WorldWideScience

Sample records for body fluids

  1. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  2. Assaying of drugs in body fluids

    International Nuclear Information System (INIS)

    Braestrup, C.; Squires, R.F.

    1981-01-01

    The invention provides, in general terms, a process for determining the concentration of a psychotropically active benzodiazepine drug in blood or other body fluid or urine, including bringing a sample of the fluid or urine into contact with brain tissue and with tritium labelled molecules of a benzodiazepine which can bind reversibly to receptors of the brain tissue to induce binding of molecules of the unlabelled drug and of the tritium labelled benzodiazepine to the receptors, and determining the radioactivity of the brain tissue, preferably by scintillation counting. (author)

  3. Normotension, hypertension and body fluid regulation

    DEFF Research Database (Denmark)

    Bie, Peter; Evans, R G

    2017-01-01

    The fraction of hypertensive patients with essential hypertension (EH) is decreasing as the knowledge of mechanisms of secondary hypertension increases, but in most new cases of hypertension the pathophysiology remains unknown. Separate neurocentric and renocentric concepts of aetiology have...... activity are elevated in about 50% of cases; (iii) in EH as in normal conditions, mediators other than arterial blood pressure are the major determinants of renal sodium excretion; (iv) chronic hypertension is always associated with a shift in the pressure-natriuresis curve, but this may...... prevailed without much interaction. In this regard, several questions regarding the relationships between body fluid and blood pressure regulation are pertinent. Are all forms of EH associated with sympathetic overdrive or a shift in the pressure-natriuresis curve? Is body fluid homoeostasis normally driven...

  4. The Motion Of A Deformable Body In - Bounded Fluid

    International Nuclear Information System (INIS)

    Galpert, A.R.; Miloh, T.

    1998-01-01

    The Hamiltonian formalism for the motion of a deformable body in an inviscid irrotational fluid is generalized for the case of the motion in a bounded fluid. We found that the presence of the boundaries in a liquid leads to the chaotization of the body's motion. The ('memory' effect connected with a free surface boundary condition is also accounted for

  5. Body drop into a fluid tank and dynamic loads calculation

    Directory of Open Access Journals (Sweden)

    Komarov Aleksandr Andreevich

    2014-05-01

    Full Text Available The theory of a body striking a fluid began intensively developing due to the tasks of hydroplanes landing. For the recent years the study of a stroke and submersion of bodies into fluid became even more current. We face them in the process of strength calculation of ship hulls and other structures in modern technology. These tasks solution represents great mathematical difficulty even in case of the mentioned simplifications. These difficulties emerge due to the unsteady character of fluid motion in case of body submersion, and also jet and spray phenomena, which lead to discontinuous motions. On the basis of G.V. Logvinovich’s concept the problem of loads determination with consideration for air gap is solved for both a body and reservoir enclosing structures when a body falls into a fluid. Numerical method is based on the decay of an arbitrary discontinuity.

  6. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification.

    Science.gov (United States)

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2012-03-10

    Traces of human body fluids, such as blood, saliva, sweat, semen and vaginal fluid, play an increasingly important role in forensic investigations. However, a nondestructive, easy and rapid identification of body fluid traces at the scene of a crime has not yet been developed. The obstacles have recently been addressed in our studies, which demonstrated the considerable potential of Raman spectroscopy. In this study, we continued to build a full library of body fluid spectroscopic signatures. The problems concerning vaginal fluid stain identification were addressed using Raman spectroscopy coupled with advanced statistical analysis. Calculated characteristic Raman and fluorescent spectral components were used to build a multidimensional spectroscopic signature of vaginal fluid, which demonstrated good specificity and was able to handle heterogeneous samples from different donors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Body fluid matrix evaluation on a Roche cobas 8000 system.

    Science.gov (United States)

    Owen, William E; Thatcher, Mindy L; Crabtree, Karolyn J; Greer, Ryan W; Strathmann, Frederick G; Straseski, Joely A; Genzen, Jonathan R

    2015-09-01

    Chemical analysis of body fluids is commonly requested by physicians. Because most commercial FDA-cleared clinical laboratory assays are not validated by diagnostic manufacturers for "non-serum" and "non-plasma" specimens, laboratories may need to complete additional validation studies to comply with regulatory requirements regarding body fluid testing. The objective of this report is to perform recovery studies to evaluate potential body fluid matrix interferences for commonly requested chemistry analytes. Using an IRB-approved protocol, previously collected clinical body fluid specimens (biliary/hepatic, cerebrospinal, dialysate, drain, pancreatic, pericardial, peritoneal, pleural, synovial, and vitreous) were de-identified and frozen (-20°C) until experiments were performed. Recovery studies (spiking with high concentration serum, control, and/or calibrator) were conducted using 10% spiking solution by volume; n=5 specimens per analyte/body fluid investigated. Specimens were tested on a Roche cobas 8000 system (c502, c702, e602, and ISE modules). In all 80 analyte/body fluid combinations investigated (including amylase, total bilirubin, urea nitrogen, carbohydrate antigen 19-9, carcinoembryonic antigen, cholesterol, chloride, creatinine, glucose, potassium, lactate dehydrogenase, lipase, rheumatoid factor, sodium, total protein, triglycerides, and uric acid), the average percent recovery was within predefined acceptable limits (less than ±10% from the calculated ideal recovery). The present study provides evidence against the presence of any systematic matrix interference in the analyte/body fluid combinations investigated on the Roche cobas 8000 system. Such findings support the utility of ongoing body fluid validation initiatives conducted to maintain compliance with regulatory requirements. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2017-01-01

    Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.

  9. Gravitational equilibrium of a multi-body fluid system

    International Nuclear Information System (INIS)

    Eriguchi, Yoshiharu; Hachisu, Izumi.

    1983-01-01

    We have computed gravitational equilibrium sequences for systems consisting of N incompressible fluid bodies (N = 3, 4, 5). The component fluids are assumed congruent. The system seems to become a lobe-like shape for N = 3 case and a ring-like shape for N>=4 cases according as the fluid bodies come nearer to each other. For every sequence there is a critical equilibrium whose dimensionless angular momentum has the minimum value of the sequence. As the final outcome is nearly in equilibrium in the computation of a collapsing gas cloud, we can apply the present results to the interpretation of these dynamical calculations. For instance, the gas cloud can never fissure into any N-body equilibrium when its dimensionless angular momentum is below the critical value of the N-body sequence. (author)

  10. Lunar Fluid Core and Solid-Body Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  11. Prey handling using whole-body fluid dynamics in batoids.

    Science.gov (United States)

    Wilga, Cheryl D; Maia, Anabela; Nauwelaerts, Sandra; Lauder, George V

    2012-02-01

    Fluid flow generated by body movements is a foraging tactic that has been exploited by many benthic species. In this study, the kinematics and hydrodynamics of prey handling behavior in little skates, Leucoraja erinacea, and round stingrays, Urobatis halleri, are compared using kinematics and particle image velocimetry. Both species use the body to form a tent to constrain the prey with the pectoral fin edges pressed against the substrate. Stingrays then elevate the head, which increases the volume between the body and the substrate to generate suction, while maintaining pectoral fin contact with the substrate. Meanwhile, the tip of the rostrum is curled upwards to create an opening where fluid is drawn under the body, functionally analogous to suction-feeding fishes. Skates also rotate the rostrum upwards although with the open rostral sides and the smaller fin area weaker fluid flow is generated. However, skates also use a rostral strike behavior in which the rostrum is rapidly rotated downwards pushing fluid towards the substrate to potentially stun or uncover prey. Thus, both species use the anterior portion of the body to direct fluid flow to handle prey albeit in different ways, which may be explained by differences in morphology. Rostral stiffness and pectoral fin insertion onto the rostrum differ between skates and rays and this corresponds to behavioral differences in prey handling resulting in distinct fluid flow patterns. The flexible muscular rostrum and greater fin area of stingrays allow more extensive use of suction to handle prey while the stiff cartilaginous rostrum of skates lacking extensive fin insertion is used as a paddle to strike prey as well as to clear away sand cover. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. On fluid flow driven by topography in a librating body

    Science.gov (United States)

    Wu, C.; Roberts, P. H.

    2009-12-01

    Currently considerable effort and resources are being devoted to studies of Mercury, the Moon and Europa. Measuring the libration of these bodies can provide significant knowledge about their internal structures and physical properties; see Williams et al., 2001, Peale et al., 2002, Wu et al., 2007. To interpret such observations, it is important to understand better how libration affects the motion of the fluid in their interiors. To this end, Noir et al. (2009) investigated, via laboratory experiments and numerical simulations, the flow in a fluid filling a rotating spherical cavity driven by an axial oscillation of the container about a diameter. More realistically, the cavity is better represented by a triaxial ellipsoid. We may then distinguish between topographic and axisymmetricli libration. The latter refers to libration about a symmetry axis of the container which is therefore only viscously coupled to the fluid. In topographic libration, pressure forces on the boundary also affect the fluid motions in the cavity. We describe results from preliminary studies of topographic libration obtained through numerical simulation of incompressible fluid motion in an oblate spheroidal cavity with a libration axis perpendicular to the symmetry axis of the container. The computer code is a modification of one recently developed to study precessionally-driven flows in a spheroidal body of fluid (Wu and Roberts, 2009). It advances the flow in time using finite differences on overlapping grids; in this way the numerical difficulty known as the pole problem, is completely avoided.

  13. Fluid sign in the treated bodies after percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Lin, Chao-Chun; Yen, Pao-Sheng; Wen, Shu-Hui

    2008-01-01

    The aims of this study are to describe non-healing in the treated vertebral body after percutaneous vertebroplasty and analyze the influence of vacuum cleft, location, and severity of collapse on the development of nonunion cement. Of 208 patients (266 treated vertebral bodies) who were treated with percutaneous vertebroplasty from September 2002 to May 2006, 23 patients (41 treated levels) with residual or recurrent pain underwent follow-up magnetic resonance imaging (MRI) study. Retrospective chart review with analysis of preoperative and postoperative MRIs were performed in these 23 patients. In the 41 treated vertebral bodies, 22 of 41 bodies had vacuum cleft found in the preoperative MRI study. Eight of the 22 treated vertebral bodies with preoperative vacuum clefts were found to have fluid between the interface of cement and the residual bone in the collapsed vertebral bodies on follow-up MRI. The adjacent discs of these treated vertebral bodies were upward/downward displaced. The endplate of the adjacent vertebral body exhibited fibrotic change. Treated bodies with vacuum clefts and level A location (T9, T11, T12, and L1) had higher probability of developing nonunion of the cement with statistical significance. The probability of nonunion cement in severe collapsed bodies might be higher than that of union cement in mild collapsed ones, but was not statistically significant. Fluid sign in the treated body represents unhealed bone-cement interface. The location of the treated vertebral body and existence of vacuum cleft in the treated bodies may be important factors influencing the nonunion of cement. (orig.)

  14. DNA Methylation as a Biomarker for Body Fluid Identification

    Directory of Open Access Journals (Sweden)

    Rania Gomaa

    2017-12-01

    Full Text Available Currently, available identification techniques for forensic samples are either enzyme or protein based, which can be subjected to degradation, thus limiting its storage potentials. Epigenetic changes arising due to DNA methylation and histone acetylation can be used for body fluid identification. Markers DACT1, USP49, ZC3H12D, FGF7, cg23521140, cg17610929, chromosome 4 (25287119–25287254, chromosome 11 (72085678–72085798, 57171095–57171236, 1493401–1493538, and chromosome 19 (47395505–47395651 are currently being used for semen identification. Markers cg26107890, cg20691722, cg01774894 and cg14991487 are used to differentiate saliva and vaginal secretions from other body fluids. However, such markers show overlapping methylation pattern. This review article aimed to highlight the feasibility of using DNA methylation of certain genetic markers in body fluid identification and its implications for forensic investigations. The reviewed articles have employed molecular genetics techniques such as Bisulfite sequencing PCR (BSP, methylation specific PCR (MSP, Pyrosequencing, Combined Bisulfite Restriction Analysis (COBRA, Methylation-sensitive Single Nucleotide Primer Extension (SNuPE, and Multiplex SNaPshot Microarray. Bioinformatics software such as MATLAB and BiQ Analyzer has been used. Biological fluids have different methylation patterns and thus, this difference can be used to identify the nature of the biological fluid found at the crime scene. Using DNA methylation to identify the body fluids gives accurate results without consumption of the trace evidence and requires a minute amount of DNA for analysis. Recent studies have incorporated next-generation sequencing aiming to find out more reliable markers that can differentiate between different body fluids. Nonetheless, new DNA methylation markers are yet to be discovered to accurately differentiate between saliva and vaginal secretions with high confidence. Epigenetic changes are

  15. Renal renin secretion as regulator of body fluid homeostasis

    DEFF Research Database (Denmark)

    Damkjær, Mads; Isaksson, Gustaf L; Stubbe, Jane

    2013-01-01

    The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium...

  16. Analysis of selenium in body fluids: A review

    International Nuclear Information System (INIS)

    Alaejos, M.S.; Romero, C.D.

    1995-01-01

    This article reviews numerous analytical techniques for determining trace amounts of selenium in body fluids. In addition, sampling storage and treatment procedures are evaluated. The analytical techniques reviewed include the following: spectrofluorometry and spectrophotometry; atomic absorption spectrometry; fluorescence and atomic emission spectroscopy; mass spectroscopy; X-ray spectrometric analysis; neutron activation analysis; chromatographic methods; and electrochemical methods. 469 refs

  17. Quantification of interstitial fluid on whole body CT: comparison with whole body autopsy.

    Science.gov (United States)

    Lo Gullo, Roberto; Mishra, Shelly; Lira, Diego A; Padole, Atul; Otrakji, Alexi; Khawaja, Ranish Deedar Ali; Pourjabbar, Sarvenaz; Singh, Sarabjeet; Shepard, Jo-Anne O; Digumarthy, Subba R; Kalra, Mannudeep K; Stone, James R

    2015-12-01

    Interstitial fluid accumulation can occur in pleural, pericardial, and peritoneal spaces, and subcutaneous tissue planes. The purpose of the study was to assess if whole body CT examination in a postmortem setting could help determine the presence and severity of third space fluid accumulation in the body. Our study included 41 human cadavers (mean age 61 years, 25 males and 16 females) who had whole-body postmortem CT prior to autopsy. All bodies were maintained in the morgue in the time interval between death and autopsy. Two radiologists reviewed the whole-body CT examinations independently to grade third space fluid in the pleura, pericardium, peritoneum, and subcutaneous space using a 5-point grading system. Qualitative CT grading for third space fluid was correlated with the amount of fluid found on autopsy and the quantitative CT fluid volume, estimated using a dedicated software program (Volume, Syngo Explorer, Siemens Healthcare). Moderate and severe peripheral edema was seen in 16/41 and 7/41 cadavers respectively. It is not possible to quantify anasarca at autopsy. Correlation between imaging data for third space fluid and the quantity of fluid found during autopsy was 0.83 for pleural effusion, 0.4 for pericardial effusion and 0.9 for ascites. The degree of anasarca was significantly correlated with the severity of ascites (p < 0.0001) but not with pleural or pericardial effusion. There was strong correlation between volumetric estimation and qualitative grading for anasarca (p < 0.0001) and pleural effusion (p < 0.0001). Postmortem CT can help in accurate detection and quantification of third space fluid accumulation. The quantity of ascitic fluid on postmortem CT can predict the extent of anasarca.

  18. Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body

    Science.gov (United States)

    2011-01-01

    rigid body, denoted by y in Fig. 4, is small. This is in addition to the Euler– Bernoulli beam assumption that the slope of the tail is small everywhere...here. These include the efficiency with which the prime mover can generate fluid momentum , pipe losses, and external drag acting on both the hull and the

  19. Steady fall of a rigid body in viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka

    2005-01-01

    Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005

  20. A refractometry-based glucose analysis of body fluids.

    Science.gov (United States)

    Zirk, Kai; Poetzschke, Harald

    2007-05-01

    In principle, refractometry appears to be a suitable method for the measurement of glucose concentrations in body fluids (such as blood and the intercellular fluid), even though the refractive index of the measured samples, as an additive property, is not specific. But, if certain conditions are fulfilled, the glucose content can be calculated using the refractive index in combination with values from a further measurement. This study describes the determination of the glucose content using refractometry in human blood serum derivates, which were selected - due to their ready availability - to be used as a model for interstitial fluid. Refractometry of body fluids requires the elimination of disturbing components from the measurement sample. First of all, a homogenous fluid (i.e. consisting of one phase) is required, so that all cells and components in suspension need to be separated out. Furthermore, certain dissolved macromolecular components which are known to disturb the measurement process must also be removed. In human serum samples which had been ultrafiltrated with a range of ultrafilters of different pore sizes, a comparative evaluation showed that only ultrafiltration through a filter with a separation limit of between 3 and 30kDa resulted in maximal reduction of the refractive index (compared to native serum), whereas ultrafilters with greater separation limits did not. The total content of osmotically active solutes (the tonicity) also exerts a clear influence. However, exemplary measurements in blood plasma fluid from one volunteer showed that the electrical conductivity is (without an additive component) directly proportional to the osmolality: physiological changes in the state of body hydration (hyperhydration and dehydration) do not lead to any considerable changes in the relation between ionised and uncharged solute particles, but instead result in a sufficiently clear dilution or concentration of the blood fluid's low molecular components. This

  1. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2015-11-10

    Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.

