    Science.gov (United States)

    Kim, Ki Hyun; Kim, Dongyoung; Park, Ju Yeol; Jung, Hye Jin; Cho, Yong-Hee; Kim, Hyoung Kyu; Han, Jin; Choi, Kang-Yell; Kwon, Ho Jeong

    2015-05-01

    Mitochondrial respiration is required for hypoxia-inducible factor (HIF)-1α stabilization, which is important for tumor cell survival, proliferation, and angiogenesis. Herein, small molecules that inhibit HIF-1α protein stability by targeting mitochondrial energy production were screened using the Library of Pharmacologically Active Compounds and cell growth assay in galactose or glucose medium. NNC 55-0396, a T-type Ca(2+) channel inhibitor, was selected as a hit from among 1,280 small molecules. NNC 55-0396 suppressed mitochondrial reactive oxygen species-mediated HIF-1α expression as well as stabilization by inhibiting protein synthesis in a dose-dependent manner. NNC 55-0396 inhibited tumor-induced angiogenesis in vitro and in vivo by suppressing HIF-1α stability. Moreover, NNC 55-0396 significantly suppressed glioblastoma tumor growth in a xenograft model. Thus, NNC 55-0396, a small molecule targeting T-type Ca(2+) channel, was identified by the systemic cell-based assay and was shown to have antiangiogenic activity via the suppression of HIF-1α signal transduction. These results provide new insights into the biological network between ion channel and HIF-1α signal transduction. HIF-1α overexpression has been demonstrated in hypoxic cancer cells. NNC 55-0396, a T-type Ca(2+) channel inhibitor, inhibited HIF-1α expression via both proteasomal degradation and protein synthesis pathways. T-type Ca(2+) channel inhibitors block angiogenesis by suppressing HIF-1α stability and synthesis. NNC 55-0396 could be a potential therapeutic drug candidate for cancer treatment.

  12. R2NA: Received Signal Strength (RSS Ratio-Based Node Authentication for Body Area Network

    Directory of Open Access Journals (Sweden)

    Yang Wu

    2013-12-01

    Full Text Available The body area network (BAN is an emerging branch of wireless sensor networks for personalized applications. The services in BAN usually have a high requirement on security, especially for the medical diagnosis. One of the fundamental directions to ensure security in BAN is how to provide node authentication. Traditional research using cryptography relies on prior secrets shared among nodes, which leads to high resource cost. In addition, most existing non-cryptographic solutions exploit out-of-band (OOB channels, but they need the help of additional hardware support or significant modifications to the system software. To avoid the above problems, this paper presents a proximity-based node authentication scheme, which only uses wireless modules equipped on sensors. With only one sensor and one control unit (CU in BAN, we could detect a unique physical layer characteristic, namely, the difference between the received signal strength (RSS measured on different devices in BAN. Through the above-mentioned particular difference, we can tell whether the sender is close enough to be legitimate. We validate our scheme through both theoretical analysis and experiments, which are conducted on the real Shimmer nodes. The results demonstrate that our proposed scheme has a good security performance.

  13. The ultimate signal-to-noise ratio in realistic body models.

    Science.gov (United States)

    Guérin, Bastien; Villena, Jorge F; Polimeridis, Athanasios G; Adalsteinsson, Elfar; Daniel, Luca; White, Jacob K; Wald, Lawrence L

    2016-12-04

    We compute the ultimate signal-to-noise ratio (uSNR) and G-factor (uGF) in a realistic head model from 0.5 to 21 Tesla. We excite the head model and a uniform sphere with a large number of electric and magnetic dipoles placed at 3 cm from the object. The resulting electromagnetic fields are computed using an ultrafast volume integral solver, which are used as basis functions for the uSNR and uGF computations. Our generalized uSNR calculation shows good convergence in the sphere and the head and is in close agreement with the dyadic Green's function approach in the uniform sphere. In both models, the uSNR versus B0 trend was linear at shallow depths and supralinear at deeper locations. At equivalent positions, the rate of increase of the uSNR with B0 was greater in the sphere than in the head model. The uGFs were lower in the realistic head than in the sphere for acceleration in the anterior-posterior direction, but similar for the left-right direction. The uSNR and uGFs are computable in nonuniform body models and provide fundamental performance limits for human imaging with close-fitting MRI array coils. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. The body as a tool for anger awareness : differential effects of angry facial and bodily expressions on suppression from awareness

    National Research Council Canada - National Science Library

    Zhan, M; Hortensius, R; Gelder, de, B

    2015-01-01

    .... This pattern indicates different processing and detection mechanisms for faces and bodies outside awareness, and suggests that awareness mechanisms associated with dorsal structures might play a role in becoming conscious of angry bodily expressions.

  15. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan, E-mail: shan_mou@126.com; Ni, Zhaohui, E-mail: doctor_nzh@126.com

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  16. Herpes Virus Entry Mediator Signaling in the Brain Is Imperative in Acute Inflammation-Induced Anorexia and Body Weight Loss

    Directory of Open Access Journals (Sweden)

    Kwang Kon Kim

    2013-09-01

    Full Text Available BackgroundReduced appetite and body weight loss are typical symptoms of inflammatory diseases. A number of inflammatory stimuli are responsible for the imbalance in energy homeostasis, leading to metabolic disorders. The herpes virus entry mediator (HVEM protein plays an important role in the development of various inflammatory diseases, such as intestinal inflammation and diet-induced obesity. However, the role of HVEM in the brain is largely unknown. This study aims to investigate whether HVEM signaling in the brain is involved in inflammation-induced anorexia and body weight loss.MethodsFood intake and body weight were measured at 24 hours after intraperitoneal injection of lipopolysaccharide (LPS or intracerebroventricular injection of recombinant mouse LIGHT (also called tumor necrosis factor receptor superfamily 14, TNFSF14, an HVEM ligand, into 8- to 10-week-old male C57BL/6 mice and mice lacking HVEM expression (HVEM-/-. We also assessed LPS-induced change in hypothalamic expression of HVEM using immunohistochemistry.ResultsAdministration of LPS significantly reduced food intake and body weight, and moreover, increased expression of HVEM in the hypothalamic arcuate nucleus. However, LPS induced only minor decreases in food intake and body weight in HVEM-/- mice. Administration of LIGHT into the brain was very effective at decreasing food intake and body weight in wild-type mice, but was less effective in HVEM-/- mice.ConclusionActivation of brain HVEM signaling is responsible for inflammation-induced anorexia and body weight loss.

  17. Salinomycin suppresses LRP6 expression and inhibits both Wnt/β-catenin and mTORC1 signaling in breast and prostate cancer cells.

    Science.gov (United States)

    Lu, Wenyan; Li, Yonghe

    2014-10-01

    Emerging evidence indicates that activation of Wnt/β-catenin signaling at the cell surface results in inhibition of glycogen synthase kinase 3β (GSK3β), leading to activation of mTORC1 signaling in cancer cells. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/β-catenin signaling. Salinomycin is a novel small molecule inhibitor of LRP6. In the present study, we found that LRP6 overexpression induced mTORC1 signaling activation in cancer cells, and that salinomycin was not only a potent Wnt/β-catenin signaling inhibitor, but also a strong mTORC1 signaling antagonist in breast and prostate cancer cells. Mechanistically, salinomycin activated GSK3β in cancer cells. Moreover, salinomycin was able to suppress the expression of cyclin D1 and survivin, two targets of both Wnt/β-catenin and mTORC1 signaling, in prostate and breast cancer cells, and displayed remarkable anticancer activity. Our results present novel mechanisms underlying salinomycin-mediated cancer cell death.

  18. SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, D; Huq, M; Bednarz, G; Lalonde, R; Yang, Y; Heron, D [University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2014-06-01

    Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same is for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for

  19. An integrated serotonin and octopamine neuronal circuit directs the release of an endocrine signal to control C. elegans body fat.

    Science.gov (United States)

    Noble, Tallie; Stieglitz, Jonathan; Srinivasan, Supriya

    2013-11-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an ancient and conserved neuromodulator of energy balance. Despite its importance, the neural circuits and molecular mechanisms underlying 5-HT-mediated control of body fat remain poorly understood. Here, we decipher the serotonergic neural circuit for body fat loss in C. elegans and show that the effects of 5-HT require signaling from octopamine, the invertebrate analog of adrenaline, to sustain body fat loss. Our results provide a potential molecular explanation for the long-observed potent effects of combined serotonergic and adrenergic weight loss drugs. In metabolic tissues, we find that the conserved regulatory adipocyte triglyceride lipase ATGL-1 drives serotonergic fat loss. We show that the serotonergic chloride channel MOD-1 relays a long-range endocrine signal from C. elegans body cavity neurons to control distal ATGL-1 function, via the nuclear receptor NHR-76. Our findings establish a conserved neuroendocrine axis operated by neural serotonergic and adrenergic-like signaling to regulate body fat.

  20. An Integrated Serotonin and Octopamine Neuronal Circuit Directs The Release of An Endocrine Signal to Control C. elegans Body Fat

    Science.gov (United States)

    Noble, Tallie; Stieglitz, Jonathan; Srinivasan, Supriya

    2013-01-01

    SUMMARY Serotonin (5-hydroxytryptamine, 5-HT) is an ancient and conserved neuromodulator of energy balance. Despite its importance, the neural circuits and molecular mechanisms underlying 5-HT-mediated control of body fat remain poorly understood. Here we decipher the serotonergic neural circuit for body fat loss in C. elegans and show that the effects of 5-HT require signaling from octopamine, the invertebrate analog of adrenaline, to sustain body fat loss. Our results provide a potential molecular explanation for the long-observed potent effects of combined serotonergic and adrenergic weight loss drugs. In metabolic tissues we find that the conserved regulatory adipocyte triglyceride lipase ATGL-1 drives serotonergic fat loss. We show that the serotonergic chloride channel MOD-1 relays a long-range endocrine signal via C. elegans body cavity neurons to control distal ATGL-1 function, via the nuclear receptor NHR-76. Our findings establish a conserved neuroendocrine axis operated by neural serotonergic and adrenergic-like signaling, to regulate body fat. PMID:24120942

  1. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells

    Science.gov (United States)

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto

    2017-01-01

    Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells. PMID:28230729

  2. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells.

    Science.gov (United States)

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto

    2017-02-20

    Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H₂O₂)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H₂O₂-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H₂O₂-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  3. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2017-02-01

    Full Text Available Chlorogenic acid (CHA and caffeic acid (CA are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK. Additionally, upstream of IKK, protein kinase D (PKD was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  4. Maleylated-BSA suppresses lipopolysaccharide-induced IL-6 production by activating the ERK-signaling pathway in murine RAW264.7 cells.

    Science.gov (United States)

    Tada, Rui; Koide, Yusuke; Yamamuro, Mitsuaki; Tanaka, Riki; Hidaka, Akira; Nagao, Koichiro; Aramaki, Yukihiko

    2014-03-01

    Macrophages are well known for their ability to induce diverse beneficial immune responses, especially in the defense against pathogens. However, an excessive activation of macrophages may cause harmful inflammation. In this context, the suppression of excessive macrophage activation would be a promising therapeutic strategy for treating inflammatory diseases. We have previously found that maleylated-bovine serum albumin (maleylated-BSA) suppresses the production of inflammatory mediators in murine macrophages. However, the immunosuppressive effects and underlying mechanism(s) of maleylated-BSA remain unclear. Here, we report that pretreatment with maleylated-BSA strongly inhibited the production of interleukin 6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in murine RAW264.7 cells. This inhibitory effect of maleylated-BSA on LPS-induced IL-6 production was eliminated by treatment with an extracellular signal-regulated kinase (ERK) inhibitor, U0126, indicating the involvement of ERK pathways. Taken together, we have shown that maleylated-BSA suppresses LPS-induced production of IL-6 via the activation of an ERK signaling pathway in murine macrophages. The findings of this study imply the possibility of a novel therapeutic strategy for inflammatory diseases.

  5. Inhibition of breast cancer cell motility with a non-cyclooxygenase inhibitory derivative of sulindac by suppressing TGFβ/miR-21 signaling.

    Science.gov (United States)

    Yi, Bin; Chang, Hong; Ma, Ruixia; Feng, Xiangling; Li, Wei; Piazza, Gary A; Xi, Yaguang

    2016-02-16

    Compelling efficacy on intervention of tumorigenesis by nonsteroidal anti-inflammatory drugs (NSAIDs) has been documented intensively. However, the toxicities related to cyclooxygenase (COX) inhibition resulting in suppression of physiologically important prostaglandins limit their clinical use for human cancer chemoprevention. A novel derivative of the NSAID sulindac sulfide (SS), referred as sulindac sulfide amide (SSA), was recently developed, which lacks COX inhibitory activity, yet shows greater suppressive effect than SS on growth of various cancer cells. In this study, we focus on the inhibitory activity of SSA on breast tumor cell motility, which has not been studied previously. Our results show that SSA treatment at non-cytotoxic concentrations can specifically reduce breast tumor cell motility without influencing tumor cell growth, and the mechanism of action involves the suppression of TGFβ signaling by directly blocking Smad2/3 phosphorylation. Moreover, miR-21, a well-documented oncogenic miRNA for promoting tumor cell metastasis, was also found to be involved in inhibitory activity of SSA in breast tumor cell motility through the modulation of TGFβ pathway. In conclusion, we demonstrate that a non-COX inhibitory derivative of sulindac can inhibit breast tumor metastasis by a mechanism involving the TGFβ/miR-21 signaling axis.

  6. Increased signal intensity on fat-suppressed three-dimensional T1-weighted pulse sequences in patellar tendon: magic angle effect?

    Energy Technology Data Exchange (ETDEWEB)

    Karantanas, A.H.; Zibis, A.H. [CT-MRI Dept., Larissa General Hospital, Larissa (Greece); Papanikolaou, N. [Radiology Dept., University of Crete, Heraklion (Greece)

    2001-02-01

    Objective. To assess the frequency of increased signal intensity in the patellar tendon using three-dimensional T1-weighted MRI pulse sequences. Design and patients. Sixty patients were examined with a 1.0 T scanner (15mT/m gradient strength) using a quadrature coil. Three pulse sequences were applied in the sagittal plane: PD turbo spin echo (PD-TSE), 3D T1-weighted gradient echo with fat suppression (3D-T1-FFE-FS) and 3D T1-weighted echo planar imaging with fat suppression (3D-T1-EPI-FS). The high signal intensity areas were measured in their maximum length. The angle of the patellar tendon relative to the main field position was measured in the same slice. In eight patients with anterior knee pain, and in 11 with no anterior knee pain, a fourth T2-weighted TSE pulse sequence (T2-TSE) was obtained to rule out patellar tendinitis. Results. The correlation of the high signal intensity areas with the relative position of the tendon was found to be significant with the 3D sequences (P=0.03 for 3D-T1-FFE-FS and P=0.003 for 3D-T1-EPI-FS). The length of the high signal intensity area in the tendon was 5.4 mm with 3D-T1-FFE-FS, 4.9 mm with 3D-T1-EPI-FS and 3.1 mm with PD-TSE images. No patellar tendinitis was demonstrated on the T2-TSE images. Conclusion. The magic angle effect is commonly observed in the 3D based T1-weighted pulse sequences with fat suppression. The presence of the above sign must be recognized by radiologists, so that misdiagnosis of patellar tendinitis is avoided. (orig.)

  7. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells.

    Science.gov (United States)

    Lin, Shu; Yang, Junhua; Elkahloun, Abdel G; Bandyopadhyay, Abhik; Wang, Long; Cornell, John E; Yeh, I-Tien; Agyin, Joseph; Tomlinson, Gail; Sun, Lu-Zhe

    2012-04-01

    The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12-induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12-transformed HMECs that spontaneously escaped H-Ras-V12-induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12-induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer.

  8. Effects of angiotensin II on leptin and downstream leptin signaling in the carotid body during acute intermittent hypoxia.

    Science.gov (United States)

    Moreau, J M; Messenger, S A; Ciriello, J

    2015-12-03

    Angiotensin II (ANG II) is known to promote leptin production and secretion. Although ANG II type 1 receptors (AT1Rs) and leptin are expressed within the carotid body, it is not known whether AT1R and leptin are co-expressed in the same glomus cells nor if these peptides are affected within the carotid body by intermittent hypoxia (IH). This study was done to investigate whether ANG II modulated leptin signaling in the carotid body during IH. Rats were treated with captopril (Capt) or the AT1R blocker losartan (Los) in the drinking water for 3days prior to being exposed to IH (8h) or normoxia (8h). IH induced increases in plasma ANG II and leptin compared to normoxic controls. Capt treatment abolished the plasma leptin changes to IH, whereas Los treatment had no effect on the IH induced increase in plasma leptin. Additionally, carotid body glomus cells containing both leptin and the long form of the leptin receptor (OB-Rb) were found to co-express AT1R protein, and IH increased the expression of only AT1R protein within the carotid body in both Capt- and non-Capt-treated animals. On the other hand, Los treatment did not modify AT1R protein expression to IH. Additionally, Capt and Los treatment eliminated the elevated carotid body leptin protein expression, and the changes in phosphorylated signal transducer and activator of transcription three protein, the short form of the leptin receptor (OB-R100), suppressor of cytokine signaling 3, and phosphorylated extracellular-signal-regulated kinase 1/2 protein expression induced by IH. However, Capt elevated the expression of OB-Rb protein, whereas Los abolished the changes in OB-Rb protein to IH. These findings, taken together with the previous observation that ANG II modifies carotid body chemosensitivity, suggest that the increased circulating levels of ANG II and leptin induced by IH act at the carotid body to alter leptin signaling within the carotid body which in turn may influence chemoreceptor function.

  9. Suppression of microbial metabolic pathways inhibits the generation of the human body odor component diacetyl by Staphylococcus spp.

    Directory of Open Access Journals (Sweden)

    Takeshi Hara

    Full Text Available Diacetyl (2,3-butanedione is a key contributor to unpleasant odors emanating from the axillae, feet, and head regions. To investigate the mechanism of diacetyl generation on human skin, resident skin bacteria were tested for the ability to produce diacetyl via metabolism of the main organic acids contained in human sweat. L-lactate metabolism by Staphylococcus aureus and Staphylococcus epidermidis produced the highest amounts of diacetyl, as measured by high-performance liquid chromatography. Glycyrrhiza glabra root extract (GGR and α-tocopheryl-L-ascorbate-2-O-phosphate diester potassium salt (EPC-K1, a phosphate diester of α-tocopherol and ascorbic acid, effectively inhibited diacetyl formation without bactericidal effects. Moreover, a metabolic flux analysis revealed that GGR and EPC-K1 suppressed diacetyl formation by inhibiting extracellular bacterial conversion of L-lactate to pyruvate or by altering intracellular metabolic flow into the citrate cycle, respectively, highlighting fundamentally distinct mechanisms by GGR and EPC-K1 to suppress diacetyl formation. These results provide new insight into diacetyl metabolism by human skin bacteria and identify a regulatory mechanism of diacetyl formation that can facilitate the development of effective deodorant agents.

