WorldWideScience

Sample records for body motor control

  1. The Effects of Increased Body Temperature on Motor Control during Golf Putting.

    Science.gov (United States)

    Mathers, John F; Grealy, Madeleine A

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed.

  2. Gross motor control

    Science.gov (United States)

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  3. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness.

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Amemiya, Kaoru

    2016-03-01

    The human brain can generate a continuously changing postural model of our body. Somatic (proprioceptive) signals from skeletal muscles and joints contribute to the formation of the body representation. Recent neuroimaging studies of proprioceptive bodily illusions have elucidated the importance of three brain systems (motor network, specialized parietal systems, right inferior fronto-parietal network) in the formation of the human body representation. The motor network, especially the primary motor cortex, processes afferent input from skeletal muscles. Such information may contribute to the formation of kinematic/dynamic postural models of limbs, thereby enabling fast online feedback control. Distinct parietal regions appear to play specialized roles in the transformation/integration of information across different coordinate systems, which may subserve the adaptability and flexibility of the body representation. Finally, the right inferior fronto-parietal network, connected by the inferior branch of the superior longitudinal fasciculus, is consistently recruited when an individual experiences various types of bodily illusions and its possible roles relate to corporeal awareness, which is likely elicited through a series of neuronal processes of monitoring and accumulating bodily information and updating the body representation. Because this network is also recruited when identifying one's own features, the network activity could be a neuronal basis for self-consciousness. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  4. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  5. Bayesian integration and non-linear feedback control in a full-body motor task.

    Directory of Open Access Journals (Sweden)

    Ian H Stevenson

    2009-12-01

    Full Text Available A large number of experiments have asked to what degree human reaching movements can be understood as being close to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is displayed in a noisy fashion (as a cloud of dots on a projection screen while the subject is incentivized to keep the cursor close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models where a Bayesian estimation model (Kalman filter is combined with an optimal controller (either a Linear-Quadratic-Regulator or Bang-bang controller. We find evidence that subjects integrate information over time taking into account uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may additionally take into account the specific costs and constraints of the task.

  6. Dizzy people perform no worse at a motor imagery task requiring whole body mental rotation; a case-control comparison

    Directory of Open Access Journals (Sweden)

    Sarah B Wallwork

    2013-06-01

    Full Text Available We wanted to find out whether people who suffer from dizziness take longer than people who do not, to perform a motor imagery task that involves implicit whole body rotation. Our prediction was that people in the ‘dizzy’ group would take longer at a left/right neck rotation judgment task but not a left/right hand judgment task, because actually performing the former, but not the latter, would exacerbate their dizziness. Secondly, we predicted that when dizzy participants responded to neck rotation images, responses would be greatest when images were in the upside-down orientation; an orientation with greatest dizzy-provoking potential. To test this idea, we used a case-control comparison design. One hundred and eighteen participants who suffered from dizziness and 118 age, gender, arm pain and neck pain matched controls took part in the study. Participants undertook two motor imagery tasks; a left/right neck rotation judgment task and a left/right hand judgment task. The tasks were completed using the Recognise program; an on-line reaction time task program. Images of neck rotation were shown in four different orientations; 0°, 90°, 180° and 270°. Participants were asked to respond to each ‘neck’ image identifying it as either ‘right neck rotation’ or a ‘left neck rotation’, or for hands, a right or a left hand. Results showed that participants in the ‘dizzy’ group were slower than controls at both tasks (p= 0.015, but this was not related to task (p= 0.498. Similarly, ‘dizzy’ participants were not proportionally worse at images of different orientations (p= 0.878. Our findings suggest impaired performance in dizzy people, an impairment that may be confined to motor imagery or may extend more generally.

  7. Kinesthetic motor imagery modulates body sway.

    Science.gov (United States)

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Stepping motor controller

    Science.gov (United States)

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  9. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  10. Induction motor control

    Science.gov (United States)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  11. Induction motor control

    Science.gov (United States)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  12. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  13. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  14. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  15. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  16. Microprocessor controller for stepping motors

    International Nuclear Information System (INIS)

    Strait, B.G.; Thuot, M.E.

    1977-01-01

    A new concept for digital computer control of multiple stepping motors which operate in a severe electromagnetic pulse environment is presented. The motors position mirrors in the beam-alignment system of a 100-kJ CO 2 laser. An asynchronous communications channel of a computer is used to send coded messages, containing the motor address and stepping-command information, to the stepping-motor controller in a bit serial format over a fiber-optics communications link. The addressed controller responds by transmitting to the computer its address and other motor information, thus confirming the received message. Each controller is capable of controlling three stepping motors. The controller contains the fiber-optics interface, a microprocessor, and the stepping-motor driven circuits. The microprocessor program, which resides in an EPROM, decodes the received messages, transmits responses, performs the stepping-motor sequence logic, maintains motor-position information, and monitors the motor's reference switch. For multiple stepping-motor application, the controllers are connected in a daisy chain providing control of many motors from one asynchronous communications channel of the computer

  17. The effects of whole-body vibration therapy on bone turnover, muscle strength, motor function, and spasticity in chronic stroke: a randomized controlled trial.

    Science.gov (United States)

    Pang, M Y C; Lau, R W K; Yip, S P

    2013-08-01

    Whole-body vibration (WBV) has been used in older adults to improve bone health and neuromuscular function, and may have potential applications for stroke patients. To investigate the effects of WBV on bone turnover, leg muscle strength, motor function, and spasticity among chronic stroke patients. Randomized controlled trial (RCT). Community. Eighty-two chronic stroke patients. The experimental group underwent exercise training with WBV stimulation for a maximum of 15 minutes, 3 days per week for 8 weeks. The controls received the same exercises without WBV. Participants were evaluated for isokinetic knee muscle strength, serum levels of bone formation and resorption markers, spasticity and motor function of the paretic leg at baseline, immediately after the 8-week training period, and 1-month follow-up. Intention-to-treat analysis revealed no significant changes in levels of bone turnover markers and motor function of the paretic leg over time in both groups. Muscle strength outcomes showed no significant group×time interaction, with similar significant improvements found in both groups. Spasticity of the paretic knee was significantly reduced in the experimental group (P=0.005), but not in controls (P=0.465). No serious adverse events were reported. The WBV protocol used in this study did not induce additional effects on bone turnover, knee muscle strength and paretic leg motor function among chronic stroke patients. WBV may have potential to modulate spasticity, but this requires further investigation. More study on WBV is required before it can be recommended as an adjunct treatment in rehabilitation of chronic stroke patients.

  18. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  19. Control motor brushless sensorless

    OpenAIRE

    Solchaga Pérez de Lazárraga, Gonzalo

    2015-01-01

    El proyecto consiste en la creación de un circuito capaz de controlar la velocidad de un motor brushless sensorless. Este tipo de motores eléctricos tienen como característica que no tienen escobillas para cambiar la polaridad del bobinado de su interior y tampoco precisan de un sensor que indique que ha realizado una vuelta. Los motores brushless que son controlados por este tipo de circuitos son específicos para aeronaves no tripuladas y requieren un diseño diferente a un motor brushless pe...

  20. 'Motor control center obsolescence'

    International Nuclear Information System (INIS)

    Irish, C.S.

    2003-01-01

    A significant and growing problem within the global nuclear industry is the aging of motor control center (MCC) components. MCC's have a very important role in the safety and critical to generation requirements of a nuclear power plant. Although many OEM's MCC's such as ITE/Telemechanique, GE, Westinghouse, Cutler Hammer, Klockner Moeller, etc. have been used throughout the global nuclear industry, they all have one common aspect obsolescence. Obsolescence of various components within the MCC's such as molded case circuit breakers, starters, relays, heaters, contactors, etc. are impacting the reliability of the MCC to serve its intended function. The paper will discuss the options which the nuclear industry is faced with to increase the reliability of the MCC's while maintaining design control, qualification and meeting budget constraints. The options as listed below shall be discussed in detail with examples to enhance the readers understanding of the situation: 1) Component by component replacement: The hurdles associated with trying to find equivalent components to replace the obsolete components while still worki (mechanically and electrically) in the original cubicle will be presented. 2) Complete MCC cubicle with new internal components replacement: The process of supplying a replacement cubicle, with all new internal components and new door to replace the original cubicle will be discussed. The presentation will conclude with a comparison of the advantages and dis-advantages of the two methods to bring the MCC to an as new condition with the overall goal of increasing reliability. (author)

  1. Two Archetypes of Motor Control Research.

    Science.gov (United States)

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  2. A versatile stepping motor controller for systems with many motors

    International Nuclear Information System (INIS)

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab

  3. Three phase AC motor controller

    Science.gov (United States)

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  4. Deep networks for motor control functions

    Directory of Open Access Journals (Sweden)

    Max eBerniker

    2015-03-01

    Full Text Available The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body’s state (forward and inverse models, and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a nonlinear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control.

  5. MicroRNA expression patterns in human anterior cingulate and motor cortex: A study of dementia with Lewy bodies cases and controls.

    Science.gov (United States)

    Nelson, Peter T; Wang, Wang-Xia; Janse, Sarah A; Thompson, Katherine L

    2018-01-01

    MicroRNAs (miRNAs) have been implicated in neurodegenerative diseases including Parkinson's disease and Alzheimer's disease (AD). Here, we evaluated the expression of miRNAs in anterior cingulate (AC; Brodmann area [BA] 24) and primary motor (MO; BA 4) cortical tissue from aged human brains in the University of Kentucky AD Center autopsy cohort, with a focus on dementia with Lewy bodies (DLB). RNA was isolated from gray matter of brain samples with pathology-defined DLB, AD, AD + DLB, and low-pathology controls, with n = 52 cases initially included (n  = 23 with DLB), all with low (matter of MO, AC, primary somatosensory (BA 3), and dorsolateral prefrontal (BA 9) cortical regions. The miRNA expression patterns differed substantially according to anatomic location: of the relatively highly-expressed miRNAs, 150/481 (31%) showed expression that was different between AC versus MO (at p < .05 following correction for multiple comparisons), most (79%) with higher expression in MO. A subset of these results were confirmed in qPCR validation focusing on miR-7, miR-153, miR-133b, miR-137, and miR-34a. No significant variation in miRNA expression was detected in association with either neuropathology or sex after correction for multiple comparisons. A subset of miRNAs (some previously associated with α-synucleinopathy and/or directly targeting α-synuclein mRNA) were differentially expressed in AC and MO, which may help explain why these brain regions show differences in vulnerability to Lewy body pathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Motor power control circuit for ac induction motors

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  7. Changing motor perception by sensorimotor conflicts and body ownership

    Science.gov (United States)

    Salomon, R.; Fernandez, N. B.; van Elk, M.; Vachicouras, N.; Sabatier, F.; Tychinskaya, A.; Llobera, J.; Blanke, O.

    2016-01-01

    Experimentally induced sensorimotor conflicts can result in a loss of the feeling of control over a movement (sense of agency). These findings are typically interpreted in terms of a forward model in which the predicted sensory consequences of the movement are compared with the observed sensory consequences. In the present study we investigated whether a mismatch between movements and their observed sensory consequences does not only result in a reduced feeling of agency, but may affect motor perception as well. Visual feedback of participants’ finger movements was manipulated using virtual reality to be anatomically congruent or incongruent to the performed movement. Participants made a motor perception judgment (i.e. which finger did you move?) or a visual perceptual judgment (i.e. which finger did you see moving?). Subjective measures of agency and body ownership were also collected. Seeing movements that were visually incongruent to the performed movement resulted in a lower accuracy for motor perception judgments, but not visual perceptual judgments. This effect was modified by rotating the virtual hand (Exp.2), but not by passively induced movements (Exp.3). Hence, sensorimotor conflicts can modulate the perception of one’s motor actions, causing viewed “alien actions” to be felt as one’s own. PMID:27225834

  8. The micro-step motor controller

    International Nuclear Information System (INIS)

    Hong, Kwang Pyo; Lee, Chang Hee; Moon, Myung Kook; Choi, Bung Hun; Choi, Young Hyun; Cheon, Jong Gu

    2004-11-01

    The developed micro-step motor controller can handle 4 axes stepping motor drivers simultaneously and provide high power bipolar driving mechanism with constant current mode. It can be easily controlled by manual key functions and the motor driving status is displayed by the front panel VFD. Due to the development of several kinds of communication and driving protocol, PC can operate even several micro-step motor controllers at once by multi-drop connection

  9. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  10. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  11. Control of a superconducting synchronous motor

    International Nuclear Information System (INIS)

    Jiang, Y; Pei, R; Jiang, Q; Hong, Z; Coombs, T A

    2007-01-01

    This paper presents a control algorithm for starting up a high temperature superconducting synchronous motor. The mathematical model of the motor has been established in m-file in Matlab and the parameters have been identified by means of the finite-element analysis method. Different starting methods for the motor have been compared and discussed, and eventually a hybrid control algorithm is proposed

  12. The Control of Brushless DC Motors

    OpenAIRE

    BAYRAKTAR, H. C.; BALIK, H. H.

    2015-01-01

    In this paper, about brushless DC motors and their structures, working principles, types, control logic and control methods commonly used are given general information. Nowadays, using BLDC motors are increased because of their advantages. For example, simple structure, easy control, small size and high effiency etc. Therefore, BLDC motors and their controls has become increasingly important in recently. The result of this paper, most common control techniques are also discussed

  13. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...

  14. Seeing fearful body language rapidly freezes the observer's motor cortex.

    Science.gov (United States)

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, Valeria; Avenanti, Alessio

    2015-04-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time similar reductions occur in the human motor cortex and whether they originate from excitatory or inhibitory processes. Using single-pulse and paired-pulse transcranial magnetic stimulation (TMS), here we tested the hypothesis that the observer's motor cortex implements extremely fast suppression of motor readiness when seeing emotional bodies - and fearful body expressions in particular. Participants observed pictures of body postures and categorized them as happy, fearful or neutral while receiving TMS over the right or left motor cortex at 100-125 msec after picture onset. In three different sessions, we assessed corticospinal excitability, short intracortical inhibition (SICI) and intracortical facilitation (ICF). Independently of the stimulated hemisphere and the time of the stimulation, watching fearful bodies suppressed ICF relative to happy and neutral body expressions. Moreover, happy expressions reduced ICF relative to neutral actions. No changes in corticospinal excitability or SICI were found during the task. These findings show extremely rapid bilateral modulation of the motor cortices when seeing emotional bodies, with stronger suppression of motor readiness when seeing fearful bodies. Our results provide neurophysiological support for the evolutionary notions that emotion perception is inherently linked to action systems and that fear-related cues induce an urgent mobilization of motor reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Motor Control and Learning Theories

    NARCIS (Netherlands)

    Alessandro, Cristiano; Beckers, Niek; Goebel, Peter; Resquin, Francisco; González-Vargas, José; Osu, Rieko; Pons, José L.; Raya, Rafael; González, José

    2016-01-01

    Patients who have suffered impairment of their neuromotor abilities due to a disease or accident have to relearn to control their bodies. For example, after stroke the ability to coordinate the movements of the upper limb in order to reach and grasp an object could be severely damaged. Or in the

  16. Motor mapping of implied actions during perception of emotional body language.

    Science.gov (United States)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2012-04-01

    Perceiving and understanding emotional cues is critical for survival. Using the International Affective Picture System (IAPS) previous TMS studies have found that watching humans in emotional pictures increases motor excitability relative to seeing landscapes or household objects, suggesting that emotional cues may prime the body for action. Here we tested whether motor facilitation to emotional pictures may reflect the simulation of the human motor behavior implied in the pictures occurring independently of its emotional valence. Motor-evoked potentials (MEPs) to single-pulse TMS of the left motor cortex were recorded from hand muscles during observation and categorization of emotional and neutral pictures. In experiment 1 participants watched neutral, positive and negative IAPS stimuli, while in experiment 2, they watched pictures depicting human emotional (joyful, fearful), neutral body movements and neutral static postures. Experiment 1 confirms the increase in excitability for emotional IAPS stimuli found in previous research and shows, however, that more implied motion is perceived in emotional relative to neutral scenes. Experiment 2 shows that motor excitability and implied motion scores for emotional and neutral body actions were comparable and greater than for static body postures. In keeping with embodied simulation theories, motor response to emotional pictures may reflect the simulation of the action implied in the emotional scenes. Action simulation may occur independently of whether the observed implied action carries emotional or neutral meanings. Our study suggests the need of controlling implied motion when exploring motor response to emotional pictures of humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Bus Current Feedback for Motor Control

    National Research Council Canada - National Science Library

    Maase, Hannon

    2000-01-01

    Many algorithms using nonlinear control ideas have been applied to the induction motor control problem to allow the user to control the torque, speed, or position response of a closed loop servo quite precisely...

  18. PC Based wireless stepper motor control

    OpenAIRE

    Jamal, Omar; Khan, Shahnawaz; Abideen, Zainul

    2013-01-01

    This project is about making an embedded system in order to control different functionalities of a stepper motor. The main functions of this stepper motor are to control the speed and direction. The whole hardware consists of two parts. One is the transmitter side and the other side is the receiver side. The transmitter side consists of PC, Encoder, a microcontroller and RF (Radio Frequency) transmitter. On the receiver side there is an RF receiver, a decoder, a microcontroller, a motor drive...

  19. Linear Parameter Varying Control of Induction Motors

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    The subject of this thesis is the development of linear parameter varying (LPV) controllers and observers for control of induction motors. The induction motor is one of the most common machines in industrial applications. Being a highly nonlinear system, it poses challenging control problems...... for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...

  20. Sliding Controller of Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Abdel Ghani AISSAOUI

    2008-06-01

    Full Text Available This paper presents an application of sliding mode control for switched reluctance motor (SRM speed. The sliding mode technique finds its stronger justification in the utilization of a robust control law to model uncertainties. A sliding mode controller of the motor speed is then designed and simulated. Digital simulation results shows that the designed sliding speed controller realises a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the sliding mode controller to a SRM give best performances and high robustness than those obtained by the application of a conventional controller (PI.

  1. Controller for computer control of brushless dc motors. [automobile engines

    Science.gov (United States)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  2. Advanced dc-Traction-Motor Control System

    Science.gov (United States)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  3. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  4. Timing and motor control in drumming

    DEFF Research Database (Denmark)

    Dahl, Sofia; Grossbach, Michael; Altenmüller, Eckart

    the stick movement becomes increasingly difficult, sometimes resulting in irregularities in timing and/or striking force. Timing irregularities can also be a revealing sign of motor control problems, such as focal dystonia (Jabusch, Vauth & Altenmüller, 2004). The "breakdown" in motor control can therefore...

  5. Association between Body Composition and Motor Performance in Preschool Children

    Directory of Open Access Journals (Sweden)

    Tanja H. Kakebeeke

    2017-09-01

    Full Text Available Objective: Being overweight makes physical movement more difficult. Our aim was to investigate the association between body composition and motor performance in preschool children. Methods: A total of 476 predominantly normal-weight preschool children (age 3.9 ± 0.7 years; m/f: 251/225; BMI 16.0 ± 1.4 kg/m2 participated in the Swiss Preschoolers' Health Study (SPLASHY. Body composition assessments included skinfold thickness, waist circumference (WC, and BMI. The Zurich Neuromotor Assessment (ZNA was used to assess gross and fine motor tasks. Results: After adjustment for age, sex, socioeconomic status, sociocultural characteristics, and physical activity (assessed with accelerometers, skinfold thickness and WC were both inversely correlated with jumping sideward (gross motor task β-coefficient -1.92, p = 0.027; and -3.34, p = 0.014, respectively, while BMI was positively correlated with running performance (gross motor task β-coefficient 9.12, p = 0.001. No significant associations were found between body composition measures and fine motor tasks. Conclusion: The inverse associations between skinfold thickness or WC and jumping sideward indicates that children with high fat mass may be less proficient in certain gross motor tasks. The positive association between BMI and running suggests that BMI might be an indicator of fat-free (i.e., muscle mass in predominately normal-weight preschool children.

  6. Fuzzy control of small servo motors

    Science.gov (United States)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  7. Ultra-Compact Motor Controller

    Science.gov (United States)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  8. Induction Motor Speed Control Using Fuzzy Logic Controller

    OpenAIRE

    V. Chitra; R. S. Prabhakar

    2008-01-01

    Because of the low maintenance and robustness induction motors have many applications in the industries. The speed control of induction motor is more important to achieve maximum torque and efficiency. Various speed control techniques like, Direct Torque Control, Sensorless Vector Control and Field Oriented Control are discussed in this paper. Soft computing technique – Fuzzy logic is applied in this paper for the speed control of induction motor to achieve maximum torque with minimum loss. T...

  9. Arm coordination in octopus crawling involves unique motor control strategies.

    Science.gov (United States)

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-04

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Computerized Torque Control for Large dc Motors

    Science.gov (United States)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  11. Oscillation control system for electric motor drive

    Science.gov (United States)

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  12. Seeing fearful body language rapidly freezes the observer's motor cortex

    NARCIS (Netherlands)

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, V.; Avenanti, Alessio

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time

  13. Seeing fearful body language rapidly freezes the observer's motor cortex

    NARCIS (Netherlands)

    Borgomaneri, S.; Vitale, F.; Gazzola, V.; Avenanti, A.

    2015-01-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time

  14. Physical and Motor Performance Predictors of Lower Body ...

    African Journals Online (AJOL)

    The aim of this study was to develop a lower body explosive power (LBEP) prediction model from various physical and motor performance components among a cohort of male and female adolescents living in the Tlokwe local municipality of the North-West Province. A cross-sectional experimental research design was ...

  15. DC motor speed control using fuzzy logic controller

    Science.gov (United States)

    Ismail, N. L.; Zakaria, K. A.; Nazar, N. S. Moh; Syaripuddin, M.; Mokhtar, A. S. N.; Thanakodi, S.

    2018-02-01

    The automatic control has played a vital role in the advance of engineering and science. Nowadays in industries, the control of direct current (DC) motor is a common practice thus the implementation of DC motor controller speed is important. The main purpose of motor speed control is to keep the rotation of the motor at the present speed and to drive a system at the demand speed. The main purpose of this project is to control speed of DC Series Wound Motor using Fuzzy Logic Controller (FLC). The expectation of this project is the Fuzzy Logic Controller will get the best performance compared to dc motor without controller in terms of settling time (Ts), rise time (Tr), peak time (Tp) and percent overshoot (%OS).

  16. Efficient foot motor control by Neymar's brain.

    Science.gov (United States)

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar's brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  17. Four quadrant control of induction motors

    Science.gov (United States)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  18. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s......Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stability with guaranteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....

  19. Effects of vitamin D supplementation in infancy on growth, bone parameters, body composition and gross motor development at age 3-6 years: follow-up of a randomized controlled trial.

    Science.gov (United States)

    Trilok-Kumar, Geeta; Kaur, Manpreet; Rehman, Andrea M; Arora, Harsh; Rajput, Mohammad Muntafa; Chugh, Reema; Kurpad, Anura; Sachdev, Harshpal Singh; Filteau, Suzanne

    2015-06-01

    The long-term effects of infant vitamin D supplementation and status are unclear since there have been few controlled intervention trials and these have been small and contradictory. The Delhi Infant Vitamin D Supplementation (DIVIDS) trial found that supplementation of low-birthweight term infants with one recommended dietary allowance of vitamin D from 1 week to 6 months of age resulted in increased length and weight at 6 months. In the DIVIDS-2 study we followed up the DIVIDS children, now aged 3-6 years, to determine longer-term effects. DIVIDS children, 446 from the vitamin D arm and 466 from the placebo arm, attended the follow-up visit. Data collection included anthropometry, blood pressure, bone structure and strength by quantitative ultrasound (QUS), gross motor tests, deuterium dilution test of body composition on a subset (n = 229) and blood samples for measurement of vitamin D status. Body mass index Z scores (BMIZ) were lower (adjusted P = 0.003)in the vitamin D Group [-1.18 (SD 0.92)] when compared with the placebo [-1.02 (SD 0.91)] group as a result of slightly lower weight and slightly greater height. The vitamin D group also had lower thigh circumference and arm muscle area and borderline lower mid-upper arm circumference. There were no group differences in body fat percentage, bone QUS or blood pressure and few differences in motor development measures. Vitamin D supplementation of low-birthweight infants in infancy resulted in children being thinner at age 3-6 years but in no differences in functional outcomes. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  20. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stability with guaranteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....

  1. Dynamic neural controllers for induction motor.

    Science.gov (United States)

    Brdyś, M A; Kulawski, G J

    1999-01-01

    The paper reports application of recently developed adaptive control techniques based on neural networks to the induction motor control. This case study represents one of the more difficult control problems due to the complex, nonlinear, and time-varying dynamics of the motor and unavailability of full-state measurements. A partial solution is first presented based on a single input-single output (SISO) algorithm employing static multilayer perceptron (MLP) networks. A novel technique is subsequently described which is based on a recurrent neural network employed as a dynamical model of the plant. Recent stability results for this algorithm are reported. The technique is applied to multiinput-multioutput (MIMO) control of the motor. A simulation study of both methods is presented. It is argued that appropriately structured recurrent neural networks can provide conveniently parameterized dynamic models for many nonlinear systems for use in adaptive control.

  2. Comparing Performances of Direct Torque Controlled Asynchronous Motor and Permanent Magnet Synchronous Motor

    OpenAIRE

    KORKMAZ, Yılmaz; KORKMAZ, Fatih

    2008-01-01

    In industry, the loads driven by electrical motors require that the performances of motors and loads are compatible. In this study, a comparison of the performances of asynchronous motor and permanent magnet synchronous motor controlled by the same method which is compatible with the load is aimed. In order to do that the control of asynchronous motor and permanent magnet motor by direct torque method is simulated in MATLAB environment. In this simulation, the success of the accession times t...

  3. The neural optimal control hierarchy for motor control

    Science.gov (United States)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  4. controlling the motor by means of PC

    Directory of Open Access Journals (Sweden)

    Lachman Martin

    2017-01-01

    Full Text Available This article familiarise its readers with possibilities of motor control, measuring frequency and transient characteristics on Yaskawa Motor in laboratory conditions using Matlab – Simulink software and its Real Time Target toolbox. Using the Real Time Target toolbox along with MF624 I/O card, we are able to capture, store and submit information on state variables of the motor in real time. The manufacturer of Yaskawa motors does not provide with information about frequency and transient characteristics of current, speed or position loops. In order to verify the mathematical model, it is necessary to measure these characteristics on a specific motor type and use the obtained results to recalculate amplification of individual controllers by means of the mathematical model. Adjusting the current controller is not possible, since the values are fixed by the manufacturer. The manufacturer allows the user of the current controller to choose from 10 pre-set values (from the „softest“ to the „most stiff“. By making the model more accurate, we may perform simulations of various load states that are approaching real ones.

  5. High-temperature brushless DC motor controller

    Science.gov (United States)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  6. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  7. Summary of electric vehicle dc motor-controller tests

    Science.gov (United States)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  8. Field oriented control of induction motors

    Science.gov (United States)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  9. Serotonergic modulation of spinal motor control

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; Cotel, Florence

    2015-01-01

    Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either...

  10. Energy Optimal Control of Induction Motor Drives

    OpenAIRE

    Abrahamsen, Flemming

    2000-01-01

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic purpose is demonstrate how this can be done for low-cost PWM-VSI drives without bringing the robustness of the drive below an acceptable level.Four drives are investigated with respect to energy optimal c...

  11. DC Motor control using motor-generator set with controlled generator field

    Science.gov (United States)

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  12. Body Topography Parcellates Human Sensory and Motor Cortex.

    Science.gov (United States)

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  13. control of a dc motor using fuzzy logic control algorithm

    African Journals Online (AJOL)

    user

    This study sought to establish the impact of a fuzzy logic controller (FLC) and a Proportional-Integral-Derivative (PID) controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic controller was developed on the basis of Mamdani type fuzzy inference system (FIS). The centroid method ...

  14. Field-Oriented Control Of Induction Motors

    Science.gov (United States)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  15. Brushless DC motor speed control strategy of simulation research

    Directory of Open Access Journals (Sweden)

    Xiang Wen

    2017-01-01

    Full Text Available In view of the brushless DC motor speed regulation problem, an ideal control strategy is designed. Through the model and analysis of Brushless DC motor, the mathematical model of the brushless DC motor is obtained. By comparing three control strategies of PID control strategy, fuzzy control strategy and fuzzy PID control strategy, PID controller, fuzzy controller and fuzzy PID controller are designed respectively for simulation test. The simulation results show that the fuzzy PID controller has good control effect.

  16. Motor imagery modulation of body sway is task-dependent and relies on imagery ability

    Directory of Open Access Journals (Sweden)

    Thiago eLemos

    2014-05-01

    Full Text Available AbstractIn this study we investigate to what extent the effects of motor imagery on postural sway are constrained by movement features and the subject’s imagery ability. Twenty-three subjects were asked to imagine three movements using the kinesthetic modality: rising on tiptoes, whole-body forward reaching, and whole-body lateral reaching. After each task, subjects reported the level of imagery vividness and were subsequently grouped into a HIGH group (scores ≥3, moderately intense imagery or a LOW group (scores ≤2, mildly intense imagery. An eyes closed trial was used as a control task. Center of gravity (COG coordinates were collected, along with surface EMG of the deltoid (medial and anterior portion and lateral gastrocnemius muscles. COG variability was quantified as the amount of fluctuations in position and velocity in the forward-backward and lateral directions. Changes in COG variability during motor imagery were observed only for the HIGH group. COG variability in the forward-backward direction was increased during the rising on tiptoes imagery, compared with the control task (p=0.01 and the lateral reaching imagery (p=0.02. Conversely, COG variability in the lateral direction was higher in rising on tiptoes and lateral reaching imagery than during the control task (p0.08 or task (p>0.46 for any of the tested muscles. In summary, motor imagery influences body sway dynamics in a task-dependent manner, and relies on the subject’ imagery ability.

  17. Computer controlled motor vehicle battery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W.R.; McAuiliffe, G.N.; Schlageter, G.A.

    1986-04-01

    This patent consists of a motor vehicle having a DC motor, a pedal biased to a released position and depressed by the driver to increase speed. An alternate switching means affects the vehicle speed control, a foot switch is operated by the pedal and operative when the pedal is depressed to close a circuit enabling energization of the alternate switching means. A microprocessor includes a program for controlling operation of the alternate switching means, the foot switch is operative when the pedal is released to open the enabling circuit. The program includes a register which is incremented with each passage of the logic and is responsive to the incremented count in the register to instruct a change in position of the alternate switching means.

  18. Central control of body temperature.

    Science.gov (United States)

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  19. DC motors and servo-motors controlled by Raspberry Pi 2B

    Directory of Open Access Journals (Sweden)

    Šustek Michal

    2017-01-01

    Full Text Available The expanding capabilities of today’s microcontrollers and other devices lead to an increased utilization of these technologies in diverse fields. The automation and issue of remote control of moving objects belong to these fields. In this project, a microcontroller Raspberry Pi 2B was chosen for controlling DC motors and servo-motors. This paper provides basic insight into issue of controlling DC motors and servo-motors, connection between Raspberry and other components on breadboard and programming syntaxes for controlling motors in Python programming language.

  20. A New Approach to Laboratory Motor Control MMCS: The Modular Motor Control System

    Science.gov (United States)

    1989-02-01

    encB2 encl2 h/beat2 J2 . h/ beatl encll encBl encAl 0 = LED indicator connectors to motor/enc Figure 5.2: Motor interface board layout something is...signal for joint 1. h/ beatl Green Heartbeat signal for joint 1. h/beat2 Green Heartbeat signal for joint 2. gpl Red General purpose (software controllable

  1. Sensorless V/f Control of Permanent Magnet Synchronous Motors

    OpenAIRE

    Montesinos-Miracle, Daniel; Perera, P. D. Chandana; Galceran-Arellano, Samuel; Blaabjerg, Frede

    2010-01-01

    V/f control strategy for permanent magnet synchronous motors can be useful for HVAC applications, where not high performance is required. Permanent magnet synchronous motors have efficiency advantages over the induction motor. But open loop V/f control is not stable in the whole frequency range. As demonstrated, the V/f control strategy becomes

  2. Design and control of a superconducting permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Jiang, Y; Pei, R; Hong, Z; Song, J; Fang, F; Coombs, T A

    2007-01-01

    This paper gives a detailed description of the design of a superconducting permanent magnet synchronous motor. The parameters of the motor have been identified, and the torque equation has been stated. A direct torque control algorithm is introduced and applied to a traditional permanent magnet synchronous motor and the superconducting permanent magnet synchronous motor described in this paper. The motor performance shows that the direct torque control algorithm provides excellent control to the superconducting motor, and guarantees that the magnitude of the operational armature currents is smaller than the value of the critical current of the superconducting tape used for stator winding

  3. [Predictive ocular motor control in Parkinson's disease].

    Science.gov (United States)

    Ying, Li; Liu, Zhen-Guo; Chen, Wei; Gan, Jing; Wang, Wen-An

    2008-02-19

    To investigate the changes of predictive ocular motor function in the patients with Parkinson's disease (PD), and to discuss its clinical value. Videonystagmography (VNG) was used to examine 24 patients with idiopathic Parkinson's disease, 15 males and 9 females, aged 61 +/- 6 (50-69), and 24 sex and age-matched healthy control subjects on random ocular saccade (with the target moving at random intervals to random positions) and predictive ocular saccade (with the 1.25-second light target moving 10 degrees right or left from the center). In the random ocular saccade program, the latency of saccade of the PD patients was 284 ms +/- 58 ms, significantly longer than that of the healthy controls (236 ms +/- 37 ms, P = 0.003). In the predictive ocular saccade pattern, the latency of saccades the PD patients was 150 ms +/- 138 ms, significantly longer than that of the healthy controls (59 ms +/- 102 ms, P = 0.002). The appearance rate of predictive saccades (with the latency of saccade <80 ms) in the PD group was 21%, significantly lower than that in the control group (31%, P = 0.003). There is dysfunction of predictive ocular motor control in the PD patients, and the cognitive function may be impaired at the early stage of PD.

  4. Permanent magnet brushless DC motor drives and controls

    CERN Document Server

    Xia, Chang-liang

    2012-01-01

    An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more a

  5. Improved Rotor Speed Brushless DC Motor using Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Jafar Mostafapour

    2016-03-01

    Full Text Available A brushless DC (BLDC Motors have advantages over brushed, direct current (DC motors and Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and better result can be achieve.

  6. Improved Rotor Speed Brushless DC Motor Using Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Jafar Mostafapour

    2015-04-01

    Full Text Available A brushless DC (BLDC Motors have advantages over brushed, Direct current (DC Motors and , Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and beter result can be achieve.

  7. Differences in Body Composition According to Gross Motor Function in Children With Cerebral Palsy.

    Science.gov (United States)

    Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Cho, Byung Chae; Moon, Seung Jun; Kim, Jaeyoung; Park, Moon Seok

    2017-11-01

    To assess differences in body composition according to gross motor function in children with cerebral palsy (CP) compared with healthy controls. Retrospective case-control study. Tertiary referral center for CP. Participants (N=146) comprised consecutive patients with CP (n=100; mean age, 11.5±4.2y) who were admitted for orthopedic surgery between May 2014 and March 2016 and typically developing children (TDC, n=46; control group). Not applicable. Bioelectrical impedance analysis (BIA) was used to assess body composition, including body fat, soft lean mass (SLM), fat-free mass (FFM), skeletal muscle mass (SMM), body cell mass (BCM), bone mineral content (BMC), and basal metabolic rate. Body composition measures were compared according to Gross Motor Function Classification System (GMFCS) level, as well as between children with CP and TDC. Children with CP with GMFCS levels IV and V had a lower height, weight, and body mass index than those with GMFCS levels I to III. Children with CP with GMFCS levels IV and V had a significantly lower SLM, SLM index, FFM, FFM index, SMM, SMM index, BCM, BCM index, BMC, and BMC index than those with GMFCS levels I to III and TDC. GMFCS level significantly affected SLM and BMC. Body composition analysis using BIA showed that nonambulatory children with CP had significantly lower FFM, SLM, SMM, BCM, and BMC than ambulatory children with CP and TDC. However, further study is required to allow the use of BIA as a valid nutritional assessment tool in patients with CP. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Body-specific motor imagery of hand actions: neural evidence from right- and left-handers

    Directory of Open Access Journals (Sweden)

    Roel M Willems

    2009-11-01

    Full Text Available If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009. During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.

