WorldWideScience

Sample records for body motor control

  1. The Effects of Increased Body Temperature on Motor Control during Golf Putting

    Science.gov (United States)

    Mathers, John F.; Grealy, Madeleine A.

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed.

  2. Gross motor control

    Science.gov (United States)

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  3. Induction motor control design

    CERN Document Server

    Marino, Riccardo; Verrelli, Cristiano M

    2010-01-01

    ""Nonlinear and Adaptive Control Design for Induction Motors"" is a unified exposition of the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible to readers who are not experts in electric motors at the same time as giving a more theoretical control viewpoint to those who are. In order to increase readability, the book concentrates on the induction motor, eschewing the much more complex and less-well-understood control of asynchronous motors. The

  4. Fine motor control

    Science.gov (United States)

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  5. Dizzy people perform no worse at a motor imagery task requiring whole body mental rotation; a case-control comparison

    Directory of Open Access Journals (Sweden)

    Sarah B Wallwork

    2013-06-01

    Full Text Available We wanted to find out whether people who suffer from dizziness take longer than people who do not, to perform a motor imagery task that involves implicit whole body rotation. Our prediction was that people in the ‘dizzy’ group would take longer at a left/right neck rotation judgment task but not a left/right hand judgment task, because actually performing the former, but not the latter, would exacerbate their dizziness. Secondly, we predicted that when dizzy participants responded to neck rotation images, responses would be greatest when images were in the upside-down orientation; an orientation with greatest dizzy-provoking potential. To test this idea, we used a case-control comparison design. One hundred and eighteen participants who suffered from dizziness and 118 age, gender, arm pain and neck pain matched controls took part in the study. Participants undertook two motor imagery tasks; a left/right neck rotation judgment task and a left/right hand judgment task. The tasks were completed using the Recognise program; an on-line reaction time task program. Images of neck rotation were shown in four different orientations; 0°, 90°, 180° and 270°. Participants were asked to respond to each ‘neck’ image identifying it as either ‘right neck rotation’ or a ‘left neck rotation’, or for hands, a right or a left hand. Results showed that participants in the ‘dizzy’ group were slower than controls at both tasks (p= 0.015, but this was not related to task (p= 0.498. Similarly, ‘dizzy’ participants were not proportionally worse at images of different orientations (p= 0.878. Our findings suggest impaired performance in dizzy people, an impairment that may be confined to motor imagery or may extend more generally.

  6. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  7. Step Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  8. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  9. Development of motor control

    OpenAIRE

    Schellekens, Johannes Maria Hubertus

    1985-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation. The aim of this thesis is to study the role and efficiency of motor control and anticipation processes in the development of children with and without disturbances in the motor system. Chapter I is a general introduction to the subjec...

  10. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...... publication date for the Annual Review of Neuroscience Volume 39 is July 08, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates....

  11. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  12. Deep networks for motor control functions

    OpenAIRE

    Berniker, Max; Kording, Konrad P.

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories w...

  13. ac bidirectional motor controller

    Science.gov (United States)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  14. Sensorless control of BLDC motor

    OpenAIRE

    Hrbáč, Zbyněk

    2012-01-01

    This thesis is focused on problematics of control of brushless DC motor in the sensor and also in the sensorless mode. Also it interprets possibilities of BLDC motor control with one faulty sensor and derivation and simulation of mathematical model. First part mentions options of rotor position sensing as well as existing methods of sensorless BLDC motor control. Second part describes control algorithms of sensor and sensorless motor control realised on device dSPACE and also realisation of f...

  15. Control linear motor with DSP

    International Nuclear Information System (INIS)

    This book consists of control linear motor with DSP, which is composed of two parts. The title of the first part is control Algorithm and software with introduction and tracking controller, drive profile on decision of motion time, floating point DSP and quantization effect, motion override Algorithm and drive profile summary, design of digital controller on design for controller structure and analysis of PID control Loop and Motor turning, design for IIR digital filter and protocol structure for communication wit host. The second part describes control hardware, which mentions Linear motor and Amplifier, motor and power supply, DSP board and interface, control of Micro Linear Stepping Motor and conclusion.

  16. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  17. Load-Responsive Motor Controller

    Science.gov (United States)

    Edge, T. M.

    1982-01-01

    New circuit controls voltage applied to a three-phase induction motor in response to magnitude of current, so as to reduce power consumption when the motor is idling or operating at less than full load. Control circuit decreases rms applied voltage to match decreases in motor load over entire torque range. This considerably decreases power consumption in motors operating at a fraction of their rated torques.

  18. Heritability of motor control and motor learning

    OpenAIRE

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the...

  19. A Fly-Inspired Mushroom Bodies Model for Sensory-Motor Control Through Sequence and Subsequence Learning.

    Science.gov (United States)

    Arena, Paolo; Calí, Marco; Patané, Luca; Portera, Agnese; Strauss, Roland

    2016-09-01

    Classification and sequence learning are relevant capabilities used by living beings to extract complex information from the environment for behavioral control. The insect world is full of examples where the presentation time of specific stimuli shapes the behavioral response. On the basis of previously developed neural models, inspired by Drosophila melanogaster, a new architecture for classification and sequence learning is here presented under the perspective of the Neural Reuse theory. Classification of relevant input stimuli is performed through resonant neurons, activated by the complex dynamics generated in a lattice of recurrent spiking neurons modeling the insect Mushroom Bodies neuropile. The network devoted to context formation is able to reconstruct the learned sequence and also to trace the subsequences present in the provided input. A sensitivity analysis to parameter variation and noise is reported. Experiments on a roving robot are reported to show the capabilities of the architecture used as a neural controller. PMID:27354193

  20. Control motor brushless sensorless

    OpenAIRE

    Solchaga Pérez de Lazárraga, Gonzalo

    2015-01-01

    El proyecto consiste en la creación de un circuito capaz de controlar la velocidad de un motor brushless sensorless. Este tipo de motores eléctricos tienen como característica que no tienen escobillas para cambiar la polaridad del bobinado de su interior y tampoco precisan de un sensor que indique que ha realizado una vuelta. Los motores brushless que son controlados por este tipo de circuitos son específicos para aeronaves no tripuladas y requieren un diseño diferente a un motor brushless pe...

  1. 'Motor control center obsolescence'

    International Nuclear Information System (INIS)

    A significant and growing problem within the global nuclear industry is the aging of motor control center (MCC) components. MCC's have a very important role in the safety and critical to generation requirements of a nuclear power plant. Although many OEM's MCC's such as ITE/Telemechanique, GE, Westinghouse, Cutler Hammer, Klockner Moeller, etc. have been used throughout the global nuclear industry, they all have one common aspect obsolescence. Obsolescence of various components within the MCC's such as molded case circuit breakers, starters, relays, heaters, contactors, etc. are impacting the reliability of the MCC to serve its intended function. The paper will discuss the options which the nuclear industry is faced with to increase the reliability of the MCC's while maintaining design control, qualification and meeting budget constraints. The options as listed below shall be discussed in detail with examples to enhance the readers understanding of the situation: 1) Component by component replacement: The hurdles associated with trying to find equivalent components to replace the obsolete components while still worki (mechanically and electrically) in the original cubicle will be presented. 2) Complete MCC cubicle with new internal components replacement: The process of supplying a replacement cubicle, with all new internal components and new door to replace the original cubicle will be discussed. The presentation will conclude with a comparison of the advantages and dis-advantages of the two methods to bring the MCC to an as new condition with the overall goal of increasing reliability. (author)

  2. Stored waveform adaptive motor control

    OpenAIRE

    Beall, Jeffery C.

    1986-01-01

    This study investigates an adaptive control scheme designed to maintain accurate motor speed control in spite of high-frequency periodic variations in load torque, load inertia, and motor parameters. The controller adapts, stores and replays a schedule of torques to be delivered at discrete points throughout the periodic load cycle. The controller also adapts to non-periodic changes in load conditions which occur over several load cycles and contains inherent integrator control action to ...

  3. Torque control for electric motors

    Science.gov (United States)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  4. DC Motor Control Predictive Models

    OpenAIRE

    Ravinesh Singh; Godfrey C. Onwubolu; Krishnileshwar Singh; Ritnesh Ram

    2006-01-01

    DC motor speed and position controls are fundamental in vehicles in general and robotics in particular. This study presents a mathematical model for correlating the interactions of some DC motor control parameters such as duty cycle, terminal voltage, frequency and load on some responses such as output current, voltage and speed by means of response surface methodology. For this exercise, a five-level full factorial design was chosen for experimentation using a peripheral interface controller...

  5. Deep networks for motor control functions.

    Science.gov (United States)

    Berniker, Max; Kording, Konrad P

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  6. A versatile stepping motor controller for systems with many motors

    International Nuclear Information System (INIS)

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab

  7. Deep networks for motor control functions

    Directory of Open Access Journals (Sweden)

    Max eBerniker

    2015-03-01

    Full Text Available The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body’s state (forward and inverse models, and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a nonlinear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control.

  8. DC Motor Control Predictive Models

    Directory of Open Access Journals (Sweden)

    Ravinesh Singh

    2006-01-01

    Full Text Available DC motor speed and position controls are fundamental in vehicles in general and robotics in particular. This study presents a mathematical model for correlating the interactions of some DC motor control parameters such as duty cycle, terminal voltage, frequency and load on some responses such as output current, voltage and speed by means of response surface methodology. For this exercise, a five-level full factorial design was chosen for experimentation using a peripheral interface controller (PIC-based universal pulse width modulation (PWM H-Bridge motor controller built in-house. The significance of the mathematical model developed was ascertained using regression analysis method. The results obtained show that the mathematical models are useful not only for predicting optimum DC motor parameters for achieving the desired quality but for speed and position optimization. Using the optimal combination of these parameters is useful in minimizing the power consumption and realization of the optimal speed and invariably position control of DC motor operations.

  9. Intelligent Controller for Networked DC Motor Control

    OpenAIRE

    B. Sharmila; N. Devarajan

    2010-01-01

    This paper focuses on the feasibility of Neural Network controller for Networked Control Systems. The Intelligent Controllers has been developed for controlling the speed of the Networked DC Motor by exploiting the features of Neural Networks and Fuzzy Logic Controllers. The major challenges in Networked Control Systems are the network induced delays and data packet losses in the closed loop. These challenges degrade the performance and destabilize the systems. The aim of the proposed Neural ...

  10. Cerebellum and Ocular Motor Control

    Directory of Open Access Journals (Sweden)

    Amir eKheradmand

    2011-09-01

    Full Text Available An intact cerebellum is a prerequisite for optimal ocular motor performance. The cerebellum fine-tunes each of the subtypes of eye movements so they work together to bring and maintain images of objects of interest on the fovea. Here we review the major aspects of the contribution of the cerebellum to ocular motor control. The approach will be based on structural-functional correlation, combining the effects of lesions and the results from physiologic studies, with the emphasis on the cerebellar regions known to be most closely related to ocular motor function: 1 the flocculus/paraflocculus for high-frequency (brief vestibular responses, sustained pursuit eye movements and gaze-holding, 2 the nodulus/ventral uvula for low-frequency (sustained vestibular responses, and 3 the dorsal oculomotor vermis and its target in the posterior portion of the fastigial nucleus (the fastigial oculomotor region for saccades and pursuit initiation.

  11. Changing motor perception by sensorimotor conflicts and body ownership

    Science.gov (United States)

    Salomon, R.; Fernandez, N. B.; van Elk, M.; Vachicouras, N.; Sabatier, F.; Tychinskaya, A.; Llobera, J.; Blanke, O.

    2016-01-01

    Experimentally induced sensorimotor conflicts can result in a loss of the feeling of control over a movement (sense of agency). These findings are typically interpreted in terms of a forward model in which the predicted sensory consequences of the movement are compared with the observed sensory consequences. In the present study we investigated whether a mismatch between movements and their observed sensory consequences does not only result in a reduced feeling of agency, but may affect motor perception as well. Visual feedback of participants’ finger movements was manipulated using virtual reality to be anatomically congruent or incongruent to the performed movement. Participants made a motor perception judgment (i.e. which finger did you move?) or a visual perceptual judgment (i.e. which finger did you see moving?). Subjective measures of agency and body ownership were also collected. Seeing movements that were visually incongruent to the performed movement resulted in a lower accuracy for motor perception judgments, but not visual perceptual judgments. This effect was modified by rotating the virtual hand (Exp.2), but not by passively induced movements (Exp.3). Hence, sensorimotor conflicts can modulate the perception of one’s motor actions, causing viewed “alien actions” to be felt as one’s own. PMID:27225834

  12. Vestibular control of body orientation in lamprey

    OpenAIRE

    Pavlova, Elena

    2004-01-01

    Maintenance of body orientation (postural control) is a vital motor function of the brain. The general goal of this project was to understand the organization and operation of neuronal networks responsible for postural control. The lamprey (a lower vertebrate) was used as a model animal. The postural control system in the lamprey, driven by vestibular input, maintains a definite orientation of the longitudinal body axis in relation to horizon (pitch angle) and the dorsal-sid...

  13. A unifying computational framework for motor control and social interaction.

    OpenAIRE

    Wolpert, Daniel M; Doya, Kenji; Kawato, Mitsuo

    2003-01-01

    Recent empirical studies have implicated the use of the motor system during action observation, imitation and social interaction. In this paper, we explore the computational parallels between the processes that occur in motor control and in action observation, imitation, social interaction and theory of mind. In particular, we examine the extent to which motor commands acting on the body can be equated with communicative signals acting on other people and suggest that computational solutions ...

  14. Ultra-Compact Motor Controller

    Science.gov (United States)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared

  15. A versatile stepping motor controller for systems with many motors

    Energy Technology Data Exchange (ETDEWEB)

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab.

  16. Motor Control: The Heart of Kinesiology

    Science.gov (United States)

    Latash, Mark L.

    2008-01-01

    This brief review presents the subjective view of the author on the history of motor control and its current state among the subdisciplines of kinesiology. It summarizes the current controversies and challenges in motor control and emphasizes the necessity for an adequate set of notions that would make motor control (and kinesiology) a science.…

  17. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  18. Control of a superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Jiang, Q; Hong, Z; Coombs, T A [Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    This paper presents a control algorithm for starting up a high temperature superconducting synchronous motor. The mathematical model of the motor has been established in m-file in Matlab and the parameters have been identified by means of the finite-element analysis method. Different starting methods for the motor have been compared and discussed, and eventually a hybrid control algorithm is proposed.

  19. Control of Separately Excited Dc Motor

    OpenAIRE

    ALIM Abdul; ABUBOKAR Talukdar

    2011-01-01

    Speed control of separately excited DC motor and performance analysis by software simulation has been done. The objective of this paper is to describe the principle of DC motor speed control using nonlinear combined control (armature voltage and field current) and proportional integral- derivative (PID) controller for DC motor drives. In the field control mode, the armature voltage is held constant and an adjustable voltage is applied to the field.Simulation models of separately excited DC mo...

  20. Body Lice Prevention and Control

    Science.gov (United States)

    ... Lice - Body Lice Parasites Home Share Compartir Prevention & Control Body lice are spread most commonly by direct ... that can be taken to help prevent and control the spread of body lice: Bathe regularly and ...

  1. Robust Control of an Induction Motor Drive

    OpenAIRE

    Mosskull, Henrik

    2006-01-01

    This thesis considers robust control of an induction motor drive, consisting of an input filter, a voltage source inverter and one or several induction motors in parallel. The motor torque is here controlled by using the method Indirect Self Control (ISC), and power oscillations between the inverter and the input filter are damped by means of a stabilization controller in an outer feedback loop. Closed-loop performance with ISC is analyzed under the assumption of a stiff inverter input voltag...

  2. Applied intelligent control of induction motor drives

    CERN Document Server

    Chan, Tze Fun

    2011-01-01

    Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor drives.This book aims to explore new areas of induction motor control based on artificial intelligence (AI) techniques in order to make the controller less sensitive to parameter changes. Selected AI techniques are applied for different induction motor control s.

  3. A Bayesian framework for speech motor control

    OpenAIRE

    Patri, Jean-François; Diard, Julien; Perrier, Pascal; Schwartz, Jean-Luc

    2015-01-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the Central Nervous System selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of...

  4. A COMPUTATIONAL NEUROANATOMY FOR MOTOR CONTROL

    OpenAIRE

    Shadmehr, Reza; Krakauer, John W.

    2008-01-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the i...

  5. Controller for computer control of brushless dc motors. [automobile engines

    Science.gov (United States)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  6. Advanced dc-Traction-Motor Control System

    Science.gov (United States)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  7. White Matter Microstructure Changes Induced by Motor Skill Learning Utilizing a Body Machine Interface

    Science.gov (United States)

    Wang, Xue; Casadio, Maura; Weber, Kenneth A.; Mussa-Ivaldi, Ferdinando A.; Parrish, Todd B.

    2014-01-01

    The purpose of this study is to identify white matter microstructure changes following bilateral upper extremity motor skill training to increase our understanding of learning-induced structural plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects performed two visuo-spatial motor training tasks over 9 sessions (2–3 sessions per week). Subjects controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a body machine interface. Before the start and within 2 days of the completion of training, whole brain diffusion tensor MR imaging data were acquired. Motor training increased fractional anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona radiata, and the body of the corpus callosum by 4.19% on average indicating white matter microstructure changes induced by activity-dependent modulation of axon number, axon diameter, or myelin thickness. These changes may underlie the functional reorganization associated with motor skill learning. PMID:24220038

  8. Speed Control of Bldc Motor Drive By Using Pid Controllers

    Directory of Open Access Journals (Sweden)

    Y.Narendra Kumar,

    2014-04-01

    Full Text Available This paper mainly deals with the Brushless DC (BLDC motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM. The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act as an alternative for traditional motors like induction and switched reluctance motors. In this paper PID controller is implemented with speed feedback loop and it is observe that torque ripples are minimized. Simulation is carried out using MATLAB / SIMULINK. The results show that the performance of BLDC Motor is quite satisfactory for various loading conditions. Brushless DC motor drives are typically employed in speed controlled applications.

  9. Ultra-Compact Motor Controller

    Science.gov (United States)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  10. Speed controller for an alternating - current motor

    International Nuclear Information System (INIS)

    A controller for a multi-phase ac motor that is subject to a large inertial load, e.g. an induction motor driving a heavy spinning rotor of a neutron chopper that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal Esub(L) having a meandering line frequency, includes a sensor which provides a feedback pulse train representative of the actual speed of the motor which is compared (by counting clock pulses between feedback pulses) with a reference clock signal in a computing unit to provide a motor control signal Esub(c). The motor control signal is a weighted linear sum of a speed error signal, a phase error signal, and a drift error signal, the magnitudes of which are recalculated and updated with each revolution of the motor shaft. The speed error signal is constant for large speed errors but highly sensitive to small speed errors. The stator windings of the motor are driven by variable-frequency power amplifiers which are controlled by the motor control signal Esub(c) via PROMs which store digital representations of sine and cosine waveforms in quadrature. (author)

  11. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    system. The dynamic performances were also evaluated in a vector controlled drive for CT applications. Based on these tests, the displacement power factor control and the direct air-gap flux control appeared to be best for small HVAC applications. Energy optimal control of medium-size drives was analyzed......This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... purpose is demonstrate how this can be done for low-cost PWM-VSI drives without bringing the robustness of the drive below an acceptable level. Four drives are investigated with respect to energy optimal control: 2.2 kW standard and high-efficiency motor drives, 22 kW and 90 kW standard motor drives. The...

  12. Computerized Torque Control for Large dc Motors

    Science.gov (United States)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  13. Oscillation control system for electric motor drive

    Energy Technology Data Exchange (ETDEWEB)

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  14. Oscillation control system for electric motor drive

    Energy Technology Data Exchange (ETDEWEB)

    Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  15. Design of Intelligent Stepping Motor Control System

    OpenAIRE

    Wen-cheng Wang; Guo-qiang Zhang

    2013-01-01

    According to the applications of stepping motor in industrial controlling fields, an intelligent control system is designed based on personal computer and single chip machine in this paper. The working principle and control mode of stepping motor are introduced firstly. Then, the hardware of single chip machine system is introduced; especially the crystal oscillator circuit, driving circuit, power circuit, LED display circuit, watchdog circuit and serial communication circuit are analyzed in ...

  16. The Interface communicate to DC motor control

    OpenAIRE

    Retuerta Cornet, Iu

    2010-01-01

    Mälardalens University makes internationally recognized research in the field of Robotics. This technological work shows an electrical engine control developed at Mälardalens University. The target of this project is to make an interface able to communicate with a platform/robot to move the platform/robot using an electric engine control in ADA language. There are different kinds of electric engines, AC, DC, stepper motor, etc. This control focuses on DC electric motors beca...

  17. Induction motors. Analysis and torque control

    Energy Technology Data Exchange (ETDEWEB)

    Amin, B. [INRETS, Arcueil (France)

    2002-07-01

    This book provides a thorough approach for mastering the behavior and operation of induction motors, an essential device in the modern industrial world. Its way of presentation renders this book suitable for selfteaching by students, engineers, and researchers in the field of electrical engineering. It covers the modern theory of induction motor applications and control methods. The transient analysis of both three-phase and single-phase induction motors as well as that of the double-cage motors are developed. The principles of such modern control methods as Field-Oriented Control, Direct Torque Control and Computed Charges Acceleration Method are clearly treated in this monograph. Numerous equations, simulations, and figures are presented. (orig.)

  18. Linearizing Control of Induction Motor Based on Networked Control Systems

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.

  19. Torque control of switched reluctance motors

    OpenAIRE

    Moron Fernandez, Carlos; Garcia Garcia, Alfonso; Tremps Guerra, Enrique; Somolinos Sanchez, Jose Andres

    2011-01-01

    This paper presents the performance of an instantaneous torque control method. The simulation and experimental results illustrate the capability of Switched Reluctance Motors (SRM) being used in the motor drive industry. Based on experimental data, the advantages of this control method and its disadvantages in practical implementation were studied. The model used in the simulation is the linear magnetic model which has the 12/8 structure, the same structure as the experimental switched re...

  20. Remote PID control of a DC Motor

    OpenAIRE

    Silva, V.; Carvalho, V.; R. M. Vasconcelos; Soares, F.

    2007-01-01

    This paper presents a remote experiment for controlling a DC motor. This work was part of a final year graduation project of the Industrial Electronics Course at the University of Minho. It was implemented by an undergraduate student for student use. The experiment is controlled using a PID algorithm programmed in LabView environment. The remote user can test PID digital algorithms and parameters, change reference velocity values and register the motor output velocity profile.

  1. Vector controlled induction motor drive systems

    OpenAIRE

    Bharadwaj, Aravind S.

    1993-01-01

    Over the years, dc motors have been widely used for variable speed drives for numerous industrial applications despite the fact that ac machines are robust, less expensive, and have low inertia rotors. The main disadvantage of the ac machines is the complexity in control and the cost of the related circuitry. With the advent of vector control, ac machines have overcome this disadvantage and are being employed in different applications where dc motors were traditionally used. The d-q modeling,...

  2. Induction motor modelling for vector control purposes

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.

    2000-07-01

    Widely used in many industrial applications, the induction motors represent the starting point when an electrical drive system has to be designed. In modern control theory, the induction motor is described by different mathematical models, according to the employed control method. In the symmetrical three-phase version or in the unsymmetrical two-phase version, this electrical motor type can be associated with vector control strategy. Through this control method, the induction motor operation can be analysed in a similar way to a DC motor. The goal of this research is to summarize the existing models and to develop new models, in order to obtain a unified approach on modelling of the induction machines for vector control purposes. Starting from vector control principles, the work suggests the d-q axes unified approach for all types of the induction motors. However, the space vector analysis is presented as a strong tool in modelling of the symmetrical induction machines. When an electrical motor is viewed as a mathematical system, with inputs and outputs, it can be analysed and described in multiple ways, considering different reference frames and state-space variables. All the mathematical possible models are illustrated in this report. The suggestions for what model is suitable for what application, are defined as well. As the practical implementation of the vector control strategies require digital signal processors (DSP), from the continuous time domain models are derived the discrete time domain models. The discrete models permit the implementation of the mathematical model of the induction motors, in order to obtain high efficiency sensorless drives. The stability of these various models is analysed. (orig.)

  3. Lubrication control of motors in paper mills

    Energy Technology Data Exchange (ETDEWEB)

    Kano, Yasuo

    1987-12-01

    This review is focused lubrication control of motors in paper mills. Smaller motors use deep groove ball bearings and lubricating grease. They need no make-up grease. Medium-size motors incorporate both sealed and open bearings or only open bearings and the grade, make-up intervals and make-up volume of the lubricating grease to be used are specified. Methods for automatic grease supply include the use of an automatic grease cup with improved injection mechanism, use of an injection pump for automatic supply to each motor, and group-control for parallel supply to several motors through distribution valves. For large-size motors, oil-bath lubricating is usually adopted in combination with a circulating oil supply device, etc. Improved techniques are currently available for automatization of the main systems and for automatization and reduction in cost of electric instrumentation. However, grease up of bearings, especially for medium-size motors, is performed by hand. Effective lubrication control and increased productivity are expected to be achieved by the combined use of automatic oil supply and monitoring devices. (14 figs, 4 tabs)

  4. Digital Signal Controller Based Digital Control of Brushless DC Motor

    OpenAIRE

    Anjana Elizabeth Thomas; Salim Paul

    2013-01-01

    This paper presents the digital control of a brushless dc (BLDC) motor using TMS320F2812 DSP controller and an EPROM. The real-time control of electrical motors is an application area that is not usually the domain of Digital Signal Processors. The TMS320F2812 has got dedicated modules for digital motor control. Control algorithms used for the control has been in TMS320F2812 DSP controller. The output of the driver is 6 independent PWM pulses that have to be given to the corresponding gates o...

  5. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    Science.gov (United States)

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  6. Adaptive Vector Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    O. F. Opeiko

    2012-01-01

    Full Text Available A synthesis of adaptive PID controller has been executed for flux linkage and speed channels of a vector control system for an induction short-circuited motor. While using an imitation simulation method results of a synthesized system analysis show that the adaptive PID controller has some advantages under conditions of parametric disturbances affecting the object.

  7. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a...... simple flux observer is used in the design. Assuming known motor parameters the design achieves stability with guaranteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....

  8. The SM-200 step motor control device

    International Nuclear Information System (INIS)

    One of the main nodes of the stand for testing and modeling solenoid coils, which define the focus of the beam of charged particles in the accelerator LUE-200 (IREN), is a device for positioning Hall sensors (HS). The mechanism of movement of the platform where HS are installed is activated by the step motor. This paper describes the control device of the step motor SM-200

  9. Serotonergic modulation of spinal motor control

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; Cotel, Florence

    2015-01-01

    Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either...... and promotes the excitability of motoneurons, while stronger release inhibits rhythmic activity and motoneuron firing. This latter effect is responsible for central fatigue and secures rotation of motor units....

  10. Open questions in computational motor control.

    Science.gov (United States)

    Karniel, Amir

    2011-09-01

    Computational motor control covers all applications of quantitative tools for the study of the biological movement control system. This paper provides a review of this field in the form of a list of open questions. After an introduction in which we define computational motor control, we describe: a Turing-like test for motor intelligence; internal models, inverse model, forward model, feedback error learning and distal teacher; time representation, and adaptation to delay; intermittence control strategies; equilibrium hypotheses and threshold control; the spatiotemporal hierarchy of wide sense adaptation, i.e., feedback, learning, adaptation, and evolution; optimization based models for trajectory formation and optimal feedback control; motor memory, the past and the future; and conclude with the virtue of redundancy. Each section in this paper starts with a review of the relevant literature and a few more specific studies addressing the open question, and ends with speculations about the possible answer and its implications to motor neuroscience. This review is aimed at concisely covering the topic from the author's perspective with emphasis on learning mechanisms and the various structures and limitations of internal models. PMID:21960308

  11. Speed Control of Separately Excited DC Motor

    OpenAIRE

    Moleykutty George

    2008-01-01

    This paper proposes the speed control of a separately excited dc motor (SEDM) by varying armature voltage. The novelty of this paper lies in the application of nonlinear autoregressive-moving average (NARMA)L2 controller for the speed control of SEDM. This paper also discusses speed control of a SEDM using chopper circuit. The performance of the proposed system has been compared with the traditional one using conventional controllers. The entire system has been modeled using MATLAB 7.0 toolbo...

  12. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Science.gov (United States)

    2010-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers....

  13. Cascade Speed Control Of Dc Motor

    OpenAIRE

    Anagha, Ranjith K; Anand C.P; Rahul Das; Anusha A.S

    2014-01-01

    Abstract: This paper presents a MATLAB aided Cascade designed controller to control and monitor the DC motor speed. First, design the driver circuit of the DC motor and use the microcontroller PIC16F877A to collect the feedback signals from the current sensor and optical encoder. The measured speed and current are serially transmitted to PC using RS232. By the MATLAB aided cascade controller, where inner loop is the current loop and outer loop is the speed loop, the parameters are adjusted to...

  14. Neuro-Genetic Adaptive Optimal Controller for DC Motor

    OpenAIRE

    Mahmoud Mohamed Elkholy; Mohammed Abd Elhameed Abd Elnaiem

    2014-01-01

    Conventional speed controllers of DC motors suffer from being not adaptive, this is because of the nonlinearity in the motor model due to saturation. Structure of DC motor speed controller should vary according to its operating conditions, so that the transient performance is acceptable. In this paper an adaptive and optimal Neuro-Genetic controller is used to control a DC motor speed. GA will be used first to obtain the optimal controller parameter for each load torque and motor refer...

  15. Digital Signal Controller Based Digital Control of Brushless DC Motor

    Directory of Open Access Journals (Sweden)

    Anjana Elizabeth Thomas

    2013-07-01

    Full Text Available This paper presents the digital control of a brushless dc (BLDC motor using TMS320F2812 DSP controller and an EPROM. The real-time control of electrical motors is an application area that is not usually the domain of Digital Signal Processors. The TMS320F2812 has got dedicated modules for digital motor control. Control algorithms used for the control has been in TMS320F2812 DSP controller. The output of the driver is 6 independent PWM pulses that have to be given to the corresponding gates of the six MOSFETs power switches used in the three-phase bridge driving circuit whose output is given to the stator of the Brushless DC Motor. The commutation technique used in this work is the trapezoidal commutation owing to its excellent speed and current control and it has been implemented using an EPROM

  16. Projective DC Motor Control Under Disturbance Torques

    OpenAIRE

    Zuglem, Ismael; Doruk, Resat Ozgur

    2016-01-01

    In this study, we will present the design of a linear DC motor controller by projective linear qudratic servo feedback (P-LQSF) and analyze its stability through the notion of input to state stability theory. The projective control approach allows one to design an output feedback controller which approximates the eigenspectrum of a full state feedback closed loop. The performance and stability of the controllers will be analyzed both theoretically and through simulation. Apart from basic line...

  17. Implementing two DC motor speed control strategies

    Directory of Open Access Journals (Sweden)

    José Danilo Rairán Antolines

    2010-05-01

    Full Text Available While linear control techniques for dynamic systems have been widely tested, systems are not linear in practice. This means that controllers must be re-tuned to make them useful in an experimental setup. This article presents the tuning and re-tuning process for two control strategies: a PID and an algorithm based on the choice of overall transfer function controlling a DC permanent magnet motor. The algorithms’ performance is evaluated and some recommendations are made.

  18. Implementing two DC motor speed control strategies

    OpenAIRE

    José Danilo Rairán Antolines; Yeni Paola Sierra Niño; Néstor Iván Moreno Roballo

    2010-01-01

    While linear control techniques for dynamic systems have been widely tested, systems are not linear in practice. This means that controllers must be re-tuned to make them useful in an experimental setup. This article presents the tuning and re-tuning process for two control strategies: a PID and an algorithm based on the choice of overall transfer function controlling a DC permanent magnet motor. The algorithms’ performance is evaluated and some recommendations are made.

  19. Summary of electric vehicle dc motor-controller tests

    Science.gov (United States)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  20. Speed Control of BLDC Motor Using DSP

    Directory of Open Access Journals (Sweden)

    G.MadhusudhanaRao

    2010-03-01

    Full Text Available This paper proposed the speed control of brushless dc motor drive employing PWM technique using TMS320F240 digital signal processor. BLDC is widely used because of its high mechanical power density, simplicity and cost effectiveness. The complete controller for BLDC is developed using TMS 320F240 digital signal processor, which has thespecial features for digital motor control. A mathematical model of the drive system is developed to analyze the performance of the proposed drive. The hall sensor signals are used to sense the rotor position. A shunt resistor is used to sense the actual current entering into the motor. These hall signals, phase current sensing signal and the speed command are the input to the DSP. Both the outer velocity control loop and inner current control loop uses PI controller that has been implemented by programming in TMS320F240 DSP processor [8]. According to the input command, feedback command andcontrol algorithm, the PWM pulses for each phase generated by the DSP is given to IGBT driver. The output of the driver is 6 independent PWM pulses that have to be given to the corresponding gate of the six IGBTs power switches used in the three-phase bridge inverter whose output is given to the stator of the BLDC motor. The drive performance is studied for starting, speed reversal and load perturbation.

  1. Central control of body temperature.

    Science.gov (United States)

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  2. Central control of body temperature

    Science.gov (United States)

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  3. Speed Control of Separately Excited DC Motor

    Directory of Open Access Journals (Sweden)

    Moleykutty George

    2008-01-01

    Full Text Available This paper proposes the speed control of a separately excited dc motor (SEDM by varying armature voltage. The novelty of this paper lies in the application of nonlinear autoregressive-moving average (NARMA–L2 controller for the speed control of SEDM. This paper also discusses speed control of a SEDM using chopper circuit. The performance of the proposed system has been compared with the traditional one using conventional controllers. The entire system has been modeled using MATLAB 7.0 toolbox. It has been found that both PI and hysteresis current controllers could be eliminated by the use of NARMA-L2 controller.

  4. Control system for bearingless motor-generator

    Science.gov (United States)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  5. High body mass alters colonic sensory-motor function and transit in humans

    OpenAIRE

    Delgado-Aros, Silvia; Camilleri, Michael; Garcia, Montse Andreu; Burton, Duane; Busciglio, Irene

    2008-01-01

    There is increased prevalence of abdominal pain and diarrhea and decreased gastric sensation with increased body mass index (BMI). Our hypothesis is that increased BMI is associated with increased colonic motility and sensation. The study aim was to assess effect of BMI on colonic sensory and motor functions and transit. We used a database of colonic tone, compliance, and perception of distensions measured by intracolonic, barostat-controlled balloon, and gastrointestinal transit was measured...