  10. The DPP-IV inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat.

    Science.gov (United States)

    Hansen, Henrik H; Hansen, Gitte; Paulsen, Sarah; Vrang, Niels; Mark, Michael; Jelsing, Jacob; Klein, Thomas

    2014-10-15

    Linagliptin is a dipeptidyl peptidase (DPP)-IV inhibitor approved for the treatment of type 2 diabetes. DPP-IV inhibitors are considered weight neutral, suggesting that elevation of endogenous incretin levels is not sufficient to promote weight loss per se. Here we evaluated the effect of linagliptin in combination with subcutaneous treatment of GLP-1(7-36) on body weight regulation in diet-induced obese (DIO) rats. Linagliptin administered perorally (1.5mg/kg, b.i.d.), but not subcutaneously (0.5mg/kg, b.i.d.), evoked a very modest body weight loss (2.2%) after 28 days of treatment. GLP-1 (0.5mg/kg, s.c.) treatment alone induced a body weight loss of 4.1%. In contrast, combined linagliptin (1.5mg/kg, p.o., or 0.5mg/kg, s.c.) and GLP-1 (0.5mg/kg) treatment evoked a marked anorectic response with both routes of linagliptin administration being equally effective on final body weight loss (7.5-8.0%). In comparison, liraglutide monotherapy (0.2mg/kg, s.c., b.i.d.) reduced body weight by 10.1%. Interestingly, the weight lowering effect of combined linagliptin and GLP-1 treatment was associated with a marked increase in chow preference, being more pronounced as compared to liraglutide treatment. In addition, linagliptin and GLP-1 co-treatment, but not liraglutide, specifically increased prepro-dynorphin mRNA levels in the caudate-putamen, an effect not obtained with administration of the compounds individually. In conclusion, co-treatment with linagliptin and GLP-1 synergistically reduces body weight in obese rats. The anti-obesity effect was caused by appetite suppression with a concomitant change in diet preference, which may potentially be associated with increased dynorphin activity in forebrain regions involved in reward anticipation and habit learning.

  11. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver

    Science.gov (United States)

    Okushin, Kazuya; Enooku, Kenichiro; Fujinaga, Hidetaka; Moriya, Kyoji; Yotsuyanagi, Hiroshi; Aizaki, Hideki; Suzuki, Tetsuro; Matsuura, Yoshiharu; Koike, Kazuhiko

    2017-01-01

    The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS) in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2’-5’ oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity. PMID:28107512

  12. A search for direct CP violation in two-body Cabibbo-suppressed decays of neutral charmed mesons

    Science.gov (United States)

    Flacco, Christian Julienne

    Presented are the results of a search for direct CP violation in Cabibbo-suppressed decays of D0 to two charged daughters. The analysis described was performed on ˜230 fb-1 of the BABAR data sample, recorded at the Stanford Linear Accelerator Center and using the PEP-II electron storage rings. We measure CP asymmetries for decay to the KK and pipi final states, as well as for the branching ratio, and develop a new technique for tagging-efficiency correction using the Cabibbo-favored Kpi final state. We find some evidence for CP violation in decays to the KK final state, and results that suggest CP violation in the pipi final state as well.

  13. c-Ski inhibits the proliferation of vascular smooth muscle cells via suppressing Smad3 signaling but stimulating p38 pathway.

    Science.gov (United States)

    Li, Jun; Li, Ping; Zhang, Yan; Li, Gong-Bo; Zhou, Yuan-Guo; Yang, Kang; Dai, Shuang-Shuang

    2013-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) plays key roles in the progression of intimal hyperplasia, but the molecular mechanisms that trigger VSMC proliferation after vascular injury remain unclear. c-Ski, a co-repressor of transforming growth factor β (TGF-β)/Smad signaling, was detected to express in VSMC of rat artery. During the course of arterial VSMC proliferation induced by balloon injury in rat, the endogenous protein expressions of c-Ski decreased markedly in a time-dependent manner. In vivo c-Ski gene delivery was found to significantly suppress balloon injury-induced VSMC proliferation and neointima formation. Further investigation in A10 rat aortic smooth muscle cells demonstrated that overexpression of c-Ski gene inhibited TGF-β1 (1 ng/ml)-induced A10 cell proliferation while knockdown of c-Ski by RNAi enhanced the stimulatory effect of TGF-β1 on A10 cell growth. Western blot for signaling detection showed that suppression of Smad3 phosphorylation while stimulating p38 signaling associated with upregulation of cyclin-dependent kinase inhibitors p21 and p27 was responsible for the inhibitory effect of c-Ski on TGF-β1-induced VSMC proliferation. These data suggest that the decrease of endogenous c-Ski expression is implicated in the progression of VSMC proliferation after arterial injury and c-Ski administration represents a promising role for treating intimal hyperplasia via inhibiting the proliferation of VSMC.

  14. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    Science.gov (United States)

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  15. Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-β/Smad signaling suppression and inhibiting matrix metalloproteinase-1.

    Science.gov (United States)

    Chen, Bin; Li, Ran; Yan, Ning; Chen, Gang; Qian, Wen; Jiang, Hui-Li; Ji, Chao; Bi, Zhi-Gang

    2015-05-01

    Exposure to ultraviolet (UV) light reduces levels of type I collagen in the dermis and results in human skin damage and premature skin aging (photoaging). This leads to a wrinkled appearance through the inhibition of transforming growth factor‑β (TGF‑β)/Smad signaling. UV irradiation increases type I collagen degradation through upregulating matrix metalloproteinase (MMP) expression. Astragaloside IV (AST) is one of the major active components extracted from Astragalus membranaceus. However, its multiple anti‑photoaging effects remain to be elucidated. In the present study, the effects of AST against collagen reduction in UV‑induced skin aging in human skin fibroblasts were investigated. The expression of type I procollagen (COL1), MMP‑1, TGF‑βRⅡ and Smad7 were determined using reverse transcription‑polymerase chain reaction, western blotting and ELISA, respectively. UV irradiation inhibits type I collagen production by suppressing the TGF‑β/Smad signaling pathway and increasing COL1 degradation by inducing MMP‑1 expression. Transforming growth factor‑β type II protein and COL1 mRNA decreased but MMP‑1 and Smad7 levels increased in the photoaging model group, which was reversed by topical application of AST. AST prevents collagen reduction from UV irradiation in photoaging skin by improving TGF‑β/Smad signaling suppression and inhibiting MMP‑1, thus AST may be a potential agent against skin photoaging.

  16. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Minegishi, Yoshihiko; Aoki, Masafumi; Ominami, Hideo; Suzuki, Yasuto; Shibuya, Yusuke; Hase, Tadashi

    2011-01-01

    The prevalence of obesity is increasing globally, and obesity is a major risk factor for type 2 diabetes and cardiovascular disease. We investigated the effects of coffee polyphenols (CPP), which are abundant in coffee and consumed worldwide, on diet-induced body fat accumulation. C57BL/6J mice were fed either a control diet, a high-fat diet, or a high-fat diet supplemented with 0.5 to 1.0% CPP for 2-15 wk. Supplementation with CPP significantly reduced body weight gain, abdominal and liver fat accumulation, and infiltration of macrophages into adipose tissues. Energy expenditure evaluated by indirect calorimetry was significantly increased in CPP-fed mice. The mRNA levels of sterol regulatory element-binding protein (SREBP)-1c, acetyl-CoA carboxylase-1 and -2, stearoyl-CoA desaturase-1, and pyruvate dehydrogenase kinase-4 in the liver were significantly lower in CPP-fed mice than in high-fat control mice. Similarly, CPP suppressed the expression of these molecules in Hepa 1-6 cells, concomitant with an increase in microRNA-122. Structure-activity relationship studies of nine quinic acid derivatives isolated from CPP in Hepa 1-6 cells suggested that mono- or di-caffeoyl quinic acids (CQA) are active substances in the beneficial effects of CPP. Furthermore, CPP and 5-CQA decreased the nuclear active form of SREBP-1, acetyl-CoA carboxylase activity, and cellular malonyl-CoA levels. These findings indicate that CPP enhances energy metabolism and reduces lipogenesis by downregulating SREBP-1c and related molecules, which leads to the suppression of body fat accumulation.

  17. Suppression of Alk8-mediated Bmp signaling cell-autonomously induces pancreatic β-cells in zebrafish

    Science.gov (United States)

    Chung, Won-Suk; Andersson, Olov; Row, Richard; Kimelman, David; Stainier, Didier Y. R.

    2009-01-01

    Bmp signaling has been shown to regulate early aspects of pancreas development, but its role in endocrine, and especially β-cell, differentiation remains unclear. Taking advantage of the ability in zebrafish embryos to cell-autonomously modulate Bmp signaling in single cells, we examined how Bmp signaling regulates the ability of individual endodermal cells to differentiate into β-cells. We find that specific temporal windows of Bmp signaling prevent β-cell differentiation. Thus, future dorsal bud-derived β-cells are sensitive to Bmp signaling specifically during gastrulation and early somitogenesis stages. In contrast, ventral pancreatic cells, which require an early Bmp signal to form, do not produce β-cells when exposed to Bmp signaling at 50 hpf, a stage when the ventral bud-derived extrapancreatic duct is the main source of new endocrine cells. Importantly, inhibiting Bmp signaling within endodermal cells via genetic means increased the number of β-cells, at early and late stages. Moreover, inhibition of Bmp signaling in the late stage embryo using dorsomorphin, a chemical inhibitor of Bmp receptors, significantly increased β-cell neogenesis near the extrapancreatic duct, demonstrating the feasibility of pharmacological approaches to increase β-cell numbers. Our in vivo single-cell analyses show that whereas Bmp signaling is necessary initially for formation of the ventral pancreas, differentiating endodermal cells need to be protected from exposure to Bmps during specific stages to permit β-cell differentiation. These results provide important unique insight into the intercellular signaling environment necessary for in vivo and in vitro generation of β-cells. PMID:20080554

  18. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Chung, Hsiao-Min [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Fang, Hua-Chang, E-mail: hcfang@isca.vghks.gov.tw [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2010-04-15

    Purpose: Tumor growth factor-{beta}1 (TGF-{beta}1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-{beta}1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-{beta}1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-{beta}1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-{beta}1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-{beta}1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-{beta}1-mediated apoptosis and also partially inhibited TGF-{beta}1-mediated EMT. We showed that EPO treatment suppressed TGF-{beta}1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-{beta}1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-{beta}1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  19. Loss of androgen receptor-dependent growth suppression by prostate cancer cells can occur independently from acquiring oncogenic addiction to androgen receptor signaling.

    Directory of Open Access Journals (Sweden)

    Jason M D'Antonio

    Full Text Available The conversion of androgen receptor (AR signaling as a mechanism of growth suppression of normal prostate epithelial cells to that of growth stimulation in prostate cancer cells is often associated with AR mutation, amplification and over-expression. Thus, down-regulation of AR signaling is commonly therapeutic for prostate cancer. The E006AA cell line was established from a hormone naïve, localized prostate cancer. E006AA cells are genetically aneuploid and grow equally well when xenografted into either intact or castrated male NOG but not nude mice. These cells exhibit: 1 X chromosome duplication and AR gene amplification, although paradoxically not coupled with increased AR expression, and 2 somatic, dominant-negative Serine-599-Glycine loss-of-function mutation within the dimerization surface of the DNA binding domain of the AR gene. No effect on the growth of E006AA cells is observed using targeted knockdown of endogenous mutant AR, ectopic expression of wild-type AR, or treatment with androgens or anti-androgens. E006AA cells represent a prototype for a newly identified subtype of prostate cancer cells that exhibit a dominant-negative AR loss-of-function in a hormonally naïve patient. Such loss-of-function eliminates AR-mediated growth suppression normally induced by normal physiological levels of androgens, thus producing a selective growth advantage for these malignant cells in hormonally naïve patients. These data highlight that loss of AR-mediated growth suppression is an independent process, and that, without additional changes, is insufficient for acquiring oncogene addiction to AR signaling. Thus, patients with prostate cancer cells harboring such AR loss-of-function mutations will not benefit from aggressive hormone or anti-AR therapies even though they express AR protein.

  20. MFHAS1 suppresses TLR4 signaling pathway via induction of PP2A C subunit cytoplasm translocation and inhibition of c-Jun dephosphorylation at Thr239.

    Science.gov (United States)

    Shi, Qiqing; Xiong, Bo; Zhong, Jing; Wang, Huihui; Ma, Duan; Miao, Changhong

    2017-08-01

    TLR4, an important Toll-like receptor in innate immunity, can be activated by LPS and induce proinflammatory cytokines to resist invasion of pathogenic microorganism, but excessive inflammation can trigger tissue injury. Many genes negatively regulate TLR4 signaling pathway. Recent studies found that malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) suppressed the expression of cytokine IL6 in Raw264.7 cells stimulated by LPS, but the mechanisms remained unclear. This study investigated the role of MFHAS1 in TLR4 signaling pathway and the possible mechanisms implicated. The results indicated that the expression of MFHAS1 was significantly increased in cells stimulated with LPS. Up-regulation of MFHAS1 effectively suppressed inflammatory cytokine expression in cells exposed to LPS, whereas down-regulation of MFHAS1 markedly increased inflammatory cytokines expression. Co-immunoprecipitation, pull-down and immunofluorescence tests demonstrated that MFHAS1 combined with the B and C subunits of PP2A and induced cytoplasm translocation of the C subunit, leading to decrease dephosphorylation of c-Jun at Thr239 and increase degradation of c-Jun. Reduction of c-Jun protein results in decreased AP-1 activity, which is independent of inhibition of JNK or p38MAPK phosphorylation. Taken together, these results indicate that MFHAS1 suppresses TLR4 signaling pathway through induction of PP2A C subunit cytoplasm translocation and subsequent c-Jun degradation, leading finally to decrease AP-1 activity and cytokines expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results

    Directory of Open Access Journals (Sweden)

    Ayakawa Shiho

    2009-05-01

    Full Text Available Abstract Background In stereotactic body radiotherapy (SBRT for lung tumors, reducing tumor movement is necessary. In this study, we evaluated changes in tumor movement and percutaneous oxygen saturation (SpO2 levels, and preliminary clinical results of SBRT using the BodyFIX immobilization system. Methods Between 2004 and 2006, 53 consecutive patients were treated for 55 lesions; 42 were stage I non-small cell lung cancer (NSCLC, 10 were metastatic lung cancers, and 3 were local recurrences of NSCLC. Tumor movement was measured with fluoroscopy under breath holding, free breathing on a couch, and free breathing in the BodyFIX system. SpO2 levels were measured with a finger pulseoximeter under each condition. The delivered dose was 44, 48 or 52 Gy, depending on tumor diameter, in 4 fractions over 10 or 11 days. Results By using the BodyFIX system, respiratory tumor movements were significantly reduced compared with the free-breathing condition in both craniocaudal and lateral directions, although the amplitude of reduction in the craniocaudal direction was 3 mm or more in only 27% of the patients. The average SpO2 did not decrease by using the system. At 3 years, the local control rate was 80% for all lesions. Overall survival was 76%, cause-specific survival was 92%, and local progression-free survival was 76% at 3 years in primary NSCLC patients. Grade 2 radiation pneumonitis developed in 7 patients. Conclusion Respiratory tumor movement was modestly suppressed by the BodyFIX system, while the SpO2 level did not decrease. It was considered a simple and effective method for SBRT of lung tumors. Preliminary results were encouraging.

  2. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling.

    Science.gov (United States)

    Kim, Byung Hak; Min, Yun Sook; Choi, Jung Sook; Baeg, Gyeong Hun; Kim, Young Soo; Shin, Jong Wook; Kim, Tae Yoon; Ye, Sang Kyu

    2011-05-31

    Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma.

  3. Effects of jasmonic acid signalling on the wheat microbiome differ between body sites

    Science.gov (United States)

    Liu, Hongwei; Carvalhais, Lilia C.; Schenk, Peer M.; Dennis, Paul G.

    2017-01-01

    Jasmonic acid (JA) signalling helps plants to defend themselves against necrotrophic pathogens and herbivorous insects and has been shown to influence the root microbiome of Arabidopsis thaliana. In this study, we determined whether JA signalling influences the diversity and functioning of the wheat (Triticum aestivum) microbiome and whether these effects are specific to particular parts of the plant. Activation of the JA pathway was achieved via exogenous application of methyl jasmonate and was confirmed by significant increases in the abundance of 10 JA-signalling-related gene transcripts. Phylogenetic marker gene sequencing revealed that JA signalling reduced the diversity and changed the composition of root endophytic but not shoot endophytic or rhizosphere bacterial communities. The total enzymatic activity and substrate utilisation profiles of rhizosphere bacterial communities were not affected by JA signalling. Our findings indicate that the effects of JA signalling on the wheat microbiome are specific to individual plant compartments. PMID:28134326

  4. Body morphology, energy stores, and muscle enzyme activity explain cricket acoustic mate attraction signaling variation.

    Directory of Open Access Journals (Sweden)

    Ian R Thomson

    Full Text Available High mating success in animals is often dependent on males signalling attractively with high effort. Since males should be selected to maximize their reproductive success, female preferences for these traits should result in minimal signal variation persisting in the population. However, extensive signal variation persists. The genic capture hypothesis proposes genetic variation persists because fitness-conferring traits depend on an individual's basic processes, including underlying physiological, morphological, and biochemical traits, which are themselves genetically variable. To explore the traits underlying signal variation, we quantified among-male differences in signalling, morphology, energy stores, and the activities of key enzymes associated with signalling muscle metabolism in two species of crickets, Gryllus assimilis (chirper: 20 pulses/chirp. Chirping G. assimilis primarily fuelled signalling with carbohydrate metabolism: smaller individuals and individuals with increased thoracic glycogen stores signalled for mates with greater effort; individuals with greater glycogen phosphorylase activity produced more attractive mating signals. Conversely, the more energetic trilling G. texensis fuelled signalling with both lipid and carbohydrate metabolism: individuals with increased β-hydroxyacyl-CoA dehydrogenase activity and increased thoracic free carbohydrate content signalled for mates with greater effort; individuals with higher thoracic and abdominal carbohydrate content and higher abdominal lipid stores produced more attractive signals. Our findings suggest variation in male reproductive success may be driven by hidden physiological trade-offs that affect the ability to uptake, retain, and use essential nutrients, although the results remain correlational in nature. Our findings indicate that a physiological perspective may help us to understand some of the causes of variation in behaviour.

  5. Method to suppress DDFS spurious signals in a frequency-hopping synthesizer with DDFS-driven PLL architecture.

    Science.gov (United States)

    Kwon, Kun-Sup; Yoon, Won-Sang

    2010-01-01

    In this paper we propose a method of removing from synthesizer output spurious signals due to quasi-amplitude modulation and superposition effect in a frequency-hopping synthesizer with direct digital frequency synthesizer (DDFS)-driven phase-locked loop (PLL) architecture, which has the advantages of high frequency resolution, fast transition time, and small size. There are spurious signals that depend on normalized frequency of DDFS. They can be dominant if they occur within the PLL loop bandwidth. We suggest that such signals can be eliminated by purposefully creating frequency errors in the developed synthesizer.

  6. Warts signaling controls organ and body growth through regulation of ecdysone

    DEFF Research Database (Denmark)

    Møller, Morten Erik; Nagy, Stanislav; Gerlach, Stephan Uwe

    2017-01-01

    under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin....../insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively...

  7. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation

    NARCIS (Netherlands)

    Matsumaru, D.; Haraguchi, R.; Miyagawa, S.; Motoyama, J.; Nakagata, N.; Meijlink, F.; Yamada, G.

    2011-01-01

    BACKGROUND: An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In

  8. Genetic Analysis of Hedgehog Signaling in Ventral Body Wall Development and the Onset of Omphalocele Formation

    NARCIS (Netherlands)

    Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen

    2011-01-01

    Background: An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In

  9. The Importance of cGMP Signaling in Sensory Cilia for Body Size Regulation in Caenorhabditis elegans.

    Science.gov (United States)

    Fujiwara, Manabi; Hino, Takahiro; Miyamoto, Ryuta; Inada, Hitoshi; Mori, Ikue; Koga, Makoto; Miyahara, Koji; Ohshima, Yasumi; Ishihara, Takeshi

    2015-12-01

    The body size of Caenorhabditis elegans is thought to be controlled by sensory inputs because many mutants with sensory cilium structure defects exhibit small body size. The EGL-4 cGMP-dependent protein kinase acts in sensory neurons to reduce body size when animals fail to perceive sensory signals. In addition to body size control, EGL-4 regulates various other behavioral and developmental pathways, including those involved in the regulation of egg laying and chemotaxis behavior. Here we have identified gcy-12, which encodes a receptor-type guanylyl cyclase, as a gene involved in the sensory regulation of body size. Analyses with GFP fusion constructs showed that gcy-12 is expressed in several sensory neurons and localizes to sensory cilia. Genetic analyses indicated that GCY-12 acts upstream of EGL-4 in body size control but does not affect other EGL-4 functions. Our studies indicate that the function of the GCY-12 guanylyl cyclase is to provide cGMP to the EGL-4 cGMP-dependent kinase only for limited tasks including body size regulation. We also found that the PDE-2 cyclic nucleotide phosphodiesterase negatively regulates EGL-4 in controlling body size. Thus, the cGMP level is precisely controlled by GCY-12 and PDE-2 to determine body size through EGL-4, and the defects in the sensory cilium structure may disturb the balanced control of the cGMP level. The large number of guanylyl cyclases encoded in the C. elegans genome suggests that EGL-4 exerts pleiotropic effects by partnering with different guanylyl cyclases for different downstream functions.