  9. The Basal Ganglia and Adaptive Motor Control

    Science.gov (United States)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  10. Motor Controlled Rotating Base for Directional Submarine Antennas

    Science.gov (United States)

    2012-09-28

    steel gear 172 that is attached to the rotating platform 150. [0044] Suitable motors include, but are not limited to, a brushless DC motor that...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Motor Controlled Rotating Base For Directional Submarine Antennas 5a. CONTRACT NUMBER...Std Z39-18 Attorney Docket No. 101658 Page 1 of 23 MOTOR CONTROLLED ROTATING BASE FOR DIRECTIONAL SUBMARINE ANTENNAS STATEMENT OF GOVERNMENT

  11. Tracking control of DC motors via mimo nonlinear fuzzy control

    International Nuclear Information System (INIS)

    Harb, Ahmad M.; Smadi, Issam A.

    2009-01-01

    This paper proposed a nonlinear controller for speed tracking of separately excited DC motors (SEDCM's) using the multi-input multi-output (MIMO) fuzzy logic controller (FLC's). Based on a nonlinear mathematical model of SEDCM, a FLC is designed to achieve high performance speed tracking through rejection load disturbance. Computer simulations are presented to show speed tracking performance and the effectiveness of the proposed controller.

  12. Integrated-Circuit Controller For Brushless dc Motor

    Science.gov (United States)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  13. Mild cognitive impairment affects motor control and skill learning.

    Science.gov (United States)

    Wu, Qiaofeng; Chan, John S Y; Yan, Jin H

    2016-02-01

    Mild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients' motor functions. Future research directions are also raised.

  14. Mechanisms of motor adaptation in reactive balance control.

    Directory of Open Access Journals (Sweden)

    Torrence D J Welch

    Full Text Available Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations.

  15. Motor Proficiency and Body Mass Index of Preschool Children: In Relation to Socioeconomic Status

    Science.gov (United States)

    Mülazimoglu-Balli, Özgür

    2016-01-01

    The aim of the study was to investigate the correlation between motor proficiency and body mass index and to assess the socioeconomic status differences in motor proficiency and body mass index of preschool children. Sixty preschool children in the different socioeconomic status areas of central Denizli in Turkey participated in the study. The…

  16. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  17. Control system for an induction motor with energy recovery

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1983-01-01

    A control circuit for an induction motor powered system is disclosed in which a power factor controlled servo loop is used to control, via the phase angle of firing of a triac, the power input to the motor, as a function of load placed on the motor by machinery of the powered system. Then, upon application of torque by this machinery to the motor, which tends to overspeed the motor, the firing angle of the triac is automatically set to a fixed, and relatively short, firing angle.

  18. Controllable molecular motors engineered from myosin and RNA

    Science.gov (United States)

    Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev

    2018-01-01

    Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.

  19. Motor Control Abnormalities in Parkinson’s Disease

    Science.gov (United States)

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  20. Design of double DC motor control system based on DSP

    Directory of Open Access Journals (Sweden)

    Suo WANG

    2017-10-01

    Full Text Available Aiming at the problems of speed control, commutation and so on in the multi-motor synchronous control system, based on automatic control technology, a control system with PC as principal computer and DSP as slave computer is designed, which can change dual DC motor speed and steering, as well as select work drive motors. Related hardware and software design of the control system are given. Through serial communication between DSP and PC using PC serial port software, digital control command is sent to the slave computer for controlling dual DC motor to do a series of preset functions. PWM pulse width modulation is used for motor speed regulation, photoelectric encoder is used to measure motor speed by T method, and the motor speed is displayed by the actual waveform. Experimental results show that the system can not only realize the synchronization of dual DC motor speed and steering adjustment, but also select the motor and achieve the dual DC motors synchronization control effect. The control system has certain reliability and effectiveness.

  1. Speed Control of Multiphase Cage Induction Motors Incorporating Supply Sequence

    Directory of Open Access Journals (Sweden)

    Drozdowski Piotr

    2014-12-01

    Full Text Available The subject of this paper is the control possibility of the multiphase cage induction motors having number of phases greater than 3. These motors have additional properties for speed control that distinguish them from the standard 3 phase motors: operation at various sequences of supplying voltages due to the inverter control and possible operation with few open-circuited phases. For each supply sequence different no load speeds at the same frequency can be obtained. This feature extends the motor application for miscellaneous drive demands including vector or scalar control. This depends mainly on the type of the stator winding for a given number of phases, since the principle of motor operation is based on co-operation of higher harmonics of magnetic field. Examples of operation are presented for a 9-phase motor, though general approach has been discussed. This motor was fed by a voltage source inverter at field oriented control with forced currents. The mathematical model of the motor was reduced to the form incorporating all most important physical features and appropriate for the control law formulation. The operation was illustrated for various supply sequences for “healthy” motor and for the motor operating at one phase broken. The obtained results have shown that parasitic influence of harmonic fields interaction has negligible influence on motor operation with respect to the useful coupling for properly designed stator winding.

  2. Simulation of Brushless DC Motor using Direct Torque Control

    OpenAIRE

    Mrs.G. Kusuma; S. Rukhsana Begum

    2014-01-01

    This paper deals with modelling of three phases brushless dc motor with MATLAB/SIMULINK software BLDC motor have advantages according to brushless dc motor and induction motor’s. They have improve speed torque charactistics, high efficiency high transient response and small size. It approaches for reducing the torque ripples of BLDC motor using DTC, by using control technique’s ,but present work mainly concentrate on advanced method. The whole drive system is simulated based o...

  3. Real Time Flux Control in PM Motors

    Energy Technology Data Exchange (ETDEWEB)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the

  4. Illusory movement perception improves motor control for prosthetic hands.

    Science.gov (United States)

    Marasco, Paul D; Hebert, Jacqueline S; Sensinger, Jon W; Shell, Courtney E; Schofield, Jonathon S; Thumser, Zachary C; Nataraj, Raviraj; Beckler, Dylan T; Dawson, Michael R; Blustein, Dan H; Gill, Satinder; Mensh, Brett D; Granja-Vazquez, Rafael; Newcomb, Madeline D; Carey, Jason P; Orzell, Beth M

    2018-03-14

    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Roles of the orexin system in central motor control.

    Science.gov (United States)

    Hu, Bo; Yang, Nian; Qiao, Qi-Cheng; Hu, Zhi-An; Zhang, Jun

    2015-02-01

    The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Variable Rail Voltage Control of a Brushless DC (BLDC) Motor

    Science.gov (United States)

    2013-01-01

    Variable Rail Voltage Control of a Brushless DC (BLDC) Motor by Yuan Chen, Joseph Conroy, and William Nothwang ARL-TR-6308 January 2013...TR-6308 January 2013 Variable Rail Voltage Control of a Brushless DC (BLDC) Motor Yuan Chen, Joseph Conroy, and William Nothwang Sensors...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Variable Rail Voltage Control of a Brushless DC (BLDC) Motor 5a. CONTRACT NUMBER 5b. GRANT

  7. Motor Control of Drosophila Courtship Song

    Directory of Open Access Journals (Sweden)

    Troy R. Shirangi

    2013-11-01

    Full Text Available Many animals utilize acoustic signals—or songs—to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1 that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a “modular” anatomical substrate for the evolution of diverse songs.

  8. ANALISA SISTEM KENDALI PUTARAN MOTOR DC MENGGUNAKAN SILICON CONTROLLED RECTIFIERS

    Directory of Open Access Journals (Sweden)

    M. Khairudin, Efendi, N Purwantiningsih,

    2016-01-01

    Full Text Available ABSTRAK Paper ini bertujuan untuk menganalisa rangkaian sistem kendali putaran motor menggunakan Silicon Controlled Rectifier (SCR atau Thyristor. Eksperimen sistem kendali putaran motor ini menggunakan dua rangkaian yang berbeda. Rangkaian pertama menggunakan dua sumber, yaitu sumber tegangan DC 12 v terhubung dengan motor universal secara seri dengan resistor dan SCR, sedangkan sumber tegangan DC variabel 0 sampai 1.5 v dihubung paralel dengan kapasitor dan resistor. Rangkaian kedua menggunakan satu sumber tegangan AC 5 v yang dihubungkan dengan saklar dan motor. Pada rangkaian kedua ini motor dihubungkan dengan potensio, SCR, dioda serta kapasitor yang dipasang paralel dengan sumber tegangan AC. Hasil eksperimen menunjukkan dalam rangkaian menggunakan sumber tegangan DC, motor DC akan berputar saat saklar S1 tertutup. Kondisi motor akan berputar lebih cepat ketika sumber tegangan variabel diatur lebih besar dari 0 v sehingga arus gate Ig lebih bear dari 400 mA. Adapun Eksperimen dengan sumber tegangan AC, motor akan berputar dengan menambahkan dioda D3 dan pengaturan kecepatan melalui potensio meter Rv sampai posisi maksimum. Kata kunci: analisa, motor DC, SCR, sistem kendali ABSTRACT The objective of this study is to analyse the circuit of DC motor control system using Silicon Controlled Rectifier (SCR or Thyristor. In this experiment the circuit of control system for the motor using two different circuits. The first circuit using two sources, the 12 v DC voltage is connected to universal motor and series with a resistor and SCR, while the DC variable voltage source of 0 to 1.5 v connected in parallel to the capacitor and resistor. The second circuit uses a single source of 5 V AC voltage connected to the switch and the motor. In the second circuit, the motor is connected to the potentio meter, SCR, diode and capacitor in parallel with the AC voltage source. The experimental results showed the circuit using a DC voltage source impacted the

  9. Variable current speed controller for eddy current motors

    Science.gov (United States)

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  10. Power factor control system for ac induction motors

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  11. Can Clinical Assessment of Locomotive Body Function Explain Gross Motor Environmental Performance in Cerebral Palsy?

    Science.gov (United States)

    Sanz Mengibar, Jose Manuel; Santonja-Medina, Fernando; Sanchez-de-Muniain, Paloma; Canteras-Jordana, Manuel

    2016-03-01

    Gross Motor Function Classification System has discriminative purposes but does not assess short-term therapy goals. Locomotion Stages (LS) classify postural body functions and independent activity components. Assessing the relation between Gross Motor Function Classification System level and Locomotion Stages will make us understand if clinical assessment can explain and predict motor environmental performance in cerebral palsy. A total of 462 children were assessed with both scales. High reliability and strong negative correlation (-0.908) for Gross Motor Function Classification System and Locomotion Stages at any age was found. Sensitivity was 83%, and specificity and positive predictive value were 100% within the same age range. Regression analysis showed detailed probabilities for the realization of the Gross Motor Function Classification System depending on the Locomotion Stages and the age group. Postural body function measure with Locomotion Stages is reliable, sensitive, and specific for gross motor function and able to predict environmental performance. © The Author(s) 2015.

  12. Direct Torque Control of Asynchronous Motor With Fuzzy Logic Swithching

    OpenAIRE

    KORKMAZ, Fatih; KORKMAZ, Yılmaz

    2011-01-01

    control method in asynchronous motors, are known as high speed and torque ripples. In this study, direct torque control with fuzzy logic based switching method have been studied in order to reduce the speed and torque ripples which occurs during the direct torque control of asynchronous motors. Hysteresis controllers and vector selector that used in conventional control were removed, and fuzzy logic based switching method was used instead of them. Conventional and fuzzy control methods were s...

  13. How do glial cells contribute to motor control?

    Science.gov (United States)

    Christensen, Rasmus K; Petersen, Anders Victor; Perrier, Jean-François

    2013-01-01

    For many years, glial cells from the central nervous system have been considered as support cells involved in the homeostasis of the brain. However, a series of key-findings obtained during the past two decades has put light on unexpected roles for glia and it is getting more and more admitted that glia play an active role in several physiological functions. The discovery that a bidirectional communication takes place between astrocytes (the star shaped glial cell of the brain) and neurons, was a major breakthrough in the field of synaptic physiology. Astrocytes express receptors that get activated by neurotransmitters during synaptic transmission. In turn they release other transmitters - called gliotransmitters - that bind to neuronal receptors and modulate synaptic transmission. This feedback, which led to the concept of the tripartite synapse, has been reported with various transmitters including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern generators (CPG). These networks are highly flexible and adjust the frequency of their output to the external environment. In the case of respiration, the CPG reacts when changes in the pH of the blood occur. The chemosensory control of breathing is ensured by astrocytes, which react to variation of the blood pH by releasing ATP on neurons that in turn adapt the frequency of respiration. In the spinal cord, diverse transmitters such as ATP, adenosine or endocannabinoids modulate the CPG responsible for locomotion. A growing body of evidence suggests that glial cells release some of these molecules. These data suggest that astrocytes play an essential role in motor control and we believe that a range of studies will confirm this view in the near future.

  14. Controlling chaos in the permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Zribi, Mohamed; Oteafy, Ahmed; Smaoui, Nejib

    2009-01-01

    The Permanent Magnet Synchronous Motor (PMSM) is known to exhibit chaotic behavior under certain conditions. This paper proposes to use an instantaneous Lyapunov exponent control algorithm to control the PMSM. One of the objectives of the control approach is to bring order to the PMSM and to drive it to any user-defined desired state. Simulation results under different operating conditions indicate that the proposed control scheme works well. Moreover, the proposed Lyapunov exponent control scheme is able to induce chaos on the permanent magnet synchronous motor. Simulation results show the effectiveness of the proposed control scheme in chaotifing the response of the motor.

  15. EFFICIENCY OPTIMIZATIN CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS

    Science.gov (United States)

    The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. This energy optimizer is complemented by a sensorless speed controller that maintains motor shaft re...

  16. PMBLDC motor drive with power factor correction controller

    DEFF Research Database (Denmark)

    George, G.J.; Ramachandran, Rakesh; Arun, N.

    2012-01-01

    This paper presents a boost converter configuration, control scheme and design of single phase power factor controller for permanent magnet brushless DC motor (PMBLDCM) drive. PMBLDC motors are the latest choice of researchers, due to the high efficiency, silent operation, compact size, high...

  17. Controlling An Inverter-Driven Three-Phase Motor

    Science.gov (United States)

    Dolland, C.

    1984-01-01

    Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.

  18. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.

    Science.gov (United States)

    Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi

    2015-10-08

    In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control.

  19. Dynamic Model Based Vector Control of Linear Induction Motor

    Science.gov (United States)

    2012-05-01

    sensorless control is critical for LIM control in some special case. Reference [13] introduces a direct torque and flux control based on space...Industry Applications, IEEE Transactions on, vol. 28, no. 5, pp. 1054–1061, 1992. [4] J. Nash, “ Direct torque control , induction motor vector ...13] C. Lascu, I. Boldea, and F. Blaabjerg, “A modified direct torque control for induction motor sensorless drive,” Industry Applications,

  20. Near Term Weight Reduction Potential in a 1977 General Motors B Body Vehicle : final report

    Science.gov (United States)

    1978-05-01

    The report presents an analysis of the potential for weight reduction through lightweight material and component substitutions in a 1977 General Motors Corporation B body vehicle. The changes were limited to those that appeared producible in the 1980...

  1. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as...

  2. Identification of genetic factors that modify motor performance and body weight using Collaborative Cross mice.

    Science.gov (United States)

    Mao, Jian-Hua; Langley, Sasha A; Huang, Yurong; Hang, Michael; Bouchard, Kristofer E; Celniker, Susan E; Brown, James B; Jansson, Janet K; Karpen, Gary H; Snijders, Antoine M

    2015-11-09

    Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However, 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. Lastly, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior.

  3. Design of dual DC motor control system based on DSP

    Science.gov (United States)

    Shi, Peicheng; Wang, Suo; Xu, Zengwei; Xiao, Ping

    2017-08-01

    Multi-motor control systems are widely used in actual production and life, such as lifting stages, robots, printing systems. This paper through serial communication between PC and DSP, dual DC motor control system consisting of PC as the host computer, DSP as the lower computer with synchronous PWM speed regulation, commutation and selection functions is designed. It sends digital control instructions with host computer serial debugger to lower computer, to instruct the motor to complete corresponding actions. The hardware and software design of the control system are given, and feasibility and validity of the control system are verified by experiments. The expected design goal is achieved.

  4. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  5. DC motor proportional control system for orthotic devices

    Science.gov (United States)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  6. FPGA based control of a walking piezo motor

    OpenAIRE

    Uzunovic, Tarik; Golubovic, Edin; Şabanoviç, Asif; Sabanovic, Asif

    2014-01-01

    This paper describes FPGA based control system for a piezoelectric motor, commercially available Piezo LEGS motor. Driving voltages waveforms are defined as a combination of linear functions. This definition provides possibility for easy implementation on very simple hardware. Linear functions parameters allow forming of the driving voltages according to desired trajectory of motor's legs. Considering that FPGA technology offers many advantages over the classical microprocessor based systems,...

  7. Control Of Stepper Motor Movement By DC Voltage

    International Nuclear Information System (INIS)

    Gayani, Didi; Margono; Indasah, Iin; Sugito

    2000-01-01

    Instrumentation for controlling the power of reactor of TRIGA Mark II uses the stepper motor to move the control rod of neutron absorbers. The direction and speed of control rod movement are determined by the polarity and the amplitude of DC voltage as an error signal that is the difference of set point of power and the power of being measured on the control system. The unit of stepper motor controller of reactor instrumentation of TRIGA Mark II uses patent module of trade Mark of Vexta, USA. In this chance, the electronic circuit is made to function as the control of stepper motor movement by using the DC voltage to anticipate the problem may be faced in case of repair and maintenance of reactor instrumentation. As a result of experiment, it is stated that the control of motor movement by using DC voltage is performed into 2 stages. First, by making the oscillator that is proportional to the positive DC voltage. Secondly, by making the translator to translate the oscillator signal to be a logic pattern for controlling the movement of stepper motor. Translator and motor driver are made by using the L297 and L298 as a pair of stepper motor controller of SGS T HOMSON

  8. ARDOLORES: an Arduino based motors control system for DOLORES

    Science.gov (United States)

    Gonzalez, Manuel; Ventura, H.; San Juan, J.; Di Fabrizio, L.

    2014-07-01

    We present ARDOLORES a custom made motor control system for the DOLORES instrument in use at the TNG telescope. ARDOLORES replaced the original PMAC based motor control system at a fraction of the cost. The whole system is composed by one master Arduino ONE with its Ethernet shield, to handle the communications with the external world through an Ethernet socket, and by one Arduino ONE with its custom motor shield for each axis to be controlled. The communication between the master and slaves Arduinos is made possible through the I2C bus. Also a Java web-service has been written to control the motors from an higher level and provides an external API for the scientific GUI. The system has been working since January 2012 handling the DOLORES motors and has demonstrated to be stable, reliable, and with easy maintenance in both the hardware and the software parts.

  9. Sensorless Sliding Mode Vector Control of Induction Motor Drives

    OpenAIRE

    Gouichiche Abdelmadjid; Boucherit Mohamed Seghir; Safa Ahmed; Messlem Youcef

    2012-01-01

    In this paper we present the design of sliding mode controllers for sensorless field oriented control of induction motor. In order to improve the performance of controllers, the motor speed is controlled by sliding mode regulator with integral sliding surface. The estimated rotor speed used in speed feedback loop is calculated by an adaptive observer based on MRAS (model reference adaptive system) technique .the validity of the proposed scheme is demonstrated by experimental results.

  10. Sensorless Control of PM Synchronous Motors and Brushless DC Motors

    DEFF Research Database (Denmark)

    Montesinos, D.; Galceran, Samuel; Blaabjerg, Frede

    2005-01-01

    This paper provides a review of the literature addressing sensorless operation methods of PM brushless machines. The methods explained are state-of-the-art of open and closed loop control strategies. The closed loop review includes those methods based on voltage and current measurements, those...

  11. A Metric Observer for Induction Motors Control

    Directory of Open Access Journals (Sweden)

    Mohamed Benbouzid

    2016-01-01

    Full Text Available This paper deals with metric observer application for induction motors. Firstly, assuming that stator currents and speed are measured, a metric observer is designed to estimate the rotor fluxes. Secondly, assuming that only stator currents are measured, another metric observer is derived to estimate rotor fluxes and speed. The proposed observer validity is checked throughout simulations on a 4 kW induction motor drive.

  12. Regaining motor control in musician's dystonia by restoring sensorimotor organisation

    Science.gov (United States)

    Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C.

    2010-01-01

    Professional musicians are an excellent human model of long term effects of skilled motor training on the structure and function of the motor system. However, such effects are accompanied by an increased risk of developing motor abnormalities, in particular musician's dystonia. Previously we found that there was an expanded spatial integration of proprioceptive input into the hand area of motor cortex (sensorimotor organisation, SMO) in healthy musicians as tested with a transcranial magnetic stimulation (TMS) paradigm. In musician's dystonia, this expansion was even larger, resulting in a complete lack of somatotopic organisation. We hypothesised that the disordered motor control in musician's dystonia is a consequence of the disordered SMO. In the present paper we test this idea by giving pianists with musician's dystonia 15 min experience of a modified proprioceptive training task. This restored SMO towards that seen in healthy pianists. Crucially, motor control of the affected task improved significantly and objectively as measured with a MIDI piano, and the amount of behavioural improvement was significantly correlated to the degree of sensorimotor re-organisation. In healthy pianists and non-musicians, the SMO and motor performance remained essentially unchanged. These findings suggest a link between the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks in highly skilled individuals. PMID:19923295

  13. ANN Speed Sensorless Fuzzy Control of DRFOC Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Mouna BEN HAMED

    2010-12-01

    Full Text Available The aim of this paper is to present a full digital implementation of a sensorless speed direct orientation field controlled induction motor drive. Thanks to their advantages, the fuzzy logic is used to control the Squirrel Cage Induction Motor rotor speed and a neural network is used to reconstruct it. Experimental results for a 1kw induction motor are presented and analyzed using a dSpace system with DS1104 controller board based on digital signal processors (DSP. Obtained results demonstrated that the proposed sensorless control scheme is able to obtain high performances.

  14. PID controller simulator software for DC motor of gamma scanning

    International Nuclear Information System (INIS)

    Arjoni Amir

    2008-01-01

    Mostly PID controller (Proportional-Integral-Derivative) has been used in industry. For certain applications, it can be used as a Proportional (P) model only, or as a Proportional-Integral (PI) model. The aim of this paper is to design a PID controller simulator software for DC motor which is used in gamma scanning system. A DC motor is described as a plant of SISO (Single Input Single Output) which is used for pulling down the load (detector + casing) and gamma radiation source (Co-60 + container) by using sling cable. A DC motor consist of an armature and a rotor, the equivalent circuit of DC motor is shown in a transfer function equation between output parameter (angular speed DC motor) and input parameter (voltage of DC motor). Methods used for the process of PID controller design is to arrange the PID controller parameter (Kc, Ti, Td) so that there are more PID controller transfer function model which are able to control angular speed of DC motor in stable condition, as design criteria requirement is needed. Design criteria requirement for control system are the settling time < 3 second, overshoot < 5%, rise time = 0.25 second, steady state gain = 1 and peak time < 3 second with step response reference 1 rad/second. The result of simulation gives several models of PID controller in function transfer equation which is similar with design criteria requirement in a equation of function transfer of order 2 for numerator and order 1 for denominator. (author)

  15. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  16. Speech motor control and acute mountain sickness

    Science.gov (United States)

    Cymerman, Allen; Lieberman, Philip; Hochstadt, Jesse; Rock, Paul B.; Butterfield, Gail E.; Moore, Lorna G.

    2002-01-01

    BACKGROUND: An objective method that accurately quantifies the severity of Acute Mountain Sickness (AMS) symptoms is needed to enable more reliable evaluation of altitude acclimatization and testing of potentially beneficial interventions. HYPOTHESIS: Changes in human articulation, as quantified by timed variations in acoustic waveforms of specific spoken words (voice onset time; VOT), are correlated with the severity of AMS. METHODS: Fifteen volunteers were exposed to a simulated altitude of 4300 m (446 mm Hg) in a hypobaric chamber for 48 h. Speech motor control was determined from digitally recorded and analyzed timing patterns of 30 different monosyllabic words characterized as voiced and unvoiced, and as labial, alveolar, or velar. The Environmental Symptoms Questionnaire (ESQ) was used to assess AMS. RESULTS: Significant AMS symptoms occurred after 4 h, peaked at 16 h, and returned toward baseline after 48 h. Labial VOTs were shorter after 4 and 39 h of exposure; velar VOTs were altered only after 4 h; and there were no changes in alveolar VOTs. The duration of vowel sounds was increased after 4 h of exposure and returned to normal thereafter. Only 1 of 15 subjects did not increase vowel time after 4 h of exposure. The 39-h labial (p = 0.009) and velar (p = 0.037) voiced-unvoiced timed separations consonants and the symptoms of AMS were significantly correlated. CONCLUSIONS: Two objective measures of speech production were affected by exposure to 4300 m altitude and correlated with AMS severity. Alterations in speech production may represent an objective measure of AMS and central vulnerability to hypoxia.

  17. Speed control of SR motor by self-tuning fuzzy PI controller with ...

    Indian Academy of Sciences (India)

    Ho et al (1998) have developed a gain tuning PI controller structure using the voltage applied on motor phase windings and motor rotor speed. Then they have used this structure on speed control. Instead of changing the parameters of the controller, Tandon et al (1997) aimed to operate the motor at the optimum point using ...

  18. A brushless dc spin motor for momentum exchange altitude control

    Science.gov (United States)

    Stern, D.; Rosenlieb, J. W.

    1972-01-01

    Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.

  19. Gestalt Principles in the Control of Motor Action

    Science.gov (United States)

    Klapp, Stuart T.; Jagacinski, Richard J.

    2011-01-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to…

  20. Control of rotor function in light-driven molecular motors

    NARCIS (Netherlands)

    Lubbe, Anouk S.; Ruangsupapichat, Nopporn; Caroli, Giuseppe; Feringa, Ben L.

    2011-01-01

    A study is presented on the control of rotary motion of an appending rotor unit in a light-driven molecular motor. Two new light driven molecular motors were synthesized that contain aryl groups connected to the stereogenic centers. The aryl groups behave as bidirectional free rotors in three of the

  1. performance characteristics of an armature voltage controlled dc motor

    African Journals Online (AJOL)

    Dr Obe

    . INTRODUCTION. The good control properties of the d.c. motor have made possible its initial large scale application in industry [1]. In spite of the present superiority of the solid state squirrel cage induction motor drive, especially at supply ...

  2. Control Systems Lab Using a LEGO Mindstorms NXT Motor System

    Science.gov (United States)

    Kim, Y.

    2011-01-01

    This paper introduces a low-cost LEGO Mindstorms NXT motor system for teaching classical and modern control theories in standard third-year undergraduate courses. The LEGO motor system can be used in conjunction with MATLAB, Simulink, and several necessary toolboxes to demonstrate: 1) a modeling technique; 2) proportional-integral-differential…

  3. Pneumatic motor speed control by trajectory tracking fuzzy logic ...

    Indian Academy of Sciences (India)

    The pneumatic system is supplied with a constant air pressure (6 bars) ... system. The pneumatic motor (Gant 2AM-NCW-7B) speed is controlled by 3-way propor- tional solenoid valve, FESTO MPYE–5, (Gast air motor manual). ... for selecting these parameters, a few systematic approaches are also reported but the most.

  4. Aging and Concurrent Task Performance: Cognitive Demand and Motor Control

    Science.gov (United States)

    Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn

    2006-01-01

    A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…

  5. A novel robust speed controller scheme for PMBLDC motor.

    Science.gov (United States)

    Thirusakthimurugan, P; Dananjayan, P

    2007-10-01

    The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.

  6. Robust Position Control of a DC Motor by Sliding Mode

    Science.gov (United States)

    Mamani, Gabriela; Becedas, Jonathan; Batlle, Vicente Feliu

    The position of the DC motor is controlled by using a continuous sliding mode control (SMC), which is highly robust to the Coulomb friction torque and to high unknown payload variations, which involve changes in the rotational inertia of the motor shaft. The main contribution of the work is the experimentation of a SMC control which does not requires the knowledge of the payload variation range, i.e., the system is quite robust to any unknown change in the payload mass value.

  7. Switch Reluctance Motor Control Based on Fuzzy Logic System

    Directory of Open Access Journals (Sweden)

    S. V. Aleksandrovsky

    2012-01-01

    Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.

  8. Nonlinear Control of Induction Motors: A Performance Study

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1998-01-01

    A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers...... for the field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance...

  9. Fuzzy adaptive speed control of a permanent magnet synchronous motor

    Science.gov (United States)

    Choi, Han Ho; Jung, Jin-Woo; Kim, Rae-Young

    2012-05-01

    A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

  10. Efficient foot motor control by Neymar’s brain

    Directory of Open Access Journals (Sweden)

    Eiichi eNaito

    2014-08-01

    Full Text Available How very long-term (over many years motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI while he rotated his right ankle at 1Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  11. Efficient foot motor control by Neymar’s brain

    Science.gov (United States)

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control. PMID:25136312

  12. Motor control differs for increasing and releasing force.

    Science.gov (United States)

    Park, Seoung Hoon; Kwon, MinHyuk; Solis, Danielle; Lodha, Neha; Christou, Evangelos A

    2016-06-01

    Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0-4, 4-10, 10-35, and 35-60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P motor units from 35 to 60 Hz (R(2) = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = -0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units. Copyright © 2016 the American Physiological Society.

  13. Constant Slip Control System of an Asynchronous Motor

    Directory of Open Access Journals (Sweden)

    Martynas Šapurov

    2013-05-01

    Full Text Available Asynchronous motors are efficiently controlled using the scalar method. Main problems appear when the motor is fully loaded and desired rotation speed is slow. In such cases, the motor slip exceeds the magnitude of the nominal slip, causing the increase in stator current. The constant slip method was designed to control hardly loaded asynchronous motor. In this particular situation, the constant slip method provides a better efficiency than the scalar method. The magnitude of the motor current refers to the slip: the less is the slip, the less is the magnitude. It is impossible to find the optimal slip for minimization of current with the help of a model. Therefore, the nominal slip value was used as optimal.Article in Lithuanian

  14. Induction motor control system with voltage controlled oscillator circuit

    Science.gov (United States)

    Nola, F. J.; Currie, J. R.; Reid, H., Jr. (Inventor)

    1973-01-01

    A voltage controlled oscillator circuit is reported in which there are employed first and second differential amplifiers. The first differential amplifier, being employed as an integrator, develops equal and opposite slopes proportional to an input voltage, and the second differential amplifier functions as a comparator to detect equal amplitude positive and negative selected limits and provides switching signals which gate a transistor switch. The integrating differential amplifier is switched between charging and discharging modes to provide an output of the first differential amplifier which upon the application of wave shaping provides a substantially sinusoidal output signal. A two phased version with a second integrator provides a second 90 deg phase shifted output for induction motor control.

  15. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...

  16. Brushless DC Motor Control System Design Based on DSP2812

    Directory of Open Access Journals (Sweden)

    Wei Min

    2016-01-01

    Full Text Available By comparison various control methods currently for permanent magnet brushless DC motor, on the basis of motor principle analysis, a current smallest and most real-time all-digital rare earth permanent magnet brushless DC motor control system is designed. The high-speed digital signal processor DSP2812 is applied as the main control unit. The fuzzy PID control algorithm is used to control rectifier regulator and speed, which the speed and current is double closed loop in the system. The principle of control system, control strategy and software is analyzed in this paper. The system has some features such as less overshoot, rapid response speed, good performance of anti-jamming, simple structure, high control precision, flexible in changing control policies and so on. Validity of the design is verified by prototype test.

  17. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...

  18. Propellant Feed Valves for Starting and Control of Rocket Motors

    National Research Council Canada - National Science Library

    Schoenheit, W

    1951-01-01

    .... This allows automatic control of the valve and safe starting and operation of the rocket motor to be obtained with greater simplicity than in other types of valve hitherto known which are intended...

  19. Broad Application of a Reconfigurable Motor Controller, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An ultra-miniature (<50 grams) high-performance brushless-motor controller, code named 'Puck', has been developed by Barrett for Earth-based mobile-manipulation...

  20. EFFECTS OF OUTSCHOOL BODY ACTIVITIES ON QUALITATIVE CHANGES OF MOTORICAL STATUS PUPILS OF PRIMARY SCHOOL STRATURE

    Directory of Open Access Journals (Sweden)

    Izudin Tanović

    2011-09-01

    Full Text Available Population of pupil high classes primary school present one of cariks in chain of complex education and systematic social influence in body and health education, which are used a new generations (Mikić,1991. Including that we have a very sensibility population in way of strature and development in phase of adolescental period, it is necessary that throw the classes body education and extra outschool activities, give enough quantity of motorical activities, which will completly satisfied necessy of children this strature and also completly give them normal biopsychosocial growth. Explorations of effects extra outschool activities in frame of school sport sections pupils of primary school tell us that with a correct planning and programming work, which understand correctly choice adequate methods and operators of work could been very significant transformations of anthropological status of pupils (Malacko 2002. The basic target of this explorations was that confirm influence of outschool body activities on level qualitative changes of structure motorical space of pupils primary school strature, under influence applying programme of outschool activities. With help of factory analise, but also of method of congruation, it was explored structure of motorical space in the start but also at the end of this applying experimental programme of outschool body activities , and we concluded that changes which was appear in structure of explored motorical space, tell us on positive influence outschool body activities in sense transformation and progressing of motorical status of explorated sample.

  1. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2001-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... without further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as experimentally on the actual induction motor, both in open-loop current control and when an outer...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is then constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well...

  2. Hardware Evolution of Analog Speed Controllers for a DC Motor

    Science.gov (United States)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    This viewgraph presentation provides information on the design of analog speed controllers for DC motors on aerospace systems. The presentation includes an overview of controller evolution, evolvable controller configuration, an emphasis on proportion integral (PI) controllers, schematic diagrams, and experimental results.

  3. Soft-Starting Power-Factor Motor Controller

    Science.gov (United States)

    Nola, F. J.

    1983-01-01

    Three-phase power-factor controller with soft start is based on earlier version that does not control starting transients. Additional components serve to turn off "run" command signal and substitute gradual startup command signal during preset startup interval. Improved controller reduces large current surge that usually accompanies starting. Controller applies power smoothly, without causing motor vibrations.

  4. Tactile acuity and lumbopelvic motor control in patients with back pain and healthy controls.

    Science.gov (United States)

    Luomajoki, H; Moseley, G L

    2011-04-01

    Voluntary lumbopelvic control is compromised in patients with back pain. Loss of proprioceptive acuity is one contributor to decreased control. Several reasons for decreased proprioceptive acuity have been proposed, but the integrity of cortical body maps has been overlooked. We investigated whether tactile acuity, a clear clinical signature of primary sensory cortex organisation, relates to lumbopelvic control in people with back pain. Forty-five patients with back pain and 45 age- and sex-matched healthy controls participated in this cross-sectional study. Tactile acuity at the back was assessed using two-point discrimination (TPD) threshold in vertical and horizontal directions. Voluntary motor control was assessed using an established battery of clinical tests. Patients performed worse on the voluntary lumbopelvic tasks than healthy controls did (p<0.001). TPD threshold was larger in patients (mean (SD)=61 (13) mm) than in healthy controls (44 (10) mm). Moreover, larger TPD threshold was positively related to worse performance on the voluntary lumbopelvic tasks (Pearson's r=0.49; p<0.001). Tactile acuity, a clear clinical signature of primary sensory cortex organisation, relates to voluntary lumbopelvic control. This relationship raises the possibility that the former contributes to the latter, in which case training tactile acuity may aid recovery and assist in achieving normal motor performance after back injury.