  2. Determination of toxic trace elements in body fluid reference samples

    International Nuclear Information System (INIS)

    Gills, T.E.; McClendon, L.T.; Maienthal, E.J.; Becker, D.A.; Durst, R.A.; LaFleur, P.D.

    1974-01-01

    The measurement of elemental concentration in body fluids has been widely used to give indication of exposures to certain toxic materials and/or a measure of body burden. To understand fully the toxicological effect of these trace elements on our physiological system, meaningful analytical data are required along with accurate standards or reference samples. The National Bureau of Standards has prepared for the National Institute for Occupational Safety and Health (NIOSH) a number of reference samples containing selected toxic trace elements in body fluids. The reference samples produced include mercury in urine at three concentration levels, five elements (Se, Cu, As, Ni and Cr) in freeze-dried urine at two levels, fluorine in freeze-dried urine at two levels and lead in blood at two concentration levels. These reference samples have been found to be extremely useful for the evaluation of field and laboratory analytical methods for the analysis of toxic trace elements. In particular the use of at least two calibration points (i.e., ''normal'' and ''elevated'' levels) for a given matrix provides a more positive calibration for most analytical techniques over the range of interest for occupational toxicological levels of exposure. (U.S.)

  3. Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling.

    Directory of Open Access Journals (Sweden)

    Hannes Gatterer

    Full Text Available Assessment of post-exercise changes in hydration with bioimpedance (BI is complicated by physiological adaptations that affect resistance (R and reactance (Xc values. This study investigated exercise-induced changes in R and Xc, independently and in bioelectrical impedance vector analysis, when factors such as increased skin temperature and blood flow and surface electrolyte accumulation are eliminated with a cold shower.Healthy males (n = 14, 24.1±1.7 yr; height (H: 182.4±5.6 cm, body mass: 72.3±6.3 kg exercised for 1 hr at a self-rated intensity (15 BORG in an environmental chamber (33°C and 50% relative humidity, then had a cold shower (15 min. Before the run BI, body mass, hematocrit and Posm were measured. After the shower body mass was measured; BI measurements were performed continuously every 20 minutes until R reached a stable level, then hematocrit and Posm were measured again.Compared to pre-trial measurements body mass decreased after the run and Posm, Hct, R/H and Xc/H increased (p<0.05 with a corresponding lengthening of the impedance vector along the major axis of the tolerance ellipse (p<0.001. Changes in Posm were negatively related to changes in body mass (r = -0.564, p = 0.036 and changes in Xc/H (r = -0.577, p = 0.041.Present findings showed that after a bout of exercise-induced dehydration followed by cold shower the impedance vector lengthened that indicates fluid loss. Additionally, BI values might be useful to evaluate fluid shifts between compartments as lower intracellular fluid loss (changed Xc/R indicated greater Posm increase.

  4. Normotension, hypertension and body fluid regulation: brain and kidney.

    Science.gov (United States)

    Bie, P; Evans, R G

    2017-01-01

    The fraction of hypertensive patients with essential hypertension (EH) is decreasing as the knowledge of mechanisms of secondary hypertension increases, but in most new cases of hypertension the pathophysiology remains unknown. Separate neurocentric and renocentric concepts of aetiology have prevailed without much interaction. In this regard, several questions regarding the relationships between body fluid and blood pressure regulation are pertinent. Are all forms of EH associated with sympathetic overdrive or a shift in the pressure-natriuresis curve? Is body fluid homoeostasis normally driven by the influence of arterial blood pressure directly on the kidney? Does plasma renin activity, driven by renal nerve activity and renal arterial pressure, provide a key to stratification of EH? Our review indicates that (i) a narrow definition of EH is useful; (ii) in EH, indices of cardiovascular sympathetic activity are elevated in about 50% of cases; (iii) in EH as in normal conditions, mediators other than arterial blood pressure are the major determinants of renal sodium excretion; (iv) chronic hypertension is always associated with a shift in the pressure-natriuresis curve, but this may be an epiphenomenon; (v) plasma renin levels are useful in the analysis of EH only after metabolic standardization and then determination of the renin function line (plasma renin as a function of sodium intake); and (vi) angiotensin II-mediated hypertension is not a model of EH. Recent studies of baroreceptors and renal nerves as well as sodium intake and renin secretion help bridge the gap between the neurocentric and renocentric concepts. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  5. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders.

    Science.gov (United States)

    Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna

    2016-01-01

    Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.

  6. Radioimmunoassay of drugs in body fluids in a forensic context

    International Nuclear Information System (INIS)

    Smith, R.N.

    1988-01-01

    The first article of the volume describes the theory and practice of RIA with particular reference to the analysis of drugs in body fluids in a forensic context. RIA theory is outlined from basic principles but the inherent assumptions are often inapplicable in practice and so the empirical design of an assay is considered in detail. Particular emphasis is given to the development of assays for drugs screening that detect classes of structurally related compounds rather than individual drugs. The preparation of radiolabelled drugs, the synthesis of immunogens for raising anitisera, the production of polyclonal and monoclonal antisera, and methods for separating free and antibody-bound antigens are reviewed. Quality assurance, trouble-shooting and the possible hazards of forensic RIA are discussed, and published RIA methods for drug analysis are tabulated. Many non-isotopic immunoassays have been developed in recent years but are omitted from this account because to date they are less applicable than RIA to samples such as haemolysed blood that are frequently encountered in forensic toxicology. Future progress in forensic drug RIA is likely to be concerned with applying the technique to more compounds, improving the methods for preparing immunogens and radiolabelled drugs, and investigating the use of monoclonal anti-drug antibodies. (orig./MG)

  7. Crystallization from a milk-based revised simulated body fluid

    International Nuclear Information System (INIS)

    Dorozhkin, Sergey V; Dorozhkina, Elena I

    2007-01-01

    A milk-based revised simulated body fluid (milk-rSBF) was prepared by a conventional route but instead of deionized water, all necessary chemicals were dissolved in whole cow's milk (3.2% fat). In order to accelerate crystallization and increase the amount of precipitates, the influence of milk was studied from condensed solutions equal to four times the ionic concentrations of rSBF (4rSBF). The experiments were performed under physiological conditions (solution pH = 7.35-7.40, temperature 37.0 ± 0.2 deg. C, duration 7 days) in a constant-composition double-diffusion device, which provided a slow crystallization under strictly controlled conditions. Similar experiments with 4rSBF but dissolved in deionized water were used as a control. An extra set of experiments with 4rSBF dissolved in deionized water but with an addition of 40 g l -1 bovine serum albumin (BSA) was used as another control. The influence of milk appeared to be similar to that of dissolved BSA: some components of milk (presumably albumins and proteins) were found to co-precipitate with calcium phosphates, which had a strong negative influence on both the crystallinity and the crystal sizes of the precipitates. In addition, both milk and BSA strongly inhibited crystallization of calcium phosphates: the precipitates turned out to contain a minor amount of calcium phosphates and a substantial amount of organic phase

  8. Partitioning of body fluids in the Lake Nicaragua shark and three marine sharks.

    Science.gov (United States)

    THORSON, T B

    1962-11-09

    The relative volumes of major body fluids of freshwater and marine sharks are remarkably similar in spite of the differences in external medium and in osmotic pressure of body fluids. The small differences detected are in agreement with differences reported in comparisons of freshwater and marine teleosts: a slightly higher total water content and a smiller ratio of extracellular to intracellular fluids in freshwater forms.

  9. Effect of bicarbonate on biodegradation behaviour of pure magnesium in a simulated body fluid

    International Nuclear Information System (INIS)

    Li, Zaichun; Song, Guang-Ling; Song, Shizhe

    2014-01-01

    The effect of bicarbonate on biodegradation of pure magnesium in a simulated body fluid is investigated by means of X-ray diffraction, X-ray photoelectron spectroscopy, polarization curve and electrochemical impedance spectroscopy. The results show that magnesium biodegrades rapidly and non-uniformly during 27 h of immersion in four simulated body fluid solutions containing different concentrations of bicarbonate. The biodegradation rate first decreases and then increases with time. A small amount of bicarbonate in simulated body fluid has an inhibition effect on the Mg dissolution, while an overdose of bicarbonate addition activates the magnesium surface in the simulated body fluid. The interesting phenomena can be interpreted by a surface film model involving precipitation of calcium carbonate and further ionization of bicarbonate in the simulated body fluids, incorporation of calcium, carbonate and phosphate compounds in the surface film, and development of chloride-induced pitting corrosion damage on the magnesium with time

  10. The motion of a compressible viscous fluid around rotating body

    Czech Academy of Sciences Publication Activity Database

    Kračmar, S.; Nečasová, Šárka; Novotný, A.

    2014-01-01

    Roč. 60, č. 1 (2014), s. 189-208 ISSN 0430-3202 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : compressible fluids * rotating fluids * Navier-Stokes equations Subject RIV: BA - General Mathematics http://link.springer.com/article/10.1007%2Fs11565-014-0212-5

  11. Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review.

    Science.gov (United States)

    Sikirzhytski, Vitali; Sikirzhytskaya, Aliaksandra; Lednev, Igor K

    2011-11-01

    The analysis of body fluid traces during forensic investigations is a critical step in determining the key details of a crime. Several confirmatory and presumptive biochemical tests are currently utilized. However, these tests are all destructive, and no single method can be used to analyze all body fluids. This review outlines recent progress in the development of a novel universal approach for the nondestructive, confirmatory identification of body fluid traces using Raman spectroscopy. The method is based on the use of multidimensional spectroscopic signatures of body fluids and accounts for the intrinsic heterogeneity of dry traces and donor variation. The results presented here demonstrate that Raman spectroscopy has potential for identifying traces of semen, blood, saliva, sweat, and vaginal fluid with high confidence.

  12. Inactivation of human immunodeficiency virus (HIV) by ionizing radiation in body fluids and serological evidence

    International Nuclear Information System (INIS)

    Bigbee, P.D.; Sarin, P.S.; Humphreys, J.C.; Eubanks, W.G.; Sun, D.; Hocken, D.G.; Thornton, A.; Adams, D.E.; Simic, M.G.

    1989-01-01

    A method to use ionizing radiation to inactivate HIV (Human Immunodeficiency Virus) in human body fluids was studied in an effort to reduce the risk of accidental infection to forensic science laboratory workers. Experiments conducted indicate that an X-ray absorbed dose of 25 krad was required to completely inactivate HIV. This does not alter forensically important constituents such as enzymes and proteins in body fluids. This method of inactivation of HIV cannot be used on body fluids which will be subjected to deoxyribonucleic acid (DNA) typing

  13. Monitoring Change of Body Fluid during Physical Exercise using Bioimpedance Spectroscopy and Finite Element Simulations

    Directory of Open Access Journals (Sweden)

    Lisa Röthlingshöfer

    2011-12-01

    Full Text Available Athletes need a balanced body composition in order to achieve maximum performance. Especially dehydration reduces power and endurance during physical exercise. Monitoring the body composition, with a focus on body fluid, may help to avoid reduction in performance and other health problems.For this, a potential measurement method is bioimpedance spectroscopy (BIS. BIS is a simple, non-invasive measurement method that allows to determine different body compartments (body fluid, fat, fat-free mass. However, because many physiological changes occur during physical exercise that can influence impedance measurements and distort results, it cannot be assumed that the BIS data are related to body fluid loss alone.To confirm that BIS can detect body fluid loss due to physical exercise, finite element (FE simulations were done. Besides impedance, also the current density contribution during a BIS measurement was modeled to evaluate the influence of certain tissues on BIS measurements.Simulations were done using CST EM Studio (Computer Simulation Technology, Germany and the Visible Human Data Set (National Library of Medicine, USA. In addition to the simulations, BIS measurements were also made on athletes. Comparison between the measured bioimpedance data and simulation data, as well as body weight loss during sport, indicates that BIS measurements are sensitive enough to monitor body fluid loss during physical exercise.doi:10.5617/jeb.178 J Electr Bioimp, vol. 2, pp. 79-85, 2011

  14. Clarke's Isolation and identification of drugs in pharmaceuticals, body fluids, and post-mortem material

    National Research Council Canada - National Science Library

    Clarke, E. G. C; Moffat, A. C; Jackson, J. V

    1986-01-01

    This book is intended for scientists faced with the difficult problem of identifying an unknown drug in a pharmaceutical product, in a sample of tissue or body fluid from a living patient, or in post-mortem material...

  15. Effectiveness of protocols for preventing occupational exposure to blood and body fluids in Dutch hospitals

    NARCIS (Netherlands)

    van Gemert-Pijnen, Julia E.W.C.; Hendrix, M.G.R.; van der Palen, Jacobus Adrianus Maria; Schellens, P.J.

    2006-01-01

    Compliance of different healthcare workers (HCWs) (nurses, physicians, laboratory technicians and cleaners) with protocols to prevent exposure to blood and body fluids (BBF) was studied. Questionnaires were used to assess perception of risks, familiarity with protocols, motivation and actual

  16. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.; Puranik, B. P.; Date, A. W.

    2018-01-01

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell

  17. Acceleration parameters for fluid physics with accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-06-01

    Full Text Available to an acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A selection of cases for rectilinear acceleration has been chosen to illustrate the point that this parameter alone does not govern regimes of flow about significantly...

  18. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

    OpenAIRE

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K.

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wave...

  19. Identification of body fluid-specific DNA methylation markers for use in forensic science.

    Science.gov (United States)

    Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung

    2014-11-01

    DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    Science.gov (United States)

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  1. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.

    Science.gov (United States)

    Hanson, E; Ingold, S; Haas, C; Ballantyne, J

    2018-05-01

    The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and

  2. Position feedback control of a nonmagnetic body levitated in magnetic fluid

    International Nuclear Information System (INIS)

    Lee, J H; Nam, Y J; Park, M K; Yamane, R

    2009-01-01

    This paper is concerned with the position feedback control of a magnetic fluid actuator which is characterized by the passive levitation of a nonmagnetic body immersed in a magnetic fluid under magnetic fields. First of all, the magnetic fluid actuator is designed based on the ferrohydrostatic relation. After manufacturing the actuator, its static and dynamic characteristics are investigated experimentally. With the aid of the dynamic governing relation obtained experimentally and the proportional-derivative controller, the position tracking control of the actuator is carried out both theoretically and experimentally. As a result, the applicability of the proposed magnetic fluid actuator to various engineering devices is verified.

  3. Chaos and Integrability in Ideal Body-Fluid Interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby

    2011-01-01

    by generating Poincare sections from numerically obtained solutions. By identifying the chaotic solutions and studying the body and vortex orbits, we obtain a better mechanistic understanding of the causes of chaotic behavior. As is well-known from dynamical system theory, the chaos can often be traced back...... of relative equilibria, their stability, and the qualitatively dierent kinds of motion is studied analytically and numerically. We then perform small parametric perturbations destroying the symmetry or conservation law that makes the system integrable. The emergence of chaos in the system is diagnosed...... contains both regular and chaotic regions, and may be understood from KAM theory. We also discover two separate chaotic regimes in the interaction of a body and one point vortex when the body is either noncircular or has asymmetric internal mass distribution. For one of these chaotic regimes the eect...

  4. Effects of growth hormone (GH) treatment on body fluid distribution in patients undergoing elective abdominal surgery

    DEFF Research Database (Denmark)

    Møller, Jacob; Jensen, Martin Bach; Frandsen, E.

    1998-01-01

    OBJECTIVE: To investigate the possible beneficial effects of growth hormone (GH) in catabolic patients we examined the impact of GH on body fluid distribution in patients with ulcerative colitis undergoing elective abdominal surgery. DESIGN AND MEASUREMENTS: Twenty-four patients (14 female, 10 male...... at day -2 and at day 7, and body composition was estimated by dual X-ray absorptiometry and bioimpedance. Changes in body weight and fluid balance were recorded and hence intracellular volume was assessed. RESULTS: During placebo treatment body weight decreased 4.3 +/- 0.6 kg; during GH treatment body.......05). Plasma renin and aldosterone remained unchanged in both study groups. CONCLUSION: Body weight, plasma volume and intracellular volume is preserved during GH treatment in catabolic patients and ECV is increased. From a therapeutic point of view these effects may be desirable under conditions of surgical...

  5. Growth hormone treatment improves body fluid distribution in patients undergoing elective abdominal surgery

    DEFF Research Database (Denmark)

    Møller, J; Jensen, M B; Frandsen, E

    1998-01-01

    OBJECTIVE: To investigate the possible beneficial effects of growth hormone (GH) in catabolic patients we examined the impact of GH on body fluid distribution in patients with ulcerative colitis undergoing elective abdominal surgery. DESIGN AND MEASUREMENTS: Twenty-four patients (14 female, 10 male...... at day -2 and at day 7, and body composition was estimated by dual X-ray absorptiometry and bioimpedance. Changes in body weight and fluid balance were recorded and hence intracellular volume was assessed. RESULTS: During placebo treatment body weight decreased 4.3 +/- 0.6 kg; during GH treatment body.......05). Plasma renin and aldosterone remained unchanged in both study groups. CONCLUSION: Body weight, plasma volume and intracellular volume is preserved during GH treatment in catabolic patients and ECV is increased. From a therapeutic point of view these effects may be desirable under conditions of surgical...

  6. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest

    Science.gov (United States)

    Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.

    1977-01-01

    A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.

  7. Survey of 800+ datasets from human tissue and body fluid reveals XenomiRs are likely artifacts

    DEFF Research Database (Denmark)

    Kang, Wenjing; Bang-Berthelsen, Claus Heiner; Holm, Anja

    2017-01-01

    the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are rare human dietary contributions, but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomi...