  10. Shh and Gli3 regulate formation of the telencephalic-diencephalic junction and suppress an isthmus-like signaling source in the forebrain.

    Science.gov (United States)

    Rash, Brian G; Grove, Elizabeth A

    2011-11-15

    In human holoprosencephaly (HPE), the forebrain does not separate fully into two hemispheres. Further, the border between the telencephalon and diencephalon, the telencephalic/diencephalic junction (TDJ), is often indistinct, and the ventricular system can be blocked at the third ventricle, creating a forebrain 'holosphere'. Mice deficient in Sonic Hedgehog (Shh) have previously been described to show HPE and associated cyclopia. Here we report that the third ventricle is blocked in Shh null mutants, similar to human HPE, and that characteristic telencephalic and diencephalic signaling centers, the cortical hem and zona limitans intrathalamica (ZLI), are merged, obliterating the TDJ. The resulting forebrain holosphere comprises Foxg1-positive telencephalic- and Foxg1-negative diencephalic territories. Loss of one functional copy of Gli3 in Shh nulls rescues ventricular collapse and substantially restores the TDJ. Characteristic regional gene expression patterns are rescued on the telencephalic side of the TDJ but not in the diencephalon. Further analysis of compound Shh;Gli3 mutants revealed an unexpected type of signaling center deregulation. In Shh;Gli3 mutants, adjacent rings of Fgf8 and Wnt3a expression are induced in the diencephalon at the ZLI, reminiscent of the Fgf8/Wnt1-expressing isthmic organizer. Neither Shh nor Gli3 single mutants show this forebrain double ring of Fgf/Wnt expression; thus both Shh and Gli3 are independently required to suppress it. Adjacent tissue is not respecified to a midbrain/hindbrain fate, but shows overgrowth, consistent with ectopic mitogen expression. Our observations indicate that the separation of the telencephalon and diencephalon depends on interactions between Shh and Gli3, and, moreover, demonstrate that both Shh and Gli3 suppress a potential Fgf/Wnt signaling source in the forebrain. That optional signaling centers are actively repressed in normal development is a striking new insight into the processes of vertebrate

  11. Body awareness and pain habituation: the role of orientation towards somatic signals.

    Science.gov (United States)

    Ginzburg, Karni; Tsur, Noga; Karmin, Carmel; Speizman, Tali; Tourgeman, Ricki; Defrin, Ruth

    2015-12-01

    Although body awareness and pain perception are considered to be parts of the interoceptive system, the relationship between them is unclear. This study examines the association between body awareness and pain habituation, hypothesizing that this association is moderated by pain catastrophizing and mindfulness. Sixty subjects received a mildly aversive electrical stimulus for 60 s, during which they were requested to rate the amount of perceived pain. Complete habituation was indicated by abolition of pain sensation; partial habituation was indicated by a decrease in pain sensation. Individuals who demonstrated complete habituation had lower levels of pain catastrophizing and lower levels of mindfulness. As hypothesized, the association between body awareness and pain habituation was moderated by pain catastrophizing: Among low pain catastrophizers, the higher the body awareness, the stronger the tendency to exhibit complete habituation. Among high pain catastrophizers, the higher the body awareness, the greater the likelihood to present partial habituation.

  12. Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway

    Indian Academy of Sciences (India)

    Gerdien De Jong; Zoltán Bochdanovits

    2003-12-01

    Many latitudinal clines exist in Drosophila melanogaster: in adult body size, in allele frequency at allozyme loci, and in frequencies of common cosmopolitan inversions. The question is raised whether these latitudinal clines are causally related. This review aims to connect data from two very different fields of study, evolutionary biology and cell biology, in explaining such natural genetic variation in D. melanogaster body size and development time. It is argued that adult body size clines, inversion frequency clines, and clines in allele frequency at loci involved in glycolysis and glycogen storage are part of the same adaptive strategy. Selection pressure is expected to differ at opposite ends of the clines. At high latitudes, selection on D. melanogaster would favour high larval growth rate at low temperatures, and resource storage in adults to survive winter. At low latitudes selection would favour lower larval critical size to survive crowding, and increased male activity leading to high male reproductive success. Studies of the insulin-signalling pathway in D. melanogaster point to the involvement of this pathway in metabolism and adult body size. The genes involved in the insulin-signalling pathway are associated with common cosmopolitan inversions that show latitudinal clines. Each chromosome region connected with a large common cosmopolitan inversion possesses a gene of the insulin transmembrane complex, a gene of the intermediate pathway and a gene of the TOR branch. The hypothesis is presented that temperate D. melanogaster populations have a higher frequency of a ‘thrifty’ genotype corresponding to high insulin level or high signal level, while tropical populations possess a more ‘spendthrift’ genotype corresponding to low insulin or low signal level.

  13. Inhibitors of arachidonate-regulated calcium channel signaling suppress triggered activity induced by the late sodium current.

    Science.gov (United States)

    Wolkowicz, Paul; Umeda, Patrick K; Sharifov, Oleg F; White, C Roger; Huang, Jian; Mahtani, Harry; Urthaler, Ferdinand

    2014-02-05

    Disturbances in myocyte calcium homeostasis are hypothesized to be one cause for cardiac arrhythmia. The full development of this hypothesis requires (i) the identification of all sources of arrhythmogenic calcium and (ii) an understanding of the mechanism(s) through which calcium initiates arrhythmia. To these ends we superfused rat left atria with the late sodium current activator type II Anemonia sulcata toxin (ATXII). This toxin prolonged atrial action potentials, induced early afterdepolarization, and provoked triggered activity. The calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphon-amide) suppressed ATXII triggered activity but its inactive congener KN-92 (2-[N-(4-methoxy benzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) did not. Neither drug affected normal atrial contractility. Calcium entry via L-type channels or calcium leakage from sarcoplasmic reticulum stores are not critical for this type of ectopy as neither verapamil ((RS)-2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl]-(methyl)amino}-2-prop-2-ylpentanenitrile) nor ryanodine affected ATXII triggered activity. By contrast, inhibitors of the voltage independent arachidonate-regulated calcium (ARC) channel and the store-operated calcium channel specifically suppressed ATXII triggered activity without normalizing action potentials or affecting atrial contractility. Inhibitors of cytosolic calcium-dependent phospholipase A2 also suppressed triggered activity suggesting that this lipase, which generates free arachidonate, plays a key role in ATXII ectopy. Thus, increased left atrial late sodium current appears to activate atrial Orai-linked ARC and store operated calcium channels, and these voltage-independent channels may be unexpected sources for the arrhythmogenic calcium that underlies triggered activity.

  14. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway.

    Science.gov (United States)

    Kou, Xianjuan; Qi, Shimei; Dai, Wuxing; Luo, Lan; Yin, Zhimin

    2011-08-01

    Arctigenin has been demonstrated to have an anti-inflammatory function, but the precise mechanisms of its action remain to be fully defined. In the present study, we determined the effects of arctigenin on lipopolysaccharide (LPS)-induced production of proinflammatory mediators and the underlying mechanisms involved in RAW264.7 cells. Our results indicated that arctigenin exerted its anti-inflammatory effect by inhibiting ROS-dependent STAT signaling through its antioxidant activity. Arctigenin also significantly reduced the phosphorylation of STAT1 and STAT 3 as well as JAK2 in LPS-stimulated RAW264.7 cells. The inhibitions of STAT1 and STAT 3 by arctigenin prevented their translocation to the nucleus and consequently inhibited expression of iNOS, thereby suppressing the expression of inflammation-associated genes, such as IL-1β, IL-6 and MCP-1, whose promoters contain STAT-binding elements. However, COX-2 expression was slightly inhibited at higher drug concentrations (50 μM). Our data demonstrate that arctigenin inhibits iNOS expression via suppressing JAK-STAT signaling pathway in macrophages.

  15. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways.

    Science.gov (United States)

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-07-20

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma.

  16. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice.

    Science.gov (United States)

    He, Xuexiu; Wei, Zhengkai; Zhou, Ershun; Chen, Libin; Kou, Jinhua; Wang, Jingjing; Yang, Zhengtao

    2015-09-01

    Baicalein is a phenolic flavonoid presented in the dry roots of Scutellaria baicalensis Georgi. It has been reported that baicalein possesses a number of biological properties, such as antiviral, antioxidative, anti-inflammatory, antithrombotic, and anticancer properties. However, the effect of baicalein on mastitis has not yet been reported. This research aims to detect the effect of baicalein on lipopolysaccharide (LPS)-induced mastitis in mice and to investigate the molecular mechanisms. Baicalein was administered intraperitoneally 1h before and 12h after LPS treatment. The results indicated that baicalein treatment markedly attenuated the damage of the mammary gland induced by LPS, suppressed the activity of myeloperoxidase (MPO) and the levels of tumor necrosis factor (TNF-α) and interleukin (IL-1β) in mice with LPS-induced mastitis. Besides, baicalein blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα) and, and inhibited the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. These findings suggested that baicalein may have a potential prospect against mastitis. Copyright © 2015. Published by Elsevier B.V.

  17. ERα/E2 signaling suppresses the expression of steroidogenic enzyme genes via cross-talk with orphan nuclear receptor Nur77 in the testes.

    Science.gov (United States)

    Lee, Seung-Yon; Park, Eunsook; Kim, Seung-Chang; Ahn, Ryun-Sup; Ko, CheMyong; Lee, Keesook

    2012-10-15

    Estrogen receptor alpha (ERα) has been reported to affect steroidogenesis in testicular Leydig cells, but its molecular mechanism remains unclear. Here, we investigate the effect of estrogen and ERα on Nur77, a major transcription factor that regulates the expression of steroidogenic enzyme genes. In MA-10 Leydig cells, estradiol (E2) treatment, and interestingly ERα overexpression, suppressed the cAMP-induced and Nur77-activated promoter activity of steroidogenic enzyme genes via the suppression of Nur77 transactivation. ERα physically interacted with Nur77 and inhibited its DNA binding activity. In addition, ERα/E2 signaling decreased Nur77 protein levels. Consistent with the above results, the testicular testosterone level was higher in Leydig cell-specific ERα knock-out mice (ERα(flox/flox)Cyp17iCre) than in wild-type mice (ERα(flox/flox)). Taken together, these results suggest that ERα/E2 signaling controls the Nur77-mediated expression of steroidogenic enzyme genes in Leydig cells. These findings may provide a mechanistic explanation for the local regulation of testicular steroidogenesis by estrogenic compounds and ERα.

  18. Decorin-mediated inhibition of the migration of U87MG glioma cells involves activation of autophagy and suppression of TGF-β signaling.

    Science.gov (United States)

    Yao, Ting; Zhang, Chen-Guang; Gong, Ming-Tao; Zhang, Min; Wang, Lei; Ding, Wei

    2016-07-01

    Decorin (DCN) is a major member of the small leucine-rich proteoglycan (SLRP) family that is critically involved in tumorigenesis and the development of metastasis of cancers, including glioma. Overexpression of DCN was indicated to suppress glioma cell growth. However, the role of DCN in the migration of glioma cells remain elusive. In this study, we found that treatment with exogenous DCN inhibited the adhesion and migration of U87MG glioma cells with down-regulation of TGF-β signaling. DCN also activated autophagy, as indicated by monodansylcadaverine (MDC) staining, increase in LC3 I/LC3 II conversion, and p62/SQSTM1 degradation in U87MG cells. The increased activity of autophagy was found to be connected to the inhibition on glioma cell migration. Knockdown of DCN expression or the disruption of autophagy with 3-methyladenine (3-MA) was able to reduce the suppression on cell adhesion and migration induced by DCN. When U87MG cells were treated with temozolomide (TMZ), induction of autophagy and up-regulation of DCN were observed, accompanied by suppressed cell adhesion and migration. Transfection of siRNA targeting DCN attenuated the suppressive effect of TMZ on glioma cell migration and adhesion. Our results indicated that the migration of glioma cells was under the control of the active status of autophagy, with DCN serving as a key player, as well as an indicator of the outcome. Therefore, it is suggested that autophagy-modulating reagents could be considered for the treatment of invasive glioma.

  19. Suppression of circulating free fatty acids with acipimox in chronic heart failure patients changes whole body metabolism but does not affect cardiac function.

    Science.gov (United States)

    Halbirk, Mads; Nørrelund, Helene; Møller, Niels; Schmitz, Ole; Gøtzsche, Liv; Nielsen, Roni; Nielsen-Kudsk, Jens Erik; Nielsen, Søren Steen; Nielsen, Torsten Toftegaard; Eiskjær, Hans; Bøtker, Hans Erik; Wiggers, Henrik

    2010-10-01

    Circulating free fatty acids (FFAs) may worsen heart failure (HF) due to myocardial lipotoxicity and impaired energy generation. We studied cardiac and whole body effects of 28 days of suppression of circulating FFAs with acipimox in patients with chronic HF. In a randomized double-blind crossover design, 24 HF patients with ischemic heart disease [left ventricular ejection fraction: 26 ± 2%; New York Heart Association classes II (n = 13) and III (n = 5)] received 28 days of acipimox treatment (250 mg, 4 times/day) and placebo. Left ventricular ejection fraction, diastolic function, tissue-Doppler regional myocardial function, exercise capacity, noninvasive cardiac index, NH(2)-terminal pro-brain natriuretic peptide (NT-pro-BNP), and whole body metabolic parameters were measured. Eighteen patients were included for analysis. FFAs were reduced by 27% in the acipimox-treated group [acipimox vs. placebo (day 28-day 0): -0.10 ± 0.03 vs. +0.01 ± 0.03 mmol/l, P < 0.01]. Glucose and insulin levels did not change. Acipimox tended to increase glucose and decrease lipid utilization rates at the whole body level and significantly changed the effect of insulin on substrate utilization. The hyperinsulinemic euglycemic clamp M value did not differ. Global and regional myocardial function did not differ. Exercise capacity, cardiac index, systemic vascular resistance, and NT-pro-BNP were not affected by treatment. In conclusion, acipimox caused minor changes in whole body metabolism and decreased the FFA supply, but a long-term reduction in circulating FFAs with acipimox did not change systolic or diastolic cardiac function or exercise capacity in patients with HF.

  20. Pathway-selective suppression of chemokine receptor signaling in B cells by LPS through downregulation of PLC-β2.

    Science.gov (United States)

    Shirakawa, Aiko-Konno; Liao, Fang; Zhang, Hongwei H; Hedrick, Michael N; Singh, Satya P; Wu, Dianqing; Farber, Joshua M

    2010-11-01

    Lymphocyte activation leads to changes in chemokine receptor expression. There are limited data, however, on how lymphocyte activators can alter chemokine signaling by affecting downstream pathways. We hypothesized that B cell-activating agents might alter chemokine responses by affecting downstream signal transducers, and that such effects might differ depending on the activator. We found that activating mouse B cells using either anti-IgM or lipopolysaccharide (LPS) increased the surface expression of CCR6 and CCR7 with large increases in chemotaxis to their cognate ligands. By contrast, while anti-IgM also led to enhanced calcium responses, LPS-treated cells showed only small changes in calcium signaling as compared with cells that were freshly isolated. Of particular interest, we found that LPS caused a reduction in the level of B-cell phospholipase C (PLC)-β2 mRNA and protein. Data obtained using PLC-β2(-/-) mice showed that the β2 isoform mediates close to one-half the chemokine-induced calcium signal in resting and anti-IgM-activated B cells, and we found that calcium signals in the LPS-treated cells were boosted by increasing the level of PLC-β2 using transfection, consistent with a functional effect of downregulating PLC-β2. Together, our results show activator-specific effects on responses through B-cell chemokine receptors that are mediated by quantitative changes in a downstream signal-transducing protein, revealing an activity for LPS as a downregulator of PLC-β2, and a novel mechanism for controlling chemokine-induced signals in lymphocytes.

  1. Stress and glucocorticoids impair memory retrieval via β2-adrenergic, Gi/o-coupled suppression of cAMP signaling.

    Science.gov (United States)

    Schutsky, Keith; Ouyang, Ming; Castelino, Christina B; Zhang, Lei; Thomas, Steven A

    2011-10-05

    Acute stress impairs the retrieval of hippocampus-dependent memory, and this effect is mimicked by exogenous administration of stress-responsive glucocorticoid hormones. It has been proposed that glucocorticoids affect memory by promoting the release and/or blocking the reuptake of norepinephrine (NE), a stress-responsive neurotransmitter. It has also been proposed that this enhanced NE signaling impairs memory retrieval by stimulating β(1)-adrenergic receptors and elevating levels of cAMP. In contrast, other evidence indicates that NE, β(1), and cAMP signaling is transiently required for the retrieval of hippocampus-dependent memory. To resolve this discrepancy, wild-type rats and mice with and without gene-targeted mutations were stressed or treated with glucocorticoids and/or adrenergic receptor drugs before testing memory for inhibitory avoidance or fear conditioning. Here we report that glucocorticoids do not require NE to impair retrieval. However, stress- and glucocorticoid-induced impairments of retrieval depend on the activation of β(2) (but not β(1))-adrenergic receptors. Offering an explanation for the opposing functions of these two receptors, the impairing effects of stress, glucocorticoids and β(2) agonists on retrieval are blocked by pertussis toxin, which inactivates signaling by G(i/o)-coupled receptors. In hippocampal slices, β(2) signaling decreases cAMP levels and greatly reduces the increase in cAMP mediated by β(1) signaling. Finally, augmenting cAMP signaling in the hippocampus prevents the impairment of retrieval by systemic β(2) agonists or glucocorticoids. These results demonstrate that the β(2) receptor can be a critical effector of acute stress, and that β(1) and β(2) receptors can have quite distinct roles in CNS signaling and cognition.

  2. Pathway-selective suppression of chemokine receptor signaling in B cells by LPS through downregulation of PLC-β2

    Science.gov (United States)

    Shirakawa, Aiko-Konno; Liao, Fang; Zhang, Hongwei H; Hedrick, Michael N; Singh, Satya P; Wu, Dianqing; Farber, Joshua M

    2010-01-01

    Lymphocyte activation leads to changes in chemokine receptor expression. There are limited data, however, on how lymphocyte activators can alter chemokine signaling by affecting downstream pathways. We hypothesized that B cell-activating agents might alter chemokine responses by affecting downstream signal transducers, and that such effects might differ depending on the activator. We found that activating mouse B cells using either anti-IgM or lipopolysaccharide (LPS) increased the surface expression of CCR6 and CCR7 with large increases in chemotaxis to their cognate ligands. By contrast, while anti-IgM also led to enhanced calcium responses, LPS-treated cells showed only small changes in calcium signaling as compared with cells that were freshly isolated. Of particular interest, we found that LPS caused a reduction in the level of B-cell phospholipase C (PLC)-β2 mRNA and protein. Data obtained using PLC-β2−/− mice showed that the β2 isoform mediates close to one-half the chemokine-induced calcium signal in resting and anti-IgM-activated B cells, and we found that calcium signals in the LPS-treated cells were boosted by increasing the level of PLC-β2 using transfection, consistent with a functional effect of downregulating PLC-β2. Together, our results show activator-specific effects on responses through B-cell chemokine receptors that are mediated by quantitative changes in a downstream signal-transducing protein, revealing an activity for LPS as a downregulator of PLC-β2, and a novel mechanism for controlling chemokine-induced signals in lymphocytes. PMID:20871625

  3. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK ε to suppress plant immune signaling.