  5. The Relationship between Motor Skill Proficiency and Body Mass Index in Children with and without Dyslexia: A Pilot Study

    Science.gov (United States)

    Logan, S. Wood; Getchell, Nancy

    2010-01-01

    The purpose of this study was twofold. First, the authors wanted to examine the associations of motor proficiency and body composition in children with and without dyslexia. They hypothesized there would be a negative relationship between body composition (measured by body mass index [BMI]) and motor proficiency (measured by MABC [Movement…

  6. Efficient speed control of induction motor using RBF based model reference adaptive control method

    OpenAIRE

    Kilic, Erdal; Ozcalik, Hasan Riza; Yilmaz, Saban

    2017-01-01

    This paper proposes a model reference adaptive speed controller based on artificial neural network for induction motor drives. The performance of traditional feedback controllers has been insufficient in speed control of induction motors due to nonlinear structure of the system, changing environmental conditions, and disturbance input effects. A successful speed control of induction motor requires a nonlinear control system. On the other hand, in recent years, it has been demonstrated that ar...

  7. Gestalt principles in the control of motor action.

    Science.gov (United States)

    Klapp, Stuart T; Jagacinski, Richard J

    2011-05-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to initiation of any part of the movement. Additional reaction time results related to initiation of longer responses are consistent with processing in terms of a sequence of indivisible motor gestalts. Some actions (e.g., many involving coordination of the hands) can be carried out effectively only if represented as a unitary gestalt. Second, a perceptual gestalt is independent of specific sensory receptors, as evidenced by perceptual constancy. In a similar manner a motor gestalt can be represented independently of specific muscular effectors, thereby allowing motor constancy. Third, just as a perceptual pattern (e.g., a Necker cube) is exclusively structured into only 1 of its possible configurations at any moment in time, processing prior to action is limited to 1 motor gestalt. Fourth, grouping in apparent motion leads to stream segregation in visual and auditory perception; this segregation is present in motor action and is dependent on the temporal rate. We discuss congruence of gestalt phenomena across perception and motor action (a) in relation to a unitary perceptual-motor code, (b) with respect to differences in the role of awareness, and (c) in conjunction with separate neural pathways for conscious perception and motor control. © 2011 American Psychological Association

  8. Whole body vibration improves attention and motor performance in ...

    African Journals Online (AJOL)

    Background: Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are ...

  9. An Adaptive Speed Control Approach for DC Shunt Motors

    Directory of Open Access Journals (Sweden)

    Ruben Tapia-Olvera

    2016-11-01

    Full Text Available A B-spline neural networks-based adaptive control technique for angular speed reference trajectory tracking tasks with highly efficient performance for direct current shunt motors is proposed. A methodology for adaptive control and its proper training procedure are introduced. This algorithm sets the control signal without using a detailed mathematical model nor exact values of the parameters of the nonlinear dynamic system. The proposed robust adaptive tracking control scheme only requires measurements of the velocity output signal. Thus, real-time measurements or estimations of acceleration, current and disturbance signals are avoided. Experimental results confirm the efficient and robust performance of the proposed control approach for highly demanding motor operation conditions exposed to variable-speed reference trajectories and completely unknown load torque. Hence, laboratory experimental tests on a direct current shunt motor prove the viability of the proposed adaptive output feedback trajectory tracking control approach.

  10. Motor patterns associated with crawling in a soft-bodied arthropod.

    Science.gov (United States)

    Simon, Michael A; Fusillo, Steven J; Colman, Kara; Trimmer, Barry A

    2010-07-01

    Soft-bodied animals lack distinct joints and levers, and so their locomotion is expected to be controlled differently from that of animals with stiff skeletons. Some invertebrates, such as the annelids, use functionally antagonistic muscles (circumferential and longitudinal) acting on constant-volume hydrostatics to produce extension and contraction. These processes form the basis for most theoretical considerations of hydrostatic locomotion in organisms including larval insects. However, caterpillars do not move in this way, and their powerful appendages provide grip independent of their dimensional changes. Here, we show that the anterograde wave of movement seen in the crawling tobacco hornworm, Manduca sexta, is mediated by co-activation of dorsal and ventral muscles within a body segment, rather than by antiphasic activation, as previously believed. Furthermore, two or three abdominal segments are in swing phase simultaneously, and the activities of motor neurons controlling major longitudinal muscles overlap in more than four segments. Recordings of muscle activity during natural crawling show that some are activated during both their shortening and elongation. These results do not support the typical peristaltic model of crawling, but they do support a tension-based model of crawling, in which the substrate is utilized as an anchor to generate propulsion.

  11. Precision electronic speed controller for an alternating-current motor

    Science.gov (United States)

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  12. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    Science.gov (United States)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  13. Remote control of molecular motors using light-activated gearshifting

    Science.gov (United States)

    Bryant, Zev

    2013-03-01

    Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.

  14. A flight simulator control system using electric torque motors

    Science.gov (United States)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  15. Control de un motor paso a paso: PIC, USB, C#

    OpenAIRE

    Fernández Aragón, Iñigo

    2011-01-01

    El objetivo de este proyecto fin de carrera es crear un equipo con el que comprender y controlar, desde el ordenador, el funcionamiento de un motor paso a paso bifásico de imanes permanentes, a través de una comunicación USB, la ayuda de un microprocesador y el imprescindible driver del motor paso a paso. Uno de los elementos utilizados en el control de un motor paso a paso es el microprocesador, encargado tanto de enviar las consignas al controlador (driver), como de captar...

  16. Contribucion al control de motores de reluctancia autoconmutados

    OpenAIRE

    Perat Benavides, José Ignacio

    2006-01-01

    En esta tesis se hacen contribuciones al control de los motores de reluctancia autoconmutados (switched reluctance motors) de potencias comprendidas entre 0.25 y 10 kW. En primer lugar, después de una breve introducción histórica, se ubica al motor de reluctancia autoconmutado en el contexto de los accionamientos eléctricos y se analiza su constitución, modelo y principio de funcionamiento. A continuación se hace una relación de sus ventajas e inconvenientes, de sus principales aplicaciones c...

  17. Fault tolerant vector control of induction motor drive

    International Nuclear Information System (INIS)

    Odnokopylov, G; Bragin, A

    2014-01-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed

  18. Synthesis of Scalar Control System of Asynchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    B. I. Firago

    2007-01-01

    Full Text Available Provision of quality indices is of great importance for motor drive in the case of parametric and external disturbances. The purpose of the paper is to make synthesis of a scalar control system of asynchronous motor drive that ensures the required quality indices in the specified range of parameter changes of a linearized electric motor model. Expressions have been obtained that make it possible to estimate change limits of main linear model parametersThe paper considers a structure of a closed loop system with dynamical output feedback and its derivative. A simulation has been executed for a calculative linear system and for a system with a simulating model of an asynchronous short-circuited electric motor at various laws of frequency control.The method provides the required dynamic indices at parametric and external disturbances occurring in the limited area.

  19. Programmable logic controller based synchronous motor excitation system

    Directory of Open Access Journals (Sweden)

    Janda Žarko

    2011-01-01

    Full Text Available This paper presents a 3.5 MW synchronous motor excitation system reconstruction. In the proposed solution programmable logic controller is used to control motor, which drives the turbo compressor. Comparing to some other solutions that are used in similar situations, the proposed solution is superior due to its flexibility and usage of mass-production hardware. Moreover, the implementation of PLC enables easy integration of the excitation system with the other technological processes in the plant as well as in the voltage regulation of 'smart grid' system. Also, implementation of various optimization algorithms can be done comfortably and it does not require additional investment in hardware. Some experimental results that depict excitation current during motor start-up, as well as, measured static characteristics of the motor, were presented.

  20. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  1. High power density superconducting motor for control applications

    International Nuclear Information System (INIS)

    Lopez, J; Granados, X; Lloberas, J; Torres, R; Grau, J; Maynou, R; Bosch, R

    2008-01-01

    A high dynamics superconducting low power motor for control applications has been considered for design. The rotor is cylindrical with machined bulks that generate the field by trapping flux in a four poles configuration. The toothless iron armature is wound by copper, acting iron only as magnetic screen. Details of the magnetic assembling, cryogenics and electrical supply conditioning will be reported. Improvements due to the use of a superconducting set are compared with performances of equivalent conventional motors

  2. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  3. Limb versus speech motor control: a conceptual review.

    Science.gov (United States)

    Grimme, Britta; Fuchs, Susanne; Perrier, Pascal; Schöner, Gregor

    2011-01-01

    This paper presents a comparative conceptual review of speech and limb motor control. Speech is essentially cognitive in nature and constrained by the rules of language, while limb movement is often oriented to physical objects. We discuss the issue of intrinsic vs. extrinsic variables underlying the representations of motor goals as well as whether motor goals specify terminal postures or entire trajectories. Timing and coordination is recognized as an area of strong interchange between the two domains. Although coordination among different motor acts within a sequence and coarticulation are central to speech motor control, they have received only limited attention in manipulatory movements. The biomechanics of speech production is characterized by the presence of soft tissue, a variable number of degrees of freedom, and the challenges of high rates of production, while limb movements deal more typically with inertial constraints from manipulated objects. This comparative review thus leads us to identify many strands of thinking that are shared across the two domains, but also points us to issues on which approaches in the two domains differ. We conclude that conceptual interchange between the fields of limb and speech motor control has been useful in the past and promises continued benefit.

  4. Motor competence and cardiorespiratory fitness have greater influence on body fatness than physical activity across time

    DEFF Research Database (Denmark)

    Lima, R A; Pfeiffer, K A; Bugge, A

    2017-01-01

    We investigated the longitudinal associations among physical activity (PA), motor competence (MC), cardiorespiratory fitness (VO2peak ), and body fatness across 7 years, and also analyzed the possible mediation effects of PA, MC, and VO2peak on the relationships with body fatness. This was a seven...... battery. VO2peak was evaluated using a continuous running protocol until exhaustion. Body fatness was determined by the sum of four skinfolds. Structural equation modeling was performed to evaluate the longitudinal associations among PA, MC, VO2peak, and body fatness and the potential mediation effects...

  5. Permanent magnet brushless motor control based on ADRC

    Directory of Open Access Journals (Sweden)

    Li Xiaokun

    2016-01-01

    Full Text Available Permanent magnet brushless motor is a nonlinear system with multiple variables, the mathematical model of Permanent magnet brushless motor is difficult to establish, and since that the classic PID control is hard to precisely control the motor. Active disturbance rejection control (ADRC technique is a new nonlinear controller which does not depend on the system model. It is starting from the classic PID control, and establishing the loop control system by error negative feedback, the ESO(extended state observer observing system which comes from the observer theory of modern control theory to observe internal and external perturbations. ADRC inherits the advantages of PID with little overshoot, high convergence speed, high accuracy, strong anti-interference ability and other characteristics, and it has a strong disturbance adaptability and robustness as for the uncertainty perturbation and their internal disturbance of control objects. Therefore, This paper attempts to use Active disturbance rejection control(ADRC, in order to improve the control of permanent magnet brushless motor. In this design of control system, the simulation of the system is realized based on MATLAB, and then the discrete control algorithm is transplanted to the embedded system to control the permanent magnet brushless DC motor (PMBLDCM. The control system is implemented on the DSP-F28335 digital signal processor, and the DSP also provides the functions like voltage and current AD sampling, PWM driver generation, speed and rotor position calculation, etc. The simulation and experiment results indicate that, the system has good dynamic performance and anti-disturbance performance.

  6. ON THE ISSUE OF VECTOR CONTROL OF THE ASYNCHRONOUS MOTORS

    Directory of Open Access Journals (Sweden)

    B. I. Firago

    2015-01-01

    Full Text Available The paper considers the issue of one of the widespread types of vector control realization for the asynchronous motors with a short-circuited rotor. Of all more than 20 vector control types known presently, the following are applied most frequently: direct vector control with velocity pickup (VP, direct vector control without VP, indirect vector control with VP and indirect vector control without VP. Despite the fact that the asynchronous-motor indirect vector control without VP is the easiest and most spread, the absence of VP does not allow controlling the motor electromagnetic torque at zero velocity. This is the reason why for electric motor drives of such requirements they utilize the vector control with a velocity transducer. The systems of widest dissemination became the direct and indirect vector control systems with X-axis alignment of the synchronously rotating x–y-coordinate frame along the rotor flux-linkage vector inasmuch as this provides the simplest correlations for controlling variables. Although these two types of vector control are well presented in literature, a number of issues concerning their realization and practical application require further elaboration. These include: the block schemes adequate representation as consisted with the modern realization of vector control and clarification of the analytical expressions for evaluating the regulator parameters.The authors present a technique for evaluating the dynamics of an asynchronous electric motor drive with direct vector control and x-axis alignment along the vector of rotor flux linkage. The article offers a generalized structure of this vector control type with detailed description of its principal blocks: controlling system, frequency converter, and the asynchronous motor.The paper presents a direct vector control simulating model developed in the MatLab environment on the grounds of this structure. The authors illustrate the described technique with the results

  7. Current and Speed Control of the Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Jiri Fort

    2004-01-01

    Full Text Available The papers deals with the problem of the current and speed control of the switched reculttance motor (SRM on the base of the proposed mathematical model of the SRM. The basic types of the controllers are described (proportional controller, PI-controller and controller with the on-line voltage calculation of the mathematical model and the design of their parameters is proposed. Then the comparsion of the simulation and the real drive experimental measurement results is presented.

  8. The Control of Switched Reluctance Motor in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2014-05-01

    Full Text Available The control of SRM was discussed: current chopping control, angle position control. This paper presents an inverter circuit and a fuzzy sliding mode control method to minimize the torque fluctuation and noise of the SRM. Based on the experimental results, Using the inverter circuit and fuzzy sliding mode control method can effectively minimize the torque fluctuation and noise of the SRM, For the switched reluctance motor applications in electric vehicles to provide a theoretical basis.

  9. Direct Torque Control of Matrix Converter Fed Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    JAGADEESAN Karpagam

    2011-10-01

    Full Text Available This paper presents the Direct TorqueControl (DTC of induction motor drive using matrixconverters. DTC is a high performance motor controlscheme with fast torque and flux responses. However,the main disadvantage of conventional DTC iselectromagnetic torque ripple. In this paper, directtorque control for Induction Motors using MatrixConverters is analysed and points out the problem ofthe electromagnetic torque ripple which is one of themost important drawbacks of the Direct TorqueControl. Besides, the matrix converter is a single-stageac-ac power conversion device without dc-link energystorage elements. Matrix converter (MC may becomea good alternative to voltage-source inverter (VSI.This work combines the advantages of the matrixconverter with those of the DTC technique, generatingthe required voltage vectors under unity input powerfactor operation. Simulation results demonstrates theeffectiveness of the torque control.

  10. Representational Similarity Analysis Reveals Heterogeneous Networks Supporting Speech Motor Control

    DEFF Research Database (Denmark)

    Zheng, Zane; Cusack, Rhodri; Johnsrude, Ingrid

    The everyday act of speaking involves the complex processes of speech motor control. One important feature of such control is regulation of articulation when auditory concomitants of speech do not correspond to the intended motor gesture. While theoretical accounts of speech monitoring posit...... multiple functional components required for detection of errors in speech planning (e.g., Levelt, 1983), neuroimaging studies generally indicate either single brain regions sensitive to speech production errors, or small, discrete networks. Here we demonstrate that the complex system controlling speech...... is supported by a complex neural network that is involved in linguistic, motoric and sensory processing. With the aid of novel real-time acoustic analyses and representational similarity analyses of fMRI signals, our data show functionally differentiated networks underlying auditory feedback control of speech....

  11. Body weight perception and body weight control behaviors in adolescents.

    Science.gov (United States)

    Frank, Robson; Claumann, Gaia S; Felden, Érico P G; Silva, Diego A S; Pelegrini, Andreia

    To investigate the association between the perception of body weight (as above or below the desired) and behaviors for body weight control in adolescents. This was a cross-sectional study that included 1051 adolescents (aged 15-19 years) who were high school students attending public schools. The authors collected information on the perception of body weight (dependent variable), weight control behaviors (initiative to change the weight, physical exercise, eating less or cutting calories, fasting for 24h, taking medications, vomiting, or taking laxatives), and measured body weight and height to calculate the body mass index and then classify the weight status. Associations were tested by multinomial logistic regression analysis. Adolescents of both sexes who perceived their body weight as below the expected weight took more initiatives to gain weight, and those who perceived themselves as overweight made more efforts to lose weight. In adolescents who perceived themselves as overweight, the behavior of not taking medication was associated with the outcome only in boys (Odds Ratio=8.12), whereas in girls, an association was observed with the variables eating less, cutting calories, or avoiding fatty foods aiming to lose or avoid increasing body weight (Odds Ratio=3.39). Adolescents of both sexes who practiced exercises were more likely to perceive themselves as overweight (male Odds Ratio=2.00; Odds Ratio=1.93 female). The perception of the body weight as above and below one's expected weight was associated with weight control behaviors, which were more likely to result in initiatives to lose and gain weight, respectively. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  12. Motor power factor controller with a reduced voltage starter

    Science.gov (United States)

    Nola, Frank J. (Inventor)

    1983-01-01

    A power factor type motor controller in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. The present invention adds to the three-phase system of pending application Ser. No. 199,765, filed Oct. 23, 1980, means for modifying the operation of the system for a motor start-up interval of 5 to 30 seconds. The modification is that of providing via ramp generator 174 an initial ramp-like signal which replaces a constant power factor signal supplied by potentiometer 70. The ramp-like signal is applied to terminal 40 where it is summed with an operating power factor signal from phase detectors 32, 34, and 36 to thereby obtain a control signal for ultimately controlling SCR devices 12, 14, and 16 to effect a gradual turn-on of motor 10. The significant difference of the present invention over prior art is that the SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone. The added signal, the operating power factor signal, enables the production of a control signal which effectively eliminates a prior problem with many motor starting circuits, which is that of accompanying motor instabilities.

  13. Implementation of a new fuzzy vector control of induction motor.

    Science.gov (United States)

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Sensory-motor networks involved in speech production and motor control: an fMRI study.

    Science.gov (United States)

    Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R; Oya, Hiroyuki; Robin, Donald A; Howard, Matthew A; Greenlee, Jeremy D W

    2015-04-01

    Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The minimum transition hypothesis for intermittent hierarchical motor control

    Directory of Open Access Journals (Sweden)

    Amir eKarniel

    2013-02-01

    Full Text Available In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience. Evidence for intermittency in human motor control has been repeatedly observed in the neural control of movement literature. Moreover, some researchers have provided theoretical models to address intermittency. Even so, the vast majority of current models, and I would dare to say the dogma in most of the current motor neuroscience literature involves continuous control. In this paper, I focus on an area in which intermittent control has not yet been thoroughly considered, the structure of muscle synergies. A synergy in the muscle space is a group of muscles activated together by a single neural command. Under the assumption that the motor control is intermittent, I present the minimum transition hypothesis and its predictions with regards to the structure of muscle synergies. The minimum transitions hypothesis (MTH asserts that the purpose of synergies is to minimize the effort of the higher level in the hierarchy by minimizing the number of transitions in an intermittent control signal. The implications of the MTH are not only for the structure of the muscle synergies but also to the intermittent and hierarchical nature of the motor system, with various predictions as to the process of skill learning, and important implications to the design of brain machine interfaces and human robot interaction.

  16. The minimum transition hypothesis for intermittent hierarchical motor control.

    Science.gov (United States)

    Karniel, Amir

    2013-01-01

    In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience. Evidence for intermittency in human motor control has been repeatedly observed in the neural control of movement literature. Moreover, some researchers have provided theoretical models to address intermittency. Even so, the vast majority of current models, and I would dare to say the dogma in most of the current motor neuroscience literature involves continuous control. In this paper, I focus on an area in which intermittent control has not yet been thoroughly considered, the structure of muscle synergies. A synergy in the muscle space is a group of muscles activated together by a single neural command. Under the assumption that the motor control is intermittent, I present the minimum transition hypothesis (MTH) and its predictions with regards to the structure of muscle synergies. The MTH asserts that the purpose of synergies is to minimize the effort of the higher level in the hierarchy by minimizing the number of transitions in an intermittent control signal. The implications of the MTH are not only for the structure of the muscle synergies but also to the intermittent and hierarchical nature of the motor system, with various predictions as to the process of skill learning, and important implications to the design of brain machine interfaces and human robot interaction.

  17. Sensorless speed control of a switched reluctance motor

    Science.gov (United States)

    Chan, Wei Min

    1997-09-01

    This dissertation presents a sensorless rotor position detection technique for a switched reluctance motor (SRM). The effectiveness of other SRM sensorless rotor position detection techniques found in a literature review are evaluated and compared to this technique. Finite element analysis is used to determine the magnetic flux profile in the motor for a few shapes of the stator and rotor poles. An algorithm that uses this position sensing technique to control the motor speed is described. Magnetic flux linkage profile of a SRM is measured. A model of the SRM is developed by curve fitting this data. Some relations between model equations are found. Computer simulation results are obtained using this model. The results are compared to measurements taken with an oscilloscope. Comparison shows the results predicted by the model correlates to those measured from the motor.

  18. Motor control of handwriting in the developing brain: A review.

    Science.gov (United States)

    Palmis, Sarah; Danna, Jeremy; Velay, Jean-Luc; Longcamp, Marieke

    This review focuses on the acquisition of writing motor aspects in adults, and in 5-to 12-year-old children without learning disabilities. We first describe the behavioural aspects of adult writing and dominant models based on the notion of motor programs. We show that handwriting acquisition is characterized by the transition from reactive movements programmed stroke-by-stroke in younger children, to an automatic control of the whole trajectory when the motor programs are memorized at about 10 years old. Then, we describe the neural correlates of adult writing, and the changes that could occur with learning during childhood. The acquisition of a new skill is characterized by the involvement of a network more restricted in space and where neural specificity is increased in key regions. The cerebellum and the left dorsal premotor cortex are of fundamental importance in motor learning, and could be at the core of the acquisition of handwriting.

  19. The Relationship between Motor Skill Proficiency and Body Mass Index in Preschool Children

    Science.gov (United States)

    Logan, Samuel W.; Scrabis-Fletcher, Kristin; Modlesky, Christopher; Getchell, Nancy

    2011-01-01

    The purpose of this study was to examine the relationship between motor proficiency and body mass index (BMI) in preschool children. Thirty-eight children ages 4-6 years had their BMI calculated and were assessed using the Movement Assessment Battery for Children-2 (MABC-2; Henderson, Sugden, & Barnett, 2007). These data were analyzed in two…

  20. Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury.

    Science.gov (United States)

    Pierella, C; De Luca, A; Tasso, E; Cervetto, F; Gamba, S; Losio, L; Quinland, E; Venegoni, A; Mandraccia, S; Muller, I; Massone, A; Mussa-Ivaldi, F A; Casadio, M

    2017-07-01

    Body machine interfaces (BMIs) are used by people with severe motor disabilities to control external devices, but they also offer the opportunity to focus on rehabilitative goals. In this study we introduced in a clinical setting a BMI that was integrated by the therapists in the rehabilitative treatments of 2 spinal cord injured (SCI) subjects for 5 weeks. The BMI mapped the user's residual upper body mobility onto the two coordinates of a cursor on a screen. By controlling the cursor, the user engaged in playing computer games. The BMI allowed the mapping between body and cursor spaces to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change our subjects' behavior, who initially used almost exclusively their proximal upper body-shoulders and arms - for using the BMI. By the end of training, cursor control was shifted toward more distal body regions - forearms instead of upper arms - with an increase of mobility and strength of all the degrees of freedom involved in the control. The clinical tests and the electromyographic signals from the main muscles of the upper body confirmed the positive effect of the training. Encouraging the subjects to explore different and sometimes unusual movement combinations was beneficial for recovering distal arm functions and for increasing their overall mobility.

  1. Pneumatic motor speed control by trajectory tracking fuzzy logic ...

    Indian Academy of Sciences (India)

    In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is defined to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to find the TTFLC boundary values of membership functions ...

  2. Design and Comparison Direct Torque Control Techniques for Induction Motors

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin

    2005-01-01

    In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...

  3. Robust Adaptive Speed Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Bidstrup, N.

    This thesis concerns speed control of current vector controlled induction motor drives (CVC drives). The CVC drive is an existing prototype drive developed by Danfoss A/S, Transmission Division. Practical tests have revealed that the open loop dynamical properties of the CVC drive are highly...

  4. Nonlinear control of permanent magnet synchronous motor driving a ...

    African Journals Online (AJOL)

    This paper presents a non-linear control of permanent magnet synchronous motor (PMSM) fed by a PWM voltage source inverter. To improve the performance of this control technique, the input-output linearization technique is proposed for a system driving a mechanical load with two masses. In order to ensure a steady ...

  5. Pneumatic motor speed control by trajectory tracking fuzzy logic

    Indian Academy of Sciences (India)

    In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is defined to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to find the TTFLC boundary values of membership functions ...

  6. Pneumatic motor speed control by trajectory tracking fuzzy logic ...

    Indian Academy of Sciences (India)

    proposed for the speed control of a pneumatic motor (PM). A third order trajectory ... Although PMs are very often used in industrial applications, PM speed control problem has been considered very difficult ..... Proceeding of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI. 518–524. Ronco E ...

  7. Application of Fuzzy Logic in Control of Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Pavel Brandstetter

    2006-01-01

    Full Text Available The flux linkage of switched reluctance motor (SRM depends on the stator current and position between the rotor and stator poles. The fact determines that during control of SRM current with the help of classical PI controllers in a wide regulation range unsatisfied results occur. The main reasons of the mentioned situation are big changes of the stator inductance depending on the stator current and rotor position. In a switched reluctance motor the stator phase inductance is a non-linear function of the stator phase current and rotor position. Fuzzy controller and fuzzy logic are generally non-linear systems; hence they can provide better performance in this case. Fuzzy controller is mostly presented as a direct fuzzy controller or as a system, which realizes continued changing parameters of other controller, so-called fuzzy supervisor. Referring to the usage of fuzzy logic as a supervisor of conventional PI controller in control of SRM possible improvement occurs.

  8. Motor control of rhythmic dance from a dynamical systems perspective: a review.

    Science.gov (United States)

    Miura, Akito; Fujii, Shinya; Yamamoto, Yuji; Kudo, Kazutoshi

    2015-03-01

    While dancers and dance educators express great interest in motor control as it relates to rhythmic dance, the subject remains largely uninvestigated. In order to advance our understanding of motor control, a theoretical framework called the dynamical systems approach (DSA) has been used. The DSA was originally developed to describe mathematically the principle of synchronization patterns in nature and their change over time. In recent decades, researchers studying human motor control have attempted to describe the synchronization of rhythmic movement using a DSA. More recently, this approach has been applied specifically to rhythmic dance movements. A series of studies that used the DSA revealed that when people synchronize rhythmic movement of a body part 1. with a different body part, 2. with other people's movement, or 3. with an auditory beat with some phase differences, unintentional and autonomous entrainment to a specific synchronization pattern occurs. However, through practice dancers are able to overcome such entrainment and dance freely. These findings provide practical suggestions for effective ways of training in dance education. The DSA can potentially be an effective tool for furthering our understanding of the motor control utilized in rhythmic dance.

  9. A biomimetic framework for coordinating and controlling whole body movements in humanoid robots.

    Science.gov (United States)

    Morasso, Pietro; Rea, Francesco; Mohan, Vishwanathan

    2013-01-01

    An integrated model for the coordination of whole body movements of a humanoid robot with a compliant ankle similar to the human case is described. It includes a synergy formation part, which takes into account the motor redundancy of the body model, and an intermittent controller, which stabilizes in a robust way postural sway movements, thus combining the hip strategy with ankle strategy.

  10. Robust linear parameter varying induction motor control with polytopic models

    Directory of Open Access Journals (Sweden)

    Dalila Khamari

    2013-01-01

    Full Text Available This paper deals with a robust controller for an induction motor which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI based approach and robust Lyapunov feedback controller are associated. This new approach is related to the fact that the synthesis of a linear parameter varying (LPV feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic model because of speed and rotor resistance affine dependence their values can be estimated on line during systems operations. The simulation results are presented to confirm the effectiveness of the proposed approach where robustness stability and high performances have been achieved over the entire operating range of the induction motor.

  11. Speed Control of Switched Reluctance Motor Using Fuzzy Sliding Mode

    Directory of Open Access Journals (Sweden)

    TAHOUR, A.

    2008-04-01

    Full Text Available In this paper, a fuzzy logic controller (FLC is designed, based on the similarity between the FLC and the sliding mode control (SMC, for a class of nonlinear system to tackle the nonlinear control problems with modelling uncertainties, plant parameters variations and external disturbances. The proposed scheme gives fast dynamic response with no overshoot and zero steady-state error. To show the validity and the effectiveness of the control method, simulations are performed for the speed control of a switched reluctance motor. The simulation results show that the controller designed is more effective than the conventional sliding mode controller in enhancing the robustness of control systems with high accuracy.

  12. Body Lice Prevention and Control

    Science.gov (United States)

    ... Frequently Asked Questions (FAQs) Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals Publications Get Email Updates To receive email updates about this page, enter ...

  13. Identifying and analyzing motor skill responses in body movement and dance.

    Science.gov (United States)

    Castañer, Marta; Torrents, Carlota; Anguera, M T; Dinusová, Mária; Jonsson, Gudberg K

    2009-08-01

    The present article analyzes the diversity of motor skills related to three different kinds of instructions: descriptive, metaphoric, and kinesic, with a special emphasis on the detection of temporal patterns (T-patterns). Twelve undergraduates studying sport and physical education, but without experience in dance, were observed during 24 lessons of Body Movement, a discipline based on creative dance, mime dance, and motor skill improvisation. Using observational methodology and technology applied to movement, the aim of this article was to adapt the Observational instrument of Motor Skills (OSMOS) (Castañer, Torrents, Anguera, & Dinusová, 2008) so as to create an instrument capable of analyzing the motor skill responses generated in lessons of Body Movement and Dance. The results, as reflected by the T-patterns detected, show that (1) participants try to generate their own motor skills but copy some fundamental components of the instructions, and (2) the criterion of stability in two configurations (support and axial) is the predominant category. Sequential and coordinated locomotion also appears to be very relevant.

  14. Robust Design of Motor PWM Control using Modeling and Simulation

    Science.gov (United States)

    Zhan, Wei

    A robust design method is developed for Pulse Width Modulation (PWM) motor speed control. A first principle model for DC permanent magnetic motor is used to build a Simulink model for simulation and analysis. Based on the simulation result, the main factors that contributed to the average speed variation are identified using Design of Experiment (DOE). A robust solution is derived to reduce the aver age speed control variation using Response Surface Method (RSM). The robustness of the new design is verified using the simulation model.

  15. PD control for robot manipulators actuated by switched reluctance motors

    Science.gov (United States)

    Hernández-Guzmán, Victor M.; Carrillo-Serrano, Roberto V.; Silva-Ortigoza, Ramón

    2013-03-01

    This article is concerned with position regulation in direct-drive n degrees of freedom rigid robots equipped only with revolute joints when actuated by switched reluctance motors. Our controller represents an extension to this case of a previous work in the literature which was proposed for a single-switched reluctance motor when moving a simple linear mechanical load. We show how to avoid a singularity present in such a previous controller. We also introduce some simplifications since the number of terms to be fedback is smaller. Further, a linear proportional inner electric current loop is included instead of a velocity dependent one.

  16. Body-part specific interactions of action verb processing with motor behaviour.

    Science.gov (United States)

    Klepp, Anne; Niccolai, Valentina; Sieksmeyer, Jan; Arnzen, Stephanie; Indefrey, Peter; Schnitzler, Alfons; Biermann-Ruben, Katja

    2017-06-15

    The interaction of action-related language processing with actual movement is an indicator of the functional role of motor cortical involvement in language understanding. This paper describes two experiments using single action verb stimuli. Motor responses were performed with the hand or the foot. To test the double dissociation of language-motor facilitation effects within subjects, Experiments 1 and 2 used a priming procedure where both hand and foot reactions had to be performed in response to different geometrical shapes, which were preceded by action verbs. In Experiment 1, the semantics of the verbs could be ignored whereas Experiment 2 included semantic decisions. Only Experiment 2 revealed a clear double dissociation in reaction times: reactions were facilitated when preceded by verbs describing actions with the matching effector. In Experiment 1, by contrast, there was an interaction between verb-response congruence and a semantic variable related to motor features of the verbs. Thus, the double dissociation paradigm of semantic motor priming was effective, corroborating the role of the motor system in action-related language processing. Importantly, this effect was body part specific. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Noninvasive Reactivation of Motor Descending Control after Paralysis.

    Science.gov (United States)

    Gerasimenko, Yury P; Lu, Daniel C; Modaber, Morteza; Zdunowski, Sharon; Gad, Parag; Sayenko, Dimitry G; Morikawa, Erika; Haakana, Piia; Ferguson, Adam R; Roy, Roland R; Edgerton, V Reggie

    2015-12-15

    The present prognosis for the recovery of voluntary control of movement in patients diagnosed as motor complete is generally poor. Herein we introduce a novel and noninvasive stimulation strategy of painless transcutaneous electrical enabling motor control and a pharmacological enabling motor control strategy to neuromodulate the physiological state of the spinal cord. This neuromodulation enabled the spinal locomotor networks of individuals with motor complete paralysis for 2-6 years American Spinal Cord Injury Association Impairment Scale (AIS) to be re-engaged and trained. We showed that locomotor-like stepping could be induced without voluntary effort within a single test session using electrical stimulation and training. We also observed significant facilitation of voluntary influence on the stepping movements in the presence of stimulation over a 4-week period in each subject. Using these strategies we transformed brain-spinal neuronal networks from a dormant to a functional state sufficiently to enable recovery of voluntary movement in five out of five subjects. Pharmacological intervention combined with stimulation and training resulted in further improvement in voluntary motor control of stepping-like movements in all subjects. We also observed on-command selective activation of the gastrocnemius and soleus muscles when attempting to plantarflex. At the end of 18 weeks of weekly interventions the mean changes in the amplitude of voluntarily controlled movement without stimulation was as high as occurred when combined with electrical stimulation. Additionally, spinally evoked motor potentials were readily modulated in the presence of voluntary effort, providing electrophysiological evidence of the re-establishment of functional connectivity among neural networks between the brain and the spinal cord.

  18. Motor skill learning, retention, and control deficits in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lisa Katharina Pendt

    Full Text Available Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance.

  19. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language.

    Science.gov (United States)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2015-09-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of motor cortex engagement during emotion perception. Participants observed pictures of body expressions and categorized them as happy, fearful or neutral while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed a reduction of excitability for happy and fearful emotional bodies that was specific to the right hemisphere and correlated with participants' disposition to feel personal distress. This 'orienting' inhibitory response to emotional bodies was also paralleled by a general drop in categorization accuracy when stimulating the right but not the left motor cortex. Conversely, at 300 ms, greater excitability for negative, positive and neutral movements was found in both hemispheres. This later motor facilitation marginally correlated with participants' tendency to assume the psychological perspectives of others and reflected simulation of the movement implied in the neutral and emotional body expressions. These findings highlight the motor system's involvement during perception of emotional bodies. They suggest that fast orienting reactions to emotional cues--reflecting neural processing necessary for visual perception--occur before motor features of the observed emotional expression are simulated in the motor system and that distinct empathic dispositions influence these two neural motor phenomena. Implications for theories of embodied simulation are discussed.