  8. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat.

    Science.gov (United States)

    Masuda, Takahiro; Watanabe, Yuko; Fukuda, Keiko; Watanabe, Minami; Onishi, Akira; Ohara, Ken; Imai, Toshimi; Koepsell, Hermann; Muto, Shigeaki; Vallon, Volker; Nagata, Daisuke

    2018-05-23

    The chronic intrinsic diuretic and natriuretic tone of sodium-glucose cotransporter 2 (SGLT2) inhibitors is incompletely understood, because their effect on body fluid volume (BFV) has not been fully evaluated and because they often increase food and fluid intake at the same time. Here we first compared the effect of the SGLT2 inhibitor ipragliflozin (Ipra, 0.01% in diet for 8 weeks) and vehicle (Veh) in Spontaneously Diabetic Torii rat, a non-obese type 2 diabetic model, and non-diabetic Sprague-Dawley rats. In non-diabetic rats, Ipra increased urinary excretion of Na+ (UNaV) and fluid (UV) associated with increased food and fluid intake. Diabetes increased these 4 parameters, but Ipra had no further effect; probably due to its antihyperglycemic effect, such that glucosuria and as a consequence food and fluid intake were unchanged. Fluid balance and BFV, determined by bioimpedance spectroscopy, were similar among the 4 groups. To study the impact of food and fluid intake, non-diabetic rats were treated for 7 days with Veh, Ipra or Ipra+pair-feeding+pair-drinking (Pair-Ipra). Pair-Ipra maintained a small increase in UV and UNaV versus Veh despite similar food and fluid intake. Pair-Ipra induced a negative fluid balance and decreased BFV, while Ipra or Veh had no significant effect compared with basal values. In conclusion, SGLT2 inhibition induces a sustained diuretic and natriuretic tone. Homeostatic mechanisms are activated to stabilize body fluid volume, including compensatory increases in fluid and food intake.

  9. Control of fluid-containing rotating rigid bodies

    CERN Document Server

    Gurchenkov, Anatoly A

    2013-01-01

    This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations between angular velocities perpendicular to main rotation and external force momentums, which are treated as control. The developed models and methods of solving dynamical problems as well as numerical methods for solving problems of optimal control can be

  10. Computational Fluid Dynamics of Whole-Body Aircraft

    Science.gov (United States)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  11. Discriminant analysis of Raman spectra for body fluid identification for forensic purposes.

    Science.gov (United States)

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  12. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

    Directory of Open Access Journals (Sweden)

    Vitali Sikirzhytski

    2010-03-01

    Full Text Available Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  13. Elimination of cotinine from body fluids: implications for noninvasive measurement of tobacco smoke exposure.

    Science.gov (United States)

    Jarvis, M J; Russell, M A; Benowitz, N L; Feyerabend, C

    1988-01-01

    Cotinine elimination from plasma, saliva, and urine was studied over 11 days in five subjects (three nonsmokers and two occasional smokers). Half-lives for cotinine averaged 16-19 hours in the different body fluids (range 10 to 27 hours between subjects). There was no tendency for the half-life in saliva to be longer than in plasma or urine. We conclude that choice of body fluid for cotinine assay in smoking studies should depend on practical rather than pharmacokinetic considerations. PMID:3369603

  14. Corrosion behavior of coated and uncoated bio implants in SBF(simulated body fluid)

    International Nuclear Information System (INIS)

    Iqbal, W.; Zahra, N.; Alam, S.; Habib, F.; Irfan, M.

    2013-01-01

    Surgical implants used in medical applications are basically the specific type of stainless steel materials. Stainless steel has been used widely and successfully for various types of trauma and orthopedic reconstructions. If an uncoated (bare) stainless steel metal piece is implanted in any part of the body, it will get corrode in Simulated Body Fluid (SBF) present inside the human body (a mixture of different salts). To overcome this problem a coating of Titanium Nitride (TiN) was developed on stainless steel bio-implants using physical vapor deposition (PVD) method. Both coated and uncoated implants were kept dipped in Simulated Body Fluid for five months. The samples were removed and tested for corrosion life assessment after every fifteen days using weight loss method. (author)

  15. Development of Swimming Human Simulation Model Considering Rigid Body Dynamics and Unsteady Fluid Force for Whole Body

    Science.gov (United States)

    Nakashima, Motomu; Satou, Ken; Miura, Yasufumi

    The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.

  16. Application of FTA technology to extraction of sperm DNA from mixed body fluids containing semen.

    Science.gov (United States)

    Fujita, Yoshihiko; Kubo, Shin-ichi

    2006-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. In this study, we report a rapid and simple method of extracting DNA from sperm when body fluids mixed with semen were collected using FTA cards. After proteinase K digestion of the sperm and body fluid mixture, the washed pellet suspension as the sperm fraction and the concentrated supernatant as the epithelial cell fraction were respectively applied to FTA cards containing DTT. The FTA cards were dried, then directly added to a polymerase chain reaction (PCR) mix and processed by PCR. The time required from separation of the mixed fluid into sperm and epithelial origin DNA extractions was only about 2.5-3h. Furthermore, the procedure was extremely simple. It is considered that our designed DNA extraction procedure using an FTA card is available for application to routine work.

  17. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    Science.gov (United States)

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  18. Lecture notes on: Electrical theory behind the measurement of body fluids with bioimpedance spectroscopy (BIS)

    DEFF Research Database (Denmark)

    Jødal, Lars

    The lecture notes describe how body fluid volumes can be measured/estimated using the technique bio-impedance spectroscopy (BIS). The opening chapters assume little or none technical/mathematical knowledge and can hopefully be read by anyone interested in the techneque. Later chapters become more...

  19. Handling and storage of human body fluids for analysis of extracellular vesicles

    NARCIS (Netherlands)

    Yuana, Yuana; Böing, Anita N.; Grootemaat, Anita E.; van der Pol, Edwin; Hau, Chi M.; Cizmar, Petr; Buhr, Egbert; Sturk, Auguste; Nieuwland, Rienk

    2015-01-01

    Because procedures of handling and storage of body fluids affect numbers and composition of extracellular vesicles (EVs), standardization is important to ensure reliable and comparable measurements of EVs in a clinical environment. We aimed to develop standard protocols for handling and storage of

  20. On the linear problem arising from motion of a fluid around a moving rigid body

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka; Wolf, J.

    2015-01-01

    Roč. 140, č. 2 (2015), s. 241-259 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : incompressible fluid * rotating rigid body * strong solution Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144329

  1. Body fluid markers to monitor multiple sclerosis: The assays and the challenges

    NARCIS (Netherlands)

    Laman, J.D.; Thompson, E.J.; Kappos, L.

    1998-01-01

    The need for reliable markers of disease activity in multiple sclerosis (MS) to better guide basic research, diagnosis, treatment, and monitoring of therapy is well-recognized. A recent European Charcot Foundation Symposium (Body fluid markers for course and activity of disease in multiple sclerosis

  2. Body fluid identification of blood, saliva and semen using second generation sequencing of micro-RNA

    DEFF Research Database (Denmark)

    Petersen, Christel H.; Hjort, Benjamin Benn; Tvedebrink, Torben

    2013-01-01

    We report a new second generation sequencing method for identification micro-RNA (miRNA) that can be used to identify body fluids and tissues. Principal component analysis of 10 miRNAs with high expression in 16 samples of blood, saliva and semen showed clear differences in the expression of mi...

  3. Modification-specific proteomic analysis of glycoproteins in human body fluids by mass spectrometry

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Hägglund, Per; Jensen, Ole Nørregaard

    2007-01-01

    -glycosylated proteins in body fluids and other complex samples. An approach for identification of N-glycosylated proteins and mapping of their glycosylation sites is described. In this approach, glycoproteins are initially selectively purified by lectin chromatography. Following tryptic digestion, glycopeptides...

  4. Quantitative analysis of lamellar bodies in amniotic fluid as fetal pulmonary maturity indicator

    Directory of Open Access Journals (Sweden)

    Ljubić Vesna

    2009-01-01

    Full Text Available Background/Aim. Although lamellar bodies have been the center of interest over the last years, the published results of fetal pulmonary maturity determination according to their concentration in amniotic fluid are controversial. The aim of this study was to determine the significance of lamellar bodies, as well as the ratio lecithin/sphingomyelin (L/S in amniotic fluid for the assessment of fetal pulmonary maturity. Methods. This prospective 2-year study included 102 female examinees, ranging from 17 to 44 years of age, in whom lamellar bodies concentrations in amniotic fluid were determined to check the efficacy of the applied therapy for obtaining arteficial fetal pulmonary maturity. The shake test was applied as a comparative test for determining a quantitative L/S ratio. To determine a fetus maturity and development stage we followed up biparietal diameter, abdominal circumference, femure length, ponderal index at birth and body mass. Results. Out of a total of 102 amniocenteses within a period from 26th to 40th gestation week only 70 results were considered due to 32 unknown neonatal outcomes. Biparietal diameter was 224-362 mm, femur length 56 - 78 mm, ponderal index 1.22-2.84, fetus body mass 1300- 4 350 g. There was found a significant relation between gestation age and lamellar bodies concentration (R = 0.396398, p < 0.01, as well as between gestation age and the ratio L/S (R = 0.691297, p < 0.01. Also, there was a significant correlation of lamellar bodies concentration to the ratio L/S determined (R = 0.493609, p < 0.01. Conclusion. Determination of lamellar bodies concentration values is a reliable method to confirm fetal pulmonary maturity.

  5. Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery.

    Science.gov (United States)

    Krüger, Thomas; Lautenschläger, Janin; Grosskreutz, Julian; Rhode, Heidrun

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of motor neurons leading to death of the patients, mostly within 2-5 years after disease onset. The pathomechanism of motor neuron degeneration is only partially understood and therapeutic strategies based on mechanistic insights are largely ineffective. The discovery of reliable biomarkers of disease diagnosis and progression is the sine qua non of both the revelation of insights into the ALS pathomechanism and the assessment of treatment efficacies. Proteomic approaches are an important pillar in ALS biomarker discovery. Cerebrospinal fluid is the most promising body fluid for differential proteome analyses, followed by blood (serum, plasma), and even urine and saliva. The present study provides an overview about reported peptide/protein biomarker candidates that showed significantly altered levels in certain body fluids of ALS patients. These findings have to be discussed according to proposed pathomechanisms to identify modifiers of disease progression and to pave the way for the development of potential therapeutic strategies. Furthermore, limitations and advantages of proteomic approaches for ALS biomarker discovery in different body fluids and reliable validation of biomarker candidates have been addressed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The relationship between nocturnal polyuria and the distribution of body fluid: assessment by bioelectric impedance analysis.

    Science.gov (United States)

    Torimoto, Kazumasa; Hirayama, Akihide; Samma, Shoji; Yoshida, Katsunori; Fujimoto, Kiyohide; Hirao, Yoshihiko

    2009-01-01

    Increased nocturnal urinary volume is closely associated with nocturia. We investigated the relationship between nocturnal polyuria and the variation of body fluid distribution during the daytime using bioelectric impedance analysis. A total of 34 men older than 60 years were enrolled in this study. A frequency volume chart was recorded. Nocturnal polyuria was defined as a nocturnal urine volume per 24-hour production of greater than 0.35 (the nocturnal polyuria index). Bioelectric impedance analysis was performed 4 times daily at 8 and 11 a.m., and 5 and 9 p.m. using an InBody S20 body composition analyzer (BioSpace, Seoul, Korea). A significant difference was found in mean +/- SEM 24-hour urine production per fat-free mass between the groups with and without nocturnal polyuria (17.8 +/- 1.4 vs 7.7 +/- 0.9 ml/kg). The increase in fluid in the legs compared with the volume at 8 a.m. was significantly larger at 5 p.m., while there was no difference in the arms or trunk. Nocturnal urine volume significantly correlated with the difference in fluid volume in the legs (r = 0.527, p = 0.0019) and extracellular fluid volume (r = 0.3844, p = 0.0248) between the volumes at 8 a.m. and 9 p.m. Overproduction of urine per fat-free mass leads to nocturnal polyuria. Extracellular fluid accumulates as edema in the legs during the day in patients with nocturnal polyuria. The volume of accumulated extracellular fluid correlates with nocturnal urine volume. We suggest that leg edema is the source of nocturnal urine volume and decreasing edema may cure nocturnal polyuria.

  7. Fluid electrolyte excretion during different hypokinetic body positions of trained subjects

    Science.gov (United States)

    Zorbas, Yan G.; Naexu, Konstantin A.; Federenko, Youri F.

    The aim of this study was to evaluate the effect of different body positions on renal excretion of fluid and electrolytes after exposure to 364 days of decreased number of steps per day (hypokinesia, HK). The studies were performed on 18 endurance trained male volunteers aged 19-24 years who had an average of VO 2max 67 ml/kg body/min. All volunteers were divided into three equal groups: the 1st group subjected to 12 h orthostatic position (OP) and 12 h clinostatic position (CP)/day, the 2nd group exposed to 8 h orthostatic position and 14 h clinostatic position/day, and the 3rd group submitted to 10 h orthostatic position and 16 h clinostatic position/day for 364 days. For the simulation of the hypokinetic effect all volunteers were kept under an average of 3000 steps/day for 364 days. Diuresis and the concentrations of sodium, potassium, chloride, calcium and magnesium as well as excretion of creatine were determined in 24-h urine samples. By the end of the hypokinetic period all volunteers, regardless of their body position during HK, manifested a significant increase in renal excretion of fluid and electrolytes as compared to prehypokinetic period values. It was concluded that prolonged restriction of motor activity induced a significant increase in renal excretion of fluid and electrolytes in endurance trained subjects regardless to their body position and duration thereof per day.

  8. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs.

    Science.gov (United States)

    Thompson, K R; MacFarlane, P D

    2013-01-01

    This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT) while dogs in group W received warmed (W) irrigation fluid (36°C). A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1) pre-anaesthetic examination, (T2) arrival into theatre, (T3) end of surgery and (T4) arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1) and return to the recovery suite (T4) was significant in both groups, with a fall of 1.06±0.58°C (pdogs were hypothermic (temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses.

  9. Guidelines for uniform reporting of body fluid biomarker studies in neurologic disorders

    DEFF Research Database (Denmark)

    Gnanapavan, Sharmilee; Hegen, Harald; Khalil, Michael

    2014-01-01

    , there are concerns over the high attrition rate of promising candidate biomarkers at later phases of development. METHODS: BioMS-eu consortium, a collaborative network working toward improving the quality of biomarker research in neurologic disorders, discussed the merits of standardizing the reporting of body fluid...... biomarker research. A checklist of items integrating the results of other published guidances, literature, conferences, regulatory opinion, and personal expertise was created to ultimately form a structured summary guidance incorporating the key features. RESULTS: The summary guidance is comprised of a 10......-point uniform reporting format ranging from introduction, materials and methods, through to results and discussion. Each item is discussed in detail in the guidance report. CONCLUSIONS: To enhance the future development of body fluid biomarkers, it will be important to standardize the reporting...

  10. Exosome levels in human body fluids: A tumor marker by themselves?

    Science.gov (United States)

    Cappello, Francesco; Logozzi, Mariantonia; Campanella, Claudia; Bavisotto, Celeste Caruso; Marcilla, Antonio; Properzi, Francesca; Fais, Stefano

    2017-01-01

    Despite considerable research efforts, the finding of reliable tumor biomarkers remains challenging and unresolved. In recent years a novel diagnostic biomedical tool with high potential has been identified in extracellular nanovesicles or exosomes. They are released by the majority of the cells and contain detailed molecular information on the cell of origin including tumor hallmarks. Exosomes can be isolated from easy accessible body fluids, and most importantly, they can provide several biomarkers, with different levels of specificity. Recent clinical evidence shows that the levels of exosomes released into body fluids may themselves represent a predictive/diagnostic of tumors, discriminating cancer patients from healthy subjects. The aim of this review is to highlight these latest challenging findings to provide novel and groundbreaking ideas for successful tumor early diagnosis and follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Reprint of "EXOSOME LEVELS IN HUMAN BODY FLUIDS: A TUMOR MARKER BY THEMSELVES?"

    Science.gov (United States)

    Cappello, Francesco; Logozzi, Mariantonia; Campanella, Claudia; Bavisotto, Celeste Caruso; Marcilla, Antonio; Properzi, Francesca; Fais, Stefano

    2017-02-15

    Despite considerable research efforts, the finding of reliable tumor biomarkers remains challenging and unresolved. In recent years a novel diagnostic biomedical tool with high potential has been identified in extracellular nanovesicles or exosomes. They are released by the majority of the cells and contain detailed molecular information on the cell of origin including tumor hallmarks. Exosomes can be isolated from easy accessible body fluids, and most importantly, they can at once provide with several biomarkers, with different levels of specificity. Recent clinical evidence shows that the levels of exosomes released into body fluids may by themselves represent a predictive/diagnostic of tumors, discriminating cancer patients from healthy subjects. The aim of this review is to highlight these latest challenging findings to provide novel and groundbreaking ideas for successful tumor early diagnosis and follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Enrichment methodology to increase the positivity of cultures from body fluids

    Directory of Open Access Journals (Sweden)

    Alessandra Valle Daur

    Full Text Available Isolation and identification of etiological agents found in body fluids can be of critical importance for the recovery of patients suffering from potentially-severe infections, which are often followed by serious sequels. Eighty-two samples of different body fluids were analyzed using two different methods: (1 the conventional culture method (agar plating and (2 the enrichment culture technique, using the Bact/Alert® blood culture bottle. The number of positive cultures increased on average from 9.7% to 23.1% with the enrichment culture technique. Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus were the most frequently isolated bacteria. The enrichment method could provide a more accurate means the identifying etiological agents.