    Science.gov (United States)

    King, Stuart R F; McLellan, Hazel; Boevink, Petra C; Armstrong, Miles R; Bukharova, Tatyana; Sukarta, Octavina; Win, Joe; Kamoun, Sophien; Birch, Paul R J; Banfield, Mark J

    2014-03-01

    Mitogen-activated protein kinase cascades are key players in plant immune signaling pathways, transducing the perception of invading pathogens into effective defense responses. Plant pathogenic oomycetes, such as the Irish potato famine pathogen Phytophthora infestans, deliver RXLR effector proteins to plant cells to modulate host immune signaling and promote colonization. Our understanding of the molecular mechanisms by which these effectors act in plant cells is limited. Here, we report that the P. infestans RXLR effector PexRD2 interacts with the kinase domain of MAPKKKε, a positive regulator of cell death associated with plant immunity. Expression of PexRD2 or silencing MAPKKKε in Nicotiana benthamiana enhances susceptibility to P. infestans. We show that PexRD2 perturbs signaling pathways triggered by or dependent on MAPKKKε. By contrast, homologs of PexRD2 from P. infestans had reduced or no interaction with MAPKKKε and did not promote disease susceptibility. Structure-led mutagenesis identified PexRD2 variants that do not interact with MAPKKKε and fail to support enhanced pathogen growth or perturb MAPKKKε signaling pathways. Our findings provide evidence that P. infestans RXLR effector PexRD2 has evolved to interact with a specific host MAPKKK to perturb plant immunity-related signaling.

  4. Phytophthora infestans RXLR Effector PexRD2 Interacts with Host MAPKKKε to Suppress Plant Immune Signaling[W][OPEN

    Science.gov (United States)

    King, Stuart R.F.; McLellan, Hazel; Boevink, Petra C.; Armstrong, Miles R.; Bukharova, Tatyana; Sukarta, Octavina; Win, Joe; Kamoun, Sophien; Birch, Paul R.J.; Banfield, Mark J.

    2014-01-01

    Mitogen-activated protein kinase cascades are key players in plant immune signaling pathways, transducing the perception of invading pathogens into effective defense responses. Plant pathogenic oomycetes, such as the Irish potato famine pathogen Phytophthora infestans, deliver RXLR effector proteins to plant cells to modulate host immune signaling and promote colonization. Our understanding of the molecular mechanisms by which these effectors act in plant cells is limited. Here, we report that the P. infestans RXLR effector PexRD2 interacts with the kinase domain of MAPKKKε, a positive regulator of cell death associated with plant immunity. Expression of PexRD2 or silencing MAPKKKε in Nicotiana benthamiana enhances susceptibility to P. infestans. We show that PexRD2 perturbs signaling pathways triggered by or dependent on MAPKKKε. By contrast, homologs of PexRD2 from P. infestans had reduced or no interaction with MAPKKKε and did not promote disease susceptibility. Structure-led mutagenesis identified PexRD2 variants that do not interact with MAPKKKε and fail to support enhanced pathogen growth or perturb MAPKKKε signaling pathways. Our findings provide evidence that P. infestans RXLR effector PexRD2 has evolved to interact with a specific host MAPKKK to perturb plant immunity–related signaling. PMID:24632534

  5. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    Science.gov (United States)

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  6. Klotho-beta overexpression as a novel target for suppressing proliferation and fibroblast growth factor receptor-4 signaling in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Poh Weijie

    2012-03-01

    Full Text Available Abstract Background We had previously demonstrated overexpression of fibroblast growth factor receptor-4 (FGFR4 in hepatocellular carcinoma (HCC. However, additional molecular mechanisms resulting in amplified FGFR4 signaling in HCC remain under-studied. Here, we studied the mechanistic role of its co-receptor klotho-beta (KLB in driving elevated FGFR4 activity in HCC progression. Results Quantitative real-time PCR analysis identified frequent elevation of KLB gene expression in HCC tumors relative to matched non-tumor tissue, with a more than two-fold increase correlating with development of multiple tumors in patients. KLB-silencing in Huh7 cells decreased cell proliferation and suppressed FGFR4 downstream signaling. While transient repression of KLB-FGFR4 signaling decreased protein expression of alpha-fetoprotein (AFP, a HCC diagnostic marker, prolonged inhibition enriched for resistant HCC cells exhibiting increased liver stemness. Conclusions Elevated KLB expression in HCC tissues provides further credence to the oncogenic role of increased FGFR4 signaling in HCC progression and represents a novel biomarker to identify additional patients amenable to anti-FGFR4 therapy. The restricted tissue expression profile of KLB, together with the anti-proliferative effect observed with KLB-silencing, also qualifies it as a specific and potent therapeutic target for HCC patients. The enrichment of a liver stem cell-like population in response to extended KLB-FGFR4 repression necessitates further investigation to target the development of drug resistance.

  7. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Hsuan-Yu Peng

    Full Text Available Microtubule inhibitors have been shown to inhibit Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3 signal transduction pathway in various cancer cells. However, little is known of the mechanism by which the microtubule inhibitors inhibit STAT3 activity. In the present study, we examined the effect of a novel small-molecule microtubule inhibitor, MPT0B098, on STAT3 signaling in oral squamous cell carcinoma (OSCC. Treatment of various OSCC cells with MPT0B098 induced growth inhibition, cell cycle arrest and apoptosis, as well as increased the protein level of SOCS3. The accumulation of SOCS3 protein enhanced its binding to JAK2 and TYK2 which facilitated the ubiquitination and degradation of JAK2 and TYK2, resulting in a loss of STAT3 activity. The inhibition of STAT3 activity led to sensitization of OSCC cells to MPT0B098 cytotoxicity, indicating that STAT3 is a key mediator of drug resistance in oral carcinogenesis. Moreover, the combination of MPT0B098 with the clinical drug cisplatin or 5-FU significantly augmented growth inhibition and apoptosis in OSCC cells. Taken together, our results provide a novel mechanism for the action of MPT0B098 in which the JAK2/STAT3 signaling pathway is suppressed through the modulation of SOCS3 protein level. The findings also provide a promising combinational therapy of MPT0B098 for OSCC.

  8. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min [Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072 (China); Wu, Junjie, E-mail: wujunjiesh@126.com [Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433 (China); Cai, Yong, E-mail: dryongcai@126.com [Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433 (China)

    2013-09-06

    Highlights: •Dnmt3A and Dnmt3B are involved in the down-regulation of WIF-1 expression in non-small-cell lung cancer. •MiR-29 family members could restore WIF-1 expression through demethylation. •MiR-29s suppress Wnt/β-catenin signaling pathway and inhibit tumor growth. •The expression of miR-29a and miR-29b could be regulated partially in a positive feedback loop. -- Abstract: Wnt inhibitory factor-1 (WIF-1) silencing induced by promoter hypermethylation is a common mechanism of aberrant activation of the Wnt signaling pathway in non-small-cell lung cancer (NSCLC). However, the activity of regulators associated with the methylation of the WIF-1 gene remains unclear. Here, we investigated the role of three DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) in the expression of WIF-1. The three DNMTs were up-regulated in NSCLC tumor tissues and suppression of DNMT3A and DNMT3B restored the expression of WIF-1 in NSCLC cells. The miR-29 family (miR-29a, -29b, and -29c), which negatively regulates DNMT3A and DNMT3B, was examined in association with the Wnt/β-catenin signaling pathway. A positive correlation between the expression of WIF-1 and that of MiR-29s was observed in NSCLC tissues. Methylation-specific PCR and Western blotting indicated that miR-29s positively regulate WIF-1 expression by inhibiting the methylation of its promoter. Furthermore, miR-29 overexpression downregulated β-catenin expression, inhibited cell proliferation and induced apoptosis. The expression of miR-29a and miR-29b was partially regulated by DNMT3A and DNMT3B in a positive feedback loop. Taken together, our findings show that miR-29s suppress the Wnt signaling pathway through demethylation of WIF-1 in NSCLC.

  9. Suppression of signal sequence defects and azide resistance in Escherichia coli commonly result from the same mutations in secA.

    Science.gov (United States)

    Huie, J L; Silhavy, T J

    1995-06-01

    The SecA protein of Escherichia coli is required for protein translocation from the cytoplasm. The complexity of SecA function is reflected by missense mutations in the secA gene that confer several different phenotypes: (i) conditional-lethal alleles cause a generalized block in protein secretion, resulting in the cytoplasmic accumulation of the precursor forms of secreted proteins; (ii) azi alleles confer resistance to azide at concentrations up to 4 mM; and (iii) prlD alleles suppress a number of signal sequence mutations in several different genes. To gain further insights into the role of SecA in protein secretion, we have isolated and characterized a large number of prlD mutations, reasoning that these mutations alter a normal function of wild-type SecA. Our results reveal a striking coincidence of signal sequence suppression and azide resistance: the majority of prlD alleles also confer azide resistance, and all azi alleles tested are suppressors. We suggest that this correlation reflects the mechanism(s) of signal sequence suppression. There are two particularly interesting subclasses of prlD and azi alleles. First, four of the prlD and azi alleles exhibit special properties: (i) as suppressors they are potent enough to allow PrlD (SecA) inactivation by a toxic LacZ fusion protein marked with a signal sequence mutation (suppressor-directed inactivation), (ii) they confer azide resistance, and (iii) they cause modest defects in the secretion of wild-type proteins. Sequence analysis reveals that all four of these alleles alter Tyr-134 in SecA, changing it to Ser, Cys, or Asn. The second subclass consists of seven prlD alleles that confer azide supersensitivity, and sequence analysis reveals that six of these alleles are changes of Ala-507 to Val. Both of the affected amino acids are located within different putative ATP-binding regions of SecA and thus may affect ATPase activities of SecA. We suggest that the four azide-resistant mutations slow an ATPase

  10. Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila

    Directory of Open Access Journals (Sweden)

    Grau Yves

    2010-04-01

    Full Text Available Abstract Background The mushroom bodies (MBs are paired brain centers located in the insect protocerebrum involved in olfactory learning and memory and other associative functions. Processes from the Kenyon cells (KCs, their intrinsic neurons, form the bulk of the MB's calyx, pedunculus and lobes. In young adult Drosophila, the last-born KCs extend their processes in the α/β lobes as a thin core (α/β cores that is embedded in the surrounding matrix of other mature KC processes. A high level of L-glutamate (Glu immunoreactivity is present in the α/β cores (α/βc of recently eclosed adult flies. In a Drosophila model of fragile X syndrome, the main cause of inherited mental retardation, treatment with metabotropic Glu receptor (mGluR antagonists can rescue memory deficits and MB structural defects. Results To address the role of Glu signaling in the development and maturation of the MB, we have compared the time course of Glu immunoreactivity with the expression of various glutamatergic markers at various times, that is, 1 hour, 1 day and 10 days after adult eclosion. We observed that last-born α/βc KCs in young adult as well as developing KCs in late larva and at various pupal stages transiently express high level of Glu immunoreactivity in Drosophila. One day after eclosion, the Glu level was already markedly reduced in the α/βc neurons. Glial cell processes expressing glutamine synthetase and the Glu transporter dEAAT1 were found to surround the Glu-expressing KCs in very young adults, subsequently enwrapping the α/β lobes to become distributed equally over the entire MB neuropil. The vesicular Glu transporter DVGluT was detected by immunostaining in processes that project within the MB lobes and pedunculus, but this transporter is apparently never expressed by the KCs themselves. The NMDA receptor subunit dNR1 is widely expressed in the MB neuropil just after eclosion, but was not detected in the α/βc neurons. In contrast, we

  11. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  12. Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral Ossification of Adult Human MSCs via WNT Signaling Modulation

    Directory of Open Access Journals (Sweden)

    Roberto Narcisi

    2015-03-01

    Full Text Available Mesenchymal stem cells (MSCs are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair.

  13. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling.

    Science.gov (United States)

    Ren, Jiafa; Li, Jianzhong; Liu, Xin; Feng, Ye; Gui, Yuan; Yang, Junwei; He, Weichun; Dai, Chunsun

    2016-04-07

    Quercetin, a flavonoid found in a wide variety of plants and presented in human diet, displays promising potential in preventing kidney fibroblast activation. However, whether quercetin can ameliorate kidney fibrosis in mice with obstructive nephropathy and the underlying mechanisms remain to be further elucidated. In this study, we found that administration of quercetin could largely ameliorate kidney interstitial fibrosis and macrophage accumulation in the kidneys with obstructive nephropathy. MTORC1, mTORC2, β-catenin as well as Smad signaling were activated in the obstructive kidneys, whereas quercetin could markedly reduce their abundance except Smad3 phosphorylation. In cultured NRK-49F cells, quercetin could inhibit α-SMA and fibronectin (FN) expression induced by TGFβ1 treatment. MTORC1, mTORC2, β-catenin and Smad signaling pathways were stimulated by TGFβ1 at a time dependent manner. Similar to those findings in the obstructive kidneys, mTORC1, mTORC2 and β-catenin, but not Smad signaling pathways were remarkably blocked by quercetin treatment. Together, these results suggest that quercetin inhibits fibroblast activation and kidney fibrosis involving a combined inhibition of mTOR and β-catenin signaling transduction, which may act as a therapeutic candidate for patients with chronic kidney diseases.

  14. Bone morphogenetic protein-9 suppresses growth of myeloma cells by signaling through ALK2 but is inhibited by endoglin

    DEFF Research Database (Denmark)

    Olsen, O E; Wader, K F; Misund, K

    2014-01-01

    myeloma cell samples by signaling through ALK2. BMP-9-induced apoptosis in myeloma cells was associated with c-MYC downregulation. The effects of BMP-9 were counteracted by membrane-bound (CD105) or soluble endoglin present in the bone marrow microenvironment, suggesting a mechanism for how myeloma cells...

  15. Suppression of nuclear factor-kappa B and mitogen-activated protein kinase signalling pathways by goshonoside-F5 extracted from Rubi Fructus.

    Science.gov (United States)

    He, Jian-Ming; Chen, Shi-Cai; Li, Run-Ping; Yuan, Liang-Xi; Bao, Jun-Min; Guo, Mei-Li

    2015-02-01

    Rubi Fructus, a traditional Chinese medicine, was considered as an anti-inflammatory agent in folk medicine. In the present study, we investigated the signalling pathways involved in the anti-inflammatory effects of goshonoside-F5 (GF5), isolated from Rubi Fructus, in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. GF5 decreased NO and PGE2 production in LPS-stimulated macrophages (IC50=3.84 and 3.16μM). This effect involved the suppression of NOS-2 and COX-2 gene expression at the transcriptional level. Examination of the effects of GF5 on NF-κB signalling demonstrated that it inhibits the phosphorylation of IκB-α and IκB-β, blocking their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signalling was also observed, and phosphorylation of p38 and JNK was suppressed in the presence of GF5. Inflammatory cytokines, including IL-6 and TNF-α, were down-regulated by this compound after activation with LPS (IC50=17.04 and 4.09μM). Additionally, GF5 (30 and 90mg/kg, i.p.) significantly reduced the circulating cytokine levels (IL-6 and TNF-α) and increased survival in a mouse model of endotoxemia. These results show that GF5 significantly inhibits the pro-inflammatory response induced by LPS, both in vitro and in vivo. Our results provide a strong pharmacological basis for further understanding the potential therapeutic role of GF5 in inflammatory disease and shed new light on the bioactivity of ent-labdane diterpene glucoside. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Celastrol-Induced Suppression of the MiR-21/ERK Signalling Pathway Attenuates Cardiac Fibrosis and Dysfunction

    Directory of Open Access Journals (Sweden)

    Mian Cheng

    2016-05-01

    Full Text Available Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying mechanisms. Methods: Animal and cell models of cardiac fibrosis were used in this study. Myocardial fibrosis was induced by transverse aortic constriction (TAC in mice. Cardiac hypertrophy and fibrosis were evaluated based on histological and biochemical measurements. Cardiac function was evaluated by echocardiography. The levels of transforming growth factor beta 1 (TGF-β1, extracellular signal regulated kinases 1/2 (ERK1/2 signalling were measured using Western blotting, while the expression of miR-21was analyzed by real-time qRT-PCR in vitro and in vivo. In vitro studies, cultured cardiac fibroblasts (CFs were treated with TGF-β1 and transfected with microRNA-21(miR21. Results: Celastrol treatment reduced the increased collagen deposition and down-regulated α-smooth muscle actin (α-SMA, atrial natriuretic peptide (ANP, brain natriuretic peptides (BNP, beta-myosin heavy chain (β-MHC, miR-21 and p-ERK/ERK. Cardiac dysfunction was significantly attenuated by celastrol treatment in the TAC mice model. Celastrol treatment reduced myocardial fibroblast viability and collagen content and down-regulated α-SMA in cultured CFs in vitro. Celastrol also inhibited the miR-21/ERK signalling pathway. Celastrol attenuated miR-21 up-regulation by TGF-β1 and decreased elevated p-ERK/ERK levels in CFs transfected with miR-21. Conclusion: MiR-21/ERK signalling could be a potential therapeutic pathway for the prevention of myocardial fibrosis. Celastrol ameliorates myocardial fibrosis and cardiac dysfunction, these probably related to miR-21/ERK signaling pathways in vitro and in vivo.

  17. E2/ER β inhibit ISO-induced cardiac cellular hypertrophy by suppressing Ca2+-calcineurin signaling.

    Science.gov (United States)

    Tsai, Cheng-Yen; Kuo, Wei-Wen; Shibu, Marthandam Asokan; Lin, Yueh-Min; Liu, Chien-Nam; Chen, Yi-Hui; Day, Cecilia-Hsuan; Shen, Chia-Yao; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2017-01-01

    Cardiovascular incidences are markedly higher in men than in pre-menstrual women. However, this advantage in women declines with aging and therefore can be correlated with the sex hormone 17β-Estradiol (E2) which is reported to protect heart cells by acting though estrogen receptors (ERs). In this study we have determined the effect of E2/ERβ against ISO induced cellular hypertrophy in H9c2 cardiomyoblast cells. The results confirm that ISO induced cardiac-hypertrophy by elevating the levels of hypertrophy associated proteins, ANP and BNP and further by upregulating p-CaMKII, calcineurin, p-GATA4 and NFATc3 which was correlated with a significant enlargement of the H9c2 cardiomyoblast. However, overexpression of ERβ and/or administration of E2 inhibited ISO-induced hypertrophy in H9c2 cells. In addition, E2/ERβ also inhibited ISO-induced NFATc3 translocation, and reduced the protein level of downstream marker, BNP. Furthermore, by testing with the calcineurin inhibitor (CsA), it was confirmed that calcineurin acted as a key mediator for the anti-hypertrophic effect of E2/ERβ. In cells treated with calcium blocker (BATPA), the inhibitory effect of E2/ERβ on ISO-induced Ca2+ influx and hypertrophic effects were totally blocked suggesting that E2/ERβ inhibited calcineurin activity to activate I-1 protein and suppress PP1, then induce PLB protein phosphorylation and activation, resulting in Ca2+ reuptake into sarcoplasmic reticulum through SR Ca2+ cycling modification. In conclusion, E2/ERβ suppresses the Ca2+ influx and calcineurin activity induced by ISO to enhance the PLB protein activity and SR Ca2+ cycling.

  18. Chronic treatment with metformin suppresses toll-like receptor 4 signaling and attenuates left ventricular dysfunction following myocardial infarction.