  20. On-Line Efficiency Improvement of Induction Motor Vector Controlled

    Directory of Open Access Journals (Sweden)

    Djamel Benoudjit

    2016-01-01

    Full Text Available Efficiency improvement is an important challenge for electric motor driven systems. For an induction motor, operation under rated conditions (at rated load with rated flux is very efficient. However, in many situations, operation with rated flux causes low efficiency especially at light load ranges. In these applications, induction motor should operate at reduced flux which causes a balance between iron losses and copper losses leading to an improved efficiency. This paper concerns energy optimization, i.e. efficiency improvement is carried out via a controller designed on the basis of imposing the rated power factor, by finding a relationship between rotor flux and torque current component which can optimize the compromise between torque and efficiency in steady state as well as in transient state. Experimental results are presented to prove the effectiveness and validity of the proposed controller.

  1. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  2. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    Science.gov (United States)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  3. Position Control of Switched Reluctance Motor Using Super Twisting Algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq Mufti

    2016-01-01

    Full Text Available The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm. The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC, a classical first-order sliding mode controller (FOSMC is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.

  4. Effective and Robust Generalized Predictive Speed Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Patxi Alkorta

    2013-01-01

    Full Text Available This paper presents and validates a new proposal for effective speed vector control of induction motors based on linear Generalized Predictive Control (GPC law. The presented GPC-PI cascade configuration simplifies the design with regard to GPC-GPC cascade configuration, maintaining the advantages of the predictive control algorithm. The robust stability of the closed loop system is demonstrated by the poles placement method for several typical cases of uncertainties in induction motors. The controller has been tested using several simulations and experiments and has been compared with Proportional Integral Derivative (PID and Sliding Mode (SM control schemes, obtaining outstanding results in speed tracking even in the presence of parameter uncertainties, unknown load disturbance, and measurement noise in the loop signals, suggesting its use in industrial applications.

  5. Simple Approach For Induction Motor Control Using Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    József VÁSÁRHELYI

    2002-12-01

    Full Text Available The paper deals with rotor-field-oriented vector control structures for the induction motor drives fed by the so-called tandem frequency converter. It is composed of two different types of DC-link converters connected in parallel arrangement. The larger-power one has current-source character and is operating synchronized in time and in amplitude with the stator currents. The other one has voltage-source character and it is the actuator of the motor control system. The drive is able to run also with partial-failed tandem converter, if the control strategy corresponds to the actual operating mode. A reconfigurable hardware implemented in configurable logic cells ensures the changing of the vector-control structure. The proposed control schemes were tested by simulation based on Matlab-Simulink model.

  6. Enhanced pid vs model predictive control applied to bldc motor

    Science.gov (United States)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  7. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitu...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution.......This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude...

  8. Controller Design for Direct Torque Controlled Space Vector Modulated (DTC-SVM) Induction Motor Drives

    DEFF Research Database (Denmark)

    Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede

    2005-01-01

    In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor...

  9. Speed control of SR motor by self-tuning fuzzy PI controller with ...

    Indian Academy of Sciences (India)

    tance motor drive using fuzzy logic where several unique techniques are implemented to improve the estimation accuracy. Sahoo et al (2005) have proposed the use of iterative learn- ing control (ILC) in designing a torque controller for switched reluctance motors (SRMs). Kioskeridis & Mademlis (2005) have investigated ...

  10. Developing an intelligent control system of automatic window motor ...

    Indian Academy of Sciences (India)

    This invention system involves hardware, firmware and software to develop an intelligent control system of automatic window motor with diverse wireless sensor network (WSN) devices for health and environmental monitoring. The parts of this invention are improved by implementing the WSN mote into environmental ...

  11. Fluid logic control circuit operates nutator actuator motor

    Science.gov (United States)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  12. Parameter Sensitivity In Vector Controlled Ac Motor Drives

    Science.gov (United States)

    Krishnan, R.; Pillay, P.

    1987-10-01

    The relatively recent development of the theory of vector control has enabled ac machines to be transformed, performance wise, into equivalent separately excited dc machines while retaining the many advantages that ac machines have over dc. The ac machines used include the induction and permanent magnet synchronous motors. A precise knowledge of the machine parameters is needed in order to implement indirect vector control on induction motor drive systems where the position of the rotor flux is not measured. If the machine parameters change relative to the preset values in the vector controller, then the decoupling of the torque and flux channels, which is the object of vector control, is lost. Low frequency torque and speed oscillations can result with a consequent degradation in the drive performance. The PMSM drive system is also parameter sensitive although not depending on the same parameters as the induction motor drive. It is well known that machine parameters change with temperature, saturation and on the frequency of operation. An assessment of the overall performance of an ac motor drive must therefore include a study of its parameter sensitivity. In this paper, a detailed steady state study of parameter sensitivity for both the induction and permanent magnet machines is done. Comparisons are also made based on the results of this investigation.

  13. Dynamic control of function by light-driven molecular motors

    NARCIS (Netherlands)

    van Leeuwen, Thomas; Lubbe, Anouk S.; Stacko, Peter; Wezenberg, Sander J.; Feringa, Ben L.

    2017-01-01

    The field of dynamic functional molecular systems has progressed enormously over the past few decades. By coupling the mechanical properties of molecular switches and motors to chemical and biological processes, exceptional control of function has been attained. Overcrowded alkene-based light-driven

  14. Developing an intelligent control system of automatic window motor ...

    Indian Academy of Sciences (India)

    With embedded system design, these sensors are capable of delivering WSN signal packets based on ZigBee protocol that follows the IEEE 802.14.4 standards. The primary hardware of the system is the window motor with circuit design by integrating micro control unit (MCU), radio frequency (RF) and WSN antenna to ...

  15. Improved direct torque control of induction motor with dither injection

    Indian Academy of Sciences (India)

    Abstract. In this paper, a three-level inverter-fed induction motor drive operating under Direct Torque Control (DTC) is presented. A triangular wave is used as dither signal of minute amplitude (for torque hysteresis band and flux hysteresis band respectively) in the error block. This method minimizes flux and torque ripple in ...

  16. Fuzzy sliding mode controller for doubly fed induction motor speed ...

    African Journals Online (AJOL)

    The use of the nonlinear fuzzy sliding mode method provides very good performance for motor operation and robustness of the control law despite the external/internal perturbations. The chattering effects is eliminated by a particular function "sat" that presents a serious problem to applications of variable structure systems.

  17. Gait variability and motor control in people with knee osteoarthritis

    DEFF Research Database (Denmark)

    Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle

    2015-01-01

    fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H...

  18. performance characteristics of an armature voltage controlled dc motor

    African Journals Online (AJOL)

    Dr Obe

    obtained by digital computer analysis. The results show that closed loop operation, with appropriate control ... Using digital computer analysis, the driver characteristics of a test motor is investigated. In the closed loop ... system circuit failure especially with respect to the semiconductor devices that may be used in varying ...

  19. Velocity control in three-phase induction motors using PIC; Controle de velocidade de motor de inducao trifasico usando PIC

    Energy Technology Data Exchange (ETDEWEB)

    Marcelino, M.A.; Silva, G.B.S.; Grandinetti, F.J. [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Fac. de Engenharia; Universidade de Taubate (UNITAU), SP (Brazil)], Emails: abud@feg.unesp.br, gabonini@yahoo.com.br, grandinetti@unitau.br

    2009-07-01

    This paper presents a technique for speed control three-phase induction motor using the pulse width modulation (PWM), in open loop while maintaining the tension for constant frequency. The technique is adapted from a thesis entitled 'Control of the three-phase induction motor, using discrete PWM generation, optimized and synchronized', where studies are presented aimed at their application in home appliances, to eliminate mechanical parts, replaced by low cost electronic control, thus having a significant reduction in power consumption. Initially the experiment was done with the Intel 80C31 micro controller. In this paper, the PWM modulation is implemented using a PIC micro controller, and the speed control kept a low profile, based on tables, synchronized with transitions and reduced generation of harmonics in the network. Confirmations were made using the same process of building tables, but takes advantage of the program of a RISC device.

  20. Control and Diagnostic Model of Brushless Dc Motor

    Science.gov (United States)

    Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol

    2014-09-01

    A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values

  1. Impulsive control of permanent magnet synchronous motors with parameters uncertainties

    International Nuclear Information System (INIS)

    Li Dong; Zhang Xiaohong; Wang Shilong; Yan Dan; Wang Hui

    2008-01-01

    The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results

  2. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2011-12-01

    Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor

  3. Perinatal Development of the Motor Systems Involved in Postural Control

    Directory of Open Access Journals (Sweden)

    Laurent Vinay

    2005-01-01

    Full Text Available Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood—e.g, deficits in motor coordination—might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy.

  4. Design and Advanced Control of Switched Reluctance Motors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand

    The introduction of mainly power electronics and cheap micro computers have made the Switched Reluctance Machine (SRM), which is in focus in this thesis, a feasible alternative to traditional electrical machines like the induction- and DC-motor which have been the dominating electrical machines...... sensorless method is also analyzed in details both theoretically and in practice on the GPCS. With an implementation on a specific SRM with a speed controller the motor was still operating sensorless at a minimum speed of around 500 rpm. To operate the SRMs in an efficient way the settings of commutation...... strategies to set the commutation angles are also proposed. The developed optimization tools are also used in dynamometer test where the performance of three practical SRMs have been mapped with special attention to the efficiency. One of the three tested motors has dimensions and ratings quite similar...

  5. Microgravity induced changes in the control of motor units

    Science.gov (United States)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  6. Method for controlling a motor vehicle powertrain

    Science.gov (United States)

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  7. Combined vector control and direct torque control method for high performance induction motor drives

    International Nuclear Information System (INIS)

    Vaez-Zadeh, S.; Jalali, E.

    2007-01-01

    A new control method is proposed for three phase high performance induction motor drives. The control system enjoys the advantages of vector control and direct torque control and avoids some of the implementation difficulties of either of the two control methods. In particular, the proposed control system includes a current vector control in connection with a switching table. An extensive comparative performance evaluation of a motor under the proposed control method confirms the effectiveness of the method and its partial superiority over either vector control or direct torque control despite its relative structural simplicity

  8. Biomechanical procedure to assess sleep restriction on motor control and learning.

    Science.gov (United States)

    Umemura, G S; Noriega, C L; Soares, D F; Forner-Cordero, A

    2017-07-01

    The analysis of sleep quality during long periods and its impact on motor control and learning performance are crucial aspects for human health. The aim of this study is to analyze effects of chronic sleep restriction on motor performance. It is intended to establish motor control indicators in sleep quality analysis. A wearable actigraphy that records accelerometry, ambient light, and body temperature was used to monitor the sleep habits of 12 healthy subjects for two weeks before performing motor control and learning tests. The day of the motor test, the subjects filled two questionnaires about the quality of sleep (Pittsburgh Sleep Quality Index - PSQI) and sleepiness (Epworth Sleepiness Scale - ESS). Afterwards they performed a coincident timing task that consisted of hitting a virtual target falling on the screen with the hand. An elbow flexion in the horizontal plane had to be performed on the correct time to reach the real target on a table at the same time as the virtual target on the screen. The subjects performed three sets of acquisition and transfer blocks of the coincident timing task. The subjects were clustered in two groups based on the PSQI and ESS scores. Actigraphy and motor control parameters (L5, correct responses, time variance) were compared between groups and experimental sets. The group with better sleep parameters did show a constant performance across blocks of task acquisition while the bad sleeper group improved from the first to the second acquisition block. Despite of this improvement, their performance is not better than the one of the good sleepers group. Although the number of subjects is low and it should be increased, these results indicate that the subjects with better sleep converged rapidly to a high level of performance, while the worse sleepers needed more trials to learn the task and their performance was not superior to the other group.

  9. Visual-Motor Control in Baseball Batting

    Directory of Open Access Journals (Sweden)

    Rob Gray

    2011-05-01

    Full Text Available With margins for error of a few milliseconds and fractions of an inch it is not surprising that hitting a baseball is considered to be one of the most difficult acts in all of sports. We have been investigating this challenging behavior using a virtual baseball batting setup in which simulations of an approaching ball, pitcher, and field are combined with real-time recording of bat and limb movements. I will present evidence that baseball batting involves variable pre-programmed control in which the swing direction and movement time (MT are set prior to the initiation of the action but can take different values from swing-to-swing. This programming process utilizes both advance information (pitch history and count and optical information picked-up very early in the ball's flight (ball time to contact TTC and rotation direction. The pre-programmed value of MT is used to determine a critical value of TTC for swing initiation. Finally, because a baseball swing is an action that is occasionally interrupted online (i.e., a “check swing”, I will discuss experiments that examine when this pre-programmed action can be stopped and the sources of optical information that trigger stopping.

  10. An Improved Adaptive Tracking Controller of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available This paper proposes a new adaptive fuzzy neural control to suppress chaos and also to achieve the speed tracking control in a permanent magnet synchronous motor (PMSM drive system with unknown parameters and uncertainties. The control scheme consists of fuzzy neural and compensatory controllers. The fuzzy neural controller with online parameter tuning is used to estimate the unknown nonlinear models and construct linearization feedback control law, while the compensatory controller is employed to attenuate the estimation error effects of the fuzzy neural network and ensure the robustness of the controlled system. Moreover, due to improvement in controller design, the singularity problem is surely avoided. Finally, numerical simulations are carried out to demonstrate that the proposed control scheme can successfully remove chaotic oscillations and allow the speed to follow the desired trajectory in a chaotic PMSM despite the existence of unknown models and uncertainties.

  11. A review: Motor rehabilitation after stroke with control based on human intent.

    Science.gov (United States)

    Li, Min; Xu, Guanghua; Xie, Jun; Chen, Chaoyang

    2018-02-01

    Strokes are a leading cause of acquired disability worldwide, and there is a significant need for novel interventions and further research to facilitate functional motor recovery in stroke patients. This article reviews motor rehabilitation methods for stroke survivors with a focus on rehabilitation controlled by human motor intent. The review begins with the neurodevelopmental principles of motor rehabilitation that provide the neuroscientific basis for intuitively controlled rehabilitation, followed by a review of methods allowing human motor intent detection, biofeedback approaches, and quantitative motor rehabilitation assessment. Challenges for future advances in motor rehabilitation after stroke using intuitively controlled approaches are addressed.

  12. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  13. Signal differentiation in position tracking control of dc motors

    International Nuclear Information System (INIS)

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C

    2015-01-01

    An asymptotic differentiation approach with respect to time is used for on-line estimation of velocity and acceleration signals in controlled dc motors. The attractive feature of this differentiator of signals is that it does not require any system mathematical model, which allows its use in engineering systems that require the signal differentiation for its control, identification, fault detection, among other applications. Moreover, it is shown that the differentiation approach can be applied for output signals showing a chaotic behavior. In addition a differential flatness control scheme with additional integral compensation of the output error is proposed for tracking tasks of position reference trajectories for direct current electric motors using angular position measurements only

  14. Fuzzy Impulsive Control of Permanent Magnet Synchronous Motors

    International Nuclear Information System (INIS)

    Dong, Li; Shi-Long, Wang; Xiao-Hong, Zhang; Dan, Yang; Hui, Wang

    2008-01-01

    The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operation of motor-driven. Hence, it is important to study the methods of controlling or suppressing chaos in PMSMs. In this work, the Takagi–Sugeno (T-S) fuzzy impulsive control model for PMSMs is established via the T-S modelling methodology and impulsive technology. Based on the new model, the control conditions of asymptotical stability and exponential stability for PMSMs have been derived by the Lyapunov method. Finally, an illustrated example is also given to show the effectiveness of the obtained results

  15. Motor Control and Regulation for a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  16. Functional MRI in human motor control studies and clinical applications

    International Nuclear Information System (INIS)

    Toma, Keiichiro

    2002-01-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  17. Novel intelligent PID control of traveling wave ultrasonic motor.

    Science.gov (United States)

    Jingzhuo, Shi; Yu, Liu; Jingtao, Huang; Meiyu, Xu; Juwei, Zhang; Lei, Zhang

    2014-09-01

    A simple control strategy with acceptable control performance can be a good choice for the mass production of ultrasonic motor control system. In this paper, through the theoretic and experimental analyses of typical control process, a simpler intelligent PID speed control strategy of TWUM is proposed, involving only two expert rules to adjust the PID control parameters based on the current status. Compared with the traditional PID controller, this design requires less calculation and more cheap chips which can be easily involved in online performance. Experiments with different load torques and voltage amplitudes show that the proposed controller can deal with the nonlinearity and load disturbance to maintain good control performance of TWUM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Modeling and control of V/f controlled induction motor using genetic-ANFIS algorithm

    International Nuclear Information System (INIS)

    Ustun, Seydi Vakkas; Demirtas, Metin

    2009-01-01

    This paper deals with modeling and performance analysis of the voltage/frequency (V/f) control of induction motor drives. The V/f control, which realizes a low cost and simple design, is advantageous in the middle to high-speed range. Its torque response depends on the electrical time constant of the motor and adjustments of the control parameters are not need. Therefore, V/f control of induction motor is carried out. Space vector pulse width modulation is used for controlling the motor because of including minimum harmonics according to the other PWM techniques. Proportional Integral (PI) controller is used to control speed of induction motor. In this work, optimization of PI coefficients is carried out by Ziegler-Nichols model and Genetic-Adaptive Neuro-Fuzzy Inference System (ANFIS) model. These controllers are applied to drive system with 0.55 kW induction motor. A digital signal processor controller (dsPIC30F6010) is used to carry out control applications. The proposed method is compared Ziegler-Nichols model. Experimental results show the effectiveness of the proposed control method

  19. Upper and lower extremity robotic devices for rehabilitation and for studying motor control.

    Science.gov (United States)

    Hesse, Stefan; Schmidt, Henning; Werner, Cordula; Bardeleben, Anita

    2003-12-01

    The successful motor rehabilitation of stroke, traumatic brain-injured and spinal cord-injured patients requires an intensive and task-specific therapy approach. Budget constraints limit a hand-to-hand therapy approach, so that intelligent machines may offer a solution to promote motor recovery and obtain a better understanding of motor control. This new field of automated or robot-assisted motor rehabilitation has emerged since the 1990s. This article will present clinically viable devices for upper and lower extremity rehabilitation. The MIT-Manus and the Mirror-Image Motion Enabler robot, which enable unrestricted unilateral or bilateral shoulder and elbow movement, consistently proved superior on the motor impairment level. The ARM guide, which assisted reaching in a straight-line trajectory, and the Bi-Manu-Track, which enabled the bilateral practice of a forearm and wrist movement, are currently being tested. For gait rehabilitation after stroke, the electromechanical gait trainer, GT I, has proved effective compared with treadmill training with body weight support. The Lokomat, consisting of a treadmill and a powered exoskeleton, lessened the therapeutic effort compared with manually assisted treadmill training in spinal cord-injured patients. Future developments will see more degrees of freedom, improved man-machine interaction and the implementation of virtual reality. Technical possibilities are one aspect, but multi-centre trials and a consideration of the unsubstantiated fears among therapists of being replaced by machines will decide on the successful implementation of this most promising field to the benefit of patients.

  20. Delirium and high fever are associated with subacute motor deterioration in Parkinson disease: a nested case-control study.

    Directory of Open Access Journals (Sweden)

    Atsushi Umemura

    Full Text Available BACKGROUND: In Parkinson disease (PD, systemic inflammation caused by respiratory infections such as pneumonia frequently occurs, often resulting in delirium in the advanced stages of this disease. Delirium can lead to cognitive and functional decline, institutionalization, and mortality, especially in the elderly. Inflammation causes rapid worsening of PD motor symptoms and signs, sometimes irreversibly in some, but not all, patients. PURPOSE: To identify factors associated with subacute motor deterioration in PD patients with systemic inflammation. METHODS: The association of clinical factors with subacute motor deterioration was analyzed by a case-control study. Subacute motor deterioration was defined as sustained worsening by one or more modified Hoehn and Yahr (H-Y stages. Using multivariable logistic regression incorporating baseline characteristics (age, sex, PD duration, modified H-Y stage, dementia, and psychosis history and statistically selected possible predictors (peak body temperature, duration of leukocytosis, and presence of delirium, the odds ratios for these factors were estimated as relative risks. RESULTS: Of 80 PD patients with systemic inflammation, 26 with associated subacute motor deterioration were designated as cases and the remainder as controls. In the 26 cases, 6 months after its onset the motor deterioration had persisted in 19 patients and resolved in four (three were lost for follow-up. Multivariable logistic regression analysis showed that delirium and body temperature are significantly associated with motor deterioration after systemic inflammation (P = 0.001 for delirium and P = 0.026 for body temperature, the adjusted odds ratios being 15.89 (95% confidence interval [CI]: 3.23-78.14 and 2.78 (95% CI: 1.13-6.83, respectively. CONCLUSIONS: In patients with PD and systemic inflammation, delirium and high body temperature are strong risk factors for subsequent subacute motor deterioration and such deterioration

  1. Control Code for Bearingless Switched-Reluctance Motor

    Science.gov (United States)

    Morrison, Carlos R.

    2007-01-01

    A computer program has been devised for controlling a machine that is an integral combination of magnetic bearings and a switched-reluctance motor. The motor contains an eight-pole stator and a hybrid rotor, which has both (1) a circular lamination stack for levitation and (2) a six-pole lamination stack for rotation. The program computes drive and levitation currents for the stator windings with real-time feedback control. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. This version is executable in a control-loop time of 40 s on a Pentium (or equivalent) processor that operates at a clock speed of 400 MHz. The program can be expanded, by addition of logic blocks, to enable control of position along additional axes. The code enables adjustment of operational parameters (e.g., motor speed and stiffness, and damping parameters of magnetic bearings) through computer keyboard key presses.

  2. Miniaturized System-in-Package Motor Controller for Spacecraft and Orbital Instruments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Honeybee Robotics proposes to miniaturize a heritage spaceflight motor controller using System-in-Package technology. This motor controller will be a universal...

  3. Low speed phaselock speed control system. [for brushless dc motor

    Science.gov (United States)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  4. How do glial cells contribute to motor control?

    DEFF Research Database (Denmark)

    Christensen, Rasmus Kordt; Petersen, Anders Victor; Perrier, Jean-Francois Marie

    2013-01-01

    that glia play an active role in several physiological functions. The discovery that a bidirectional communication takes place between astrocytes (the star shaped glial cell of the brain) and neurons, was a major breakthrough in the field of synaptic physiology. Astrocytes express receptors that get...... including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern...... generators (CPG). These networks are highly flexible and adjust the frequency of their output to the external environment. In the case of respiration, the CPG reacts when changes in the pH of the blood occur. The chemosensory control of breathing is ensured by astrocytes, which react to variation...

  5. EEG topographies provide subject-specific correlates of motor control.

    Science.gov (United States)

    Pirondini, Elvira; Coscia, Martina; Minguillon, Jesus; Millán, José Del R; Van De Ville, Dimitri; Micera, Silvestro

    2017-10-16

    Electroencephalography (EEG) of brain activity can be represented in terms of dynamically changing topographies (microstates). Notably, spontaneous brain activity recorded at rest can be characterized by four distinctive topographies. Despite their well-established role during resting state, their implication in the generation of motor behavior is debated. Evidence of such a functional role of spontaneous brain activity would provide support for the design of novel and sensitive biomarkers in neurological disorders. Here we examined whether and to what extent intrinsic brain activity contributes and plays a functional role during natural motor behaviors. For this we first extracted subject-specific EEG microstates and muscle synergies during reaching-and-grasping movements in healthy volunteers. We show that, in every subject, well-known resting-state microstates persist during movement execution with similar topographies and temporal characteristics, but are supplemented by novel task-related microstates. We then show that the subject-specific microstates' dynamical organization correlates with the activation of muscle synergies and can be used to decode individual grasping movements with high accuracy. These findings provide first evidence that spontaneous brain activity encodes detailed information about motor control, offering as such the prospect of a novel tool for the definition of subject-specific biomarkers of brain plasticity and recovery in neuro-motor disorders.

  6. Self-Controlled Feedback for a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Wolf Peter

    2011-12-01

    Full Text Available Self-controlled augmented feedback enhances learning of simple motor tasks. Thereby, learners tend to request feedback after trials that were rated as good by themselves. Feedback after good trials promotes positive reinforcement, which enhances motor learning. The goal of this study was to investigate when naïve learners request terminal visual feedback in a complex motor task, as conclusions drawn on simple tasks can hardly be transferred to complex tasks. Indeed, seven of nine learners stated to have intended to request feedback predominantly after good trials, but in contrast to their intention, kinematic analysis showed that feedback was rather requested randomly (23% after good, 44% after intermediate, 33% after bad trials. Moreover, requesting feedback after good trials did not correlate with learning success. It seems that self-estimation of performance in complex tasks is challenging. As a consequence, learners might have focused on certain movement aspects rather than on the overall movement. Further studies should assess the current focus of the learner in detail to gain more insight in self-estimation capabilities during complex motor task learning.

  7. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method

    Science.gov (United States)

    Ciurys, Marek Pawel

    2017-12-01

    Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.

  8. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    Science.gov (United States)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  9. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method

    Directory of Open Access Journals (Sweden)

    Ciurys Marek Pawel

    2017-12-01

    Full Text Available Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network – converter - BLDC motor was carried out.

  10. Changing body structure components and motor skills in Military High School students within one year.

    Science.gov (United States)

    Glavač, Boris; Dopsaj, Milivoj; Djordjević, Marina; Maksimović, Miloš; Marinković, Marjan; Nedeljković, Jasmina

    2015-08-01

    BACKGROUND/AIM. Proper growth and development ofadolescents in the morphological, functional and psychosocial aspects is the imperative of the educational process. The aim of this study was to determine the status and changes in the indicators of morphological characteristics, motor skills and lifestyle habits among the students of the Military High School in Belgrade. The study included 217 students aged 15 to 18 years (from the first to the fourth grade). The two measurements performed at the intervals of one year were used to determine: the body structure by means of 10 variables and motor skills by 4 variables, while life habits were determined by 25 variables. The differences in the indicators of morphological characteristics were recorded in all the groups, being the highest in the first year of schooling. During the period of growing up, a reduction of fatty component in percentage values was found, as well as an increase of muscle mass. The progressive growth of motor skills in the first, second and the third grade was recorded in the manifestation of power, and endurance improved only in the first year. In terms of dietary habits, there was no difference among the groups. The obtained results indicate proper morphological and motor development and the formation of lifestyle habits. The data obtained will serve as a basis for health and functional prevention and upgrading in terms of improvement of the process of military education.

  11. Design, fabrication and commissioning of motorized scanning bed mechanism for shadow shield whole body counting system

    International Nuclear Information System (INIS)

    Arun, B.; Varalakshimi, S.; Manohari, M.; Mathiyarasu, R.

    2012-01-01

    A new scanning bed mechanism for shadow shield counting system is designed, fabricated and commissioned at RSD, IGCAR. The present motorized scanning bed mechanism has varying scan speeds, state of art limit sensors, smooth bed movement, touch screen based software controlled operation parameters with UPS power back-up. In view of the improved personnel safety the entire system has been designed to operate with low voltage power supply (24V). The evaluation demonstrated that the incorporation of the new motorized scanning mechanism has not affected the counting performance of the shadow shield wholebody counting system. (author)

  12. Review of Apraxia: The cognitive side of motor control

    DEFF Research Database (Denmark)

    Martínez-Ferreiro, Silvia

    2014-01-01

    Reviews the book, Apraxia: The Cognitive Side of Motor Control by G. Goldenberg (see record 2013-31133-000). The book makes a significant contribution to the study of this multifaceted syndrome, especially in relation to limb apraxia, the author’s main research area. Despite more than 100 years o...... and current state of apraxia research. (PsycINFO Database Record (c) 2014 APA, all rights reserved)...

  13. Brushless DC Motor Fuzzy PID Control System and Simulation

    Directory of Open Access Journals (Sweden)

    Guangya Liu

    2014-10-01

    Full Text Available For digital model of brushless DC motor, simulation models can be built in MATLAB / Simulink. Simulation parameters are selected parameters according to the actual system. The conventional PID control algorithm produce large overshoot and oscillation, we use fuzzy logic PID algorithm to response quickly and back the system overshoot to steady state, the steady state has a higher precision, faster response speed, and bigger anti-jamming capability.

  14. Perceived effort for motor control and decision-making.

    Science.gov (United States)

    Cos, Ignasi

    2017-08-01

    How effort is internally quantified and how it influences both movement generation and decisions between potential movements are 2 difficult questions to answer. Physical costs are known to influence motor control and decision-making, yet we lack a general, principled characterization of how the perception of effort operates across tasks and conditions. Morel and colleagues introduce an insightful approach to that end, assessing effort indifference points and presenting a quadratic law between perceived effort and force production.

  15. SPEED CONTROL OF DC MOTOR ON LOAD USING FUZZY LOGIC ...

    African Journals Online (AJOL)

    This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil system of the H25 Hitachi gas turbine generator. The turbine generator is required to run at an operating pressure of 1.5bar with the low and the high pressure trip points being 0.78 bar and 1.9 bar respectively. However, the ...

  16. Solar Direct Torque Controlled Induction Motor Drive for Industrial Applications

    OpenAIRE

    PANDA, AUROBINDA; Pathak, Mukesh kumar; Srivastava, Satya Prakash

    2016-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest in photovoltaic (PV) system applications. Electric motors powered by solar energy are one of the most important applications now-a-days, such as in water pumping systems, electric vehicles etc. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, an impedance adapter DC–DC converter, inverter and a direct torque controlled induction machine. The PV generator is forced...

  17. Vector Control Algorithm for Electric Vehicle AC Induction Motor Based on Improved Variable Gain PID Controller

    Directory of Open Access Journals (Sweden)

    Gang Qin

    2015-01-01

    Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.

  18. Voluntary inhibitory motor control over involuntary tic movements.

    Science.gov (United States)

    Ganos, Christos; Rothwell, John; Haggard, Patrick

    2018-03-06

    Inhibitory control is crucial for normal adaptive motor behavior. In hyperkinesias, such as tics, disinhibition within the cortico-striato-thalamo-cortical loops is thought to underlie the presence of involuntary movements. Paradoxically, tics are also subject to voluntary inhibitory control. This puzzling clinical observation questions the traditional definition of tics as purely involuntary motor behaviors. Importantly, it suggests novel insights into tic pathophysiology. In this review, we first define voluntary inhibitory tic control and compare it with other notions of tic control from the literature. We then examine the association between voluntary inhibitory tic control with premonitory urges and review evidence linking voluntary tic inhibition to other forms of executive control of action. We discuss the somatotopic selectivity and the neural correlates of voluntary inhibitory tic control. Finally, we provide a scientific framework with regard to the clinical relevance of the study of voluntary inhibitory tic control within the context of the neurodevelopmental disorder of Tourette syndrome. We identify current knowledge gaps that deserve attention in future research. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  19. Effect of whole-body vibration on muscle strength, spasticity, and motor performance in spastic diplegic cerebral palsy children

    Directory of Open Access Journals (Sweden)

    Marwa M. Ibrahim

    2014-04-01

    Conclusion: The obtained results suggest that 12-weeks’ intervention of whole-body vibration training can increase knee extensors strength and decrease spasticity with beneficial effects on walking speed and motor development in spastic diplegic CP children.

  20. The influence of scopolamine on motor control and attentional processes

    Directory of Open Access Journals (Sweden)

    Emma Bestaven

    2016-05-01

    Full Text Available Background: Motion sickness may be caused by a sensory conflict between the visual and the vestibular systems. Scopolamine, known to be the most effective therapy to control the vegetative symptoms of motion sickness, acts on the vestibular nucleus and potentially the vestibulospinal pathway, which may affect balance and motor tasks requiring both attentional process and motor balance. The aim of this study was to explore the effect of scopolamine on motor control and attentional processes. Methods: Seven subjects were evaluated on four different tasks before and after a subcutaneous injection of scopolamine (0.2 mg: a one-minute balance test, a subjective visual vertical test, a pointing task and a galvanic vestibular stimulation with EMG recordings. Results: The results showed that the reaction time and the movement duration were not modified after the injection of scopolamine. However, there was an increase in the center of pressure displacement during the balance test, a decrease in EMG muscle response after galvanic vestibular stimulation and an alteration in the perception of verticality. Discussion: These results confirm that low doses of scopolamine such as those prescribed to avoid motion sickness have no effect on attentional processes, but that it is essential to consider the responsiveness of each subject. However, scopolamine did affect postural control and the perception of verticality. In conclusion, the use of scopolamine to prevent motion sickness must be considered carefully because it could increase imbalances in situations when individuals are already at risk of falling (e.g., sailing, parabolic flight.

  1. The influence of computer experience on visuo-motor control: implications for visuo-motor testing in Parkinson's disease

    NARCIS (Netherlands)

    Stoffers, D.; Berendse, H.W.; Deijen, J.B.; Wolters, E.C.M.J.

    2002-01-01

    Abnormalities in visuo-motor control have repeatedly been reported in Parkinson's disease (PD) patients. In the more recent studies, tasks measuring visuo-motor performance are usually computerised tasks requiring the use of a mouse-like manipulandum. In healthy subjects, previous computer mouse

  2. A Comparison Between Fuzzy-PSO Controller and PID-PSO Controller for Controlling a DC Motor

    OpenAIRE

    Ghareaghaji, Ali

    2015-01-01

    The Direct current motors are in different types and there are several methods for controlling of their speed. In this paper two ways for speed controlling suggested. First a fuzzy logic speed controller for DC motor is designed and it's parameter calculated by Particle Sward Optimization (PSO). The speed controller designed according to fuzzy rules, then for having better performance, the controller optimized with PSO. Secondly a PID controller that it's parameter find by PSO, is used for sp...

  3. Dual capacity compressor with reversible motor and controls arrangement therefor

    Science.gov (United States)

    Sisk, Francis J.

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor

  4. Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Controller

    OpenAIRE

    R. Gunabalan; V. Subbiah

    2015-01-01

    This paper directed the speed-sensorless vector control of induction motor drive with PI and fuzzy controllers.  Natural observer with fourth order state space model is employed to estimate the speed and rotor fluxes of the induction motor. The formation of the natural observer is similar to and as well as its attribute is identical to the induction motor. Load torque adaptation is provided to estimate the torque and rotor speed is estimated from the load torque, rotor fluxes and stator curre...

  5. Application of Sensorless Sliding Mode Observer in Control of Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Chau Si Thien Dong

    2017-01-01

    Full Text Available Induction motors are widely used in an industry and it is necessary to improve control methods for induction motors to increase the efficiency of them. In this paper, sliding mode controllers are proposed instead of traditional PI controllers in vector control of induction motor drives. Moreover, rotor speed is estimated by a sliding mode observer. In addition, the robustness of control and observer algorithms are also proved by Lyapunov’s criterion. The experiments are obtained in different speed changes of an induction motor drive. These experimental results confirm the dynamic properties of a sensorless sliding mode control of an induction motor drive.

  6. Motor Control Training for the Shoulder with Smart Garments.

    Science.gov (United States)

    Wang, Qi; De Baets, Liesbet; Timmermans, Annick; Chen, Wei; Giacolini, Luca; Matheve, Thomas; Markopoulos, Panos

    2017-07-22

    Wearable technologies for posture monitoring and posture correction are emerging as a way to support and enhance physical therapy treatment, e.g., for motor control training in neurological disorders or for treating musculoskeletal disorders, such as shoulder, neck, or lower back pain. Among the various technological options for posture monitoring, wearable systems offer potential advantages regarding mobility, use in different contexts and sustained tracking in daily life. We describe the design of a smart garment named Zishi to monitor compensatory movements and evaluate its applicability for shoulder motor control training in a clinical setting. Five physiotherapists and eight patients with musculoskeletal shoulder pain participated in the study. The attitudes of patients and therapists towards the system were measured using standardized survey instruments. The results indicate that patients and their therapists consider Zishi a credible aid for rehabilitation and patients expect it will help towards their recovery. The system was perceived as highly usable and patients were motivated to train with the system. Future research efforts on the improvement of the customization of feedback location and modality, and on the evaluation of Zishi as support for motor learning in shoulder patients, should be made.