  6. Research on DSP-based Asynchronous Motor Control Technology

    OpenAIRE

    Jun Yao; Xiangxin Qiao; Xin Wang

    2013-01-01

    The Motor in a variety of electrical transmission and position servo system occupies an extremely important position. After the DSP technology being applied to the motor control, the unification of the hardware and the flexibility of the software can be combined. Take the brushless DC motor for example, studied the mathematical model and the structure of the motor control system, also obtained the design scheme of the DSP-based asynchronous motor control system. With TI's 32 bit fixed point D...

  7. Sensorless control of a DC series motor

    OpenAIRE

    Amet, Leonardo; Ghanes, Malek; Barbot, Jean-Pierre

    2013-01-01

    In this paper a sensorless speed control for a DC series motor is presented. In this context, an observability analysis is performed, revealing that the system is inobservable at zero current. In order to overcome this problem we propose the joint use of an estimator and an observer, the latter being based on second order sliding modes techniques. The simulation results highlight the good performance of the proposed control.

  8. Brushless DC Motor Speed Control Based on Emotional Intelligent Controller

    OpenAIRE

    Gholamreza ArabMarkadeh; Ehsan Drayabeigi

    2014-01-01

    This paper presents an emotional controller for brushless DC motor (BLDC) drive. The proposed controller is called brain emotional learning based intelligent controller (BELBIC). The utilization of the new controller is based on the emotion processing mechanism in brain. This intelligent control is inspired by the limbic system of mammalian brain, especially amygdala. The controller is successfully implemented in simulation using MATLAB software, brushless dc drive with trapezoidal back-emf. ...

  9. Direct Torque Control of the Asynchronous Motor

    Directory of Open Access Journals (Sweden)

    Peter Girovský

    2008-05-01

    Full Text Available This contribution deals with the proposal of direct torque control (DTC of asynchronous motor (AMwith the help of fuzzy logic. The whole structure of DTC is designed in software Matlab – Simulink, the fuzzy regulator is designed with the help of Fuzzy Toolbox. The results of DTC with fuzzy regulator are compared with DTC with the help of Depenbrock method and DTC with the help of Takahashi method.

  10. Direct Torque Control of the Asynchronous Motor

    OpenAIRE

    Peter Girovský; Jaroslava Žilková; Ľubomír Cibuľa; Jaroslav Timko

    2008-01-01

    This contribution deals with the proposal of direct torque control (DTC) of asynchronous motor (AM)with the help of fuzzy logic. The whole structure of DTC is designed in software Matlab – Simulink, the fuzzy regulator is designed with the help of Fuzzy Toolbox. The results of DTC with fuzzy regulator are compared with DTC with the help of Depenbrock method and DTC with the help of Takahashi method.

  11. Artificial Intelligent Controller for a DC Motor

    Science.gov (United States)

    Delavari, Hadi; Ranjbar Noiey, Abolzafl; Minagar, Sara

    The Speed and position control of DC motors is addressed in this paper. An optimal intelligent control scheme is proposed for the system. Preliminary a PID controller is designed using Genetic Algorithms (GA). The proposed controller is implemented by using optimal integral state feedback control with GA and Kalman filter. In the proposed scheme, performance depends on choosing weighting matrices Q and R in the cost function, and accordingly GA is used to find these proper weighting matrices. In order to reduce the control performance degradation due to system parameters variation, a Kalman filter is gained. The performance of the proposed technique (ISF) is compared with PID controller. Computer simulation validates the effectiveness of the proposed scheme even in presence of uncertainties.

  12. High speed DC brushless motor controlled by microntroller

    International Nuclear Information System (INIS)

    The paper presents an example of DC Brushless motor used to rotate high vacuum turbo molecular pumps. Both the motor and the electronic drive system, controlled by microcontroller PIC16F877, are designed and made in our institute. DC Brushless motors are one of the motor types which have had the fastest development. This type of motor is especially used in industries such as Industrial Automation Equipment and Instrumentation, Medical, Automotive etc. DC Brushless motors do not use brushes for commutation of the current. The phase of the motor are electronically commutated. Comparative with DC Brushed motors and induction motors, DC Brushless motors have the followings advantages: -high speed ranges; - long operating life; - high efficiency; -better speed versus torque characteristics; - high dynamic response; - noiseless operation; Also, the ratio of torque provided to the size of the motor is higher, making it useful in applications where space and weight are limited. (authors)

  13. Correlation between motor performance scales, body composition, and anthropometry in patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Bayram, Erhan; Topcu, Yasemin; Karakaya, Pakize; Bayram, Meral Torun; Sahin, Ebru; Gunduz, Nihan; Yis, Uluc; Peker, Ozlen; Kurul, Semra Hiz

    2013-06-01

    The aim of this study is to investigate the relationship between body composition, anthropometry, and motor scales in patients with Duchenne muscular dystrophy (DMD). Twenty six patients with DMD were evaluated by Expanded Hammersmith Functional Motor Scale (HFMSE), gross motor function classification system (GMFCS), multifrequency bioelectrical impedance analysis, and anthropometric measurements. Seventeen healthy children served as control group. There were 26 patients with a mean age of 9.5 ± 4.8 years. Ages and anthropometric measurements did not differ between groups. Of the 26 patients, nine were level I, seven were level II, two were level III, seven were level IV, and one was level V, according to the GMFCS. Despite the similar percentage of total body water, extracellular water/intracellular water ratio was significantly elevated in DMD patients (p = 0.001). Increased values of fat percentage and body fat mass index (BFMI) correlated positively with elevated GMFCS levels (r = 0.785 and 0.719 respectively). Increased fat-free mass index (FFMI) correlated negatively with elevated GMFCS levels (r = -0.401). Increased fat percentage and BFMI correlated negatively with HFMSE scores (r = -0.779 and -0.698, respectively). Increased values of FFMI correlated positively with HFMSE scores. There was also a negative correlation between increased skin fold measurements from triceps and scapula and HFMSE scores (r = -0.618 and -0.683, respectively). Increased skin fold values from the same regions correlated positively with elevated GMFCS levels (r = 0.643 and 0.712, respectively). Significant body composition changes occur in patients with DMD. Anthropometric and multifrequency bioelectrical impedance analyses measurements show good correlation between motor function scales. These results may also be helpful to evaluate the effects of new treatment strategies. PMID:22975832

  14. An ARM-based motor control system in EPICS

    International Nuclear Information System (INIS)

    In this paper,a motor control system,formed by a S3C2440 computer, the Linux operating system and a MAXnet motor controller,is developed in EPICS at SSRF(Shanghai Synchrotron Radiation Facility). A detailed analysis of the system design, and software development, are provided. It indicates that an ARM-based motor control system is feasible. Test results show that it has an equivalent performance in position control, with greatly reduced cost and volume, though the time response is not as good as the present motor control system. It provides a reference for designing new motor control systems of SSRF. (authors)

  15. Design and control of a superconducting permanent magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Pei, R [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Hong, Z [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Song, J [Huazhong University of Science of Technology, Wuhan 430074 (China); Fang, F [Huazhong University of Science of Technology, Wuhan 430074 (China); Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-07-15

    This paper gives a detailed description of the design of a superconducting permanent magnet synchronous motor. The parameters of the motor have been identified, and the torque equation has been stated. A direct torque control algorithm is introduced and applied to a traditional permanent magnet synchronous motor and the superconducting permanent magnet synchronous motor described in this paper. The motor performance shows that the direct torque control algorithm provides excellent control to the superconducting motor, and guarantees that the magnitude of the operational armature currents is smaller than the value of the critical current of the superconducting tape used for stator winding.

  16. Motor Proficiency and Body Mass Index of Preschool Children: In Relation to Socioeconomic Status

    Science.gov (United States)

    Mülazimoglu-Balli, Özgür

    2016-01-01

    The aim of the study was to investigate the correlation between motor proficiency and body mass index and to assess the socioeconomic status differences in motor proficiency and body mass index of preschool children. Sixty preschool children in the different socioeconomic status areas of central Denizli in Turkey participated in the study. The…

  17. Research on DSP-based Asynchronous Motor Control Technology

    Directory of Open Access Journals (Sweden)

    Jun Yao

    2013-05-01

    Full Text Available The Motor in a variety of electrical transmission and position servo system occupies an extremely important position. After the DSP technology being applied to the motor control, the unification of the hardware and the flexibility of the software can be combined. Take the brushless DC motor for example, studied the mathematical model and the structure of the motor control system, also obtained the design scheme of the DSP-based asynchronous motor control system. With TI's 32 bit fixed point DSPTMS320F2812 as the core design of the hardware system, we wrote the system software, debug the motor control system and the results show that the system achieves the expected effect. The results of the research can be applied to brushless DC motor and other motor control, it will have a wide application prospects.

  18. Direct Vector Control of Induction Motor Based on Sinusoidal PWM Inverter with Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Nirban Chakraborty

    2014-04-01

    Full Text Available This paper presents the speed control scheme of direct vector control of Induction Motor drive (IM drive. The Fuzzy logic controller is (FLC used as the controller part here for the direct vector control of Induction Motor using Sinusoidal PWM Inverter (SPWM. Fuzzy logic controller has become a very popular controlling scheme in the field of Industrial application. The entire module of this IM is divided into several parts such as IM body module, Inverter module, coordinate transformation module and Sinusoidal pulse width modulation (SPWM production module and so on. With the help of this module we can analyze a variety of different simulation waveforms, which provide an effective means for the analysis and design of the IM control system using FLC technique.

  19. Permanent magnet brushless DC motor drives and controls

    CERN Document Server

    Xia, Chang-liang

    2012-01-01

    An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more a

  20. Brushless DC Motor Speed Control Based on Emotional Intelligent Controller

    Directory of Open Access Journals (Sweden)

    Gholamreza ArabMarkadeh

    2014-03-01

    Full Text Available This paper presents an emotional controller for brushless DC motor (BLDC drive. The proposed controller is called brain emotional learning based intelligent controller (BELBIC. The utilization of the new controller is based on the emotion processing mechanism in brain. This intelligent control is inspired by the limbic system of mammalian brain, especially amygdala. The controller is successfully implemented in simulation using MATLAB software, brushless dc drive with trapezoidal back-emf. In this work, a novel and simple implementation of BLDC motor drive system is achieved by using the intelligent controller, which controls the motor speed accurately. This emotional intelligent controller has simple structure with high auto learning feature. Simulation results show that both accurate steady state and fast transient speed responses can be achieved in wide range of speed from 20 to 300 [rpm]. Moreover, to evaluate this emotional controller, the performance of the proposed control scheme is compared with both Fuzzy Logic (FL and PID controllers, in different conditions. This indicates proper operating in comparison to the FLC and PID controllers. And also shows excellent promise for industrial scale utilization.

  1. Permanent magnet brushless motor control based on ADRC

    OpenAIRE

    Li Xiaokun; Wang Song; Wang XiaoFan; Shi Tingting

    2016-01-01

    Permanent magnet brushless motor is a nonlinear system with multiple variables, the mathematical model of Permanent magnet brushless motor is difficult to establish, and since that the classic PID control is hard to precisely control the motor. Active disturbance rejection control (ADRC) technique is a new nonlinear controller which does not depend on the system model. It is starting from the classic PID control, and establishing the loop control system by error negative feedback, the ESO(ext...

  2. Improved Rotor Speed Brushless DC Motor Using Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Jafar Mostafapour

    2015-04-01

    Full Text Available A brushless DC (BLDC Motors have advantages over brushed, Direct current (DC Motors and , Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and beter result can be achieve.

  3. Robust position control of induction motor using fuzzy logic control

    International Nuclear Information System (INIS)

    In recent years, fuzzy logic or fuzzy set theory has reveived attention of a number of researchers in the area of power electronics and motion control. The paper describes a vector-controlled induction motor position servo drive where fuzzy control is used to get robustness against parameter variation and load torque disturbance effects. Both coarse and fine control with the help of look-up rule tables are used to improve transient response and system settling time. The performance characteristics are then compared with those of proportional-integral(PI) control. The simulation results clearly indicate the superiority of fuzzy control with larger number of rules. The fuzzy controller was implemented with a 16-bit microprocessor and tested in laboratory on a 3-hp IGBT inverter induction motor drive system. The test results verify the simulation performance. (Author)

  4. SPEED CONTROL OF DC MOTOR WITH PIC 16F877

    OpenAIRE

    ÇOLAK, İlhami; Ramazan BAYINDIR

    2005-01-01

    In this study, a PI controlled separately excited direct current (DC) motor speed has been controlled using PIC 16F877 controller. In the PIC 16F877 programming as a PI controller, the speed of the motor is expected to follow the reference speed. Speed of the motor is measured by a tacho generator and then, the voltage applied to the motor is adjusted by a semiconductor power switch using pulse width modulation (PWM) technique. Drive circuit was tested with 0.9 kW DC motor. Experimental resul...

  5. Voice-Based Control of a DC Servo Motor

    OpenAIRE

    Musaab Hassan; Hammam Mahjoub; Mohammed Obed

    2012-01-01

    Problem statement: Motors play a very important role in our life and among which is the DC servo motors. The techniques of controlling these DC motors are plenty, among which is sound. In this study, a voce-based technique was implemented to control the speed and the direction of rotation for a DC motor. Approach: A Microcontroller-based electronic control circuit was designed and implemented to achieve this goal. Results: The speed of the motor was controlled, in both directions, using pulse...

  6. SPEED CONTROL OF DC MOTOR WITH PIC 16F877

    Directory of Open Access Journals (Sweden)

    İlhami ÇOLAK

    2005-02-01

    Full Text Available In this study, a PI controlled separately excited direct current (DC motor speed has been controlled using PIC 16F877 controller. In the PIC 16F877 programming as a PI controller, the speed of the motor is expected to follow the reference speed. Speed of the motor is measured by a tacho generator and then, the voltage applied to the motor is adjusted by a semiconductor power switch using pulse width modulation (PWM technique. Drive circuit was tested with 0.9 kW DC motor. Experimental results show that the drive circuit developed is very simple, useful, sensible, economical and flexible to apply for different applications.

  7. Direct Torque Control of Induction Motor with Extended Kalman Filter

    OpenAIRE

    Pai, Dinesh A; Umanand, L; Rao, NJ

    2000-01-01

    Induction motor speed control is an area of research that has been in prominence for some time now. Recent advances in this field have made it possible to replace the DC motor by induction machines, even in applications that demand a fast dynamic response. Many industrial applications demand high performance speed sensorless operation due to various reasons. Direct torque control (DTC) of induction motors is a popular method because of the resulting fast dynamic response of the motor, lower s...

  8. Mechanisms of motor adaptation in reactive balance control.

    Directory of Open Access Journals (Sweden)

    Torrence D J Welch

    Full Text Available Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations.

  9. Integrated-Circuit Controller For Brushless dc Motor

    Science.gov (United States)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  10. Comparison On Sensorless Control Of Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Liviu KREINDLER

    2002-12-01

    Full Text Available The paper compares two different methods for speed and position estimation in AC permanent magnet synchronous motors vector control applications. The first method implies two observer blocks — one for the speed, and the other for the electrical position, using the voltage equations in the (d,q reference frames. The second method estimates the same variables starting from the calculation of instantaneous reactive power. The tests have proved excellent behaviour in steady state (method 1 as well as in transient state (method 2. The implementation has been made on the 16 bits fixed-point DSP - TMS320F240 from Texas Instruments.

  11. SIMULATION OF BLDC MOTOR CONTROL USING SLIDING MODE CONTROL TECHNIQUE

    OpenAIRE

    Namita P. Galphade; Subhash S. Sankeshwari

    2015-01-01

    Mostly, Brushless DC motors have been used in various industrial and domestic applications because of its advantages like simple structure, large torque, long use time, good speed regulation. Generally the BLDCM systems have uncertain and nonlinear characteristics which degrade performance of controllers. Based on these reasons, Sliding Mode Control (SMC) is one of the popular control strategies to deal with the nonlinear uncertain system. In This work implemented a SMC scheme for effective s...

  12. Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor

    OpenAIRE

    K.krishna Rao (PG student ); Ramesh Kumar, M.

    2014-01-01

    This paper presents vector controlled of single phase induction motor. some problems are with vector controlled SPIM.As SPIM’s are typically to maintain speed and also about the complex implementation of vector controlled SPIM.the implemantion of the proposed vector controlled TPIM compared to the vector controlled SPIM. The general modal sutable for vector control of the unsymmentrical two phase induction motor and also stator flux oriented controlled strategies are analized. the...

  13. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  14. Fuzzy Logic Based Controller for Brushless DC Motor

    OpenAIRE

    Trinayani Chittajallu

    2012-01-01

    In this paper, a model of a three phase star – connected brushless direct current (BLDC) motor is presented. The state-space model for a BLDC motor is derived and is implemented using Matlab/Simulink. Torque and Speed control is applied using hysteresis band control and variable DC-link voltage control. The different control strategies are tested on the BLDC motor and their performance is evaluated. A Fuzzy Logic Controller(FLC) is also developed to control the torque and speed of BLDC motor ...

  15. Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    K.krishna Rao (PG student

    2014-12-01

    Full Text Available This paper presents vector controlled of single phase induction motor. some problems are with vector controlled SPIM.As SPIM’s are typically to maintain speed and also about the complex implementation of vector controlled SPIM.the implemantion of the proposed vector controlled TPIM compared to the vector controlled SPIM. The general modal sutable for vector control of the unsymmentrical two phase induction motor and also stator flux oriented controlled strategies are analized. the comparative performance of both has been presented in this work with help of a practical three phase motor.

  16. Voice-Based Control of a DC Servo Motor

    Directory of Open Access Journals (Sweden)

    Musaab Hassan

    2012-01-01

    Full Text Available Problem statement: Motors play a very important role in our life and among which is the DC servo motors. The techniques of controlling these DC motors are plenty, among which is sound. In this study, a voce-based technique was implemented to control the speed and the direction of rotation for a DC motor. Approach: A Microcontroller-based electronic control circuit was designed and implemented to achieve this goal. Results: The speed of the motor was controlled, in both directions, using pulse width modulation and a microcontroller was used to generate the right signal to be applied to the motor. Conclusion: The loudness of human voice was successfully divided into different levels where each level drives the motor at different speed."

  17. Simulation of Brushless DC Motor using Direct Torque Control

    OpenAIRE

    Mrs.G. Kusuma; S. Rukhsana Begum

    2014-01-01

    This paper deals with modelling of three phases brushless dc motor with MATLAB/SIMULINK software BLDC motor have advantages according to brushless dc motor and induction motor’s. They have improve speed torque charactistics, high efficiency high transient response and small size. It approaches for reducing the torque ripples of BLDC motor using DTC, by using control technique’s ,but present work mainly concentrate on advanced method. The whole drive system is simulated based o...

  18. Permanent Magnet DC Motor Control Using Image Processing

    Directory of Open Access Journals (Sweden)

    Rohan Chadha, Jai Prakash

    2012-10-01

    Full Text Available There are many application that have been developed based on motor control in electronic and electrical field such as automation, flexible manufacturing system and computer integrated manufacturing. Various DC motor control techniques are used such as chopper circuits for dc motor control, using power MOS devices in drives and switched mode controller for DC motors. Also there are various microcontroller based DC motor controllers available but it will result in limitations regarding remote control applications of robotics. This work deals with the direction and speed control of Permanent Magnet dc motor through image processing in Matlab. Motor will be controlled on the basis of image of hand captured by webcam. Image will be acquired and processed through Image processing Programming in Matlab. On the basis of movement of hand on both the sides the motor will rotate in both directions clock-wise and anti-clockwise along with its speed control. Among various microcontrollers Atmega 16 8 bit microcontroller is used due to its high performance, low power, advanced architecture and many more features. The goal of this work is to obtain a microcontroller based PMDC motor control through image processing programming in Matlab which will result in remote control of wide range of robotic applications.

  19. Real Time Flux Control in PM Motors

    Energy Technology Data Exchange (ETDEWEB)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the

  20. Direct Torque Control of Matrix Converter Fed Induction Motor Drive

    OpenAIRE

    JAGADEESAN Karpagam; NIRMAL Kumar; MUTHUSAMY Suresh

    2011-01-01

    This paper presents the Direct TorqueControl (DTC) of induction motor drive using matrixconverters. DTC is a high performance motor controlscheme with fast torque and flux responses. However,the main disadvantage of conventional DTC iselectromagnetic torque ripple. In this paper, directtorque control for Induction Motors using MatrixConverters is analysed and points out the problem ofthe electromagnetic torque ripple which is one of themost important drawbacks of the Direct TorqueControl. Bes...

  1. SELF CONTROL OF SYNCHRONOUS MOTOR FED BY MATRIX CONVERTER

    OpenAIRE

    CALISKAN, ABUZER; Orhan, Ahmet

    2012-01-01

    In this study self control of synchronous motor fed by matrix converter was examined by developing a Matlab/simulink model. Self control of synchronous motor was performed by fixing frequency of stator voltage to rotor speed. Thus, the probable danger of asynchronism of the motor during transient operation in open loop control is removed. In the developed model, simplified Venturini modulation algorithm was used. This algorithm provides unity fundamental displacement factor at the input regar...

  2. Reactive power compensation using a fuzzy logic controlled synchronous motor

    International Nuclear Information System (INIS)

    This paper introduces the use of a fuzzy logic controlled synchronous motor for reactive power compensation. The fuzzy logic controlled synchronous motor can give a very fast response to the reactive power required by the load. Therefore, the over or under compensation and time delay are eliminated in this system. It is concluded that the reactive power compensation system with a fuzzy logic controlled synchronous motor is reliable, sensitive, economical, faster and more efficient than an other one with capacitor groups

  3. Permanent Magnet DC Motor Sliding Mode Control System

    Science.gov (United States)

    Vaez-Zadeh, S.; Zamanian, M.

    2000-09-01

    In this paper a sliding mode controller (SMC) is designed for a permanent magnet, direct current (PMDC) motor to enhance the motor performance in the presence of unwanted uncertainties. Both the electrical and mechanical signals are used as the inputs to the SMC. The complete motor control system is simulated on a personal computer with different design parameters and desirable system performance is obtained. The experimental implementation of the motor control system is also presented. The test results confirm the simulation results and validate the proposed control system.

  4. Touch Screen based Speed Control of Single Phase Induction Motor

    OpenAIRE

    S. Mallika; W. Razia Sultana; Sarat Kumar Sahoo*

    2010-01-01

    This paper gives a brief idea of touch screen technology and its interfacing with a controller to control the speed of single phase induction motor. Here touch screen technology and Programmable System on Chip (PSOC) microcontroller concept is utilized which is less spaceconsumption and easy to design. The aim of this paper is to have remote sensing and speed control of an AC motor.

  5. Motor Neurons that Multitask

    OpenAIRE

    Goulding, Martyn

    2012-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion.

  6. The Percentage of Body Fat in Children and the Level of their Motor Skills

    OpenAIRE

    Prskalo, Ivan; Badrić, Marko; Kunješić, Mateja

    2015-01-01

    The aim of this study was to determine the prevalence of overweight and obesity among primary education pupils and to identify differences in motor skills between normal weight, excessive and obese pupils. Partial aim was to determine differences in motor status of girls and boys and their anthropometric characteristics (Body Mass Index, body fat percentage). The study was conducted in two primary schools in Zagreb, Ivan Goran Kovačić and Davorin Trstenjak. Total of 333 pupils, ag...

  7. Simulation of Brushless DC Motor using Direct Torque Control

    Directory of Open Access Journals (Sweden)

    Mrs.G. Kusuma

    2014-04-01

    Full Text Available This paper deals with modelling of three phases brushless dc motor with MATLAB/SIMULINK software BLDC motor have advantages according to brushless dc motor and induction motor’s. They have improve speed torque charactistics, high efficiency high transient response and small size. It approaches for reducing the torque ripples of BLDC motor using DTC, by using control technique’s ,but present work mainly concentrate on advanced method. The whole drive system is simulated based on the system devices, BLDC motor source inverter, space vector modulation.

  8. CLOSED LOOP SPEED CONTROL OF DC MOTOR USING PWM

    OpenAIRE

    Mangesh J Nemade

    2015-01-01

    In This work reveals the digital closed loop control system for speed control of DC motor using PWM technique. In present days the power semiconductor devices have co mpletely revolutionized the control of drives especially in the area of control usage of thyristors IGBT’s power MOSFET etc., was increased. The digital circuit can be interfaced to microcontroller. So that the speed can be controlled by Microcontroller there by making speed control of DC motor even more easil...

  9. The Percentage of Body Fat in Children and the Level of their Motor Skills.

    Science.gov (United States)

    Prskalo, Ivan; Badrić, Marko; Kunješić, Mateja

    2015-07-01

    The aim of this study was to determine the prevalence of overweight and obesity among primary education pupils and to identify differences in motor skills between normal weight, excessive and obese pupils. Partial aim was to determine differences in motor status of girls and boys and their anthropometric characteristics (Body Mass Index, body fat percentage). The study was conducted in two primary schools in Zagreb, Ivan Goran Kovačić and Davorin Trstenjak. Total of 333 pupils, aged 7-11, were measured (178 boys and 155 girls). Four anthropometric and seven motor variables were used to analyze differences in motor abilities of children. Children were divided into three groups within gender based on their body fat measures. We established a statistically significant difference in motor abilities between groups of subjects in three subsamples (1st-2nd class girls and 3rd-4th boys and girls). Children with normal weight have better results in explosive strength, coordination, static strength of arm and shoulder than children who are overweight and obese. The differences are not observed in motor variables where body weight is not a requisite for efficient execution of movement. Differences in motor skills by gender showed that boys are better in coordination, speed of the simple movements, explosive and repetitive strength, and girls are better in flexibility. The conclusion of this study confirmed the existence of differences in the development of motor skills in children with normal body weight compared to children who are overweight or obese. These facts prove that excessive body weight has negative repercussions on motor performance. PMID:26434007

  10. The influence of scopolamine on motor control and attentional processes

    OpenAIRE

    Bestaven, Emma; Kambrun, Charline; Guehl, Dominique; Cazalets, Jean-René; Guillaud, Etienne

    2016-01-01

    Background: Motion sickness may be caused by a sensory conflict between the visual and the vestibular systems. Scopolamine, known to be the most effective therapy to control the vegetative symptoms of motion sickness, acts on the vestibular nucleus and potentially the vestibulospinal pathway, which may affect balance and motor tasks requiring both attentional process and motor balance. The aim of this study was to explore the effect of scopolamine on motor control and attentional processes. M...

  11. Speed Control of an Eleven-Phase Brushless DC Motor

    OpenAIRE

    Morteza Azadi; Ahmad Darabi

    2013-01-01

    In this paper, an eleven-phase permanent magnet brushless DC motor fed by an eleven-leg two-level inverter is modeled and simulated. In order to produce trapezoidal back electromotive force waveforms by permanent magnet rotor, the motor has concentrated stator windings. The motor speed is controlled by Mamdani-type fuzzy incremental controller. The hysteresis modulation is used for switching operation. The simulation is carried out by Matlab/Simulink.

  12. A microprocessor-based speed controller for DC motors

    OpenAIRE

    Bertran Albertí, Eduardo; Herranz, J.; Martinez, L.; Miguel, J.; Munilla, I.

    1983-01-01

    The introduction of microprocessors into electric vehicles has opened many interesting possibilities for improving the operation and maintenance of such automotive systems. On the other hand, microcomputer-based motor control systems are playing an ever increasing role in research on applied electronics. In this paper, a microcomputer-based digital dynamic control system (DDC) for a de motor is described. The description includes motor identification and corrector digital implementation, as w...

  13. Sensorless Speed Control of Traveling Wave Ultrasonic Motor

    OpenAIRE

    Flückiger, Markus; Bullo, Matteo; Perriard, Yves

    2006-01-01

    Ultrasonic motors are a good alternative to electromagnetic motors in medical robotics, since they are electromagnetically compatible. Estimating speed instead of using encoders reduces cost and dimension of the robot on the one hand and increases reliability on the other hand. However, no sensorless speed controller is yet industrialized. Analytical models of the traveling wave ultrasonic motor being too complex to be exploited for sensorless control purpose, we suggest speed estimation base...

  14. Three-phase Brushless DC Motor Control

    OpenAIRE

    Fang, Xinwei

    2012-01-01

    With the increasing demand of using electric power and unpleasant of using brush motor; the usage of Three-phase Brushless Motor has been significantly developed in industry. However, with market-standard motor driver, there are many inconveniences for small institutions or companies in either application developments or education purposes. For instance, the size and the price of driver. Therefore, the object of this thesis was design modular sections (Software program, PCB driver and PCB con...

  15. Controlling An Inverter-Driven Three-Phase Motor

    Science.gov (United States)

    Dolland, C.

    1984-01-01

    Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.

  16. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Science.gov (United States)

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor... cars, light-duty trucks, medium- duty passenger vehicles, and some heavy-duty vehicles. This...

  17. Body Constraints on Motor Simulation in Autism Spectrum Disorders

    Science.gov (United States)

    Conson, Massimiliano; Hamilton, Antonia; De Bellis, Francesco; Errico, Domenico; Improta, Ilaria; Mazzarella, Elisabetta; Trojano, Luigi; Frolli, Alessandro

    2016-01-01

    Developmental data suggested that mental simulation skills become progressively dissociated from overt motor activity across development. Thus, efficient simulation is rather independent from current sensorimotor information. Here, we tested the impact of bodily (sensorimotor) information on simulation skills of adolescents with Autism Spectrum…

  18. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette;

    2014-01-01

    denervation affects neural processing in the denervated striatal motor territory. In contrast, fronto-parietal motor areas display both increases as well as decreases in movement related activation. This points to a more complex relationship between altered cortical physiology and nigrostriatal dopaminergic...... and yielded consistent alterations in neural activity in patients with PD. Differences in cortical activation between PD patients and healthy controls converged in a left-lateralized fronto-parietal network comprising the presupplementary motor area, primary motor cortex, inferior parietal cortex, and...... posterior motor putamen, which improved with dopaminergic medication. The likelihood of detecting a decrease in putaminal activity increased with motor impairment. This reduced motor activation of the posterior putamen across previous neuroimaging studies indicates that nigrostriatal dopaminergic...

  19. Pneumatic motor speed control by trajectory tracking fuzzy logic controller

    Indian Academy of Sciences (India)

    Cengiz Safak; Vedat Topuz; A Fevzi Baba

    2010-02-01

    In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is defined to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to find the TTFLC boundary values of membership functions (MF) and weights of control rules. In addition, artificial neural networks (ANN) modelled dynamic behaviour of PM is given. This ANN model is used to find the optimal TTFLC parameters by offline GA approach. The experimental results show that designed TTFLC successfully enables the PM speed track the given trajectory under various working conditions. The proposed approach is superior to PID controller. It also provides simple and easy design procedure for the PM speed control problem.

  20. Speed Control Of Induction Motor Using Dspic30f2023

    OpenAIRE

    M. S. Aspalli; Laxmi

    2013-01-01

    AC motor drives are widely used to control the speed of conveyor systems, blower speeds, pump speeds, machine tool speeds and other applications that require variable speed with variable torque. The main aim of the work is to design and develop an electronic system that can be used to control the speed of a three phase induction motor.The speed of the three phase induction motor can be controlled by various methods. The stator frequency control is one of the simplest methods to control the sp...

  1. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  2. Constructing Visual Perception of Body Movement with the Motor Cortex.

    OpenAIRE

    Orgs, Guido; Dovern, Anna; Hagura, Nobuhiro; Haggard, Patrick; Fink, Gereon R.; Weiss, Peter H.

    2016-01-01

    The human brain readily perceives fluent movement from static input. Using functional magnetic resonance imaging, we investigated brain mechanisms that mediate fluent apparent biological motion (ABM) perception from sequences of body postures. We presented body and nonbody stimuli varying in objective sequence duration and fluency of apparent movement. Three body postures were ordered to produce a fluent (ABC) or a nonfluent (ACB) apparent movement. This enabled us to identify brain areas inv...

  3. Constructing Visual Perception of Body Movement with the Motor Cortex

    OpenAIRE

    Orgs, Guido; Dovern, Anna; Hagura, Nobuhiro; Haggard, Patrick; Fink, Gereon R.; Weiss, Peter H.

    2016-01-01

    The human brain readily perceives fluent movement from static input. Using functional magnetic resonance imaging, we investigated brain mechanisms that mediate fluent apparent biological motion (ABM) perception from sequences of body postures. We presented body and nonbody stimuli varying in objective sequence duration and fluency of apparent movement. Three body postures were ordered to produce a fluent (ABC) or a nonfluent (ACB) apparent movement. This enabled us to identify brain areas inv...

  4. New method for speed control of single phase induction motor with improved motor performance

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B. [Zagazig University (Egypt). Faculty of Engineering

    2001-05-01

    In this paper, a new method of speed control for the single phase induction motor is introduced to overcome the disadvantages of the conventional methods. In this method, the magnitude of the main winding current and its angle are controlled to control the motor speed, as well as to increase the starting torque at all speed settings. In the meanwhile, the voltage applied to the auxiliary winding is kept constant at the rated value. The performance of a 1 hp capacitor run single phase induction motor is experimentally and theoretically investigated, using this method of speed control. The experimental rig is built in the laboratory and a complete set of test results is obtained. On the other hand, a mathematical model for the motor is developed and the motor performance is calculated. Good agreement between the experimental and theoretical results is obtained. These results show that the new method of speed control gives much higher starting torque. This enables the motor to start at low speed settings. Also, a great improvement in motor efficiency and power factor at all speeds is achieved. (author)

  5. DC motor proportional control system for orthotic devices

    Science.gov (United States)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  6. Control Of Stepper Motor Movement By DC Voltage

    International Nuclear Information System (INIS)

    Instrumentation for controlling the power of reactor of TRIGA Mark II uses the stepper motor to move the control rod of neutron absorbers. The direction and speed of control rod movement are determined by the polarity and the amplitude of DC voltage as an error signal that is the difference of set point of power and the power of being measured on the control system. The unit of stepper motor controller of reactor instrumentation of TRIGA Mark II uses patent module of trade Mark of Vexta, USA. In this chance, the electronic circuit is made to function as the control of stepper motor movement by using the DC voltage to anticipate the problem may be faced in case of repair and maintenance of reactor instrumentation. As a result of experiment, it is stated that the control of motor movement by using DC voltage is performed into 2 stages. First, by making the oscillator that is proportional to the positive DC voltage. Secondly, by making the translator to translate the oscillator signal to be a logic pattern for controlling the movement of stepper motor. Translator and motor driver are made by using the L297 and L298 as a pair of stepper motor controller of SGSTHOMSON

  7. Nonlinear Observer Based Sensorless Direct Torque Control of Induction Motor

    OpenAIRE

    Pai, Dinesh A; Mangsuli, Purnaprajna R; Rao, NJ

    2000-01-01

    Induction motor speed control is an area of research that has been in prominence for some time now. Recent advances in this field have made it possible to replace the DC motor by induction machines, even in applications that demand a fast dynamic response. Many industrial applications demand speed sensorless operations, due to various reasons. It is also required to strictly maintain the speed of the motor within certain permissible tolerance, irrespective of the load changes that occur in th...