    Science.gov (United States)

    Soraya, Hamid; Clanachan, Alexander S; Rameshrad, Maryam; Maleki-Dizaji, Nasrin; Ghazi-Khansari, Mahmoud; Garjani, Alireza

    2014-08-15

    Acute treatment with metformin has a protective effect in myocardial infarction by suppression of inflammatory responses due to activation of AMP-activated protein kinase (AMPK). In the present study, the effect of chronic pre-treatment with metformin on cardiac dysfunction and toll-like receptor 4 (TLR4) activities following myocardial infarction and their relation with AMPK were assessed. Male Wistar rats were randomly assigned to one of 5 groups (n=6): normal control and groups were injected isoproterenol after chronic pre-treatment with 0, 25, 50, or 100mg/kg of metformin twice daily for 14 days. Isoproterenol (100mg/kg) was injected subcutaneously on the 13th and 14th days to induce acute myocardial infarction. Isoproterenol alone decreased left ventricular systolic pressure and myocardial contractility indexed as LVdp/dtmax and LVdp/dtmin. The left ventricular dysfunction was significantly lower in the groups treated with 25 and 50mg/kg of metformin. Metfromin markedly lowered isoproterenol-induced elevation in the levels of TLR4 mRNA, myeloid differentiation protein 88 (MyD88), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) in the heart tissues. Similar changes were also seen in the serum levels of TNF-α and IL-6. However, the lower doses of 25 and 50mg/kg were more effective than 100mg/kg. Phosphorylated AMPKα (p-AMPK) in the myocardium was significantly elevated by 25mg/kg of metformin, slightly by 50mg/kg, but not by 100mg/kg. Chronic pre-treatment with metformin reduces post-myocardial infarction cardiac dysfunction and suppresses inflammatory responses, possibly through inhibition of TLR4 activities. This mechanism can be considered as a target to protect infarcted myocardium.

  19. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  20. Sirt1 overexpression protects murine osteoblasts against TNF-α-induced injury in vitro by suppressing the NF-KB signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Wei HUANG; Wei-lin SHANG; Hua-dong WANG; Wen-wen WU; Shu-xun HOU

    2012-01-01

    Sirtuin 1 (Sirt1) is the class III histone/protein deacetylase that interferes with the NF-KB signaling pathway,thereby has antiinflammatory function.This study was undertaken to investigate whether Sirt1 could protect osteoblasts against TNF-α-induced injury in vitro.Methods:Murine osteoblastic cell line,MC3T3-E1,was used.Overexpress of Sirt1 protein in MC3T3-E1 cells was made by transfection the cells with Sirt1-overexpressing adenovirus.The levels of mRNAs and proteins were determined with qRT-PCR and Western blotting,respectively.The activity of NF-κB was examined using NF-κB luciferase assay.The NO concentration was measured using the Griess method.Results:Treatment of MC3T3-E1 cells with TNF-α (2.5-10 ng/mL) suppressed Sirt1 protein expression in a concentration-dependent manner.TNF-α (5 ng/mL) resulted in an increase in apoptosis and a reduction in ALP activity in the cells.Overexpression of Sirt1in the cells significantly attenuated TNF-α-induced injury through suppressing apoptosis,increasing ALP activity,and increasing the expression of Runx2 and osteocalcin mRNAs.Furthermore,overexpression of Sirt1 in the cells significantly suppressed TNF-α-induced NF-κB activation,followed by reducing the expression of iNOS and NO formation.Sirt1 activator resveratrol (10 μmol/L) mimicked the protection of the ceils by Sirt1 overexpression against TNF-α-induced injury,which was reversed by the Sirt1 inhibitor EX-527 (5μmol/L).Conclusion:Overexpression of Sirt1 protects MC3T3-E1 osteoblasts aganst TNF-α-induced cell injury in vitro,at least in part,via suppressing NF-KB signaling.Sirt1 may be a novel therapeutic target for treating rheumatoid arthritis-related bone loss.

  1. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway by targeting Capn4

    Directory of Open Access Journals (Sweden)

    Hu H

    2017-05-01

    Full Text Available Haili Hu,1,* Guanghui Wang,1,* Congying Li2 1Department of Otorhinolaryngology, Huaihe Hospital of Henan University, 2Department of Otorhinolaryngology, School of Medicine, Kaifeng University, Kaifeng, People’s Republic of China *These authors contributed equally to this work Background: Recent studies have demonstrated that microRNA 124 (miR-124 acts as a tumor suppressor in nasopharyngeal carcinoma (NPC; however, the exact molecular mechanism by which miR-124 exerts tumor suppression has not been well elucidated.Materials and methods: We performed quantitative real-time PCR (qRT-PCR to measure the expression of metastasis associated lung adenocarcinoma transcript 1, miR-124, and calpain small subunit 1 (Capn4 mRNAs in NPC cell lines. We also performed western blot analysis to detect the levels of Capn4. Furthermore, we performed MTT assay and transwell invasion assay to determine the proliferation and invasion ability of two NPC cell lines, namely, HONE1 and CNE2 cells, respectively. The verification of targets of miR-124 was performed using prediction softwares and luciferase reporter analysis.Results: According to our results, the expression of Capn4 was found to be elevated, whereas the expression of miR-124 was lowered in NPC cell lines compared with normal nasopharyngeal cells. When we preformed overexpression of miR-124, it suppressed the proliferation and invasion of NPC cells. Moreover, miR-124 suppressed the expression of Capn4 by targeting Capn4 in HONE1 and CNE2 cells. When we preformed overexpression of Capn4, it reversed the inhibitory effect of miR-124 on the proliferation and invasion of NPC cells. Furthermore, miR-124–Capn4 axis decreased the levels of β-catenin, cyclin D1, and c-Myc, the components of the Wnt/β-catenin signaling pathway.Conclusion: The suppression of proliferation and invasion of NPC cells by miR-124 were achieved by the regulation of Wnt/β-catenin signaling pathway by targeting Capn4. The results of

  2. Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism.

    Science.gov (United States)

    Guridi, Maitea; Kupr, Barbara; Romanino, Klaas; Lin, Shuo; Falcetta, Denis; Tintignac, Lionel; Rüegg, Markus A

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis.

  3. Suppression of Akt-HIF-1α signaling axis by diacetyl atractylodiol inhibits hypoxia-induced angiogenesis

    Science.gov (United States)

    Choi, Sik-Won; Lee, Kwang-Sik; Lee, Jin Hwan; Kang, Hyeon Jung; Lee, Mi Ja; Kim, Hyun Young; Park, Kie-In; Kim, Sun-Lim; Shin, Hye Kyoung; Seo, Woo Duck

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α is a key regulator associated with tumorigenesis, angiogenesis, and metastasis. HIF-1α regulation under hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. Here, we demonstrate that diacetyl atractylodiol (DAA) from Atractylodes japonica (A. japonica) is a potent HIF-1α inhibitor that inhibits the Akt signaling pathway. DAA dose-dependently inhibited hypoxia-induced HIF-1α and downregulated Akt signaling without affecting the stability of HIF-1α protein. Furthermore, DAA prevented hypoxia-mediated angiogenesis based on in vitro tube formation and in vivo chorioallantoic membrane (CAM) assays. Therefore, DAA might be useful for treatment of hypoxia-related tumorigenesis, including angiogenesis. [BMB Reports 2016; 49(9): 508-513] PMID:27439603

  4. [Role of the body of the skate in initial processing of electroreceptor system signals].

    Science.gov (United States)

    Gusev, V M; Krylov, B V; Suvorova, T P

    1985-01-01

    Possible space mechanisms of information conversion processes with Lorenzinian ampullary apparatus during detection of the dipole electric field were studied using mathematical modelling methods. The stationary voltage distribution in the nonuniform media was calculated by numerical methods. The skate body was simulated by a thin disk. If the dipole axis lay in the disk plane potential distortions near the disk were negligibly small. In other cases the electrical field energy absorbed by ampullary groups was dramatically reduced. It is supposed that body tissues serve as a space filter of the electroreceptive system.

  5. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chi-Tai [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Rao, Yerra Koteswara [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China); Ye, Min [Department of Natural Medicine, School of Pharmaceutical Sciences, Peking University, Beijing (China); Wu, Wen-Shi [Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan (China); Chang, Tung-Chen [Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wang, Liang-Shun [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Chih-Hsiung [Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wu, Alexander T.H., E-mail: chaw1211@tmu.edu.tw [Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (China); Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tzeng, Yew-Min, E-mail: ymtzeng@cyut.edu.tw [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China)

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  6. Lipo-PGE1 suppresses collagen production in human dermal fibroblasts via the ERK/Ets-1 signaling pathway.

    Science.gov (United States)

    Yang, Yoolhee; Kim, Hee Jung; Woo, Kyong-Je; Cho, Daeho; Bang, Sa Ik

    2017-01-01

    Dysregulation of collagen production contributes to various pathological processes, including tissue fibrosis as well as impaired wound healing. Lipo-prostaglandin E1 (Lipo-PGE1), a lipid microsphere-incorporated prostaglandin E1, is used as a vasodilator for the treatment of peripheral vascular diseases. Lipo-PGE1 was recently shown to enhance human dermal fibroblast (HDF) migration and in vivo wound healing. No published study has characterized the role of Lipo-PGE1 in collagen regulation in HDFs. Here, we investigated the cellular signaling mechanism by which Lipo-PGE1 regulates collagen in HDFs. Collagen production was evaluated by the Sircol collagen assay, Western blot analysis of type I collagen and real time PCR. Unexpectedly, Lipo-PGE1 decreased mRNA expression of collagen 1A1, 1A2, and 3A1. Lipo-PGE1 markedly inhibited type I collagen and total soluble collagen production. In addition, Lipo-PGE1 inhibited transforming growth factor-β-induced collagen expression via Smad2 phosphorylation. To further investigate whether extracellular signal-regulated kinase (ERK)/Ets-1 signaling, a crucial pathway in collagen regulation, is involved in Lipo-PGE1-inhibited collagen production, cells were pretreated with an ERK-specific inhibitor, PD98059, prior to the addition of Lipo-PGE1. Lipo-PGE1-inhibited collagen mRNA expression and total soluble collagen production were recovered by pretreatment with PD98059. Moreover, Lipo-PGE1 directly induced the phosphorylation of ERK. Furthermore, silencing of Ets-1 recovered Lipo-PGE1-inhibited collagen production and PD98059 blocked Lipo-PGE1-enhanced Ets-1 expression. The present study reveals an important role for Lipo-PGE1 as a negative regulator of collagen gene expression and production via ERK/Ets-1 signaling. These results suggest that Lipo-PGE1 could potentially be a therapeutic target in diseases with deregulated collagen turnover.

  7. Bisphenol A suppresses glucocorticoid target gene (ENaCγ) expression via a novel ERβ/NF-κB/GR signalling pathway in lung epithelial cells.

    Science.gov (United States)

    Hijazi, Ayten; Guan, Haiyan; Yang, Kaiping

    2016-08-13

    We previously demonstrated that prenatal exposure to Bisphenol A (BPA) disrupts fetal lung maturation likely through the glucocorticoid signalling pathway, but the precise molecular mechanisms remain obscure. Given that BPA diminished the expression of epithelial sodium channel-γ (ENaCγ), a well-known glucocorticoid receptor (GR) target gene, in fetal lungs, we used this GR target gene to delineate the molecular pathway through which BPA exerts its effects on lung cells. The A549 lung epithelial cell line was used as an in vitro model system. As a first step, we validated our in vitro cell model by demonstrating a robust concentration-dependent suppression of ENaCγ expression following BPA exposure. We also showed that both dexamethasone and siRNA-mediated knockdown of GR expression blocked/abrogated the inhibitory effects of BPA on ENaCγ expression, suggesting that BPA repressed ENaCγ expression via inhibition of GR activity. Given the well-known antagonistic interactions between the pro-inflammatory transcriptional factor NF-κB and GR, we then showed that BPA inhibited GR activity through the activation of NF-κB. Lastly, since BPA is known to function as a pro-inflammatory factor via the estrogen receptor β (ERβ), we provided evidence that BPA signals through ERβ to activate the NF-κB signalling pathway. Taken together, these findings demonstrate that BPA acts on ERβ to activate the NF-κB signalling pathway, which in turn leads to diminished GR activity and consequent repression of ENaCγ expression in lung epithelial cells. Thus, our present study reveals a novel BPA signalling pathway that involves ERβ, NF-κB and GR.

  8. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway.

    Science.gov (United States)

    Ge, Yuqing; Yang, Bo; Chen, Zhe; Cheng, Rubin

    2015-11-01

    Pancreatic cancer remains a challenging disease worldwide. Cryptotanshinone (CPT) is one of the active constituents of Salvia miltiorrhiza Bunge and exhibits significant antitumor activities in several human cancer cells. However, the efficacy and molecular mechanism of CPT in pancreatic cancer remains to be elucidated. In the present study, the effect of CPT on the proliferation, apoptosis and cell cycle of human pancreatic cancer cell BxPC‑3 cells was evaluated. The results demonstrated that CPT inhibited proliferation of the BxPC‑3 cells in a concentration‑dependent manner, and significantly induced cell apoptosis and cell cycle arrest. The protein levels of cleaved caspase‑3, caspase‑9 and poly ADP ribose polymerase were upregulated, while the levels of c‑myc, survivin and cyclin D1 were downregulated following treatment with CPT. In addition, CPT decreased the activities of signal transducer and activator of transcription 3 (STAT3) and several upstream regulatory signaling pathways after 24 h. However, CPT only inhibited the phosphorylation of STAT3 Tyr705 within 30 min, without marked effects on the phosphorylation of the other proteins. These results suggested that the inhibition of STAT3 activity by CPT was directly and independent of the upstream regulators in human pancreatic cancer. The present study demonstrated that CPT exerts anticancer effects by inducing apoptosis and cell cycle arrest via inhibition of the STAT3 signaling pathway in human BxPC-3 cells.

  9. Design, Development and Implementation of the IR Signalling Techniques for Monitoring Ambient and Body Temperature in WBANs

    Directory of Open Access Journals (Sweden)

    Attiya Baqai

    2014-07-01

    Full Text Available Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks. This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes, TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags

  10. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    Science.gov (United States)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  11. Does human body odor represent a significant and rewarding social signal to individuals high in social openness?

    Directory of Open Access Journals (Sweden)

    Katrin T Lübke

    Full Text Available Across a wide variety of domains, experts differ from novices in their response to stimuli linked to their respective field of expertise. It is currently unknown whether similar patterns can be observed with regard to social expertise. The current study therefore focuses on social openness, a central social skill necessary to initiate social contact. Human body odors were used as social cues, as they inherently signal the presence of another human being. Using functional MRI, hemodynamic brain responses to body odors of women reporting a high (n = 14 or a low (n = 12 level of social openness were compared. Greater activation within the inferior frontal gyrus and the caudate nucleus was observed in high socially open individuals compared to individuals low in social openness. With the inferior frontal gyrus being a crucial part of the human mirror neuron system, and the caudate nucleus being implicated in social reward, it is discussed whether human body odor might constitute more of a significant and rewarding social signal to individuals high in social openness compared to individuals low in social openness process.

  12. Does human body odor represent a significant and rewarding social signal to individuals high in social openness?

    Science.gov (United States)

    Lübke, Katrin T; Croy, Ilona; Hoenen, Matthias; Gerber, Johannes; Pause, Bettina M; Hummel, Thomas

    2014-01-01

    Across a wide variety of domains, experts differ from novices in their response to stimuli linked to their respective field of expertise. It is currently unknown whether similar patterns can be observed with regard to social expertise. The current study therefore focuses on social openness, a central social skill necessary to initiate social contact. Human body odors were used as social cues, as they inherently signal the presence of another human being. Using functional MRI, hemodynamic brain responses to body odors of women reporting a high (n = 14) or a low (n = 12) level of social openness were compared. Greater activation within the inferior frontal gyrus and the caudate nucleus was observed in high socially open individuals compared to individuals low in social openness. With the inferior frontal gyrus being a crucial part of the human mirror neuron system, and the caudate nucleus being implicated in social reward, it is discussed whether human body odor might constitute more of a significant and rewarding social signal to individuals high in social openness compared to individuals low in social openness process.

  13. IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action.

    Science.gov (United States)

    Sadagurski, Marianna; Leshan, Rebecca L; Patterson, Christa; Rozzo, Aldo; Kuznetsova, Alexandra; Skorupski, Josh; Jones, Justin C; Depinho, Ronald A; Myers, Martin G; White, Morris F

    2012-05-02

    Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 expression in LepR-b neurons (Lepr(ΔIrs2)). Lepr(ΔIrs2) mice developed obesity, glucose intolerance, and insulin resistance. Leptin action was not altered in young Lepr(ΔIrs2) mice, although insulin-stimulated FoxO1 nuclear exclusion was reduced in Lepr(ΔIrs2) mice. Indeed, deletion of Foxo1 from LepR-b neurons in Lepr(ΔIrs2) mice normalized energy balance, glucose homeostasis, and arcuate nucleus gene expression. Thus, Irs2 signaling in LepR-b neurons plays a crucial role in metabolic sensing and regulation. While not required for leptin action, Irs2 suppresses FoxO1 signaling in LepR-b neurons to promote energy balance and metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Development of a Compton suppression whole body counting for small animals; Desenvolvimento de um detetor de corpo inteiro com supressao Compton para pequenos animais

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Elaine

    1995-12-31

    The basic operation, design and construction of the plastic scintillator detector is described. In order to increase the sensitivity of this detector, two blocks of plastic scintillator have been assembled to act as a anticompton system. The detectors were produced by polymerisation of styrene monomer with PPO (2,5 diphenyl-oxazole) and POPOP (1,4 bis (-5 phenyl-2- oxazoly)benzene) in proportions of 0.5 and 0.05 respectively. The transparency of this detector was evaluated by excitation of the {sup 241} Am source located directly in the back surface plastic coupled to a photomultiplier. The light attenuation according to the detector thickness has fitted to a two-exponential function: relative height pulse = 0,519 e{sup -0.0016} + 0.481 e{sup -0.02112.x}. Four radioactive sources{sup {sup 2}2} Na, {sup 54} Mn, {sup 137} Cs and {sup 131} I were used to evaluate the performance of this system. The Compton reduction factor, determined by the ratio of the energy peak values of suppressed and unsuppressed spectra was 1.16. The Compton suppression factor determined by the ratio of the net photopeak area to the area of an equal spectra width in the Compton continuum, was approximately 1.208 {+-} 0.109. The sensitivity of the system, defined as the least amount of a radioactivity that can be quantified in the photopeak region, was 9.44 cps. First, the detector was assembled to be applied in biological studies of whole body counter measurements of small animals. Using a phantom, (small animal simulator) and a punctual {sup 137} Cs source, located in the central region of the well counter the geometrical efficiency detector was about 5%. (author) 40 refs., 28 fifs., 2 tabs.

  15. Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiled-coil kinase signaling pathway.

    Science.gov (United States)

    Deng, Minghong; Luo, Yumei; Li, Yunkui; Yang, Qiuchen; Deng, Xiaoqin; Wu, Ping; Ma, Houxun

    2015-07-01

    The present study aimed to investigate whether klotho gene delivery attenuated renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats. A recombinant adeno-associated virus (rAAV) carrying mouse klotho full-length cDNA (rAAV.mKL), was constructed for in vivo investigation of klotho expression. Diabetes was induced in rats by a single tail vein injection of 60 mg/kg streptozotocin. Subsequently, the diabetic rats received an intravenous injection of rAAV.mKL, rAAV.green fluorescent protein (GFP) or phosphate-buffered saline (PBS). The Sprague-Dawley rat group received PBS and served as the control group. After 12 weeks, all the rats were sacrificed and ELISA, immunohistochemical and histological analyses, fluorescence microscopy, semi-quantitative reverse transcription-polymerase chain reaction and western blottin were performed. A single dose of rAAV.mKL was found to prevent the progression of renal hypertrophy and fibrosis for at least 12 weeks (duration of study). Klotho expression was suppressed in the diabetic rats, but was increased by rAAV.mKL delivery. rAAV.mKL significantly suppressed diabetes-induced renal hypertrophy and histopathological changes, reduced renal collagen fiber generation and decreased kidney hypertrophy index. In addition, rAAV.mKL decreased the protein expression levels of fibronectin and vimentin, while it downregulated the mRNA expression and activity of Rho-associated coiled-coil kinase (ROCK)I in the kidneys of the diabetic rats. These results indicated that klotho gene delivery ameliorated renal hypertrophy and fibrosis in diabetic rats, possibly by suppressing the ROCK signaling pathway. This may offer a novel approach for the long-term control and renoprotection of diabetes.