  13. Role of passive body dynamics in micro-organism swimming in complex fluids

    Science.gov (United States)

    Thomases, Becca; Guy, Robert

    2016-11-01

    We investigate the role of passive body dynamics in the kinematics of swimming micro-organisms in complex fluids. Asymptotic analysis and linear theory are used to predict shape changes that result as body elasticity and fluid elasticity are varied. The analysis is compared with a computational model of a finite length swimmer in a Stokes-Oldroyd-B fluid. Simulations and theory agree quantitatively for small amplitude motions with low fluid elasticity (Deborah number). This may not be surprising as the theory is expected hold in these two regimes. What is more remarkable is that the predicted shape changes match the computational shape changes quantitatively for large amplitudes, even for large Deborah numbers. Shape changes only tell part of the story. Swimming speed depends on other effects as well. We see that shape changes can predict swimming speed well when either the amplitude is small (including large Deborah number) or when the Deborah number is small (including large amplitudes). It is only in the large De AND large amplitude regime where the theory breaks down and swimming speed can no longer be inferred from shape changes alone.

  14. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    Science.gov (United States)

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  15. Optical detection and virotherapy of live metastatic tumor cells in body fluids with vaccinia strains.

    Directory of Open Access Journals (Sweden)

    Huiqiang Wang

    Full Text Available Metastatic tumor cells in body fluids are important targets for treatment, and critical surrogate markers for evaluating cancer prognosis and therapeutic response. Here we report, for the first time, that live metastatic tumor cells in blood samples from mice bearing human tumor xenografts and in blood and cerebrospinal fluid samples from patients with cancer were successfully detected using a tumor cell-specific recombinant vaccinia virus (VACV. In contrast to the FDA-approved CellSearch system, VACV detects circulating tumor cells (CTCs in a cancer biomarker-independent manner, thus, free of any bias related to the use of antibodies, and can be potentially a universal system for detection of live CTCs of any tumor type, not limited to CTCs of epithelial origin. Furthermore, we demonstrate for the first time that VACV was effective in preventing and reducing circulating tumor cells in mice bearing human tumor xenografts. Importantly, a single intra-peritoneal delivery of VACV resulted in a dramatic decline in the number of tumor cells in the ascitic fluid from a patient with gastric cancer. Taken together, these results suggest VACV to be a useful tool for quantitative detection of live tumor cells in liquid biopsies as well as a potentially effective treatment for reducing or eliminating live tumor cells in body fluids of patients with metastatic disease.

  16. Alterations in body fluid content can be detected by bioelectrical impedance analysis.

    Science.gov (United States)

    Scheltinga, M R; Jacobs, D O; Kimbrough, T D; Wilmore, D W

    1991-05-01

    The electrical resistance across the whole body and its segments to the conduction of a weak alternating current was determined in human subjects under three different conditions: (1) during bed rest, (2) during infusion of 1 liter of saline, and (3) during donation of 1 unit of blood. During bed rest, extracellular and total body water were measured by dilution of bromide and heavy water, respectively. Electrical resistance obtained from electrodes placed on proximal portions of extremities ("proximal resistance") accounted for less than 50% of that determined by electrodes positioned on routinely used portions of a hand and foot ("whole body resistance"). Following saline infusion, resistance determined from the whole body and all its segments fell (P less than 0.001); the magnitude of the drop in both proximal and whole body resistance was inversely related to the volume of total body water (TBW) (r = -0.82, P less than 0.002, and r = -0.73, P less than 0.01, respectively). In contrast, blood donation was associated with significantly increased resistance at both measurement sites. TBW predicted from anthropometrics was inversely related to both proximal (r = -0.90, P less than 0.001) and whole body resistance (r = -0.75, P less than 0.001). Bioelectrical impedance analysis is a simple technique which may be useful in monitoring minimal alterations in TBW. Furthermore, altered fluid status may be predicted more accurately by changes in proximal resistance compared to changes in traditionally used whole body resistance.

  17. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    OpenAIRE

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almad?n, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute prim...

  18. Impact of color blindness on recognition of blood in body fluids.

    Science.gov (United States)

    Reiss, M J; Labowitz, D A; Forman, S; Wormser, G P

    2001-02-12

    Color blindness is a common hereditary X-linked disorder. To investigate whether color blindness affects the ability to detect the presence of blood in body fluids. Ten color-blind subjects and 20 sex- and age-matched control subjects were shown 94 photographs of stool, urine, or sputum. Frank blood was present in 57 (61%) of the photographs. Surveys were done to determine if board-certified internists had ever considered whether color blindness would affect detection of blood and whether an inquiry on color blindness was included in their standard medical interview. Color-blind subjects were significantly less able to identify correctly whether pictures of body fluids showed blood compared with non-color-blind controls (P =.001); the lowest rate of correct identifications occurred with pictures of stool (median of 26 [70%] of 37 for color-blind subjects vs 36.5 [99%] of 37 for controls; Pcolor-blind subjects were significantly less accurate than those with less severe color deficiency (P =.009). Only 2 (10%) of the 21 physicians had ever considered the possibility that color blindness might affect the ability of patients to detect blood, and none routinely asked their patients about color blindness. Color blindness impairs recognition of blood in body fluids. Color-blind individuals and their health care providers need to be made aware of this limitation.

  19. Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method

    Science.gov (United States)

    Wang, Chengjie; Eldredge, Jeff D.

    2014-11-01

    A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.

  20. Laboratory testing of extravascular body fluids in Croatia: a survey of the Working group for extravascular body fluids of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    Science.gov (United States)

    Kopcinovic, Lara Milevoj; Vogrinc, Zeljka; Kocijan, Irena; Culej, Jelena; Aralica, Merica; Jokic, Anja; Antoncic, Dragana; Bozovic, Marija

    2016-10-15

    We hypothesized that extravascular body fluid (EBF) analysis in Croatia is not harmonized and aimed to investigate preanalytical, analytical and postanalytical procedures used in EBF analysis in order to identify key aspects that should be addressed in future harmonization attempts. An anonymous online survey created to explore laboratory testing of EBF was sent to secondary, tertiary and private health care Medical Biochemistry Laboratories (MBLs) in Croatia. Statements were designed to address preanalytical, analytical and postanalytical procedures of cerebrospinal, pleural, peritoneal (ascites), pericardial, seminal, synovial, amniotic fluid and sweat. Participants were asked to declare the strength of agreement with proposed statements using a Likert scale. Mean scores for corresponding separate statements divided according to health care setting were calculated and compared. The survey response rate was 0.64 (58 / 90). None of the participating private MBLs declared to analyse EBF. We report a mean score of 3.45 obtained for all statements evaluated. Deviations from desirable procedures were demonstrated in all EBF testing phases. Minor differences in procedures used for EBF analysis comparing secondary and tertiary health care MBLs were found. The lowest scores were obtained for statements regarding quality control procedures in EBF analysis, participation in proficiency testing programmes and provision of interpretative comments on EBF's test reports. Although good laboratory EBF practice is present in Croatia, procedures for EBF analysis should be further harmonized to improve the quality of EBF testing and patient safety.

  1. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    Science.gov (United States)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The

  2. Occurrence of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus).

    Science.gov (United States)

    Shiomi, K; Yamaguchi, S; Kikuchi, T; Yamamori, K; Matsui, T

    1992-12-01

    The shore crab (Hemigrapsus sanguineus) is highly resistant to tetrodotoxin (TTX) although it contains no detectable amount of TTX (less than 5 MU/g, where 1 MU is defined as the amount of TTX killing a 20 g mouse in 30 min). Its body fluid was examined for neutralizing effects against the lethal activity of TTX. When the mixture of the body fluid and TTX was injected i.p. into mice, the lethal activity of TTX was significantly reduced; 1 ml of the body fluid was evaluated to neutralize 3.6-4.0 MU of TTX. Higher neutralizing activity (7.2-12.5 MU/ml of the body fluid) was exhibited by i.v. administration of the body fluid into mice before or after i.p. challenge of TTX. The lethal effect of paralytic shellfish poisons was not counteracted by the body fluid. Analysis by gel filtration on Sepharose 6B revealed that the body fluid contained TTX-binding high mol. wt substances (> 2,000,000) responsible for the neutralizing activity of the body fluid against TTX, which accounts for the high resistibility of the crab to TTX. When the crude toxin extracted from the liver of puffer (Takifugu niphobles) was mixed with the body fluid and chromatographed on Sepharose 6B, almost pure TTX was obtained from the fractions containing the TTX-binding high mol. wt substances, suggesting that the TTX-binding high mol. wt substances could be useful in purification of TTX from biological samples.

  3. Body fluid derived exosomes as a novel template for clinical diagnostics

    Directory of Open Access Journals (Sweden)

    Janssen Johannes WG

    2011-06-01

    Full Text Available Abstract Background Exosomes are small membrane vesicles with a size of 40-100 nm that are released by different cell types from a late endosomal cellular compartment. They can be found in various body fluids including plasma, malignant ascites, urine, amniotic fluid and saliva. Exosomes contain proteins, miRNAs and mRNAs (exosome shuttle RNA, esRNA that could serve as novel platform for diagnosis. Method We isolated exosomes from amniotic fluid, saliva and urine by differential centrifugation on sucrose gradients. Marker proteins were identified by Western blot and FACS analysis after adsorption of exosomes to latex beads. We extracted esRNA from exosomes, carried out RT-PCR, and analyzed amplified products by restriction length polymorphism. Results Exosomes were positive for the marker proteins CD24, CD9, Annexin-1 and Hsp70 and displayed the correct buoyant density and orientation of antigens. In sucrose gradients the exosomal fractions contained esRNA that could be isolated with sufficient quantity for further analysis. EsRNAs were protected in exosomes from enzymatic degradation. Amniotic fluid esRNA served as template for the typing of the CD24 single nucleotide polymorphism (rs52812045. It also allowed sex determination of the fetus based on the detection of the male specific ZFY gene product. Conclusions Our data demonstrate that exosomes from body fluids carry esRNAs which can be analyzed and offers access to the transcriptome of the host organism. The exosomal lipid bilayer protects the genetic information from degradation. As the isolation of exosomes is a minimally invasive procedure, this technique opens new possibilities for diagnostics.

  4. Effects of immersion water temperature on whole-body fluid distribution in humans.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-09-01

    In this study, we quantified acute changes in the intracellular and extracellular fluid compartments during upright neutral- and cold-water immersion. We hypothesized that, during short-term cold immersion, fluid shifts would be wholly restricted to the extracellular space. Seven males were immersed 30 days apart: control (33.3 degrees SD 0.6 degrees C); and cold (18.1 degrees SD 0.3 degrees C). Posture was controlled for 4 h prior to a 60-min seated immersion. Significant reductions in terminal oesophageal (36.9 degrees +/- 0.1 degrees -36.3 degrees +/- 0.1 degrees C) and mean skin temperatures (30.3 degrees +/- 0.3 degrees -23.0 degrees +/- 0.3 degrees C) were observed during the cold, but not the control immersion. Both immersions elicited a reduction in intracellular fluid [20.17 +/- 6.02 mL kg(-1) (control) vs. 22.72 +/- 9.90 mL kg(-1)], while total body water (TBW) remained stable. However, significant plasma volume (PV) divergence was apparent between the trials at 60 min [12.5 +/- 1.0% (control) vs. 6.1 +/- 3.1%; P cold immersion, consistent with its role in PV regulation. We observed that, regardless of the direction of the PV change, both upright immersions elicited reductions in intracellular fluid. These observations have two implications. First, one cannot assume that PV changes reflect those of the entire extracellular compartment. Second, since immersion also increases interstitial fluid pressure, fluid leaving the interstitium must have been rapidly replaced by intracellular water.

  5. Transport of fluid and solutes in the body I. Formulation of a mathematical model.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.

  6. Metabolic stability of new anticonvulsants in body fluids and organ homogenates.

    Science.gov (United States)

    Marszałek, Dorota; Goldnik, Anna; Pluciński, Franciszek; Mazurek, Aleksander P; Jakubiak, Anna; Lis, Ewa; Tazbir, Piotr; Koziorowska, Agnieszka

    2012-01-01

    The stability as a function of time of compounds with established anticonvulsant activity: picolinic acid benzylamide (Pic-BZA), picolinic acid 2-fluorobenzylamide (Pic-2-F-BZA), picolinic acid 3-fluorobenzylamide (Pic-3-F-BZA), picolinic acid 4-fluorobenzylamide (Pic-4-F-BZA) and picolinic acid 2-methylbenzylamide (Pic-2-Me-BZA) in body fluids and homogenates of body organs were determined after incubation. It was found that they decompose relatively rapidly in liver and kidney and are stable against enzymes present in body fluids and some organs. These results are consistent with the bond strength expressed as total energy of amide bonds (calculated by quantum chemical methods) in the studied anticonvulsants. The calculated values of the amide bond energy are: 199.4 kcal/mol, 200.2 kcal/mol, 207.5 kcal/mol, 208.4 kcal/mol and 198.2 kcal/mol, respectively. The strength of the amide bonds in the studied anticonvulsants correctly reflects their stability in liver or kidney.

  7. Evaluation of a standardized procedure for [corrected] microscopic cell counts [corrected] in body fluids.

    Science.gov (United States)

    Emerson, Jane F; Emerson, Scott S

    2005-01-01

    A standardized urinalysis and manual microscopic cell counting system was evaluated for its potential to reduce intra- and interoperator variability in urine and cerebrospinal fluid (CSF) cell counts. Replicate aliquots of pooled specimens were submitted blindly to technologists who were instructed to use either the Kova system with the disposable Glasstic slide (Hycor Biomedical, Inc., Garden Grove, CA) or the standard operating procedure of the University of California-Irvine (UCI), which uses plain glass slides for urine sediments and hemacytometers for CSF. The Hycor system provides a mechanical means of obtaining a fixed volume of fluid in which to resuspend the sediment, and fixes the volume of specimen to be microscopically examined by using capillary filling of a chamber containing in-plane counting grids. Ninety aliquots of pooled specimens of each type of body fluid were used to assess the inter- and intraoperator reproducibility of the measurements. The variability of replicate Hycor measurements made on a single specimen by the same or different observers was compared with that predicted by a Poisson distribution. The Hycor methods generally resulted in test statistics that were slightly lower than those obtained with the laboratory standard methods, indicating a trend toward decreasing the effects of various sources of variability. For 15 paired aliquots of each body fluid, tests for systematically higher or lower measurements with the Hycor methods were performed using the Wilcoxon signed-rank test. Also examined was the average difference between the Hycor and current laboratory standard measurements, along with a 95% confidence interval (CI) for the true average difference. Without increasing labor or the requirement for attention to detail, the Hycor method provides slightly better interrater comparisons than the current method used at UCI. Copyright 2005 Wiley-Liss, Inc.

  8. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2013-01-01

    Roč. 6, č. 5 (2013), s. 1193-1213 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : motion of rigid bodies * incompressible fluid * compressible fluid Subject RIV: BA - General Mathematics https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8331

  9. Computer modelling of the chemical speciation of Americium (III) in human body fluids

    International Nuclear Information System (INIS)

    Jiang, Shu-bin; Lei, Jia-rong; Wang, He-yi; Zhong, Zhi-jing; Yang, Yong; Du, Yang

    2008-01-01

    A multi-phase equilibrium model consisted of multi-metal ion and low molecular mass ligands in human body fluid has been constructed to discuss the speciation of Am 3+ in gastric juice, sweat, interstitial fluid, intracellular fluid and urine of human body, respectively. Computer simulations indicated that the major Am(III)P Species were Am 3+ , [Am Cl] 2+ and [AmH 2 PO 4 ] 2+ at pH 4 became dominant with higher pH value when [Am] = 1 x 10 -7 mol/L in gastric juice model and percentage of AmPO 4 increased with [Am]. in sweat system, Am(III) existed with soluble species at pH 4.2∼pH 7.5 when [Am] = 1 x 10 -7 mol/L and Am(III) existed with Am 3+ and [Am OH] 2+ at pH 6.5 when [Am] -10 mol/L or [Am] > 5 x 10 -8 mol/L . With addition of EDTA, the Am(III) existed with soluble [Am EDTA] - whereas the Am(III) existed with insoluble AmPO 4 when [Am] > 1 x 10 -12 mol/L at interstitial fluid. The major Am(III) species was AmPO 4 at pH 7.0 and [Am]=4 x 10 -12 mol/L in intracellular fluid, which implied Am(III) represented strong cell toxicity. The percentage of Am(III) soluble species increased at lower pH hinted that the Am(III), in the form of aerosol, ingested by macrophage, could released into interstitial fluid and bring strong toxicity to skeleton system. The soluble Am(III) species was dominant when pH 4 when pH > 4.5 when [Am] = 1 x 10 -10 Pmol/L in human urine, so it was favorable to excrete Am(III) from kidney by taking acid materials. (author)

  10. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies

    Science.gov (United States)

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  11. Fluid Status in Peritoneal Dialysis Patients: The European Body Composition Monitoring (EuroBCM) Study Cohort

    Science.gov (United States)

    Van Biesen, Wim; Williams, John D.; Covic, Adrian C.; Fan, Stanley; Claes, Kathleen; Lichodziejewska-Niemierko, Monika; Verger, Christian; Steiger, Jurg; Schoder, Volker; Wabel, Peter; Gauly, Adelheid; Himmele, Rainer

    2011-01-01

    Background Euvolemia is an important adequacy parameter in peritoneal dialysis (PD) patients. However, accurate tools to evaluate volume status in clinical practice and data on volume status in PD patients as compared to healthy population, and the associated factors, have not been available so far. Methods We used a bio-impedance spectroscopy device, the Body Composition Monitor (BCM) to assess volume status in a cross-sectional cohort of prevalent PD patients in different European countries. The results were compared to an age and gender matched healthy population. Results Only 40% out of 639 patients from 28 centres in 6 countries were normovolemic. Severe fluid overload was present in 25.2%. There was a wide scatter in the relation between blood pressure and volume status. In a multivariate analysis in the subgroup of patients from countries with unrestricted availability of all PD modalities and fluid types, older age, male gender, lower serum albumin, lower BMI, diabetes, higher systolic blood pressure, and use of at least one exchange per day with the highest hypertonic glucose were associated with higher relative tissue hydration. Neither urinary output nor ultrafiltration, PD fluid type or PD modality were retained in the model (total R2 of the model = 0.57). Conclusions The EuroBCM study demonstrates some interesting issues regarding volume status in PD. As in HD patients, hypervolemia is a frequent condition in PD patients and blood pressure can be a misleading clinical tool to evaluate volume status. To monitor fluid balance, not only fluid output but also dietary input should be considered. Close monitoring of volume status, a correct dialysis prescription adapted to the needs of the patient and dietary measures seem to be warranted to avoid hypervolemia. PMID:21390320

  12. In-vitro evaluation of corrosion resistance of nitrogen ion implanted titanium simulated body fluid

    International Nuclear Information System (INIS)

    Subbaiyan, M.; Sundararajian, T.; Rajeswari, S.; Kamachi Mudali, U.; Nair, K.G.M.; Thampi, N.S.