  8. Brushless DC motor Drive during Speed regulation with Current Controller

    OpenAIRE

    Bhikshalu Manchala; T.Amar Kiran

    2015-01-01

    Brushless DC Motor (BLDC) is one of the best electrical drives that have increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. Due to the increasing demand for compact & reliable motors and the evolution of low cost power semiconductor switches and permanent magnet (PM) materials, brushless DC motors become popular in every application from home appliances to aerospace industry. The conventional techniques for controlling...

  9. Design of BLDCM Driving and Control System for Motorized Treadmill

    Institute of Scientific and Technical Information of China (English)

    Qi Zhang; Hui Li; Li-Bin Wang

    2007-01-01

    To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High integration and reliability of this system are ensured under the condition that intelligent power module (TPM) is used and the protection module is included. Periodic current control method is applied to reduce the average current flowing through the armature winding of the motor when the treadmill is required to start with low speed while large load is added. Piecewise proportion-integration-differentiation (PID) control algorithm is applied to solve the problem of speed fluctuation when impulse load is added. The motorized treadmill of a new generation with the driving and control system has the advantages of high reliability, good speed stability, wide timing scope, low cost, and long life-span. And it is very promising for practical applications.

  10. Genetic Algorithm Based Proportional Integral Controller Design for Induction Motor

    Directory of Open Access Journals (Sweden)

    Mohanasundaram Kuppusamy

    2011-01-01

    Full Text Available Problem statement: This study has expounded the application of evolutionary computation method namely Genetic Algorithm (GA for estimation of feedback controller parameters for induction motor. GA offers certain advantages such as simple computational steps, derivative free optimization, reduced number of iterations and assured near global optima. The development of the method is well documented and computed and measured results are presented. Approach: The design of PI controller parameter for three phase induction motor drives was done using Genetic Algorithm. The objective function of motor current reduction, using PI controller, at starting is formulated as an optimization problem and solved with Genetic Algorithm. Results: The results showed the selected values of PI controller parameter using genetic algorithm approach, with objective of induction motor starting current reduction. Conclusions/Recommendation: The results proved the robustness and easy implementation of genetic algorithm selection of PI parameters for induction motor starting.

  11. ARDOLORES: an Arduino based motors control system for DOLORES

    Science.gov (United States)

    Gonzalez, Manuel; Ventura, H.; San Juan, J.; Di Fabrizio, L.

    2014-07-01

    We present ARDOLORES a custom made motor control system for the DOLORES instrument in use at the TNG telescope. ARDOLORES replaced the original PMAC based motor control system at a fraction of the cost. The whole system is composed by one master Arduino ONE with its Ethernet shield, to handle the communications with the external world through an Ethernet socket, and by one Arduino ONE with its custom motor shield for each axis to be controlled. The communication between the master and slaves Arduinos is made possible through the I2C bus. Also a Java web-service has been written to control the motors from an higher level and provides an external API for the scientific GUI. The system has been working since January 2012 handling the DOLORES motors and has demonstrated to be stable, reliable, and with easy maintenance in both the hardware and the software parts.

  12. Induction Motor Control through AC/DC/AC Converters

    OpenAIRE

    Elfadili, Abderrahim; Giri, Fouad; Ouadi, Hamid; El Magri, Abdelmounime; Dugard, Luc; Abouloifa, Abdelmajid

    2010-01-01

    We consider the problem of controlling inductions motors driven through AC/DC rectifiers and DC/AC inverters. The control objectives are threefold: (i) forcing the motor speed to track a reference signal, (ii) regulating the DC Link voltage, (iii) assuring a satisfactory power factor correction (PFC) with respect to the power supply net. First, a nonlinear model of the whole controlled system is developed in the Park-coordinates. Then, a nonlinear multi-loop controller is synthesized using th...

  13. System of control of brushless DC motors using CPLD

    OpenAIRE

    Sivkov Stepan Igorevich; Novikov Leonid Grigorievich

    2012-01-01

    The developed system of control of brushless DC (BLDC) motors is realized on the complex pro-grammable logic device (CPLD). Using CPLD reduces the power consumption required for calculation the control vector and also the cost of the system. As opposed to the modern systems of control of BLDC motors, the given system uses only two Hall’s sensors. The control circuit is based on the operators of the logical signal convolution that significantly reduces power consumption during the formation of...

  14. Design and Implementation of Motor Speed control and Temperature sensing unit using PIC Controller

    OpenAIRE

    Ms. Ei Ei Thaw; Zaw Min Min Htun

    2014-01-01

    This paper aims to design and implementation of DC motor speed, temperature sensing of material. This project is mainly concerned on DC motor speed control system by using microcontroller PIC 16F877A. Motor speed can be control with variable resistor. So, this programming device can be used any motor to control their speed. Temperature sensing device display the temperature of any place. At the heart of the circuit is the LM35 and microcontroller which controls all ...

  15. PID controller simulator software for DC motor of gamma scanning

    International Nuclear Information System (INIS)

    Mostly PID controller (Proportional-Integral-Derivative) has been used in industry. For certain applications, it can be used as a Proportional (P) model only, or as a Proportional-Integral (PI) model. The aim of this paper is to design a PID controller simulator software for DC motor which is used in gamma scanning system. A DC motor is described as a plant of SISO (Single Input Single Output) which is used for pulling down the load (detector + casing) and gamma radiation source (Co-60 + container) by using sling cable. A DC motor consist of an armature and a rotor, the equivalent circuit of DC motor is shown in a transfer function equation between output parameter (angular speed DC motor) and input parameter (voltage of DC motor). Methods used for the process of PID controller design is to arrange the PID controller parameter (Kc, Ti, Td) so that there are more PID controller transfer function model which are able to control angular speed of DC motor in stable condition, as design criteria requirement is needed. Design criteria requirement for control system are the settling time < 3 second, overshoot < 5%, rise time = 0.25 second, steady state gain = 1 and peak time < 3 second with step response reference 1 rad/second. The result of simulation gives several models of PID controller in function transfer equation which is similar with design criteria requirement in a equation of function transfer of order 2 for numerator and order 1 for denominator. (author)

  16. Remote PID Control of a DC Motor

    Directory of Open Access Journals (Sweden)

    V. Silva

    2007-08-01

    Full Text Available This paper presents a remote experiment forcontrolling a DC motor. This work was part of a final yeargraduation project of the Industrial Electronics Course atthe University of Minho. It was implemented by anundergraduate student for students use. The experiment iscontrolled using a PID algorithm programmed in LabViewenvironment. The remote user can test PID digitalalgorithms and parameters, change reference velocity valuesand register the motor output velocity profile.

  17. Speed Control of Bldc Motor Drive By Using Pid Controllers

    OpenAIRE

    Y.Narendra Kumar,; P.Eswara Rao

    2014-01-01

    This paper mainly deals with the Brushless DC (BLDC) motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM). The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act ...

  18. Sensorless Control of PM Synchronous Motors and Brushless DC Motors

    DEFF Research Database (Denmark)

    Montesinos, D.; Galceran, Samuel; Blaabjerg, Frede;

    2005-01-01

    This paper provides a review of the literature addressing sensorless operation methods of PM brushless machines. The methods explained are state-of-the-art of open and closed loop control strategies. The closed loop review includes those methods based on voltage and current measurements, those...

  19. Vector Control of Induction Motor with Split Phase Stator Windings

    OpenAIRE

    Gopakumar, K.; Ranganathan, VT; Bhat, SR

    1994-01-01

    A vector controlled scheme is described for induction motor with split phase windings. Such a motor is obtained by splitting the phase windings of a conventional three phase motor with an angular seperation of 30 electrical degrees between the axes of the two halves. In the proposed scheme the motor is run as a three phase machine by connecting the split phase windings in series. However the winding taps are utilized for making voltage measurements. Based on a space phasor model of the split ...

  20. A novel robust speed controller scheme for PMBLDC motor.

    Science.gov (United States)

    Thirusakthimurugan, P; Dananjayan, P

    2007-10-01

    The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations. PMID:17544426

  1. Motor abundance and control structure in the golf swing.

    Science.gov (United States)

    Morrison, A; McGrath, D; Wallace, E S

    2016-04-01

    Variability and control structure are under-represented areas of golf swing research. This study investigated the use of the abundant degrees of freedom in the golf swing of high and intermediate skilled golfers using uncontrolled manifold (UCM) analysis. The variance parallel to (VUCM) and orthogonal to (VOrth) the UCM with respect to the orientation and location of the clubhead were calculated. The higher skilled golfers had proportionally higher values of VUCM than lower skilled players for all measured outcome variables. Motor synergy was found in the control of the orientation of the clubhead and the combined outcome variables but not for clubhead location. Clubhead location variance zeroed-in on impact as has been previously shown, whereas clubhead orientation variance increased near impact. Both skill levels increased their control over the clubhead location leading up to impact, with more control exerted over the clubhead orientation in the early downswing. The results suggest that to achieve higher skill levels in golf may not lie simply in optimal technique, but may lie more in developing control over the abundant degrees of freedom in the body. PMID:26784706

  2. A brushless dc spin motor for momentum exchange altitude control

    Science.gov (United States)

    Stern, D.; Rosenlieb, J. W.

    1972-01-01

    Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.

  3. Gestalt Principles in the Control of Motor Action

    Science.gov (United States)

    Klapp, Stuart T.; Jagacinski, Richard J.

    2011-01-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to…

  4. Improvements in direct torque control of induction motors

    OpenAIRE

    Arias Pujol, Antoni

    2001-01-01

    This thesis is mainly devoted to the investigation of speed control methods for three phase cage induction motors with particular emphasis being given to Direct Torque Control (DTC) improved techniques.Classical Direct Torque Control has inherent disadvantages such as: problems during starting resulting from the null states, the compulsory requirement of torque and flux estimators, and torque ripple. In the classical DTC induction motor drive a voltage vector is applied for the entire period,...

  5. Sensorless Passivity Based Control of a DC Motor

    OpenAIRE

    M.Seethamathavi; T.Vignesh

    2015-01-01

    In last couple of decades, the control of motors has increased drastically. With this increase, current control techniques are developed. In sensor-less passivity control of a DC Motor the term passivity means the property of stability in an input and output. To maintain the stability at the input side the solar pv panel is connected with MPPT which extract maximum and stable voltage. For output we simultaneously regulate, both, the output voltage of the SEPIC-converter t...

  6. Switch Reluctance Motor Control Based on Fuzzy Logic System

    Directory of Open Access Journals (Sweden)

    S. Aleksandrovsky

    2012-01-01

    Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.

  7. Touch Screen based Speed Control of Single Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    S. Mallika

    2010-12-01

    Full Text Available This paper gives a brief idea of touch screen technology and its interfacing with a controller to control the speed of single phase induction motor. Here touch screen technology and Programmable System on Chip (PSOC microcontroller concept is utilized which is less spaceconsumption and easy to design. The aim of this paper is to have remote sensing and speed control of an AC motor.

  8. Nonlinear Control of Induction Motors: A Performance Study

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1998-01-01

    A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the...... field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance...

  9. Fractional order control of a DC motor with load changes

    OpenAIRE

    Copot, Cosmin; Muresan, Cristina; Ionescu, Clara-Mihaela; De Keyser, Robain

    2014-01-01

    This paper investigates the robustness of a fractional-order controller against the load changes of a DC motor. The gains and time constants of the DC motor are modified by means of a change in the brake. Two different setups of a DC motor, one with 25% brake and the other with 50% brake are considered in the experimental evaluation. The closed-loop performances of the fractional-order controller are compared with integer-order controller using the same performance criteria and the same tunin...

  10. Adaptive position controller for double armature brushless dc linear motor

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, R. [Abant Izzet Baysal Univ., Technical Education Faculty, Electrical Dept., Dunez (Turkey); Dursun, M. [Gazi University, Technical Education Faculty, Electrical Dept., Ankara (Turkey)

    2000-08-01

    An adaptive position controller has been proposed for double armature brushless DC linear motor. The proposed position control system comprises an inner model reference adaptive velocity control loop and an outer position control loop. The parameters of the adaptive controller have been adjusted by using modified gradient type parameter adaptation algorithm. (orig.)

  11. Efficient foot motor control by Neymar’s brain

    Directory of Open Access Journals (Sweden)

    Eiichi eNaito

    2014-08-01

    Full Text Available How very long-term (over many years motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI while he rotated his right ankle at 1Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  12. Robust Speed Control of DC Servo Motor Using PID-Neural Network Hybrid Controller

    Energy Technology Data Exchange (ETDEWEB)

    Park, Wal Seo; Jeon, Jeong Chay [Wonkwang University (Korea, Republic of)

    1998-02-01

    Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simulation. (author). 6 refs., 5 figs.

  13. Brushless DC Motor Control System Design Based on DSP2812

    Directory of Open Access Journals (Sweden)

    Wei Min

    2016-01-01

    Full Text Available By comparison various control methods currently for permanent magnet brushless DC motor, on the basis of motor principle analysis, a current smallest and most real-time all-digital rare earth permanent magnet brushless DC motor control system is designed. The high-speed digital signal processor DSP2812 is applied as the main control unit. The fuzzy PID control algorithm is used to control rectifier regulator and speed, which the speed and current is double closed loop in the system. The principle of control system, control strategy and software is analyzed in this paper. The system has some features such as less overshoot, rapid response speed, good performance of anti-jamming, simple structure, high control precision, flexible in changing control policies and so on. Validity of the design is verified by prototype test.

  14. Modeling and Analysis of PI Controller Based Speed Control of Brushless DC Motor Drive.

    OpenAIRE

    Mr.P.Nagasekhar Reddy

    2013-01-01

    The Brushless DC motors (BLDC) find widespread applications in domestic and industries due to their low and high power density and ease of speed control. To accomplish desired level of performance the motor requires suitable speed controllers. In case of permanent magnet Brushless DC motors, usually control of speed is reached by using proportional integral (PI) controller. Although the conventional PI controllers are widely used in the industry due to their simple control structure and ease ...

  15. Universal Brushless-DC Motor Controller for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR is to adapt an initial prototype ultra-miniature high-performance brushless-DC-motor controller, code named 'Puck', for use by NASA across a...

  16. Broad Application of a Reconfigurable Motor Controller Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An ultra-miniature (<50 grams) high-performance brushless-motor controller, code named 'Puck', has been developed by Barrett for Earth-based mobile-manipulation...

  17. Closed Loop Speed Control of a BLDC Motor Drive Using Adaptive Fuzzy Tuned PI Controller

    Directory of Open Access Journals (Sweden)

    Sri Latha Eti

    2014-11-01

    Full Text Available Brushless DC Motors are widely used for many industrial applications because of their high efficiency, high torque and low volume. This paper proposed an improved Adaptive Fuzzy PI controller to control the speed of BLDC motor. This paper provides an overview of different tuning methods of PID Controller applied to control the speed of the transfer function model of the BLDC motor drive and then to the mathematical model of the BLDC motor drive. It is difficult to tune the parameters and get satisfied control characteristics by using normal conventional PI controller. The experimental results verify that Adaptive Fuzzy PI controller has better control performance than the conventional PI controller. The modeling, control and simulation of the BLDC motor have been done using the MATLAB/SIMULINK software. Also, the dynamic characteristics of the BLDC motor (i.e. speed and torque as well as currents and voltages of the inverter components are observed by using the developed model.

  18. Modeling and Analysis of PI Controller Based Speed Control of Brushless DC Motor Drive.

    Directory of Open Access Journals (Sweden)

    Mr.P.Nagasekhar Reddy

    2013-09-01

    Full Text Available The Brushless DC motors (BLDC find widespread applications in domestic and industries due to their low and high power density and ease of speed control. To accomplish desired level of performance the motor requires suitable speed controllers. In case of permanent magnet Brushless DC motors, usually control of speed is reached by using proportional integral (PI controller. Although the conventional PI controllers are widely used in the industry due to their simple control structure and ease of implementation, these controllers pose difficulties where there are some control complexity such as nonlinearity, load disturbances and parametric variations. Moreover PI controllers require precise linear mathematical models. In this paper, the analysis and mathematical modeling of BLDC motor is implemented. Also, speed control of three phase BLDC motor drive using power electronic device is projected by using matlab/Simulink. The simulation result shows the improved performance of developed Brushless DC motor drive.

  19. Hardware Evolution of Analog Speed Controllers for a DC Motor

    Science.gov (United States)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    This viewgraph presentation provides information on the design of analog speed controllers for DC motors on aerospace systems. The presentation includes an overview of controller evolution, evolvable controller configuration, an emphasis on proportion integral (PI) controllers, schematic diagrams, and experimental results.

  20. Soft-Starting Power-Factor Motor Controller

    Science.gov (United States)

    Nola, F. J.

    1983-01-01

    Three-phase power-factor controller with soft start is based on earlier version that does not control starting transients. Additional components serve to turn off "run" command signal and substitute gradual startup command signal during preset startup interval. Improved controller reduces large current surge that usually accompanies starting. Controller applies power smoothly, without causing motor vibrations.

  1. Advanced conduction angle control of permanent magnet brushless motor drives

    OpenAIRE

    Gan, J.; Chan, CC; Jiang, JZ; Chau, KT

    1998-01-01

    A novel advanced conduction angle control scheme for permanent magnet brushless motor drives is presented in this paper. The originality of this scheme is to employ the transformer EMF in stator windings to counteract the rotational EMF by controlling the advanced conduction angle when the motor drive operates above the base speed. Hence the constant-power operation region can be extended considerably, even though the current regulator is in saturation. The attractive feature of the proposed ...

  2. Motor Control Center (MCC) based technology study for safety-related motor operated valves

    International Nuclear Information System (INIS)

    It is necessary to monitor periodically the operability of safety-related Motor-Operated Valves (MOVs) in nuclear power plants. However, acquiring diagnostic signals for MOVs is very difficult, and doing so requires an excessive amount of time, effort, and expenditure. This paper introduces an accurate and economical method to evaluate the performance of MOVs remotely. The technique to be utilized includes electrical measurements and signal processing to estimate the motor torque and the stem thrust, which have been cited as the two most effective parameters in diagnosing MOVs by the US Nuclear Regulatory Commission. The motor torque is calculated by using electrical signals, which can be measured in the Motor Control Center (MCC). Some advantages of using the motor torque signature over other signatures are examined. The stem thrust is calculated considering the characteristics of the MOV and the estimated motor torque. The basic principle of estimating stem thrust is explained. The developed method is implemented in diagnostic equipment, namely, the Motor Operated Valve Intelligent Diagnostic System (MOVIDS), which is used to obtain the accuracy of and to validate the applicability of the developed method in nuclear power plants. Finally, the accuracy of the developed method is presented and some examples applied to field data are discussed

  3. Steering Control of Wheeled Armored Vehicle with Brushless DC Motor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-brake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.

  4. A Neuro-controller for DC Motor Containing Nonlinear Friction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun Oh; Jeon, Gi Joon [Kyung Pook National University (Korea, Republic of)

    1998-01-01

    This paper represents the application of a neuro-controller for compensating the effects of the friction in a DC motor system. A bound on the tracking error is derived from the analysis of the tracking error dynamics. The proposed neuro-controller is a combination of a linear controller and a neural network, and is trained by indirect learning scheme. The proposed neuro-controller is implemented and tested on an IBM PC - based DC motor system. The ideas, algorithm, simulation, and experiment results are described. Experimental results are shown to be superior to those of conventional control in terms of friction compensation. (author). 17 refs., 11 figs.

  5. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well...

  6. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2001-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is then constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as...

  7. Analysis and Design of PLL Motor Speed Control System

    Directory of Open Access Journals (Sweden)

    Qi Chao Zhang

    2013-10-01

    Full Text Available Phase-locked technology in motor speed control system has a wide range of applications, Especially for high accuracy in the motor steady speed operation situation, more and more use of phase-locked servo control system. This paper describes the block diagram and mathematical model of phase-locked control system, Shows the circuit parameter calculation method This and combined with design example analysis of phase-locked control system, Indicated through the theory and practice, using PLL can obtain good speed control precision.

  8. Development of Motor Model of Rotor Slot Harmonics for Speed Sensorless Control of Induction Motor

    Science.gov (United States)

    Okubo, Tatsuya; Ishida, Muneaki; Doki, Shinji

    This paper proposes a novel mathematical dynamic model to represent steady-state and transient-state characteristics of rotor slot harmonics of an induction motor for sensorless control. Although it is well known that the rotor slot harmonics originate from the mechanical structure of the induction motor, a mathematical model that describes the relationship between stator/rotor currents of the induction motor and the slot harmonics has not yet been proposed. Therefore, in this paper, a three-phase model of the induction motor that depicts the rotor slot harmonics is developed by taking into consideration the magnetomotive force harmonics and the change in the magnetic air gap caused by the rotor slots. Moreover, the validity of the proposed model is verified by comparing the experimental results and the calculated values.

  9. Indirect Vector Control of Three Phase Induction Motor using PSIM

    OpenAIRE

    Nagulapati Kiran

    2014-01-01

    This paper presents the implementation of indirect vector control of three phase Induction Motor using Hysteresis Band PWM current control and Synchronous Current Control in PSIM environment. In any machine drive system, current control directly influences both flux and torque developed directly. In Hysteresis current control method, actual current tracks the command current within a hysteresis band. There is no difficulty in current control tracking when CEMF is low, but at higher speeds, cu...

  10. Direct Torque Control System for a Three Phase Induction Motor With Fuzzy Logic Based Speed Controller

    OpenAIRE

    Turki Y. Abdalla; Haroution Antranik Hairik; Adel M. Dakhil

    2010-01-01

    This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC) drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI) cont...

  11. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    Science.gov (United States)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  12. Redundant speed control for brushless Hall effect motor

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1973-01-01

    A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.

  13. Control of Rotor Function in Light-Driven Molecular Motors

    OpenAIRE

    Lubbe, Anouk S.; Ruangsupapichat, Nopporn; Caroli, Giuseppe; Feringa, Ben L.

    2011-01-01

    A study is presented on the control of rotary motion of an appending rotor unit in a light-driven molecular motor. Two new light driven molecular motors were synthesized that contain aryl groups connected to the stereogenic centers. The aryl groups behave as bidirectional free rotors in three of the four isomers of the 360 degrees rotation cycle, but rotation of the rotors is hindered in the fourth isomer. Kinetic studies of both motor and rotor functions of the two new compounds are given, u...

  14. A flight simulator control system using electric torque motors

    Science.gov (United States)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  15. Control of BLDC motors for a terrestrial lunar rover prototype

    OpenAIRE

    Serrano Gónzalez, Cristina

    2014-01-01

    A lo largo de los años se han utilizado varios tipos de motores eléctricos. Hoy en día, los motores BLDC son cada vez más importantes en las aplicaciones industriales, en la investigación y exploración espacial. El objetivo de este Proyecto Fin de Máster es el desarrollo de un control de motores BLDC en un microprocesador ARM Cortex-A8 que se encuentra dentro de la plataforma de desarollo BeagleBone Black, y el uso de MatLab/Simulink para crear un regulador Proporcional-Integral que se utiliz...

  16. Micro-stepping motor control for tuner and coupler

    International Nuclear Information System (INIS)

    In the superconducting linear accelerator at PLF, Mumbai each RF cavity is fitted with a coupler for feeding RF power and a tuner for frequency adjustment, The coupler/tuner are controlled using a stepper motor coupled to a suitable mechanical arrangement. Presently, bipolar stepper motors are used with a single channel motor controller. Thus any dynamic adjustment on multiple cavities during the beam operation requires interruption in beam. Further, this bipolar motor doesn't have the micro-stepping control and hence operations in cold condition are not always smooth. Therefore, an improved control module for multichannel control with communication to PC is designed. The design is based on Leadshine make EM503 micro-stepping module and uses Silicon lab make C8051F020 microcontroller. The module can control upto 16 couplers/tuners. The multiplexing is done using high current four pole relays. The design also has additional features like motor selection, start/stop, speed change, limit control and remote operation. (author)

  17. Speed Control of Induction Motor Using PLC and SCADA System

    Directory of Open Access Journals (Sweden)

    Ayman Seksak Elsaid,

    2016-01-01

    Full Text Available Automation or automatic control is the use of various control systems for operating equipment such as machinery, processes in factories, boilers and heat-treating ovens, switching in telephone networks, steering and stabilization of ships, aircraft and other applications with minimal or reduced human intervention. Some processes have been completely automated. The motor speed is controlled via the driver as an open loop control. To make a more precise closed loop control of motor speed we will use a tachometer to measure the speed and feed it back to the PLC, which compares to the desired value and take a control action, then the signal is transferred to the motor – via driver – to increase / decrease the speed. We will measure the speed of the motor using an incremental rotary encoder by adjusting parameters (PLC, driver and also we need to reduce the overall cost of the system. Our control system will be held using the available Siemens PLC. In addition, we will monitor motor parameters via SCADA system.

  18. Fault tolerant vector control of induction motor drive

    Science.gov (United States)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  19. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  20. Direct Torque Control of a Permanent Magnet synchronous Motor

    OpenAIRE

    Ocen, David

    2005-01-01

    This work presents an improved variant of the Direct Torque Control (DTC) for a Permanent Magnet Synchronous Motor (PMSM). The improved DTC use a higher number of voltage space vectors by introducing a kind of Space Vector Modulation technique. The higher number of space vectors are tabulated in more precise switch tables which also take the emf induced in the stator windings into account. The emf voltage significantly affect the motor behavior from a given space vector. It is discussed how t...

  1. INDUCTION MOTOR DIRECT TORQUE CONTROL – FUZZY LOGIC CONTRIBUTION

    OpenAIRE

    CHIKHI, ABDESLEM; CHIKHI, KHALED; BELKACEM, SEBTI

    2012-01-01

    In this article we present the simulation results of the induction motor speed regulation by the direct torque control with a classic PI regulator. The MATLAB SIMULINK programming environment is used as a simulation tool. The results obtained, using a fuzzy logic, shows the importance of this method in the improvement of the performance of such regulationKeywords: DTC, Induction motor, PI, Fuzzy logic, FLR( Fuzzy logic regulator)

  2. Tuning PID controlling parameters for DC motor speed regulation

    OpenAIRE

    Stojanov, Done; Cveta MARTINOVSKA

    2013-01-01

    Modern robots are sophisticated and complex systems, composed of: sensors, high-speed processors and actuators. Different size DC electrical motors are used as actuators, converting electrical energy into mechanical movement. Without them, robots can’t perform movements, what is completely on the contrary on modern robotics concepts. Motor speed regulation is an important engineering task. Having appropriately tuned the controller, the desired speed is reached in a short time interval, with m...

  3. Hybrid circuit modules for motor commutation and control

    Science.gov (United States)

    Dekramer, C.

    1972-01-01

    Thick film hybrid techniques are used to develop circuitry for a brushless dc motor commutator. The power commutator contains the driving circuit and an amplifier that controls the armature current. A position decoder contains digital integrated circuits which receive the signals from the armature position sensors and generate the driving signals for the power commutator in the proper sequence. These units drive motors with stall currents up to about 400 mA.

  4. Alcohol Control Policies and Motor Vehicle Fatalities

    OpenAIRE

    Chaloupka, Frank J.; Henry Saffer; Michael Grossman

    1991-01-01

    The purpose of this study is to estimate the effects of drunk driving deterrents and other alcohol related policies on drunk driving. The data set employed is an annual time-series of state cross-sections for the 48 contiguous states of the U.S. from 1982 through 1988. Total and alterative alcohol involved motor vehicle fatality rates, for the general population and for 18 to 20 year olds, are used as measures of drunk driving. The results indicate that the moat effective policies are increas...

  5. Brushless DC motor Drive during Speed regulation with Current Controller

    Directory of Open Access Journals (Sweden)

    Bhikshalu Manchala

    2015-04-01

    Full Text Available Brushless DC Motor (BLDC is one of the best electrical drives that have increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. Due to the increasing demand for compact & reliable motors and the evolution of low cost power semiconductor switches and permanent magnet (PM materials, brushless DC motors become popular in every application from home appliances to aerospace industry. The conventional techniques for controlling the stator phase current in a brushless DC drive are practically effective in low speed and cannot reduce the commutation torque ripple in high speed range. This paper presents the PI controller for speed control of BLDC motor. The output of the PI controllers is summed and is given as the input to the current controller. The BLDC motor is fed from the inverter where the rotor position and current controller is the input. The complete model of the proposed drive system is developed and simulated using MATLAB/Simulink software. The operation principle of using component is analysed and the simulation results are presented in this to verify the theoretical analysis.

  6. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  7. Direct Torque Control System for a Three Phase Induction Motor With Fuzzy Logic Based Speed Controller

    Directory of Open Access Journals (Sweden)

    Turki Y. Abdalla

    2010-12-01

    Full Text Available This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI controller and the proposed fuzzy logic based controller. The proposed fuzzy logic controller has a nature of (PI to determine the torque reference for the motor. The dynamic response has been clearly tested for both conventional and the proposed fuzzy logic based speed controllers. The simulation results showed a better dynamic performance of the induction motor when using the proposed fuzzy logic based speed controller compared with the conventional type with a fixed (PI controller.

  8. Permanent magnet brushless motor control based on ADRC

    Directory of Open Access Journals (Sweden)

    Li Xiaokun

    2016-01-01

    Full Text Available Permanent magnet brushless motor is a nonlinear system with multiple variables, the mathematical model of Permanent magnet brushless motor is difficult to establish, and since that the classic PID control is hard to precisely control the motor. Active disturbance rejection control (ADRC technique is a new nonlinear controller which does not depend on the system model. It is starting from the classic PID control, and establishing the loop control system by error negative feedback, the ESO(extended state observer observing system which comes from the observer theory of modern control theory to observe internal and external perturbations. ADRC inherits the advantages of PID with little overshoot, high convergence speed, high accuracy, strong anti-interference ability and other characteristics, and it has a strong disturbance adaptability and robustness as for the uncertainty perturbation and their internal disturbance of control objects. Therefore, This paper attempts to use Active disturbance rejection control(ADRC, in order to improve the control of permanent magnet brushless motor. In this design of control system, the simulation of the system is realized based on MATLAB, and then the discrete control algorithm is transplanted to the embedded system to control the permanent magnet brushless DC motor (PMBLDCM. The control system is implemented on the DSP-F28335 digital signal processor, and the DSP also provides the functions like voltage and current AD sampling, PWM driver generation, speed and rotor position calculation, etc. The simulation and experiment results indicate that, the system has good dynamic performance and anti-disturbance performance.

  9. ON THE ISSUE OF VECTOR CONTROL OF THE ASYNCHRONOUS MOTORS

    Directory of Open Access Journals (Sweden)

    B. I. Firago

    2015-10-01

    Full Text Available The paper considers the issue of one of the widespread types of vector control realization for the asynchronous motors with a short-circuited rotor. Of all more than 20 vector control types known presently, the following are applied most frequently: direct vector control with velocity pickup (VP, direct vector control without VP, indirect vector control with VP and indirect vector control without VP. Despite the fact that the asynchronous-motor indirect vector control without VP is the easiest and most spread, the absence of VP does not allow controlling the motor electromagnetic torque at zero velocity. This is the reason why for electric motor drives of such requirements they utilize the vector control with a velocity transducer. The systems of widest dissemination became the direct and indirect vector control systems with X-axis alignment of the synchronously rotating x–y-coordinate frame along the rotor flux-linkage vector inasmuch as this provides the simplest correlations for controlling variables. Although these two types of vector control are well presented in literature, a number of issues concerning their realization and practical application require further elaboration. These include: the block schemes adequate representation as consisted with the modern realization of vector control and clarification of the analytical expressions for evaluating the regulator parameters.The authors present a technique for evaluating the dynamics of an asynchronous electric motor drive with direct vector control and x-axis alignment along the vector of rotor flux linkage. The article offers a generalized structure of this vector control type with detailed description of its principal blocks: controlling system, frequency converter, and the asynchronous motor.The paper presents a direct vector control simulating model developed in the MatLab environment on the grounds of this structure. The authors illustrate the described technique with the results

  10. Performance of Networked DC Motor with Fuzzy Logic Controller

    OpenAIRE

    B. Sharmila; N. Devarajan

    2010-01-01

    In the recent years the usage of data networks has been increased due to its cost effective and flexible applications. A shared data network can effectively reduce complicated wiring connections, installation and maintenance for connecting a complex control system with various sensors, actuators, and controllers as a networked control system. For the time-sensitive application with networked control system the remote dc motor actuation control has been chosen. Due to time-varying network traf...

  11. Motor control differs for increasing and releasing force.

    Science.gov (United States)

    Park, Seoung Hoon; Kwon, MinHyuk; Solis, Danielle; Lodha, Neha; Christou, Evangelos A

    2016-06-01

    Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0-4, 4-10, 10-35, and 35-60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz (R(2) = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = -0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units. PMID:26961104

  12. Representational Similarity Analysis Reveals Heterogeneous Networks Supporting Speech Motor Control

    DEFF Research Database (Denmark)

    Zheng, Zane; Cusack, Rhodri; Johnsrude, Ingrid; MacDonald, Ewen; Munhall, Kevin; Vicente-Grabovetsky, Alejandro

    multiple functional components required for detection of errors in speech planning (e.g., Levelt, 1983), neuroimaging studies generally indicate either single brain regions sensitive to speech production errors, or small, discrete networks. Here we demonstrate that the complex system controlling speech is......The everyday act of speaking involves the complex processes of speech motor control. One important feature of such control is regulation of articulation when auditory concomitants of speech do not correspond to the intended motor gesture. While theoretical accounts of speech monitoring posit...... supported by a complex neural network that is involved in linguistic, motoric and sensory processing. With the aid of novel real-time acoustic analyses and representational similarity analyses of fMRI signals, our data show functionally differentiated networks underlying auditory feedback control of speech....