  7. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    International Nuclear Information System (INIS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-01-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller

  8. Rotor Mass Eccentricity Vibration Compensation Control in Bearingless Induction Motor

    Directory of Open Access Journals (Sweden)

    Zebin Yang

    2015-01-01

    Full Text Available In the process of motor rotation, the vibration caused by the rotor mass eccentricity seriously affects the dynamic characteristics and safety operation of system. So rotor mass eccentricity vibration compensation control on rotating machine has great significance, especially for the high speed bearing less induction motor (BIM. A rotor mass eccentricity compensation control strategy was presented to restrain the vibration of suspended rotor for BIM. Firstly, the suspension rotor dynamical model was deduced and unbalanced vibration mechanism was analyzed. Secondly, based on decoupling control between electromagnetic torque and radial force, the obtained vibration signal from the displacement sensor was put into the original radial force control system. Then, a feedforward compensator was set up to increase the same period component of the given radial force signal and enlarge the stiffness of the vibration signal. Finally, the compensation control of rotor vibration was realized by forcing the rotor shaft rotation around its geometric center. The simulation results show that the presented feedforward compensator can suppress the vibration of rotor under different speed and improve the precision of rotor suspension. The further experimental results also show that the control method can obviously reduce the peak-peak value of rotor radial displacement and effectively restrain rotor vibration.

  9. Control difuso de un motor de inducción

    Directory of Open Access Journals (Sweden)

    Agustín Garzón Carbonell

    2011-02-01

    Full Text Available Se presenta la simulación de un esquema de control de velocidad de un motor de inducción en coordenadas decampo, con controlador difuso sin la necesidad de realizar las compensaciones en los ejes d-q, lo que simplificasustancialmente el control. La inferencia difusa se implementó por el método de mínimo máximo. Para eldesemborronado, el método del centro de gravedad. Se muestra el comportamiento del sistema de controlsometido a cambios bruscos de carga y referencia, observándose la robustez del control difuso frente a un PIDclásico.  In this article the simulation  of speed control  of  induction motor is presented in field coordinates with fuzzycontroller without the necessity of carrying out the compensations in the d-q axes, simplifying substantially thecontrol. The diffuse inference was implemented by the maximum minimum method. For defuzzification, themethod of the center of gravity is used. The system behaviour is shown from control to abrupt changes of loadand it indexes being observed the robustness of the diffuse control in front of a classic PID.

  10. Universal adaptive torque control for PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH; Breitzmann, Robert J [South Russel, OH; Nondahl, Thomas A [Wauwatosa, WI; Schmidt, Peter B [Franklin, WI; Liu, Jingbo [Milwaukee, WI

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  11. Voice-controlled Internet Browsing for Motor-handicapped Users

    DEFF Research Database (Denmark)

    Brøndsted, Tom; Aaskoven, Erik

    2006-01-01

    The public-funded project "Indtal" ("Speak-it") has succeeded in developing a Danish voice-controlled utility for internet browsing targeting motor-handicapped users having difficulties using a standard keyboard and/or a standard mouse. The system has been designed and implemented in collaboration...... with an advisory board of motor-handicapped (potential) end-users and underlies a number of a priori defined design criteria: learnability and memorability rather than naturalness, minimal need for maintenance after release, support for "all" web standards (not just HTML conforming to certain "recommendations......"), independency of the language on the websites being browsed, etc. These criteria have lead to a primarily message-driven system interacting with an existing browser on the end users' systems...

  12. DNA-assisted swarm control in a biomolecular motor system.

    Science.gov (United States)

    Keya, Jakia Jannat; Suzuki, Ryuhei; Kabir, Arif Md Rashedul; Inoue, Daisuke; Asanuma, Hiroyuki; Sada, Kazuki; Hess, Henry; Kuzuya, Akinori; Kakugo, Akira

    2018-01-31

    In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.

  13. Control of a dc motor using fuzzy logic control algorithm | Usoro ...

    African Journals Online (AJOL)

    This study sought to establish the impact of a fuzzy logic controller (FLC) and a Proportional-Integral-Derivative (PID) controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic controller was developed on the basis of Mamdani type fuzzy inference system (FIS). The centroid method ...

  14. Identification and Speed Control of PMDC Motor Using Time Moments

    Directory of Open Access Journals (Sweden)

    Prasanta SARKAR

    2010-08-01

    Full Text Available In this paper identification and speed control of Permanent Magnet DC Motor is presented. A combination of output error identification technique and method of time moments is used for identification and speed control. The time constraint is expressed using equality between the time moments of the closed loop system and that of a reference model. The reference model is developed from the classical time, frequency and complex domain specifications which guarantee both stability and performance in a model matching framework. Both the simulation and experimental validation show the usefulness of the proposed work.

  15. DIFFERENCES IN THE MOTORIC ABILITIES OF STUDENTS DUE TO THE BODY MASS INDEX (BMI

    Directory of Open Access Journals (Sweden)

    Arben Osmani

    2014-06-01

    Full Text Available Introduction:The research has been conducted in order to establish differences in motoric abilities due to the body mass index (BMI with the tested students at the eighth grade (Barlow, & the Expert Committee, 2007. Methods: During the research 160 male students aged 14 were tested. On the base of (BMI they were divided into 3 groups (normal, overweight, and with obesity. They were tested with 6 motor tests for: explosive power, repetitive power, coordination, equilibrium, precision, and flexibility. Along with basic statistic parameters, the differences between the groups are established through: ANOVA, MANOVA and LSD-tests. Results: The obtained results are presented in 5 tables. On the base of the results, a statistically significant difference in favor of the group of normal body mass index is recorded in the following tests: standing a long jump, agility on the ground and keeping balance on one leg. Discussion: The results obtained in this research indicate that obesity and overweight cause a negative effect and result in lower performances concerning some motoric abilities. On the base of the obtained results, it is concluded that the group of students of normal body mass index achieved the best results in the motoric abilities with assessing the following: explosive power, coordination, and equilibrium. As for the motoric ability concerning: precision, repetitive power, and flexibility, there are no established statistically significant differences between the three groups. The obtained results correspond with some former researches (Milanese, et al., 2010; Zhu, Sheng, Wu, & Cairney, 2010, and some do not (De Toia, et al., 2009. References: Barlow SE et al. (2007. Pediatrics, 120, 164–92. De Toia D, Klein D, Weber S, Wessely N, Koch B, Tokarski W, Dordel S, Strüder H, Graf C (2009. European Journal of Obesity, 2(4, 221–5. Zhu YC, Sheng K, Wu SK, Cairney J (2011. Research in Developmental Disabilities, 32(2, 801–7. Milanese C

  16. Inter-relationships among physical activity, body fat, and motor performance in 6- to 8-year-old Danish children

    DEFF Research Database (Denmark)

    Morrison, Kyle M; Bugge, Anna; El-Naaman, Bianca

    2012-01-01

    This study examined the interrelationships among physical activity (PA), percent body fat (%BF), and motor performance (MP) in 498 6- to 8-year-old Danish children. PA was assessed by accelerometer, %BF was calculated from skinfolds, and the Koordinations Test für Kinder along with a throwing acc...... to develop fundamental motor skills during childhood.......This study examined the interrelationships among physical activity (PA), percent body fat (%BF), and motor performance (MP) in 498 6- to 8-year-old Danish children. PA was assessed by accelerometer, %BF was calculated from skinfolds, and the Koordinations Test für Kinder along with a throwing...

  17. Brushless DC motor control system responsive to control signals generated by a computer or the like

    Science.gov (United States)

    Packard, D. T.

    1985-04-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  18. Variable frequency inverter for ac induction motors with torque, speed and braking control

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  19. APPLICATION FEATURES OF FUZZY CONTROLLERS ON EXAMPLE OF DC MOTOR SPEED CONTROL

    Directory of Open Access Journals (Sweden)

    G. L. Demidova

    2016-09-01

    Full Text Available A prerequisite for the use of intelligent control methods, including algorithms of fuzzy logic, is increasing complexity in all industries, especially when parameters of technical systems while in operation vary in wide range. The paper provides comparative analysis of the basic types of common fuzzy direct action controllers on the example of speed control system in the DC motor drive. Design features of these types of fuzzy controllers are shown. Their comparison with traditional PI controller is carried out through the use of simulation, including the conditions of uncertainty expressed in changing of equivalent moment of inertia of the motor shaft. As a result, the conclusion about the feasibility of fuzzy PID-type controller application is made. The features of fuzzy controllers outlined in the paper can be summarized to more complex motor drive systems and to other non-linear systems that require the maintenance of any parameter within a given range.

  20. Direct Torque Control of Induction Motor with Matrix Converter

    Directory of Open Access Journals (Sweden)

    Khalaf Salloum Gaeid

    2016-05-01

    Full Text Available The matrix converter (MC with direct torque control (DTC combination is efficient way to get better performance specifications in the industry. The MC and the DTC advantages are combined together. The reduction of complexity and cost of DC link in the DTC since it has no capacitors in the circuit. However, the controlling torque is a big problem it in DTC because of high ripple torque production which results in vibrations response in the operation of the iductuction motor as it has no PID to control the torque directly. To overcome this, a combination of MC with DTC is applied to reduce the fluctuation in the output torque and minimize the steady state error. This paper presents the simulation analysis of induction machine drives using Maltlab/Simulink toolbox R2012a. Design of DTC induction motor drive, MC with constant switching frequency, speed controller and stability investigation as well as controllability and observabilty with minimum final prediction (FPE steady state error and loss functionality has been carried out precisely.

  1. Cerebral areas associated with motor control of speech in humans.

    Science.gov (United States)

    Murphy, K; Corfield, D R; Guz, A; Fink, G R; Wise, R J; Harrison, J; Adams, L

    1997-11-01

    We have defined areas in the brain activated during speaking, utilizing positron emission tomography. Six normal subjects continuously repeated the phrase "Buy Bobby a poppy" (requiring minimal language processing) in four ways: A) spoken aloud, B) mouthed silently, C) without articulation, and D) thought silently. Statistical comparison of images from conditions A with C and B with D highlighted areas associated with articulation alone, because control of breathing for speech was controlled for; we found bilateral activations in sensorimotor cortex and cerebellum with right-sided activation in the thalamus/caudate nucleus. Contrasting images from conditions A with B and C with D highlighted areas associated with the control of breathing for speech, vocalization, and hearing, because articulation was controlled for; we found bilateral activations in sensorimotor and motor cortex, close to but distinct from the activations in the preceding contrast, together with activations in thalamus, cerebellum, and supplementary motor area. In neither subtraction was there activation in Broca's area. These results emphasize the bilaterality of the cerebral control of "speaking" without language processing.

  2. Wrist Resistance Training Improves Motor Control and Strength.

    Science.gov (United States)

    Chu, Edward; Kim, You-Sin; Hill, Genevieve; Kim, Yoon Hyuk; Kim, Chang Kook; Shim, Jae Kun

    2018-04-01

    Chu, E, Kim, Y-S, Hill, G, Kim, YH, Kim, CK, and Shim, JK. Wrist resistance training improves motor control and strength. J Strength Cond Res 32(4): 962-969, 2018-The aim of this study was to investigate the effects of a 6-week direction-specific resistance training program on isometric torque control and isokinetic torque strength of the wrist joint. Nineteen subjects were randomly assigned to either the wrist training group (n = 9) or the control group (n = 10). The training group performed wrist exercises in 6 directions (flexion, extension, pronation, supination, radial deviation, and ulnar deviation), whereas the control group did not. Data were collected on the isometric torque control, 1-repetition maximum (1RM) strength, and isokinetic maximum torque (angular velocity of 60° per second wrist movements) before and after 6 weeks of resistance training and at 2-week intervals during training. The training group showed significant decreases in isometric torque control error in all 6 directions after 2 weeks of resistance training, whereas the control group did not show significant increase or decrease. After 4 weeks of training, the training group showed significant increases in maximum strength in all 6 directions as assessed by 1RM strength and isokinetic strength tests, whereas the control group did not show any statistically significant changes. This study shows that motor control significantly improves within the first 2 weeks of resistance training, whereas the wrist strength significantly improves within the first 4 weeks of resistance training. Based on the findings of this study, coaches and trainers should consider wrist resistance training to improve athletes' muscular strength and control of the wrist muscles.

  3. The speed control of DC motor under the load condition using PI and PID controllers

    Science.gov (United States)

    Corapsiz, Muhammed Reşit; Kahveci, Hakan

    2017-04-01

    In this study, it was aimed to compare PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers for speed control of Permanent Magnet Direct Current (PMDC) motor under both load and without load. For this purpose, firstly, the mathematical model was obtained from the dynamic equations of the PMDC motor and the obtained mathematical model was transferred to the simulation environment and modeled using Matlab/SIMULINK. Following the modeling process, PI and PID controller structures were formed, respectively. Secondly, after these structures were formed, the PMDC motor was run without any controller. Then, the control of the PMDC motor with no load was provided by using PI and PID controllers. Finally, the PMDC motor were loaded under the constant load (TL = 3 N.m.) for each condition and selected time period (t = 3 s). The obtained result for each control operations was comparatively given by observing effects of loading process on systems. When the obtained results were evaluated for each condition, it was observed that PID controller have the best performance with respect to PI controller.

  4. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2018-04-01

    Full Text Available Vaughan P Nicholson,1 Justin WL Keogh,2–4 Nancy L Low Choy1 1School of Physiotherapy, Australian Catholic University, Brisbane, QLD, Australia; 2Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; 3Human Potential Centre, AUT University, Auckland, New Zealand; 4Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: To investigate the influence of a single session of locomotor-based motor imagery training on motor learning and physical performance. Patients and methods: Thirty independent adults aged >65 years took part in the randomized controlled trial. The study was conducted within an exercise science laboratory. Participants were randomly divided into three groups following baseline locomotor testing: motor imagery training, physical training, and control groups. The motor imagery training group completed 20 imagined repetitions of a locomotor task, the physical training group completed 20 physical repetitions of a locomotor task, and the control group spent 25 minutes playing mentally stimulating games on an iPad. Imagined and physical performance times were measured for each training repetition. Gait speed (preferred and fast, timed-up-and-go, gait variability and the time to complete an obstacle course were completed before and after the single training session. Results: Motor learning occurred in both the motor imagery training and physical training groups. Motor imagery training led to refinements in motor planning resulting in imagined movements better matching the physically performed movement at the end of training. Motor imagery and physical training also promoted improvements in some locomotion outcomes as demonstrated by medium to large effect size improvements after training for fast gait speed and timed-up-and-go. There were no training effects on gait variability. Conclusion: A single session

  5. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles.

    Science.gov (United States)

    Levin, Mindy F; Weiss, Patrice L; Keshner, Emily A

    2015-03-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality-based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback-based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. © 2015 American Physical Therapy Association.

  6. Control of motor activity in crayfish by the steroid hormone 20-hydroxyecdysone via motoneuron excitability and sensory-motor integration.

    Science.gov (United States)

    Bacqué-Cazenave, Julien; Bouvet, Flora; Fossat, Pascal; Cattaert, Daniel; Delbecque, Jean Paul

    2013-05-15

    We studied the effects of the molting hormone 20-hydroxyecdysone (20E) on leg sensory-motor networks of the red swamp crayfish, Procambarus clarkii. The hormone was injected in isolated crayfish and network activity was analyzed 3 days after injection using electrophysiology on an in vitro preparation of the leg locomotor network. This 20E treatment deeply reduced motor activity, by affecting both intrinsic motoneuron (MN) properties and sensory-motor integration. Indeed, we noticed a general decrease in motor nerve tonic activities, principally in depressor and promotor nerves. Moreover, intracellular recordings of depressor MNs confirmed a decrease of MN excitability due to a drop in input resistance. In parallel, sensory inputs originating from a proprioceptor, which codes joint movements controlled by these MNs, were also reduced. The shape of excitatory post-synaptic potentials (PSPs) triggered in MNs by sensory activity of this proprioceptor showed a reduction of polysynaptic components, whereas inhibitory PSPs were suppressed, demonstrating that 20E acted also on interneurons relaying sensory to motor inputs. Consequently, 20E injection modified the whole sensory-motor loop, as demonstrated by the alteration of the resistance reflex amplitude. These locomotor network changes induced by 20E were consistent with the decrease of locomotion observed in a behavioral test. In summary, 20E controls locomotion during crayfish premolt by acting on both MN excitability and sensory-motor integration. Among these cooperative effects, the drop of input resistance of MNs seems to be mostly responsible for the reduction of motor activity.

  7. Evaluation of relations between body posture parameters with somatic features and motor abilities of boys aged 14 years

    Directory of Open Access Journals (Sweden)

    Paweł Lizis

    2014-11-01

    Full Text Available [b]introduction[/b]. Body posture is an individual characteristic for everyone, it shows great differentiation – especially in people during their progressive development. As a result, the variability of the development and lack of physical activity impose body posture defects in children and youth. In the literature there is a great lack of measureable data on the relations between correct body posture with somatic features, especially motor features in children at the developing age. The aim of this study was to evaluate the relations between correct body posture parameters, measured with the photogrammetric method, with some of the somatic features and motor abilities of boys at the age of 14. [b]material and methods[/b]. The study included 133 boys aged 14 attending junior secondary schools in the Kraków area of Poland. Only boys with the correct body posture were examined. Posture was examined by the Moire method, through which six parameters were obtained in the sagittal plane, seven in the frontal plane, and one in the transverse plane. The somatic measurements included basic parameters, such as body weight and body height. The measurements of motor features included: marching balance test, speed movement test of the arms and their functional strength. To evaluate the relationships between correct body posture with the characteristics of somatic and motor abilities, the Spearman rank correlation was used. The lowest level of statistical significance was accepted at p ≤ 0,05. [b]results[/b]. No correlations were noted between some of the correct body posture features and the somatic features, and some of the motor abilities of the examined boys at the level of p ≤ 0.05 and p ≤ 0.01. [b]conclusions[/b]. The irregular correlation between the correct body posture and somatic and motor features probably results from the rather big development variability of the boys during puberty.

  8. Energy efficiency in speed control system for induction motors; Eficiencia energetica em sistema de controle de velocidade em motores de inducao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Arlete Vieira da; Ribeiro, Elisangela do Nascimento; Tenorio, Iana Cavalcanti; Horta, Mario Marcos Brito [Centro Universitario de Belo Horizonte (UnBH), MG (Brazil)], e-mails: arlete.silva@prof.unibh.br, nr.elisangela@gmail.com, ianactenorio@gmail.com, mario_bhorta@yahoo.com.br

    2011-07-01

    This work has as objective the study of energy efficiency of induction motors fed by frequency inverters, since this is a practical resource that has progressively allowed the replacement of mechanical speed reducers. In this work the speed control of induction motors of the squirrel cage has steeped through the frequency inverters using scalar control. Induction motors are frequently used in industrial applications due to its simple construction, its low maintenance and reduced in size. It was possible through tests made at UNI-BH Electrical Engineering laboratory to obtain satisfactory results regarding the performance of the inverter CFW08 (WEG), speed control of induction motor. (author)

  9. Active Wheatstone Bridge — A solution of tight speed dc motor control

    African Journals Online (AJOL)

    Very tight control of the speed of a d.c. motor drive may be achieved by incorporating the machine within a closed loop system. The employed feedback signal is proportional to the motor speed for comparison against a reference quantity. For armature-controlled d.c. motors the difference or error signal provides appropriate ...

  10. Time-optimal control of rolling bodies

    Science.gov (United States)

    Perantoni, Giacomo; Limebeer, David J. N.

    2013-11-01

    The brachistochrone problem is usually solved in classical mechanics courses using the calculus of variations, although it is quintessentially an optimal control problem. In this paper, we address the classical brachistochrone problem and two vehicle-relevant generalisations from an optimal control perspective. We use optimal control arguments to derive closed-form solutions for both the optimal trajectory and the minimum achievable transit time for these generalisations. We then study optimal control problems involving a steerable disc rolling between prescribed points on the interior surface of a hemisphere. The effects of boundary and control constraints are examined. For three-dimensional problems of this type, which involve rolling bodies and nonholonomic constraints, numerical solutions are used.

  11. Relation Between Percent Body Fat and Fundamental Motor Skills in Pre-School Children age 3-6 years

    Directory of Open Access Journals (Sweden)

    Martin Musalek

    2017-06-01

    Full Text Available It is quite well known that excessive body fat in children is interpreted as a marker of inhibited physical activity and motor performance. This study aimed to establish whether severe impairment of fundamental motor skills (defined as performance under 5th centile of norms will be significantly more frequently identified in pre-schoolers age 3-6 years with amount of body fat higher than 85th centile of norms. Research sample consisted of 496 (females=241, males=255 pre-schoolers selected from specific district of Prague, Czech Republic. The MABC-2 was used for the assesment fundamental motor skills. Equations for body fat estimation in children identified 35.8% children with body fat˃85th centile of norms, 61.7% within 15th–85th centile, and 2.5% of children˂15th centile of norms. Results revealed that children whose body fat was higher than 85th centile of norms or lower than 15th centile had double the frequency of severe motor problems. Interestingely on the other hand we found no signficant differences in the frequency of high above average performances˃90th centile in MABC-2 between fat 8.4% and non fat children 10.7%. We suggest that amount of body fat is not a clear predictor for the degree of fundamental motor skills.

  12. An improved Direct Adaptive Fuzzy controller for an uncertain DC Motor Speed Control System

    OpenAIRE

    Chunjie Zhou; Shuang Huang; Quan Yin; Duc Cuong Quach

    2013-01-01

    In this paper, we present an improved Direct Adaptive Fuzzy (IDAF) controller applied to general control DC motor speed system. In particular, an IDAF algorithm is designed to control an uncertain DC motor speed to track a given reference signal. In fact, the quality of the control system depends significantly on the amount of fuzzy rules-fuzzy sets and the updating coefficient of the adaptive rule. This can be observed clearly by the system error when the reference input is constant and out ...

  13. The Speed Control of Constant Tension Motor of Marine Crane

    Directory of Open Access Journals (Sweden)

    Chen Xinyang

    2016-01-01

    Full Text Available This article describes the working principle of the marine beacon crane hanging disc mechanical anti-sway device, and establish mathematical model on the rope controlling hanging disc of mechanical anti-sway device; Through matlab simulation analysis, this article obtains the relation curve between the velocity of traction rope of hanging disc and output frequency of the crane motor, combining rotary crane scaled model, this article carries out anti-sway experiment for the rotary crane to examine the crane’s anti-sway effects.

  14. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance.

    Directory of Open Access Journals (Sweden)

    Simonete Silva

    Full Text Available Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP. We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9-15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR, handgrip strength (HG, standing long jump (SLJ and the shuttle run speed (SR tests; physical activity (PA was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences.

  15. Design, development and characterisation of a FPGA platform for multi-motor electric vehicle control

    OpenAIRE

    de castro, r; araujo, re; oliveira, h

    2009-01-01

    Two three-phase squirrel-cage induction motors are used as a propulsion system of an electric vehicle (EV). A simple XC3S1000 FPGA is used to simultaneously control both electric motors, with field oriented control and space vector modulation techniques. To electronically distribute the torque between the two electric motors, a simple, yet effective, strategy based on a uniform torque distribution has been implemented. Experimental results obtained with a multi-motor EV prototype demonstrate ...

  16. Motor cortical activity changes during neuroprosthetic-controlled object interaction.

    Science.gov (United States)

    Downey, John E; Brane, Lucas; Gaunt, Robert A; Tyler-Kabara, Elizabeth C; Boninger, Michael L; Collinger, Jennifer L

    2017-12-05

    Brain-computer interface (BCI) controlled prosthetic arms are being developed to restore function to people with upper-limb paralysis. This work provides an opportunity to analyze human cortical activity during complex tasks. Previously we observed that BCI control became more difficult during interactions with objects, although we did not quantify the neural origins of this phenomena. Here, we investigated how motor cortical activity changed in the presence of an object independently of the kinematics that were being generated using intracortical recordings from two people with tetraplegia. After identifying a population-wide increase in neural firing rates that corresponded with the hand being near an object, we developed an online scaling feature in the BCI system that operated without knowledge of the task. Online scaling increased the ability of two subjects to control the robotic arm when reaching to grasp and transport objects. This work suggests that neural representations of the environment, in this case the presence of an object, are strongly and consistently represented in motor cortex but can be accounted for to improve BCI performance.

  17. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature

    NARCIS (Netherlands)

    Kaiser, Marie-Laure; Schoemaker, M M; Albaret, J-M; Geuze, R H

    This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control

  18. Self-tuning Torque Control of Induction Motors for High Performance Applications

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    : · To analyze and develop strategies for torque control of induction motors well suited for automatic tuning. · To analyze and develop methods for automatic tuning of the applied controllers. · To develop robust methods for adaptive field oriented control. · To test the final concept on different motors....... The last item is fulfilled by building up a laboratory setup for test of the methods developed on several motors of different types. The test bench is very flexible, allowing easy changing of motors and load and it is possible by software to exchange the motor and load with a software module simulating...... the motor/load system. Because the control system unchanged by switching between control of the simulator and the real motor, many fault sources are eliminated by this idea. In the situation with adaptive control with on-line estimated motorparameters leading to a situation with "exact agreement" between...

  19. Brain-machine interfacing control of whole-body humanoid motion

    Science.gov (United States)

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  20. Robust backstepping control of induction motors using neural networks.

    Science.gov (United States)

    Kwan, C M; Lewis, F L

    2000-01-01

    In this paper, we present a new robust control technique for induction motors using neural networks (NNs). The method is systematic and robust to parameter variations. Motivated by the well-known backstepping design technique, we first treat certain signals in the system as fictitious control inputs to a simpler subsystem. A two-layer NN is used in this stage to design the fictitious controller. Then we apply a second two-layer NN to robustly realize the fictitious NN signals designed in the previous step. A new tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. A main advantage of our method is that we do not require regression matrices, so that no preliminary dynamical analysis is needed. Another salient feature of our NN approach is that the off-line learning phase is not needed. Full state feedback is needed for implementation. Load torque and rotor resistance can be unknown but bounded.

  1. Central motor control failure in fibromyalgia: a surface electromyography study.

    Science.gov (United States)

    Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto

    2009-07-01

    Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Eight female patients aged 55.6 +/- 13.6 years (FM group) and eight healthy female volunteers aged 50.3 +/- 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean +/- SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 +/- 0.052%/s in FM vs -0.196 +/- 0.133%/s in MCG; normalised MNF rate of changes: -0.29 +/- 0.16%/s in FM vs -0.66 +/- 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control.

  2. Central motor control failure in fibromyalgia: a surface electromyography study

    Science.gov (United States)

    Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto

    2009-01-01

    Background Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Methods Eight female patients aged 55.6 ± 13.6 years (FM group) and eight healthy female volunteers aged 50.3 ± 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean ± SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. Results The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 ± 0.052%/s in FM vs -0.196 ± 0.133%/s in MCG; normalised MNF rate of changes: -0.29 ± 0.16%/s in FM vs -0.66 ± 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control. PMID:19570214

  3. Central motor control failure in fibromyalgia: a surface electromyography study

    Directory of Open Access Journals (Sweden)

    Buskila Dan

    2009-07-01

    Full Text Available Abstract Background Fibromyalgia (FM is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Methods Eight female patients aged 55.6 ± 13.6 years (FM group and eight healthy female volunteers aged 50.3 ± 9.3 years (MCG were studied by means of non-invasive surface electromyography (s-EMG involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited contractions. Maximal voluntary contractions (MVCs, motor unit action potential conduction velocity distributions (mean ± SD and skewness, and the mean power frequency of the spectrum (MNF were estimated in order to assess whether there were any significant differences between the two groups and contraction types. Results The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 ± 0.052%/s in FM vs -0.196 ± 0.133%/s in MCG; normalised MNF rate of changes: -0.29 ± 0.16%/s in FM vs -0.66 ± 0.34%/s in MCG. Mean conduction velocity distribution and skewnesses values were higher (p Conclusion The apparent paradox of fewer myoelectrical manifestations of fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered

  4. Brushless DC motor control system responsive to control signals generated by a computer or the like

    Science.gov (United States)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  5. Elderly Use Proprioception Rather than Visual and Vestibular Cues for Postural Motor Control.

    Science.gov (United States)

    Wiesmeier, Isabella Katharina; Dalin, Daniela; Maurer, Christoph

    2015-01-01

    Multiple factors have been proposed to contribute to the deficits of postural control in the elderly. They were summarized as sensory, motor, and higher-level adaptation deficits. Using a model-based approach, we aimed to identify which of these deficits mainly determine age-related changes in postural control. We analyzed postural control of 20 healthy elderly people with a mean age of 74 years. The findings were compared to data from 19 healthy young volunteers (mean age 28 years) and 16 healthy middle-aged volunteers (mean age 48 years). Postural control was characterized by spontaneous sway measures and measures of perturbed stance. Perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. We found that spontaneous sway amplitude and velocity were significantly larger, and sway frequencies were higher in elderly compared to young people. Body excursions as a function of tilt stimuli were clearly different in elderly compared to young people. Based on simple feedback model simulations, we found that elderly favor proprioceptive over visual and vestibular cues, other than younger subjects do. Moreover, we identified an increase in overall time delay challenging the feedback systems stability, and a decline in the amplitude of the motor feedback, probably representing weakness of the motor system. In general, these parameter differences between young and old may result from both deficits and compensation strategies in the elderly. Our model-based findings correlate well with deficits measured with clinical balance scores, which are widely used in clinical practice.

  6. Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury.

    Science.gov (United States)

    Terson de Paleville, Daniela; McKay, William; Aslan, Sevda; Folz, Rodney; Sayenko, Dimitry; Ovechkin, Alexander

    2013-12-01

    This prospective case-controlled clinical study was undertaken to investigate to what extent the manually assisted treadmill stepping locomotor training with body weight support (LT) can change respiratory function in individuals with chronic spinal cord injury (SCI). Pulmonary function outcomes (forced vital capacity /FVC/, forced expiratory volume one second /FEV1/, maximum inspiratory pressure /PImax/, maximum expiratory pressure /PEmax/) and surface electromyographic (sEMG) measures of respiratory muscles activity during respiratory tasks were obtained from eight individuals with chronic C3-T12 SCI before and after 62±10 (mean±SD) sessions of the LT. FVC, FEV1, PImax, PEmax, amount of overall sEMG activity and rate of motor unit recruitment were significantly increased after LT (prespiratory muscles preserved after injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Digital P.W.M. Control For Induction Motor Drives Using Boxes Theory

    Science.gov (United States)

    Shaker, Mahmoud; Lorenzo, Santiago; Ruiz, J. M.; Martin, A.

    1987-10-01

    Accuraty output torque is necessary to get, when the induction motor drives is fed by an inverter (like P.W.M.). In this paper we presented a new algorithm to control the DC/AC inverter, that is called BOXES algorithm. Boxes Hardware to control an induction motor is also presented. Field-oriented Theory is used in this work to facilitate the motor simulation and, as known, to can used the motor model as state observor. Finally, (Recursive Least Sequare) identification method, and digital freq-uency analysis is used to design the induction motor control algorithm.

  8. Planar Task Space Control of a Biarticular Manipulator Driven by Spiral Motors

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki bin Hj Shukor

    2012-10-01

    Full Text Available This paper elaborates upon a musculoskeletal-inspired robot manipulator using a prototype of the spiral motor developed in our laboratory. The spiral motors represent the antagonistic muscles due to the high forward/backward drivability without any gears or mechanisms. Modelling of the biarticular structure with spiral motor dynamics was presented and simulations were carried out to compare two control methods, Inverse Kinematics (IK and direct-Cartesian control, between monoarticular only structures and biarticular structures using the spiral motor. The results show the feasibility of the control, especially in maintaining air gaps within the spiral motor.

  9. PID Neural Network Based Speed Control of Asynchronous Motor Using Programmable Logic Controller

    Directory of Open Access Journals (Sweden)

    MARABA, V. A.

    2011-11-01

    Full Text Available This paper deals with the structure and characteristics of PID Neural Network controller for single input and single output systems. PID Neural Network is a new kind of controller that includes the advantages of artificial neural networks and classic PID controller. Functioning of this controller is based on the update of controller parameters according to the value extracted from system output pursuant to the rules of back propagation algorithm used in artificial neural networks. Parameters obtained from the application of PID Neural Network training algorithm on the speed model of the asynchronous motor exhibiting second order linear behavior were used in the real time speed control of the motor. Programmable logic controller (PLC was used as real time controller. The real time control results show that reference speed successfully maintained under various load conditions.

  10. Gait variability and motor control in people with knee osteoarthritis.

    Science.gov (United States)

    Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle; Simonsen, Erik B; Petersen, Nicolas C; Bliddal, Henning; Henriksen, Marius

    2015-10-01

    Knee osteoarthritis (OA) is a common disease that impairs walking ability and function. We compared the temporal gait variability and motor control in people with knee OA with healthy controls. The purpose was to test the hypothesis that the temporal gait variability would reflect a more stereotypic pattern in people with knee OA compared with healthy age-matched subjects. To assess the gait variability the temporal structure of the ankle and knee joint kinematics was quantified by the largest Lyapunov exponent and the stride time fluctuations were quantified by sample entropy and detrended fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H-reflex amplitude was significantly higher in the knee OA group around heel strike when compared with the controls. The mean group difference in the H-reflex in the initial part of the stance phase (control-knee OA) was -6.6% Mmax (95% CI: -10.4 to -2.7, p=0.041). The present OA group reported relatively small impact of their disease. These results suggest that the OA group in general sustained a normal gait pattern with natural variability but with suggestions of facilitated SO H-reflex in the swing to stance phase transition. We speculate that the difference in SO H-reflex modulation reflects that the OA group increased the excitability of the soleus stretch reflex as a preparatory mechanism to avoid sudden collapse of the knee joint which is not uncommon in knee OA. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    Science.gov (United States)

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  12. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    Science.gov (United States)

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  13. FUZZY LOGIC CONTROLLED SWITCHED RELUCTANCE MOTOR DRIVER DESIGNING FOR A LIFT SYSTEM

    Directory of Open Access Journals (Sweden)

    Mahir DURSUN

    2006-02-01

    Full Text Available In this study, a 8/6 poles, four phases, 3.44 kW switched reluctance motor driver was used for a elavator load. For this aim, it has been designed a swithed reluctance motor driver for a lift system. At the driver system was used a buck konverter. The speed was controlled by motor phase voltage control. The voltage value has been controlled with fuzzy logic controller by using TMS320LF2407 controller. Fuzzy controlled switched reluctance motor was used for a elavator load by using designed driver system.

  14. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    Directory of Open Access Journals (Sweden)

    Hideki Nakagawa

    2012-08-01

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P0.05. Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05. This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05. Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  15. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana.