    1997-01-01

    Titanium and its alloy Ti6Al4V enjoy widespread use in various biomedical applications because of favourable local tissue response, higher corrosion resistance and fatigue strength than the stainless steels and cobalt-chromium alloy previously used. The study reported in this paper aims to optimize the conditions of nitrogen ion implantation on commercially pure titanium and to correlate the implantation parameters to the corrosion resistance. X-ray photoelectron spectroscopy was used to analyse surface concentration and the implantation processes. An improvement in the electrochemical behaviour of the passive film was shown to occur with nitrogen ion implantation on titanium, in simulated body fluids. (UK)

  13. Potential Exposure to Ebola Virus from Body Fluids due to Ambulance Compartment Permeability in Sierra Leone.

    Science.gov (United States)

    Casey, Megan L; Nguyen, Duong T; Idriss, Barrie; Bennett, Sarah; Dunn, Angela; Martin, Stephen

    2015-12-01

    Prehospital care, including patient transport, is integral in the patient care process during the Ebola response. Transporting ill persons from the community to Ebola care facilities can stop community spread. Vehicles used for patient transport in infectious disease outbreaks should be evaluated for adequate infection prevention and control. An ambulance driver in Sierra Leone attributed his Ebola infection to exposure to body fluids that leaked from the patient compartment to the driver cabin of the ambulance. A convenience sample of 14 vehicles used to transport patients with suspected or confirmed Ebola in Sierra Leone were assessed. The walls separating the patient compartment and driver cabin in these vehicles were evaluated for structural integrity and potential pathways for body fluid leakage. Ambulance drivers and other staff were asked to describe their cleaning and decontamination practices. Ambulance construction and design standards from the National Fire Protection Association, US General Services Administration, and European Committee on Standardization (CEN) were reviewed. Many vehicles used by ambulance staff in Sierra Leone were not traditional ambulances, but were pick-up trucks or sport-utility vehicles that had been assembled or modified for patient transport. The wall separating the patient compartment and driver cabin in many vehicles did not have a waterproof seal around the edges. Staff responsible for cleaning and disinfection did not thoroughly clean bulk body fluids with disposable towels before disinfection of the patient compartment. Pressure from chlorine sprayers used in the decontamination process may have pushed body fluids from the patient compartment into the driver cabin through gaps around the wall. Ambulance design standards do not require a waterproof seal between the patient compartment and driver cabin. Sealing the wall by tightening or replacing existing bolts is recommended, followed by caulking of all seams with a

  14. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.

    2018-04-12

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables. Part I: Discretization, International Journal of Heat and Mass Transfer, vol. 48 (6), 1117-1127, 2005) is extended to include the solid-body stress analysis. The transport terms for a cell-face are evaluated in a structured grid-like manner. The Cartesian gradients at the center of each cell-face are evaluated using the coordinate transformation relations. The accuracy of the procedure is demonstrated by solving several benchmark problems involving different boundary conditions, source terms, and types of loading.

  15. Transport of fluid and solutes in the body II. Model validation and implications.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A mathematical model of short-term whole body fluid, protein, and ion distribution and transport developed earlier [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215-H1227, 1999] is validated using experimental data available in the literature. The model was tested against data measured for the following three types of experimental infusions: 1) hyperosmolar saline solutions with an osmolarity in the range of 2,000-2,400 mosmol/l, 2) saline solutions with an osmolarity of approximately 270 mosmol/l and composition comparable with Ringer solution, and 3) an isosmotic NaCl solution with an osmolarity of approximately 300 mosmol/l. Good agreement between the model predictions and the experimental data was obtained with respect to the trends and magnitudes of fluid shifts between the intra- and extracellular compartments, extracellular ion and protein contents, and hematocrit values. The model is also able to yield information about inaccessible or difficult-to-measure system variables such as intracellular ion contents, cellular volumes, and fluid fluxes across the vascular capillary membrane, data that can be used to help interpret the behavior of the system.

  16. Modeling the time evolution of the nanoparticle-protein corona in a body fluid.

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Orco

    Full Text Available BACKGROUND: Nanoparticles in contact with biological fluids interact with proteins and other biomolecules, thus forming a dynamic corona whose composition varies over time due to continuous protein association and dissociation events. Eventually equilibrium is reached, at which point the continued exchange will not affect the composition of the corona. RESULTS: We developed a simple and effective dynamic model of the nanoparticle protein corona in a body fluid, namely human plasma. The model predicts the time evolution and equilibrium composition of the corona based on affinities, stoichiometries and rate constants. An application to the interaction of human serum albumin, high density lipoprotein (HDL and fibrinogen with 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles is presented, including novel experimental data for HDL. CONCLUSIONS: The simple model presented here can easily be modified to mimic the interaction of the nanoparticle protein corona with a novel biological fluid or compartment once new data will be available, thus opening novel applications in nanotoxicity and nanomedicine.

  17. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    Science.gov (United States)

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  18. Measurement of glycosaminoglycans in canine synovial fluid and its correlation with the cause of secondary osteoarthritis, age and body weight

    Directory of Open Access Journals (Sweden)

    Radka Andrysíková

    2012-01-01

    Full Text Available Glycosaminoglycans are natural components of healthy joint cartilage and they also appear in healthy synovial fluid. An increased amount of glycosaminoglycans in synovial fluid is believed to be a marker of secondary osteoarthritis, regardless of its primary cause. The aim of our study was to define the relationship between glycosaminoglycans in the synovial fluid and joint disorders, age, and body weight. The samples of synovial fluid were obtained from dogs suffering from secondary secondary osteoarthritis (n = 35 and from control dogs (n = 18; control dogs had normal body weight. The results were compared among joints of dogs with secondary osteoarthritis divided into groups according to the criteria mentioned above and control dogs. Glycosaminoglycan concentrations in synovial fluid were measured using dimethylmethylene blue assay. The lowest mean value of glycosaminoglycans in synovial fluid was measured in the control group. Significantly higher glycosaminoglycan content (P < 0.05 was found in synovial fluid isolated from obese dogs compared to control dogs. Furthermore, we observed an age-related trend, in which the highest mean values were reached either in old dogs or pups. Despite the absence of significant differences in glycosaminoglycan values among dogs suffering from various types of secondary secondary osteoarthritis, the highest mean values were measured in fragmented coronoid processus group. Our data suggest that abnormally increased body weight has an impact on glycosaminoglycan concentration in synovial fluid which may imply faster degradation and turnover of joint cartilage. Such observation has not yet been published in veterinary medicine.

  19. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    Science.gov (United States)

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. © The Author(s) 2016.

  20. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    Science.gov (United States)

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Accumulation of deuterium oxide in body fluids after ingestion of D2O-labeled beverages

    International Nuclear Information System (INIS)

    Davis, J.M.; Lamb, D.R.; Burgess, W.A.; Bartoli, W.P.

    1987-01-01

    A simple low-cost procedure was developed to compare the temporal profiles of deuterium oxide (D 2 O) accumulation in body fluids after ingestion of D 2 O-labeled solutions. D 2 O concentration was measured in plasma and saliva samples taken at various intervals after ingestion of 20 ml of D 2 O mixed with five solutions differing in carbohydrate and electrolyte concentrations. An infrared spectrometer was used to measure D 2 O in purified samples obtained after a 48-h incubation period during which the water (D 2 O and H 2 O) in the sample was equilibrated with an equal volume of distilled water in a sealed diffusion dish. The procedure yields 100% recoveries of 60-500 ppm D 2 O with an average precision of 5%. When compared with values for distilled water, D 2 O accumulation in serial samples of plasma and saliva was slower for ingested solutions containing 40 and 15% glucose and faster for hypotonic saline and a 6% carbohydrate-electrolyte solution. These differences appear to reflect known differences in gastric emptying and intestinal absorption of these beverages. Therefore, this technique may provide a useful index of the rate of water uptake from ingested beverages into the body fluids

  2. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Khairunizam, Wan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Shahriman, A. B., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Yaacob, S., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my [Centre of Excellence for Unmanned Aerial Systems, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  3. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    Science.gov (United States)

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  4. Simulated body-fluid tests and electrochemical investigations on biocompatibility of metallic glasses

    International Nuclear Information System (INIS)

    Lin, C.H.; Huang, C.H.; Chuang, J.F.; Lee, H.C.; Liu, M.C.; Du, X.H.; Huang, J.C.; Jang, J.S.C.; Chen, C.H.

    2012-01-01

    This paper presents the in-vitro and electrochemical investigations of four metallic glasses (MGs) for finding potential MG-based bio-materials. The simulation body-fluid Hanks solution is utilized for testing the corrosion resistance of MGs, and microorganisms of Escherichia coli are used in testing the bio-toxicity. In addition, a simple cyclic voltammetry method is used for rapid verification of the potential electrochemical responses. It is found that the Zr-based MG can sustain in the body-fluid, exhibiting the best corrosion resistance and electrochemical stability. The microbiologic test shows that E. coli can grow on the surface of the Zr-based metallic glass, confirming the low cell toxicity of this Zr-based MG. Highlights: ► Vanadium is added in Cu–Zr–Al alloy to induce B2-CuZr formation. ► The more induced B2-CuZr phase can improve compressive plasticity. ► The plasticity improvement might be caused by B2 phase dynamic coarsening.

  5. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Science.gov (United States)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  6. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    International Nuclear Information System (INIS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz

    2014-01-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity

  7. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    Science.gov (United States)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  8. INTERACTION OF BIOMATERIALS CONTAINING CALCIUM HYDROXYAPATITE/ POLY-L-LACTIDE WITH THE SIMULATED BODY FLUID

    Directory of Open Access Journals (Sweden)

    Marija Petković

    2011-12-01

    Full Text Available The purpose of biomaterials is to replace a part or a function of the body in a safe, physiologically and economically acceptable way. The process of the reconstruction of bone defects has always been a big problem in orthopedics and maxillofacial surgery. Since hydroxyapatite (HAp was detected as a component, the predominant constituent and the integral element of Mammalian bones, the development of the phospate ceramics as potential materials for implantation was enabled. This study investigated whether and in which way biomaterial calcium hydroxyapatite/poly-L-lactide (HAp/PLLA interacts with the ionic composition of the human plasma. The simulated body fluid (SBF is an artificial fluid that has the ionic composition and ionic concentration similar to the human blood plasma. HAp/PLLA was incubated for 1, 2, 3 and 5 weeks in SBF. The surfaces of both treated and untreated materials were analyzed on a scanning electron microscopy (SEM, and were also exposed to the energy dispersive X-ray spectroscopy (EDS, while SBF was submitted to the measuring of pH and electrical conductivity. However, our results indicate that the degradational changes of the material HAp/PLLA in SBF start from the surface of the treated material and that observed changes are the consequence of dissolution of its polymer component and the precipitation of the material similar to hydroxyapatite on its surface. This material shows good characteristics that place it among good candidates for the application in orthopedics and maxillofacial surgery.

  9. Mass spectrometry-based cDNA profiling as a potential tool for human body fluid identification.

    Science.gov (United States)

    Donfack, Joseph; Wiley, Anissa

    2015-05-01

    Several mRNA markers have been exhaustively evaluated for the identification of human venous blood, saliva, and semen in forensic genetics. As new candidate human body fluid specific markers are discovered, evaluated, and reported in the scientific literature, there is an increasing trend toward determining the ideal markers for cDNA profiling of body fluids of forensic interest. However, it has not been determined which molecular genetics-based technique(s) should be utilized to assess the performance of these markers. In recent years, only a few confirmatory, mRNA/cDNA-based methods have been evaluated for applications in body fluid identification. The most frequently described methods tested to date include quantitative polymerase chain reaction (qPCR) and capillary electrophoresis (CE). However these methods, in particular qPCR, often favor narrow multiplex PCR due to the availability of a limited number of fluorescent dyes/tags. In an attempt to address this technological constraint, this study explored matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for human body fluid identification via cDNA profiling of venous blood, saliva, and semen. Using cDNA samples at 20pg input phosphoglycerate kinase 1 (PGK1) amounts, body fluid specific markers for the candidate genes were amplified in their corresponding body fluid (i.e., venous blood, saliva, or semen) and absent in the remaining two (100% specificity). The results of this study provide an initial indication that MALDI-TOF MS is a potential fluorescent dye-free alternative method for body fluid identification in forensic casework. However, the inherent issues of low amounts of mRNA, and the damage caused to mRNA by environmental exposures, extraction processes, and storage conditions are important factors that significantly hinder the implementation of cDNA profiling into forensic casework. Published by Elsevier Ireland Ltd.

  10. Distribution of polybrominated diphenyl ethers in Japanese autopsy tissue and body fluid samples.

    Science.gov (United States)

    Hirai, Tetsuya; Fujimine, Yoshinori; Watanabe, Shaw; Nakano, Takeshi

    2012-09-01

    Brominated flame retardants are components of many plastics and are used in products such as cars, textiles, televisions, and personal computers. Human exposure to polybrominated diphenyl ether (PBDE) flame retardants has increased exponentially during the last three decades. Our objective was to measure the body burden and distribution of PBDEs and to determine the concentrations of the predominant PBDE congeners in samples of liver, bile, adipose tissue, and blood obtained from Japanese autopsy cases. Tissues and body fluids obtained from 20 autopsy cases were analyzed. The levels of 25 PBDE congeners, ranging from tri- to hexa-BDEs, were assessed. The geometric means of the sum of the concentrations of PBDE congeners having detection frequencies >50 % (ΣPBDE) in the blood, liver, bile, and adipose tissue were 2.4, 2.6, 1.4, and 4.3 ng/g lipid, respectively. The most abundant congeners were BDE-47 and BDE-153, followed by BDE-100, BDE-99, and BDE-28+33. These concentrations of PBDE congeners were similar to other reports of human exposure in Japan but were notably lower than concentrations than those reported in the USA. Significant positive correlations were observed between the concentrations of predominant congeners and ΣPBDE among the samples analyzed. The ΣPBDE concentration was highest in the adipose tissue, but PBDEs were distributed widely among the tissues and body fluids analyzed. The PBDE levels observed in the present study are similar to those reported in previous studies in Japan and significantly lower than those reported in the USA.