  13. Power control of linear stepping motor of WWER-1000 reactor

    International Nuclear Information System (INIS)

    The operation is described of the power feeding of a linear stepping motor designed for driving control elements of a WWER-1000 reactor. This provides a control of the size and time course of current flow into the electromagnets of the drive, a switch-over to standby dc supply, motor upwards and downwards run according to orders from the reactor control system, and continuous self-control. The motor is supplied from a three phase insulated system 3x220 V, 50 Hz; standby supply is from a 110 V battery. A block diagram is given of the power feeding. Power feeding units are mounted in groups of four into one switchboard. (Z.M.)

  14. Optimum control of electric motor drives for industrial robots

    Science.gov (United States)

    Guez, A.; Roberts, M.

    1983-04-01

    The industrial robot employs many actuators (electric motor drives) to perform a variety of tasks. Multilink manipulator arms, metal contouring machines, remote control tanks, and solar panels for satellites are just a few examples of applications for multiactuator systems. The first major problem is in the coupled, nonlinear structure of the interacting actuators. The second major problem is to find the optimum trajectories of motion. Determining the optimum control input for each drive is a difficult problem to solve. Due to the complex set of equations which govern the system, a great deal of simplification is necessary if a real-time computer is to be used to optimally control the motor drives. This paper describes a method for optimizing the performance (in this case, to minimize time of control) of these motorized actuators by automatically generating the input voltage signals.

  15. AC motor controller with 180 degree conductive switches

    Science.gov (United States)

    Oximberg, Carol A. (Inventor)

    1995-01-01

    An ac motor controller is operated by a modified time-switching scheme where the switches of the inverter are on for electrical-phase-and-rotation intervals of 180.degree. as opposed to the conventional 120.degree.. The motor is provided with three-phase drive windings, a power inverter for power supplied from a dc power source consisting of six switches, and a motor controller which controls the current controlled switches in voltage-fed mode. During full power, each switch is gated continuously for three successive intervals of 60.degree. and modulated for only one of said intervals. Thus, during each 60.degree. interval, the two switches with like signs are on continuously and the switch with the opposite sign is modulated.

  16. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAS

    OpenAIRE

    Anton Civit-Balcells; Rafael Paz-Vicente; Dominguez-Morales, Manuel J.; Alejandro Linares-Barranco; Gabriel Jimenez-Moreno; Angel Jimenez-Fernandez

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and s...

  17. Speed Control of DC Motor under Varying Load Using PID Controller

    OpenAIRE

    Muhammad Rafay Khan; Aleem Ahmed Khan; Umer Ghazali

    2015-01-01

    DC motors are used extensively in industrial variable speed applications because of most demanding speed-torque characteristics and are simple in controlling aspects. This paper presents a DC motor speed controlling technique under varying load condition. The linear system model of separately excited DC motor with Torque-variation is designed using PID controller. A Matlab simulation of proposed system with no-Load and full-load condition is performed on Simulink platform to observe the syste...

  18. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    OpenAIRE

    Cristian Bazán-Orobio; Juan F. Flórez-Marulanda

    2013-01-01

    In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors) manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a s...

  19. Design and Implementation of Three Phase Unbalanced Voltage Motor Controller

    Directory of Open Access Journals (Sweden)

    M. A. A. Mashud

    2013-09-01

    Full Text Available A state-of-the-art-technology was used to design the unbalanced three phase motor controller. The fluctuation of line voltage has been questioned in recent times due to the use of heavy powered machine with three phases. This paper is focused on deriving a control scheme to drive a three phase motor that could be used in industry or households. The very simple circuitry has been employed in this design. To do this, extensive MATLAB analysis and PSpice software was conducted in order to optimize the control system and finally the results are practically verified.

  20. The minimum transition hypothesis for intermittent hierarchical motor control

    Directory of Open Access Journals (Sweden)

    Amir eKarniel

    2013-02-01

    Full Text Available In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience. Evidence for intermittency in human motor control has been repeatedly observed in the neural control of movement literature. Moreover, some researchers have provided theoretical models to address intermittency. Even so, the vast majority of current models, and I would dare to say the dogma in most of the current motor neuroscience literature involves continuous control. In this paper, I focus on an area in which intermittent control has not yet been thoroughly considered, the structure of muscle synergies. A synergy in the muscle space is a group of muscles activated together by a single neural command. Under the assumption that the motor control is intermittent, I present the minimum transition hypothesis and its predictions with regards to the structure of muscle synergies. The minimum transitions hypothesis (MTH asserts that the purpose of synergies is to minimize the effort of the higher level in the hierarchy by minimizing the number of transitions in an intermittent control signal. The implications of the MTH are not only for the structure of the muscle synergies but also to the intermittent and hierarchical nature of the motor system, with various predictions as to the process of skill learning, and important implications to the design of brain machine interfaces and human robot interaction.

  1. Design and Comparison Direct Torque Control Techniques for Induction Motors

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin;

    2005-01-01

    In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...

  2. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    OpenAIRE

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state...

  3. Speed Sensorless Variable Structure Torque Control of Induction Motor

    OpenAIRE

    Jezernik, Karel; Şabanoviç, Asif; SABANOVIC, Asif

    2008-01-01

    Abstract— Induction motor speed sensorless torque control, which allows operation at low and zero speed, optimizing both torque response and efficiency, is proposed. The control is quite different than the conventional field-oriented or direct torque control. A new discontinuous stator current FPGA based controller and rotor flux observer based on continuous sliding mode and Lyapunov theory are developed. A smooth transition into the field weakening region and the full ut...

  4. Classical Model Predictive Control of a Permanent Magnet Synchronous Motor

    OpenAIRE

    Stumper, Jean-Francois; Dötlinger, Alexander; Kennel, Ralph

    2012-01-01

    A model predictive control (MPC) scheme for a permanent-magnet synchronous motor (PMSM) is presented. The torque controller optimizes a quadratic cost consisting of control error and machine losses repeatedly, accounting the voltage and current limitations. The scheme extensively relies on optimization, to meet the runtime limitation, a suboptimal algorithm based on differential flatness, continuous parameterization and linear programming is introduced. The multivariable controller exploits c...

  5. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    Directory of Open Access Journals (Sweden)

    Cristian Bazán-Orobio

    2013-06-01

    Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.

  6. PMBLDC motor drive with power factor correction controller

    DEFF Research Database (Denmark)

    George, G.J.; Ramachandran, Rakesh; Arun, N.

    2012-01-01

    This paper presents a boost converter configuration, control scheme and design of single phase power factor controller for permanent magnet brushless DC motor (PMBLDCM) drive. PMBLDC motors are the latest choice of researchers, due to the high efficiency, silent operation, compact size, high...... reliability, and low maintenance requirements. The proposed Power Factor Controller topology improves power quality by improving performance of PMBLDCM drive, such as reduction of AC main current harmonics, near unity power factor. PFC converter forces the drive to draw sinusoidal supply current in phase with...... supply voltage. It uses a boost converter to obtain unity power factor with improved performance. The system includes a speed controller for PMBLDC drive and a voltage controller for boost converter.. The voltage or speed controllers can be realized using proportional integral (PI) controller...

  7. Control of asynchronous motors. Volume 1. Modeling, vectorial control and direct torque control; Commande des moteurs asynchrones. Volume 1. Modelisation, controle vectoriel et DTC

    Energy Technology Data Exchange (ETDEWEB)

    Canudas de Wit, C. [Ecole Nationale Superieure d' Ingenieurs de Genie Chimique, ENSIGC, 31 - Toulouse (France)

    2000-07-01

    This first volume deals with the problems of control of asynchronous motors in industrial environments: industrial environment, variable speed, asynchronous motors and power supplies, modeling, direct torque control laws, control by controlled limit cycles under frequency constraints. (J.S.)

  8. Design and Implementation of Three Phase Unbalanced Voltage Motor Controller

    OpenAIRE

    Mashud, M. A. A.; S. C. Barman; M. R. A. Bhuiyan; Md. Serajul Islam

    2013-01-01

    A state-of-the-art-technology was used to design the unbalanced three phase motor controller. The fluctuation of line voltage has been questioned in recent times due to the use of heavy powered machine with three phases. This paper is focused on deriving a control scheme to drive a three phase motor that could be used in industry or households. The very simple circuitry has been employed in this design. To do this, extensive MATLAB analysis and PSpice software was conducted in order to optimi...

  9. Controlling Chaos in Permanent Magnet Synchronous Motor Control System via Fuzzy Guaranteed Cost Controller

    OpenAIRE

    Yi-You Hou

    2012-01-01

    This paper investigates the guaranteed cost control of chaos problem in permanent magnet synchronous motor (PMSM) via Takagi-Sugeno (T-S) fuzzy method approach. Based on Lyapunov stability theory and linear matrix inequality (LMI) technique, a state feedback controller is proposed to stabilize the PMSM systems. An illustrative example is provided to verify the validity of the results developed in this paper.

  10. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    Science.gov (United States)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  11. Computational motor control: redundancy and invariance.

    OpenAIRE

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2007-01-01

    The nervous system controls the behavior of complex kinematically redundant biomechanical systems. How it computes appropriate commands to generate movements is unknown. Here we propose a model based on the assumption that the nervous system: 1) processes static (e.g., gravitational) and dynamic (e.g., inertial) forces separately; 2) calculates appropriate dynamic controls to master the dynamic forces and progress toward the goal according to principles of optimal feedback control; 3) uses th...

  12. Embedded target toolbox for DSP control applications of BLDC motor

    Directory of Open Access Journals (Sweden)

    Benk Enikö

    2009-10-01

    Full Text Available This paper presents a Matlab embedded target toolbox used for the DC brushless (BLDC motor applications. The synthesis, code generation, and the implementation of the control program, and also the control task itself are carried out on the host PC, under the Simulink. The target system is a brushless DC motor control kit – MSK243, connected on serial port COM to the host computer. With this real time library, it is possible to develop a Rapid Control Prototyping and Hardware-in-the-Loop Simulations. During the running control task on the target, the full functionality of Matlab/Simulink can be used for parameter’s visualization without interrupting or impeding the control process on the MSK240 board.

  13. APPLICATION OF MODIFIED REPETITIVE CONTROL STRATEGY FOR A DC MOTOR

    Directory of Open Access Journals (Sweden)

    M.VIJAYAKARTHICK

    2011-07-01

    Full Text Available In this work, design and implementation of Modified Repetitive Control Strategy (MRCS for a DC Motor System is proposed. MRCS developed by Hara et.al, is considered as a base in this study. Key factors such as Learning filter (L and Robustness filter (Q in the learning control strategy are identified using Zero Phase Error Tracking Control (ZPETC technique and frequency method respectively. Design and implementation of the MRCS approach involves the approximation of First Order process (FOP that includes ZNTR based PControl settings and sine wave generation. Simulation runs of the DC Motor System are carried out for the periodic reference tracking with MRCS based P mode control loop. A similar test run with Repetitive Control Strategy (RCS based P mode and conventional P-mode are carried out for comparison purpose. Results confirm the supremacy of MRCS based P mode control loop. A robustness of the MRCS is also analyzed.

  14. Stepping Motors and Associated Electronic Circuits for Reactor Control

    International Nuclear Information System (INIS)

    Electrical stepping motors are now available which, because of their high torque and precise motion, are very suitable for use with reactor control rods. A typical motor will produce a torque of about 30 kg cm at 10 rev/min and make about 150 steps per revolution, so that a positional accuracy of 1 part in 10000 can be obtained on the control absorber. The motors may have three or four windings and are driven by d.c. pulse-generators specially designed for the particular reactor application. The low-frequency pulses may be produced in many ways, including: (a) rotating shutters moving over photo-transistors, (b) assemblies of standard computing elements, such as synchro-transmitters, and (c) circuits which cause frequency-reduction and squaring of the 50 c/s or 60 c/s electrical supply. It is advisable to arrange variation of the on/off ratio of pulses to obtain maximum torque or reduce energy losses in the motors. The usual electronic circuit consists of binary frequency-dividing circuits connected to Schmitt trigger circuits which switch a low-voltage d.c. supply to the motors via transistor amplifiers. A typical design will permit an absorber to be driven in steps over 60 cm in 5, 10, 20, 40, 80 or 100 min in the direction required. In the electronic circuits, separate channels are used for each speed and direction to give high reliability and solid-state components on portable cards are used throughout for ease of maintenance. Auto control may be applied, by using a two-phase motor to drive a rotary pulse-generator or by means of frequency- modulation about a chosen reference. It is convenient to measure position by displaying the number of pulses fed to the motor on a two-way counter. Various monitoring circuits may be used to verify that the motor has moved in the correct direction and the use of groups of three or more units permits redundancy principles to be applied. Six vertically-acting control rods with stepping motors will be installed in the high

  15. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  16. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    Science.gov (United States)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  17. Interrelationships Among Motor Coordination, Body Fat Percentage, and Physical Activity in Adolescent Girls

    OpenAIRE

    Chagas Daniel das Virgens; Batista Luiz Alberto

    2015-01-01

    Purpose. The aim of this study was to analyze the interrelationships among motor coordination, body fat percentage, and physical activity levels in adolescent girls. Methods. Sixty-eight girls aged 12-14 years participated in the study. Skinfold thickness was measured and the Körperkoordinationstest für Kinder test was administered. Participants completed a self-reporting questionnaire on physical activity. Bivariate and partial correlations were used to analyze the interrelationships among t...

  18. APPLICATION OF MODIFIED REPETITIVE CONTROL STRATEGY FOR A DC MOTOR

    OpenAIRE

    M.VIJAYAKARTHICK; S. Sathishbabu; Bhaba, P. K.; S.N.SIVARAJ

    2011-01-01

    In this work, design and implementation of Modified Repetitive Control Strategy (MRCS) for a DC Motor System is proposed. MRCS developed by Hara et.al, is considered as a base in this study. Key factors such as Learning filter (L) and Robustness filter (Q) in the learning control strategy are identified using Zero Phase Error Tracking Control (ZPETC) technique and frequency method respectively. Design and implementation of the MRCS approach involves the approximation of First Order process (F...

  19. Robust Control of a Brushless Servo Motor Using Sliding Mode

    OpenAIRE

    Radita Arindya

    2012-01-01

    The application of sliding mode techniques the position control of a brushless servo motor is discussed. Such control laws are well suited for electric power inverter. However, high frequency commutations are avoided due to the mechanical systems. Various recent schemes are studied and operated to derive control solutions which are technically feasible. In spite of straightforward applications the resulting systems show robust performances to parametric variations and disturbances. Robustness...

  20. Voluntary motor commands reveal awareness and control of involuntary movement.

    Science.gov (United States)

    De Havas, Jack; Ghosh, Arko; Gomi, Hiroaki; Haggard, Patrick

    2016-10-01

    The capacity to inhibit actions is central to voluntary motor control. However, the control mechanisms and subjective experience involved in voluntarily stopping an involuntary movement remain poorly understood. Here we examined, in humans, the voluntary inhibition of the Kohnstamm phenomenon, in which sustained voluntary contraction of shoulder abductors is followed by involuntary arm raising. Participants were instructed to stop the involuntary movement, hold the arm in a constant position, and 'release' the inhibition after ∼2s. Participants achieved this by modulating agonist muscle activity, rather than by antagonist contraction. Specifically, agonist muscle activity plateaued during this voluntary inhibition, and resumed its previous increase thereafter. There was no discernible antagonist activation. Thus, some central signal appeared to temporarily counter the involuntary motor drive, without directly affecting the Kohnstamm generator itself. We hypothesise a form of "negative motor command" to account for this novel finding. We next tested the specificity of the negative motor command, by inducing bilateral Kohnstamm movements, and instructing voluntary inhibition for one arm only. The results suggested negative motor commands responsible for inhibition are initially broad, affecting both arms, and then become focused. Finally, a psychophysical investigation found that the perceived force of the aftercontraction was significantly overestimated, relative to voluntary contractions with similar EMG levels. This finding is consistent with the hypothesis that the Kohnstamm generator does not provide an efference copy signal. Our results shed new light on this interesting class of involuntary movement, and provide new information about voluntary inhibition of action. PMID:27399155

  1. Controller Design for Direct Torque Controlled Space Vector Modulated (DTC-SVM) Induction Motor Drives

    DEFF Research Database (Denmark)

    Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede

    2005-01-01

    In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor in...

  2. Experimental Setup and Robust Servo DC Motor Position Control Based on Gain Schedule Sliding Mode Controller

    OpenAIRE

    Ahmed M. Kassem; Ali Mohamed Yousef

    2012-01-01

    A position control of DC motor servo drive based on the Sliding Mode (SM) approach is presented. The modeling and analysis of the servo DC motor are obtained. The Sliding Mode Controller (SMC) design changes such that its performance is substantially improved. To improve the controller performance in steady stat (zero error) the Integral Sliding Mode Controller (ISMC) is used. Since the main drawback of SMC is a phenomenon, the so-called chattering, resulting from discontinuous controllers. A...

  3. Simulation Of Speed Control Of Brushless Dc Motor, With Fuzzy Logic Controller

    OpenAIRE

    C.Sheeba Joice; P.Nivedhitha

    2014-01-01

    Abstract— The electronically commuted Brushless DC motors are widely used in many industrial applications which increase the need for design of efficient control strategy for these noiseless motors. This paper deals with the efficient speed control mechanisms for these drives using meaningful fuzzy sets and rules. The fuzzy logic controller is developed using a MATLAB/ Simulink tool. The paper deals with the possibility of designing a control strategy, to achieve accurate speed control with t...

  4. Speed Control of DC Motor under Varying Load Using PID Controller

    Directory of Open Access Journals (Sweden)

    Muhammad Rafay Khan

    2015-08-01

    Full Text Available DC motors are used extensively in industrial variable speed applications because of most demanding speed-torque characteristics and are simple in controlling aspects. This paper presents a DC motor speed controlling technique under varying load condition. The linear system model of separately excited DC motor with Torque-variation is designed using PID controller. A Matlab simulation of proposed system with no-Load and full-load condition is performed on Simulink platform to observe the system response. The motor speed is kept constant in this experiment. The simulation result of the experiment shows that a motor is running approximately at a constant speed regardless of a motor load. The Simulink results show that the speed of the motor is slow down only for about 270 rpm (9% in 980 milliseconds under the effect of full load. However, the motor speed is hunting about 200 rpm (6.66% in 900 milliseconds on unloading condition. It is concluded that a PID controller is successful tool for controlling the motor speed in presence of load disturbances.

  5. Optimal motor control may mask sensory dynamics

    OpenAIRE

    Carver, Sean G.; Kiemel, Tim; Cowan, Noah J.; John J Jeka

    2009-01-01

    Properties of neural controllers for closed-loop sensorimotor behavior can be inferred with system identification. Under the standard paradigm, the closed-loop system is perturbed (input), measurements are taken (output), and the relationship between input and output reveals features of the system under study. Here we show that under common assumptions made about such systems (e.g. the system implements optimal control with a penalty on mechanical, but not sensory, states) important aspects o...

  6. Fuzzy Mixed-Sensitivity Control of Uncertain Nonlinear Induction Motor

    Directory of Open Access Journals (Sweden)

    Vahid Azimi

    2014-06-01

    Full Text Available In this article we investigate on robust mixed-sensitivity H∞ control for speed and torque control of inductional motor (IM. In order to simplify the design procedure the Takagi–Sugeno (T–S fuzzy approach is introduced to solve the nonlinear model Problem. Loop-shaping methodology and Mixed-sensitivity problem are developed to formulate frequency-domain specifications. Then a regional pole-placement output feedback H∞ controller is employed by using linear matrix inequalities(LMIs teqnique for each linear subsystem of IM T-S fuzzy model. Parallel Distributed Compensation (PDC is used to design the controller for the overall system . Simulation results are presented to validate the effectiveness of the proposed controller even in the presence of motor parameter variations and unknown load disturbance.

  7. Simple Approach For Induction Motor Control Using Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    József VÁSÁRHELYI

    2002-12-01

    Full Text Available The paper deals with rotor-field-oriented vector control structures for the induction motor drives fed by the so-called tandem frequency converter. It is composed of two different types of DC-link converters connected in parallel arrangement. The larger-power one has current-source character and is operating synchronized in time and in amplitude with the stator currents. The other one has voltage-source character and it is the actuator of the motor control system. The drive is able to run also with partial-failed tandem converter, if the control strategy corresponds to the actual operating mode. A reconfigurable hardware implemented in configurable logic cells ensures the changing of the vector-control structure. The proposed control schemes were tested by simulation based on Matlab-Simulink model.

  8. Effective and Robust Generalized Predictive Speed Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Patxi Alkorta

    2013-01-01

    Full Text Available This paper presents and validates a new proposal for effective speed vector control of induction motors based on linear Generalized Predictive Control (GPC law. The presented GPC-PI cascade configuration simplifies the design with regard to GPC-GPC cascade configuration, maintaining the advantages of the predictive control algorithm. The robust stability of the closed loop system is demonstrated by the poles placement method for several typical cases of uncertainties in induction motors. The controller has been tested using several simulations and experiments and has been compared with Proportional Integral Derivative (PID and Sliding Mode (SM control schemes, obtaining outstanding results in speed tracking even in the presence of parameter uncertainties, unknown load disturbance, and measurement noise in the loop signals, suggesting its use in industrial applications.

  9. Sensorless Passivity Based Control of a DC Motor

    Directory of Open Access Journals (Sweden)

    M.Seethamathavi

    2015-02-01

    Full Text Available In last couple of decades, the control of motors has increased drastically. With this increase, current control techniques are developed. In sensor-less passivity control of a DC Motor the term passivity means the property of stability in an input and output. To maintain the stability at the input side the solar pv panel is connected with MPPT which extract maximum and stable voltage. For output we simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the speed of motor, in any of the turning senses, so that it tracks a prespecified constant reference. For a sensor less current control of a PMDC motor, its small-signal model that contains a number of parasitic parameters the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage a self-correction differential current observer (SDCO is proposed to eliminate this steady-state error and gain high transient response speed. By carrying out a series of MATLAB simulation verifications, further investigation proves that the proposed algorithm has good robustness.

  10. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    OpenAIRE

    Gerasimos G. Rigatos; Pierluigi Siano

    2011-01-01

    The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor

  11. Speed Control Of Induction Motor Using Dspic30f2023

    Directory of Open Access Journals (Sweden)

    M. S. Aspalli

    2013-09-01

    Full Text Available AC motor drives are widely used to control the speed of conveyor systems, blower speeds, pump speeds, machine tool speeds and other applications that require variable speed with variable torque. The main aim of the work is to design and develop an electronic system that can be used to control the speed of a three phase induction motor.The speed of the three phase induction motor can be controlled by various methods. The stator frequency control is one of the simplest methods to control the speed of IM and the same method is employed.In the proposed scheme, dsPIC30F2023 controller is used to produce control signals for switches (IGBTs. It is a 44 pin IC. As compared to the PIC controller and DSP, dsPIC is cheaper and most reliable. The dsPIC DSC has the “heart” of a 16-bit MCU with robust peripherals and fast interrupt handling capability and the “brain” of a DSP that manages high computation activities, creating the optimum single chip solution for embedded system designs.

  12. Velocity control in three-phase induction motors using PIC; Controle de velocidade de motor de inducao trifasico usando PIC

    Energy Technology Data Exchange (ETDEWEB)

    Marcelino, M.A.; Silva, G.B.S.; Grandinetti, F.J. [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Fac. de Engenharia; Universidade de Taubate (UNITAU), SP (Brazil)], Emails: abud@feg.unesp.br, gabonini@yahoo.com.br, grandinetti@unitau.br

    2009-07-01

    This paper presents a technique for speed control three-phase induction motor using the pulse width modulation (PWM), in open loop while maintaining the tension for constant frequency. The technique is adapted from a thesis entitled 'Control of the three-phase induction motor, using discrete PWM generation, optimized and synchronized', where studies are presented aimed at their application in home appliances, to eliminate mechanical parts, replaced by low cost electronic control, thus having a significant reduction in power consumption. Initially the experiment was done with the Intel 80C31 micro controller. In this paper, the PWM modulation is implemented using a PIC micro controller, and the speed control kept a low profile, based on tables, synchronized with transitions and reduced generation of harmonics in the network. Confirmations were made using the same process of building tables, but takes advantage of the program of a RISC device.

  13. Voice-controlled Internet Browsing for Motor-handicapped Users

    DEFF Research Database (Denmark)

    Brøndsted, Tom; Aaskoven, Erik

    2006-01-01

    The public-funded project "Indtal" ("Speak-it") has succeeded in developing a Danish voice-controlled utility for internet browsing targeting motor-handicapped users having difficulties using a standard keyboard and/or a standard mouse. The system has been designed and implemented in collaboration...... with an advisory board of motor-handicapped (potential) end-users and underlies a number of a priori defined design criteria: learnability and memorability rather than naturalness, minimal need for maintenance after release, support for "all" web standards (not just HTML conforming to certain...

  14. Control and Diagnostic Model of Brushless Dc Motor

    Science.gov (United States)

    Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol

    2014-09-01

    A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values

  15. Design and Implementation of Prosthetic Arm using Gear Motor Control Technique with Appropriate Testing

    CERN Document Server

    Neogi, Biswarup; Ghosal, Soumya; Das, Achintya; Tibarewala, D N

    2011-01-01

    Any part of the human body replication procedure commences the prosthetic control science. This paper highlights the hardware design technique of a prosthetic arm with implementation of gear motor control aspect. The prosthetic control arm movement has been demonstrated in this paper applying processor programming and with the successful testing of the designed prosthetic model. The architectural design of the prosthetic arm here has been replaced by lighter material instead of heavy metal, as well as the traditional EMG (electro myographic) signal has been replaced by the muscle strain.

  16. Combined vector control and direct torque control method for high performance induction motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Vaez-Zadeh, S.; Jalali, E. [Advanced Motion Systems Research Laboratory, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, North Kargar Ave., P.O. Box 14395/515, Tehran (Iran)

    2007-12-15

    A new control method is proposed for three phase high performance induction motor drives. The control system enjoys the advantages of vector control and direct torque control and avoids some of the implementation difficulties of either of the two control methods. In particular, the proposed control system includes a current vector control in connection with a switching table. An extensive comparative performance evaluation of a motor under the proposed control method confirms the effectiveness of the method and its partial superiority over either vector control or direct torque control despite its relative structural simplicity. (author)

  17. Combined vector control and direct torque control method for high performance induction motor drives

    International Nuclear Information System (INIS)

    A new control method is proposed for three phase high performance induction motor drives. The control system enjoys the advantages of vector control and direct torque control and avoids some of the implementation difficulties of either of the two control methods. In particular, the proposed control system includes a current vector control in connection with a switching table. An extensive comparative performance evaluation of a motor under the proposed control method confirms the effectiveness of the method and its partial superiority over either vector control or direct torque control despite its relative structural simplicity

  18. Perinatal Development of the Motor Systems Involved in Postural Control

    Directory of Open Access Journals (Sweden)

    Laurent Vinay

    2005-01-01

    Full Text Available Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood—e.g, deficits in motor coordination—might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy.

  19. ANFIS Based Torque Control of Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Ponrajan. P

    2012-05-01

    Full Text Available This paper develops an ANFIS based torque control of SRM to reduce the torque ripple. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. This controller realizes a good dynamic behavior of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI. The above controller was realized using MATLAB/Simulink.

  20. Microgravity induced changes in the control of motor units

    Science.gov (United States)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  1. Control of Non-conventional Synchronous Motors

    OpenAIRE

    SEMAIL, Eric; Kestelyn, Xavier

    2012-01-01

    This chapter is devoted to the modeling and control of electrical machines having at least two independent statoric currents. The star-coupled three-phase machine without a neutral terminal or the triangle-coupled three-phase machine is the most basic of them. More precisely, the aim of this chapter is to emphasize the particularities created by a number of independent currents greater than two with respect to the classical three-phase machine.

  2. Analysis and Design of Conventional Controller for Speed Control of DC Motor -A MATLAB Approach

    OpenAIRE

    C. S. Linda; K. K.

    2015-01-01

    The objective of this paper is to control the speed of the motor using conventional controller; compensator is used to improve the steady state error. To evaluate the performance of the controller, time response analysis is carried out. The time response analysis consists of two type of analysis. One is unit step response analysis and other is performance indices analysis. The paper describes the designing of a closed loop model of the dc motor drive for controlling speed. Accurac...

  3. METHODICAL TUNING OF PROPORTIONAL PLUS INTEGRAL CONTROLLERS FOR CASCADE CONTROL OF SEPARATELY EXCITED DC MOTORS

    OpenAIRE

    Ibrahim Al-Abbas

    2012-01-01

    The cascade control of DC motors by PI controllers was extensively used in industry. Approximation rules based on plotting the output of the system or on computer simulation were used to determine the parameters of these controllers. This study was done to develop mathematical expressions to calculate the parameters of these controllers. Output time functions of the system and there derivatives were used to obtain mathematical relationships relating directly the motor parameters and the contr...

  4. DIRECT TORQUE CONTROL FOR INDUCTION MOTOR USING INTELLIGENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    R.Toufouti

    2007-09-01

    Full Text Available In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC of Induction motor such as fuzzy logic (FL and artificial neural network (ANN, applied in switching select voltage vector .The comparison with conventional direct torque control (DTC, show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.

  5. DIRECT TORQUE CONTROL FOR INDUCTION MOTOR USING INTELLIGENT TECHNIQUES

    OpenAIRE

    R. Toufouti; S.Meziane; Benalla, H.

    2007-01-01

    In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC) of Induction motor such as fuzzy logic (FL) and artificial neural network (ANN), applied in switching select voltage vector .The comparison with conventional direct torque control (DTC), show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.

  6. Speed Control of Induction Motor using FOC Method

    Directory of Open Access Journals (Sweden)

    Hafeezul Haq

    2015-03-01

    Full Text Available An increasing number of applications in high performing electrical drive systems use nowadays, squirrel-cage induction motors. This paper describes a simplified method for the speed control of a three phase AC drive using Proportional-Integral controller. The simulation results show that the step response of the model is very fast, steady and able to work in four quadrants, and robustness and high performance is achieved.

  7. Digital current loop control of a brushless DC motor

    OpenAIRE

    Cox, Noel Patrick

    1987-01-01

    Servo control of motors has important applications m such areas as robotics, numerically controlled machines and 'fly by wire* aircraft systems. The development of high power high coercivity magnetic alloys, such as samarium cobalt, has led to the advent of the brushless dc machine, which offers a more advantageous alternative to the brush machine. The brushless DC machine eliminates the need for brush contacts, through the use of electronic commutation. It has better thermal charact...

  8. Development of a control system for DC-motor

    OpenAIRE

    Siewert, Marcus

    2010-01-01

    A control system for a BLDC (Brushless Direct Current) motor has been developed in Labview 2009. This report explains how it works, conclusions and some information about things that could have been done differently. This report is also a good introduction to Labview including its advantages and disadvantages. It also explains how a FOC (Field Oriented Control) works. This is the public version of the report which does not include any results or information about the implementation. This info...

  9. Effect of whole-body vibration on muscle strength, spasticity, and motor performance in spastic diplegic cerebral palsy children

    Directory of Open Access Journals (Sweden)

    Marwa M. Ibrahim

    2014-04-01

    Conclusion: The obtained results suggest that 12-weeks’ intervention of whole-body vibration training can increase knee extensors strength and decrease spasticity with beneficial effects on walking speed and motor development in spastic diplegic CP children.

  10. Remapping residual coordination for controlling assistive devices and recovering motor functions.

    Science.gov (United States)

    Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Thorp, Elias B; Mussa-Ivaldi, Ferdinando A; Casadio, Maura

    2015-12-01

    The concept of human motor redundancy attracted much attention since the early studies of motor control, as it highlights the ability of the motor system to generate a great variety of movements to achieve any well-defined goal. The abundance of degrees of freedom in the human body may be a fundamental resource in the learning and remapping problems that are encountered in human-machine interfaces (HMIs) developments. The HMI can act at different levels decoding brain signals or body signals to control an external device. The transformation from neural signals to device commands is the core of research on brain-machine interfaces (BMIs). However, while BMIs bypass completely the final path of the motor system, body-machine interfaces (BoMIs) take advantage of motor skills that are still available to the user and have the potential to enhance these skills through their consistent use. BoMIs empower people with severe motor disabilities with the possibility to control external devices, and they concurrently offer the opportunity to focus on achieving rehabilitative goals. In this study we describe a theoretical paradigm for the use of a BoMI in rehabilitation. The proposed BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer screen. This mapping is obtained by principal component analysis (PCA). We hypothesize that the BoMI can be specifically programmed to engage the users in functional exercises aimed at partial recovery of motor skills, while simultaneously controlling the cursor and carrying out functional tasks, e.g. playing games. Specifically, PCA allows us to select not only the subspace that is most comfortable for the user to act upon, but also the degrees of freedom and coordination patterns that the user has more difficulty engaging. In this article, we describe a family of map modifications that can be made to change the motor behavior of the user. Depending on the characteristics of the impairment of each

  11. Interruption-free motor control. Electromagnetically compatible DD motor control with pulse width modulation; Stoerungsfreie Motorsteuerungen. Auf elektromagnetische Vertraeglichkeit getrimmter DC-Motor-Regler mit Pulsbreitenmodulation

    Energy Technology Data Exchange (ETDEWEB)

    Marks, W.; Ritz, S. [Austria Mikro Systeme International AG, Dresden (Germany). Design Center

    2001-06-12

    The AS8410 circuit for PWM control of DC motors combines two near-incompatible characteristics, i.e. high efficiency (>95$) and low electromagnetic radiation (below the standards set in VDE0871, VDE0875, VDE0879) even in the high-frequency spectral range in spite of high PWM frequencies. Comprehensive error diagnosis and error remedy routines as well as simply programmable modes of operation enable reliable, low-cost applications in a wide spectrum of DC motor control. [German] Der Steuerschaltkreis AS8410 zur PWM-Ansteuerung von DC-Motoren kombiniert zwei bisher als unvereinbar geltende Eigenschaften bei elektronisch gesteuerten Gleichstrommotoren: Einen hohen Wirkungsgrad (>95%) und niedrige elektromagnetische Abstrahlungen, sogar im hochfrequenten Spektralbereich, die deutlich unterhalb der Normen VDE0871, VDE0875, VDE0879 liegen, und das trotz gleichzeitig hoher PWM-Frequenzen. Eine umfangreiche Lastfehlerdiagnose mit Fehlerbehandlungsroutinen sowie einfach programmierbare Betriebsmodi ermoeglichen sichere und preiswerte Applikationen in einem breiten Applikationsspektrum von DC-Motor-Steuerungen. (orig.)