    Science.gov (United States)

    Nakagawa, Hideki; Nishida, Yuuya

    2012-11-15

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r(2) = 0.5741, P0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r(2) = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r(2) = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  16. Altered motor control patterns in whiplash and chronic neck pain

    Directory of Open Access Journals (Sweden)

    Vasseljen Ottar

    2008-06-01

    Full Text Available Abstract Background Persistent whiplash associated disorders (WAD have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM, conjunct motion, joint position error and ROM-variability. Methods Participants (n = 173 were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal, and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Results Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9° (95% CI; 12.2–15.6 for the WAD group, 17.9° (95% CI; 16.1–19.6 for the chronic neck pain group and 25.9° (95% CI; 23.7–28.1 for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Conclusion Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a

  17. Training compliance control yields improved drawing in 5-11year old children with motor difficulties.

    Science.gov (United States)

    Snapp-Childs, Winona; Shire, Katy; Hill, Liam; Mon-Williams, Mark; Bingham, Geoffrey P

    2016-08-01

    There are a large number of children with motor difficulties including those that have difficulty producing movements qualitatively well enough to improve in perceptuo-motor learning without intervention. We have developed a training method that supports active movement generation to allow improvement in a 3D tracing task requiring good compliance control. Previously, we tested a limited age range of children and found that training improved performance on the 3D tracing task and that the training transferred to a 2D drawing test. In the present study, school children (5-11years old) with motor difficulties were trained in the 3D tracing task and transfer to a 2D drawing task was tested. We used a cross-over design where half of the children received training on the 3D tracing task during the first training period and the other half of the children received training during the second training period. Given previous results, we predicted that younger children would initially show reduced performance relative to the older children, and that performance at all ages would improve with training. We also predicted that training would transfer to the 2D drawing task. However, the pre-training performance of both younger and older children was equally poor. Nevertheless, post-training performance on the 3D task was dramatically improved for both age groups and the training transferred to the 2D drawing task. Overall, this work contributes to a growing body of literature that demonstrates relatively preserved motor learning in children with motor difficulties and further demonstrates the importance of games in therapeutic interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Forward and reverse control system for induction motors

    Science.gov (United States)

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  19. Flux-Based Deadbeat Control of Induction-Motor Torque

    Science.gov (United States)

    Kenny, Barbara H.; Lorenz, Robert D.

    2003-01-01

    An improved method and prior methods of deadbeat direct torque control involve the use of pulse-width modulation (PWM) of applied voltages. The prior methods are based on the use of stator flux and stator current as state variables, leading to mathematical solutions of control equations in forms that do not lend themselves to clear visualization of solution spaces. In contrast, the use of rotor and stator fluxes as the state variables in the present improved method lends itself to graphical representations that aid in understanding possible solutions under various operating conditions. In addition, the present improved method incorporates the superposition of high-frequency carrier signals for use in a motor-self-sensing technique for estimating the rotor shaft angle at any speed (including low or even zero speed) without need for additional shaft-angle-measuring sensors.

  20. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    Science.gov (United States)

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  1. Development of EPICS based beam-line experimental control employing motor controller for precision positioning

    International Nuclear Information System (INIS)

    Tuli, Anupriya; Jain, Rajiv; Vora, H.S.

    2015-01-01

    In a Synchrotron Radiation Source the beamline experiments are carried out in radiation prone environment, inside the hutch, which demands to conduct experiments remotely. These experiments involves instrument control and data acquisition from various devices. Another factor which attributes to system complexity is precise positioning of sample and placement of detectors. A large number of stepper motors are engaged for achieving the required precision positioning. This work is a result of development of Experimental Physics and Industrial Control System (EPICS) based control system to interface a stepper motor controller developed indigenously by Laser Electronics Support Division of RRCAT. EPICS is an internationally accepted open source software environment which follows toolkit approach and standard model paradigm. The operator interface for the control system software was implemented using CSS BOY. The system was successfully tested for Ethernet based remote access. The developed control software comprises of an OPI and alarm handler (EPICS ALH). Both OPI and ALH are linked with PV's defined in database files. The development process resulted into a set of EPICS based commands for controlling stepper motor. These commands are independent of operator interface, i.e. stepper motor can be controlled by using these set of commands directly on EPICS prompt. This command set is illustrated in the above table. EPICS Alarm Handler was also tested independently by running these commands on EPIC prompt. If not using ALH, operator can read the alarm status of a PV using 'SEVR' and 'STAT' attributes. (author)

  2. The modulation of motor control by imitating non-biological motions: a study about motor resonance.

    Science.gov (United States)

    Miyawaki, Yu; Yamamoto, Taisei

    2018-01-01

    [Purpose] Sensorimotor experience modulates motor resonance, such as motor interference, which occurs when observing others' movements; however, it is unclear how motor resonance is modulated by intentionally imitating others' movements. This study examined the effects of imitation experience on subsequent motor resonance. [Subjects and Methods] Twenty-seven healthy participants performed horizontal arm movements while observing non-biological, incongruent (vertical) movements of a visual stimulus (triangle object) in pre- and post-test procedures. Thirteen participants in the imitation group imitated vertical movements (non-biological motion) of the triangle object between pre- and post-test procedures and fourteen participants in the non-imitation group observed that. [Results] Variance in the executed movements was measured as an index of motor resonance. Although there was no significant difference in the non-imitation group, there was a significantly smaller variance for post-test compared to pre-test in the imitation group. [Conclusion] Motor resonance was inhibited by intentionally imitating non-biological motions. Imitating movements different from one's own motor property might inhibit subsequent motor resonance. This finding might be applied to selectively using motor resonance as a form of rehabilitation.

  3. Children's self-perceived bodily competencies and associations with motor skills, body mass index, teachers' evaluations, and parents' concerns

    DEFF Research Database (Denmark)

    Toftegaard-Stoeckel, Jan; Groenfeldt, Vivian; Andersen, Lars Bo

    2010-01-01

    ability test "Korperkoordinationstest fur Kinder", while the children's, their parents', and their teachers' evaluations were obtained through questionnaires. Parental concern, teacher evaluation, and a high body mass index were the strongest predictors of low physical competence (motor skill quotient ......The associations between physical competence, self-perceived bodily competence, parental concern for their children's motor skill development, and teachers' evaluation of their bodily competence were assessed in 646 six- to seven-year-olds. Physical competence was assessed by the German motor...

  4. Embedded two level direct adaptive fuzzy controller for DC motor speed control

    Directory of Open Access Journals (Sweden)

    Ahmad M. Zaki

    2018-03-01

    Full Text Available This paper presents a proposed approach based on an adaptive fuzzy logic controller for precise control of the DC motor speed. In this concern, the proposed Direct Adaptive Fuzzy Logic Controller (DAFLC is estimated from two levels, where the lower level uses a Mamdani fuzzy controller and the upper level is an inverse model based on a Takagi–Sugeno (T–S method in which its output is used to adapt the parameters of the fuzzy controller in the lower level. The proposed controller is implemented using an Arduino DUE kit. From the practical results, it is proved that the proposed adaptive controller improves, successfully both the performance response and the disturbance due to the load in the speed control of the DC motor.

  5. A robotic model to investigate human motor control.

    Science.gov (United States)

    Lenzi, Tommaso; Vitiello, Nicola; McIntyre, Joseph; Roccella, Stefano; Carrozza, Maria Chiara

    2011-07-01

    The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects, mainly through the application of mechanical perturbations to the limb during natural movements and the observation of its corrective responses. These methods have provided a wealth of insight into how the central nervous system controls the limb. They suffer, however, from the fact that it is almost impossible to separate the active and passive components of the measured arm stiffness and that the measurement may themselves alter the stiffness characteristic of the arm. As a complement to these analyses, the implementation of a given neuroscientific hypothesis on a real mechanical system could overcome these measurement artifact and provide a tool that is, under full control of the experimenter, able to replicate the relevant functional features of the human arm. In this article, we introduce the NEURARM platform, a robotic arm intended to test hypotheses on the human motor control system. As such, NEURARM satisfies two key requirements. First, its kinematic parameters and inertia are similar to that of the human arm. Second, NEURARM mimics the main physical features of the human actuation system, specifically, the use of tendons to transfer force, the presence of antagonistic muscle pairs, the passive elasticity of muscles in the absence of any neural feedback and the non-linear elastic behaviour. This article presents the design and characterization of the NEURARM actuation system. The resulting mechanical behaviour, which has been tested in joint and Cartesian space under static and dynamic conditions, proves that the NEURARM platform can be exploited as a robotic model of the human arm, and could thus represent a powerful tool for neuroscience investigations.

  6. Theories and control models and motor learning: clinical applications in neuro-rehabilitation.

    Science.gov (United States)

    Cano-de-la-Cuerda, R; Molero-Sánchez, A; Carratalá-Tejada, M; Alguacil-Diego, I M; Molina-Rueda, F; Miangolarra-Page, J C; Torricelli, D

    2015-01-01

    In recent decades there has been a special interest in theories that could explain the regulation of motor control, and their applications. These theories are often based on models of brain function, philosophically reflecting different criteria on how movement is controlled by the brain, each being emphasised in different neural components of the movement. The concept of motor learning, regarded as the set of internal processes associated with practice and experience that produce relatively permanent changes in the ability to produce motor activities through a specific skill, is also relevant in the context of neuroscience. Thus, both motor control and learning are seen as key fields of study for health professionals in the field of neuro-rehabilitation. The major theories of motor control are described, which include, motor programming theory, systems theory, the theory of dynamic action, and the theory of parallel distributed processing, as well as the factors that influence motor learning and its applications in neuro-rehabilitation. At present there is no consensus on which theory or model defines the regulations to explain motor control. Theories of motor learning should be the basis for motor rehabilitation. The new research should apply the knowledge generated in the fields of control and motor learning in neuro-rehabilitation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  7. Plasma actuators for bluff body flow control

    Science.gov (United States)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  8. A hypothalamic circuit that controls body temperature.

    Science.gov (United States)

    Zhao, Zheng-Dong; Yang, Wen Z; Gao, Cuicui; Fu, Xin; Zhang, Wen; Zhou, Qian; Chen, Wanpeng; Ni, Xinyan; Lin, Jun-Kai; Yang, Juan; Xu, Xiao-Hong; Shen, Wei L

    2017-02-21

    The homeostatic control of body temperature is essential for survival in mammals and is known to be regulated in part by temperature-sensitive neurons in the hypothalamus. However, the specific neural pathways and corresponding neural populations have not been fully elucidated. To identify these pathways, we used cFos staining to identify neurons that are activated by a thermal challenge and found induced expression in subsets of neurons within the ventral part of the lateral preoptic nucleus (vLPO) and the dorsal part of the dorsomedial hypothalamus (DMD). Activation of GABAergic neurons in the vLPO using optogenetics reduced body temperature, along with a decrease in physical activity. Optogenetic inhibition of these neurons resulted in fever-level hyperthermia. These GABAergic neurons project from the vLPO to the DMD and optogenetic stimulation of the nerve terminals in the DMD also reduced body temperature and activity. Electrophysiological recording revealed that the vLPO GABAergic neurons suppressed neural activity in DMD neurons, and fiber photometry of calcium transients revealed that DMD neurons were activated by cold. Accordingly, activation of DMD neurons using designer receptors exclusively activated by designer drugs (DREADDs) or optogenetics increased body temperature with a strong increase in energy expenditure and activity. Finally, optogenetic inhibition of DMD neurons triggered hypothermia, similar to stimulation of the GABAergic neurons in the vLPO. Thus, vLPO GABAergic neurons suppressed the thermogenic effect of DMD neurons. In aggregate, our data identify vLPO→DMD neural pathways that reduce core temperature in response to a thermal challenge, and we show that outputs from the DMD can induce activity-induced thermogenesis.

  9. Ribonuclease-mediated control of body fat

    DEFF Research Database (Denmark)

    Habacher, Cornelia; Guo, Yanwu; Venz, Richard

    2016-01-01

    . Using exon-intron split analysis, we find that REGE-1 promotes fat by degrading the mRNA encoding ETS-4, a fat-loss-promoting transcription factor. Because ETS-4, in turn, induces rege-1 transcription, REGE-1 and ETS-4 appear to form an auto-regulatory module. We propose that this type of fat regulation......Obesity is a global health issue, arousing interest in molecular mechanisms controlling fat. Transcriptional regulation of fat has received much attention, and key transcription factors involved in lipid metabolism, such as SBP-1/SREBP, LPD-2/C/EBP, and MDT-15, are conserved from nematodes...... to mammals. However, there is a growing awareness that lipid metabolism can also be controlled by post-transcriptional mechanisms. Here, we show that the Caenorhabditis elegans RNase, REGE-1, related to MCPIP1/Zc3h12a/Regnase-1, a key regulator of mammalian innate immunity, promotes accumulation of body fat...

  10. A discreet control of sliding ways of an induction motor; Control discreto de modos deslizantes de un motor de induccion

    Energy Technology Data Exchange (ETDEWEB)

    Rivera Dominguez, Jorge

    2001-12-15

    A control of sliding ways in discreet time for non-linear discreet systems is designed, also the technique of the control by histograms for non-linear discreet systems was developed, and an observer of reduced order was developed for non-linear electromechanical discreet systems. All these techniques are applied to a non-linear discreet model of an induction motor that was found here, that posses electrical and mechanical dynamics, in which the load pair is considered an unknown disturbance. With complete measurements of the states are satisfied the pursuing of the rotor velocity and the amplitude of the magnetic flux of the rotor, where the unknown load does not affect the velocity regulation. Next, an observer of reduced order is implemented where the velocity and current measurements are employed to consider the load pair and the flows that are very difficult to measure. The proposed method has a design and stability procedure of direct analyses, conserving a simple structure of the control law. The simulations predict that the system is robust with respect to several types of load pairs. The responses of velocity and amplitude of the rotor flow and the entrance references evolved very well. These references have a linear dynamics of second order with time constants that can be chosen by the motor user. The practical aspects for a future digital implementation of the control law are considered, including the velocity and currents sensors, the preparation of signals, the transformation of the current in the frame of stationary reference, PWM and inverter modules, which were seen in detail. The experimental results are left as a future work. [Spanish] Se disena un control de modos deslizantes en tiempo discreto para sistemas discretos no lineales, tambien se desarrollo la tecnica del control por bloques para sistemas discretos no lineales, y un observador de orden reducido fue desarrollado para sistemas discretos electromecanicos no lineales. Todas estas tecnicas

  11. EFFECTIVENESS OF CORE STABILIZATION EXERCISES AND MOTOR CONTROL EXERCISES IN PATIENTS WITH LOW BACK ACHE

    OpenAIRE

    Vikranth .G .R; Lawrence Mathias; Mohd Meraj Ghori

    2015-01-01

    Background: Motor control exercises are isolated strengthening exercise for the deep spinal muscles (transverse abdominus, multifidus) whereas Core stability is achieved by global strengthening of the core muscles. There are not much studies available in the literature done or studied the short term effect of the motor control and core stabilization on subjects with low back pain. Therefore, the purpose of this study to find the comparative effect of motor control exercises versus core stabil...

  12. Adaptive sensorless field oriented control of PM motors including zero speed

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2004-01-01

    This paper presents a simple control method for controlling permanent magnet synchronous motors (PMSM) in a wide speed range without a shaft sensor. An adaptive observer is used for estimation of the rotor position and speed of a permanent magnet synchronous motors (PMSM). The observer compensates...... from zero. In order to verify the applicability of the method the controller has been implemented and tested on a 800 W motor....

  13. Wireless Digital Control and Synchronization of Master-Slave Multiple Motors Using ARM Microcontroller

    OpenAIRE

    Pratiksha Shingade; Arati Dalavi

    2014-01-01

    The co-ordination and synchronization control of motion of multiple motors is a challenging problem, since the synchronization of each individual motor can be influenced by many factors. This paper presents the concept and implementation of a scheme that uses a real time control approach to realize drive synchronization of the multiple motors. The basic principle of the control is the speed of both master and slave are measured and compared in such a way to get speed synchroni...

  14. RELATIONSHIP BETWEEN MOTOR SKILLS AN D BODY COMPOSITION AMONG MIDDLE SCHOOL STUDENTS FROM BIHOR – HAJDÚ - BIHAR EUROREGION

    Directory of Open Access Journals (Sweden)

    LUKÁCS Norbert Csaba

    2017-01-01

    Full Text Available Body composition represents an important component of motor skills and health among children. According to studies an excess of adipose tiss ue can contribute to the decrease in performance when it comes to sprinting, endurance running, jump tests or several other sports games. The goal of this study is to determine the motor skills and the body composition of middle school students from Bihor – Hajdú - Bihar Euroregion and to present the results of the motor tests separately for subjects with a normal percent of adipose tissue and for subjects with an excess of adipose tissue. The study included 934 subjects aged 10 - 15, and it used the anthropometric method to determine height and weight, and the bioelectrical impedance analysis to determine the percent of adipose tissue. Motor skills were determined using 9 motor tests of the Eurofit Test Battery. The results of the measurements were statistically processed with the SPSS software. The classification of the body mass index and of the percent of adipose tissue was performed based on orientative standard values taking into consideration the subjects’ age and gender. The mean values of the motor tests were calculated separately for subjects with a normal percent of adipose tissue and for subjects with an excess of adipose tissue. Out of the total sample group 21.5% had their percent of adipose tissue below the normal values (8.8% BH; 12.7% HB; 49.9% had normal values (27.3% BH; 22.6% HB and 28.6% (girls=117; boys=150 had an excess of adipose tissue or were obese (14.67% BH; 13.92% HB. There is a significant relation between body mass index and the percent of adipose tissue (r = 0.781, p < 0.001, CI = 95%.Students with normal percent of adipose tissue obtained better results than those with an excess of adipose tissue at seven (girls –eight (boys motor tests.

  15. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  16. Feed-forward motor control of ultrafast, ballistic movements.

    Science.gov (United States)

    Kagaya, K; Patek, S N

    2016-02-01

    To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals. © 2016. Published by The Company of Biologists Ltd.

  17. Stepping motor control processor reference manual. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.

    1980-06-06

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained.

  18. Stepping motor control processor reference manual. Volume I

    International Nuclear Information System (INIS)

    Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.

    1980-01-01

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained

  19. Intelligent robust control law for induction motors based on field-oriented control theory

    Energy Technology Data Exchange (ETDEWEB)

    Barambones, O.; Alcorta, P.; Sevillano, G.; Garrido, A.; Garrido, I. [Univ. del Pais Vasco, Bilbao (Spain). Dpto. Ingenieri a de Sistemas y Automatica

    2009-07-01

    A sensorless adaptive control law was developed to improve the trajectory tracking performance of induction motors. The law used an integral sliding mode algorithm to avoid the necessity of calculating an upper bound for system uncertainties. The vector control theory was used to develop the induction motor drives. The sliding mode control law incorporated an adaptive switching gain and included a method of estimating rotor speeds. Rotor speed estimation errors were presented as a first order simple function based on the difference between real stator currents and estimated stator currents. The Lyapunov stability theory was used to analyze the controller under different load disturbances and parameter uncertainties. Results of the study showed that the control signal of the scheme was smaller than signals obtained using traditional variable structure control schemes. It was concluded that speed tracking objectives can be obtained under various parameter and torque uncertainties. 9 refs., 7 figs.

  20. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    Energy Technology Data Exchange (ETDEWEB)

    Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Parsapoor, Amir, E-mail: amirparsapoor@yahoo.co [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.i [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Lucas, Caro, E-mail: lucas@ut.ac.i [Centre of Excellence for Control and Intelligent Processing, Electrical and Computer Engineering Faculty, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  1. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    International Nuclear Information System (INIS)

    Dehkordi, Behzad Mirzaeian; Parsapoor, Amir; Moallem, Mehdi; Lucas, Caro

    2011-01-01

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  2. Long-term growth hormone therapy changes the natural history of body composition and motor function in children with prader-willi syndrome.

    Science.gov (United States)

    Carrel, Aaron L; Myers, Susan E; Whitman, Barbara Y; Eickhoff, Jens; Allen, David B

    2010-03-01

    Children with Prader-Willi syndrome (PWS) have decreased muscle mass, hypotonia, and impaired linear growth. Recombinant human GH (hGH) treatment reportedly improves body composition and physical function in children with PWS, but these studies lack long-term control data. To assess the impact of hGH therapy begun early in life on the natural history of PWS, we compared height, body composition, and strength in similar-age children with PWS naïve to hGH with those treated with hGH for 6 yr. Forty-eight children with PWS were studied: 21 subjects (aged 6-9 yr) treated with hGH for 6 yr (beginning at 4-32 months, mean 13 +/- 6 months) were compared with 27 children of similar age (5-9 yr) prior to treatment with hGH. Percent body fat, lean body mass, carbohydrate/lipid metabolism, and motor strength were compared using analysis of covariance. PWS children treated with hGH demonstrated lower body fat (mean, 36.1 +/- 2.1 vs. 44.6 +/- 1.8%, P fasting glucose or insulin. hGH treatment in children with PWS, begun prior to 2 yr of age, improves body composition, motor function, height, and lipid profiles. The magnitude of these effects suggests that long-term hGH therapy favorably alters the natural history of PWS to an extent that exceeds risks and justifies consideration for initiation during infancy.

  3. Controlling the Dc-link Midpoint Potential in a Six-phase Motor-drive

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus; Blaabjerg, Frede; Rasmussen, Peter Omand

    2004-01-01

    inverter branch and filter inductances is needed for stabilizing the midpoint potential of the series connected dc-capacitor link. A new control strategy that pre-calculates the allowed voltage ripple and controls the motor voltage accordingly (using two standard three phase inverter modules) is suggested......Traditionally electrical motors have three phases, but multiphase motors have shown to improve motor performance and efficiency. This paper concentrates about the control algorithm for a six-phase induction motor with third harmonic current injection. The problem is that typically a seventh....... With this new control strategy the seventh branch and an inductance can be saved. It also opens the possibility to use two standard three-phase inverters to supply the six-phase motor. An experimental setup is build and the theory is verified in the test case. The proposed control strategy works satisfactory...

  4. Fuzzy controllers in the control system of a brushless electric motor using HIL technology

    Directory of Open Access Journals (Sweden)

    Kalach Gennady

    2017-01-01

    Full Text Available This article proposes a method for creation of a control system for a brushless electric motor based on a fuzzy logic apparatus. The use of a fuzzy controller in this case can increase stability and improve the quality of the system under consideration, which was implemented in the Simulink environment using HIL technology. This technology increases the chances of successfully passing the test phase, considering the control system in prototype.

  5. Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle

    Science.gov (United States)

    Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao

    2017-12-01

    In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.

  6. Syntabulin, a motor protein linker, controls dorsal determination.

    Science.gov (United States)

    Nojima, Hideaki; Rothhämel, Sophie; Shimizu, Takashi; Kim, Cheol-Hee; Yonemura, Shigenobu; Marlow, Florence L; Hibi, Masahiko

    2010-03-01

    In amphibian and teleost embryos, the dorsal determinants (DDs) are believed to be initially localized to the vegetal pole and then transported to the prospective dorsal side of the embryo along a microtubule array. The DDs are known to activate the canonical Wnt pathway and thereby promote the expression of genes that induce the dorsal organizer. Here, by identifying the locus of the maternal-effect ventralized mutant tokkaebi, we show that Syntabulin, a linker of the kinesin I motor protein, is essential for dorsal determination in zebrafish. We found that syntabulin mRNA is transported to the vegetal pole during oogenesis through the Bucky ball (Buc)-mediated Balbiani body-dependent pathway, which is necessary for establishment of animal-vegetal (AV) oocyte polarity. We demonstrate that Syntabulin is translocated from the vegetal pole in a microtubule-dependent manner. Our findings suggest that Syntabulin regulates the microtubule-dependent transport of the DDs, and provide evidence for the link between AV and dorsoventral axis formation.

  7. Solid state circuit controls direction, speed, and braking of dc motor

    Science.gov (United States)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  8. Simple Power Control for Sensorless Induction Motor Drives Fed by a Matrix Converter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo Beum

    2008-01-01

    This paper presents a new and simple method for sensorless control of matrix converter drives using a power flowing to the motor. The proposed control algorithm is based on controlling the instantaneous real and imaginary powers into the induction motor. To improve low-speed sensorless performance...

  9. Effects of overweight and obese body mass on motor planning and motor skills during obstacle crossing in children.

    Science.gov (United States)

    Gill, Simone V; Hung, Ya-Ching

    2014-01-01

    Little is known about how obesity relates to motor planning and skills during functional tasks. We collected 3-D kinematics and kinetics as normal weight (n=10) and overweight/obese (n=12) children walked on flat ground and as they crossed low, medium, and high obstacles. We investigated if motor planning and motor skill impairments were evident during obstacle crossing. Baseline conditions showed no group differences (all ps>.05). Increased toe clearance was found on low obstacles (p=.01) for the overweight/obese group and on high obstacles (p=.01) for the normal weight group. With the crossing leg, the overweight/obese group had larger hip abduction angles (p=.01) and medial ground reaction forces (p=.006) on high obstacles and high anterior ground reaction forces on low obstacles (p=.001). With the trailing leg, overweight/obese children had higher vertical ground reaction forces on high obstacles (p=.005) and higher knee angles (p=.01) and anterior acceleration in the center of mass (p=.01) on low obstacles. These findings suggest that differences in motor planning and skills in overweight/obese children may be more apparent during functional activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Repetitive peripheral magnetic neurostimulation of multifidus muscles combined with motor training influences spine motor control and chronic low back pain.

    Science.gov (United States)

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2017-03-01

    The study tested whether combining repetitive peripheral magnetic stimulation (RPMS) and motor training of the superficial multifidus muscle (MF) better improved the corticomotor control of spine than training alone in chronic low back pain (CLBP). Twenty-one participants with CLBP were randomly allocated to [RPMS+training] and [Sham+training] groups for three sessions (S1-S3) over a week where MF was stimulated before training (volitional contraction). Training was also home-practiced twice a day. Changes were tested at S1 and S3 for anticipatory postural adjustments (APAs) of MF and semi-tendinosus (ST), MF EMG activation, cortical motor plasticity (transcranial magnetic stimulation) and pain/disability. The RPMS group showed immediate decrease of pain at S1, then improvement of MF activation, ST APA, M1 facilitation, and pain/disability at S3. Changes were larger when brain excitability was lower at baseline. Disability index remained improved one month later. Combining RPMS with training of MF in CLBP impacted motor planning, MF and lumbopelvic spine motor control and pain/disability one week after the onset of protocol. Brain plasticity might have favoured motor learning and improved daily lumbopelvic spine control without pain generation. Clinically, RPMS impacted the function by improving the gains beyond those reached by training alone in CLBP. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Emotional Learning Based Intelligent Controllers for Rotor Flux Oriented Control of Induction Motor

    Science.gov (United States)

    Abdollahi, Rohollah; Farhangi, Reza; Yarahmadi, Ali

    2014-08-01

    This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high performance industrial drive applications.

  12. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, INSTRUCTOR'S GUIDE.

    Science.gov (United States)

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND STEP-BY-STEP SOLUTIONS OF THE…

  13. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, ASSIGNMENTS.

    Science.gov (United States)

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, AND PROBLEMS. SOME OF THE LESSONS…

  14. Estimated injury risk for specific injuries and body regions in frontal motor vehicle crashes.

    Science.gov (United States)

    Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Swett, Katrina R; Stitzel, Joel D

    2015-01-01

    Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data. Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15-105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate. Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4-4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4

  15. Losses in chopper-controlled DC series motors

    Science.gov (United States)

    Hamilton, H. B.

    1982-01-01

    Motors for electric vehicle (EV) applications must have different features than dc motors designed for industrial applications. The EV motor application is characterized by the following requirements: (1) the need for highest possible efficiency from light load to overload, for maximum EV range, (2) large short time overload capability (The ratio of peak to average power varies from 5/1 in heavy city traffic to 3/1 in suburban driving situations) and (3) operation from power supply voltage levels of 84 to 144 volts (probably 120 volts maximum). A test facility utilizing a dc generator as a substitute for a battery pack was designed and utilized. Criteria for the design of such a facility are presented. Two motors, differing in design detail, commercially available for EV use were tested. Losses measured are discussed, as are waves forms and their harmonic content, the measurements of resistance and inductance, EV motor/chopper application criteria, and motor design considerations.

  16. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette

    2014-01-01

    Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal...... in the posterior motor putamen, which improved with dopaminergic medication. The likelihood of detecting a decrease in putaminal activity increased with motor impairment. This reduced motor activation of the posterior putamen across previous neuroimaging studies indicates that nigrostriatal dopaminergic...... denervation affects neural processing in the denervated striatal motor territory. In contrast, fronto-parietal motor areas display both increases as well as decreases in movement related activation. This points to a more complex relationship between altered cortical physiology and nigrostriatal dopaminergic...

  17. Performance analysis of PM synchronous motor using fuzzy logic and self tuning fuzzy PI speed controls

    International Nuclear Information System (INIS)

    Karakaya, A.; Karakas, E.

    2008-01-01

    Permanent Magnet Synchronous Motors have nonlinear characteristics whose dynamics changes with time. In spite of this structure the permanent magnet synchronous motor has answered engineering problems in industry such as motion control which need high torque values. This paper obtains a nonlinear mathematical model for Permanent Magnet Synchronous Motor and realizes stimulation of the obtained model in the Matlab/Simulink program. Motor parameters are determined by an experimental set-up and they are used in the motor model. Speed control of motor model is made with Fuzzy Logic and Self Tuning logic PI controllers. Using the speed graphs obtained, rise time, overshoot, steady-state error and settling time are analyzed and controller performances are compared. (author)

  18. Efficient foot motor control by Neymar’s brain

    OpenAIRE

    Eiichi eNaito; Eiichi eNaito; Satoshi eHirose

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1Hz. We also scanned brain activity whe...

  19. Efficient foot motor control by Neymar’s brain

    OpenAIRE

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity wh...

  20. Speed response of brushless DC motor using fuzzy PID controller under varying load condition

    Directory of Open Access Journals (Sweden)

    Akash Varshney

    2017-09-01

    Full Text Available The increasing trend towards usage of precisely controlled, high torque, efficient and low noise motors for dedicated applications has attracted the attention of researcher in Brushless DC (BLDC motors. BLDC motors can act as an acceptable alternative to the conventional motors like Induction Motors, Switched Reluctance Motors etc. This paper presents a detailed study on the performance of a BLDC motor supplying different types of loads, and at the same time, deploying different control techniques. An advance Fuzzy PID controller is compared with the commonly used PID controller. The load variations considered are of the most common types, generally encountered in practice. A comparison has been carried out in this paper by observing the dynamic speed response of motor at the time of application as well as at the time of removal of the load. The BLDC motors suffer from a major drawback of having jerky behaviour at the time of load removal. The study reveals that irrespective of the type of controller used, the gradual load variation produces better results as against sudden load variations. It is further observed that in addition to other dynamic features, the jerks produced at the time of load removal also get improved to a large extent with Fuzzy PID controller.The speed torque characteristics unraveled the fact that the jerks are minimum at the time of gradual load removal with Fuzzy PID controller in place. An attempt has been made to define these jerks by ‘Perturbation Window’.

  1. Efficiency optimized control of medium-size induction motor drives

    DEFF Research Database (Denmark)

    Abrahamsen, F.; Blaabjerg, Frede; Pedersen, John Kim

    2000-01-01

    The efficiency of a variable speed induction motor drive can be optimized by adaption of the motor flux level to the load torque. In small drives (<10 kW) this can be done without considering the relatively small converter losses, but for medium-size drives (10-1000 kW) the losses can not be disr......The efficiency of a variable speed induction motor drive can be optimized by adaption of the motor flux level to the load torque. In small drives (

  2. A Lead Angle Control for HB-Type Stepping Motor in the Constant Voltage Range

    Science.gov (United States)

    Okumatsu, Yoshihiro; Kawamura, Atsuo

    Stepping motors are generally used as a positioning servo in the OA (Office Automation) and FA (Factory Automation) system because the construction cost is very low and the construction of system is very easy. Since they are generally driven by an open loop controller, the response of stepping motors is oscillatory and it is possible to be out of drive. Therefore they are driven by a closed loop controller in the special system, which requires the high reliability and stability. The lead angle control is used as a closed loop controller of stepping motors because an applied voltage amplitude is not able to be controlled. However a closed loop control of stepping motors is hardly used at present. This paper presents the lead angle control based on the vector control in the constant voltage drive range for 2 phases HB type stepping motors. In the constant voltage range, since the HB type stepping motor is modeled as a surface permanent magnet motor, the motor torque is controlled by the q-axis current. The d-axis current is calculated by the voltage limit condition because of the constant voltage amplitude operation. The control performances are examined by the simulations and experimental results.

  3. Simulation And Application of Fuzzy Logic Controlled Adjustable Speed Switched Reluctance Motor to Elevator System

    OpenAIRE

    DURSUN, Mahir; ÖZDEN, Semih

    2008-01-01

    Switched reluctance motors (SRM) can be use at adjustable speed driver and these motors have high start up torque, high efficiency and simple construction. In this study, an SRM which have 8/6 poles, four phase and 3,44 kW power was used to drive an elevator load. Carrying capacity of elevator is 320 kg. Two PIC 18F452 microcontrollers was used to manage an elevator system and motor control. Motor speed was controlled by PI (proportional+integral) and Fuzzy Logic Control (FLC) method. Elevato...

  4. Motor dexterity and strength depend upon integrity of the attention-control system.

    Science.gov (United States)

    Rinne, Paul; Hassan, Mursyida; Fernandes, Cristina; Han, Erika; Hennessy, Emma; Waldman, Adam; Sharma, Pankaj; Soto, David; Leech, Robert; Malhotra, Paresh A; Bentley, Paul

    2018-01-16

    Attention control (or executive control) is a higher cognitive function involved in response selection and inhibition, through close interactions with the motor system. Here, we tested whether influences of attention control are also seen on lower level motor functions of dexterity and strength-by examining relationships between attention control and motor performance in healthy-aged and hemiparetic-stroke subjects ( n = 93 and 167, respectively). Subjects undertook simple-tracking, precision-hold, and maximum force-generation tasks, with each hand. Performance across all tasks correlated strongly with attention control (measured as distractor resistance), independently of factors such as baseline performance, hand use, lesion size, mood, fatigue, or whether distraction was tested during motor or nonmotor cognitive tasks. Critically, asymmetric dissociations occurred in all tasks, in that severe motor impairment coexisted with normal (or impaired) attention control whereas normal motor performance was never associated with impaired attention control (below a task-dependent threshold). This implies that dexterity and force generation require intact attention control. Subsequently, we examined how motor and attention-control performance mapped to lesion location and cerebral functional connectivity. One component of motor performance (common to both arms), as well as attention control, correlated with the anatomical and functional integrity of a cingulo-opercular "salience" network. Independently of this, motor performance difference between arms correlated negatively with the integrity of the primary sensorimotor network and corticospinal tract. These results suggest that the salience network, and its attention-control function, are necessary for virtually all volitional motor acts while its damage contributes significantly to the cardinal motor deficits of stroke. Copyright © 2018 the Author(s). Published by PNAS.

  5. The Relationship Among Motor Proficiency, Physical Fitness, and Body Composition in Children With and Without Visual Impairments

    NARCIS (Netherlands)

    Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    This study compares the motor skills and physical fitness of school-age children (6-12 years) with visual impairments (VI; n = 60) and sighted children (n = 60). The relationships between the performance parameters and the children's body composition are investigated as well as the role of the

  6. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of

  7. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, S.; Gazzola, V.; Avenanti, A.

    2015-01-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of

  8. Body Functions and Structures Pertinent to Infrared Thermography-Based Access for Clients with Severe Motor Disabilities

    Science.gov (United States)

    Memarian, Negar; Venetsanopoulos, Anastasios N.; Chau, Tom

    2011-01-01

    Infrared thermography has been recently proposed as an access technology for individuals with disabilities, but body functions and structures pertinent to its use have not been documented. Seven clients (2 adults, 5 youth) with severe disabilities and their primary caregivers participated in this study. All clients had a Gross Motor Functional…

  9. IMPACT OF GENETIC STRAIN ON BODY FAT LOSS, FOOD CONSUMPTION, METABOLISM, VENTILATION, AND MOTOR ACTIVITY IN FREE RUNNING FEMALE RATS

    Science.gov (United States)

    Physiologic data associated with different strains of common laboratory rat strains.This dataset is associated with the following publication:Gordon , C., P. Phillips , and A. Johnstone. Impact of Genetic Strain on Body Fat Loss, Food Consumption, Metabolism, Ventilation, and Motor Activity in Free Running Female Rats. PHYSIOLOGY AND BEHAVIOR. Elsevier Science Ltd, New York, NY, USA, 153: 56-63, (2016).