  11. Changes in body fluid and energy compartments during prolonged hunger strike.

    Science.gov (United States)

    Faintuch, J; Soriano, F G; Ladeira, J P; Janiszewski, M; Velasco, I T; Gama-Rodrigues, J J

    2000-01-01

    Prolonged total food deprivation in non-obese adults is rare, and few studies have documented body composition changes in this setting. In a group of eight hunger strikers who refused alimentation for 43 days, water and energy compartments were estimated, aiming to assess the impact of progressive starvation. Measurements included body mass index (BMI), triceps skinfold (TSF), arm muscle circumference (AMC), and bioimpedance (BIA) determinations of water, fat, lean body mass (LBM), and total resistance. Indirect calorimetry was also performed in one occasion. The age of the group was 43.3+/-6.2 years (seven males, one female). Only water, intermittent vitamins and electrolytes were ingested, and average weight loss reached 17.9%. On the last two days of the fast (43rd-44th day) rapid intravenous fluid, electrolyte, and vitamin replenishment were provided before proceeding with realimentation. Body fat decreased approximately 60% (BIA and TSF), whereas BMI reduced only 18%. Initial fat was estimated by BIA as 52.2+/-5.4% of body weight, and even on the 43rd day it was still measured as 19.7+/-3.8% of weight. TSF findings were much lower and commensurate with other anthropometric results. Water was comparatively low with high total resistance, and these findings rapidly reversed upon the intravenous rapid hydration. At the end of the starvation period, BMI (21.5+/-2.6 kg/m2) and most anthropometric determinations were still acceptable, suggesting efficient energy and muscle conservation. 1) All compartments diminished during fasting, but body fat was by far the most affected; 2) Total water was low and total body resistance comparatively elevated, but these findings rapidly reversed upon rehydration; 3) Exaggerated fat percentage estimates from BIA tests and simultaneous increase in lean body mass estimates suggested that this method was inappropriate for assessing energy compartments in the studied population; 4) Patients were not morphologically malnourished after

  12. Changes in body fluid and energy compartments during prolonged hunger strike

    Directory of Open Access Journals (Sweden)

    Faintuch Joel

    2000-01-01

    Full Text Available Prolonged total food deprivation in non-obese adults is rare, and few studies have documented body composition changes in this setting. In a group of eight hunger strikers who refused alimentation for 43 days, water and energy compartments were estimated, aiming to assess the impact of progressive starvation. Measurements included body mass index (BMI, triceps skinfold (TSF, arm muscle circumference (AMC, and bioimpedance (BIA determinations of water, fat, lean body mass (LBM, and total resistance. Indirect calorimetry was also performed in one occasion. The age of the group was 43.3±6.2 years (seven males, one female. Only water, intermittent vitamins and electrolytes were ingested, and average weight loss reached 17.9%. On the last two days of the fast (43rd-44th day rapid intravenous fluid, electrolyte, and vitamin replenishment were provided before proceeding with realimentation. Body fat decreased approximately 60% (BIA and TSF, whereas BMI reduced only 18%. Initial fat was estimated by BIA as 52.2±5.4% of body weight, and even on the 43rd day it was still measured as 19.7±3.8% of weight. TSF findings were much lower and commensurate with other anthropometric results. Water was comparatively low with high total resistance, and these findings rapidly reversed upon the intravenous rapid hydration. At the end of the starvation period, BMI (21.5±2.6 kg/m² and most anthropometric determinations were still acceptable, suggesting efficient energy and muscle conservation. Conclusions: 1 All compartments diminished during fasting, but body fat was by far the most affected; 2 Total water was low and total body resistance comparatively elevated, but these findings rapidly reversed upon rehydration; 3 Exaggerated fat percentage estimates from BIA tests and simultaneous increase in lean body mass estimates suggested that this method was inappropriate for assessing energy compartments in the studied population; 4 Patients were not morphologically

  13. Development of mRNA-based body fluid identification using reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Satoh, Tetsuya; Kouroki, Seiya; Ogawa, Keita; Tanaka, Yorika; Matsumura, Kazutoshi; Iwase, Susumu

    2018-04-25

    Identifying body fluids from forensic samples can provide valuable evidence for criminal investigations. Messenger RNA (mRNA)-based body fluid identification was recently developed, and highly sensitive parallel identification using reverse transcription polymerase chain reaction (RT-PCR) has been described. In this study, we developed reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a simple, rapid assay for identifying three common forensic body fluids, namely blood, semen, and saliva, and evaluated its specificity and sensitivity. Hemoglobin beta (HBB), transglutaminase 4 (TGM4), and statherin (STATH) were selected as marker genes for blood, semen, and saliva, respectively. RT-LAMP could be performed in a single step including both reverse transcription and DNA amplification under an isothermal condition within 60 min, and detection could be conveniently performed via visual fluorescence. Marker-specific amplification was performed in each assay, and no cross-reaction was observed among five representative forensically relevant body fluids. The detection limits of the assays were 0.3 nL, 30 nL, and 0.3 μL for blood, semen, and saliva, respectively, and their sensitivities were comparable with those of RT-PCR. Furthermore, RT-LAMP assays were applicable to forensic casework samples. It is considered that RT-LAMP is useful for body fluid identification.

  14. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Song Yingwei; Shan Dayong; Chen Rongshi; Zhang Fan; Han Enhou

    2009-01-01

    Magnesium alloys have unique advantages to act as biodegradable implants for clinical application. The biodegradable behaviors of AZ31 in simulated body fluid (SBF) for various immersion time intervals were investigated by electrochemical impedance spectroscopy (EIS) tests and scanning electron microscope (SEM) observation, and then the biodegradable mechanisms were discussed. It was found that a protective film layer was formed on the surface of AZ31 in SBF. With increasing of immersion time, the film layer became more compact. If the immersion time was more than 24 h, the film layer began to degenerate and emerge corrosion pits. In the meantime, there was hydroxyapatite particles deposited on the film layer. The hydroxyapatite is the essential component of human bone, which indicates the perfect biocompatibility of AZ31 magnesium alloy.

  15. Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach

    Science.gov (United States)

    Hamdan, Mohammad O.; Abu-Nabah, Bassam A.

    2018-04-01

    In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.

  16. Fluid-thermal analysis of aerodynamic heating over spiked blunt body configurations

    Science.gov (United States)

    Qin, Qihao; Xu, Jinglei; Guo, Shuai

    2017-03-01

    When flying at hypersonic speeds, the spiked blunt body is constantly subjected to severe aerodynamic heating. To illustrate the thermal response of different configurations and the relevant flow field variation, a loosely-coupled fluid-thermal analysis is performed in this paper. The Mesh-based parallel Code Coupling Interface (MpCCI) is adopted to implement the data exchange between the fluid solver and the thermal solver. The results indicate that increases in spike diameter and length will result in a sharp decline of the wall temperature along the spike, and the overall heat flux is remarkably reduced to less than 300 W/cm2 with the aerodome mounted at the spike tip. Moreover, the presence and evolution of small vortices within the recirculation zone are observed and proved to be induced by the stagnation effect of reattachment points on the spike. In addition, the drag coefficient of the configuration with a doubled spike length presents a maximum drop of 4.59% due to the elevated wall temperature. And the growing difference of the drag coefficient is further increased during the accelerating process.

  17. Silica enhanced formation of hydroxyapatite nanocrystals in simulated body fluid (SBF) at 37 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Sadjadi, M.S., E-mail: m.s.sadjad@gmail.com [Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ebrahimi, H.R. [Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Meskinfam, M. [Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, University of Shahid Beheshti, Eveen Tehran (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} We report on fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in silica-containing simulated body fluid solution at 37 deg. C. {yields} Bioactivity and biodegradability of TCP precursor have been confirmed by the dissolution of TCP and formation of a bone like layer of new HA nanoparticles outside of the precursor after 24 h soaking in SBF solution. {yields} Successive nucleation and formation of tiny hexagonal HA nanoplates and nanorods have been confirmed by TEM results after 24 h soaking of TCP in silica-containing BSF solution. - Abstract: The chemical modification of implant (prosthesis) surfaces is being investigated worldwide for improving the fixation of orthopaedic and dental implants. The main goal in this surface modification approach is to achieve a faster bone growth and chemical bonding of the implant to the newly generated and/or remodeled bone. In this work, we report fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in simulated body fluid (SBF, inorganic components of human blood plasma) solutions at 37 deg. C, using calcium phosphate (TCP) and sodium silicate as precursors. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated enhanced nucleation and formation of bone like layer of HA nanocrystals at the surface of TCP nanoparticles and occurrence of HA nanocrystals during 24 h soaking of TCP in SBF solution containing silica ions. The average size of a nanoparticle, using Scherrer formula, was found to be 18.2 nm.

  18. Silica enhanced formation of hydroxyapatite nanocrystals in simulated body fluid (SBF) at 37 deg. C

    International Nuclear Information System (INIS)

    Sadjadi, M.S.; Ebrahimi, H.R.; Meskinfam, M.; Zare, K.

    2011-01-01

    Highlights: → We report on fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in silica-containing simulated body fluid solution at 37 deg. C. → Bioactivity and biodegradability of TCP precursor have been confirmed by the dissolution of TCP and formation of a bone like layer of new HA nanoparticles outside of the precursor after 24 h soaking in SBF solution. → Successive nucleation and formation of tiny hexagonal HA nanoplates and nanorods have been confirmed by TEM results after 24 h soaking of TCP in silica-containing BSF solution. - Abstract: The chemical modification of implant (prosthesis) surfaces is being investigated worldwide for improving the fixation of orthopaedic and dental implants. The main goal in this surface modification approach is to achieve a faster bone growth and chemical bonding of the implant to the newly generated and/or remodeled bone. In this work, we report fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in simulated body fluid (SBF, inorganic components of human blood plasma) solutions at 37 deg. C, using calcium phosphate (TCP) and sodium silicate as precursors. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated enhanced nucleation and formation of bone like layer of HA nanocrystals at the surface of TCP nanoparticles and occurrence of HA nanocrystals during 24 h soaking of TCP in SBF solution containing silica ions. The average size of a nanoparticle, using Scherrer formula, was found to be 18.2 nm.

  19. Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids.

    Science.gov (United States)

    Galindo-de-la-Rosa, J; Arjona, N; Moreno-Zuria, A; Ortiz-Ortega, E; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G

    2017-06-15

    The purpose of this work is to evaluate single and double-cell membraneless microfluidic fuel cells (MMFCs) that operate in the presence of simulated body fluids SBF, human serum and blood enriched with ethanol as fuels. The study was performed using the alcohol dehydrogenase enzyme immobilised by covalent binding through an array composed of carbon Toray paper as support and a layer of poly(methylene blue)/tetrabutylammonium bromide/Nafion and glutaraldehyde (3D bioanode electrode). The single MMFC was tested in a hybrid microfluidic fuel cell using Pt/C as the cathode. A cell voltage of 1.035V and power density of 3.154mWcm -2 were observed, which is the highest performance reported to date. The stability and durability were tested through chronoamperometry and polarisation/performance curves obtained at different days, which demonstrated a slow decrease in the power density on day 10 (14%) and day 20 (26%). Additionally, the cell was tested for ethanol oxidation in simulated body fluid (SBF) with ionic composition similar to human blood plasma. Those tests resulted in 0.93V of cell voltage and a power density close to 1.237mWcm -2 . The double cell MMFC (Stack) was tested using serum and human blood enriched with ethanol. The stack operated with blood in a serial connection showed an excellent cell performance (0.716mWcm -2 ), demonstrating the feasibility of employing human blood as energy source. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rheological investigation of high-acyl gellan gum hydrogel and its mixtures with simulated body fluids.

    Science.gov (United States)

    Osmałek, Tomasz Zbigniew; Froelich, Anna; Jadach, Barbara; Krakowski, Marek

    2018-05-01

    Purpose Most of the studies concerning gellan have been focused on its application as a food ingredient, however, gellan is often considered as a candidate for the development of novel pharmaceutical formulations. Taking into account that gellan is ion-sensitive, it can be assumed that its initial mechanical properties can change upon contact with body secretions. Therefore, the aim of the work was to investigate the rheological properties of pure high-acyl gellan gum hydrogel (0.4%) and its mixtures with selected simulated body fluids. Methods The rheological investigations were performed on rotational rheometer and included oscillatory temperature, amplitude, and frequency sweeping. The results enabled estimation of the linear viscoelastic regime, calculation of the cross-over points, and percentage of structure recovery. Results In the case of pure hydrogel no evidence of thermosensitivity was observed in the range of 20-40°C. In pH = 1.2 (NaCl/HCl) the hydrogel structure was almost entirely destroyed. Mixing with phosphate buffer (pH = 4.5) resulted in higher gel strength than after dilution with deionized water. The opposite effect was observed in the case of pH = 7.4. The studies performed for the mixture of GG hydrogel and mucin indicated interaction between the components. The hydrogel elasticity increased in the presence of simulated tear, but decreased in simulated saliva and vaginal fluid. Conclusions In this study, it was shown that the stability of a three-dimensional gellan structure may be affected by pH and the presence of mucin which most probably competed with gellan gum in divalent cations binding. The observations presented in this study may be important in terms of potential application of gellan gum as a potential carrier in drug delivery systems.

  1. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.

    Science.gov (United States)

    Gerzer, R; Heer, M

    2005-08-01

    The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.

  2. [Study of work accidents related to human body fluids exposure among health workers at a university hospital].

    Science.gov (United States)

    Balsamo, Ana Cristina; Felli, Vanda Elisa Andres

    2006-01-01

    This descriptive and exploratory study from a quantitative approach aimed to characterize workers who were victims of work accidents related to human body fluids exposure and to evaluate the accident victim care protocol. The population consisted of 48 workers who were victims of work accidents involving exposure to human body fluids, from July 2000 to June 2001. Data were collected through a form and interviews. Results showed that nursing workers presented higher accident risk levels and that 87.50% involved piercing and cutting material, such as needles and butterflies (70%). As to the accident-related situation/activity, the workers indicated that 25% were due to an "inadequate act during the procedure"; 19.64% mentioned that "it happened" and 29.17% answered that they did not have any suggestion. This study provided important tools to review and elaborate strategies to prevent accidents involving exposure to human body fluids.

  3. Evaluation of nuclear magnetic resonance spectroscopy for determination of deuterium abundance in body fluids: application to measurement of total-body water in human infants

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Pearson, G.A.; Serfass, R.E.; Roth, C.W.; Finley, J.W.

    1987-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to quantitate abundance of 2H in body water of human infants. This method provides precise measurement of total-body water without the extensive sample preparation requirements of previously described methods for determination of 2H content in body fluids. 2H2O (1 g/kg body weight) was administered to infants and saliva and urine were collected for up to 5 h. An internal standard was added directly to the fluid specimen and 2H enrichment in water was measured by NMR spectroscopy. Working range of deuterium abundance was 0.04-0.32 atom %. Coefficients of variation for saliva samples at 0.20 atom % 2H was 1.97%. 2H content in urine and saliva water reached a plateau by 4 h after administration, and amounts in the two fluids were virtually identical. Mean total-body water determination for six infants was 58.3 +/- 5.8% of body weight (range 53-66%)

  4. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    Science.gov (United States)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    would be distributed in the upper and lower layers of the ore body. The hydrothermally altered sediment layers above the ore body contain relatively unstable minerals that dissociate immediately in a room temperature, which could play a role as a boundary between hydrothermal fluids and intruded seawater in in-situ environments.

  5. Prolonged whole-body cold water immersion: fluid and ion shifts.

    Science.gov (United States)

    Deuster, P A; Smith, D J; Smoak, B L; Montgomery, L C; Singh, A; Doubt, T J

    1989-01-01

    To characterize fluid and ion shifts during prolonged whole-body immersion, 16 divers wearing dry suits completed four whole-body immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 msw. One immersion was conducted at 1000 (AM) and one at 2200 (PM) so that diurnal variations could be evaluated. Fifty-four hours separated the immersions, which lasted up to 6 h; 9 days separated each air saturation dive. Blood was collected before and after immersion; urine was collected for 12 h before, during, and after immersion for a total of 24 h. Plasma volume decreased significantly and to the same extent (approximately 17%) during both AM and PM immersions. Urine flow increased by 236.1 +/- 38.7 and 296.3 +/- 52.0%, urinary excretion of Na increased by 290.4 +/- 89.0 and 329.5 +/- 77.0%, K by 245.0 +/- 73.4 and 215.5 +/- 44.6%, Ca by 211.0 +/- 31.4 and 241.1 +/- 50.4%, Mg by 201.4 +/- 45.9 and 165.3 +/- 287%, and Zn by 427.8 +/- 93.7 and 301.9 +/- 75.4% during AM and PM immersions, respectively, compared with preimmersion. Urine flow and K excretion were significantly higher during the AM than PM. In summary, when subjects are immersed in cold water for prolonged periods, combined with a slow rate of body cooling afforded by thermal protection and enforced intermittent exercise, there is diuresis, decreased plasma volume, and increased excretions of Na, K, Ca, Mg, and Zn.

  6. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  7. Increased salt consumption induces body water conservation and decreases fluid intake.

    Science.gov (United States)

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  8. Newton's Investigation of the Resistance to Moving Bodies in Continuous Fluids and the Nature of "Frontier Science"

    Science.gov (United States)

    Gauld, Colin F.

    2010-01-01

    Newton's experiments into the resistance which fluids offer to moving bodies provide some insight into the way he related theory and experiment. His theory demonstrates a way of thought typical of 17th century physics and his experiments are simple enough to be replicated by present day students. Newton's investigations using pendulums were…

  9. Getting Students Familiar with the Use of Computers: Study of the Falling of a Body in a Fluid.

    Science.gov (United States)

    Guisasola, J.; Barragues, J. I.; Valdes, P.; Pedroso, F.

    1999-01-01

    Describes changes in scientific research methods that have been brought about by the use of computers. Presents an example of the falling of a body in a fluid to show students how computers can be used to experiment with mathematical models and to automate experiments. Contains 11 references. (Author/WRM)

  10. Exposure to and precautions for blood and body fluids among workers in the funeral home franchises of Fort Worth, Texas.