  12. Modeling and control of V/f controlled induction motor using genetic-ANFIS algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ustun, Seydi Vakkas (Vocational High School, Adiyaman University, Adiyaman/Turkey); Demirtas, Metin (Electrical and Electronics Engineering Department, Balikesir University, Balikesir/Turkey)

    2009-03-15

    This paper deals with modeling and performance analysis of the voltage/frequency (V/f) control of induction motor drives. The V/f control, which realizes a low cost and simple design, is advantageous in the middle to high-speed range. Its torque response depends on the electrical time constant of the motor and adjustments of the control parameters are not need. Therefore, V/f control of induction motor is carried out. Space vector pulse width modulation is used for controlling the motor because of including minimum harmonics according to the other PWM techniques. Proportional Integral (PI) controller is used to control speed of induction motor. In this work, optimization of PI coefficients is carried out by Ziegler-Nichols model and Genetic-Adaptive Neuro-Fuzzy Inference System (ANFIS) model. These controllers are applied to drive system with 0.55 kW induction motor. A digital signal processor controller (dsPIC30F6010) is used to carry out control applications. The proposed method is compared Ziegler-Nichols model. Experimental results show the effectiveness of the proposed control method. (author)

  13. Signal differentiation in position tracking control of dc motors

    International Nuclear Information System (INIS)

    An asymptotic differentiation approach with respect to time is used for on-line estimation of velocity and acceleration signals in controlled dc motors. The attractive feature of this differentiator of signals is that it does not require any system mathematical model, which allows its use in engineering systems that require the signal differentiation for its control, identification, fault detection, among other applications. Moreover, it is shown that the differentiation approach can be applied for output signals showing a chaotic behavior. In addition a differential flatness control scheme with additional integral compensation of the output error is proposed for tracking tasks of position reference trajectories for direct current electric motors using angular position measurements only

  14. Efficiency optimized control of medium-size induction motor drives

    DEFF Research Database (Denmark)

    Abrahamsen, F.; Blaabjerg, Frede; Pedersen, John Kim;

    2000-01-01

    The efficiency of a variable speed induction motor drive can be optimized by adaption of the motor flux level to the load torque. In small drives (<10 kW) this can be done without considering the relatively small converter losses, but for medium-size drives (10-1000 kW) the losses can not be disr...... robustness towards load disturbances may unnecessarily be reduced. Both displacement power factor and model-based efficiency optimizing control methods perform well in medium-size drives. The last strategy is also tested on a 22 kW drive with good results.......The efficiency of a variable speed induction motor drive can be optimized by adaption of the motor flux level to the load torque. In small drives (<10 kW) this can be done without considering the relatively small converter losses, but for medium-size drives (10-1000 kW) the losses can not be...... disregarded without further analysis. The importance of the converter losses on efficiency optimization in medium-size drives is analyzed in this paper. Based on the experiments with a 90 kW drive it is found that it is not critical if the converter losses are neglected in the control, except that the...

  15. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  16. Programmable logic device based brushless DC motor control

    OpenAIRE

    Van den Bossche, Alex; Bozalakov, Dimitar; Vyncke, Thomas; Valchev, Vencislav

    2011-01-01

    In this article a three-phase BLDC motor controller for use in an Ultra-Light Electrical Vehicle is presented. The control is performed using a Programmable Logic Device (CPLD), which doesn’t require any additional processor. In this way a robust and low-complexity control is obtained. For extending the speed range of the BLDC, a phase advance circuit is implemented as well. The power consumption of the controller is very low which is an interesting feature in battery applications.

  17. Modeling and Implementation for Embedded DC Motor Ethernet Control System

    OpenAIRE

    Zhu, Lingbo; Dai, Guanzhong; Shi, Li; Lin-Shi, Xuefang; Rétif, Jean-Marie

    2008-01-01

    In this paper, a model of Embedded DC Motor Ethernet Control System is proposed with analysis on transmission time delay and data packet dropout. Based on this model, the ECS is described as a two-state asynchronous dynamical system with output feedback control and then implemented on a platform which uses a PC as a central controller and an ARM9 kit as a remote controller. As a key part of developments, embedded programs including client program and Linux Module are realized on the kit. The ...

  18. Motor Control and Regulation for a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  19. A biomimetic framework for coordinating and controlling whole body movements in humanoid robots.

    Science.gov (United States)

    Morasso, Pietro; Rea, Francesco; Mohan, Vishwanathan

    2013-01-01

    An integrated model for the coordination of whole body movements of a humanoid robot with a compliant ankle similar to the human case is described. It includes a synergy formation part, which takes into account the motor redundancy of the body model, and an intermittent controller, which stabilizes in a robust way postural sway movements, thus combining the hip strategy with ankle strategy. PMID:24110934

  20. Comparative Study of Controller Design for Four Quadrant Operation of Three Phase BLDC Motor

    OpenAIRE

    Ms.K.Suganya*1

    2014-01-01

    Brushless DC motor drives are becoming more popular in industrial and traction applications. The control of BLDC motor in four quadrants is very vital. The three-phase permanent magnet brushless dc motor inherently needs an electronic commutation circuit to drive it, because it is not a self-commutating motor. It is contrary to the conventional brush motor which commutates itself. This paper presents a comparison study of three type of control such as PI, PID & fuzzy. The char...

  1. Effects of muscle atrophy on motor control

    Science.gov (United States)

    Stuart, D. G.

    1985-01-01

    As a biological tissue, muscle adapts to the demands of usage. One traditional way of assessing the extent of this adaptation has been to examine the effects of an altered-activity protocol on the physiological properties of muscles. However, in order to accurately interpret the changes associated with an activity pattern, it is necessary to employ an appropriate control model. A substantial literature exists which reports altered-use effects by comparing experimental observations with those from animals raised in small laboratory cages. Some evidence suggests that small-cage-reared animals actually represent a model of reduced use. For example, laboratory animals subjected to limited physical activity have shown resistance to insulin-induced glucose uptake which can be altered by exercise training. This project concerned itself with the basic mechanisms underlying muscle atrophy. Specifically, the project addressed the issue of the appropriateness of rats raised in conventional-sized cages as experimental models to examine this phenomenon. The project hypothesis was that rats raised in small cages are inappropriate models for the study of muscle atrophy. The experimental protocol involved: 1) raising two populations of rats, one group in conventional (small)-sized cages and the other group in a much larger (133x) cage, from weanling age (21 days) through to young adulthood (125 days); 2) comparison of size- and force-related characteristics of selected test muscles in an acute terminal paradigm.

  2. Functional MRI in human motor control studies and clinical applications

    International Nuclear Information System (INIS)

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  3. Rapid control prototyping using MATLAB/Simulink and a DSP-based motor controller

    OpenAIRE

    Hercog, Darko; Jezernik, Karel

    2012-01-01

    A rapid control prototyping (RCP) system, based on commercially available software and custom in-house developed hardware is presented. An RCP system successfully combines the well-known simulation program MATLAB/Simulink and the custom DSP-based floating point motor controller. An RCP system provides smooth and fast transition from off-line simulation in Simulink to real-time operation on the embedded motor controller. On-the-fly parameter tuning and data visualization are provided in additi...

  4. Motor-operated valve performance testing and condition monitoring using data from the motor control center

    International Nuclear Information System (INIS)

    Much progress has been made over the past 20 years at CANDU nuclear stations to understand and improve Motor-Operated Valve (MOV) performance and reliability. If set up properly, most MOVs show very repeatable and predictable results when tested during outages. In fact, it is believed that, to some extent, a few of the encountered MOV failures stem from repeated maintenance operations and intrusive test methods. In this context, the potential for assessing MOV performance and monitoring their condition using electrical data acquired at the Motor Control Center (MCC) has generated considerable interest over the past few years. The overall approach consists of acquiring current and voltage signals at the MCC to derive motor power and motor torque traces. A correlation between the output parameters typically measured at the valve and the derived motor data is usually established through initial baseline tests. Following subsequent tests at the MCC, several valve performance indicators are derived using the original baseline data and the newly acquired MCC data to assess the valve performance and monitor its condition. The potential benefits from acquiring data at the MCC are the increased trending/monitoring capability and also the cost savings associated with the potential identification of MOVs that may not need 'at-the-valve' testing as initially scheduled. This would help reduce maintenance costs and radiation exposure to personnel. At CANDU stations, MOV testing is currently performed almost exclusively at the valve. Voltage and current are occasionally measured at the MCC to generate motor power traces, but not with the intent of performing extensive MCC-based valve diagnostics since most CANDU stations have yet to acquire the tools required for this type of analysis. In this context, a COG (CANDU Owners Group) R and D program was launched to assess the potential and reliability of the various methods/systems used for MCC valve diagnostic testing. This paper

  5. Vector Control Algorithm for Electric Vehicle AC Induction Motor Based on Improved Variable Gain PID Controller

    Directory of Open Access Journals (Sweden)

    Gang Qin

    2015-01-01

    Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.

  6. Optimum torque control of a two-phase asymmetric induction motor fed with controlled currents

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, M.A.A.; Andrade, D.A.; Martins Neto, L.; Bissochi, C.A. Jr [Univ. of Uberlandia, Dept. of Electrical Engineering (Brazil)

    2000-08-01

    This work presents an analysis of the behaviour of a too phase asymmetrical induction motor fed with controlled currents, with a view to torque control. The mathematical model of the asymmetric two-phase motor in the reference frame ab/AB with no transformation of co-ordinates presented. Optimum torque control is obtained with vector control technique, and the conditions to obtain vector control are outlined. Digital simulation is performed under different conditions as follows: balanced and unbalanced voltage supply, amplitude control of the stator mmf and vector control. The possibility for high dynamic performance using the asymmetrical induction machine is shown to be easily obtainable. (orig.)

  7. Low speed phaselock speed control system. [for brushless dc motor

    Science.gov (United States)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  8. Operating experience and aging assessment of motor control centers

    International Nuclear Information System (INIS)

    As part of the NRC Nuclear Plant Aging Research Program (NPAR), an assessment was made of the characteristics of aging and service wear of motor control centers (MCCs). MCCs perform an important function in the operation and control of a large number of safety-related motors; thus, the operability and reliability of MCCs can impact the overall safety of nuclear plants. This report follows the NPAR strategy and investigates the operational performance, the design and manufacturing methods, and the current maintenance, surveillance and monitoring techniques of MCCs. A significant result described in this report concerns the identification of important MCC failure modes, causes, and mechanisms from plant operational experience. Frequencies of failure determined for the various subcomponents of MCCs also are described. In addition, recommendations are provided for functional indicators to monitor the performance of MCCs. 22 refs., 27 figs., 6 tabs

  9. Study of Predictive Control for Permanent Magnet Synchronous Motor Drives

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    Szczecin: West Pomeranian University of Technology, 2012, s. 522-527. ISBN 978-1-4673-2123-5. [17th International Conference on Methods and Models in Automation and Robotics . Miedzyzdroje (PL), 27.08.2012-30.08.2012] R&D Projects: GA ČR(CZ) GAP102/11/0437 Institutional support: RVO:67985556 Keywords : PMSM drive * Predictive control * three-phase system Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/belda-study of predictive control for permanent magnet synchronous motor drives.pdf

  10. Basal ganglia contributions to motor control: a vigorous tutor.

    Science.gov (United States)

    Turner, Robert S; Desmurget, Michel

    2010-12-01

    The roles of the basal ganglia (BG) in motor control are much debated. Many influential hypotheses have grown from studies in which output signals of the BG were not blocked, but pathologically disturbed. A weakness of that approach is that the resulting behavioral impairments reflect degraded function of the BG per se mixed together with secondary dysfunctions of BG-recipient brain areas. To overcome that limitation, several studies have focused on the main skeletomotor output region of the BG, the globus pallidus internus (GPi). Using single-cell recording and inactivation protocols these studies provide consistent support for two hypotheses: the BG modulates movement performance ('vigor') according to motivational factors (i.e. context-specific cost/reward functions) and the BG contributes to motor learning. Results from these studies also add to the problems that confront theories positing that the BG selects movement, inhibits unwanted motor responses, corrects errors on-line, or stores and produces well-learned motor skills. PMID:20850966

  11. Analysis of application of various materials for manufacturing parts of motor car bodies in automobile industry

    OpenAIRE

    Гаврилова, Вікторія Григорівна; Помазков, Михайло Валерійович; Караваєва, Наталія Євгенівна

    2016-01-01

    The work presents an analysis of applying various steels for manufacturing motor-car bodies. There is a brief description of cold-rolled sheet steels RRST 1405 produced according to the standards DIN 1623 and DIN 1541; UST 1203, UST 1303 according to DIN 1624 and DIN 1606; ST 4, 08MnSiAlTi, 07MnNbAl and also a classification and a brief description of steels made according to USLAB: IF-steel with increased formability, thermo-strengthened BH-steel, dual phase (DP) steels, transformation induc...

  12. Fuzzy Decsion Based Soft Multi Agent Controller for Speed Control of Three Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    Rathod Nirali

    2011-09-01

    Full Text Available Soft Multi agent controllers are used for control of complex systems. Induction motor is widely used inindustrial applications. But due to its highly non linear behavior its control is very complex. Non linearspeed control techniques are employed to improve dynamic performance of electric drives.Paper describes multi agent based approach to control speed of Induction motor. Design and simulationof Multi Agent System is developed for Indirect vector controlled 3-phase Induction motor. Soft computingtechniques are used for implementation. Three types of controllers: Classical controller (PI, Fuzzy (FLC& Neural Network ANN are constitutant of the Multi Agent system. Simulated speed responses parametersviz: rise time, steady state error and overshoot of SIMULINK models are used to make by a fuzzy logic isused to select the best controller from the constituents.

  13. FPGA-Based Implementation Direct Torque Control of Induction Motor

    OpenAIRE

    Saber Krim; Soufien Gdaim; Abdellatif Mtibaa; Mohamed Faouzi Mimouni

    2015-01-01

    This paper proposes a digital implementation of the direct torque control (DTC) of an Induction Motor (IM) with an observation strategy on the Field Programmable Gate Array (FPGA). The hardware solution based on the FPGA is caracterised by fast processing speed due to the parallel processing. In this study the FPGA is used to overcome the limitation of the software solutions (Digital Signal Processor (DSP) and Microcontroller). Also, the DTC of IM has many drawbacks such as for example; The o...

  14. Robust Precision Positioning Control on Linear Ultrasonic Motor

    OpenAIRE

    Nguyen, Minh H-T; Tan, Kok Kiong; Liang, Wenyu; Teo, Chek Sing

    2013-01-01

    Ultrasonic motors used in high-precision mechatronics are characterized by strong frictional effects, which are among the main problems in precision motion control. The traditional methods apply model-based nonlinear feedforward to compensate the friction, thus requiring closed-loop stability and safety constraint considerations. Implementation of these methods requires complex designed experiments. This paper introduces a systematic approach using piecewise affine models to emulate the frict...

  15. Neuromodulation of lower limb motor control in restorative neurology

    OpenAIRE

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. F...

  16. Study on Rotor IGBT Chopper Control for Induction Motor Drive

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Rotor chopper control is a simple and effective drive method for induction motor. This paper presents a novel IGBT chopper topology,which can both adjust rotor resistance and protect IGBT efficiently. Investigation on the quasi-transient state of the rotor rectifying circuit is made, and a nonlinear mapping between the equivalent resistance and the duty cycle is deduced. Furthermore, the method for determining the magnitude of the external resistor is introduced.

  17. Inter-examiner reproducibility of tests for lumbar motor control

    OpenAIRE

    Elkjaer Arne; Remvig Lars; Kjaer Per; Enoch Flemming; Juul-Kristensen Birgit

    2011-01-01

    Abstract Background Many studies show a relation between reduced lumbar motor control (LMC) and low back pain (LBP). However, test circumstances vary and during test performance, subjects may change position. In other words, the reliability - i.e. reproducibility and validity - of tests for LMC should be based on quantitative data. This has not been considered before. The aim was to analyse the reproducibility of five different quantitative tests for LMC commonly used in daily clinical practi...

  18. Electric drive; Motor and controller technology in detail

    Energy Technology Data Exchange (ETDEWEB)

    Cook, K.

    The inclusion of urban electric cars into the automotive car makers' product range presses home a need for automotive engineers to extend their working knowledge and appreciation of the various trends in electric car development. This article presents basic information on motors, characteristics and performance, controllers and systems, batteries and drive train, together with a look at what car makers are doing. (author)

  19. Construction of AC Motor Controllers for NOvA Experiment Upgrades

    CERN Document Server

    Cooley, Patrick

    2012-01-01

    I have been constructing Alternating Current (AC) motor controllers for manipulation of particle beam detectors. The capability and reliability of these motor controllers are essential to the Laboratory's mission of accurate analysis of the particle beam's position. The device is moved in and out of the beam's path by the motor controller followed by the Neutrinos at the Main Injector Off-Axis {\

  20. Performance Enhancement of PID Controllers by Modern Optimization Techniques for Speed Control of PMBL DC Motor

    Directory of Open Access Journals (Sweden)

    M. Antony Freeda Rani

    2015-08-01

    Full Text Available Permanent Magnet Brushless DC motor (PMBL DC is used in a large number of industrial and automotive applications because of their high efficiency, compactness and excellent reliability. However to design an efficient PMBL DC motor, it is necessary to provide an effective controller that has to reduce the overshoot, settling and rise time. In this study, an improved PID controller has been designed by optimizing the parameters of PID controller based on two advanced optimization techniques ANFIS and Cuckoo Search optimization for speed control of a PMBL DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The PMBL DC motor is modeled in SIMULINK implementing the algorithms in MATLAB and the performance evaluation has been studied.

  1. Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    R. Gunabalan

    2015-02-01

    Full Text Available This paper directed the speed-sensorless vector control of induction motor drive with PI and fuzzy controllers.  Natural observer with fourth order state space model is employed to estimate the speed and rotor fluxes of the induction motor. The formation of the natural observer is similar to and as well as its attribute is identical to the induction motor. Load torque adaptation is provided to estimate the torque and rotor speed is estimated from the load torque, rotor fluxes and stator currents. There is no direct feedback in natural observer and also observer gain matrix is absent. Both the induction motor and the observer are characterized by state space model. Simple fuzzy logic controller and conventional PI controllers are used to control the speed of the induction motor in closed loop. MATLAB simulations are made with PI and fuzzy controllers and the performance of fuzzy controller is better than PI controller in view of torque ripples. The simulation results are obtained for various running conditions to exhibit the suitability of this method for sensorless vector control. Experimental results are provided for natual observer based sensorless vector control with conventional PI controller.

  2. Development and Implementation of Brush less DC Motor Controllers Based on Intelligent Control

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hyun [Pusan Junior College, Pusan (Korea, Republic of); Choi, Young Kiu [Pusan National University, Pusan (Korea, Republic of)

    1997-06-01

    This paper proposes an intelligent controller for brush less DC motor and load with unknown nonlinear dynamics. The proposed intelligent control system consists of a plant identifier and PID controller with varying gains. The identifier is constructed using an Auto Regressive Moving Average(ARMA) model. In order to tune the parameters of the identifier and the gains of the PID controller efficiently, we also propose a modified Evolution Strategy. Experimental results show that the proposed intelligent controller for brush less DC motor has good control performance under unknown disturbance. (author). 13 refs., 7 figs., 1 tab.

  3. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance

    Science.gov (United States)

    Silva, Simonete; Bustamante, Alcibíades; Nevill, Alan; Katzmarzyk, Peter T.; Freitas, Duarte; Prista, António; Maia, José

    2016-01-01

    Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP). We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9–15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR), handgrip strength (HG), standing long jump (SLJ) and the shuttle run speed (SR) tests; physical activity (PA) was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI) was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences. PMID:26939118

  4. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance.

    Science.gov (United States)

    Silva, Simonete; Bustamante, Alcibíades; Nevill, Alan; Katzmarzyk, Peter T; Freitas, Duarte; Prista, António; Maia, José

    2016-01-01

    Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP). We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9-15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR), handgrip strength (HG), standing long jump (SLJ) and the shuttle run speed (SR) tests; physical activity (PA) was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI) was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences. PMID:26939118

  5. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance.

    Directory of Open Access Journals (Sweden)

    Simonete Silva

    Full Text Available Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP. We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9-15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR, handgrip strength (HG, standing long jump (SLJ and the shuttle run speed (SR tests; physical activity (PA was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences.

  6. Universal adaptive torque control for PM motors for field-weakening region operation

    Energy Technology Data Exchange (ETDEWEB)

    Royak, Semyon (Beachwood, OH); Harbaugh, Mark M. (Richfield, OH); Breitzmann, Robert J. (South Russel, OH); Nondahl, Thomas A. (Wauwatosa, WI); Schmidt, Peter B. (Franklin, WI); Liu, Jingbo (Milwaukee, WI)

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  7. Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors

    OpenAIRE

    Khaled N. Faris; Hala S. Khalil,; Khaled S. Sakkoury

    2015-01-01

    According to various advantages of linear induction motor (LIM), such as high starting thrust force, high speed operation and reduction of mechanical losses, more applications have utilized this type of motors. Direct Thrust Control (DTC) technique is considered as one of the most efficient techniques that can be used for LIM. DTC is preferable to give a fast and good dynamic thrust response. So, to improve the accuracy and robustness of contouring control for CNC mach...

  8. Research of Control Method for Improving Mechanical Performance of Winding Motor

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-zhang; YANG Zheng-lin

    2002-01-01

    A reformed PHD (Proportional-Integral- Differential)motor controller is developed for the ideal winding performance. It is verified that the PHD motor controller can largely improve the mechanical performance and raise the production efficiency by means of the test of a winding production system driven by a motor with high internal resistance rotator. It indicates that improving the control method is one of the most effective ways to improve the winding performance of the motor in winding production.

  9. Microcontroller based PWM Inverter for Speed Control of a Three Phase Induction Motor

    OpenAIRE

    M. A. Latif; M.J. Alam; Rashid, M. A.; Karim, A.; N. H. Ramly; I. Daut

    2013-01-01

    Three phase induction motor has proven to be an extremely reliable electromechanical energy conversion device for over 100 years. The speed control of induction motor is a crying need for the real world industrial applications. However, there are so many options available for the precise speed control of induction motor except by changingthe frequency. Therefore to achieve the goal of speed control of induction motor, there is no alternative of inverters. With the availability of high speed p...

  10. Vector Control of Three-Phase Induction Motor with Two Stator Phases Open-Circuit

    OpenAIRE

    Seyed Hesam Asgari; Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris

    2015-01-01

    Variable frequency drives are used to provide reliable dynamic systems and significant reduction in usage of energy and costs of the induction motors. Modeling and control of faulty or an unbalanced three-phase induction motor is obviously different from healthy three-phase induction motor. Using conventional vector control techniques such as Field-Oriented Control (FOC) for faulty three-phase induction motor, results in a significant torque and speed oscillation. This research presented a no...

  11. Brushless DC motor control system responsive to control signals generated by a computer or the like

    Science.gov (United States)

    Packard, D. T. (Inventor)

    1985-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  12. Cascade Control Solution for Traction Motor for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zsuzsa Preitl

    2007-10-01

    Full Text Available In this paper a hybrid electric vehicle is considered, which contains both aninternal combustion engine and an electric motor (EM. Without focusing on the othercomponents of the vehicle, the EM is treated in detail, both regarding modelling aspectsand control solutions.After a brief modelling of the plant, two cascade speed control solutions are presented: firsta classical PI+PI cascade control solution is presented. The control systems related totraction electric motors (used in vehicle traction must be able to cope with differentrequests, such as variation of the reference signal, load disturbances which depend on thetransport conditions and parametric disturbances regarding changes in the total mass ofthe vehicle. For this purpose, in the design of the speed controller (external loop a specificmethodology based on extension of the symmetrical optimum method is presented. Thecontrollers are developed using the Modulus–Optimum method for the inner loop, and theExtended Symmetrical Optimum Method, corrected based on the 2p-SO-method, for theouter loop (for a more efficient disturbance rejection.In order to force the behaviour of the system regarding the reference input, a correctionterm is introduced as a non-homogenous structured PI controller solution.Simulations were performed using numerical values taken from a real applicationconsisting in a hybrid vehicle prototype, showing satisfactory behaviour.

  13. Neural Network Controllers in DTC of Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Sudhakar Ambarapu

    2013-07-01

    Full Text Available In recent times, permanent magnet synchronous motors (PMSM have gained numerous industrial applications, because of simple structure, high efficiency and ease of maintenance. But these motors have a nonlinear mathematical model. To resolve this problem several studies have suggested the application of vector control (VC and direct torque control (DTC with soft-computing (SC techniques. This paper presents neuro direct torque control (NDTC of PMSM. Hence this paper aims to present a technique to control speed and torque with reduced ripple compared to previous techniques. The outputs of Artificial Neural Network(ANN controller mechanism is compared with that of classical DTC and the results demonstrate the influence of ANN is improved compared to classical DTC topology. The system is also verified and proved to be operated stably with reduced torque ripple, very low speed, sudden speed reversals, at low torque and at high torque. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using PI speed controller.

  14. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    International Nuclear Information System (INIS)

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller

  15. Voltage Controller Saves Energy, Prolongs Life of Motors

    Science.gov (United States)

    2007-01-01

    In 1985, Power Efficiency Corporation of Las Vegas licensed NASA voltage controller technology from Marshall Space Flight Center. In the following years, Power Efficiency made patented improvements to the technology and marketed the resulting products throughout the world as the Performance Controller and the Power Efficiency energy-saving soft start. Soft start gradually introduces power to an electric motor, thus eliminating the harsh, violent mechanical stresses of having the device go from a dormant state to one of full activity; prevents it from running too hot; and increases the motor's lifetime. The product can pay for itself through the reduction in electricity consumed (according to Power Efficiency, within 3 years), depending on the duty cycle of the motor and the prevailing power rates. In many instances, the purchaser is eligible for special utility rebates for the environmental protection it provides. Common applications of Power Efficiency's soft start include mixers, grinders, granulators, conveyors, crushers, stamping presses, injection molders, elevators with MG sets, and escalators. The device has been retrofitted onto equipment at major department store chains, hotels, airports, universities, and for various manufacturers

  16. Evidence suggesting individual ocular motor control of each eye (muscle).

    Science.gov (United States)

    Dell'Osso, L F

    1994-01-01

    Current models of the ocular motor system are usually presented in their most reduced form, are unilateral in architecture, and precise yoking is presumed. Although this simplifies the models, it does not accurately simulate the actual neuroanatomy and limits the models to simple, stereotyped responses. Studies of normal humans and monkeys have demonstrated striking disconjugacies in normal responses. Normal saccades may be disconjugate, or 1 eye may exhibit a dynamic overshoot. Asymmetric vergence can result in disconjugate saccades, unequal magnification spectacles cause differential saccadic gain adjustment, and saccades to unequal disparities also cause unequal saccades in the 2 eyes. In strabismus, deviated eyes typically do not mimic the movements of the fixating eye nor do their latent or congenital nystagmus waveforms duplicate those of the fixating eye. In spasmus nutans, each eye oscillates independently of the other. In achiasmatic dogs, uni-ocular saccades and uni-ocular nystagmus waveforms are seen; the same may be true in human achiasma. These data from both normals and those with abnormalities suggest that current models for ocular motor control are inadequate representations of the actual system. The inability of unilateral, yoked control (or even bilateral, yoked control) system models to duplicate the ocular motor responses of binocular mammals suggests that their ocular motor systems evolved from the bilateral, independent control systems seen in chameleons. One need only postulate a yoking overlay superimposed on two independent control systems to achieve conjugacy (bilateral, yoked, independent control) of the eyes. Abnormalities producing grossly disconjugate eye movements may then be simulated using the independent control of each eye released by a deficiency in the yoking overlay. Independent control of each eye coupled with the essential bilateral brain stem architecture implies that each individual muscle is driven by independent

  17. Speed Control of Multi Level Inverter Designed DC Series Motor with Neuro-Fuzzy Controllers

    CERN Document Server

    MadhusudhanaRao, G

    2009-01-01

    This paper describes the speed control of a DC series motor for an accurate and high-speed performance. A neural network based controlling operation with fuzzy modeling is suggested in this paper. The driver units of these machines are designed with a Multi-level inverter operation and are controlled by a common current control mechanism for an accurate and efficient driving technique for DC series motor. The neuro-fuzzy logic control technique is introduced to eliminate uncertainties in the plant parameters of the DC Series motors, and also considered as potential candidate for different applications to prove adequacy of the proposed control algorithm through simulations. The simulation result with such an approach is made and observed efficient over other controlling technique.

  18. How do glial cells contribute to motor control?

    DEFF Research Database (Denmark)

    Christensen, Rasmus Kordt; Petersen, Anders Victor; Perrier, Jean-Francois Marie

    2013-01-01

    activated by neurotransmitters during synaptic transmission. In turn they release other transmitters - called gliotransmitters - that bind to neuronal receptors and modulate synaptic transmission. This feedback, which led to the concept of the tripartite synapse, has been reported with various transmitters...... glia play an active role in several physiological functions. The discovery that a bidirectional communication takes place between astrocytes (the star shaped glial cell of the brain) and neurons, was a major breakthrough in the field of synaptic physiology. Astrocytes express receptors that get...... including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern...

  19. Improved direct torque control of induction motor with dither injection

    Indian Academy of Sciences (India)

    R K Behera; S P Das

    2008-10-01

    In this paper, a three-level inverter-fed induction motor drive operating under Direct Torque Control (DTC) is presented. A triangular wave is used as dither signal of minute amplitude (for torque hysteresis band and flux hysteresis band respectively) in the error block. This method minimizes flux and torque ripple in a three-level inverter fed induction motor drive while the dynamic performance is not affected. The optimal value of dither frequency and magnitude is found out under free running condition. The proposed technique reduces torque ripple by 60% (peak to peak) compared to the case without dither injection, results in low acoustic noise and increases the switching frequency of the inverter. A laboratory prototype of the drive system has been developed and the simulation and experimental results are reported.

  20. Bluff Body Flow Control Using Plasma Actuators

    Science.gov (United States)

    Thomas, Flint

    2005-11-01

    In this study, the use of single dielectric barrier discharge plasma actuators for the control of bluff body flow separation is investigated. In particular, surface mounted plasma actuators are used to reduce both drag and unsteady vortex shedding from circular cylinders in cross-flow. It is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. Large reductions in vortex shedding and drag are demonstrated for Reynolds numbers ˜ 10^410^5. Both steady and unsteady plasma-induced surface blowing is explored. Results are presented from experiments involving both two and four surface mounted actuators.

  1. Identification and robust control of an experimental servo motor.

    Science.gov (United States)

    Adam, E J; Guestrin, E D

    2002-04-01

    In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement. PMID:12071255

  2. Plasma actuators for bluff body flow control

    Science.gov (United States)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  3. Model-Based Torque Control of Piezoelectric Ultrasonic Motors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric ultrasonic motors (PUMs) are ideal actuators for a variety of spaced-based robotics applications. These motors replace conventional drive systems...

  4. Direct Torque Control of Induction Motor with Matrix Converter

    Directory of Open Access Journals (Sweden)

    Khalaf Salloum Gaeid

    2016-05-01

    Full Text Available The matrix converter (MC with direct torque control (DTC combination is efficient way to get better performance specifications in the industry. The MC and the DTC advantages are combined together. The reduction of complexity and cost of DC link in the DTC since it has no capacitors in the circuit. However, the controlling torque is a big problem it in DTC because of high ripple torque production which results in vibrations response in the operation of the iductuction motor as it has no PID to control the torque directly. To overcome this, a combination of MC with DTC is applied to reduce the fluctuation in the output torque and minimize the steady state error. This paper presents the simulation analysis of induction machine drives using Maltlab/Simulink toolbox R2012a. Design of DTC induction motor drive, MC with constant switching frequency, speed controller and stability investigation as well as controllability and observabilty with minimum final prediction (FPE steady state error and loss functionality has been carried out precisely.

  5. Energy efficiency in speed control system for induction motors; Eficiencia energetica em sistema de controle de velocidade em motores de inducao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Arlete Vieira da; Ribeiro, Elisangela do Nascimento; Tenorio, Iana Cavalcanti; Horta, Mario Marcos Brito [Centro Universitario de Belo Horizonte (UnBH), MG (Brazil)], e-mails: arlete.silva@prof.unibh.br, nr.elisangela@gmail.com, ianactenorio@gmail.com, mario_bhorta@yahoo.com.br

    2011-07-01

    This work has as objective the study of energy efficiency of induction motors fed by frequency inverters, since this is a practical resource that has progressively allowed the replacement of mechanical speed reducers. In this work the speed control of induction motors of the squirrel cage has steeped through the frequency inverters using scalar control. Induction motors are frequently used in industrial applications due to its simple construction, its low maintenance and reduced in size. It was possible through tests made at UNI-BH Electrical Engineering laboratory to obtain satisfactory results regarding the performance of the inverter CFW08 (WEG), speed control of induction motor. (author)

  6. Minimizing motor mimicry by myself: self-focus enhances online action-control mechanisms during motor contagion.

    Science.gov (United States)

    Spengler, Stephanie; Brass, Marcel; Kühn, Simone; Schütz-Bosbach, Simone

    2010-03-01

    Ideomotor theory of human action control proposes that activation of a motor representation can occur either through internally-intended or externally-perceived actions. Critically, sometimes these alternatives of eliciting a motor response may be conflicting, for example, when intending one action and perceiving another, necessitating the recruitment of enhanced action-control to avoid motor mimicry. Based on previous neuroimaging evidence, suggesting that reduced mimicry is associated with self-related processing, we aimed to experimentally enhance these action-control mechanisms during motor contagion by inducing self-focus. In two within-subjects experiments, participants had to enforce their action intention against an external motor contagion tendency under heightened and normal self-focus. During high self-focus participants showed reduced motor mimicry, induced either by mirror self-observation or self-referential judgments. This indicates that a self-focus provoking situation can enhance online action-control mechanisms, needed to resist unintentional motor contagion tendencies and thereby enables a modulation of automatic mirroring responses. PMID:20116291

  7. Dynamic Analysis and Vibration Control of a Flexible SLIDER-CRANK Mechanism Using PM Synchronous Servo Motor Drive

    Science.gov (United States)

    Fung, R.-F.; Chen, K.-W.