  10. Reconstruction of a whole-body counter into a process computer-controlled low-level whole-body scanner

    International Nuclear Information System (INIS)

    Hamann, C.

    1975-01-01

    A report is given on the state of the research project to reconstruct our whole-body counter with solid geometries into a scanning type one. The object is to develop a process computer controlled 'adaptive system'. The self-built scan mechanics are explained and the advantages and problems of applying stepping motors are gone into. A stepping motor coordinates control is presented. As the planned scanner and the process computer form a digital controlled system, all theoretical and actual values as well as the control orders from the process computer must be directly controllable. A CAMAC system was not used for economical reasons, the process periphery was made controllable by self building of interfaces to and from the computer. As example, the available multi-channel analyzers were converted to external controlling. The price-moderate and relatively simple self-built set-up are outlined and an example is given of how a TELETYPE version is reconstructed into a fast electronic interface. A BUS-MULTIPLEX system was developed which generates all necessary DI/DO interfaces out of one DI and DO address of the process computer only. The essential part of this system is given. (orig./LH) [de

  11. Space motion sickness: The sensory motor controls and cardiovascular correlation

    Science.gov (United States)

    Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.

    Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma

  12. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  13. Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?

    Science.gov (United States)

    van de Kamp, Cornelis; Gawthrop, Peter J; Gollee, Henrik; Lakie, Martin; Loram, Ian D

    2013-01-01

    Modular organization in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection [psychological refractory period (PRP)]. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesize that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimization process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection, and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control.

  14. Postural control during visual and kinesthetic motor imagery.

    Science.gov (United States)

    Grangeon, M; Guillot, A; Collet, C

    2011-03-01

    Despite the accumulating evidence supporting an interaction between cognitive functions and postural control, little is known about the selective impact of the mental representation of an action, i.e., motor imagery (MI) on postural control. As postural oscillations are reduced during a cognitive task of backward silent counting, a greater stability is also expected during MI compared to a no-task condition (standing). Twenty participants took part in this experiment, which aimed at providing evidence that MI may improve postural stability. They were requested to mentally imagine a movement while standing on a force-plate. Results showed a decrease in both path length and postural sway variability on the anterior-posterior and lateral axes during all dual-task sessions, as compared to the motionless condition. These postural adjustments might result from both central and peripheral processes, and/or increased muscle stiffness. Conversely, postural oscillation amplitude increased on the vertical axis during MI of three vertical jumps, hence suggesting that postural regulations remain task-related during MI. Finally, our data showed that kinesthetic and visual imagery differentially impacted the postural regulation.

  15. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    Science.gov (United States)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  16. Remodeling of cortical activity for motor control following upper limb loss

    Science.gov (United States)

    Williams, Laura; Pirouz, Nikta; Mizelle, J.C.; Cusack, William; Kistenberg, Rob; Wheaton, Lewis A.

    2016-01-01

    Objective Upper extremity loss presents immediate and lasting challenges for motor control. While sensory and motor representations of the amputated limb undergo plasticity to adjacent areas of the sensorimotor homunculus, it remains unclear whether laterality of motor-related activity is affected by neural reorganization following amputation. Methods Using electroencephalography, we evaluated neural activation patterns of formerly right hand dominant persons with upper limb loss (amputees) performing a motor task with their residual right limb, then their sound left limb. We compared activation patterns with left- and right-handed persons performing the same task. Results Amputees have involvement of contralateral motor areas when using their sound limb and atypically increased activation of posterior parietal regions when using the affected limb. When using the non-amputated left arm, patterns of activation remains similar to right handed persons using their left arm. Conclusions A remodeling of activations from traditionally motor areas into posterior parietal areas occurs for motor planning and execution when using the amputated limb. This may reflect an amputation-specific adaptation of heightened visuospatial feedback for motor control involving the amputated limb. Significance These results identify a neuroplastic mechanism for motor control in amputees, which may have great relevance to development of motor rehabilitation paradigms and prosthesis adaptation. PMID:27472549

  17. Motor control exercises of the lumbar-pelvic region improve respiratory function in obese men. A pilot study.

    Science.gov (United States)

    Bezzoli, Emanuela; Andreotti, Dianne; Pianta, Lucia; Mascheroni, Martina; Piccinno, Lorena; Puricelli, Luca; Cimolin, Veronica; Salvadori, Alberto; Codecasa, Franco; Capodaglio, Paolo

    2018-01-01

    Obese subjects have decreased pulmonary function. The hypothesis of our study was that poor coordination of the lumbar-pelvic musculature secondary to obesity may hinder the synergic activation of the respiratory muscles. The aim of the paper was to evaluate whether specific motor control exercises of the lumbar-pelvic musculature were able to improve respiratory function. Twenty obese male patients underwent a rehabilitation program including adapted physical activity and respiratory physiotherapy. Patients were randomly assigned to a Specific Motor Control Exercise Group (SG) and a Control Group (CG). SG followed a protocol according to the SMARTERehab concept aimed at improving posture, intra-abdominal pressure, rib cage mobility, and perception of correct muscle activation. CG performed an exercise training protocol to improve aerobic capacity and muscle strength. After intervention, both groups showed similar changes in body weight, fat, and fat-free mass. Respiratory function indexes improved in SG due to improved proprioception and coordination of the deep lumbar-pelvic muscles. Our study provides preliminary evidence that breathing, postural control, and spinal stability are intertwined. Positive respiratory effects in obese men can be obtained by prescribing specific motor control exercises of the lumbar-pelvic muscles. Implications for rehabilitation Obese subjects present with decreased pulmonary function and postural changes. Poor coordination of the lumbar-pelvic muscles affects posture and the synergic activation of the respiratory muscles. Specific motor control exercises of the lumbar-pelvic musculature can improve respiratory function. Breathing and postural control are intertwined: positive respiratory effects can be obtained by enhancing motor control of the lumbar-pelvic muscles.

  18. Comparative analysis of speed's impact on muscle demands during partial body weight support motor-assisted elliptical training.

    Science.gov (United States)

    Burnfield, Judith M; Irons, Sonya L; Buster, Thad W; Taylor, Adam P; Hildner, Gretchen A; Shu, Yu

    2014-01-01

    Individuals with walking limitations often experience challenges engaging in functionally relevant exercise. An adapted elliptical trainer (motor to assist pedal movement, integrated body weight harness, ramps/stairs, and grab rails) has been developed to help individuals with physical disabilities and chronic conditions regain/retain walking capacity and fitness. However, limited published studies are available to guide therapeutic interventions. This repeated measures study examined the influence of motor-assisted elliptical training speed on lower extremity muscle demands at four body weight support (BWS) levels commonly used therapeutically for walking. Electromyography (EMG) and pedal trajectory data were recorded as ten individuals without known disability used the motor-assisted elliptical trainer at three speeds [20,40, 60 revolutions per minute (RPM)] during each BWS level (0%, 20%, 40%, 60%). Overall, the EMG activity (peak, mean, duration) in key stabilizer muscles (i.e., gluteus medius, gluteus maximus, vastus lateralis, medial gastrocnemius and soleus) recorded at 60 RPM exceeded those at 40 RPM, which were higher than values at 20 RPM in all but three situations (gluteus medius mean at 0% BWS, vastus lateralis mean at 20% BWS, soleus duration at 40% BWS); however, these differences did not always achieve statistical significance. Slower motor-assisted speeds can be used to accommodate weakness of gluteus medius, gluteus maximus, vastus lateralis, medial gastrocnemius and soleus. As strength improves, training at faster motor-assisted speeds may provide a means to progressively challenge key lower extremity stabilizers. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    Science.gov (United States)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  20. Linear switched reluctance motor control with PIC18F452 microcontroller

    OpenAIRE

    DURSUN, Mahir; KOÇ, Fatmagül

    2014-01-01

    This paper presents the simulation, control, and experimental results of the velocity of a double-sided, 6/4-poled, 3-phased, 8 A, 24 V, 250 W, and 250 N pull force linear switched reluctance motor (LSRM). In the simulation and experimental study, the reference velocity is constant depending on the position and time. The velocity versus the position of the translator was controlled with fuzzy logic control (FLC) and proportional-integral (PI) control techniques. The motor was control...

  1. PI controller design for indirect vector controlled induction motor: A decoupling approach.

    Science.gov (United States)

    Jain, Jitendra Kr; Ghosh, Sandip; Maity, Somnath; Dworak, Pawel

    2017-09-01

    Decoupling of the stator currents is important for smoother torque response of indirect vector controlled induction motors. Typically, feedforward decoupling is used to take care of current coupling that requires exact knowledge of motor parameters, additional circuitry and signal processing. In this paper, a method is proposed to design the regulating proportional-integral gains that minimize coupling without any requirement of the additional decoupler. The variation of the coupling terms for change in load torque is considered as the performance measure. An iterative linear matrix inequality based H ∞ control design approach is used to obtain the controller gains. A comparison between the feedforward and the proposed decoupling schemes is presented through simulation and experimental results. The results show that the proposed scheme is simple yet effective even without additional block or burden on signal processing. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A Novel Control Algorithm Expressions Set for not Negligible Resistive Parameters PM Brushless AC Motors

    Directory of Open Access Journals (Sweden)

    Renato RIZZO

    2012-08-01

    Full Text Available This paper deals with Permanent Magnet Brushless Motors. In particular is proposed a new set of control algorithm expressions that is realized taking into account resistive parameters of the motor, differently from simplified models of this type of motors where these parameters are usually neglected. The control is set up and an analysis of the performance is reported in the paper, where the validation of the new expressions is done with reference to a motor prototype particularly compact because is foreseen for application on tram propulsion drives. The results are evidenced in the last part of the paper.

  3. Key parameters controlling the performance of catalytic motors

    Science.gov (United States)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David

    2016-03-01

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  4. UNIFIED CONTROL STRUCTURE OF MULTI-TYPE INTERIOR PERMANENT MAGNET MOTOR

    Directory of Open Access Journals (Sweden)

    M. NORHISAM

    2015-03-01

    Full Text Available This paper presents the control strategy structure to extract the speed torque characteristic for the newly designed three phase Multi Type Interior Permanent Magnet Motor. The proposed structure with the driving circuits exhibit the performance of torque characteristics of the stepper motor and brushless motor with independent coil winding per phase especially used as an in-wheel motor in agricultural applications. Brushless Direct Current motors exhibit characteristics of generating high torque at high speed while the Permanent Magnet Stepper motors has characteristic of generating high torque at low speed. The typical characteristics of the above two are integrated in the proposed structure with a complex control structure that handle the switching complexity and speed control in real time. Thus, a specially designed driving system is essential to drive and control this special motor. The evaluation of the motor mechanical characteristics when applying load torque is also presented. The result determines the practical torque range applicable for each motor configuration and as combined machine.

  5. Motor cortex changes after amputation are modulated by phantom limb motor control rather than pain

    DEFF Research Database (Denmark)

    Raffin, Estelle E.; Pascal, Giraux,; Karen, Reilly,

    Amputation of a limb induces reorganization within the contralateral primary motor cortex (M1-c) (1-3). In the case of hand amputation, M1-c areas evoking movements in the face and the remaining part of the upper-limb expand toward the hand area. Despite this expansion, the amputated hand still...

  6. Speed Synchronization of Multi Induction Motors with Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    HACHEMI Glaoui

    2013-05-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. Aspeed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed controlstrategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designedcontroller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  7. Effect of body-weight suspension training versus treadmill training on gross motor abilities of children with spastic diplegic cerebral palsy.

    Science.gov (United States)

    Emara, Hatem A; El-Gohary, Tarek M; Al-Johany, Ahmed A

    2016-06-01

    Suspension training and treadmill training are commonly used for promoting functional gross motor skills in children with cerebral palsy. The aim of this study was to compare the effect of body-weight suspension training versus treadmill training on gross motor functional skills. Assessor-blinded, randomized, controlled intervention study. Outpatient rehabilitation facility. Twenty children with spastic diplegia (7 boys and 13 girls) in the age ranged from 6 to 8 years old were randomly allocated into two equal groups. All children were assessed at baseline, after 18-session and after 36-session. During the twelve-week outpatient rehabilitation program, both groups received traditional therapeutic exercises. Additionally, one group received locomotor training using the treadmill while the other group received locomotor training using body-weight suspension through the dynamic spider cage. Assessment included dimensions "D" standing and "E" walking of the gross motor function measure, in addition to the 10-m Walking Test and the five times sit to stand test. Training was applied three times per week for twelve consecutive weeks. No significant difference was found in standing or walking ability for measurements taken at baseline or after 18-session of therapy. Measurements taken at 36-session showed that suspension training achieved significantly (Ptraining for dimension D as well as for dimension E. No significant difference was found between suspension training and treadmill training regarding walking speed or sit to stand transitional skills. Body-weight suspension training is effective in improving walking and locomotor capabilities in children with spastic diplegia. After three month suspension training was superior to treadmill training. Body-weight suspension training promotes adequate postural stability, good balance control, and less exertion which facilitates efficient and safe gait.

  8. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    Science.gov (United States)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  9. A new Observer for Speed Sensorless Field Oriented Control of an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2002-01-01

    Using adaptive Lyapunov design a new approach for the design of an observer for speed sensorless field oriented control is developed. The resulting scheme leads to a nonlinear full order observer for the motor states including the rotor speed. Assuming motor parameters known the design achieves...... stability with guaranteed region of attraction. Experiments on a real motor demonstrate high dynamic performance even at very low rotor speed and stability is extended to zero speed....

  10. Field oriented control of permanent magnet synchronous motors with time constant adaption

    International Nuclear Information System (INIS)

    Afsharnia, S.; Vahedi, A.

    2001-01-01

    In this paper, initially, we present a method for on-line identifying of Permanent Magnet Synchronous Machine electrical parameters, then these parameters will be used in the vector control structure of motors. Simulation results show the efficiency of this method to parameters identifying of machine even in the presence of saturation, variation of temperature and etc. Because of simplicity and being economic, this method can be used by electro motors constructors to identify motor parameters for different operating points

  11. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  12. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  13. Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control

    OpenAIRE

    Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan

    2013-01-01

    This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...

  14. Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator

    OpenAIRE

    Jagadish H. Pujar; S. F. Kodad

    2011-01-01

    Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlin...

  15. Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies

    Directory of Open Access Journals (Sweden)

    Li Hai Xia

    2016-01-01

    Full Text Available This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.

  16. Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies

    OpenAIRE

    Li Hai Xia; Cao Yang

    2016-01-01

    This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.

  17. Convenient intelligent cursor control web systems for Internet users with severe motor-impairments.

    Science.gov (United States)

    Surdilovic, Tihomir; Zhang, Yan-Qing

    2006-01-01

    The objective of this research work is to simplify and improve the efficiency of cursor control and its interactions on the computer screen by applying fuzzy logic in its decision-making to make Internet users with disabilities use the networked computers conveniently and easily. "Point and click" interactions are one of the key features of operating systems based of graphical user interfaces (GUIs) [C.E. Steriadis, P. Constantinou, Designing human-computer interfaces for quadriplegic people, ACM Trans. Comput.-Hum.-Interact. (TOCHI) 10 (2) (2003) 87-118.]. People with severe motor-impairments due to spinal cord injury (SCI) or spinal cord dysfunction (SCD), however, often have difficulty with accurate and efficient control of pointing devices, limiting their integration to society and unassisted control over their environment through the use of such operating systems [S. Keates, F. Hwang, P. Langdon, P.J. Clarkson, P. Robinson, Cursor measures for motion-impaired computer users, in: Proceedings of ACM SIGCAPH Conference of Assistive Technologies - ASSETS 2002, pp. 135-142.]. The questions "How can someone with severe motor-impairments perform 'point and click' interactions as accurately and efficiently as an able-bodied person?" and "How can these interactions be advanced through use of Computational Intelligence (CI)?" are the driving forces behind the research described in this paper. Through this research, a novel fuzzy mouse cursor control system (FMCCS) is described. The FMCCS core consists of several fuzzy control functions, which define different user interactions with the system. Design and descriptions of these functions, as well first prototype implementation and testing with real users sustaining severe disabilities are presented.

  18. Sensorless control of low-cost single-phase hybrid switched reluctance motor drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2013-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special Hybrid Switched Reluctance Motor (HSRM). The proposed sensorless control method utilizes beneficially the stator side permanent magnet field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive...

  19. The central role of trunk control in the gross motor function of children with cerebral palsy

    DEFF Research Database (Denmark)

    Curtis, Derek John; Butler, Penny; Saavedra, Sandy

    2015-01-01

    . The participants were tested using the Gross Motor Function Measure (GMFM), the Pediatric Evaluation of Disability Inventory (PEDI), and the Segmental Assessment of Trunk Control (SATCo). Results Linear regression analysis showed a positive relationship between the segmental level of trunk control and age......, with both gross motor function and mobility. Segmental trunk control measured using the SATCo could explain between 38% and 40% of variation in GMFM and between 32% and 37% of variation in PEDI. Interpretation This study suggests a strong association between segmental trunk postural control and gross motor...

  20. Motor de reluctancia conmutada: modelado, simulación y control

    Directory of Open Access Journals (Sweden)

    Eduard Galvis-Restrepo

    2007-01-01

    Full Text Available The switched reluctance motor (SRM is a doubly-salient machine. This means that it has salient poles on both the rotor and stator. A SRM construction is simple as compared to other types of electric motors. The rotor has no windings or magnet; the windings are concentrated in the stator. The purpose of this article is the development of a speed control strategy for this kind of motor. Description of a nonlinear SRM model and its respective simulation in Matlab/Simulink environment is presented. The constant rotor speed control of SRM is achieved from current control perspective with a PI controller.

  1. Design of permanent magnet synchronous motor speed control system based on SVPWM

    Science.gov (United States)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  2. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2011-12-01

    Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vector. Additionally, a state estimation-based control loop is implemented using the Unscented Kalman Filter. Moreover, state estimation-based control is developed for the induction motor model using a nonlinear flatness-based controller and the state estimation that is provided by the Extended Kalman Filter. Unlike field oriented control, in the latter approach there is no assumption about decoupling between the rotor speed dynamics and the magnetic flux dynamics. The efficiency of the Kalman Filter-based control schemes, for both the DC and induction motor models, is evaluated through simulation experiments.

  3. How Does the Relationship Between Motor Skill Performance and Body Mass Index Impact Physical Activity in Preschool Children?

    Science.gov (United States)

    Guo, Haixia; Schenkelberg, Michaela A; O'Neill, Jennifer R; Dowda, Marsha; Pate, Russell R

    2018-05-01

    To determine if weight status modifies the relationship between motor skill (MS) performance and physical activity (PA) in preschoolers. Preschoolers (N = 227, age 3-5 y) were recruited from 22 preschools. Preschoolers' MS (locomotor, object control, and total MS) were assessed with the Children's Activity and Movement in Preschool Study MS protocol. PA was measured by accelerometry. Mixed linear models were used to examine the relationship of MS performance and body mass index (BMI) z score to PA. Models were adjusted for age, race, sex, and parent education, with preschool as a random effect. There was a significant correlation between MS performance and PA (r = .14-.17, P < .05). A significant interaction was observed between BMI z score and object control, and between BMI z score and total MS score on PA (P = .03). Preschoolers with higher BMI z scores and high object control scores engaged in significantly (P = .03) more PA than preschoolers with lower BMI z scores and high object control scores (PA = 15.04 min/h and 13.54 min/h, respectively). Similarly, preschoolers with higher BMI z scores and high total MS scores spent significantly (P = .01) more time in PA compared with those with lower BMI z scores and high total MS scores (PA = 15.65 min/h and 13.91 min/h, respectively). Preschool children's MS performance is positively correlated with PA, and BMI z score modified the relationship between MS performance and PA.

  4. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  5. Indirect Vector Control of an Induction Motor with Fuzzy-Logic based Speed Controller

    Directory of Open Access Journals (Sweden)

    BIROU, I.

    2010-02-01

    Full Text Available The aim of this paper is to present a new speed control structure for induction motors (IM by using fuzzy-logic based speed controllers. A fuzzy controller is designed to achieve fast dynamic response and robustness for low and high speeds. Different types of membership functions of the linguistic variables and output/input characteristics are analyzed. A simple but robust structure enables a wide range speed control of the driving system. The rotor flux field oriented control (FOC is realized by using a flux observer based on the IM model with nonlinear parameters. The control is extended to operate also in the field weakening region with an optimal rotor flux regulation. The control structure was implemented on a computer system, based on a fixed point digital signal processor (DSP. To verify the performances of the proposed driving system, simulated and experimental results are presented.

  6. Brain-controlled body movement assistance devices and methods

    Science.gov (United States)

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob; Moran, Daniel W.

    2017-01-10

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of the brain-controlled body movement assistance device.

  7. Energy optimal control strategies for electro motors; low-cost and sensorless PWM-VSI based induction motor control. Vol. 1: Main report, appendix and annex

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, F.

    1998-02-01

    When variable speed induction motor drives are used in applications that run at low load for long periods, energy can be saved by reducing the motor flux at low load. In this report the efficiency of 2.2 kW standard and high-efficiency motor drives are investigated experimentally with efficiency optimized and constant flux control, with sinusoidal and PWM voltage supply and with varying switching frequency. Steady-state motor models are developed and verified experimentally, and are used to analyze and develop efficiency optimizing control strategies. Four energy optimal control strategies are tested experimentally: cos({phi}) control, model-based control, off-line calculated airgap flux control and stator current/input power minimising search control. Their dynamical properties and their ability to reject load disturbances are analysed. Their ability to save energy is tested on a water pump system. For a typical predefined test-cycle the energy optimal control reduces the energy consumption with 10% compared with classical constant V/Hz control. (au)

  8. Transcranial magnetic stimulation probes the excitability of the primary motor cortex: A framework to account for the facilitating effects of acute whole-body exercise on motor processes

    Directory of Open Access Journals (Sweden)

    Karen Davranche

    2015-03-01

    Full Text Available The effects of exercise on decision-making performance have been studied using a wide variety of cognitive tasks and exercise interventions. Although the current literature supports a beneficial influence of acute exercise on cognitive performance, the mechanisms underlying this phenomenon have not yet been elucidated. We review studies that used single-pulse transcranial magnetic stimulation (TMS to probe the excitability of motor structures during whole-body exercise and present a framework to account for the facilitating effects of acute exercise on motor processes. Recent results suggest that, even in the absence of fatigue, the increase in corticospinal excitability classically reported during submaximal and exhausting exercises may be accompanied by a reduction in intracortical inhibition. We propose that reduced intracortical inhibition elicits an adaptive central mechanism that counteracts the progressive reduction in muscle responsiveness caused by peripheral fatigue. Such a reduction would render the motor cortex more sensitive to upstream influences, thus causing increased corticospinal excitability. Furthermore, reduction of intracortical inhibition may account for the more efficient descending drive and for the improvement of reaction time performance during exercise. The adaptive modulation in intracortical inhibition could be implemented through a general increase in reticular activation that would further account for enhanced sensory sensitivity.

  9. Spectral Variability in the Aged Brain during Fine Motor Control

    Science.gov (United States)

    Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.

    2016-01-01

    Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231

  10. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  11. Control Method for Deceleration without Over-Voltage of the Permanent Magnet Synchronous Motor

    Science.gov (United States)

    Notohara, Yasuo; Endo, Tsunehiro

    In case of decelerating a permanent magnet motor, an over-voltage occurs on the inverter DC voltage due to the regenerative energy of the motor. In order to reduce the over-voltage, a brake circuit is usually applied to the DC circuit. In this paper a reduction technique of the over-voltage without the brake circuit is described. We proposed the method for controlling the motor d-axis current optimally according to the motor q-axis current to reduce the over-voltage. This method is applied to the salient-pole machine. As a result over-voltage reduction is achieved on a certain condition.

  12. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    Science.gov (United States)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  13. Lumbopelvic motor control and low back pain in elite soccer players: a cross-sectional study.

    Science.gov (United States)

    Grosdent, Stéphanie; Demoulin, Christophe; Rodriguez de La Cruz, Carlos; Giop, Romain; Tomasella, Marco; Crielaard, Jean-Michel; Vanderthommen, Marc

    2016-01-01

    This study aimed to investigate the relationship between the history of low back pain and quality of lumbopelvic motor control in soccer players. Forty-three male elite soccer players (mean age, 18.2 ± 1.4 years) filled in questionnaires related to low back pain and attended a session to assess lumbopelvic motor control by means of five tests (the bent knee fall out test, the knee lift abdominal test, the sitting knee extension test, the waiter's bow and the transversus abdominis test). A physiotherapist, blinded to the medical history of the participants, scored (0 = failed, 1 = correct) the performance of the players for each of the tests resulting in a lumbopelvic motor control score ranging from 0 to 5. Forty-seven per cent of the soccer players reported a disabling low back pain episode lasting at least two consecutive days in the previous year. These players scored worse lumbopelvic motor control than players without a history of low back pain (lumbopelvic motor control score of 1.8 vs. 3.3, P soccer players with a history of low back pain had an altered lumbopelvic motor control. Further research should examine whether lumbopelvic motor control is etiologically involved in low back pain episodes in soccer players.

  14. The relationship between executive function and fine motor control in young and older adults.

    Science.gov (United States)

    Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M

    2017-01-01

    The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A moving story: Whole-body motor training selectively improves the appraisal of action meanings in naturalistic narratives.

    Science.gov (United States)

    Trevisan, Piergiorgio; Sedeño, Lucas; Birba, Agustina; Ibáñez, Agustín; García, Adolfo M

    2017-10-02

    This study examined whether systematic whole-body stimulation and increased attention to visuospatial motion patterns can enhance the appraisal of action meanings evoked by naturalistic texts. Participants listened to action and neutral (non-action) narratives before and after videogame-based bodily training, and responded to questions on information realized by verbs (denoting abstract and action processes) and circumstances (conveying locative or temporal details, for example). Strategically, we worked with dyslexic children, whose potential comprehension deficits could give room to post-training improvements. Results showed a selective boost in understanding of action information, even when controlling for baseline performance. Also, this effect proved uninfluenced by short-term memory skills, and it was absent when training relied on non-action videogames requiring minimal bodily engagement. Of note, the movements described in the texts did not match those performed by participants, suggesting that well-established effector- and direction-specific language embodiment effects may be accompanied by more coarse-grained sensorimotor resonance, driven by activation of motor and visuospatial sensory systems. In sum, the stimulation of movement-related mechanisms seems to selectively boost the appraisal of actions evoked by naturalistic texts. By demonstrating such links between two real-life activities, our study offers an empirical tie between embodied and situated accounts of cognition.

  16. Full adaptive backstepping design of a Speed Sensorless Field Oriented Controller for an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2001-01-01

    It is well known that modern induction motor control rely on a good dynamic model of the motor. Full state variable information together with exact parameter knowledge is needed. The aim of this work is to fulfill these needs by use of a novel nonlinear observer structure based on the backstepping...

  17. Method for the Field-oriented Control of an Induction Motor

    DEFF Research Database (Denmark)

    2000-01-01

    A method for the field-oriented control of an induction motor by means of a frequency contverter is dislosed, in which method a transformation angle is determined by estimation and is corrected in dependence on a rotational speed of a rotor flux vector or of the induction motor and/or in dependence...

  18. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    Science.gov (United States)

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  19. 76 FR 5586 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Mobile Cargo...

    Science.gov (United States)

    2011-02-01

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9260-5] California State Motor Vehicle and Nonroad Engine... diesel particulate matter and nitrogen oxides. The requirements apply to any motorized vehicle used to... of the highest level verified diesel emission control strategy (VDECS) within one year of purchase...

  20. Self-Controlled Practice Enhances Motor Learning in Introverts and Extroverts

    Science.gov (United States)

    Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda, Jr.; Tani, Go

    2014-01-01

    Purpose: The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Method: Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys…

  1. Randomized controlled trial of surface peroneal nerve stimulation for motor relearning in lower limb hemiparesis

    NARCIS (Netherlands)

    Sheffler, L.R.; Taylor, P.N.; Gunzler, D.D.; Buurke, Jaap; IJzerman, Maarten Joost; Chae, J.

    2013-01-01

    Objective: To compare the motor relearning effect of a surface peroneal nerve stimulator (PNS) versus usual care on lower limb motor impairment, activity limitation, and quality of life among chronic stroke survivors. Design: Single-blinded randomized controlled trial. Setting: Teaching hospital of

  2. Motor Control Test Responses to Balance Perturbations in Adults with an Intellectual Disability

    Science.gov (United States)

    Hale, Leigh; Miller, Rebekah; Barach, Alice; Skinner, Margot; Gray, Andrew

    2009-01-01

    Background: The aims of this small exploratory study were to determine (1) whether adults with intellectual disability who had a recent history of falling had slower motor responses to postural perturbations than a sample of adults without disability when measured with the Motor Control Test (MCT) and (2) to identify any learning effects…

  3. The Influence of Motor Imagery on Postural Sway: Differential Effects of Type of Body Movement and Person Perspective.

    Science.gov (United States)

    Stins, John F; Schneider, Iris K; Koole, Sander L; Beek, Peter J

    2015-01-01

    The present study examined the differential effects of kinesthetic imagery (first person perspective) and visual imagery (third person perspective) on postural sway during quiet standing. Based on an embodied cognition perspective, the authors predicted that kinesthetic imagery would lead to activations in movement-relevant motor systems to a greater degree than visual imagery. This prediction was tested among 30 participants who imagined various motor activities from different visual perspectives while standing on a strain gauge plate. The results showed that kinesthetic imagery of lower body movements, but not of upper body movements, had clear effects on postural parameters (sway path length and frequency contents of sway). Visual imagery, in contrast, had no reliable effects on postural activity. We also found that postural effects were not affected by the vividness of imagery. The results suggest that during kinesthetic motor imagery participants partially simulated (re-activated) the imagined movements, leading to unintentional postural adjustments. These findings are consistent with an embodied cognition perspective on motor imagery.

  4. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  5. A new method for speed control of a DC motor using magnetorheological clutch

    Science.gov (United States)

    Nguyen, Quoc Hung; Choi, Seung-Bok

    2014-03-01

    In this research, a new method to control speed of DC motor using magnetorheological (MR) clutch is proposed and realized. Firstly, the strategy of a DC motor speed control using MR clutch is proposed. The MR clutch configuration is then proposed and analyzed based on Bingham-plastic rheological model of MR fluid. An optimal designed of the MR clutch is then studied to find out the optimal geometric dimensions of the clutch that can transform a required torque with minimum mass. A prototype of the optimized MR clutch is then manufactured and its performance characteristics are experimentally investigated. A DC motor speed control system featuring the optimized MR clutch is designed and manufactured. A PID controller is then designed to control the output speed of the system. In order to evaluate the effectiveness of the proposed DC motor speed control system, experimental results of the system such as speed tracking performance are obtained and presented with discussions.

  6. Nonlinear Speed Control of Switched Reluctance Motor Drives Taking into Account Mutual Inductance

    Directory of Open Access Journals (Sweden)

    M. Alrifai

    2008-01-01

    Full Text Available A speed control algorithm is proposed for variable speed switched reluctance motor (SRM drives taking into account the effects of mutual inductances. The control scheme adopts two-phase excitation; exciting two adjacent phases can overcome the problems associated with single-phase excitation such as large torque ripple, increased acoustic noise, and rotor shaft fatigues. The effects of mutual coupling between two adjacent phases and their contribution to the generated electromagnetic torque are considered in the design of the proposed control scheme for the motor. The proposed controller guarantees the convergence of the currents and the rotor speed of the motor to their desired values. Simulation results are given to illustrate the developed theory; the simulation studies show that the proposed controller works well. Moreover, the simulation results indicate that the proposed controller is robust to changes in the parameters of the motor and to changes in the load torque.

  7. Speed Digital Control of Brushless DC Motor Using dsPIC Controller

    Directory of Open Access Journals (Sweden)

    Gheorghe Băluţă

    2014-09-01

    Full Text Available This paper presents the digital control of the Brushless DC motor (BLDCM speed. The dsPICDEM MC1 development system (with the dsPIC30F6010A microcontroller and the dsPICDEM MC1L power module, manufactured by Microchip Company, were used. The control program was developed in C programming language. The graphical user interface was realized in LabVIEW 8.6 graphical programming language. For speed control, a digital controller PI type was implemented. Due to digital controller well chosen and well tuned, the system response at speed step variation is very good. Therewith, the experimental results obtained also show a good compensation of disturbance which does not happen in open-loop control.

  8. Speed Control Design of Permanent Magnet Synchronous Motor using TakagiSugeno Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Ahmad Asri Abd Samat

    2017-12-01

    Full Text Available This paper proposes a speed control design of Permanent Magnet Synchronous Motor (PMSM using Field Oriented Control (FOC. The focus is to design a speed control using Takagi — Sugeno Fuzzy Logic Control (T-S FLS. These systems will replace the conventional method which is proportional-integral (PI. The objective of this paper is to study the T—S Fuzzy Inference System (FIS speed regulator and acceleration observer for PMSM. The scope of study basically is to design and analyse the Takagi Sugeno FLC and the PMSM. This paper also will describe the methodology and process of modelling the PMSM including data analysis. The simulation work is implemented in Matlab-Simulink to verify the control method. The effectiveness of this proposed control method was confirmed through various range of speed and torque variation.

  9. Sensor and sensorless fault tolerant control for induction motors using a wavelet index.

    Science.gov (United States)

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state.

  10. Analysis of application of various materials for manufacturing parts of motor car bodies in automobile industry

    Directory of Open Access Journals (Sweden)

    Вікторія Григорівна Гаврилова

    2016-07-01

    Full Text Available The work presents an analysis of applying various steels for manufacturing motor-car bodies. There is a brief description of cold-rolled sheet steels RRST 1405 produced according to the standards DIN 1623 and DIN 1541; UST 1203, UST 1303 according to DIN 1624 and DIN 1606; ST 4, 08MnSiAlTi, 07MnNbAl and also a classification and a brief description of steels made according to USLAB: IF-steel with increased formability, thermo-strengthened BH-steel, dual phase (DP steels, transformation induced plasticity (TRIP steels, martensitic (Mart steels, austenitic high-tensile steels – (TWIP steels, high strength steels of new generation of AHSS type (advanced high-strength steels and UHSS (ultra high-strength steels, high-strength steels and superplastic steels of new generation for lightweight constructions (TRIPLEX-steel, hot-rolled nano-structured steel NANOHITEN. It has been shown that the main tendency in modern approach to engineering and manufacturing sheet steel used in automotive industry is to increase strength while maintaining formability characteristics, reducing the coefficient of normal plastic anisotropy (Lankford value ratio, as well as increasing srengthening at deformation. The advantages and disadvantages of the materials used in the automotive industry have been shown, as well as ways of their improving. The work represents a compilation of several publications. The materials can be used for developing a training course «Materials to be used in transport» within the framework of the International Project on reforming curricula TEMPUS «MMATENG»: «Two-stage Training Program for Engineering Materials Curriculum Modernization»

  11. Higher Levels of Psychopathy Predict Poorer Motor Control: Implications for Understanding the Psychopathy Construct

    OpenAIRE

    Robinson, Michael D.; Bresin, Konrad

    2014-01-01

    A review of the literature suggests that higher levels of psychopathy may be linked to less effective behavioral control. However, several commentators have urged caution in making statements of this type in the absence of direct evidence. In two studies (total N = 142), moment-to-moment accuracy in a motor control task was examined as a function of dimensional variations in psychopathy in an undergraduate population. As hypothesized, motor control was distinctively worse at higher levels of ...