  16. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System.

    Science.gov (United States)

    Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Asakura, Masahiro; Chatterjee, Shruti; Hinenoya, Atsushi; Faruque, Shah M; Yamasaki, Shinji

    2015-01-01

    Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.

  17. Berberine hydrochloride attenuates lipopolysaccharide-induced endometritis in mice by suppressing activation of NF-κB signal pathway.

    Science.gov (United States)

    Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Wang, Yu; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-01-01

    Endometritis is a common disease in animal production and influences breeding all over the world. Berberine is one of the main alkaloids isolated from Rhizoma coptidis. Previous reports showed that berberine has anti-inflammatory potential. However, there have been a limited number of published reports on the anti-inflammatory effect of berberine hydrochloride on LPS-induced endometritis. The purpose of the present study was to investigate the effects of berberine hydrochloride on LPS-induced mouse endometritis. Berberine hydrochloride was administered intraperitoneally at 1h before and 12h after LPS induction. Then, a biopsy was performed, and uterine myeloperoxidase (MPO) and nitric oxide (NO) concentrations were determined. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels in the uterus homogenate were measured by ELISA. The extent of IκB-α and P65 phosphorylation was detected by Western blot. The results showed that berberine hydrochloride significantly attenuated neutrophil infiltration, suppressed myeloperoxidase activity and decreased NO, TNF-αand IL-1βproduction. Furthermore, berberine hydrochloride inhibited the phosphorylation of the NF-κB p65 subunit and the degradation of its inhibitor, IκBα. These findings suggest that berberine hydrochloride exerts potent anti-inflammatory effects on LPS-induced mouse endometritis and might be a potential therapeutic agent for endometritis.

  18. Sodium orthovanadate suppresses palmitate-induced cardiomyocyte apoptosis by regulation of the JAK2/STAT3 signaling pathway.

    Science.gov (United States)

    Liu, Jing; Fu, Hui; Chang, Fen; Wang, Jinlan; Zhang, Shangli; Caudle, Yi; Zhao, Jing; Yin, Deling

    2016-05-01

    Elevated circulatory free fatty acids (FFAs) especially saturated FFAs, such as palmitate (PA), are detrimental to the heart. However, mechanisms responsible for this phenomenon remain unknown. Here, the role of JAK2/STAT3 in PA-induced cytotoxicity was investigated in cardiomyocytes. We demonstrate that PA suppressed the JAK2/STAT3 pathway by dephosphorylation of JAK2 (Y1007/1008) and STAT3 (Y705), and thus blocked the translocation of STAT3 into the nucleus. Conversely, phosphorylation of S727, another phosphorylated site of STAT3, was increased in response to PA treatment. Pretreatment of JNK inhibitor, but not p38 MAPK inhibitor, inhibited STAT3 (S727) activation induced by PA and rescued the phosphorylation of STAT3 (Y705). The data suggested that JNK may be another upstream factor regulating STAT3, and verified the important function of P-STAT3 (Y705) in PA-induced cardiomyocyte apoptosis. Sodium orthovanadate (SOV), a protein tyrosine phosphatase inhibitor, obviously inhibited PA-induced apoptosis by restoring JAK2/STAT3 pathways. This effect was diminished by STAT3 inhibitor Stattic. Collectively, our data suggested a novel mechanism that the inhibition of JAK2/STAT3 activation was responsible for palmitic lipotoxicity and SOV may act as a potential therapeutic agent by targeting JAK2/STAT3 in lipotoxic cardiomyopathy treatment.

  19. Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve.

    Science.gov (United States)

    Ribeiro, Sara; Napoli, Ilaria; White, Ian J; Parrinello, Simona; Flanagan, Adrienne M; Suter, Ueli; Parada, Luis F; Lloyd, Alison C

    2013-10-17

    Schwann cells are highly plastic cells that dedifferentiate to a progenitor-like state following injury. However, deregulation of this plasticity, may be involved in the formation of neurofibromas, mixed-cell tumors of Schwann cell (SC) origin that arise upon loss of NF1. Here, we show that adult myelinating SCs (mSCs) are refractory to Nf1 loss. However, in the context of injury, Nf1-deficient cells display opposing behaviors along the wounded nerve; distal to the injury, Nf1(-/-) mSCs redifferentiate normally, whereas at the wound site Nf1(-/-) mSCs give rise to neurofibromas in both Nf1(+/+) and Nf1(+/-) backgrounds. Tracing experiments showed that distinct cell types within the tumor derive from Nf1-deficient SCs. This model of neurofibroma formation demonstrates that neurofibromas can originate from adult SCs and that the nerve environment can switch from tumor suppressive to tumor promoting at a site of injury. These findings have implications for both the characterization and treatment of neurofibromas.

  20. Injury Signals Cooperate with Nf1 Loss to Relieve the Tumor-Suppressive Environment of Adult Peripheral Nerve

    Directory of Open Access Journals (Sweden)

    Sara Ribeiro

    2013-10-01

    Full Text Available Schwann cells are highly plastic cells that dedifferentiate to a progenitor-like state following injury. However, deregulation of this plasticity, may be involved in the formation of neurofibromas, mixed-cell tumors of Schwann cell (SC origin that arise upon loss of NF1. Here, we show that adult myelinating SCs (mSCs are refractory to Nf1 loss. However, in the context of injury, Nf1-deficient cells display opposing behaviors along the wounded nerve; distal to the injury, Nf1−/− mSCs redifferentiate normally, whereas at the wound site Nf1−/− mSCs give rise to neurofibromas in both Nf1+/+ and Nf1+/− backgrounds. Tracing experiments showed that distinct cell types within the tumor derive from Nf1-deficient SCs. This model of neurofibroma formation demonstrates that neurofibromas can originate from adult SCs and that the nerve environment can switch from tumor suppressive to tumor promoting at a site of injury. These findings have implications for both the characterization and treatment of neurofibromas.

  1. Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppression of NF-κB and iNOS signaling pathways

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2015-07-01

    Full Text Available Neocryptotanshinone (NCTS is a natural product isolated from traditional Chinese herb Salvia miltiorrhiza Bunge. In this study, we investigated its anti-inflammatory effects in lipopolysaccharide (LPS-stimulated mouse macrophage (RAW264.7 cells. MTT results showed that NCTS partly reversed LPS-induced cytotoxicity. Real-time PCR results showed that NCTS suppressed LPS-induced mRNA expression of inflammatory cytokines, including tumor necrosis factor α (TNFα, interleukin-6 (IL-6 and interleukin-1β (IL-1β. Moreover, NCTS could decrease LPS-induced nitric oxide (NO production. Western blotting results showed that NCTS could down-regulate LPS-induced expression of inducible nitric oxide synthase (iNOS, p-IκBα, p-IKKβ and p-NF-κB p65 without affecting cyclooxygenase-2 (COX-2. In addition, NCTS inhibited LPS-induced p-NF-κB p65 nuclear translocation. In conclusion, these data demonstrated that NCTS showed anti-inflammatory effect by suppression of NF-κB and iNOS signaling pathways.

  2. Ruthenium Polypyridyl Complex Inhibits Growth and Metastasis of Breast Cancer Cells by Suppressing FAK signaling with Enhancement of TRAIL-induced Apoptosis

    Science.gov (United States)

    Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-03-01

    Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.

  3. Veronicastrum axillare Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Suppression of Proinflammatory Mediators and Downregulation of the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Quanxin Ma

    2016-01-01

    Full Text Available Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI, and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β, IL-6, monocyte chemotactic protein-1 (MCP-1, cyclooxygenase-2 (COX-2, and tumor necrosis factor-α (TNF-α in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.

  4. Suppression of TGF-β1/Smad signaling pathway by sesamin contributes to the attenuation of myocardial fibrosis in spontaneously hypertensive rats.

    Science.gov (United States)

    Zhao, Mengqiu; Zheng, Shuguo; Yang, Jieren; Wu, Yuanjie; Ren, Younan; Kong, Xiang; Li, Wei; Xuan, Jiali

    2015-01-01

    This study investigated the effect of sesamin on myocardial fibrosis in spontaneously hypertensive rats (SHRs) and the possible mechanisms involved. Twenty-eight male SHRs were randomly allocated to SHR group, Ses160 group (sesamin 160 mg/kg), Ses80 group (sesamin 80 mg/kg) and Cap30 group (captopril 30 mg/kg). Seven male WKY rats were used as control. Sesamin and captopril were administered intragastrically for 12 weeks. Captopril significantly reduced systolic blood pressure and angiotensin II (Ang II) levels in SHRs, accompanied by a marked attenuation of left ventricular hypertrophy (LVH) and collagen deposition (P sesamin had no significant influence on Ang II levels, and the hypotensive effect was also significantly inferior to that of captopril (P Sesamin markedly reduced transforming growth factor-β1 (TGF-β1) content in cardiac tissues, with Smad3 phosphorylation decreased and Smad7 protein expression increased notably (P sesamin (P sesamin significantly increased total antioxidant capacity and superoxide dismutase protein in cardiac tissues (P sesamin was able to suppress Ang II induced phosphorylation of Smad3 and secretion of TGF-β1 and type I and type III collagen in cultured rat cardiac fibroblasts. These data suggest that sesamin is capable of attenuating hypertensive myocardial fibrosis through, at least partly, suppression of TGF-β1/Smad signaling pathway.

  5. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling.

    Science.gov (United States)

    Liu, Ning-Ning; Zhao, Ning; Cai, Na

    2015-06-01

    Rapamycin, a highly specific inhibitor of mammalian target of rapamycin (mTOR), exhibits significant antitumor/antiangiogenic activity in human cancer cells. Its effect on the retinal pigment epithelial (RPE) cells was rarely investigated. This study assessed the proliferation of hypoxia-induced RPE and the inhibitory effects of rapamycin using 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and examined the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in RPE cells with or without rapamycin under normoxic and hypoxic conditions using real-time PCR and Western blot. We found that hypoxia increased the levels of mTOR, HIF-1α, and VEGF. The suppression of HIF-1α and VEGF by rapamycin was associated with dephosphorylation of mTOR and the downstream effector ribosomal protein S6 kinase (P70S6K) and 4E-binding protein-1 (4E-BP1) of mTORC1. Rapamycin only inhibited the protein levels and did not change the mRNA expression of HIF-1α. No cytotoxicity to the RPE cells by rapamycin was caused under either normoxia or hypoxia. Our data suggest that rapamycin suppresses hypoxia-induced RPE cell proliferation through a mechanism related to the targeting of mTOR/HIF-1α/VEGF signaling. Rapamycin may potentially provide a safe and effective novel treatment for choroidal vascular disease.

  6. Polyphenols isolated from Allium cepa L. induces apoptosis by suppressing IAP-1 through inhibiting PI3K/Akt signaling pathways in human leukemic cells.

    Science.gov (United States)

    Han, Min Ho; Lee, Won Sup; Jung, Ji Hyun; Jeong, Jae-Hun; Park, Cheol; Kim, Hye Jung; Kim, GonSup; Jung, Jin-Myung; Kwon, Taeg Kyu; Kim, Gi-Young; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun

    2013-12-01

    Allium cepa Linn is commonly used as supplementary folk remedy for cancer therapy. Evidence suggests that Allium extracts have anti-cancer properties. However, the mechanisms of the anti-cancer activity of A. cepa Linn are not fully elucidated in human cancer cells. In this study, we investigated anti-cancer effects of polyphenols extracted from lyophilized A. cepa Linn (PEAL) in human leukemia cells and their mechanisms. PEAL inhibited cancer cell growth by inducing caspase-dependent apoptosis. The apoptosis was suppressed by caspase 8 and 9 inhibitors. PEAL also up-regulated TNF-related apoptosis-inducing ligand (TRAIL) receptor DR5 and down-regulated survivin and cellular inhibitor of apoptosis 1 (cIAP-1). We confirmed these findings in other leukemic cells (THP-1, K562 cells). In addition, PEAL suppressed Akt activity and the PEAL-induced apoptosis was significantly attenuated in Akt-overexpressing U937 cells. In conclusion, our data suggested that PEAL induced caspase-dependent apoptosis in several human leukemic cells including U937 cells. The apoptosis was triggered through extrinsic pathway by up-regulating DR5 modulating as well as through intrinsic pathway by modulating IAP family members. In addition, PEAL induces caspase-dependent apoptosis at least in part through the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. This study provides evidence that PEAL might be useful for the treatment of leukemia.

  7. Meloxicam suppresses hepatocellular carcinoma cell proliferation and migration by targeting COX-2/PGE2-regulated activation of the β-catenin signaling pathway.

    Science.gov (United States)

    Li, Tao; Zhong, Jingtao; Dong, Xiaofeng; Xiu, Peng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Sun, Xueying; Li, Jie

    2016-06-01

    Recurrence and metastasis are the two leading causes of poor prognosis of hepatocellular carcinoma (HCC) patients. Cyclooxygenase (COX)-2 is overexpressed in many types of cancers including HCC and promotes its metastasis. Meloxicam is a selective COX-2 inhibitor that has been reported to exert an anti-proliferation and invasion/migration response in various tumors. In this study, we examined the role of meloxicam on HCC cell proliferation and migration and explored the molecular mechanisms underlying this effect. We found that meloxicam inhibited HCC cell proliferation and had a cell cycle arrest effect in human HCC cells. Furthermore, meloxicam suppressed the ability of HCC cells expressing higher levels of COX-2 and prostaglandin E2 (PGE2) to migration via potentiating expression of E-cadherin and alleviating expression of matrix metalloproteinase (MMP)-2 and -9. COX-2/PGE2 has been considered to activate the β-catenin signaling pathway which promotes cancer cell migration. We found that treatment with PGE2 significantly enhanced nuclear accumulation of β-catenin and the activation of GSK3β which could be reversed by meloxicam in HCC cells. We also observed that HCC cell migration and upregulation of the level of MMP-2/9 and downregulation of E-cadherin induced by PGE2 were suppressed by FH535, an inhibitor of β-catenin. Taken together, these findings provide a new treatment strategy against HCC proliferation and migration.

  8. Pentabromophenol suppresses TGF-β signaling by accelerating degradation of type II TGF-β receptors via caveolae-mediated endocytosis

    Science.gov (United States)

    Chen, Chun-Lin; Yang, Pei-Hua; Kao, Yu-Chen; Chen, Pei-Yu; Chung, Chih-Ling; Wang, Shih-Wei

    2017-01-01

    Pentabromophenol (PBP), a brominated flame retardant (BFR), is widely used in various consumer products. BFRs exert adverse health effects such as neurotoxic and endocrine-disrupting effects. In this study, we found that PBP suppressed TGF-β response by accelerating the turnover rate of TGF-β receptors. PBP suppressed TGF-β-mediated cell migration, PAI-1 promoter-driven reporter gene activation, and Smad2/3 phosphorylation in various cell types. Furthermore, PBP abolished TGF-β-mediated repression of E-cadherin expression, in addition to the induction of vimentin expression and N-cadherin and fibronectin upregulation, thus blocking TGF-β-induced epithelial–mesenchymal transition in A549 and NMuMG cells. However, this inhibition was not observed with other congeners such as tribromophenol and triiodophenol. TGF-β superfamily members play key roles in regulating various biological processes including cell proliferation and migration as well as cancer development and progression. The results of this in vitro study provide a basis for studies on the detailed relationship between PBP and modulation of TGF-β signalling. Because PBP is similar to other BFRs such as polybrominated diphenyl ethers (PBDEs), additional laboratory and mechanistic studies should be performed to examine BFRs as potential risk factors for tumorigenesis and other TGF-β-related diseases. PMID:28230093

  9. Inhibition of c-Met activation sensitizes osteosarcoma cells to cisplatin via suppression of the PI3K-Akt signaling.

    Science.gov (United States)

    Wang, Kelai; Zhuang, Yan; Liu, Chunlan; Li, Yang

    2012-10-01

    Osteosarcoma is a common malignant bone tumor. Cisplatin (CDDP) achieves a high response rate in osteosarcoma. However, osteosarcoma usually exhibits cisplatin resistance. Many members of receptor tyrosine kinases (RTKs)(1) have been demonstrated to be overexpressed and constitutively activated in various tumors including osteosarcoma, resulting in malignant progression and insensitivity to chemotherapy. Hepatocyte growth factor receptor (HGFR/c-Met) also appears overexpressed and activated in osteosarcoma cells. Nevertheless, which role of c-Met activation in cisplatin efficacy against osteosarcoma cells remains still elusive. This study found that inhibition of c-Met activity by PHA-665752 or blockade of the interaction of autocrined HGF with c-Met with neutralizing anti-HGF antibody promoted cisplatin efficacy in osteosarcoma cells, while addition of recombinant human HGF (rh-HGF) counteracts cisplatin cytotoxicity. Specifically, we demonstrated that inhibition of c-Met activity led to suppression of the PI3K-Akt pathway, thus enhancing cisplatin chemosensitivity. Our study clearly suggests that inhibition of c-Met activity can effectively sensitize osteosarcoma cells to cisplatin via suppression of the PI3K-Akt signaling.

  10. A novel synthetic Asiatic acid derivative induces apoptosis and inhibits proliferation and mobility of gastric cancer cells by suppressing STAT3 signaling pathway

    Science.gov (United States)

    Wang, Gang; Jing, Yue; Cao, Lingsen; Gong, Changchang; Gong, Zhunan; Cao, Xiangrong

    2017-01-01

    Activation of the transcription factor, signal transducers and activators of transcription 3 (STAT3), has been linked to the proliferation and migration of a variety of human cancer cells. These actions occur via the upregulation or downregulation of cell survival and tumor suppressor genes, respectively. Importantly, agents that can suppress STAT3 activation have the potential for use in the prevention and treatment of various cancers. In this study, an Asiatic acid (AA) derivative, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), is reported to dose dependently suppress constitutive STAT3 activation in gastric cancer cells. This inhibition was mediated by blockade of Janus-activated kinase 2. Additionally, AA-PMe regulated the expression of STAT3-modulated gene products, including cyclin D1, Bax, Bcl-2, c-Myc, and matrix metalloproteinase (MMP)-2 and MMP-9. Finally, transfection with both a STAT3 mimic and an inhibitor reversed the AA-PMe-driven modulation of STAT3 downstream gene products. Overall, these results suggest that AA-PMe is a novel blocker of STAT3 activation and has the potential for the prevention and treatment of gastric cancer. PMID:28053540

  11. Trichosanthin suppresses the proliferation of glioma cells by inhibiting LGR5 expression and the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Miao, Junjie; Jiang, Yilin; Wang, Dongliang; Zhou, Jingru; Fan, Cungang; Jiao, Feng; Liu, Bo; Zhang, Jun; Wang, Yangshuo; Zhang, Qingjun

    2015-12-01

    Studies have indicated that trichosanthin (TCS), a bioactive protein extracted and purified from the tuberous root of Trichosanthes kirilowii (a well‑known traditional Chinese medicinal plant), produces antitumor effects on various types of cancer cells. However, the effects of TCS on glioma cells are poorly understood. The objective of this study was to investigate the antitumor effects of TCS on the U87 and U251 cell lines. The in vitro effects of TCS on these two cell lines were determined using a Cell Counting Kit‑8 (CCK‑8) assay, Annexin V‑FITC staining, DAPI staining, Transwell assays, terminal deoxynucleotidyl transferase‑mediated dUTP nick end‑labeling (TUNEL) assays, 5,5',6,6'‑tetrachloro‑1,1',3,3'‑tetraethyl‑imidacarbocyanine iodide (JC‑1) staining and western blotting, which was utilized to assess the expression of leucine‑rich repeat‑containing G protein‑coupled receptor 5 (LGR5) and key proteins in the Wnt/β‑catenin signaling pathway. Our data indicated that TCS inhibited the proliferation of glioma cells in a dose‑ and time‑dependent manner and played a role in inhibiting glioma cell invasion and migration. Additional investigation revealed that the expression levels of LGR5 and of key proteins in the Wnt/β‑catenin signaling pathway were markedly decreased after TCS treatment. The results suggest that TCS may induce apoptosis in glioma cells by targeting LGR5 and repressing the Wnt/β‑catenin signaling pathway. In the future, in vivo experiments should be conducted to examine the potential use of this compound as a novel therapeutic agent for gliomas.