    1998-07-01

    Dynamic analysis and vibration control of a flexible slider-crank mechanism driven by a permanent magnet (PM) synchronous servo motor are studied in this paper. Geometric constraint at the end of a flexible connecting rod is derived and introduced into Hamilton's principle to formulate the governing equations of the connecting rod which is modelled by Timoshenko beam theory. The coupling equations describe the rigid-body motion, flexible vibrations and motor system. In order to control crank speed and reduce flexible vibrations simultaneously, speed and tracking controllers are designed through a reaching law variable structure control (VSC) method. By choosing proper parameters in control law, dynamic responses of the flexible system in reaching mode can be controlled. Numerical results show that the proposed controllers not only eliminate the dynamic deflections of the flexible connecting rod, but also keep good tracking performances. Moreover, the robustness against external disturbances can also be improved by employing the proposed control scheme.

  8. Power Efficient Higher Order Sliding Mode Control of SR Motor for Speed Control Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    2011-05-01

    Full Text Available This paper presents a novel scheme for speed regulation/tracking of Switched Reluctance (SR motors based on Higher-Order Sliding-Mode technique. In particular, a Second-Order Sliding-Mode Controller (SOSMC based on Super Twisting algorithm is devel-oped. Owing to the peculiar structural properties of SRM, torque produced by each motor phase is a function of phase current as well as rotor position. More importantly, unlike many other motors the polarity of the phase torque in SR motors is solely determined by the rotor position and is independent of the polarity of the applied voltage or phase current. The proposed controller takes advantage of this property and incorporates a commutation scheme which, at any time instant, selects only those motor phases for the computation of control law, which can contribute torque of the desired polarity at that instant. This feature helps in achieving the desired speed regulation/tracking objective in a power efficient manner as control efforts are applied through selective phases and counterproductive phases are left un-energized. This approach also minimizes the power loss in the motor windings thus reducing the heat generation within the motor. In order to highlight the advantages of Higher-Order Sliding-Mode controllers, a classical First-Order Sliding-Mode controller (FOSMC is also developed and applied to the same system. The comparison of the two schemes shows much reduced chattering in case of SOSMC. The performance of the proposed SOSMC controller for speed regulation is also compared with that of another sliding mode speed controller published in the literature.

  9. Stabilizing sliding mode control design and application for a dc motor: Speed control

    OpenAIRE

    Rhif, Ahmed

    2012-01-01

    The regulation by sliding mode control (SMC) is recognized for its qualities of robustness and dynamic response. This article will briefly talk about the regulation principles by sliding mode as well as the application of this approach to the adjustment of a speed control DC motor bench using the TY36A/EV unit. This unit, from Electronica Veneta products, uses a PID controller to control the speed and position of the DC motor. Our purpose is to improve the set time answer and the robustness o...

  10. An improved Direct Adaptive Fuzzy controller for an uncertain DC Motor Speed Control System

    OpenAIRE

    Chunjie Zhou; Shuang Huang; Quan Yin; Duc Cuong Quach

    2013-01-01

    In this paper, we present an improved Direct Adaptive Fuzzy (IDAF) controller applied to general control DC motor speed system. In particular, an IDAF algorithm is designed to control an uncertain DC motor speed to track a given reference signal. In fact, the quality of the control system depends significantly on the amount of fuzzy rules-fuzzy sets and the updating coefficient of the adaptive rule. This can be observed clearly by the system error when the reference input is constant and out ...

  11. SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BRUSHLESS DC MOTOR BASED ON A COMMON DC SIGNAL

    OpenAIRE

    J.Karthikeyan; Dr.R.Dhanasekaran

    2010-01-01

    The objective of this project is to build a simple current controlled modulation technique for brushless dc motors. In electric traction and most other applications, a wide range of speed and torque control of the electric motor is required. The dc machine fulfills these requirements, but the dc machine requires constant maintenance. But the brushless permanent magnet motors do not have brushes and so they require less maintenance only. Brushless dc motors are widely used in applications whic...

  12. A Novel Control Algorithm Expressions Set for not Negligible Resistive Parameters PM Brushless AC Motors

    OpenAIRE

    Rizzo, Renato; Andrea DEL PIZZO; Ivan SPINA

    2012-01-01

    This paper deals with Permanent Magnet Brushless Motors. In particular is proposed a new set of control algorithm expressions that is realized taking into account resistive parameters of the motor, differently from simplified models of this type of motors where these parameters are usually neglected. The control is set up and an analysis of the performance is reported in the paper, where the validation of the new expressions is done with reference to a motor prototype particularly compact bec...

  13. Children's self-perceived bodily competencies and associations with motor skills, body mass index, teachers' evaluations, and parents' concerns

    DEFF Research Database (Denmark)

    Toftegaard-Stoeckel, Jan; Groenfeldt, Vivian; Andersen, Lars Bo

    2010-01-01

    The associations between physical competence, self-perceived bodily competence, parental concern for their children's motor skill development, and teachers' evaluation of their bodily competence were assessed in 646 six- to seven-year-olds. Physical competence was assessed by the German motor...... ability test "Korperkoordinationstest fur Kinder", while the children's, their parents', and their teachers' evaluations were obtained through questionnaires. Parental concern, teacher evaluation, and a high body mass index were the strongest predictors of low physical competence (motor skill quotient ...

  14. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature

    NARCIS (Netherlands)

    Kaiser, Marie-Laure; Schoemaker, M M; Albaret, J-M; Geuze, R H

    2015-01-01

    This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control a

  15. Design of Fuzzy PID controller to control DC motor with zero overshoot

    OpenAIRE

    Meenakshi Chourasiya; Prof. Shweta karnik

    2014-01-01

    Most of the real time operation based physical system, digital PID is used in field such as servo-motor/dc motor/temperature control system, robotics, power electronics etc. need to interface with high speed constraints, higher density PLD’s such as FPGA used to integrate several logics on single IC. There are some limitations in it to overcome these limitations Fuzzy logic is introduced with PID and Fuzzy PID is formed. This paper explains experimental design of Fuzzy PID con...

  16. Remote controlled motor drive for hanging mercury drop electrode

    International Nuclear Information System (INIS)

    Construction and working of a motor drive and control unit for making reproducible mercury drops of desired size and breaking them off a Hanging Mercury Drop Electrode (HMDE) are described. The device is useful in voltammetric experiments particularly in connection with pulse radiolysis-polarography where, for safety reasons, the HMDE located close to the radiation beam from the accelerator has to be operated from a distance outside the shielded accelerator cave. The units described here, apart from the HMDE which is a standard accessory in all commercial voltammetric instruments, make use of locally available components and can be easily fabricated on the basis of the details given here. 4 figures. (author)

  17. Study on maximum efficiency control strategy for induction motor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two new techniques for effficiency-optimization control (EOC) of induction motor drives were proposed. The first method combined Loss Model and "golden section technique", which was faster than the available methods. Secondly, the low-frequency ripple torque due to decrease of rotor flux was compensated in a feedforward manner. If load torque or speed command changed, the efficiency search algorithm would be abandoned and the rated flux would be established to get the best transient response. The close agreement between the simulation and the experimental results confirmed the validity and usefulness of the proposed techniques.

  18. Computational motor control as a window to understanding schizophrenia.

    Science.gov (United States)

    Izawa, Jun; Asai, Tomohisa; Imamizu, Hiroshi

    2016-03-01

    In addition to mental disorders such as attention, emotion, delusions, hallucinations, and difficulties in social skills, the patients with schizophrenia exhibits significant abnormality in sensorimotor perception and control. To seek a neurobiological cause of the heterogeneous symptoms in schizophrenia, we focused on the impaired inference mechanism of the self-agency of the schizophrenia's brain where the sensory outcome generated by the self-initiated action was misattributed to the other agent's action. By developing a novel computational model of agency experience using a Bayesian decision making framework, we united the computational mechanisms of agency and motor control via internal model: a model for one to predict the sensory consequence of action. Our theory based on optimal feedback control with Kalman filtering successfully predicted a variety of schizophrenia's motor abnormalities assuming a deformed internal model. To discuss the plausibility of these model predictions, we reviewed literature that might support these predictions. We further proposed some experiments that potentially examine the proposed model of schizophrenia. Our approach in investigating a problem of mind by projecting it on the coordinates system of the embodiment effectively shed light on a central neuropathology of this disease that had been latent behind the observed behaviors. PMID:26592778

  19. Improved Rotor Speed Brushless DC Motor Using Fuzzy Controller

    OpenAIRE

    Jafar Mostafapour; Jafar Reshadat; Murtaza Farsadi

    2015-01-01

    A brushless DC (BLDC) Motors have advantages over brushed, Direct current (DC) Motors and , Induction motor (IM). They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive...

  20. Brushless DC motor control system responsive to control signals generated by a computer or the like

    Science.gov (United States)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  1. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    OpenAIRE

    Jan Vittek; Peter Buchner; Stephen J. Dodds

    2004-01-01

    Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters). Outer p...

  2. Comparative Study of Controller Design for Four Quadrant Operation of Three Phase BLDC Motor

    Directory of Open Access Journals (Sweden)

    Ms.K.Suganya*1

    2014-03-01

    Full Text Available Brushless DC motor drives are becoming more popular in industrial and traction applications. The control of BLDC motor in four quadrants is very vital. The three-phase permanent magnet brushless dc motor inherently needs an electronic commutation circuit to drive it, because it is not a self-commutating motor. It is contrary to the conventional brush motor which commutates itself. This paper presents a comparison study of three type of control such as PI, PID & fuzzy. The characteristics of the three control methods are investigated intensely and the advantages, disadvantages of each are compared to the others with the help of MATLAB simulink software.

  3. PID Neural Network Based Speed Control of Asynchronous Motor Using Programmable Logic Controller

    Directory of Open Access Journals (Sweden)

    MARABA, V. A.

    2011-11-01

    Full Text Available This paper deals with the structure and characteristics of PID Neural Network controller for single input and single output systems. PID Neural Network is a new kind of controller that includes the advantages of artificial neural networks and classic PID controller. Functioning of this controller is based on the update of controller parameters according to the value extracted from system output pursuant to the rules of back propagation algorithm used in artificial neural networks. Parameters obtained from the application of PID Neural Network training algorithm on the speed model of the asynchronous motor exhibiting second order linear behavior were used in the real time speed control of the motor. Programmable logic controller (PLC was used as real time controller. The real time control results show that reference speed successfully maintained under various load conditions.

  4. Study on Current Sensorless Vector Control Method for Electric Vehicle Drive Motor

    Directory of Open Access Journals (Sweden)

    Xiaoyong Shen

    2013-07-01

    Full Text Available With the aggravation of environment pollution and the reduction of petroleum resources, the development of electric vehicle (EV draws more and more people’s attention. In the EV research field, that seeking for a high efficient and reliable motor control method that suits the operating conditions and characteristics of the vehicle drive motor has become one of the key techniques that need to be broken through urgently. Owing to the problems that the efficient work area is narrow and it leads to over-current phenomenon when traditional motor vector control method is applied to vehicle drive motor, this paper presents a current sensorless vector control technique for electric vehicle drive motor. According to motor speed and command torque which is gained from the speed loop control, this method directly controls the magnitude and phase angle of voltage vector to realize the orientation control of the magnetic field and then achieve the purpose of controlling the motor torque and speed. The feasibility and effectiveness of this method are verified by simulation results and bench test. Moreover, this method can not only improve the efficient work area, but also increase the reliability of motor control system. At the same time, it overcomes the dependence on the current sensor, circumvents the over-current defect caused by traditional motor vector control approach and reduces its cost. So it is a suitable and efficient control method for electric vehicle drive motor.  

  5. Training compliance control yields improved drawing in 5-11year old children with motor difficulties.

    Science.gov (United States)

    Snapp-Childs, Winona; Shire, Katy; Hill, Liam; Mon-Williams, Mark; Bingham, Geoffrey P

    2016-08-01

    There are a large number of children with motor difficulties including those that have difficulty producing movements qualitatively well enough to improve in perceptuo-motor learning without intervention. We have developed a training method that supports active movement generation to allow improvement in a 3D tracing task requiring good compliance control. Previously, we tested a limited age range of children and found that training improved performance on the 3D tracing task and that the training transferred to a 2D drawing test. In the present study, school children (5-11years old) with motor difficulties were trained in the 3D tracing task and transfer to a 2D drawing task was tested. We used a cross-over design where half of the children received training on the 3D tracing task during the first training period and the other half of the children received training during the second training period. Given previous results, we predicted that younger children would initially show reduced performance relative to the older children, and that performance at all ages would improve with training. We also predicted that training would transfer to the 2D drawing task. However, the pre-training performance of both younger and older children was equally poor. Nevertheless, post-training performance on the 3D task was dramatically improved for both age groups and the training transferred to the 2D drawing task. Overall, this work contributes to a growing body of literature that demonstrates relatively preserved motor learning in children with motor difficulties and further demonstrates the importance of games in therapeutic interventions. PMID:27219739

  6. Implementation of Brushed DC Motor Control in LabVIEW FPGA

    OpenAIRE

    K. Lamár; A. G. Kocsis

    2013-01-01

    The paper introduces the fundamentals of motor control. It explains the basic equations and introduces the control diagram of the brushed DC motor. It introduces the four quadrant DC chopper circuit and the basic methods to operate it. After that, it explains the fundamentals of the current control of DC motors and its two basic methods: the pulse width modulation and the hysteresis current control. Finally it gives a short example of the practical implementation of the hysteresis current con...

  7. Controlling DC Motor using Microcontroller (PIC16F72) with PWM

    OpenAIRE

    Shruti Shrivastava1 , Jageshwar Rawat2 , Amit Agrawal3

    2012-01-01

    Motion control plays a vital role in industrial atomization. Different types of motors AC, DC, SERVO or stepper are used depending upon the application; of these DC motors are widely used because of easier controlling. Among the different control methods for DC motor armature voltage control method using pulse width modulation (PWM) is best one. We can realize the PWM using H-bridge built with IGBT switches or transistors. To generate PWM signals we use PIC16F7...

  8. Controlling DC Motor using Microcontroller (PIC16F72 with PWM

    Directory of Open Access Journals (Sweden)

    Shruti Shrivastava, Jageshwar Rawat, Amit Agrawal

    2012-12-01

    Full Text Available Motion control plays a vital role in industrial atomization. Different types of motors AC, DC, SERVO or stepper are used depending upon the application; of these DC motors are widely used because of easier controlling. Among the different control methods for DC motor armature voltage control method using pulse width modulation (PWM is best one. We can realize the PWM using H-bridge built with IGBT switches or transistors. Togenerate PWM signals we use PIC16F72 microcontroller.

  9. Realization of Fuzzy Logic Controlled Brushless DC Motor Drives Using Matlab/Simulink

    OpenAIRE

    Çunkas, Mehmet; Aydoğdu, Omer

    2010-01-01

    In this paper, an efficient simulation model for fuzzy logic controlled brushless direct current motor drives using Matlab/Simulink is presented. The brushless direct current (BLDC) motor is efficiently controlled by Fuzzy logic controller (FLC). The control algorithms, fuzzy logic and PID are compared. Also, the dynamic characteristics of the BLDC motor (i.e. speed and torque) and as well as currents and voltages of the inverter components are easily observed and analyzed by using the develo...

  10. Implementation of Slip-Controller for Induction Motor Drive Employing Indirect Matrix Converter

    Directory of Open Access Journals (Sweden)

    K. Ganesan, S. Subamalini, A. Dhinesh

    2014-04-01

    Full Text Available A new scheme to design the proportional integral (PI type controller for speed control of a constant Volts/Hz (V/F three phase induction motor drive employing a matrix converter has been presented. An approximate linear model of induction motor operating in constant Volts/Hz scheme is derived and a design example of a slip controller for a three phase motor is presented. Performance of the designed controller is verified with results from simulation using Mat lab

  11. Implementation of Slip-Controller for Induction Motor Drive Employing Indirect Matrix Converter

    OpenAIRE

    K. Ganesan, S. Subamalini, A. Dhinesh

    2014-01-01

    A new scheme to design the proportional integral (PI) type controller for speed control of a constant Volts/Hz (V/F) three phase induction motor drive employing a matrix converter has been presented. An approximate linear model of induction motor operating in constant Volts/Hz scheme is derived and a design example of a slip controller for a three phase motor is presented. Performance of the designed controller is verified with results from simulation using Mat ...

  12. Fuzzy Logic Closed Loop Control of 5 level MLI Driven Three phase Induction motor

    OpenAIRE

    Mulukutla Venkata Subramanyam; P.V.N. Prasad; G.Poornachandra Rao

    2013-01-01

    This paper deals about fuzzy logic control of closed loop controlled five level Multi Level Inverter (MLI) driven three phase induction motor. Three phase Induction motor is most widely used drive in Industries, so needs proper control of speed. Induction motor is fed from five level multilevel inverter which is controlled by fuzzy logic. The closed loop consists of two loops. First inner loop is current loop and second outer loop is speed loop. The torque is varied at different times and cor...

  13. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    Directory of Open Access Journals (Sweden)

    Anton Civit-Balcells

    2012-03-01

    Full Text Available In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN, which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  14. Reconstruction of a whole-body counter into a process computer-controlled low-level whole-body scanner

    International Nuclear Information System (INIS)

    A report is given on the state of the research project to reconstruct our whole-body counter with solid geometries into a scanning type one. The object is to develop a process computer controlled 'adaptive system'. The self-built scan mechanics are explained and the advantages and problems of applying stepping motors are gone into. A stepping motor coordinates control is presented. As the planned scanner and the process computer form a digital controlled system, all theoretical and actual values as well as the control orders from the process computer must be directly controllable. A CAMAC system was not used for economical reasons, the process periphery was made controllable by self building of interfaces to and from the computer. As example, the available multi-channel analyzers were converted to external controlling. The price-moderate and relatively simple self-built set-up are outlined and an example is given of how a TELETYPE version is reconstructed into a fast electronic interface. A BUS-MULTIPLEX system was developed which generates all necessary DI/DO interfaces out of one DI and DO address of the process computer only. The essential part of this system is given. (orig./LH)

  15. Modeling and Simulation of Sensorless Speed Control of a Buck Converter Controlled Dc Motor

    Directory of Open Access Journals (Sweden)

    Tagreed M. Ali

    2010-01-01

    Full Text Available This paper investigate a sensorless speed control of a separately excited dc motor fed from a buck type dc-dc converter. The control system is designed in digital technique by using a two dimension look-up table. The performance of the drive system was evaluated by digital simulation using Simulink toolbox of Matlab.

  16. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    Science.gov (United States)

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  17. Modeling and Simulation of Sensorless Speed Control of a Buck Converter Controlled Dc Motor

    OpenAIRE

    Tagreed M. Ali; Bassim M. H. Jassim

    2010-01-01

    This paper investigate a sensorless speed control of a separately excited dc motor fed from a buck type dc-dc converter. The control system is designed in digital technique by using a two dimension look-up table. The performance of the drive system was evaluated by digital simulation using Simulink toolbox of Matlab.

  18. Development of EPICS based beam-line experimental control employing motor controller for precision positioning

    International Nuclear Information System (INIS)

    In a Synchrotron Radiation Source the beamline experiments are carried out in radiation prone environment, inside the hutch, which demands to conduct experiments remotely. These experiments involves instrument control and data acquisition from various devices. Another factor which attributes to system complexity is precise positioning of sample and placement of detectors. A large number of stepper motors are engaged for achieving the required precision positioning. This work is a result of development of Experimental Physics and Industrial Control System (EPICS) based control system to interface a stepper motor controller developed indigenously by Laser Electronics Support Division of RRCAT. EPICS is an internationally accepted open source software environment which follows toolkit approach and standard model paradigm. The operator interface for the control system software was implemented using CSS BOY. The system was successfully tested for Ethernet based remote access. The developed control software comprises of an OPI and alarm handler (EPICS ALH). Both OPI and ALH are linked with PV's defined in database files. The development process resulted into a set of EPICS based commands for controlling stepper motor. These commands are independent of operator interface, i.e. stepper motor can be controlled by using these set of commands directly on EPICS prompt. This command set is illustrated in the above table. EPICS Alarm Handler was also tested independently by running these commands on EPIC prompt. If not using ALH, operator can read the alarm status of a PV using 'SEVR' and 'STAT' attributes. (author)

  19. Comparison between Conventional and Fuzzy Logic PID Controllers for Controlling DC Motors

    Directory of Open Access Journals (Sweden)

    Essam Natsheh

    2010-09-01

    Full Text Available Fuzzy logic and proportional-integral-derivative (PID controllers are compared for use in direct current (DC motors positioning system. A simulation study of the PID position controller for the armature-controlled with fixed field and field controlled with fixed armature current DC motors is performed. Fuzzy rules and the inferencing mechanism of the fuzzy logic controller (FLC are evaluated by using conventional rule-lookup tables that encode the control knowledge in a rules form. The performance assessment of the studied position controllers is based on transient response and error integral criteria. The results obtained from the FLC are not only superior in the rise time, speed fluctuations, and percent overshoot but also much better in the controller output signal structure, which is much remarkable in terms of the hardware implementation.

  20. Brain motor control function in a patient with subacute, incomplete, asymmetrical spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-jia; WANG Yi; WEI Peng-xu; XU Jian-min; LI Jian-jun

    2010-01-01

    Spinal cord injury (SCI) is a major cause of disability. A serious consequence of SCI is the loss or partial loss of motor control. A number of therapies are currently being developed for restoring motor function in SCI patients.1'2 However, such approaches generally require intact neural motor systems for driving limb movements.

  1. Fuzzy PID Controllers Using Matlab GUI Based for Real Time DC Motor Speed Control

    OpenAIRE

    Suhas Yadav*1

    2014-01-01

    In this paper, an integrated electronic system has been designed, constructed and tested. Controlling DC (Direct current) Motor drive is design and development of real time MATLAB –GUI based using fuzzy logic controller. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by MATLAB-GUI based FLC and IFLC algorithms optimization model. Comp...

  2. Bi-level Control and Chopper Control Methods for Improving the Dynamic Performance of Stepper Motor

    Directory of Open Access Journals (Sweden)

    Dr. Walid Emar, Eng. Ziad Sobih, Dr. Musbah Aqel & Dr. Mahmoud Awad

    2010-06-01

    Full Text Available This paper compares between chopper control method and bi-level controlmethod. Both methods are used for improving the dynamic performance ofvariable reluctance stepper motor (VRSM by modifying its time constant andthus, increasing its stepping rate. Therefore, the initial torque developed by themotor is high; the switching from one coil to the next is faster than normal andconsequently, the rotor moves as quickly as it should be. The circuitry discussedin this paper is connected directly to the motor windings and the motor powersupply, and this circuitry is controlled by a digital system that determines whenthe switches are turned on or off. Each class of drive circuit is illustrated withpractical examples, but these examples are not intended as an exhaustivecatalog of the commercially available control circuits, nor is the information givenhere intended to substitute for the information found on the manufacturer'scomponent data sheets for the parts mentioned.

  3. Global Control of Motor Neuron Topography Mediated by the Repressive Actions of a Single Hox Gene

    OpenAIRE

    Jung, Heekyung; Lacombe, Julie; Mazzoni, Esteban O.; Liem, Karel F., Jr.; Grinstein, Jonathan; Mahony, Shaun; Mukhopadhyay, Debnath; Gifford, David K; Young, Richard A.

    2010-01-01

    In the developing spinal cord, regional and combinatorial activities of Hox transcription factors are critical in controlling motor neuron fates along the rostrocaudal axis, exemplified by the precise pattern of limb innervation by more than fifty Hox-dependent motor pools. The mechanisms by which motor neuron diversity is constrained to limb levels are, however, not well understood. We show that a single Hox gene, Hoxc9, has an essential role in organizing the motor system through global rep...

  4. Global Control of Motor Neuron Topography Mediated by the Repressive Actions of a Single Hox Gene

    OpenAIRE

    Jung, Heekyung; Lacombe, Julie; Mazzoni, Esteban O.; Liem, Karel F., Jr.; Grinstein, Jonathan; Mahony, Shaun; Mukhopadhyay, Debnath; Gifford, David K; Young, Richard A.; Anderson, Kathryn V.; Wichterle, Hynek; Dasen, Jeremy S.

    2010-01-01

    In the developing spinal cord, regional and combinatorial activities of Hox transcription factors are critical in controlling motor neuron fates along the rostrocaudal axis, exemplified by the precise pattern of limb innervation by more than fifty Hox-dependent motor pools. The mechanisms by which motor neuron diversity is constrained to limb-levels are however not well understood. We show that a single Hox gene, Hoxc9, has an essential role in organizing the motor system through global repre...

  5. Robust control of integrated motor-transmission powertrain system over controller area network for automotive applications

    Science.gov (United States)

    Zhu, Xiaoyuan; Zhang, Hui; Cao, Dongpu; Fang, Zongde

    2015-06-01

    Integrated motor-transmission (IMT) powertrain system with directly coupled motor and gearbox is a good choice for electric commercial vehicles (e.g., pure electric buses) due to its potential in motor size reduction and energy efficiency improvement. However, the controller design for powertrain oscillation damping becomes challenging due to the elimination of damping components. On the other hand, as controller area network (CAN) is commonly adopted in modern vehicle system, the network-induced time-varying delays that caused by bandwidth limitation will further lead to powertrain vibration or even destabilize the powertrain control system. Therefore, in this paper, a robust energy-to-peak controller is proposed for the IMT powertrain system to address the oscillation damping problem and also attenuate the external disturbance. The control law adopted here is based on a multivariable PI control, which ensures the applicability and performance of the proposed controller in engineering practice. With the linearized delay uncertainties characterized by polytopic inclusions, a delay-free closed-loop augmented system is established for the IMT powertrain system under discrete-time framework. The proposed controller design problem is then converted to a static output feedback (SOF) controller design problem where the feedback control gains are obtained by solving a set of linear matrix inequalities (LMIs). The effectiveness as well as robustness of the proposed controller is demonstrated by comparing its performance against that of a conventional PI controller.

  6. Proposed torque optimized behavior for digital speed control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  7. Microcontroller based PWM Inverter for Speed Control of a Three Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    M. A. Latif

    2013-04-01

    Full Text Available Three phase induction motor has proven to be an extremely reliable electromechanical energy conversion device for over 100 years. The speed control of induction motor is a crying need for the real world industrial applications. However, there are so many options available for the precise speed control of induction motor except by changingthe frequency. Therefore to achieve the goal of speed control of induction motor, there is no alternative of inverters. With the availability of high speed power semiconductor devices, the three phase inverters play the key role for variable speed ac motor drives. In addition to the speed control, the inverter can also provide some unique features, like voltage control, torque control, power factor correction, auto breaking, built in protection system and so forth.In this paper, a three phases PWM inverter using MC3PHAC microcontroller with computer interface is proposed to run a squirrel case induction motor. Some results of the proposed inverter are presented.

  8. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments

    Directory of Open Access Journals (Sweden)

    Francesca eGarbarini

    2013-11-01

    Full Text Available When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the ‘moving’ (healthy hand would be caused by the constraints imposed by the ongoing motor program of the ‘impaired’ hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia. They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person’s arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  9. Reducing current reversal time in electric motor control

    Energy Technology Data Exchange (ETDEWEB)

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  10. A NOVEL ARTIFICIAL HYDROCARBON NETWORKS BASED SPACE VECTOR PULSE WIDTH MODULATION CONTROLLER FOR INDUCTION MOTORS

    OpenAIRE

    Hiram Ponce; Luis Ibarra; Pedro Ponce; Arturo Molina

    2014-01-01

    Most of machine-operated industrial processes implement electric machinery as their work sources, implying the necessary improvement of control techniques and power electronics drivers. Many years have passed since the control conflicts related to induction motors have been overcome through torque-flux control techniques so their advantages over direct current motors have made them to be the most common electric actuator found behind industrial automation. In fact, induction motors can be eas...

  11. Tuning of PID Controller for A Linear Brushless DC Motor using Swarm Intelligence Technique

    OpenAIRE

    Pooja Sharma; Rajeev Gupta

    2014-01-01

    An Optimal Design of PID Controller is proposed in this paper. The Methodology of PSO Algorithm is utilized to search the optimal parameters of Proportional Integral Derivative (PID) Controller for BLDC Motor. PSO is an Evolutionary Optimization Technique. A Linear Brushless DC Motors are known for higher efficiency and lower maintenance. The Brushless DC Motor is modeled in Simulink & tuning of PID controller using PSO is implemented in MATLAB. This Method was more efficient ...

  12. Novel wide range speed control of permanent magnet brushless motor drives

    OpenAIRE

    Chau, KT; Chan, CC; Jiang, JZ; Xia, W

    1995-01-01

    This paper presents a novel approach for wide range speed control of permanent magnet (PM) brushless motor drive, including both sinewave and squarewave versions. As compared with conventional flux-weakening control, the approach takes definite advantages that it can be applied to the squarewave PM brushless motor drive directly, and even to the motor drive with negligible mutual inductances between phase windings. Moreover, it is easier to implement than flux-weakening control because no coo...

  13. Robust control of synchronous motors through AC/DC/AC converters

    OpenAIRE

    El Magri, Abdelmounime; Giri, Fouad; Abouloifa, Abdelmajid; Chaoui, Fatima Zara

    2010-01-01

    The problem of controlling synchronous motors, driven through AC/DC rectifiers and DC/AC inverters is addressed. The control objectives are three fold: (i) forcing the motor speed to track a varying reference signal in presence of motor parameter uncertainties;(ii) regulating the DC Link voltage; (iii )assuring a satisfactory power factor correction (PFC) with respect to the power supply net .First, a nonlinear model of the whole controlled system is developed in the Park-coordinates. Then, a...

  14. Design of a dedicated processor for AC motor control implemented in a low cost FPGA

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Matzen, Torben N.

    2008-01-01

    Motor control for small series sometimes requires specialized control logic, requiring rewiring if new logic needs to be added. This paper describes a different approach to hardware and software co-design, namely designing a softcore processor with an instruction set to fit the purpose of control....... The approach is tested for two different motor types, synchronousand hybrid switched reluctance motors, using a Spartan 3E FPGA. The impact of having ADC-communication in VHDL versus in assembler is also presented....

  15. Tuning of PID Controller for A Linear Brushless DC Motor using Swarm Intelligence Technique

    Directory of Open Access Journals (Sweden)

    Pooja Sharma,

    2014-05-01

    Full Text Available An Optimal Design of PID Controller is proposed in this paper. The Methodology of PSO Algorithm is utilized to search the optimal parameters of Proportional Integral Derivative (PID Controller for BLDC Motor. PSO is an Evolutionary Optimization Technique. A Linear Brushless DC Motors are known for higher efficiency and lower maintenance. The Brushless DC Motor is modeled in Simulink & tuning of PID controller using PSO is implemented in MATLAB. This Method was more efficient for Step Response Characteristics.

  16. The Relationship Among Motor Proficiency, Physical Fitness, and Body Composition in Children With and Without Visual Impairments

    NARCIS (Netherlands)

    Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    2010-01-01

    This study compares the motor skills and physical fitness of school-age children (6-12 years) with visual impairments (VI; n = 60) and sighted children (n = 60). The relationships between the performance parameters and the children's body composition are investigated as well as the role of the sever

  17. The Role of Motor Competence and Body Mass Index in Children's Activity Levels in Physical Education Classes

    Science.gov (United States)

    Spessato, Barbara Coiro; Gabbard, Carl; Valentini, Nadia C.

    2013-01-01

    Our goal was to investigate the role of body mass index (BMI) and motor competence (MC) in children's physical activity (PA) levels during physical education (PE) classes. We assessed PA levels of 5-to-10-year old children ("n" = 264) with pedometers in four PE classes. MC was assessed using the TGMD-2 and BMI values were classified according to…

  18. Inter-relationships among physical activity, body fat, and motor performance in 6- to 8-year-old Danish children

    DEFF Research Database (Denmark)

    Morrison, Kyle M; Bugge, Anna; El-Naaman, Bianca;

    2012-01-01

    This study examined the interrelationships among physical activity (PA), percent body fat (%BF), and motor performance (MP) in 498 6- to 8-year-old Danish children. PA was assessed by accelerometer, %BF was calculated from skinfolds, and the Koordinations Test für Kinder along with a throwing...

  19. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2015-01-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of mot

  20. The Relationship among Motor Proficiency, Physical Fitness, and Body Composition in Children with and without Visual Impairments

    Science.gov (United States)

    Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    2010-01-01

    This study compares the motor skills and physical fitness of school-age children (6-12 years) with visual impairments (VI; n = 60) and sighted children (n = 60). The relationships between the performance parameters and the children's body composition are investigated as well as the role of the severity of the impairment. The degree of VI did not…

  1. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  2. A discreet control of sliding ways of an induction motor; Control discreto de modos deslizantes de un motor de induccion

    Energy Technology Data Exchange (ETDEWEB)

    Rivera Dominguez, Jorge

    2001-12-15

    A control of sliding ways in discreet time for non-linear discreet systems is designed, also the technique of the control by histograms for non-linear discreet systems was developed, and an observer of reduced order was developed for non-linear electromechanical discreet systems. All these techniques are applied to a non-linear discreet model of an induction motor that was found here, that posses electrical and mechanical dynamics, in which the load pair is considered an unknown disturbance. With complete measurements of the states are satisfied the pursuing of the rotor velocity and the amplitude of the magnetic flux of the rotor, where the unknown load does not affect the velocity regulation. Next, an observer of reduced order is implemented where the velocity and current measurements are employed to consider the load pair and the flows that are very difficult to measure. The proposed method has a design and stability procedure of direct analyses, conserving a simple structure of the control law. The simulations predict that the system is robust with respect to several types of load pairs. The responses of velocity and amplitude of the rotor flow and the entrance references evolved very well. These references have a linear dynamics of second order with time constants that can be chosen by the motor user. The practical aspects for a future digital implementation of the control law are considered, including the velocity and currents sensors, the preparation of signals, the transformation of the current in the frame of stationary reference, PWM and inverter modules, which were seen in detail. The experimental results are left as a future work. [Spanish] Se disena un control de modos deslizantes en tiempo discreto para sistemas discretos no lineales, tambien se desarrollo la tecnica del control por bloques para sistemas discretos no lineales, y un observador de orden reducido fue desarrollado para sistemas discretos electromecanicos no lineales. Todas estas tecnicas

  3. A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Huei; Kim, Nam Hun; Choi, Kyeong Ho [Yeungnam University, Kyongsan(Korea)

    2002-03-01

    This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control(DTC). The system consist of stator flux observer, torque estimator two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at +-2000 rpm. The developed digitally high performance using 1kW RSM which has 2.57 Ld/Lq salient ratio. (author). 18 refs., 8 figs., 2 tabs.