  12. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder

    Directory of Open Access Journals (Sweden)

    Thomas Hassa

    2017-01-01

    Full Text Available Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  13. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    Science.gov (United States)

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  14. High accuracy motor controller for positioning optical filters in the CLAES Spectrometer

    Science.gov (United States)

    Thatcher, John B.

    The Etalon Drive Motor (EDM), a precision etalon control system designed for accurate positioning of etalon filters in the IR spectrometer of the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment is described. The EDM includes a brushless dc torque motor, which has an infinite resolution for setting an etalon filter to any desired angle, a four-filter etalon wheel, and an electromechanical resolver for angle information. An 18-bit control loop provides high accuracy, resolution, and stability. Dynamic computer interaction allows the user to optimize the step response. A block diagram of the motor controller is presented along with a schematic of the digital/analog converter circuit.

  15. Modelling and Design of Active Thermal Controls for Power Electronics of Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Blaabjerg, Frede; Ma, Ke

    2017-01-01

    of active thermal control methods for the power devices of a motor drive application. The motor drive system together with the thermal cycling of the power devices have been modelled, and adverse temperature swings could be noticed during the start-up and deceleration periods of the motor. Based...... on the electrical response of the system, the junction temperature of the semiconductor devices is estimated, and consequently three active thermal control methods are proposed and practically designed with respect to the following parameters: switching frequency, deceleration slope and modulation technique....... Finally, experimental results are provided in order to validate the effectiveness of the proposed control methods....

  16. Maximum Torque per Ampere Control of Permanent Magnet Synchronous Motor Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaei

    2011-08-01

    Full Text Available Permanent magnet synchronous motor (PMSM drives have many advantages over other drives, i.e. high efficiency and high power density. Particularly, PMSMs are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller.

  17. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial.

    Science.gov (United States)

    Du, J; Tian, L; Liu, W; Hu, J; Xu, G; Ma, M; Fan, X; Ye, R; Jiang, Y; Yin, Q; Zhu, W; Xiong, Y; Yang, F; Liu, X

    2016-11-01

    Repetitive transcranial magnetic stimulation (rTMS) changes the excitability of the motor cortex and thereby has the potential to enhance motor recovery after stroke. This randomized, sham-controlled, double-blind study was to compare the effects of high-frequency versus low-frequency rTMS on motor recovery during the early phase of stroke and to identify the neurophysiological correlates of motor improvements. A total of 69 first-ever ischemic stroke patients with motor deficits were randomly allocated to receive five daily sessions of 3-Hz ipsilesional rTMS, 1-Hz contralesional rTMS or sham rTMS in addition to standard physical therapy. Outcome measures included motor deficits, neurological scores and cortical excitability, which were assessed at baseline, after the intervention and at 3-month follow-up. The rTMS groups manifested greater motor improvements than the control group, which were sustained for at least 3 months after the end of the treatment sessions. 1-Hz rTMS over the unaffected hemisphere produced more profound effects than 3-Hz rTMS in facilitating upper limb motor performance. There was a significant correlation between motor function improvement and motor cortex excitability change in the affected hemisphere. Repetitive transcranial magnetic stimulation is a beneficial neurorehabilitative strategy for enhancing motor recovery in the acute and subacute phase after stroke. © 2016 EAN.

  18. Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation

    International Nuclear Information System (INIS)

    Miara, Bernadette; Muench, Arnaud

    2009-01-01

    We study the exact controllability of a three-dimensional body made of a material whose constitutive law introduces an elasticity-electricity coupling. We show that a coupled elastic-electric control acting on the whole boundary of the body drives the system to rest after time large enough. Two-dimensional numerical experiments suggest that controllability can still be achieved by relaxing this restrictive condition using either both controls on a reduced support or elastic control alone

  19. Research of Compound Control for DC Motor System Based on Global Sliding Mode Disturbance Observer

    Directory of Open Access Journals (Sweden)

    He Zhang

    2014-01-01

    Full Text Available Aiming at the problems of modeling errors, parameter variations, and load moment disturbances in DC motor control system, one global sliding mode disturbance observer (GSMDO is proposed based on the global sliding mode (GSM control theory. The output of GSMDO is used as the disturbance compensation in control system, which can improve the robust performance of DC motor control system. Based on the designed GSMDO in inner loop, one compound controller, composed of a feedback controller and a feedforward controller, is proposed in order to realize the position tracking of DC motor system. The gains of feedback controller are obtained by means of linear quadratic regulator (LQR optimal control theory. Simulation results present that the proposed control scheme possesses better tracking properties and stronger robustness against modeling errors, parameter variations, and friction moment disturbances. Moreover, its structure is simple; therefore it is easy to be implemented in engineering.

  20. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    Science.gov (United States)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  1. Motor cortical control of movement speed with implications for brain-machine interface control.

    Science.gov (United States)

    Golub, Matthew D; Yu, Byron M; Schwartz, Andrew B; Chase, Steven M

    2014-07-15

    Motor cortex plays a substantial role in driving movement, yet the details underlying this control remain unresolved. We analyzed the extent to which movement-related information could be extracted from single-trial motor cortical activity recorded while monkeys performed center-out reaching. Using information theoretic techniques, we found that single units carry relatively little speed-related information compared with direction-related information. This result is not mitigated at the population level: simultaneously recorded population activity predicted speed with significantly lower accuracy relative to direction predictions. Furthermore, a unit-dropping analysis revealed that speed accuracy would likely remain lower than direction accuracy, even given larger populations. These results suggest that the instantaneous details of single-trial movement speed are difficult to extract using commonly assumed coding schemes. This apparent paucity of speed information takes particular importance in the context of brain-machine interfaces (BMIs), which rely on extracting kinematic information from motor cortex. Previous studies have highlighted subjects' difficulties in holding a BMI cursor stable at targets. These studies, along with our finding of relatively little speed information in motor cortex, inspired a speed-dampening Kalman filter (SDKF) that automatically slows the cursor upon detecting changes in decoded movement direction. Effectively, SDKF enhances speed control by using prevalent directional signals, rather than requiring speed to be directly decoded from neural activity. SDKF improved success rates by a factor of 1.7 relative to a standard Kalman filter in a closed-loop BMI task requiring stable stops at targets. BMI systems enabling stable stops will be more effective and user-friendly when translated into clinical applications. Copyright © 2014 the American Physiological Society.

  2. YAMS: a stepper motor controller for the FERMI-Elettra free electron laser

    International Nuclear Information System (INIS)

    Abrami, A.; Marco, M. de; Lonza, M.; Vittor, D.

    2012-01-01

    New projects, like FERMI-Elettra, demand for the standardization of the systems in order to cut development and maintenance costs. The various motion control applications foreseen in this project required a specific controller able to flexibly adapt to any need while maintaining a common interface to the control system to minimize software development efforts. These reasons led us to design and build 'Yet Another Motor Sub-rack', (YAMS), a 3U chassis containing a commercial stepper motor controller, up to eight motor drivers and all the necessary auxiliary systems. The motors can be controlled locally by means of an operator panel or remotely through an Ethernet interface and a dedicated Tango device server. The paper describes the details of the project and the deployment issues

  3. Induction Motor Drive System Based on Linear Active Disturbance Rejection Controller

    Science.gov (United States)

    Liu, Liying; Zhang, Yongli; Yao, Qingmei

    It is difficult to establish an exact mathematical model for the induction motor and the robustness is poor of the vector control system using PI regulator. This paper adopts the linear active disturbance rejection controller (LADRC) to control inductor motor. LADRC doesn't need the exact mathematical model of motor and it can not only estimate but also compensate the general disturbance that includes the coupling items in model of motor and parameters perturbations by linear extended state observer (LESO), so the rotor flux and torque fully decouple. As a result, the performance is improved. To prove the above control scheme, the proposed control system has been simulated in MATLAB/SIMULINK, and the comparison was made with PID. Simulation results show that LADRC' has better performance and robustness than PID.

  4. Mathematical Description of an Asynchronous Motor with the Indirect Control of the Output Mechanical Variables

    Directory of Open Access Journals (Sweden)

    Glazachev A.V.

    2016-01-01

    Full Text Available The article gives the mathematical description of an asynchronous motor with the indirect control of the output mechanical variables of an asynchronous motor in the electric drive. To determine the electromagnetic torque and angular velocity of the asynchronous motor in the electric drive the mathematical description is used in which the values are determined by the readings of the motor and easily measured values by means of known in practice devices. The proposed in the article the mathematical description for the indirect measuring the electromagnetic torque and angular velocity of the asynchronous motor in the electric drive does not contain the integral components that introduce the great error into the value of the controlled electromagnetic torque and angular velocity.

  5. Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices

    Science.gov (United States)

    Kemp, Stephen W. P.; Urbanchek, Melanie G.; Irwin, Zachary T.; Chestek, Cynthia A.; Cederna, Paul S.

    2017-05-01

    Traumatic peripheral nerve injuries suffered during amputation commonly results in debilitating neuropathic pain in the affected limb. Modern prosthetic technologies allow for intuitive, simultaneous control of multiple degrees of freedom. However, these state-of-the-art devices require separate, independent control signals for each degree of freedom, which is currently not possible. As a result, amputees reject up to 75% of myoelectric devices preferring instead to use body-powered artificial limbs which offer subtle sensory feedback. Without meaningful and intuitive sensory feedback, even the most advanced myoelectric prostheses remain insensate, burdensome, and are associated with enormous cognitive demand and mental fatigue. The ideal prosthetic device is one which is capable of providing intuitive somatosensory feedback essential for interaction with the environment. Critical to the design of such a bioprosthetic device is the development of a reliable biologic interface between human and machine. This ideal patient-prosthetic interface allows for transmission of both afferent somatosensory information and efferent motor signals for a closed-loop feedback system of neural control. Our lab has developed the Regenerative Peripheral Nerve Interface (RPNI) as a biologic nerve interface designed for stable integration of a prosthetic device with transected peripheral nerves in a residual limb. The RPNI is constructed by surgically implanting the distal end of a transected peripheral nerve into an autogenous muscle graft. Animal experiments in our lab have shown recording of motor signals from RPNI's implanted into both rodents and monkeys. Here, we achieve high amplitude EMG signals with a high signal to noise (SNR) ratio.

  6. A Novel BLDC-Like DTC Control Technique for Induction Motors

    Directory of Open Access Journals (Sweden)

    Andrea Rossi

    2012-01-01

    Full Text Available DC brushless motors are widely adopted for their simplicity of control, even in sensorless configuration, and their high torque density. On the other hand, induction motors are very economical due to the absence of permanent magnets; for the same reason they can easily be driven in the flux-weakening region to attain a wide speed range. Nevertheless, high dynamic induction motors drives, based on field-oriented (FOC or predictive control, require large amounts of computing power and are rather sensitive to motor parameter variations. This paper presents a simple DTC induction motor control algorithm based on a well-known BLDC control technique, which allows to realize a high dynamic induction motor speed control with wide speed range. The firmware implementation is very compact and occupies a low amount of program memory, comparable to volt-per-Hertz- (V/f- based control algorithms. The novel control algorithm presents also good performance and low current ripple and can be implemented on a low-cost motion control DSP without resorting to high-frequency PWM.

  7. RBF Neural Network Approach for Identification and Control of DC Motors

    Directory of Open Access Journals (Sweden)

    EA Feilat

    2012-12-01

    Full Text Available In this paper, a neural network approach for the identification and control of a separately excited direct (DC motor (SEDCM driving a centrifugal pump load is applied. In this application, two radial basis function neural networks (RBFNN are used: The first is a RBFNN identifier trained offline to emulate the dynamic performance of the DC motor-load system. The second is a RBFNN controller, which is trained to make the motor speed follow a selected reference signal. Two RBFNN control schemes are proposed using direct inverse and internal model control schemes. The performance of the RBFNN identifier and controller is investigated in terms of step response, sharp changes in speed trajectory, and sudden load change, as well as changes in motor parameters. The performance of RBFNN in system identification and control has been compared with the performance of the well-known back-propagation neural network (BPNN. The simulation results show that both of the BPNN and RBFNN controllers exhibit excellent dynamic response, adapt well to changes in speed trajectory and load connected to the motor, and adapt to the variations of motor parameters. Furthermore, the simulation results show that the step response of RBFNN internal model and direct inverse controllers are identical.

  8. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  9. Adaptive observer for speed sensorless PM motor control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2003-01-01

    This paper presents an adaptive observer for extimating the rotor position and speed of a permanent magnet synchronous motors (PMSM). The observer compensates for voltage offsets and permanent magnet strength variations. The adaptation structure for estimating the strength of the permanent magnet...

  10. Control and sensor techniques for PAD servo motor drive

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Zhang, Zhe; Andersen, Michael A. E.

    2015-01-01

    The Piezoelectric Actuator Drive (PAD) is a new type of electrical motor that employs piezoelectric multilayer actuators coupled with a form-fitted micro-mechanical gearing to generate rotary motion. The PAD is precise, having a positioning error of less than 2 arc-seconds. Its typical output...

  11. Motor vehicle fuel economy, the forgotten HC control stragegy?

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  12. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  13. Straight and chopped DC performance data for a reliance EV-250AT motor with a General Electric EV-1 controller

    Science.gov (United States)

    Edie, P. C.

    1981-01-01

    Straight and chopped DC motor performances for a Reliance EV-250AT motor with an EV-1 controller were examined. Effects of motor temperature and operating voltage are shown. It is found that the maximum motor efficiency is approximately 85% at low operating temperatures in the straight DC mode. Chopper efficiency is 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight DC mode.

  14. Design And Construction Of A Miniaturized Motor Controller For Interplanetary Rover

    Science.gov (United States)

    Lofgren, Henrik; Lijemark, Tomas; Lamoureux, Enrique; Bruhn, Fredrik; Hagstrom, Maria; Hall, Karin; Ljunggren, Anders; Habinc, Sandi; Gruener, Gabriel; Rusconi, Andrea; Boyes, Ben; Wagenbach, Susanne; Poulakis, Pantelis; Kohler, Johan

    2011-10-01

    ÅAC Microtec AB is leading an international consortium developing a Motion Control Chip (MCC) for the European Space Agency (ESA) under a TRP contract. The team consists of the prime ÅAC (Sweden), Aeroflex Gaisler (Sweden), Centre Suisse d'Electroniqueet de Microtechnique (CSEM, Switzerland), Selex Galileo Italy), Astrium (UK) and DLR Institute of Space Systems (Germany). In order to improve performance of rovers and robotic arms, one solution is to place the controller physically as close as possible to the motors. This reduces the harness and hence saves weight, decreases thermal leakage from the main system body and simplifies the final assembly. Nevertheless, with this approach the constraints on the electronics become more stringent: the assembly has to survive a very wide temperature range as well as vibrations and possibly dust, and at the same time it should be as small and light as possible. To cope with these design constraints, the Motion Control Chip (MCC) is based on stacked ceramic substrate technology in a Multi Chip Module (MCM), on which active components are assembled as bare dies. This approach was chosen in favor of special large ASIC development to reduce cost and make the design more flexible. By choosing a MCM solution, the design will allow both FPGA and ASICs to be used. FPGAs are used initially to lower the prototyping cost and later be replaced with ASICs as the packaging technology is qualified for the extreme environments of ISS, Mars and Moon. The manufacturing of the first iteration of miniaturized MCC modules is ongoing and initial functional tests have been executed. The results are currently being evaluated and when this is finalized the full test campaign including environmental tests will planned in detail. The tests are assumed to be finalized during the spring of 2011. Aeroflex Gaisler is the official ESA maintainer of the RTEMS port for the LEON3 processor and has been providing support to several developments. CSEM is

  15. Development of gait motor control: what happens after a sudden increase in height during adolescence?

    Science.gov (United States)

    Bisi, Maria Cristina; Stagni, Rita

    2016-05-20

    Basic understanding of motor control and its processes is a topic of well-known high relevance. During adolescence walking is theoretically a well-achieved fundamental skill, having reached a mature manifestation; on the other hand, adolescence is marked by a period of accelerated increases in both height and weight, referred as growth spurt. Thus, this period was chosen as a controlled and natural environment for partially isolating one of the factors influencing motor development (segment growth). The aim of the study was to compare gait performance of growing and not growing male adolescents during walking in single task (ST) and dual task (DT), in order to study which are the modifications that motor control handles when encountering a sudden change in segment length. 19 adolescents were selected as growing adolescents (they showed a height increase greater than 3 cm in 3 months). A group of BMI-matched peers were selected as not growing adolescents (they showed a height increase lower than 1 cm in 3 months). Measures of acceleration of the trunk (L5 level) were collected using one tri-axial wireless inertial sensor. The participants were asked to walk at self-selected speed back and forth four times in a 10 m long corridor in ST and DT conditions. The following characteristics of gait performance were evaluated using different indices: variability, smoothness, regularity, complexity and local dynamic stability. An unpaired t-test was performed on the two groups for each method. Different indices followed the hypothesized trend in the two groups, even if differences were not always statistically significant: not growing adolescents showed a lower variability and complexity of gait and a higher smoothness/rhythm. Stability results showed a similarly stable gait pattern (or even higher in DT) in the growing adolescents when compared to their not growing peers. The findings of the present work suggest that growth spurt affects gait variability, smoothness and

  16. Inter-examiner reproducibility of tests for lumbar motor control

    Directory of Open Access Journals (Sweden)

    Elkjaer Arne

    2011-05-01

    Full Text Available Abstract Background Many studies show a relation between reduced lumbar motor control (LMC and low back pain (LBP. However, test circumstances vary and during test performance, subjects may change position. In other words, the reliability - i.e. reproducibility and validity - of tests for LMC should be based on quantitative data. This has not been considered before. The aim was to analyse the reproducibility of five different quantitative tests for LMC commonly used in daily clinical practice. Methods The five tests for LMC were: repositioning (RPS, sitting forward lean (SFL, sitting knee extension (SKE, and bent knee fall out (BKFO, all measured in cm, and leg lowering (LL, measured in mm Hg. A total of 40 subjects (14 males, 26 females 25 with and 15 without LBP, with a mean age of 46.5 years (SD 14.8, were examined independently and in random order by two examiners on the same day. LBP subjects were recruited from three physiotherapy clinics with a connection to the clinic's gym or back-school. Non-LBP subjects were recruited from the clinic's staff acquaintances, and from patients without LBP. Results The means and standard deviations for each of the tests were 0.36 (0.27 cm for RPS, 1.01 (0.62 cm for SFL, 0.40 (0.29 cm for SKE, 1.07 (0.52 cm for BKFO, and 32.9 (7.1 mm Hg for LL. All five tests for LMC had reproducibility with the following ICCs: 0.90 for RPS, 0.96 for SFL, 0.96 for SKE, 0.94 for BKFO, and 0.98 for LL. Bland and Altman plots showed that most of the differences between examiners A and B were less than 0.20 cm. Conclusion These five tests for LMC displayed excellent reproducibility. However, the diagnostic accuracy of these tests needs to be addressed in larger cohorts of subjects, establishing values for the normal population. Also cut-points between subjects with and without LBP must be determined, taking into account age, level of activity, degree of impairment and participation in sports. Whether reproducibility of these

  17. Progressive resistance, whole body long-axis rotational training improves kicking motion motor performance.

    Science.gov (United States)

    Nyland, John; Love, Matthew; Burden, Robert; Krupp, Ryan; Caborn, David N M

    2014-02-01

    To evaluate lower extremity muscle activation, peak resultant ground reaction force (GRF) production and quickness during performance of a kicking motion following progressive resistance, whole body long-axis rotational training. Randomized, controlled study. Kinesiological research laboratory. Thirty-six healthy subjects were assigned to a training (Group 1) or to a control (Group 2) group. Time-synchronized EMG (1000 Hz), peak resultant GRF (1000 Hz) and two-dimensional kinematic (60 Hz) data were collected as subjects responded to an audio cue by kicking a cone. Group mean change differences (MCD) were compared using independent sample t-tests. Fisher's exact tests were used to determine group differences in the proportion of subjects that displayed earlier activation responses post-training. Group 1 MCD revealed earlier gluteus maximus, gluteus medius, rectus femoris, medial hamstrings, and biceps femoris activation timing than Group 2 (P ≤ 0.006) and more Group 1 subjects displayed earlier activation of these muscles post-training (P ≤ 0.041). Group 1 MCD also revealed earlier peak resultant GRF timing and improved "kick quickness" than Group 2 (P ≤ 0.014) and more Group 1 subjects displayed earlier response timing for these variables post-training (P = 0.035). Progressive resistance, whole body long-axis rotational training may improve performance during sports movements that require quick, integrated trunk-lower extremity function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Prematurely delivered rats show improved motor coordination during sensory-evoked motor responses compared to age-matched controls.

    Science.gov (United States)

    Roberto, Megan E; Brumley, Michele R

    2014-05-10

    The amount of postnatal experience for perinatal rats was manipulated by delivering pups one day early (postconception day 21; PC21) by cesarean delivery and comparing their motor behavior to age-matched controls on PC22 (the typical day of birth). On PC22, pups were tested on multiple measures of motor coordination: leg extension response (LER), facial wiping, contact righting, and fore- and hindlimb stepping. The LER and facial wiping provided measures of synchronous hind- and forelimb coordination, respectively, and were sensory-evoked. Contact righting also was sensory-evoked and provided a measure of axial coordination. Stepping provided a measure of alternated forelimb and hindlimb coordination and was induced with the serotonin receptor agonist quipazine. Pups that were delivered prematurely and spent an additional day in the postnatal environment showed more bilateral limb coordination during expression of the LER and facial wiping, as well as a more mature righting strategy, compared to controls. These findings suggest that experience around the time of birth shapes motor coordination and the expression of species-typical behavior in the developing rat. Published by Elsevier Inc.

  19. Motor mapping of implied actions during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    Background: Perceiving and understanding emotional cues is critical for survival. Using the International Affective Picture System (IAPS) previous TMS studies have found that watching humans in emotional pictures increases motor excitability relative to seeing landscapes or household objects,

  20. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity

    NARCIS (Netherlands)

    Kevenaar, Josta T|info:eu-repo/dai/nl/338771042; Bianchi, Sarah; van Spronsen, Myrrhe|info:eu-repo/dai/nl/337616655; Olieric, Natacha; Lipka, Joanna|info:eu-repo/dai/nl/369403142; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin|info:eu-repo/dai/nl/304075655; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C|info:eu-repo/dai/nl/298806630; de Graaff, Esther|info:eu-repo/dai/nl/148374646; Akhmanova, Anna|info:eu-repo/dai/nl/156410591; Steinmetz, Michel O; Hoogenraad, Casper C|info:eu-repo/dai/nl/227263502

    2016-01-01

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human

  1. Four quadrant control circuit for a brushless three-phase dc motor

    Science.gov (United States)

    Nola, Frank J. (Inventor)

    1987-01-01

    A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results.

  2. Sensorless AC electric motor control robust advanced design techniques and applications

    CERN Document Server

    Glumineau, Alain

    2015-01-01

    This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

  3. Comparative Study on Photovoltaic Pumping Systems Driven by Different Motors Optimized with Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Abdelhak Bouchakour

    2017-06-01

    Full Text Available This study investigates the performance of three different photovoltaic (PV water pumping systems driven by three types of motors, namely a separately excited DC motor (DCM, an asynchronous motor (ASM, and a permanent magnet synchronous motor (PMSM, via a DC/DC buck-boost converter coupled to a centrifugal pump. The purpose of this study is to implement a fast and robust control for this type of a nonlinear system, controlled by sliding mode (SM. This paper presents an SM control technique for controlling a DC/DC buck-boost converter to transfer the maximum power delivered by the PV generator. Each component is studied and analyzed to simulate the global system in MATLAB/SIMULINK. The three systems are then compared to determine the overall effectiveness of the proposed command. The study concludes that the ASM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.

  4. Universal Brushless-DC Motor Controller for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR is to adapt an initial prototype ultra-miniature high-performance brushless-DC-motor controller, code named 'Puck', for use by NASA across a...

  5. Motor Controller for Extreme Environments Based on SiGe, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a motor-control subsystem capable of operation in extreme environments, including those to be encountered on the Moon and Mars....

  6. Position Sensorless Vector Control for Permanent Magnet Synchronous Motors Based on Maximum Torque Control Frame

    Science.gov (United States)

    Hida, Hajime; Tomigashi, Yoshio; Kishimoto, Keiji

    High efficiency drive can be achieved by the maximum torque-per-ampere (MTPA) control which used reluctance torque effectively. However, the calculations for estimating rotor position and for controlling the d-axis current are required. The motor parameters of inductance etc. that are easily affected by magnetic saturation are included in those calculations. This paper proposes a new MTPA control method, which is robust against changes of motor parameters caused by magnetic saturation. In addition, complex calculation for d-axis current or reference to the table is not necessary. In this method, we define a novel coordinate frame, which has one axis aligned with the current vector of the MTPA control, and estimate the frame directly. Because the parameter Lqm for estimating the frame is less affected by the magnetic saturation than the conventional Lq, the effect of magnetic saturation on the position estimation can be greatly suppressed. First, an extended electromotive force model based on the proposed frame and a parameter Lqm for an estimation of the frame are derived. Next, the effectiveness of this proposed method is confirmed by simulations and experiments.

  7. High-performance adaptive intelligent Direct Torque Control schemes for induction motor drives

    Directory of Open Access Journals (Sweden)

    Vasudevan M.

    2005-01-01

    Full Text Available This paper presents a detailed comparison between viable adaptive intelligent torque control strategies of induction motor, emphasizing advantages and disadvantages. The scope of this paper is to choose an adaptive intelligent controller for induction motor drive proposed for high performance applications. Induction motors are characterized by complex, highly non-linear, time varying dynamics, inaccessibility of some states and output for measurements and hence can be considered as a challenging engineering problem. The advent of torque and flux control techniques have partially solved induction motor control problems, because they are sensitive to drive parameter variations and performance may deteriorate if conventional controllers are used. Intelligent controllers are considered as potential candidates for such an application. In this paper, the performance of the various sensor less intelligent Direct Torque Control (DTC techniques of Induction motor such as neural network, fuzzy and genetic algorithm based torque controllers are evaluated. Adaptive intelligent techniques are applied to achieve high performance decoupled flux and torque control. This paper contributes: i Development of Neural network algorithm for state selection in DTC; ii Development of new algorithm for state selection using Genetic algorithm principle; and iii Development of Fuzzy based DTC. Simulations have been performed using the trained state selector neural network instead of conventional DTC and Fuzzy controller instead of conventional DTC controller. The results show agreement with those of the conventional DTC.

  8. Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot.

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-09-22

    Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot's body was confirmed when operators controlled the robot either by performing the desired motion with their body (motion-control) or by employing a brain-computer interface (BCI) that translated motor imagery commands to robot movement (BCI-control). The interesting observation during BCI-control was that the illusion could be induced even with a noticeable delay in the BCI system. Temporal discrepancy has always shown critical weakening effects on body ownership illusions. However the delay-robustness of BOT during BCI-control raised a question about the interaction between the proprioceptive inputs and delayed visual feedback in agency-driven illusions. In this work, we compared the intensity of BOT illusion for operators in two conditions; motion-control and BCI-control. Our results revealed a significantly stronger BOT illusion for the case of BCI-control. This finding highlights BCI's potential in inducing stronger agency-driven illusions by building a direct communication between the brain and controlled body, and therefore removing awareness from the subject's own body.

  9. Fuzzy PID control algorithm based on PSO and application in BLDC motor

    Science.gov (United States)

    Lin, Sen; Wang, Guanglong

    2017-06-01

    A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.

  10. POSITION CONTROL OF BRUSHLESS DC MOTOR BASED ON DIGITAL SIGNAL PROCESSING

    Directory of Open Access Journals (Sweden)

    Çetin GENÇER

    2006-01-01

    Full Text Available Brushless DC Motors (BLDC have been used widely high performance control systems which are depended on to development of power electronic and control technology. In these motors to fed commutated supply, the control of position without oscilation has been required. In this study, position control of BLDC with digital signal processing has been implemented by a proportional-derivative (PD controller because of its simple structure. It has been seen that the controller which is proposed from simulation and experimental studies, has a quick dynamic responce with nonoscillation.

  11. Cardiovascular control during whole body exercise

    DEFF Research Database (Denmark)

    Volianitis, Stefanos; Secher, Niels H.

    2016-01-01

    It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise...... the blood flow achieved by the arms is lower than that achieved by the legs (=160 vs. 385 mlmin1100 g1), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during...... fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally...

  12. Flexible body control using neural networks

    Science.gov (United States)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  13. Sensorless Load Torque Estimation and Passivity Based Control of Buck Converter Fed DC Motor

    OpenAIRE

    Kumar, S. Ganesh; Thilagar, S. Hosimin

    2015-01-01

    Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response ...

  14. Optimal PID control of a brushless DC motor using PSO and BF techniques

    Directory of Open Access Journals (Sweden)

    H.E.A. Ibrahim

    2014-06-01

    Full Text Available This paper presents a Particle Swarm Optimization (PSO technique and bacterial foraging (BF technique for determining the optimal parameters of (PID controller for speed control of a brushless DC motor (BLDC where the (BLDC motor is modeled in simulink in Matlab. The proposed technique was more efficient in improving the step response characteristics as well as reducing the steady-state error, rise time, settling time and maximum overshoot.

  15. Optimal PID control of a brushless DC motor using PSO and BF techniques

    OpenAIRE

    H.E.A. Ibrahim; F.N. Hassan; Anas O. Shomer

    2014-01-01

    This paper presents a Particle Swarm Optimization (PSO) technique and bacterial foraging (BF) technique for determining the optimal parameters of (PID) controller for speed control of a brushless DC motor (BLDC) where the (BLDC) motor is modeled in simulink in Matlab. The proposed technique was more efficient in improving the step response characteristics as well as reducing the steady-state error, rise time, settling time and maximum overshoot.

  16. Motion Sensorless Control of BLDC PM Motor with Offline FEM Info Assisted State Observer

    DEFF Research Database (Denmark)

    Stirban, Alin; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2010-01-01

    This paper describes a new offline FEM assisted position and speed observer, for brushless dc (BLDC) PM motor drive sensorless control, based on the line-to-line PM flux linkage estimation. The zero-crossing of the line-to-line PM flux linkage occurs right in the middle of two commutation points...... identification. Digital simulations and experimental results are shown, demonstrating the reliability of the FEM assisted position and speed observer for BLDC PM motor sensorless control operation....

  17. Body composition in patients with schizophrenia: Comparison with healthy controls.

    Science.gov (United States)

    Sugawara, Norio; Yasui-Furukori, Norio; Tsuchimine, Shoko; Fujii, Akira; Sato, Yasushi; Saito, Manabu; Matsuzaka, Masashi; Takahashi, Ippei; Kaneko, Sunao

    2012-05-03

    Recently, a relationship between obesity and schizophrenia has been reported. Although fat- mass and fat free mass have been shown to be more predictive of health risk than body mass index, there are limited findings about body composition among patients suffering from schizophrenia. The aim of this study is to compare the body composition of schizophrenia patients with that of healthy subjects in Japan. We recruited patients (n = 204), aged 41.3 ± 13.8 (mean ± SD) years old with the DSM-IV diagnosis of schizophrenia who were admitted to psychiatric hospital using a cross-sectional design. Subjects' anthropometric measurements including weight, height, body mass index (BMI), and medications were also collected. Body fat, percent (%) body fat, fat- free mass, muscle mass, and body water were measured using the bioelectrical impedance analysis (BIA) method. Comparative analysis was performed with schizophrenic subjects and 204 healthy control individuals. In a multiple regression model with age, body mass index, and dose in chlorpromazine equivalents, schizophrenia was a significantly linked with more body fat, higher % body fat, lower fat- free mass, lower muscle mass, and lower body water among males. In females, schizophrenia had a significant association with lower % body fat, higher fat- free mass, higher muscle mass, and higher body water. Our data demonstrate gender differences with regard to changes in body composition in association with schizophrenia. These results indicate that intervention programs designed to fight obesity among schizophrenic patients should be individualized according to gender.

  18. Sensorless Vector Control of AC Induction Motor Using Sliding-Mode Observer

    Directory of Open Access Journals (Sweden)

    Phuc Thinh Doan

    2013-06-01

    Full Text Available This paper develops a sensorless vector controlled method for AC induction motor using sliding-mode observer. For developing the control algorithm, modeling of AC induction motor is presented. After that, a sliding mode observer is proposed to estimate the motor speed, the rotor flux, the angular position of the rotor flux and the motor torque from monitored stator voltages and currents. The use of the nonlinear sliding mode observer provides very good performance for both low and high speed motor operation. Furthermore, the proposed system is robust in motor losses and load variations. The convergence of the proposed observer is obtained using the Lyapunov theory. Hardware and software for simulation and experiment of the AC induction motor drive are introduced. The hardware consists of a 1.5kw AC induction motor connected in series with a torque sensor and a powder brake. A controller is developed based on DSP TMS320F28355. The simulation and experimental results illustrate that fast torque and speed response with small torque ripples can be achieved. The proposed control scheme is suitable to the application fields that require high performance of torque response such as electric vehicles. doi:http://dx.doi.org/10.12777/ijse.4.2.2013.39-43 [How to cite this article: Doan, P. T., Nguyen, T. T., Jeong, S. K., Oh, S. J., & Kim, S. B. (2013. Sensorless Vector Control of AC Induction Motor Using Sliding-Mode Observer. INTERNATIONAL JOURNAL OF SCIENCE AND ENGINEERING, 4(2, 39-43; doi: http://dx.doi.org/10.12777/ijse.4.2.2013.39-43

  19. Motor cortex changes after amputation are modulated by phantom limb motor control rather than pain

    DEFF Research Database (Denmark)

    Raffin, Estelle E.; Pascal, Giraux,; Karen, Reilly,

    Amputation of a limb induces reorganization within the contralateral primary motor cortex (M1-c) (1-3). In the case of hand amputation, M1-c areas evoking movements in the face and the remaining part of the upper-limb expand toward the hand area. Despite this expansion, the amputated hand still...... retains a residual M1-c activity when amputees perform phantom limb movements (4-5). Except a correlation between phantom limb pain and M1-c expansion of the face (2-3), the relationship between the ability to voluntary move the phantom hand, the level of phantom limb pain, the degree of M1-c...... reorganization and the residual M1-c activity of the amputated hand is unknown. This fMRI study aimed to determine this relationship...

  20. Motor control or graded activity exercises for chronic low back pain? A randomised controlled trial

    Science.gov (United States)

    Macedo, Luciana G; Latimer, Jane; Maher, Chris G; Hodges, Paul W; Nicholas, Michael; Tonkin, Lois; McAuley, James H; Stafford, Ryan

    2008-01-01

    Background Chronic low back pain remains a major health problem in Australia and around the world. Unfortunately the majority of treatments for this condition produce small effects because not all patients respond to each treatment. It appears that only 25–50% of patients respond to exercise. The two most popular types of exercise for low back pain are graded activity and motor control exercises. At present however, there are no guidelines to help clinicians select the best treatment for a patient. As a result, time and money are wasted on treatments which ultimately fail to help the patient. Methods This paper describes the protocol of a randomised clinical trial comparing the effects of motor control exercises with a graded activity program in the treatment of chronic non specific low back pain. Further analysis will identify clinical features that may predict a patient's response to each treatment. One hundred and seventy two participants will be randomly allocated to receive either a program of motor control exercises or graded activity. Measures of outcome will be obtained at 2, 6 and 12 months after randomisation. The primary outcomes are: pain (average pain intensity over the last week) and function (patient-specific functional scale) at 2 and 6 months. Potential treatment effect modifiers will be measured at baseline. Discussion This trial will not only evaluate which exercise approach is more effective in general for patients will chronic low back pain, but will also determine which exercise approach is best for an individual patient. Trial registration number ACTRN12607000432415 PMID:18454877