  12. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling.

    Directory of Open Access Journals (Sweden)

    Margarita Marroquin-Guzman

    2015-04-01

    Full Text Available Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development.

  13. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling.

    Science.gov (United States)

    Marroquin-Guzman, Margarita; Wilson, Richard A

    2015-04-01

    Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development.

  14. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Bo Gao

    Full Text Available Fat infiltration within marrow cavity is one of multitudinous features of estrogen deficiency, which leads to a decline in bone formation functionality. The origin of this fat is unclear, but one possibility is that it is derived from osteoblasts, which transdifferentiate into adipocytes that produce bone marrow fat. We examined the dose-dependent effect of 17β-estradiol on the ability of MC3T3-E1 cells and murine bone marrow-derived mesenchymal stem cell (BMMSC-derived osteoblasts to undergo osteo-adipogenic transdifferentiation. We found that 17β-estradiol significantly increased alkaline phosphatase activity (P<0.05; calcium deposition; and Alp, Col1a1, Runx2, and Ocn expression levels dose-dependently. By contrast, 17β-estradiol significantly decreased the number and size of lipid droplets, and Fabp4 and PPARγ expression levels during osteo-adipogenic transdifferentiation (P<0.05. Moreover, the expression levels of brown adipocyte markers (Myf5, Elovl3, and Cidea and undifferentiated adipocyte markers (Dlk1, Gata2, and Wnt10b were also affected by 17β-estradiol during osteo-adipogenic transdifferentiation. Western blotting and immunostaining further showed that canonical Wnt signaling can be activated by estrogen to exert its inhibitory effect of osteo-adipogenesis. This is the first study to demonstrate the dose-dependent effect of 17β-estradiol on the osteo-adipogenic transdifferentiation of MC3T3-E1 cells and BMMSCs likely via canonical Wnt signaling. In summary, our results indicate that osteo-adipogenic transdifferentiation modulated by canonical Wnt signaling pathway in bone metabolism may be a new explanation for the gradually increased bone marrow fat in estrogen-inefficient condition.

  15. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling

    Institute of Scientific and Technical Information of China (English)

    Jianhui Ma; Qian Sun; Ruifang Mi; Hongbing Zhang

    2011-01-01

    Of the few avian influenza viruses that have crossed the species barrier to infect humans,the highly pathogenic influenza A (H5N1) strain has claimed the lives of more than half of the infected patients.With largely unknown mechanism of lung injury by H5N1 infection,acute respiratory distress syndrome (ARDS) is the major cause of death among the victims.Here we present the fact that H5N1 caused autophagic cell death through suppression of mTOR signaling.Inhibition of autophagy,either by depletion of autophagy gene Beclinl or by autophagy inhibitor 3-methyladenine (3-MA),significantly reduced H5N1 mediated cell death.We suggest that autophagic cell death may contribute to the development of ARDS in H5N1 influenza patients and inhibition of autophagy could therefore become a novel strategy for the treatment of H5N1 infection.

  16. Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse.

    Science.gov (United States)

    Bröer, Angelika; Juelich, Torsten; Vanslambrouck, Jessica M; Tietze, Nadine; Solomon, Peter S; Holst, Jeff; Bailey, Charles G; Rasko, John E J; Bröer, Stefan

    2011-07-29

    Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na(+)-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B(0)AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B(0)AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.

  17. Impaired Nutrient Signaling and Body Weight Control in a Na+ Neutral Amino Acid Cotransporter (Slc6a19)-deficient Mouse*

    Science.gov (United States)

    Bröer, Angelika; Juelich, Torsten; Vanslambrouck, Jessica M.; Tietze, Nadine; Solomon, Peter S.; Holst, Jeff; Bailey, Charles G.; Rasko, John E. J.; Bröer, Stefan

    2011-01-01

    Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B0AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na+-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B0AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B0AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation. PMID:21636576

  18. Postmortem Study of Validation of Low Signal on Fat-Suppressed T1-Weighted Magnetic Resonance Imaging as Marker of Lipid Core in Middle Cerebral Artery Atherosclerosis

    Science.gov (United States)

    Yang, Wen-Jie; Zhao, Hai-Lu; Niu, Chun-Bo; Zhang, Bing; Xu, Yun; Wong, Ka-Sing; Ng, Ho-Keung

    2016-01-01

    Background and Purpose— High signal on T1-weighted fat-suppressed images in middle cerebral artery plaques on ex vivo magnetic resonance imaging was verified to be intraplaque hemorrhage histologically. However, the underlying plaque component of low signal on T1-weighted fat-suppressed images (LST1) has never been explored. Based on our experience, we hypothesized that LST1 might indicate the presence of lipid core within intracranial plaques. Methods— 1.5 T magnetic resonance imaging was performed in the postmortem brains to scan the cross sections of bilateral middle cerebral arteries. Then middle cerebral artery specimens were removed for histology processing. LST1 presence was identified on magnetic resonance images, and lipid core areas were measured on the corresponding histology sections. Results— Total 76 middle cerebral artery locations were included for analysis. LST1 showed a high specificity (96.9%; 95% confidence interval, 82.0%–99.8%) but a low sensitivity (38.6%; 95% confidence interval, 24.7%–54.5%) for detecting lipid core of all areas. However, the sensitivity increased markedly (81.2%; 95% confidence interval, 53.7%–95.0%) when only lipid cores of area ≥0.80 mm2 were included. Mean lipid core area was 5× larger in those with presence of LST1 than in those without (1.63±1.18 mm2 versus 0.32±0.31 mm2; P=0.003). Conclusions— LST1 is a promising imaging biomarker of identifying intraplaque lipid core, which may be useful to distinguish intracranial atherosclerotic disease from other intracranial vasculopathies and to assess plaque vulnerability for risk stratification of patients with intracranial atherosclerotic disease. In vivo clinical studies are required to explore the correlation between LST1 and clinical outcomes of patients with intracranial atherosclerotic disease. PMID:27462119

  19. Hepatitis B virus polymerase suppresses NF-κB signaling by inhibiting the activity of IKKs via interaction with Hsp90β.

    Directory of Open Access Journals (Sweden)

    Dan Liu

    Full Text Available Nuclear factor-κB (NF-κB plays a central role in the regulation of diverse biological processes, including immune responses, development, cell growth, and cell survival. To establish persistent infection, many viruses have evolved strategies to evade the host's antiviral immune defenses. In the case of hepatitis B virus (HBV, which can cause chronic infection in the liver, immune evasion strategies used by the virus are not fully understood. It has recently been reported that the polymerase of HBV (Pol inhibits interferon-β (IFN-β activity by disrupting the interaction between IKKε and the DDX3. In the current study, we found that HBV Pol suppressed NF-κB signaling, which can also contribute to IFN-β production. HBV Pol did not alter the level of NF-κB expression, but it prevented NF-κB subunits involved in both the canonical and non-canonical NF-κB pathways from entering the nucleus. Further experiments demonstrated that HBV Pol preferentially suppressed the activity of the IκB kinase (IKK complex by disrupting the association of IKK/NEMO with Cdc37/Hsp90, which is critical for the assembly of the IKK complex and recruitment of the IKK complex to the tumor necrosis factor type 1 receptor (TNF-R1. Furthermore, we found that HBV Pol inhibited the NF-κB-mediated transcription of target genes. Taken together, it is suggested that HBV Pol could counteract host innate immune responses by interfering with two distinct signaling pathways required for IFN-β activation. Our studies therefore shed light on a potential therapeutic target for persistent infection with HBV.

  20. A novel sulindac derivative inhibits lung adenocarcinoma cell growth through suppression of Akt/mTOR signaling and induction of autophagy.

    Science.gov (United States)

    Gurpinar, Evrim; Grizzle, William E; Shacka, John J; Mader, Burton J; Li, Nan; Piazza, Nicholas A; Russo, Suzanne; Keeton, Adam B; Piazza, Gary A

    2013-05-01

    Nonsteroidal anti-inflammatory drugs such as sulindac sulfide have shown promising antineoplastic activity in multiple tumor types, but toxicities resulting from COX inhibition limit their use in cancer therapy. We recently described a N,N-dimethylethyl amine derivative of sulindac sulfide, sulindac sulfide amide (SSA), that does not inhibit COX-1 or -2, yet displays potent tumor cell growth-inhibitory activity. Here, we studied the basis for the growth-inhibitory effects of SSA on human lung adenocarcinoma cell lines. SSA potently inhibited the growth of lung tumor cells with IC50 values of 2 to 5 μmol/L compared with 44 to 52 μmol/L for sulindac sulfide. SSA also suppressed DNA synthesis and caused a G0-G1 cell-cycle arrest. SSA-induced cell death was associated with characteristics of autophagy, but significant caspase activation or PARP cleavage was not observed after treatment at its IC50 value. siRNA knockdown of Atg7 attenuated SSA-induced autophagy and cell death, whereas pan-caspase inhibitor ZVAD was not able to rescue viability. SSA treatment also inhibited Akt/mTOR signaling and the expression of downstream proteins that are regulated by this pathway. Overexpression of a constitutively active form of Akt was able to reduce autophagy markers and confer resistance to SSA-induced cell death. Our findings provide evidence that SSA inhibits lung tumor cell growth by a mechanism involving autophagy induction through the suppression of Akt/mTOR signaling. This unique mechanism of action, along with its increased potency and lack of COX inhibition, supports the development of SSA or related analogs for the prevention and/or treatment of lung cancer.

  1. A novel synthetic Asiatic acid derivative induces apoptosis and inhibits proliferation and mobility of gastric cancer cells by suppressing STAT3 signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang G

    2016-12-01

    Full Text Available Gang Wang,1 Yue Jing,2 Lingsen Cao,3 Changchang Gong,1 Zhunan Gong,1,3 Xiangrong Cao3 1Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, 2Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China Abstract: Activation of the transcription factor, signal transducers and activators of transcription 3 (STAT3, has been linked to the proliferation and migration of a variety of human cancer cells. These actions occur via the upregulation or downregulation of cell survival and tumor suppressor genes, respectively. Importantly, agents that can suppress STAT3 activation have the potential for use in the prevention and treatment of various cancers. In this study, an Asiatic acid (AA derivative, N-(2α,3β,23-acetoxyurs-12-en-28-oyl-L-proline methyl ester (AA-PMe, is reported to dose dependently suppress constitutive STAT3 activation in gastric cancer cells. This inhibition was mediated by blockade of Janus-activated kinase 2. Additionally, AA-PMe regulated the expression of STAT3-modulated gene products, including cyclin D1, Bax, Bcl-2, c-Myc, and matrix metalloproteinase (MMP-2 and MMP-9. Finally, transfection with both a STAT3 mimic and an inhibitor reversed the AA-PMe-driven modulation of STAT3 downstream gene products. Overall, these results suggest that AA-PMe is a novel blocker of STAT3 activation and has the potential for the prevention and treatment of gastric cancer. Keywords: gastric cancer, signal transducer and activator of transcription 3, Asiatic acid derivative, cell cycle, apoptosis, invasion

  2. Inhibition of signal transducer and activator of transcription 3 expression by RNA interference suppresses invasion through inducing anoikis in human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yu Fan; You-Li Zhang; Ying Wu; Wei Zhang; Yin-Huan Wang; Zhao-Ming Cheng; Hua Li

    2008-01-01

    AIM: To investigate the roles and mechanism of signal transducer and activator of transcription 3 (STAT3) in invasion of human colon cancer cells by RNA interference. METHODS: Small interfering RNA (siRNA) targeting Signal transducer and activator of transcription 3 (STAT3) was transfected into HT29 colon cancer cells. STAT3 protein level and DNA-binding activity of STAT3 was evaluated by western blotting and electrophoretic mobility shift assay (EMSA), respectively. We studied the anchorage-independent growth using colony formation in soft agar, and invasion using the boyden chamber model, anoikis using DNA fragmentation assay and terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), respectively. Western blot assay was used to observe the protein expression of Bcl-xL and survivin in colon cancer HT29 cells. RESULTS: RNA interference (RNAi) mediated by siRNA leads to suppression of STAT3 expression in colon cancer cell lines. Suppression of STAT3 expression by siRNA could inhibit anchorage-independent growth, and invasion ability, and induces anoikis in the colon cancer cell line HT29. It has been shown that knockdown of STAT3 expression by siRNA results in a reduction in expression of Bcl-xL and survivin in HT29 cells. CONCLUSION: These results suggest that STAT3 siRNA can inhibit the invasion ability of colon cancer cells through inducing anoikis, which antiapoptotic genes survivin and Bcl-xL contribute to regulation of anoikis. These studies indicate STAT3 siRNA could be a useful therapeutic tool for the treatment of colon cancer.

  3. The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice

    Science.gov (United States)

    Shin, Hyejin; Bang, Soyoung; Kim, Jiyeon; Jun, Jin Hyun; Song, Haengseok; Lim, Hyunjung Jade

    2017-01-01

    Dormant blastocysts during delayed implantation undergo autophagic activation, which is an adaptive response to prolonged survival in utero during less favorable environment. We observed that multivesicular bodies (MVBs) accumulate in the trophectoderm of dormant blastocysts upon activation for implantation. Since autophagosomes are shown to fuse with MVBs and efficient autophagic degradation requires functional MVBs, we examined if MVB formation in activated blastocysts are associated with protracted autophagic state during dormancy. We show here that autophagic activation during dormancy is one precondition for MVB formation in activated blastocysts. Furthermore, the blockade of FGF signaling with PD173074 partially interferes with MVB formation in these blastocysts, suggesting the involvement of FGFR signaling in this process. We believe that MVB formation in activated blastocysts after dormancy is a potential mechanism of clearing subcellular debris accumulated during prolonged autophagy. PMID:28155881

  4. Chronic Stress Aggravates Cognitive Impairment and Suppresses Insulin Associated Signaling Pathway in APP/PS1 Mice.

    Science.gov (United States)

    Han, Bing; Yu, Lulu; Geng, Yuan; Shen, Li; Wang, Hualong; Wang, Yanyong; Wang, Jinhua; Wang, Mingwei

    2016-07-02

    Differences in brain function are a central determinant of individual variability in the stress response. Brain dysfunction, resulting from aging, illness, or genetic mutations, could reduce the tolerance of glucocorticoid stress hormones. When glucocorticoids exceed tolerable limits in the brain, especially in the hippocampus, this state can cause or aggravate structural or functional damage. However, the underlying mechanisms are not well understood. This study investigated the effects of chronic unpredictable mild stress (CUMS) in APP/PS1 and control mice. We showed that 4 weeks of CUMS exposure increased the levels of glucocorticoids, reduced glucocorticoids receptor expression, and promoted senile plaque deposition, neuronal injury, and cognitive impairment in APP/PS1 mice compared to controls. The phosphorylation of insulin receptor, insulin receptor substrate 1 and associated signaling pathways (Akt, mTOR, p70S6K, ERK1/2, and PTEN) were decreased in hippocampus in APP/PS1 mice compared to control mice, while no changes were found in GSK3 and TSC2 phosphorylation. Furthermore, insulin and Akt/mTOR signaling pathways were further decreased in APP/PS1 mice after CUMS, which may be related to the activation of the stress-activated protein kinase JNK, while no alterations in the levels of phosphorylated ERK1/2, GSK3, PTEN, or TSC2 were observed. These results suggest that chronic stress may affect the insulin and Akt/mTOR pathway, accelerating the progression of Alzheimer's disease in vulnerable individuals.

  5. Cantharidin suppressed breast cancer MDA-MB-231 cell growth and migration by inhibiting MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    X.-D. Gu

    Full Text Available As an active constituent of the beetle Mylabris used in traditional Chinese medicine, cantharidin is a potent and selective inhibitor of protein phosphatase 2A (PP2A that plays a crucial role in cell cycle progression, apoptosis, and cell fate. The role and possible mechanisms exerted by cantharidin in cell growth and metastasis of breast cancer were investigated in this study. Cantharidin was found to inhibit cell viability and clonogenic potential in a time- and dose-dependent manner. Cell cycle analysis revealed that cell percentage in G2/M phase decreased, whereas cells in S and G1 phases progressively accumulated with the increasing doses of cantharidin treatment. In a xenograft model of breast cancer, cantharidin inhibited tumor growth in a dose-dependent manner. Moreover, high doses of cantharidin treatment inhibited cell migration in wound and healing assay and downregulated protein levels of major matrix metalloproteinases (MMP-2 and MMP-9. MDA-MB-231 cell migration and invasion were dose-dependently inhibited by cantharidin treatment. Interestingly, the members of the mitogen-activated protein kinase (MAPK signaling family were less phosphorylated as the cantharidin dose increased. Cantharidin was hypothesized to exert its anticancer effect through the MAPK signaling pathway. The data of this study also highlighted the possibility of using PP2A as a therapeutic target for breast cancer treatment.

  6. Regulation of CD133 by HDAC6 Promotes β-Catenin Signaling to Suppress Cancer Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Anthony B. Mak

    2012-10-01

    Full Text Available The pentaspan membrane glycoprotein CD133 marks lineage-specific cancer progenitor cells and is associated with poor prognosis in a number of tumor types. Despite its utility as a cancer progenitor cell marker, CD133 protein regulation and molecular function remain poorly understood. We find that the deacetylase HDAC6 physically associates with CD133 to negatively regulate CD133 trafficking down the endosomal-lysosomal pathway for degradation. We further demonstrate that CD133, HDAC6, and the central molecule of the canonical Wnt signaling pathway, β-catenin, can physically associate as a ternary complex. This association stabilizes β-catenin via HDAC6 deacetylase activity, which leads to activation of β-catenin signaling targets. Downregulation of either CD133 or HDAC6 results in increased β-catenin acetylation and degradation, which correlates with decreased proliferation in vitro and tumor xenograft growth in vivo. Given that CD133 marks progenitor cells in a wide range of cancers, targeting CD133 may be a means to treat multiple cancer types.

  7. Electroacupuncture Suppressed Neuronal Apoptosis and Improved Cognitive Impairment in the AD Model Rats Possibly via Downregulation of Notch Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hai-dong Guo

    2015-01-01

    Full Text Available Acupuncture is a potential strategy for the treatment of Alzheimer’s disease (AD and the possible mechanisms worth to be explored. In this study, we proposed and tested the hypothesis that whether Notch signaling pathway is involved in the effect of electroacupuncture (EA treatment. Rats that received EA treatment on the acupoints of Baihui (Du 20 and Shenshu (BL 23 had shorter latency and remained in the original platform quadrant longer and crossed the former platform contained quadrant more frequently compared to the Aβ injection rats without EA treatment. EA obviously alleviated the cell apoptosis resulted by Aβ infusion in hippocampus CA1 regions through upregulating the expression of Bcl-2 and downregulating the expression of Bax. EA could further obviously promote the expression of synapsin-1 and synaptophysin in hippocampus. Aβ injection significantly increased the expression of Notch1, Jag1, and Hes1 mRNA, while EA treatment downregulated the level of Notch1 and Hes1 mRNA in hippocampus, but not Jag1 mRNA. Our data suggested that EA treatment improved learning and memory function in the AD rat model partially through downregulating Notch signaling pathway.