  4. Intelligent robust control law for induction motors based on field-oriented control theory

    Energy Technology Data Exchange (ETDEWEB)

    Barambones, O.; Alcorta, P.; Sevillano, G.; Garrido, A.; Garrido, I. [Univ. del Pais Vasco, Bilbao (Spain). Dpto. Ingenieri a de Sistemas y Automatica

    2009-07-01

    A sensorless adaptive control law was developed to improve the trajectory tracking performance of induction motors. The law used an integral sliding mode algorithm to avoid the necessity of calculating an upper bound for system uncertainties. The vector control theory was used to develop the induction motor drives. The sliding mode control law incorporated an adaptive switching gain and included a method of estimating rotor speeds. Rotor speed estimation errors were presented as a first order simple function based on the difference between real stator currents and estimated stator currents. The Lyapunov stability theory was used to analyze the controller under different load disturbances and parameter uncertainties. Results of the study showed that the control signal of the scheme was smaller than signals obtained using traditional variable structure control schemes. It was concluded that speed tracking objectives can be obtained under various parameter and torque uncertainties. 9 refs., 7 figs.

  5. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    Science.gov (United States)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  6. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    International Nuclear Information System (INIS)

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  7. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    Energy Technology Data Exchange (ETDEWEB)

    Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Parsapoor, Amir, E-mail: amirparsapoor@yahoo.co [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.i [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Lucas, Caro, E-mail: lucas@ut.ac.i [Centre of Excellence for Control and Intelligent Processing, Electrical and Computer Engineering Faculty, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  8. High temperature brushless DC motor system and its operation mode control

    Institute of Scientific and Technical Information of China (English)

    邹继斌; 胡建辉; 徐永向

    2001-01-01

    The high temperature ( 175 ℃ ) operation of a motor spells out special requirements for control algorithms, materials and elements. The stability of motor characteristic is guaranteed by the digital control strategy. Constant velocity operation is achieved by phase-locked loop ( PLL), and constant power operation is achieved by a current-restricting circuit. A motor for constant speed and constant power operation has been built and the speed control system is tuned by MATLAB simulation. Experimental and simulation results for operation mode control of brushless DC motor are presented.

  9. Chaos control of single time-scale brushless DC motor with sliding mode control method

    OpenAIRE

    Uyaroğlu, Yılmaz; CEVHER, Barış

    2013-01-01

    In this paper, the sliding mode control (SMC) scheme of single time-scale brushless DC motor (BLDCM) is investigated. The SMC method consists of 2 sections. To simplify the directive of the stability of the controlled single time-scale BLDCM in the sliding mode, first a special type of PI switching surface is adopted. Second, the SMC controller is obtained to guarantee the occurrence of the PI switching surface. The effectiveness of the theoretical analysis is evaluated by numerical...

  10. Solid state circuit controls direction, speed, and braking of dc motor

    Science.gov (United States)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  11. MULTI-TIME-SCALE TERMINAL CONTROL OF MOTOR AXIS ANGULAR VELOCITY

    OpenAIRE

    Kozyrev, V. G.

    2012-01-01

    Reduced law of terminal control of electric motor shaft speed of rotation utilizing truncated motor dynamics asymptotic approximation and appreciably simplifying control algorithm is proposed. Modeling of the dynamics of the shaft with the proposed control law has shown its effectiveness.

  12. Feed-forward motor control of ultrafast, ballistic movements.

    Science.gov (United States)

    Kagaya, K; Patek, S N

    2016-02-01

    To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals. PMID:26643091

  13. Supplementary Motor Complex and Disturbed Motor Control – a Retrospective Clinical and Lesion Analysis of Patients after Anterior Cerebral Artery Stroke

    OpenAIRE

    Brugger, Florian; Galovic, Marian; Weder, Bruno J.; Kägi, Georg

    2015-01-01

    Background Both the supplementary motor complex (SMC), consisting of the supplementary motor area (SMA) proper, the pre-SMA, and the supplementary eye field, and the rostral cingulate cortex are supplied by the anterior cerebral artery (ACA) and are involved in higher motor control. The Bereitschaftspotential (BP) originates from the SMC and reflects cognitive preparation processes before volitional movements. ACA strokes may lead to impaired motor control in the absence of limb weakness a...

  14. Stepping motor control processor reference manual. Volume I

    International Nuclear Information System (INIS)

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained

  15. Optimal Fuzzy Controller Tuned by TV-PSO for Induction Motor Speed Control

    Directory of Open Access Journals (Sweden)

    KULIC, F.

    2011-02-01

    Full Text Available This paper reports an automated procedure for the design of an optimal fuzzy logic controller to be used as an induction motor speed controller. The procedure consists of selection of a suitable well known fuzzy logic controller and tuning via particle swarm optimization optimal for the selected criteria. In this way the time required for tuning of the controller is significantly reduced in comparison with trial and error methods. As a benchmark a proportional-integral (PI controller is used. The PI controller is tuned via the symmetrical optimum procedure, the standard procedure for tuning a speed controller of an induction motor. Simulation results are obtained via a mathematical model developed in Matlab/Simulink. Experimental verification is carried out with a laboratory model based on the DS1104 digital control card. To minimize iron losses and to provide better motor performance for low loads, flux is reduced from nominal and speed is kept below nominal. Results are presented in tables and graphics. The optimal fuzzy logic controller provides a slight practical advantage.

  16. Diamagnetically Levitating Three Phase Motor with Optical Feedback Control

    Science.gov (United States)

    Khanna, Shrey; Nhut Ho, Joe; Irwen, Jonathan; Chih Wang, Wei

    2010-11-01

    This article describes a feasibility study of creating a low friction, low maintenance power delivering motor using a diamagnetically stabilized levitating rotor. The planar rotor described in this article uses a triangular configuration of magnets that rotates due to nine electric coils evenly spaced around the rotor. The principle behind levitation of the rotor and the dynamic forces on it are described in detail. An optical encoder feedback system is designed and fabricated that controls the frequency of the levitating rotor. The current input to the coils is given through a driving circuit that amplifies a DC pulse signal generated by a control algorithm designed in LabVIEW. The driving circuit allows current to flow through one phase at a time, which produces a magnetic field strong enough to spin the rotor. Experiments suggest that the optical encoder feedback control system can do reference tracking on the levitating rotor. The designed control algorithm can drive the rotor to specified reference frequencies up to 1.3 Hz using the optical encoder measurements.

  17. Internal Model Controller of an ANN Speed Sensorless Controlled Induction Motor Drives

    Science.gov (United States)

    Hamed Mouna, Ben; Lassaad, Sbita

    This study deals with the performance analysis and implementation of a robust sensorless speed controller. The robustness is guaranteed by the use of the Internal Model Controller (IMC). An intelligent algorithm is evolved to eliminate the mechanical speed. It is based on the Artificial Neural Network (ANN) principle. Verification of the proposed robust sensorless controller is provided by experimental realistic tests on a scalar controlled induction motor drive. Sensorless robust speed control at low speeds and in field weakening region (high speeds) is studied in order to show the robustness of the speed controller under a wide range of load.

  18. Emotional Learning Based Intelligent Controllers for Rotor Flux Oriented Control of Induction Motor

    Science.gov (United States)

    Abdollahi, Rohollah; Farhangi, Reza; Yarahmadi, Ali

    2014-08-01

    This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high performance industrial drive applications.

  19. Design of Fuzzy PID controller to control DC motor with zero overshoot

    Directory of Open Access Journals (Sweden)

    Meenakshi Chourasiya

    2014-10-01

    Full Text Available Most of the real time operation based physical system, digital PID is used in field such as servo-motor/dc motor/temperature control system, robotics, power electronics etc. need to interface with high speed constraints, higher density PLD’s such as FPGA used to integrate several logics on single IC. There are some limitations in it to overcome these limitations Fuzzy logic is introduced with PID and Fuzzy PID is formed. This paper explains experimental design of Fuzzy PID controller. We aimed to make controller power efficient, more compact, and zero overshoot. MATLAB is used to design PID controller to calculate and plot the time response of the control system and Simulink to generate a set of coefficients.

  20. Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?

    Directory of Open Access Journals (Sweden)

    Cornelis Van De Kamp

    2013-05-01

    Full Text Available Modular organisation in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection (psychological refractory period. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesise that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimisation process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control.

  1. Output torque and temperature control technologies for an electrical screw press motor

    Institute of Scientific and Technical Information of China (English)

    LI Jun-chao; HUANG Shu-huai; FENG Yi

    2008-01-01

    The DSC (direct self control) of speed regulation technology was applied to drive a motor running at a certain overloading ratio in intermittent working conditions. To control motor temperatures rising effectively, a finite element method with an iterative approach was applied to simulate real working conditions and analyze the temperature rising of the inner part of the motor. Application of DSC speed regulation realizes the invariable torque output quickly and avoids the peak current at the start state in favor of the motor temperature decreasing. Based on an analysis with the finite limit method, some effective measures were taken to improve the ability of the motor to expel heat. The overload ability of the motor was improved and the stable motor temperature rising was obtained, fulfilling the demands of electrical screw presses.

  2. Robust optical speed tracking control of a current sensor less synchronous reluctance motor drive using a new sliding mode controller

    International Nuclear Information System (INIS)

    This paper describes the robust optimal incremental motion control of a current sensor less synchronous reluctance motor, which can be specified by any desired speed profile. The control scheme is a combination of conventional linear quadratic feed back control method and sliding mode control. A novel sliding switching surface is employed first, that makes the states of the synchronous reluctance motor follow the nominal trajectories (controlled by any type of nominal controller) when the motor parameter uncertainties and the disturbance load torque exist. The sliding mode controller has no reaching phase and produces small sliding mode control chattering. Then, using the above tracking controller, the well-known torque control schemes, maximum torque, constant current inductive axis control and maximum power factor control related to the synchronous reluctance motor are examined below and above the base speed. Finally the validity of our proposed control scheme is verified by computer simulation results

  3. Fine Motor Control Is Related to Cognitive Control in Adolescents with Down Syndrome

    Science.gov (United States)

    Chen, Chih-Chia; Ringenbach, Shannon D. R.; Albert, Andrew; Semken, Keith

    2014-01-01

    The connection between human cognitive development and motor functioning has been systematically examined in many typical and atypical populations; however, only a few studies focus on people with Down syndrome (DS). Twelve adolescents with DS participated and their cognitive control, measured by the Corsi-Block tapping test (e.g., visual working…

  4. Performance analysis of PM synchronous motor using fuzzy logic and self tuning fuzzy PI speed controls

    International Nuclear Information System (INIS)

    Permanent Magnet Synchronous Motors have nonlinear characteristics whose dynamics changes with time. In spite of this structure the permanent magnet synchronous motor has answered engineering problems in industry such as motion control which need high torque values. This paper obtains a nonlinear mathematical model for Permanent Magnet Synchronous Motor and realizes stimulation of the obtained model in the Matlab/Simulink program. Motor parameters are determined by an experimental set-up and they are used in the motor model. Speed control of motor model is made with Fuzzy Logic and Self Tuning logic PI controllers. Using the speed graphs obtained, rise time, overshoot, steady-state error and settling time are analyzed and controller performances are compared. (author)

  5. Vector Control of Three-Phase Induction Motor with Two Stator Phases Open-Circuit

    Directory of Open Access Journals (Sweden)

    Seyed Hesam Asgari

    2015-06-01

    Full Text Available Variable frequency drives are used to provide reliable dynamic systems and significant reduction in usage of energy and costs of the induction motors. Modeling and control of faulty or an unbalanced three-phase induction motor is obviously different from healthy three-phase induction motor. Using conventional vector control techniques such as Field-Oriented Control (FOC for faulty three-phase induction motor, results in a significant torque and speed oscillation. This research presented a novel method for vector control of three-phase induction motor under fault condition (two-phase open circuit fault. The proposed method for vector control of faulty machine is based on rotor FOC method. A comparison between conventional and modified controller shows that the modified controller has been significantly reduced the torque and speed oscillations.

  6. Speed estimation of vector controlled squirrel cage asynchronous motor with artificial neural networks

    International Nuclear Information System (INIS)

    In this paper, the artificial neural networks as a sensorless speed estimator in indirect vector controlled squirrel cage asynchronous motor control are defined. High dynamic performance power semi conductors obtainable from direct current motors can also be obtained from asynchronous motor through developments in digital signal processors (DSP) and control techniques. With using of field diverting control in asynchronous motors, the flux and moment can be controlled independently. The process of estimating the speed information required in control of vector controlled asynchronous motor without sensors has been obtained with artificial neural networks (ANN) in this study. By examining the data obtained from the experimental study concluded on the DSP application circuit, the validity and high performance of the ANN speed estimator on real-time speed estimation has been demonstrated.

  7. Brain-Machine Interfacing Control of Whole-Body Humanoid Motion

    OpenAIRE

    Karim Bouyarmane; Norikazu Sugimoto; François Keith; Jun-ichiro Furukawa

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the mot...

  8. DESINGING OF ANN BASED SPEED CONTROLLER FOR PHASE CONTROLLED DC MOTOR

    Directory of Open Access Journals (Sweden)

    MR. M.V.SUDARSAN

    2011-07-01

    Full Text Available For electrical drives good dynamic performance is mandatory so as to respond to the changes in command speed and torques, so various speed control techniques are being used for real time applications. The speed of a dc motor can be controlled using various controllers like PI- Controller, Artificial Neural Network (ANNcontroller. ANN theory is recently getting increasing emphasis in process control applications. The paper describes application of ANN in a speed control system that uses a phase-controlled bridge converter and aseparately excited DC machine. The ANN controller for current and speed loops are implemented in MATLAB/SIMULINK, replacing the conventional Proportional-Integral (PI control method. The simulationstudy indicates the superiority of artificial neural network control over the conventional control methods. This control seems to have a lot of promise in the applications of power electronics.

  9. DC Brushless Motor Control Design and Preliminary Testing for Independent 4-Wheel Drive Rev-11 Robotic Platform

    OpenAIRE

    Roni Permana Saputra; Rizqi Andry Ardiansyah; Midriem Mirdanies; Arif Santoso; Aditya Sukma Nugraha; Anwar Muqorobin; Hendri Maja Saputra; Vita Susanti; Estiko Rijanto

    2012-01-01

    This paper discusses the design of control system for brushless DC motor using microcontroller ATMega 16 that will be applied to an independent 4-wheel drive Mobile Robot LIPI version 2 (REV-11). The control system consists of two parts which are brushless DC motor control module and supervisory control module that coordinates the desired command to the motor control module. To control the REV-11 platform, supervisory control transmit the reference data of speed and direction of motor to cont...

  10. Research of Compound Control for DC Motor System Based on Global Sliding Mode Disturbance Observer

    OpenAIRE

    2014-01-01

    Aiming at the problems of modeling errors, parameter variations, and load moment disturbances in DC motor control system, one global sliding mode disturbance observer (GSMDO) is proposed based on the global sliding mode (GSM) control theory. The output of GSMDO is used as the disturbance compensation in control system, which can improve the robust performance of DC motor control system. Based on the designed GSMDO in inner loop, one compound controller, composed of a feedback controller and a...

  11. POSITION CONTROL OF BRUSHLESS DC MOTOR BASED ON DIGITAL SIGNAL PROCESSING

    OpenAIRE

    GENÇER, Çetin; İsmail COŞKUN

    2006-01-01

    Brushless DC Motors (BLDC) have been used widely high performance control systems which are depended on to development of power electronic and control technology. In these motors to fed commutated supply, the control of position without oscilation has been required. In this study, position control of BLDC with digital signal processing has been implemented by a proportional-derivative (PD) controller because of its simple structure. It has been seen that the controller which is proposed from ...

  12. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach

    OpenAIRE

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-01-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the Central Nervous System selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of...

  13. Control System of Sensorless Brushless DC Motor Based on TMS320F240

    OpenAIRE

    Li Zeng; Zicheng Li

    2011-01-01

    A brushless DC(BLDC) motor with the characteristics of high speed and high power density has been more widely used in industrial area. The BLDC motor requires the position and speed sensors for control. However the position sensors are undesirable from standpoints of size, cost, maintenance and reliability. There are some different ways that can solve this problem, depending on the flux distribution. This paper describes a control system of sensorless BLDC motor. The back-EMF is adopted to de...

  14. COMMUTATION TORQUE RIPPLE REDUCTION USING FUZZY LOGIC CONTROLLER IN SENSORLESS BRUSHLESS DC MOTOR

    OpenAIRE

    Natasha Thomas*

    2015-01-01

    Brushless Direct Current (BLDC) motors are widely used due to high reliability, simple frame, straight forward control, and low friction. BLDC motor has the advantage of high speed adjusting performance and power density. Speaking of the motor drive, the most important part is commutation control. On the other hand, they show a high torque ripple characteristics caused by nonideal commutation currents. This limits their application area especially for the low-voltage applications....

  15. Orion Launch Abort Vehicle Attitude Control Motor Testing

    Science.gov (United States)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  16. Resource allocation in neural networks for motor control

    Science.gov (United States)

    Milton, J.; Cummins, J.; Gunnoe, J.; Tollefson, M.; Cabrera, J. L.; Ohira, T.

    2006-03-01

    Multiplicative noise plays an important part of a non-predictive control mechanism for stick balancing at the fingertip. However, intentionally-directed movements are also used in stick balancing, particularly by beginners. The interplay between intentional and non-predictive control mechanisms for stick balancing was assessed using two dual task paradigms: the subject was asked to either move one of their legs rhythmically or to imagine moving their leg while balancing a stick (55.4 cm, 35 g) at their fingertip. Performance was measured by determining the stick survival function, i.e. the fraction of trials (total >=25) for which the stick remained balanced at time t as a function of t. Performance was increased by concurrent rhythmic leg movements (50% survival time shifted from 8-9s to 15s in a typical subject). Imagined movements resulted in a similar improvement (50% survival time of 20s for the above subject) suggesting that this enhancement is not simply related to mechanical vibrations of the fingertip induced by leg movement. These observations emphasize the importance of the development of mathematical models for neural control of skilled motor movements that take into resource allocation of limited resources, such as intention.

  17. Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Khaled N. Faris

    2015-12-01

    Full Text Available According to various advantages of linear induction motor (LIM, such as high starting thrust force, high speed operation and reduction of mechanical losses, more applications have utilized this type of motors. Direct Thrust Control (DTC technique is considered as one of the most efficient techniques that can be used for LIM. DTC is preferable to give a fast and good dynamic thrust response. So, to improve the accuracy and robustness of contouring control for CNC machine tools, linear induction motors with a direct thrust control technique are introduced for driving these machines. An industry standard motion control system is applied for reducing the tracking error and improving the desired accuracy. Different loading conditions are simulated to validate the reliability and robustness of the introduced system to match the application field. The proposed system is simulated using the MATLAB/SIMULINK Package; simulation results validated both tracking accuracy and robustness of the proposed motion control system for contouring control for a CNC (Computer Numerical Control milling machine.

  18. Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers

    Science.gov (United States)

    Sudhakar, Ambarapu; Vijaya Kumar, M.

    2015-09-01

    This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.

  19. Analysis and Design of Conventional Controller for Speed Control of DC Motor -A MATLAB Approach

    Directory of Open Access Journals (Sweden)

    C. S. Linda

    2015-02-01

    Full Text Available The objective of this paper is to control the speed of the motor using conventional controller; compensator is used to improve the steady state error. To evaluate the performance of the controller, time response analysis is carried out. The time response analysis consists of two type of analysis. One is unit step response analysis and other is performance indices analysis. The paper describes the designing of a closed loop model of the dc motor drive for controlling speed. Accuracy and the dynamic responses are better in a closed loop system. The compensator is used to compensate the parameter of the system in such a way to meet the specification, so that it improves the steady state response of the system and get desired response.

  20. LabVIEW FPGA Implementation Of a PID Controller For D.C. Motor Speed Control

    Directory of Open Access Journals (Sweden)

    Fakhrulddin H. Ali

    2010-12-01

    Full Text Available This Paper presents a novel hardware design methodology of digital control systems. For this, instead of synthesizing the control system using Very high speed integration circuit Hardware Description Language (VHDL, LabVIEW FPGA module from National Instrument (NI is used to design the whole system that include analog capture circuit to take out the analog signals (set point and process variable from the real world, PID controller module, and PWM signal generator module to drive the motor. The physical implementation of the digital system is based on Spartan-3E FPGA from Xilinx. Simulation studies of speed control of a D.C. motor are conducted and the effect of a sudden change in reference speed and load are also included.

  1. A study of EV induction motor controller based on rotor flux oriented control

    Institute of Scientific and Technical Information of China (English)

    Song Jianguo; Chen Quanshi

    2006-01-01

    Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC's Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.

  2. Developing speed control for a permanent magnet DC motor using rapid control of prototyping techniques

    Directory of Open Access Journals (Sweden)

    Fredy Edimer Hoyos Velasco

    2010-10-01

    Full Text Available Virtually every engineering development for control systems is tested by simulation to predict performance. However, the final use of an algorithm is in its application in a real time system. Development tools using a DSP and Simulink RTW can be performed with real-time simulations (i.e. simulation interacting with physical plant. Testing the speed control loop of a DC motor with permanent magnets has thus been developed to appreciate the considerable advantages offered by these tools.

  3. Developing speed control for a permanent magnet DC motor using rapid control of prototyping techniques

    OpenAIRE

    Fredy Edimer Hoyos Velasco; Camilo Younes Velosa; Eduardo Antonio Cano Plata; Sebastián Sánchez Aristizábal

    2010-01-01

    Virtually every engineering development for control systems is tested by simulation to predict performance. However, the final use of an algorithm is in its application in a real time system. Development tools using a DSP and Simulink RTW can be performed with real-time simulations (i.e. simulation interacting with physical plant). Testing the speed control loop of a DC motor with permanent magnets has thus been developed to appreciate the considerable advantages offered by these tools.

  4. Multi-mode stepper motor controller-driver for RF cavity adjustment of LINAC resonator

    International Nuclear Information System (INIS)

    Multi-mode stepper motor controller-driver accepts input from three different sources to control the stepper motors which are used to operate tuner and coupler for LINAC booster. User can operate this system in remote mode either by CAMAC MFC CM41 module or via RS-232 connectivity apart from direct operation in local mode through the front panel keypad. The system is designed to drive four stepper motors, one at a time. The speed, direction and selection of the motor are user programmable. The alphanumeric LCD panel displays the current motor number and its rotation continuously irrespective of the mode of control. Emphasis is given on generation of high torque at higher speed of motor and flexibility of operation for multiple modes of usages. Improved design considerations have minimized heat dissipation and thereby made the unit very compact. (author)

  5. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    Science.gov (United States)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  6. A Study on New Current Controller for 7-Phase BLDC Motor Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Surk; Jeon, Ywun Seok; Mok, Hyung Soo [Konkuk University (Korea); Kim, Duk Keun [Komotek Co., Ltd. (Korea)

    2001-04-01

    Recently, the demand of motor for industrial, household machinery is increasing. As Switching devices and control technology are progressing, so the use of BLDC Motor is increasing. But 3-phase BLCD Motor generally used has pulsating torque and speed variation in commutation, so the range of its application is limited to high speed operation. Especially, to solve these problems, it is necessary to increase phase of Motor, so study of Poly-Phase BLDC Motor is progressing. However, when hysteresis current controller is used, switching frequency is highly increasing. In this paper, 7-Phase BLDC Motor drive system is designed. Also MSTC (Minimum Switching Time Controller) is proposed and with simulation and experiment, their validities are verified. (author). 10 refs., 26 figs., 1 tab.

  7. Space motion sickness: The sensory motor controls and cardiovascular correlation

    Science.gov (United States)

    Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.

    Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma

  8. A High-Performance Position Sensorless Motion Control system of Induction Motor with Direct Torque Control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Huei; Kim, Nam Hun; Baik, Won sik [Yeungnam University, Kyongsan (Korea)

    2002-07-01

    This paper presents an implementation of digital high-performance position sensorless motion control system of and induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evaluate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown are show a good motion control response characteristic and high performance features using 2.2(kW) general purposed induction motor . (author). 12 refs., 7 figs., 1 tab.

  9. 78 FR 29815 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-21

    ...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more......

  10. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    Science.gov (United States)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  11. Multi-input Fuzzy Logic Controller for Brushless dc Motor Drives

    OpenAIRE

    Y. H. Bharathi; B. R. Rekha; P. Bhaskar Bhaskar; C. S. Parvathi; Kulkarni, A.B.

    2008-01-01

    The brushless dc motors are used in various applications such as defence, industries,robotics, etc. In these applications, the motor should be precisely controlled to give the desiredperformance. The proposed controller systems consist of multi-input fuzzy (two-and three-input)logic controller (FLC) and multi-input integrated fuzzy logic controller (IFLC) for the speed controlof brushless dc servomotor drive. The input for the controllers are error e(k), change in error[first derivative of er...

  12. Field-Weakening Nonlinear Control of a Separately Excited DC Motor

    OpenAIRE

    Mohamed Zribi; Adel Al-Zamel

    2007-01-01

    This paper investigates the design and implementation of nonlinear control schemes for a separately excited DC motor operating in the field-weakening region. A feedback linearization controller, a Corless-Leitman-type controller, and two nonlinear controllers are designed and implemented for a DC motor system. The stability of the closed-loop system is proved using Lyapunov theory. A hardware testbed is constructed to experimentally verify the designed controllers. The hardware consists of a ...

  13. Fuzzy Logic Based Direct Torque Control Of Induction Motor With Space Vector Modulation

    OpenAIRE

    Korkmaz, Fatih; TOPALOĞLU, İsmail; Mamur, Hayati

    2015-01-01

    The induction motors have wide range of applications for due to its well-known advantages like brushless structures, low costs and robust performances. Over the past years, many kind of control methods are proposed for the induction motors and direct torque control has gained huge importance inside of them due to fast dynamic torque responses and simple control structures. However, the direct torque control method has still some handicaps against the other control methods and most of the impo...

  14. A Novel Control Algorithm Expressions Set for not Negligible Resistive Parameters PM Brushless AC Motors

    Directory of Open Access Journals (Sweden)

    Renato RIZZO

    2012-08-01

    Full Text Available This paper deals with Permanent Magnet Brushless Motors. In particular is proposed a new set of control algorithm expressions that is realized taking into account resistive parameters of the motor, differently from simplified models of this type of motors where these parameters are usually neglected. The control is set up and an analysis of the performance is reported in the paper, where the validation of the new expressions is done with reference to a motor prototype particularly compact because is foreseen for application on tram propulsion drives. The results are evidenced in the last part of the paper.

  15. Speed Digital Control of Brushless DC Motor Using dsPIC Controller

    OpenAIRE

    Gheorghe Băluţă; Gheorghe Ursanu

    2014-01-01

    This paper presents the digital control of the Brushless DC motor (BLDCM) speed. The dsPICDEM MC1 development system (with the dsPIC30F6010A microcontroller) and the dsPICDEM MC1L power module, manufactured by Microchip Company, were used. The control program was developed in C programming language. The graphical user interface was realized in LabVIEW 8.6 graphical programming language. For speed control, a digital controller PI type was implemented. Due to digital contro...

  16. SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC MOTOR

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2012-04-01

    Full Text Available The closed loop control of PMDC drive with an inner current controller and an outer PID-ANN (Proportional Integral Derivative – Artificial Neural Network based speed controller is designed and presented in this paper. Motor is fed by DC / DC buck converter (DC Chopper. The controller is used to change the duty cycle of the converter and thereby, the voltage fed to the PMDC motor to regulate the speed. The PID-ANN controller designed was evaluated by computer simulation and it was implemented using an 8051 based embedded system. This system will operate in forward motoring with variable speed.

  17. DC servo motor control using digital signal processors; Digital keisoku seigyo. 6. DSP wo mochiita DC servo motor seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [Max Co. Ltd., Tokyo (Japan)

    1999-03-15

    A digital control development effort is introduced, citing a case of DSP (digital signal processor)-aided DC servo motor control for the flat head type pen plotter. In a real plotter, a complicated nonlinear problem will arise because the natural frequency varies dependent upon the pen position. For the inhibition of such vibration which occurs during acceleration and deceleration, nonlinear elements have to be taken into consideration at the designing stage. In this report, the effort is focused on motor axis control only, and the DC servo control problem is solved as a linear problem. A DSP board type DS1102 of the dSPACE Corporation is named for this work. Using this board, the C code is automatically generated out of a control block constructed through SIMULINK, and a real-time test is conducted after downloading the code to the DSP processor. Since the quantity of DC servo motor rotation is quantized in an encoder, the result would contain much error and cause instability in the control if the quantity as obtained was subjected to differential calculus. Such being the case, velocity data for the control in this report are acquired by use of an observer. (NEDO)

  18. UNIFIED CONTROL STRUCTURE OF MULTI-TYPE INTERIOR PERMANENT MAGNET MOTOR

    Directory of Open Access Journals (Sweden)

    M. NORHISAM

    2015-03-01

    Full Text Available This paper presents the control strategy structure to extract the speed torque characteristic for the newly designed three phase Multi Type Interior Permanent Magnet Motor. The proposed structure with the driving circuits exhibit the performance of torque characteristics of the stepper motor and brushless motor with independent coil winding per phase especially used as an in-wheel motor in agricultural applications. Brushless Direct Current motors exhibit characteristics of generating high torque at high speed while the Permanent Magnet Stepper motors has characteristic of generating high torque at low speed. The typical characteristics of the above two are integrated in the proposed structure with a complex control structure that handle the switching complexity and speed control in real time. Thus, a specially designed driving system is essential to drive and control this special motor. The evaluation of the motor mechanical characteristics when applying load torque is also presented. The result determines the practical torque range applicable for each motor configuration and as combined machine.

  19. Measure and Control Technology Based on DSP for HighPrecision Scanning Motor

    International Nuclear Information System (INIS)

    A welding seam tracking visual sensor based on laser scanning is designed to solve the problems, such as indistinct image, difficulty in processing image etc., caused by serious arc light interference during welding. This visual sensor is mainly composed of a scanning motor, a linear-array CCD, a scanning rotating mirror and a semiconductor laser. Because the sensor measurement precision relies dramatically on the rotate speed stability of the scanning motor, the crux in the sensor design is to control the rotate speed of the scanning motor. Selecting a brushless direct current motor as the scanning motor and using TMS320F2812 DSP to drive it, we adopted fuzzy algorithm to control the motor rotate speed and made the steadiness error of the rotate speed less than 0.5%, which guarantees the sensor measurement precision and is of great importance for enhancing the welding quality of the industry welding robot

  20. Speed Synchronization of Multi Induction Motors with Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    HACHEMI Glaoui

    2013-05-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. Aspeed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed controlstrategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designedcontroller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  1. Application of stepping motor

    International Nuclear Information System (INIS)

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  2. A Randomized Controlled Trial of Brief Interventions for Body Dissatisfaction

    Science.gov (United States)

    Wade, Tracey; George, Wing Man; Atkinson, Melissa

    2009-01-01

    The authors examined the relative effectiveness of 3 different approaches to the experience of body dissatisfaction compared to a control and ruminative attention control condition, with respect to increasing weight and appearance satisfaction. One hundred female undergraduates (mean age = 24.38, SD = 9.39) underwent a body dissatisfaction…

  3. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    Science.gov (United States)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  4. Transcranial magnetic stimulation probes the excitability of the primary motor cortex: A framework to account for the facilitating effects of acute whole-body exercise on motor processes

    Directory of Open Access Journals (Sweden)

    Karen Davranche

    2015-03-01

    Full Text Available The effects of exercise on decision-making performance have been studied using a wide variety of cognitive tasks and exercise interventions. Although the current literature supports a beneficial influence of acute exercise on cognitive performance, the mechanisms underlying this phenomenon have not yet been elucidated. We review studies that used single-pulse transcranial magnetic stimulation (TMS to probe the excitability of motor structures during whole-body exercise and present a framework to account for the facilitating effects of acute exercise on motor processes. Recent results suggest that, even in the absence of fatigue, the increase in corticospinal excitability classically reported during submaximal and exhausting exercises may be accompanied by a reduction in intracortical inhibition. We propose that reduced intracortical inhibition elicits an adaptive central mechanism that counteracts the progressive reduction in muscle responsiveness caused by peripheral fatigue. Such a reduction would render the motor cortex more sensitive to upstream influences, thus causing increased corticospinal excitability. Furthermore, reduction of intracortical inhibition may account for the more efficient descending drive and for the improvement of reaction time performance during exercise. The adaptive modulation in intracortical inhibition could be implemented through a general increase in reticular activation that would further account for enhanced sensory sensitivity.

  5. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  6. Reorganization and Preservation of Motor Control of the Brain in Spinal Cord Injury: A Systematic Review

    OpenAIRE

    Kokotilo, K J; Eng, J; Curt, A.

    2009-01-01

    Reorganization of brain function in people with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensori-motor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and sub-cortical brain areas in people with SCI can indicate principal patterns of brain reorganization when the neurotrauma is...