    Science.gov (United States)

    Nwanyanwu, O C; Tabasuri, T H; Harris, G R

    1989-08-01

    In 1982 the Centers for Disease Control published a set of recommendations and measures to protect persons working in health care settings or performing mortician services from possible exposure to the human immunodeficiency virus. This study of a number of funeral homes in the Fort Worth area was designed to determine the level of exposure of funeral home workers to blood and other body fluids and also to assess existing protective measures and practices in the industry. Workers in 22 funeral home franchises were surveyed with a predesigned questionnaire. Eighty-five responses from 20 of the 22 establishments were received. All 85 respondents admitted exposure of varying degrees to blood and body fluids. Sixty persons (70%) admitted heavy exposure, that is, frequent splashes. Analysis of the responses showed that 81 of 85 (95.3%) persons consistently wore gloves while performing tasks that might expose them to blood or other body fluids. Of the 60 persons who were heavily exposed, 43 wore long-sleeved gowns, 27 wore waterproof aprons, 17 surgical masks, and 15 goggles. The study further revealed that 52.9% (45/85) of the respondents had sustained accidental cuts or puncture wounds on the job. In light of these findings it is important to target educational efforts to persons in this industry to help them minimize their risks of infection with blood and body fluid borne infections.

  11. Drug research methodology. Volume 3, The detection and quantitation of drugs of interest in body fluids from drivers

    Science.gov (United States)

    1980-03-01

    This report presents the findings of a workshop on the chemical analysis of human body fluids for drugs of interest in highway safety. A cross-disciplinary panel of experts reviewed the list of drugs of interest developed in a previous workshop and d...

  12. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    Science.gov (United States)

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive

  13. Formation of apatite layers on modified canasite glass-ceramics in simulated body fluid.

    Science.gov (United States)

    Miller, C A; Kokubo, T; Reaney, I M; Hatton, P V; James, P F

    2002-03-05

    Canasite glass-ceramics were modified by either increasing the concentration of calcium in the glass, or by the addition of P2O5. Samples of these novel materials were placed in simulated body fluid (SBF), along with a control material (commercial canasite), for periods ranging from 12 h to 28 days. After immersion, surface analysis was performed using thin film X-ray diffraction, Fourier transform infrared reflection spectroscopy, and scanning electron microscopy equipped with energy dispersive X-ray detectors. The concentrations of sodium, potassium, calcium, silicon, and phosphorus in the SBF solution were measured using inductively coupled plasma emission spectroscopy. No apatite was detected on the surface of commercial canasite, even after 28 days of immersion in SBF. A crystalline apatite layer was formed on the surface of a P2O5-containing canasite after 5 days, and after 3 days for calcium-enriched canasite. Ion release data suggested that the mechanism for apatite deposition was different for P2O5 and non-P2O5-containing glass-ceramics. Copyright 2001 John Wiley & Sons, Inc.

  14. The application of cell cultures, body fluids and tissues in oncoproteomics

    Directory of Open Access Journals (Sweden)

    Kamila Duś-Szachniewicz

    2014-11-01

    Full Text Available Mass spectrometry (MS-based proteomics is a rapidly developing technology for the large scale analysis of proteins, their interactions and subcellular localization. In recent years proteomics has attracted much attention in medicine. Since a single biomarker might not have sufficient sensitivity and specificity in clinical practice, the identification of biomarker panels that comprise several proteins would improve the detection and clinical management of cancer patients. Additionally, the characteristics of protein profiles of most severe human malignancies certainly contribute to the understanding of the biology of cancer and fill the gap in our knowledge of carcinogenesis. This knowledge also is likely to result in the discovery of novel potential cancer markers and targets for molecular therapeutics. It is believed that the novel biomarkers will help in the development of personalized therapy tailored to the individual patient and will thereby reduce the mortality rate from cancer. In this review, the use of different types of human clinical samples (cell cultures, tissues and body fluids in oncoproteomics is explained and the latest advances in mass spectrometry-based proteomics biomarker discovery are discussed.

  15. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    Science.gov (United States)

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  16. In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid

    Directory of Open Access Journals (Sweden)

    Wei Yi

    2014-09-01

    Full Text Available 3D Ti-mesh has been coated with bioceramics under different coating conditions, such as material compositions and micro-porosity, using a dip casting method. Hydroxyapatite (HA, micro-HA particles (HAp, a bioglass (BG and their different mixtures together with polymer additives were used to control HA-coating microstructures. Layered composites with the following coating-to-substrate designs, such as BG/Ti, HA + BG/BG/Ti and HAp + BG/BG/Ti, were fabricated. The bioactivity of these coated composites and the uncoated Ti-mesh substrate was then investigated in a simulated body fluid (SBF. The Ti-mesh substrate and BG/Ti composite did not induce biomimetic apatite deposition when they were immersed in SBF for the selected BG, a pressable dental ceramic, used in this study. After seven days in SBF, an apatite layer was formed on both HA + BG/BG/Ti and HAp + BG/BG/Ti composites. The difference is the apatite layer on the HAp + BG/BG/Ti composite was rougher and contained more micro-pores, while the apatite layer on the HA + BG/BG/Ti composite was dense and smooth. The formation of biomimetic apatite, being more bioresorbable, is favored for bone regeneration.

  17. Fabrication of DNA/Hydroxyapatite nanocomposites by simulated body fluid for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Takayuki; Okamoto, Masami [Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-05-22

    The hydroxyapatite (HA) formation on the surface of DNA molecules in simulated body fluid (SBF) was examined. The osteoconductivity is estimated using SBF having ion concentrations approximately equal to those of human blood plasma. After immersion for 4 weeks in SBF at 36.5 °C, the HA crystallites possessing 1-14 micrometer in diameter grew on the surface of DNA molecules. The leaf flake-like and spherical shapes morphologies were observed through scanning electron microscopy analysis. Original peaks of both of DNA and HA were characterized by fourier transform infrared spectroscopy. The Ca/P ratio (1.1-1.5) in HA was estimated by energy dispersive X-ray analysis. After biomineralization, the calculated weight ratio of DNA/HA was 18/82 by thermogravimetry/differential thermal analysis. The molecular orbital computer simulation has been used to probe the interaction of DNA with two charge-balancing ions, CaOH{sup +} and CaH{sub 2}PO{sub 4}{sup +}. The adsorption enthalpy of the two ions on DNA having negative value was the evidence for the interface in mineralization of HA in SBF.

  18. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yanxuan; Zheng Yudong; Huang Xiaoshan; Xi Tingfei; Han Dongfei [School of Materials Science and Engineering, Beijing University of Science and Technology, Beijing 100083 (China); Lin Xiaodan [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Song Wenhui, E-mail: zhengyudong@mater.ustb.edu.c, E-mail: wenhui.song@brunel.ac.u [Wolfson Center for Materials Processing, School of Engineering and Design, Brunel University, West London, UB8 3PH (United Kingdom)

    2010-04-15

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  19. Biomimetic fabrication of calcium phosphate/chitosan nanohybrid composite in modified simulated body fluids

    Directory of Open Access Journals (Sweden)

    K. H. Park

    2017-01-01

    Full Text Available In this study, nucleation and growth of bone-like hydroxyapatite (HAp mineral in modified simulated body fluids (m-SBF were induced on chitosan (CS substrates, which were prepared by spin coating of chitosan on Ti substrate. The m-SBF showed a two fold increase in the concentrations of calcium and phosphate ions compared to SBF, and the post-NaOH treatment provided stabilization of the coatings. The calcium phosphate/chitosan composite prepared in m-SBF showed homogeneous distribution of approximately 350 nm-sized spherical clusters composed of octacalcium phosphate (OCP; Ca8H2(PO46·5H2O crystalline structure. Chitosan provided a control over the size of calcium phosphate prepared by immersion in m-SBF, and post-NaOH treatment supported the binding of calcium phosphate compound on the Ti surface. Post-NaOH treatment increased hydrophilicity and crystallinity of carbonate apatite, which increased its potential for biomedical application.

  20. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    International Nuclear Information System (INIS)

    Raman, V.; Tamilselvi, S.; Rajendran, N.

    2007-01-01

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data

  1. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Raman, V.; Tamilselvi, S. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India); Rajendran, N. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India)], E-mail: nrajendran@annauniv.edu

    2007-09-30

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data.

  2. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Janković, Ana; Eraković, Sanja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Mitrić, Miodrag [Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Tsui, Gary C.P.; Tang, Chak-yin [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Mišković-Stanković, Vesna [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Park, Soo Jin [Chemistry, College of Natural Sciences, Inha University, Incheon 402-751 (Korea, Republic of)

    2015-03-05

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  3. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    International Nuclear Information System (INIS)

    Janković, Ana; Eraković, Sanja; Mitrić, Miodrag; Matić, Ivana Z.; Juranić, Zorica D.; Tsui, Gary C.P.; Tang, Chak-yin; Mišković-Stanković, Vesna; Rhee, Kyong Yop; Park, Soo Jin

    2015-01-01

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  4. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  5. Degradation characteristics of irradiated poly-(caprolactonechitosan-hydroxyapatite) biomaterial in simulated body fluid solution

    International Nuclear Information System (INIS)

    Warastuti, Y.; Suryani, N.

    2013-01-01

    This investigation purpose was to study degradation characteristics of poly-(caprolactone -chitosan-hydroxyapatite) biomaterial in simulated body fluid (SBF) solution. A composite membrane has been synthesized using blending and stirring method with acetic acid solvent and then molded into thin film. Electron beam radiation dose 0 - 30 kGy were done in order to evaluate radiation effects. SBF absorption with various immersing times and degradation for 0 -12 weeks were conducted. Fourier Transform Infra Red Spectroscopy (FTIR) was used to identification functional groups of composite and Scanning Electron Microscopy (SEM) was applied to analyse micro structural surface of membrane before and after immersion. The irradiation process indicate that SBF absorption decrease because NH 2 groups in chitosan which contributes to the hydrophilicity was broken. The composite III indicate maximum absorption (58,2% ± 2,22) due to its smallest concentration of polycaprolactone and highest concentration of chitosan that caused decrease of hydrophobicity. Optimum degradation of composite III (1,3% ± 0,98) was reached after 8 weeks of immersion time. FTIR spectrum indicate the unity of typical peaks of the constituent materials and specific spectrum of CO 3 2- of carbonated apatite which was formed because immersion of SBF. Microstructural analysis using SEM indicate the formation of needle like apatite layer or calcium phosphate precipitate over all surface membrane. All the results indicate that these composite meet the requirements to biomaterial. (author)

  6. In-vitro differences of hydroxyapatite from different resources in simulated body fluid

    International Nuclear Information System (INIS)

    Hashim, N.; Sabudin, S.; Ibrahim, S.; Zin, N.M.; Bakar, S.H.A.; Fazan, F.

    2004-01-01

    Hydroxyapatite (HA; Ca 10 (PO 4 ) 6 (OH) 2 ), is one of the significant implant materials used in Orthopaedics and Dental applications. However, synthetically produced HA may not, be stable under ionic environment, which it will unavoidably encounter during its applications. In this paper, the in vitro effects of three HA materials derived from different resources, i.e. commercial HA (HAC), synthesised HA from pure chemicals (HAS) and synthesised HA from kapur sireh; derived traditionally from natural limestone (HAK), were studied. The HA disc samples were prepared and immersed in simulated body fluid (SAF), for 31 day period. The evaluation conducted focuses on the changes of pH and the calcium ion (Ca ion) and phosphate ion (P ion) concentrations in the SBF solution, as well as the XRD and SEM data representing the reactions on the HA materials. From the XRD, it was found that HAK has the smallest crystallite sizes, which, in turn affect the pH of the SBF during immersion. The Ca and P ion concentrations generally decrease over time at different rates for different HA. Upon 1 day immersion in SBF, apatite growth was observed, onto all three surfaces, which became more pronounced after 3 day immersion. However, the appetites formed were observed to be different in shape and sizes. The reasons for the difference in the the appetite crystals and their subsequent effects on cells are still being investigated. (Author)

  7. Estimation of body fluids with bioimpedance spectroscopy: state of the art methods and proposal of novel methods

    International Nuclear Information System (INIS)

    Buendia, R; Seoane, F; Lindecrantz, K; Bosaeus, I; Gil-Pita, R; Johannsson, G; Ellegård, L; Ward, L C

    2015-01-01

    Determination of body fluids is a useful common practice in determination of disease mechanisms and treatments. Bioimpedance spectroscopy (BIS) methods are non-invasive, inexpensive and rapid alternatives to reference methods such as tracer dilution. However, they are indirect and their robustness and validity are unclear. In this article, state of the art methods are reviewed, their drawbacks identified and new methods are proposed. All methods were tested on a clinical database of patients receiving growth hormone replacement therapy. Results indicated that most BIS methods are similarly accurate (e.g.  <  0.5   ±   3.0% mean percentage difference for total body water) for estimation of body fluids. A new model for calculation is proposed that performs equally well for all fluid compartments (total body water, extra- and intracellular water). It is suggested that the main source of error in extracellular water estimation is due to anisotropy, in total body water estimation to the uncertainty associated with intracellular resistivity and in determination of intracellular water a combination of both. (paper)

  8. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    Science.gov (United States)

    Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)

    1994-01-01

    In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.

  9. Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: semen and blood mixtures.

    Science.gov (United States)

    Sikirzhytski, Vitali; Sikirzhytskaya, Aliaksandra; Lednev, Igor K

    2012-10-10

    Conventional confirmatory biochemical tests used in the forensic analysis of body fluid traces found at a crime scene are destructive and not universal. Recently, we reported on the application of near-infrared (NIR) Raman microspectroscopy for non-destructive confirmatory identification of pure blood, saliva, semen, vaginal fluid and sweat. Here we expand the method to include dry mixtures of semen and blood. A classification algorithm was developed for differentiating pure body fluids and their mixtures. The classification methodology is based on an effective combination of Support Vector Machine (SVM) regression (data selection) and SVM Discriminant Analysis of preprocessed experimental Raman spectra collected using an automatic mapping of the sample. This extensive cross-validation of the obtained results demonstrated that the detection limit of the minor contributor is as low as a few percent. The developed methodology can be further expanded to any binary mixture of complex solutions, including but not limited to mixtures of other body fluids. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results

    DEFF Research Database (Denmark)

    van den Berge, M; Carracedo, A; Gomes, I

    2014-01-01

    The European Forensic Genetics Network of Excellence (EUROFORGEN-NoE) undertook a collaborative project on mRNA-based body fluid/skin typing and the interpretation of the resulting RNA and DNA data. Although both body fluids and skin are composed of a variety of cell types with different function...

  11. The "chloride theory", a unifying hypothesis for renal handling and body fluid distribution in heart failure pathophysiology.

    Science.gov (United States)

    Kataoka, Hajime

    2017-07-01

    Body fluid volume regulation is a complex process involving the interaction of various afferent (sensory) and neurohumoral efferent (effector) mechanisms. Historically, most studies focused on the body fluid dynamics in heart failure (HF) status through control of the balance of sodium, potassium, and water in the body, and maintaining arterial circulatory integrity is central to a unifying hypothesis of body fluid regulation in HF pathophysiology. The pathophysiologic background of the biochemical determinants of vascular volume in HF status, however, has not been known. I recently demonstrated that changes in vascular and red blood cell volumes are independently associated with the serum chloride concentration, but not the serum sodium concentration, during worsening HF and its recovery. Based on these observations and the established central role of chloride in the renin-angiotensin-aldosterone system, I propose a unifying hypothesis of the "chloride theory" for HF pathophysiology, which states that changes in the serum chloride concentration are the primary determinant of changes in plasma volume and the renin-angiotensin-aldosterone system under worsening HF and therapeutic resolution of worsening HF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Uniting ripple-formation theory under water and winds: A universal scaling relation for the wavelength of fluid-drag ripples across fluids and planetary bodies

    Science.gov (United States)

    Lapotre, M. G. A.; Lamb, M. P.; Ewing, R. C.; McElroy, B. J.

    2016-12-01

    Current ripples form on riverbeds and on the seafloor from viscous drag exerted by water flow over sand and are thought to be absent in subaerial systems, where ripple formation is dominated by a mechanism involving the impacting and splashing of sand grains. A fluid-drag mechanism, however, is not precluded in subaerial conditions and was originally hypothesized by R. A. Bagnold. Despite decades of observations in the field and in the laboratory, no universal scaling relation exists to predict the size of fluid-drag ripples. We combine dimensional analysis and a new extensive data compilation to develop a relationship and predict the equilibrium wavelength of current ripples. Our analysis shows that ripples are spaced farther apart when formed by more viscous fluids, smaller bed shear velocities, in coarser grains, or for smaller sediment specific gravity. Our scaling relation also highlights the abrupt transition between current ripples and subaqueous dunes, and thus allows for a process-based segregation of ripples from dunes. When adjusting for subaerial conditions, we predict the formation of decimeter-scale wind-drag ripples on Earth and meter-scale wind-drag ripples on Mars. The latter are ubiquitous on the Red Planet, and are found to co-exist with smaller decimeter-scale ripples, which we interpret as impact ripples. Because the predicted scale of terrestrial wind-drag ripples overlaps with that of impact ripples, it is possible that wind-drag ripples exist on Earth too, but are not recognized as such. When preserved in rocks, fluid-drag ripple stratification records flow directions and fluid properties that are crucial to constrain paleo-environments. Our new theory allows for predictions of ripple size, perhaps in both fluvial and eolian settings, and thus potentially represents a powerful tool for paleo-environmental reconstructions on different planetary bodies.

  13. Changes of body fluid and hematology in toad and their rehabilitation following intermittent exposure to simulated high altitude

    Science.gov (United States)

    Biswas, H. M.; Boral, M. C.