  8. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  9. A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines

    Directory of Open Access Journals (Sweden)

    Stroh Thorsten

    2011-05-01

    Full Text Available Abstract Background In traditional Chinese and Korean medicine, an aqueous extract derived from wood and bark of the Japanese spice bush Lindera obtusiloba (L.obtusiloba is applied to treat inflammations and chronic liver diseases including hepatocellular carcinoma. We previously demonstrated anti-fibrotic effects of L.obtusiloba extract in hepatic stellate cells. Thus, we here consequently examine anti-neoplastic effects of L.obtusiloba extract on human hepatocellular carcinoma (HCC cell lines and the signaling pathways involved. Methods Four human HCC cell lines representing diverse stages of differentiation were treated with L.obtusiloba extract, standardized according to its known suppressive effects on proliferation and TGF-β-expression. Beside measurement of proliferation, invasion and apoptosis, effects on signal transduction and NF-κB-activity were determined. Results L.obtusiloba extract inhibited proliferation and induced apoptosis in all HCC cell lines and provoked a reduced basal and IGF-1-induced activation of the IGF-1R signaling cascade and a reduced transcriptional NF-κB-activity, particularly in the poorly differentiated SK-Hep1 cells. Pointing to anti-angiogenic effects, L.obtusiloba extract attenuated the basal and IGF-1-induced expression of hypoxia inducible factor-1α, vascular endothelial growth factor, peroxisome proliferator-activated receptor-γ, cyclooxygenase-2 and inducible nitric oxide synthase. Conclusions The traditional application of the extract is confirmed by our experimental data. Due to its potential to inhibit critical receptor tyrosine kinases involved in HCC progression via the IGF-1 signaling pathway and NF-κB, the standardized L.obtusiloba extract should be further analysed for its active compounds and explored as (complementary treatment option for HCC.

  10. IL-21/IL-21R signaling suppresses intestinal inflammation induced by DSS through regulation of Th responses in lamina propria in mice.

    Science.gov (United States)

    Wang, Yuanyuan; Jiang, Xuefeng; Zhu, Junfeng; Dan Yue; Zhang, Xiaoqing; Wang, Xiao; You, Yong; Wang, Biao; Xu, Ying; Lu, Changlong; Sun, Xun; Yoshikai, Yasunobu

    2016-08-22

    Serum level of IL-21 is increased in patients with inflammatory bowel diseases (IBD), suggesting that IL-21/IL-21 receptor (IL-21R) signaling may be involved in the pathogenesis of IBD. However, the role of IL-21/IL-21 receptor signaling plays in the pathogenesis of IBD is not very clear. In this study, using IL-21R.KO mice, we tested the role of IL-21/IL-21R signaling in the regulation of T helper cell responses during intestinal inflammation. Here we found that IL-21R.KO mice were more susceptible to DSS-induced colitis as compared with C57BL/6 mice. The spontaneous inflammatory cytokines released by macrophages in LP of colon were significantly increased, and Th2, Th17 and Treg responses were down-regulated markedly. However, Th1 responses were significantly up-regulated in IL-21R.KO mice. Meanwhile, the population of CD8(+)CD44(+)IFN-γ(+) T cells was markedly elevated in LP of inflammatory intestine of IL-21RKO mice. In vivo, after disease onset, DSS-induced intestinal inflammation was ameliorated in C57BL/6 mice treated with rIL-21. Our results demonstrate that IL-21/IL-21R signaling contributes to protection against DSS-induced acute colitis through suppression of Th1 and activation of Th2, Th17 and Treg responses in mice. Therefore, therapeutic manipulation of IL-21/IL-21R activity may allow improved immunotherapy for IBD and other inflammatory diseases associated with Th cell responses.

  11. Fish oil suppresses cell growth and metastatic potential by regulating PTEN and NF-κB signaling in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shevali Kansal

    Full Text Available Homeostasis in eukaryotic tissues is tightly regulated by an intricate balance of the prosurvival and antisurvival signals. The tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10, a dual-specificity phosphatase, plays a functional role in cell cycle arrest and apoptosis. NF-κB and its downstream regulators (such as VEGF play a central role in prevention of apoptosis, promotion of inflammation and tumor growth. Therefore, we thought to estimate the expression of PTEN, Poly-ADP-ribose polymerase (PARP, NF-κBp50, NF-κBp65 and VEGF to evaluate the effect of supplementation of fish oil on apoptotic and inflammatory signaling in colon carcinoma. Male wistar rats in Group I received purified diet while Group II and III received modified diet supplemented with FO∶CO(1∶1&FO∶CO(2.5∶1 respectively. These were further subdivided into controls receiving ethylenediamine-tetra acetic-acid and treated groups received dimethylhydrazine-dihydrochloride (DMH/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and that sacrificed after 16 weeks constituted post-initiation phase. We have analysed expression of PTEN, NF-κBp50, NF-κBp65 by flowcytometer and nuclear localization of NF-κB by immunofluorescence. PARP and VEGF were assessed by immunohistochemistry. In the initiation phase, animals receiving DMH have shown increased % of apoptotic cells, PTEN, PARP, NF-κBp50, NF-κBp65 and VEGF however in post-initiation phase no significant alteration in apoptosis with decreased PTEN and increased PARP, NF-κBp50, NF-κBp65 and VEGF were observed as compared to control animals. On treatment with both ratios of fish oil in both the phases, augmentation in % of apoptotic cells, decreased PTEN, PARP, NF-κBp50, NF-κBp65 and VEGF were documented with respect to DMH treated animals with effect being more exerted with higher ration in post-initiation phase. Hence, fish oil activates

  12. A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Fei-Fei; Ling, Hui; Ang, Xiaohui; Reddy, Shridhivya A.; Lee, Stephanie S-H.; Yang, Hong; Tan, Sock-Hoon [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore); Hayes, John D. [Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland (United Kingdom); Chui, Wai-Keung [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore); Chew, Eng-Hui, E-mail: phaceh@nus.edu.sg [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore)

    2013-11-01

    Natural compounds containing vanilloid and Michael acceptor moieties appear to possess anti-cancer and chemopreventive properties. The ginger constituent shogaol represents one such compound. In this study, the anti-cancer potential of a synthetic novel shogaol analog 3-phenyl-3-shogaol (3-Ph-3-SG) was assessed by evaluating its effects on signaling pathways. At non-toxic concentrations, 3-Ph-3-SG suppressed cancer cell invasion in MDA-MB-231 and MCF-7 breast carcinoma cells through inhibition of PMA-activated MMP-9 expression. At similar concentrations, 3-Ph-3-SG reduced expression of the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanglandin-E{sub 2} (PGE{sub 2}) in RAW 264.7 macrophage-like cells. Inhibition of cancer cell invasion and inflammation by 3-Ph-3-SG were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway. The 3-Ph-3-SG also demonstrated cytoprotective effects by inducing the antioxidant response element (ARE)-driven genes NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1). Cytoprotection by 3-Ph-3-SG was achieved at least partly through modification of cysteine residues in the E3 ubiquitin ligase substrate adaptor Kelch-like ECH-associated protein 1 (Keap1), which resulted in accumulation of transcription factor NF-E2 p45-related factor 2 (Nrf2). The activities of 3-Ph-3-SG were comparable to those of 6-shogaol, the most abundant naturally-occurring shogaol, and stronger than those of 4-hydroxyl-null deshydroxy-3-phenyl-3-shogaol, which attested the importance of the 4-hydroxy substituent in the vanilloid moiety for bioactivity. In summary, 3-Ph-3-SG is shown to possess activities that modulate stress-associated pathways relevant to multiple steps in carcinogenesis. Therefore, it warrants further investigation of this compound as a promising candidate for use in chemotherapeutic and chemopreventive strategies. - Highlights:

  13. Mangiferin inhibits mastitis induced by LPS via suppressing NF-ĸB and NLRP3 signaling pathways.

    Science.gov (United States)

    Qu, Shihui; Wang, Wenqing; Li, Depeng; Li, Shumin; Zhang, Like; Fu, Yunhe; Zhang, Naisheng

    2017-02-01

    During the past era, small molecules derived from various plants have attracted extensive attention for their versatile medicinal benefits. Among these, one organic molecule called mangiferin from certain plant species including mangoes and honey bush tea is widely used in treating inflammation. In this study, a LPS-induced mastitis model in mouse is established to investigate the anti-inflammatory effects and mechanism of mangiferin. The result shows that mangiferin significantly alleviates LPS-induced histopathology, meanwhile, also decreases LPS-induced MPO activity. Furthermore, mangiferin treatment remarkably impeded the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, mangiferin was found to inhibit LPS-induced NF-ĸB and NLRP3 inflammasome activation. In conclusion, these results suggested that LPS-induced mastitis can be abated by mangiferin through inhibiting NF-ĸB and NLRP3 signaling pathways.

  14. PLCε knockdown inhibits prostate cancer cell proliferation via suppression of Notch signalling and nuclear translocation of the androgen receptor.

    Science.gov (United States)

    Wang, Yin; Wu, Xiaohou; Ou, Liping; Yang, Xue; Wang, Xiaorong; Tang, Min; Chen, E; Luo, Chunli

    2015-06-28

    Phospholipase Cε (PLCε), a key regulator of diverse cellular functions, has been implicated in various malignancies. Indeed, PLCε functions include cell proliferation, apoptosis and malignant transformation. Here, we show that PLCε expression is elevated in prostate cancer (PCa) tissues compared to benign prostate tissues. Furthermore, PLCε depletion using an adenovirally delivered shRNA significantly decreased cell growth and colony formation, arresting the PC3 and LNCaP cell lines in the S phase of the cell cycle. We also observed that PLCε was significantly correlated with Notch1 and androgen receptor (AR). Additionally, we demonstrate that the activation of both the Notch and AR signalling pathways is involved in PLCε-mediated oncogenic effects in PCa. Our findings suggest that PLCε is a putative oncogene and prognostic marker, potentially representing a novel therapeutic target for PCa.

  15. Recombinant Human Endostatin Suppresses Mouse Osteoclast Formation by Inhibiting the NF-κB and MAPKs Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Non eChen

    2016-06-01

    Full Text Available Rheumatoid arthritis is an autoimmune disease characterized by synovial hyperplasia and progressive joint destruction. As reported previously, recombinant human endostatin (rhEndostatin is associated with inhibition of joint bone destruction present in rat adjuvant-induced arthritis; however, the effect of rhEndostatin on bone destruction is not known. This study was designed to assess the inhibitory effect and mechanisms of rhEndostatin on formation and function of osteoclasts in vitro, and to gain insight into the mechanism underlying the inhibitory effect of bone destruction. Bone marrow-derived macrophages isolated from BALB/c mice were stimulated with receptor activator of NF-κB ligand (RANKL and macrophage colony-stimulating factor to establish osteoclast formation. Osteoclast formation was determined by TRAP staining. Cell viability of BMMs affected by rhEndostatin was determined using a MTT assay. Bone resorption was examined with a bone resorption pits assay. The expression of osteoclast-specific markers was analyzed using quantitative real-time PCR. The related signaling pathways were examined using a Luciferase reporter assay and western blot analysis. Indeed, rhEndostatin showed a significant reduction in the number of osteoclast-like cells and early-stage bone resorption. Moreover, molecular analysis demonstrated that rhEndostatin attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation of IκBα and NF-κB p65 nuclear translocation. Furthermore, rhEndostatin significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs, such as ERK1/2, JNK, and p38. Hence, we demonstrated for the first time that preventing the formation and function of osteoclasts is an important anti-bone destruction mechanism of rhEndostatin, which might be useful in the prevention and treatment of bone destruction in RA.

  16. PPARγ activation inhibits growth and survival of human endometriotic cells by suppressing estrogen biosynthesis and PGE2 signaling.

    Science.gov (United States)

    Lebovic, Dan I; Kavoussi, Shahryar K; Lee, JeHoon; Banu, Sakhila K; Arosh, Joe A

    2013-12-01

    Endometriosis is a chronic inflammatory disease of reproductive age women leading to chronic pelvic pain and infertility. Current antiestrogen therapies are temporizing measures, and endometriosis often recurs. Potential nonestrogenic or nonsteroidal targets are needed for treating endometriosis. Peroxisome proliferator-activated receptor (PPAR)γ, a nuclear receptor, is activated by thiazolidinediones (TZDs). In experimental endometriosis, TZDs inhibit growth of endometriosis. Clinical data suggest potential use of TZDs for treating pain and fertility concurrently in endometriosis patients. Study objectives were to 1) determine the effects of PPARγ action on growth and survival of human endometriotic epithelial and stromal cells and 2) identify the underlying molecular links between PPARγ activation and cell cycle regulation, apoptosis, estrogen biosynthesis, and prostaglandin E2 biosynthesis and signaling in human endometriotic epithelial and stromal cells. Results indicate that activation of PPARγ by TZD ciglitazone 1) inhibits growth of endometriotic epithelial cells 12Z up to 35% and growth of endometriotic stromal cells 22B up to 70% through altered cell cycle regulation and intrinsic apoptosis, 2) decreases expression of PGE2 receptors (EP)2 and EP4 mRNAs in 12Z and 22B cells, and 3) inhibits expression and function of P450 aromatase mRNA and protein and estrone production in 12Z and 22B cells through EP2 and EP4 in a stromal-epithelial cell-specific manner. Collectively, these results indicate that PGE2 receptors EP2 and EP4 mediate actions of PPARγ by incorporating multiple cell signaling pathways. Activation of PPARγ combined with inhibition of EP2 and EP4 may emerge as novel nonsteroidal therapeutic targets for endometriosis-associated pain and infertility, if clinically proven safe and efficacious.

  17. Hydrogen sulfide-releasing naproxen suppresses colon cancer cell growth and inhibits NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Kodela R

    2015-08-01

    Full Text Available Ravinder Kodela,1 Niharika Nath,2 Mitali Chattopadhyay,1 Diandra E Nesbitt,1 Carlos A Velázquez-Martínez,3 Khosrow Kashfi11Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, 2Department of Life Sciences, New York Institute of Technology, New York, NY, USA; 3Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada Abstract: Colorectal cancer (CRC is the second leading cause of death due to cancer and the third most common cancer in men and women in the USA. Nuclear factor kappa B (NF-κB is known to be activated in CRC and is strongly implicated in its development and progression. Therefore, activated NF-κB constitutes a bona fide target for drug development in this type of malignancy. Many epidemiological and interventional studies have established nonsteroidal anti-inflammatory drugs (NSAIDs as a viable chemopreventive strategy against CRC. Our previous studies have shown that several novel hydrogen sulfide-releasing NSAIDs are promising anticancer agents and are safer derivatives of NSAIDs. In this study, we examined the growth inhibitory effect of a novel H2S-releasing naproxen (HS-NAP, which has a repertoire as a cardiovascular-safe NSAID, for its effects on cell proliferation, cell cycle phase transitions, and apoptosis using HT-29 human colon cancer cells. We also investigated its effect as a chemopreventive agent in a xenograft mouse model. HS-NAP suppressed the growth of HT-29 cells by induction of G0/G1 arrest and apoptosis and downregulated NF-κB. Tumor xenografts in mice were significantly reduced in volume. The decrease in tumor mass was associated with a reduction of cell proliferation, induction of apoptosis, and decreases in NF-κB levels in vivo. Therefore, HS-NAP demonstrates strong anticancer potential in CRC. Keywords: nonsteroidal anti-inflammatory drugs, cell cycle, apoptosis, xenograft, NF

  18. AMPK activators suppress breast cancer cell growth by inhibiting DVL3-facilitated Wnt/β-catenin signaling pathway activity.

    Science.gov (United States)

    Zou, Yu-Feng; Xie, Chun-Wei; Yang, Shi-Xin; Xiong, Jian-Ping

    2017-02-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a principal regulator of metabolism and the conservation of energy in cells, and protects them from exposure to various stressors. AMPK activators may exhibit therapeutic potential as suppressors of cell growth; however, the molecular mechanism underlying this phenomenon in various cancer cells remains to be fully elucidated. The present study investigated the effects of AMPK activators on breast cancer cell growth and specified the underlying molecular mechanism. In the present study, the AMPK activator metformin impaired breast cancer cell growth by reducing dishevelled segment polarity protein 3 (DVL3) and β‑catenin levels. Western blotting and immunohistochemistry demonstrated that DVL3 was recurrently upregulated in breast cancer cells that were not treated with metformin, and was significantly associated with enhanced levels of β‑catenin, c‑Myc and cyclin D1. Overexpression of DVL3 resulted in upregulation of β‑catenin and amplification of breast cancer cell growth, which confirmed that Wnt/β‑catenin activation via DVL3 is associated with breast cancer oncogenesis. To elucidate the underlying mechanism of these effects, the present study verified that metformin resulted in a downregulation of DVL3 and β‑catenin in a dose‑dependent manner, and induced phosphorylation of AMPK. Compound C is an AMPK inhibitor, which when administered alongside metformin, significantly abolished the effects of metformin on the reduction of DVL3 and activation of the phosphorylation of AMPK. Notably, the effects of metformin on the mRNA expression levels of DVL3 remain to be fully elucidated; however, a possible interaction with DVL3 at the post‑transcriptional level was observed. It has previously been suggested that the molecular mechanism underlying AMPK activator‑induced suppression of breast cancer cell growth involves an interaction with, and impairment of, DVL3 proteins. The results of the

  19. Common and distinct brain regions processing multisensory bodily signals for peripersonal space and body ownership.

    Science.gov (United States)

    Grivaz, Petr; Blanke, Olaf; Serino, Andrea

    2017-02-15

    We take the feeling that our body belongs to us for granted. However, recent research has shown that it is possible to alter the subjective sensation of body ownership (BO) by manipulating multisensory bodily inputs. Several frontal and parietal regions are known to specifically process multisensory cues presented close to the body, i.e., within the peripersonal space (PPS). It has been proposed that these PPS fronto-parietal regions also underlie BO. However, most previous studies investigated the brain mechanisms of either BO or of PPS processing separately and by using a variety of paradigms. Here, we conducted an extensive meta-analysis of functional neuroimaging studies to investigate PPS and BO processing in humans in order to: a) assess quantitatively where each one of these functions was individually processed in the brain; b) identify whether and where these processes shared common or engaged distinct brain mechanisms; c) characterize these areas in terms of whole-brain co-activation networks and functions, respectively. We identified (i) a bilateral PPS network including superior parietal, temporo-parietal and ventral premotor regions and (ii) a BO network including posterior parietal cortex (right intraparietal sulcus, IPS; and left IPS and superior parietal lobule, SPL), right ventral premotor cortex, and the left anterior insula. Co-activation maps related to both PPS and BO encompassed largely overlapping fronto-parietal networks, but whereas the PPS network was more frequently associated with sensorimotor tasks, the BO network was rather associated with attention and awareness tasks. Finally, the conjunction analysis showed that (iii) PPS and BO tasks anatomically overlapped only in two clusters located in the left parietal cortex (dorsally at the intersection between the SPL, the IPS and area 2 and ventrally between areas 2 and IPS). Distinct activations were located for PPS at the temporo-parietal junction and for BO in the anterior insula. These

  20. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling, cell cycle regulators, and Ets-1-mediated MMP-2 expression.

    Science.gov (United States)

    Shin, Seung-Shick; Park, Sung-Soo; Hwang, Byungdoo; Kim, Won Tae; Choi, Yung Hyun; Kim, Wun-Jae; Moon, Sung-Kwon

    2016-10-01

    Despite the clinical significance of tumorigenesis, little is known about the cellular signaling networks of microRNAs (miRs). Here we report a new finding that mir‑106a regulates the proliferation, migration, and invasion of bladder cancer cells. Basal expression levels of mir‑106a were significantly lower in bladder cancer cells than in normal urothelial cells. Overexpression of mir‑106a suppressed the proliferation of bladder cancer cell line EJ. Transient transfection of mir‑106a into EJ cells led to downregulation of ERK phosphorylation and upregulation of p38 and JNK phosph