  7. Performance Analysis of Induction Motor of Electric Vehicle Using Vector control

    Institute of Scientific and Technical Information of China (English)

    Liu ping

    2012-01-01

    According to the principle of Vector controlused in an asyn- chronous motor,a simulation model of the asynchronous motor in elec-tric vehicle and Vectorcontrolsystem was established with Matlab/Simu-link software. Simulation analysis of the asynchronous motor driving an electric vehicle was performedunder the classic mode of EV , and the simulation results show the modeland control scheme has better stable and dynamic performance,whichcanbe a good candidate for electric ve- hicle propulsion system

  8. Key parameters controlling the performance of catalytic motors

    Science.gov (United States)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David

    2016-03-01

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  9. FPGA-Based Implementation Direct Torque Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Saber Krim

    2015-02-01

    Full Text Available This paper proposes a digital implementation of the direct torque control (DTC of an Induction Motor (IM with an observation strategy on the Field Programmable Gate Array (FPGA. The hardware solution based on the FPGA is caracterised by fast processing speed due to the parallel processing. In this study the FPGA is used to overcome the limitation of the software solutions (Digital Signal Processor (DSP and Microcontroller. Also, the DTC of IM has many drawbacks such as for example; The open loop pure integration has from the problems of integration especially at the low speed and the variation of the stator resistance due to the temperature. To tackle these problems we use the Sliding Mode Observer (SMO. This observer is used estimate the stator flux, the stator current and the stator resistance. The hardware implementation method is based on Xilinx System Generator (XSG which a modeling tool developed by Xilinx for the design of implemented systems on FPGA; from the design of the DTC with SMO from XSG we can automatically generate the VHDL code. The model of the DTC with SMO has been designed and simulated using XSG blocks, synthesized with Xilinx ISE 12.4 tool and implemented on Xilinx Virtex-V FPGA.

  10. Key parameters controlling the performance of catalytic motors.

    Science.gov (United States)

    Esplandiu, Maria J; Afshar Farniya, Ali; Reguera, David

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators. PMID:27036470

  11. Hemispheric asymmetries and the control of motor sequences.

    Science.gov (United States)

    Serrien, Deborah J; Sovijärvi-Spapé, Michiel M

    2015-04-15

    Sequencing of finger positions reflects a prototype of skilled behaviour. In order to perform sequencing, cognitive control supports the requirements and postural transitions. In this electroencephalography (EEG) study, we evaluate the effects of hand dominance and assess the neural correlates of unimanual and bimanual sequencing in left- and right-handers. The behavioural measurements provided an index of response planning (response time to first key press) and response execution (time between successive key presses, taps/s and percentage of correct responses), whereas the neural dynamics was determined by means of EEG coherence, expressing the functional connectivity between brain areas. Correlations between brain activity and behaviour were calculated for exploring the neural correlates that are functionally relevant for sequencing. Brain-behavioural correlations during response planning and execution revealed the significance of circuitry in the left hemisphere, underlining its significant role in the organisation of goal-directed behaviour. This lateralisation profile was independent of intrinsic constraints (hand dominance) and extrinsic demands (task requirements), suggesting essential higher-order computations in the left hemisphere. Overall, the observations highlight that the left hemisphere is specialised for sequential motor organisation in left- and right-handers, suggesting an endogenous hemispheric asymmetry for compound actions and the representation of skill; processes that can be separated from those that are involved in hand dominance. PMID:25617529

  12. Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control

    OpenAIRE

    Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan

    2013-01-01

    This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...

  13. Open and closed-loop motor control system with incipient broken rotor bar fault detection using current signature

    OpenAIRE

    Refaat, Shady S.; Abu-Rub, Haitham; Saad, M. S.; Iqbal, Atif

    2014-01-01

    Motor drive system is considered the most important asset in industrial applications. Detection of broken rotor bars has long been important but difficult job in detection area of incipient motor faults. The need for highly efficient motor control drive systems becomes more and more important. Motors are controlled in closed-loop or open-loop modes of operation. This paper develops a novel approach for fault-detection scheme of broken rotor bar faults for three-phase induction motor using sta...

  14. Natural products and body weight control

    Directory of Open Access Journals (Sweden)

    Jay Lee

    2011-01-01

    Full Text Available The purpose of the review was to summarise the effect of some commonly available natural products used for body weight management. We collected data from PubMed and scientific journals. There are numerous publications on this topic, however we have summarized the most commonly available and potent natural products from recent 53 publications. The natural products analyzed in this paper include catechins, capsaicin, conjugated linoleic acid, fucoxanthin, soy isoflavone, glabridin, astaxanthin and cyaniding-3-glucoside. These natural products are effective and safe for body weight management. Further studies need to be conducted to investigate the mechanism of action, metabolism, long term safety and side effects of these natural products, as well as interactions between these natural products with dietary components.

  15. Natural products and body weight control

    OpenAIRE

    Jay Lee; Yanmei Li; Chunhua Li; Duo Li

    2011-01-01

    The purpose of the review was to summarise the effect of some commonly available natural products used for body weight management. We collected data from PubMed and scientific journals. There are numerous publications on this topic, however we have summarized the most commonly available and potent natural products from recent 53 publications. The natural products analyzed in this paper include catechins, capsaicin, conjugated linoleic acid, fucoxanthin, soy isoflavone, glabridin, astaxanthin ...

  16. Setting Up PID DC Motor Speed Control Alteration Parameters Using Particle Swarm Optimization Strategy

    Directory of Open Access Journals (Sweden)

    Boumediène ALLAOUA

    2009-07-01

    Full Text Available In this paper, an intelligent controller of DC Motor drive is designed using particle swarm optimization (PSO method for formative the optimal proportional-integral-derivative (PID controller Tuning parameters. The proposed approach has superior feature, including easy implementation, stable convergence characteristics and very good computational performances efficiency. The DC Motor Scheduling PID-PSO controller is modeled in MATLAB environment. Comparing with fuzzy logic controller using PSO intelligent algorithms, the planned method is more proficient in improving the speed loop response stability, the steady state error is reduced, the rising time is perfected and the disturbances do not affect the performances of driving motor with no overtaking.

  17. Sensorless Control of Low-cost Single-phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand;

    2015-01-01

    is a special hybrid switched reluctance motor. The proposed sensorless control method beneficially utilizes the stator side PM field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive system, is demonstrated......This paper presents a sensorless-controlled, low-cost, low-power, and variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...

  18. Sensorless control of low-cost single-phase hybrid switched reluctance motor drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand;

    2013-01-01

    is a special Hybrid Switched Reluctance Motor (HSRM). The proposed sensorless control method utilizes beneficially the stator side permanent magnet field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive......This paper presents a sensorless-controlled, low-cost, low-power, variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...

  19. Nonlinear Differential Geometry Method and Its Application in Induction Motor Decoupling Control

    Directory of Open Access Journals (Sweden)

    Linyuan Fan

    2016-05-01

    Full Text Available An alternating current induction motor is a nonlinear, multi-variable, and strong-coupled system that is difficult to control. To address this problem, a novel control strategy based on nonlinear differential geometry theory was proposed. First, a five-order affine mathematical model for an alternating current induction motor was provided. Then, the feedback linearization method was used to realize decoupling and full linearization of the system model. Moreover, a general and simplified control law was adopted to facilitate practical applications. Finally, a controller was designed using the pole assignment method. Simulation results show that the proposed method can decouple the system model into two independent subsystems, and that the closed-loop system exhibits good dynamic and static performances. The proposed decoupling control method is useful to reduce the system complexity of an induction motor and to improve its control performance, thereby providing a new and feasible dynamic decoupling control for an alternating current induction motor.

  20. Performance Analysis of a DTC and SVM Based Field-Orientation Control Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Md. Rashedul Islam

    2015-02-01

    Full Text Available This study presents a performance analysis of two most popular control strategies for Induction Motor (IM drives: direct torque control (DTC and space vector modulation (SVM strategies. The performance analysis is done by applying field-orientation control (FOC technique because of its good dynamic response. The theoretical principle, simulation results are discussed to study the dynamic performances of the drive system for individual control strategies using actual parameters of induction motor. A closed loop PI controller scheme has been used. The main purpose of this study is to minimize ripple in torque response curve and to achieve quick speed response as well as to investigate the condition for optimum performance of induction motor drive. Depending on the simulation results this study also presents a detailed comparison between direct torque control and space vector modulation based field-orientation control method for the induction motor drive.

  1. Comparative Analysis between Digital PWM and PI with Fuzzy Logic Controller for the Speed Control of BLDC Motor.

    Directory of Open Access Journals (Sweden)

    Ruchita Patel

    2013-07-01

    Full Text Available Residential and commercial appliances such as refrigerators and air conditioning systems have been using conventional motor drive technology. The machines in these applications typically have low efficiencies and high maintenance. Development of advanced motor drives has yielded increases in efficiency and reliability. A Brushless DC (BLDC drives are known for higher efficiency, lower maintenance and higher cost. In this paper presents a proposed method for speed control of BLDC motor using Digital PWM and PI with Fuzzy logic controller. This digital control treats BLDC motor as a digital system and regulates speed with the help of two predefined state variables techniques, which makes the concept of controller extremely simple for design and implementation. The main disadvantage of DC motor is sparking problem in brush but if using BLDC motor solve this problem. PI with Fuzzy is very nice and good concept for speed control of motor because this concept is combination of convention and modern technique. The key advantage of Fuzzy logic controller is switching is possible at different stage, and key advantage is change the value of P and I and regulate the speed of motor. The main advantage of Digital PWM is control the speed without change the voltage and current that’s why only change the width of plush and reduce the losses related to current. If we apply the conventional methods generally some resistance are connected in series of supply that case change the value of resistance and regulate the speed of motor. But using this methods losses is increase but if we used the Digital PWM and PI with Fuzzy logic controller and find out which one is best for speed controller of BLDC motor.

  2. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels

    Institute of Scientific and Technical Information of China (English)

    Xiao-wen SONG; Guo-geng ZHANG; Yun WANG; Shu-gen HU

    2011-01-01

    Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-smooth units with pits and grooves was determined according to our analysis with the mechanisms underlying non-smooth unit mediated aerodynamic drag reduction.The bionic non-smooth units reported here were designed to adapt the structure of a given vehicle body from the point of boundary layer control that reduces the burst and the loss of turbulent kinetic energy.The engine cover lid and vehicle body cap were individually treated with the non-smooth units,and the treated vehicles were subjected to aerodynamic drag coefficient simulation tests using the computational fluid dynamics (CFD) analysis method.The simulation results showed that,in comparison with smooth surfaces,properly designed non-smooth surfaces can have greater effects on drag reduction.The mechanism underlying drag reduction mediated by non-smooth surfaces was revealed by further analyses,in which the effects of non-smooth and smooth surfaces were directly compared.

  3. Experimental Setup and Robust Servo DC Motor Position Control Based on Gain Schedule Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Ahmed M. Kassem

    2012-05-01

    Full Text Available A position control of DC motor servo drive based on the Sliding Mode (SM approach is presented. The modeling and analysis of the servo DC motor are obtained. The Sliding Mode Controller (SMC design changes such that its performance is substantially improved. To improve the controller performance in steady stat (zero error the Integral Sliding Mode Controller (ISMC is used. Since the main drawback of SMC is a phenomenon, the so-called chattering, resulting from discontinuous controllers. A ISMC with switched gains is used for chattering reduction and controller robustness. For comparison, the proposed ISM with switched gains is compared with that of a PID controller. Experiments and simulations have been carried out in order to validate the effectiveness of the proposed scheme. The proposed controller offers very good tracking; it is highly robust, reaches the final position very fast. Furthermore the application of the SM ensures reduction of the system order by one. Also, quick recovery from matched disturbance in addition to good tracking ability. Moreover, this scheme is robust against the parameters variations and eliminate the influence of modeling.

  4. GENETIC BASED PLUS INTEGRAL CONTROLLER FOR PMBLDC MOTOR CONTROL USING RESONANT POLE INVERTER

    Directory of Open Access Journals (Sweden)

    Muruganantham

    2012-01-01

    Full Text Available Permanent Magnet Brushless DC (PMBLDC motor drives are increasingly popular in industrial applications due to rapid progress of technologies in power electronics and the growing demand for energy saving. The increasing demand of energy saving from society is the external force for the development of PMBLDC motor drives. It is however driven by a hard-switching Pulse Width Modulation (PWM inverter, which has low switching frequency, high switching loss, high Electro-Magnetic Interference (EMI, high acoustic noise and low efficiency, etc. To solve these problems of the hard-switching inverter, many soft-switching inverters have been designed in the past. Unfortunately, high device voltage stress, large dc link voltage ripples, complex control scheme and so on are noticed in the soft-switching inverters. This study introduces a novel genetic-proportional Plus Integral (PI controller based resonant pole inverter using transformer, which can generate dc link voltage notches during chopping which minimize the drawbacks of soft-switching. Hence all switches work in zero-voltage switching condition. The performance of the genetic-based PI controller is compared with conventional PI controller. The experimental results show that the genetic-based PI controller renders a better transient response than the conventional PI controller resulting in negligible overshoot, smaller settling time and rise time. Moreover the proposed controller provides low torque ripples and high starting torque. Both simulation and experimental results are presented to show the superiority of the proposed GA-PI controller based resonant pole inverter.

  5. Motor control or graded activity exercises for chronic low back pain? A randomised controlled trial

    OpenAIRE

    McAuley James H; Tonkin Lois; Nicholas Michael; Hodges Paul W; Maher Chris G; Latimer Jane; Macedo Luciana G; Stafford Ryan

    2008-01-01

    Abstract Background Chronic low back pain remains a major health problem in Australia and around the world. Unfortunately the majority of treatments for this condition produce small effects because not all patients respond to each treatment. It appears that only 25–50% of patients respond to exercise. The two most popular types of exercise for low back pain are graded activity and motor control exercises. At present however, there are no guidelines to help clinicians select the best treatment...

  6. Comparative Analysis between Digital PWM and PI with Fuzzy Logic Controller for the Speed Control of BLDC Motor.

    OpenAIRE

    Ruchita Patel; Hemant Amhia

    2013-01-01

    Residential and commercial appliances such as refrigerators and air conditioning systems have been using conventional motor drive technology. The machines in these applications typically have low efficiencies and high maintenance. Development of advanced motor drives has yielded increases in efficiency and reliability. A Brushless DC (BLDC) drives are known for higher efficiency, lower maintenance and higher cost. In this paper presents a proposed method for speed control of BLDC motor using ...

  7. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  8. Speed control of SR motor by self-tuning fuzzy PI controller with artificial neural network

    Indian Academy of Sciences (India)

    Ercument Karakas; Soner Vardarbasi

    2007-10-01

    In this work, the dynamic model, flux-current-rotor position and torque-current-rotor position values of the switched reluctance motor (SRM) are obtained in MATLAB/Simulink. Motor control speed is achieved by self-tuning fuzzy PI (Proportional Integral) controller with artificial neural network tuning (NSTFPI). Performance of NSTFPI controller is compared with performance of fuzzy logic (FL) and fuzzy logic PI (FLPI) controllers in respect of rise time, settling time, overshoot and steady state error

  9. FUZZY CONTROLLER AND NEURAL ESTIMATOR APPLIED TO CONTROL A SYSTEM POWERED BY THREE-PHASE INDUCTION MOTOR

    OpenAIRE

    Élida Fernanda Xavier Júlio; Simplício Arnaud da Silva; Cícero da Rocha Souto

    2015-01-01

    In this study, a control strategy is presented to control the position and the feed rate of a table of a milling machine powered by three-phase induction motor, when machining pieces constituted by different types of materials: steel, brass and nylon. For development of the control strategy, the vector control technique was applied to drive the three-phase induction machines. The estimation of the electromagnetic torque of the motor was used to determine the machining feed rate fo...

  10. Torque vector control using neural network controller for synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X. [Teco-Westinghouse Motor Co, R and D Center, Round Rock, TX (United States); Belmans, R.; Hameyer, K. [Katholieke Universiteit Leuven, Dic. ELEN, Dept. ESAT, Leuven-Heverlee (Belgium)

    2000-08-01

    This paper presents the torque vector control technique using a neural network controller for a synchronous reluctance motor. As the artificial neural network controller has the advantages of faster execution speed, harmonic ripple immunity and fault tolerance compared to a DSP-based controller, different multi-layer neural network controllers are designed and trained to produce a correct target vector when presented with the corresponding input vector. The trained result and calculated flops show that although the designed three layer controller with tansig, purelin and hard limit functions has more processing layers, the neuron number of each layer is less than that of other kinds of neural network controller, the requiring less flops and yielding faster execution and response. (orig.)

  11. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  12. Indirect Vector Control of an Induction Motor with Fuzzy-Logic based Speed Controller

    Directory of Open Access Journals (Sweden)

    BIROU, I.

    2010-02-01

    Full Text Available The aim of this paper is to present a new speed control structure for induction motors (IM by using fuzzy-logic based speed controllers. A fuzzy controller is designed to achieve fast dynamic response and robustness for low and high speeds. Different types of membership functions of the linguistic variables and output/input characteristics are analyzed. A simple but robust structure enables a wide range speed control of the driving system. The rotor flux field oriented control (FOC is realized by using a flux observer based on the IM model with nonlinear parameters. The control is extended to operate also in the field weakening region with an optimal rotor flux regulation. The control structure was implemented on a computer system, based on a fixed point digital signal processor (DSP. To verify the performances of the proposed driving system, simulated and experimental results are presented.

  13. Optimal Design of PID Controller for the Speed Control of DC Motor by Using Metaheuristic Techniques

    Directory of Open Access Journals (Sweden)

    Mirza Muhammad Sabir

    2014-01-01

    Full Text Available DC motors are used in numerous industrial applications like servo systems and speed control applications. For such systems, the Proportional+Integral+Derivative (PID controller is usually the controller of choice due to its ease of implementation, ruggedness, and easy tuning. All the classical methods for PID controller design and tuning provide initial workable values for Kp, Ki, and Kd which are further manually fine-tuned for achieving desired performance. The manual fine tuning of the PID controller parameters is an arduous job which demands expertise and comprehensive knowledge of the domain. In this research work, some metaheuristic algorithms are explored for designing PID controller and a comprehensive comparison is made between these algorithms and classical techniques as well for the purpose of selecting the best technique for PID controller design and parameters tuning.

  14. Adaptive observer for speed sensorless PM motor control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2003-01-01

    This paper presents an adaptive observer for extimating the rotor position and speed of a permanent magnet synchronous motors (PMSM). The observer compensates for voltage offsets and permanent magnet strength variations. The adaptation structure for estimating the strength of the permanent magnet...... is determined from a Lyapunov stability proof. The observer estimates the stator flux by integration of the measured BEMF signal. In order to verify the applicability of the method the observer has been implemented and tested on a 800 W motor....

  15. PERFORMANCE OF ANN BASED INDIRECT VECTOR CONTROL INDUCTION MOTOR DRIVE

    Directory of Open Access Journals (Sweden)

    A. K. Sharma,

    2007-09-01

    Full Text Available Indirect field orientation (IFO induction machine drives are increasingly employed in industrial drive systems, but the drive performance is often degrades. Motor works on best performance at certain voltage and frequency for certain loads. In this paper artificial neural network is used to predict the operating voltage and frequency when the load torque and speed going changed so motor efficiency is increased. Simulation and experimental results are shown to validate the scheme.

  16. PERFORMANCE OF ANN BASED INDIRECT VECTOR CONTROL INDUCTION MOTOR DRIVE

    OpenAIRE

    A. K. Sharma,; R. A. Gupta; Laxmi Srivastava

    2007-01-01

    Indirect field orientation (IFO) induction machine drives are increasingly employed in industrial drive systems, but the drive performance is often degrades. Motor works on best performance at certain voltage and frequency for certain loads. In this paper artificial neural network is used to predict the operating voltage and frequency when the load torque and speed going changed so motor efficiency is increased. Simulation and experimental results are shown to validate the scheme.

  17. Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies

    Directory of Open Access Journals (Sweden)

    Li Hai Xia

    2016-01-01

    Full Text Available This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.

  18. Simulasi Pengaturan Kecepatan Motor Induksi Tiga Phasa Dengan Direct Torque Control Dengan Menggunakan Matlab 7.0.1

    OpenAIRE

    Jeremia Purba

    2009-01-01

    Motor induksi banyak dipergunakan dalam industri saat ini karena dalam penggunaannya motor induksi dapat dioperasikan dengan kecepatan yang bervariasi. Pengaturan kecepatan putaran motor induksi dapat dilakukan dengan beberapa metode dan salah satu metode yang digunakan adalah dengan mengatur torsi secara langsung. Direct Torque Control (DTC) merupakan teknologi terbaru yang dapat mengatur fluks dan torsi motor induksi secara langsung dengan mengatur vektor tegangannya. P...

  19. Energy optimal control strategies for electro motors; low-cost and sensorless PWM-VSI based induction motor control. Vol. 1: Main report, appendix and annex

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, F.

    1998-02-01

    When variable speed induction motor drives are used in applications that run at low load for long periods, energy can be saved by reducing the motor flux at low load. In this report the efficiency of 2.2 kW standard and high-efficiency motor drives are investigated experimentally with efficiency optimized and constant flux control, with sinusoidal and PWM voltage supply and with varying switching frequency. Steady-state motor models are developed and verified experimentally, and are used to analyze and develop efficiency optimizing control strategies. Four energy optimal control strategies are tested experimentally: cos({phi}) control, model-based control, off-line calculated airgap flux control and stator current/input power minimising search control. Their dynamical properties and their ability to reject load disturbances are analysed. Their ability to save energy is tested on a water pump system. For a typical predefined test-cycle the energy optimal control reduces the energy consumption with 10% compared with classical constant V/Hz control. (au)

  20. Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

    Science.gov (United States)

    Rueckert, Elmar; Čamernik, Jernej; Peters, Jan; Babič, Jan

    2016-01-01

    Human motor skill learning is driven by the necessity to adapt to new situations. While supportive contacts are essential for many tasks, little is known about their impact on motor learning. To study the effect of contacts an innovative full-body experimental paradigm was established. The task of the subjects was to reach for a distant target while postural stability could only be maintained by establishing an additional supportive hand contact. To examine adaptation, non-trivial postural perturbations of the subjects’ support base were systematically introduced. A novel probabilistic trajectory model approach was employed to analyze the correlation between the motions of both arms and the trunk. We found that subjects adapted to the perturbations by establishing target dependent hand contacts. Moreover, we found that the trunk motion adapted significantly faster than the motion of the arms. However, the most striking finding was that observations of the initial phase of the left arm or trunk motion (100–400 ms) were sufficient to faithfully predict the complete movement of the right arm. Overall, our results suggest that the goal-directed arm movements determine the supportive arm motions and that the motion of heavy body parts adapts faster than the light arms. PMID:27328750

  1. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    Science.gov (United States)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  2. Global Controllability of Multidimensional Rigid Body by Few Torques

    CERN Document Server

    Sarychev, Andrey V

    2009-01-01

    We study global controllability of 'rotating' multidimensional rigid body (MRB) controlled by application of few torques. Study by methods of geometric control requires analysis of algebraic structure introduced by the quadratic term of Euler-Frahm equation. We discuss problems, which arise in the course of this analysis, and establish several global controllability criteria for damped and non damped cases.

  3. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-01-01

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor's electromagnetic state and load. The load angle can be limited indirectly by limiting the

  4. Direct Torque Control of a Synchronous Reluctance Motor Using the Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon Ju; Kim, Sol; Lee, Ju [Dept. of Electrical Eng., Hanyang University, Seoul (Korea); Ko, Kwon Min; Kim, Tea Duk; Oh, Sang Kyeong [Samsung Electronics (Korea)

    2002-07-01

    Reluctance torque is generated by the rotor of the rugged construction is Synchronous Reluctance Motor. Its construction is simple, and it is very economic because a rotor in existed AC motor can be used. As the Synchronous inductance in Synchronous Reluctance Motor is an element that is proportional to torque, the exact value must be experimentally or analytically found for controlling and the performance development of motors. In this paper, direct torque control simulation to maximize the torque of the Synchronous Reluctance Motor and fast response characteristics was carried out with the inductance value by the Finite Element Method. For the simulation results, There are torques and fluxs response characteristics when controlling speed. (author). 7 refs., 10 figs., 2 tabs.

  5. Controlling the Dc-link Midpoint Potential in a Six-phase Motor-drive

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus; Blaabjerg, Frede; Rasmussen, Peter Omand;

    2004-01-01

    Traditionally electrical motors have three phases, but multiphase motors have shown to improve motor performance and efficiency. This paper concentrates about the control algorithm for a six-phase induction motor with third harmonic current injection. The problem is that typically a seventh...... inverter branch and filter inductances is needed for stabilizing the midpoint potential of the series connected dc-capacitor link. A new control strategy that pre-calculates the allowed voltage ripple and controls the motor voltage accordingly (using two standard three phase inverter modules) is suggested...... satisfactory. A drawback is that the voltage ripple in the midpoint increases, if a third harmonic current is injected specially at low speed, which could demand a higher voltage rating of the capacitors. Another drawback is that the higher voltage ripple will stress the capacitors hence the lifetime may be...

  6. Simulation and Implementation of an Embedded Hybrid Fuzzy Trained Artificial Neural Network Controller for Different DC Motor

    OpenAIRE

    M.Muruganandam; I.Thangaraju; Madheswaran, M.

    2014-01-01

    In this article, the speed of the DC motor is controlled by Hybrid Fuzzy-Neuro controller (FNC). The Hybrid Fuzzy-Neuro controller is designed and tested for different types of DC motors like DC separately excited motor and DC series motor. The motor is fed by DC-DC buck converter (DC chopper). The system has two loops of inner current controller loop and outer Fuzzy-Neuro based speed controller loop. The speed controller gives the duty cycle to generate the PWM signal for the control of chop...

  7. PC based speed control of dc motor using fuzzy logic controller

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, S.K.; Kanphade, R.D.; Lavekar, K.P.

    1998-07-01

    The dc motor is extensively used as constant speed drive in textile mills, paper mills, printing press, etc.. If the load and supply voltage are time varying, the speed will be changed. Since last few decades the conventional PID controllers are used to maintain the constant speed by controlling the duty ratio of Chopper. Generally, four quadrant chopper is used for regenerative braking and reverse motoring operation. Fuzzy Logic is newly introduced in control system. Fuzzy Control is based on Fuzzy Logic, a logical system which is too much closer in spirit to human thinking and natural language. The Fuzzy Logic Controller (FLC) provides a linguistic control strategy based on knowledge base of the system. Firstly, the machine is started very smoothly from zero to reference speed in the proposed scheme by increasing the duty ratio. Then change and rate of change of speed (dN, dN/dt), change and rate of change input voltage (dV, dV/dt) and load current are input to FLC. The new value of duty ratio is determined from the Fuzzy rule base and defuzzification method. The chopper will be 'ON' according to new duty ratio to maintain the constant speed. The dynamic and steady state performance of the proposed system is better than conventional control system. In this paper mathematical simulation and experimental implementation are carried out to investigate the drive performance.

  8. A new method for speed control of a DC motor using magnetorheological clutch

    Science.gov (United States)

    Nguyen, Quoc Hung; Choi, Seung-Bok

    2014-03-01

    In this research, a new method to control speed of DC motor using magnetorheological (MR) clutch is proposed and realized. Firstly, the strategy of a DC motor speed control using MR clutch is proposed. The MR clutch configuration is then proposed and analyzed based on Bingham-plastic rheological model of MR fluid. An optimal designed of the MR clutch is then studied to find out the optimal geometric dimensions of the clutch that can transform a required torque with minimum mass. A prototype of the optimized MR clutch is then manufactured and its performance characteristics are experimentally investigated. A DC motor speed control system featuring the optimized MR clutch is designed and manufactured. A PID controller is then designed to control the output speed of the system. In order to evaluate the effectiveness of the proposed DC motor speed control system, experimental results of the system such as speed tracking performance are obtained and presented with discussions.

  9. A NEW FUZZY LOGIC BASED SPACE VECTOR MODULATION APPROACH ON DIRECT TORQUE CONTROLLED INDUCTION MOTORS

    Directory of Open Access Journals (Sweden)

    Fatih Korkmaz

    2013-11-01

    Full Text Available The induction motors are indispensable motor types for industrial applications due to its wellknown advantages. Therefore, many kind of control scheme are proposed for induction motors over the past years and direct torque control has gained great importance inside of them due to fast dynamic torque response behavior and simple control structure. This paper suggests a new approach on the direct torque controlled induction motors, Fuzzy logic based space vector modulation, to overcome disadvantages of conventional direct torque control like high torque ripple. In the proposed approach, optimum switching states are calculated by fuzzy logic controller and applied by space vector pulse width modulator to voltage source inverter. In order to test and compare the proposed DTC scheme with conventional DTC scheme simulations, in Matlab/Simulink, have been carried out in different speed and load conditions. The simulation results showed that a significant improvement in the dynamic torque and speed responses when compared to the conventional DTC scheme.

  10. Backstepping Adaptive Controller of Electro-Hydraulic Servo System of Continuous Rotary Motor

    Institute of Scientific and Technical Information of China (English)

    XiaoJing Wang; ChangFu Xian; CaoLei Wan; JinBao Zhao; LiWei Xiu; AnCai Yu

    2014-01-01

    In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance, the design method of backstepping adaptive controller is put forward. The mathematical model of electro-hydraulic servo system of continuous rotary motor is established, and the whole system is decomposed into several lower order subsystems, and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory, an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability, and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor, and the proposed control strategy is feasible.

  11. Compliant Control of the Body Shape of Snake Robots

    OpenAIRE

    Liljebäck, Pål; Pettersen, Kristin Ytterstad; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2014-01-01

    This paper presents a general motion planning framework for body shape control of snake robots. We demonstrate the applicability of the framework for straight line path following control, and for implementing body shape compliance in environments with obstacles. Compliance is achieved by assigning mass-spring-damper dynamics to the shape curve defining the motion of the robot. The performance of the control strategies is illustrated with simulation results.

  12. Self-Controlled Practice Enhances Motor Learning in Introverts and Extroverts

    Science.gov (United States)

    Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda, Jr.; Tani, Go

    2014-01-01

    Purpose: The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Method: Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys…

  13. The central role of trunk control in the gross motor function of children with cerebral palsy

    DEFF Research Database (Denmark)

    Curtis, Derek John; Butler, Penny; Saavedra, Sandy;

    2015-01-01

    Aim Improvement of gross motor function and mobility are primary goals of physical therapy in children with cerebral palsy (CP). The purpose of this study was to investigate the relationship between segmental control of the trunk and the corresponding gross motor function in children with CP...

  14. A new Observer for Speed Sensorless Field Oriented Control of an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2002-01-01

    Using adaptive Lyapunov design a new approach for the design of an observer for speed sensorless field oriented control is developed. The resulting scheme leads to a nonlinear full order observer for the motor states including the rotor speed. Assuming motor parameters known the design achieves...

  15. Influence of PWM Modes on Commutation Torque Ripples in Sensorless Brushless DC Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-jun; CHENBo-shi; 等

    2001-01-01

    This paper introduces four PWM modes used in the sensorless brushless DC motor control system,analyzes their different influences on the commutation torque ripple in detail,and selects the best PWM mode in four given types to reduce commutation torque ripple of Brushless OC( BLDC) motors,Simulation and experimental results show that the selection is correct and practical.

  16. Speed Digital Control of Brushless DC Motor Using dsPIC Controller

    Directory of Open Access Journals (Sweden)

    Gheorghe Băluţă

    2014-09-01

    Full Text Available This paper presents the digital control of the Brushless DC motor (BLDCM speed. The dsPICDEM MC1 development system (with the dsPIC30F6010A microcontroller and the dsPICDEM MC1L power module, manufactured by Microchip Company, were used. The control program was developed in C programming language. The graphical user interface was realized in LabVIEW 8.6 graphical programming language. For speed control, a digital controller PI type was implemented. Due to digital controller well chosen and well tuned, the system response at speed step variation is very good. Therewith, the experimental results obtained also show a good compensation of disturbance which does not happen in open-loop control.

  17. Research of Electric Motor Multi-type Soft Start Control Mode Based on over-load Protection

    Directory of Open Access Journals (Sweden)

    Lina Liu

    2011-03-01

    Full Text Available This article in view of the question that the high power motor could not starting and stopping directly in the industry, proposed one kind of design based on PIC single chip high power motor soft start and intelligence protective devices, utilized real-time measurement and control method with the feature of synchronous sampling electric current spurt value inverse time lag protection, according to the load situation four starting and protection control soft start ways of the under intelligent protection controller were designed. Intelligent soft starter design principles based on PIC single chip is articulated. The hardware circuit design, software flow design and test data analysis are given in details. By producing in Zibo Galaxy high-technology development co., Ltd.,it shows that this smart soft starter has the characteristics which are flexible parameter setting, intuitive liquid crystal display, diverse starting way, precise current limiting protection, accurate protection of lack phase, low-cost, collecting soft start and running protection with a body's protection controller, are suitable specially for the starting and control of high power motor, so the protector has broad application prospects.

  18. Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization

    OpenAIRE

    Boumediene ALLAOUA; Abdellah LAOUFI; Gasbaoui, Brahim; Abdessalam ABDERRAHMANI

    2009-01-01

    This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS) control for DC motor speed optimized with swarm collective intelligence. First, the controller is designed according to Fuzzy rules such that the systems are fundamentally robust. Secondly, an adaptive Neuro-Fuzzy controller of the DC motor speed is then designed and simulated; the ANFIS has the advantage of expert knowledge of the Fuzzy inference system and the learning capability of neural networks. Finally,...

  19. Simulation Study on Brushless DC Motor Based on Fuzzy-PI Control

    OpenAIRE

    Jinli Lei

    2011-01-01

    Brushless DC motor ( BLDCM ) is a variable, strong coupling, nonlinear system, the simulation model is hard to be established. To solve this problem, based on the principle and structure of the brushless DC motor (BLDCM), and analyzing the mathematic mode, a simulation model of BLDCM control system is established in Matlab/Simulink by the modular design, and the fuzzy PI control algorithm of prototype is designed. The simulation results show that the fuzzy-PI control speeds up response time, ...

  20. Adaptive Nonlinear Control of Induction Motors through AC/DC/AC Converters

    OpenAIRE

    Elfadili, Abderrahim; Giri, Fouad; El Magri, Abdelmounime; Dugard, Luc; Chaoui, Fatima Zara

    2012-01-01

    The problem of controlling induction motors, together with associated AC/DC rectifiers and DC/AC inverters, is addressed. The control objectives are threefold: (i) the motor speed should track any reference signal despite mechanical parameter uncertainties and variations; (ii) the DC Link voltage must be tightly regulated; (iii) the power factor correction (PFC) w.r.t. the power supply net must be performed in a satisfactory way. First, a nonlinear model of the whole controlled system is deve...