    1986-06-01

    Three groups of adult male toads were exposed intermittently in a decompression chamber for a daily period of 4 and 8 hours at a time for 6 consecutive days to an “altitude” of 12,000; 18,000 and 24,000 feet (3658; 5486; 7315 m) respectively. Most of the exposed animals were sacrificed immediately after the last exposure, but only a few animals experiencing 8 hours of exposure were sacrificed after a further 16 hours of exposure at normal atmospheric pressure. Eight hours of daily exposure for 6 days causes a decrease of body fluids and an increase of hematological parameters in all the altitude exposed animals compared with to the changes noted in the animals having 4 hours of daily exposure for 6 days at the same altitude levels. The animals that were exposed to pressures equivalent to altitudes of 12,000 and 18,000 feet daily for 8 hours were found to return nearly to their normal body fluids and hematological balance after 16 hours of exposure to normal atmospheric pressure, whereas the animals exposed for a similar period at an equivalent 24,000 feet failed to get back their normal balance of body fluids and hematology after 16 hours of exposure at normal atmospheric pressure. The present experiment shows that the body weight loss and changes of body fluid and hematological parameters in the toad after exposure to simulated high altitude are due not only to dehydration, but suggest that hypoxia may also have a role.

  14. Knowledge and occupational exposure to blood and body fluids among health care workers and medical students.

    Science.gov (United States)

    Denić, Ljiljana Marković; Ostrić, Irena; Pavlović, Andrija; Dimitra, Kalimanovska Ostrić

    2012-01-01

    Health workers and medical students are at occupational risk of blood-borne diseases during the accidents, that is, via percutaneous injury or entry of blood or body fluids through the mucosa or injured skin. to review and analyze the knowledge, attitudes and perception of risks of bloodborne diseases of the clinical course students and health workers as well as the frequency of accidents. Cross-sectional study was carried out among the students of the Faculty of Medicine in Belgrade, and health workers of the Clinical Center of Serbia. The subjects responded anonymously to questionnaire specially designed for the study. Both students and health workers were aware, in a high percentage, of the fact that the risk of hepatitis B spread was about 30%. Significantly more students gave affirmative reply that blood as biological material was a potential hazard of HIV infection spread (p = 0.001), and significantly more students knew that HIV would not be spread by sweat (p = 0.001). Hepatitis B vacci-nation was administered only to 24.1% of students and 71.4% of health workers. About 10% of students and 65.5% of health workers experienced some accident. There was no significant difference of accidents bet-ween nurses/technicians and physicians (p > 0.05), as well as of accidents and a total length of service (p > 0.05). The majority of accidents occurred during the use of needle/sharp object (in 27.3% of students and 33.1% of health workers). About 40% of students and slightly over a half of the workers reported the accidents to appropriate authorities. Additional education in this field is considered necessary by 73% of students. During the studies and via continuous medical education it is necessary to upgrade the level of knowledge on prevention of accidents, what would, at least partially, influence their reduction.

  15. Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Xiao-Bo Chen

    2018-03-01

    Full Text Available High corrosion kinetics and localised corrosion progress are the primary concerns arising from the clinical implementation of magnesium (Mg based implantable devices. In this study, a binary Mg-lithium (Li alloy consisting a record high Li content of 14% (in weight was employed as model material aiming to yield homogenous and slow corrosion behaviour in a simulated body fluid, i.e. minimum essential medium (MEM, in comparison to that of generic Mg alloy AZ31 and biocompatible Mg-0.5Zn-0.5Ca counterparts. Scanning electron microscopy examination reveals single-phase microstructural characteristics of Mg-14Li (β-Li, whilst the presence of insoluble phases, cathodic to α-Mg matrix, in AZ31 and Mg-0.5Zn-0.5Ca. Though slight differences exist in the corrosion kinetics of all the specimens over a short-term time scale (no longer than 60 min, as indicated by potentiodynamic polarisation and electrochemical impedance spectroscopy, profound variations are apparent in terms of immersion tests, i.e. mass loss and hydrogen evolution measurements (up to 7 days. Cross-sectional micrographs unveil severe pitting corrosion in AZ31 and Mg-0.5Zn-0.5Ca, but not the case for Mg-14Li. X-ray diffraction patterns and X-ray photoelectron spectroscopy confirm that a compact film (25 μm in thickness consisting of lithium carbonate (Li2CO3 and calcium hydroxide was generated on the surface of Mg-14Li in MEM, which contributes greatly to its low corrosion rate. It is proposed therefore that the single-phase structure and formation of protective and defect-free Li2CO3 film give rise to the controlled and homogenous corrosion behaviour of Mg-14Li in MEM, providing new insights for the exploration of biodegradable Mg materials.

  16. Performance of surface on ultrafine grained Ti-0.2Pd in simulated body fluid

    Science.gov (United States)

    Wang, Xiu-Lai; Zhou, Qing; Yang, Kai; Zou, Cheng-Hong; Wang, Lei

    2018-03-01

    Ti-0.2 wt% Pd (Ti-0.2Pd) which has high crevice corrosion resistance is highlighted for implant applications. In this work, Ti-0.2Pd alloy is subjected to equal channel angular pressing (ECAP) for grain refinement. The effect of the microstructure on the surface performance of Ti-0.2Pd in a simulated body fluid (SBF) adding bovine serum albumin is investigated. Heat-treated specimens including furnace cooled (FC) and water quenched (WQ) specimens are also prepared for comparison. The corrosion resistance is evaluated by the tests of potentiodynamic polarization and the measurement of electrochemical impedance spectroscopy (EIS). The composition and morphology of the surface after exposing to SBF 60 days were examined by X-ray photoelectronic spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results show an ultrafine grained microstructure with average grain size of 3.6 μm is obtained after ECAP. The ultrafine grained Ti-0.2Pd has higher corrosion resistance than AR(as-received), WQ and FC specimens. The quantitative analysis of the surface shows larger numbers of precipitations formed on ECAPed Ti-0.2Pd than those formed on heat-treated. The precipitation contains more oxygen, calcium and phosphorus on ECAPed specimen than those on other specimens. The Ca:P ratio is ranged from 1:0.7 to 1:4.4, no dependent on the specimen type. A larger Warburg resistance is obtained on WQ specimen indicating a denser layer formation on WQ specimen. The precipitation formed on WQ specimens is the least among three kinds of specimens. Palladium is not found on the surfaces after exposure to SBF.

  17. Usefulness of ultrasound examination in the evaluation of a neonate's body fluid status.

    Science.gov (United States)

    Kieliszczyk, Joanna; Baranowski, Wojciech; Kosiak, Wojciech

    2016-06-01

    Appropriate hydration is a very important prognostic factor for the patient's health. Ultrasonographic assessment of hydration status is rarely used in pediatric medicine and it is not used at all in neonates due to the fact that no reference values have been established for this age group. The aim of the paper was to establish reference values for neonates. The study included 50 neonates from two hospitals in the Lower Silesia region of Poland; 25 of them were healthy patients (full-term newborns with no perinatal complications) and 25 were sick patients (newborns with heart defects such as ostium secundum atrial septal defect, ventricular septal defect, permanent foramen ovale and patent ductus arteriosus as well as newborns with neonatal jaundice or pneumonia that occurred during the first days of life). The ultrasound scans were conducted during the first days of the children's life. For every child inferior vena cava diameter was measured in the substernal area, longitudinal plane, M-mode in two respiratory phases: inhalation and exhalation. In addition, abdominal aorta diameter was determined (substernal area, transverse plane). The study demonstrated a statistically significant difference in the calculated inferior vena cava collapsibility index between both groups. Two other indices included the ratio of the inferior vena cava diameter during the expiratory phase to the diameter of the aorta and the ratio of the inferior vena cava diameter during the inspiratory phase to the diameter of the aorta; a statistically significant difference between both groups was found only for the measurements in the inspiratory phase. Based on the study results normal ranges for hydration indices in neonates were established. The need for the measurement of the abovementioned parameters in the inspiratory phase was determined. In addition, the usefulness of the ultrasound examination for the evaluation of body fluid status in this pediatric age group, particularly in preterm

  18. Cerebrospinal fluid markers in dementia with lewy bodies compared with Alzheimer disease.

    Science.gov (United States)

    Gómez-Tortosa, Estrella; Gonzalo, Isabel; Fanjul, Samira; Sainz, Maria José; Cantarero, Susana; Cemillán, Carlos; Yébenes, Justo García; del Ser, Teodoro

    2003-09-01

    Most patients with dementia with Lewy bodies (DLB) exhibit diffuse plaque-only pathology with rare neocortical neurofibrillary tangles (NFTs), as opposed to the widespread cortical neurofibrillary-tau involvement in Alzheimer disease (AD). Another pathological difference is the astrocytic and microglial inflammatory responses, including release of interleukins (ILs), around the neuritic plaques and NFTs in AD brains that are absent or much lower in DLB. We analyzed cerebrospinal fluid (CSF) markers that reflect the pathological differences between AD and DLB. To determine CSF concentrations of tau, beta-amyloid, IL-1beta, and IL-6 as potential diagnostic clues to distinguish between AD and DLB. We measured total tau, beta-amyloid1-42, IL-1beta, and IL-6 levels in CSF samples of 33 patients with probable AD without parkinsonism, 25 patients with all the core features of DLB, and 46 age-matched controls. Patients with AD had significantly higher levels of tau protein than patients with DLB and controls (P<.001). The most efficient cutoff value provided 76% specificity to distinguish AD and DLB cases. Patients with AD and DLB had lower, but not significantly so, beta-amyloid levels than controls. The combination of tau and beta-amyloid levels provided the best sensitivity (84%) and specificity (79%) to differentiate AD vs controls but was worse than tau values alone in discriminating between AD and DLB. Beta-amyloid levels had the best correlation with disease progression in both AD and DLB (P =.01). There were no significant differences in IL-1beta levels among patients with AD, patients with DLB, and controls. Patients with AD and DLB showed slightly, but not significantly, higher IL-6 levels than controls. The tau levels in CSF may contribute to the clinical distinction between AD and DLB. Beta-amyloid CSF levels are similar in both dementia disorders and reflect disease progression better than tau levels. Interleukin CSF concentrations do not distinguish between

  19. Controlling of dielectric parameters of insulating hydroxyapatite by simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kaygili, Omer, E-mail: okaygili@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Keser, Serhat [Department of Chemistry, Faculty of Science, Firat University, Elazig (Turkey); Ates, Tankut; Tatar, Cengiz; Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey)

    2015-01-01

    Hydroxyapatite (HAp) samples were synthesized under various amounts of citric acid using the sol–gel method. Before and after immersion in simulated body fluid (SBF) for 14 and 28 days, the structural properties of HAp samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray (EDX) spectroscopy and dielectric measurements. The crystallite size (D) was found to be in the range of 25.17–33.06 nm with the crystallinity percent (X{sub C}%) of 69.53–86.09. The lattice parameters of a and c were calculated to be in the ranges of 9.373–9.434 Å and 6.828–6.896 Å, respectively. The morphology of the as-synthesized samples was changed with the amount of citric acid and soaking period in SBF. The Ca/P molar ratios indicated a decrease with increasing immersion time, and Ca-deficiency was observed. The relative permittivity (ε′) and dielectric loss (ε″) were significantly affected by citric acid content and soaking period in SBF. It was seen that the alternating current conductivity (σ{sub ac}) increased with increasing frequency and the σ{sub ac} values changed with increasing soaking period and amount of citric acid. - Highlights: • The crystallite size is in the range of 25.17–33.06 nm. • The Ca/P molar ratio showed a decrease with increasing immersion time. • Citric acid content and soaking period in SBF affect the relative permittivity. • The alternating current conductivity increased with increasing frequency.

  20. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.

    Science.gov (United States)

    Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš

    2011-06-01

    The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Microstructure and corrosion study of porous Mg-Zn-Ca alloy in simulated body fluid

    Science.gov (United States)

    Annur, Dhyah; Erryani, Aprilia; Lestari, Franciska P.; Nyoman Putrayasa, I.; Gede, P. A.; Kartika, Ika

    2017-03-01

    Magnesium alloys had been considered as promising biomedical devices due to their biocompatibility and biodegradability. In this present work, microstructure and corrosion properties of Mg-Zn-Ca-CaCO3 porous magnesium alloy were examined. Porous metals were fabricated through powder metallurgy process with CaCO3 addition as a foaming agent. CaCO3 content was varied (1, 5, and 10%wt) followed by sintering process in 650 °C in Argon atmosphere for 10 and 15 h. The microstructure of the resulted alloys was analyzed by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry data (EDS). Further, to examine corrosion properties, electrochemical test were conducted using G750 Gamry Instrument in accordance with ASTM standard G5-94 in simulated body fluid (Hank’s solution). As it was predicted, increasing content of foaming agent was in line with the increasing of pore formation. The electrochemical testing indicated corrosion rate would increase along with the increasing of foaming agent. The porous Mg-Zn-Ca alloy which has more porosity and connecting area will corrode much faster because it can transport the solution containing chloride ion which accelerated the chemical reaction. Highest corrosion resistance was given by Mg-Zn-Ca-1CaCO3-10 h sintering with potential corrosion of  -1.59 VSCE and corrosion rate of 1.01 mmpy. From the microstructure after electrochemical testing, it was revealed that volcano shaped structure and crack would occur after exposure to Hank’s solution

  2. Biomimetic Nanohydroxyapatite Synthesized With/Without Tris-Buffered Simulated Body Fluid: A Comparative Analysis.

    Science.gov (United States)

    Rana, Deepti; Wang, Xiumei; Webster, Thomas J; Ramalingam, Murugan

    2018-06-01

    Nano hydroxyapatite (nHAp) mimics the inorganic phase of hard tissue such as bone and teeth and, thus, has a wide range of clinical applications. The present study reports on the biomimetic synthesis of nHAp with and without Tris-buffered simulated body fluid (SBF) and investigated the role of buffering conditions on nHAp formation. The hypothesis of this study was that the nucleation and growth rate of nHAp may depend on buffering conditions during the precipitation process. The results of this study suggest that both of the above methods effectively synthesized carbonated "bone-like" nHAp. However, an increased incubation period of 8 hrs was necessary for nHAp synthesized using non Tris-buffered SBF as compared to Tris-buffered SBF which synthesized nHAp in just 3 hrs. Interestingly, there was no change in the chemical functionality for both samples. XRD and TGA analysis confirmed that Tris-buffered SBF facilitated more carbonate ion substitution than the non-Tris-buffered SBF approach. Therefore, this study concluded for the first time that the addition of Tris in SBF accelerates nHAp formation with more carbonate ion substitution. Nevertheless, carbonate ion substituted nHAp could also be synthesized using non Tris-buffered SBF, but would require longer incubation periods. This analysis highlights the importance of pH stability in the SBF for biomimetic nHAp synthesis which is useful for the synthesis of nHAp for a wide range of biomedical applications.

  3. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.

    Science.gov (United States)

    Virkler, Kelly; Lednev, Igor K

    2009-07-01

    Body fluid traces recovered at crime scenes are among the most important types of evidence to forensic investigators. They contain valuable DNA evidence which can identify a suspect or victim as well as exonerate an innocent individual. The first step of identifying a particular body fluid is highly important since the nature of the fluid is itself very informative to the investigation, and the destructive nature of a screening test must be considered when only a small amount of material is available. The ability to characterize an unknown stain at the scene of the crime without having to wait for results from a laboratory is another very critical step in the development of forensic body fluid analysis. Driven by the importance for forensic applications, body fluid identification methods have been extensively developed in recent years. The systematic analysis of these new developments is vital for forensic investigators to be continuously educated on possible superior techniques. Significant advances in laser technology and the development of novel light detectors have dramatically improved spectroscopic methods for molecular characterization over the last decade. The application of this novel biospectroscopy for forensic purposes opens new and exciting opportunities for the development of on-field, non-destructive, confirmatory methods for body fluid identification at a crime scene. In addition, the biospectroscopy methods are universally applicable to all body fluids unlike the majority of current techniques which are valid for individual fluids only. This article analyzes the current methods being used to identify body fluid stains including blood, semen, saliva, vaginal fluid, urine, and sweat, and also focuses on new techniques that have been developed in the last 5-6 years. In addition, the potential of new biospectroscopic techniques based on Raman and fluorescence spectroscopy is evaluated for rapid, confirmatory, non-destructive identification of a body

  4. Solid-Phase Extraction Strategies to Surmount Body Fluid Sample Complexity in High-Throughput Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Bladergroen, Marco R.; van der Burgt, Yuri E. M.

    2015-01-01

    For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations. PMID:25692071

  5. Osmotic relations of the coelomic fluid and body wall tissues in Arenicola marina subjected to salinity change

    DEFF Research Database (Denmark)

    Weber, Roy E.; Spaargaren, D.H.

    1979-01-01

    nitrogenous organic molecules (ninhydrin-positive substances, NPS) in the body wall tissues and in the coelomic fluid of specimens of Arenicola in response to sudden changes in salinity. The coelomic solutes consist almost entirely of electrolytes and the osmotic contribution of NPS is essentially negligible....... In the body wall extracts, however, NPS accounts for at least one third of the osmotic concentration and for most of the substantial non-electrolyte fraction. There is no evidence from coelomic NPS measurements for extrusion of cellular amino acids during adaptation to lowered salinity. In diluted sea water...

  6. Development of a highly sensitive MIP based-QCM nanosensor for selective determination of cholic acid level in body fluids

    International Nuclear Information System (INIS)

    Gültekin, Aytaç; Karanfil, Gamze; Sönmezoğlu, Savaş; Say, Rıdvan

    2014-01-01

    Determination of cholic acid is very important and necessary in body fluids due to its both pharmaceutical and clinical significance. In this study, a quartz crystal microbalance (QCM) nanosensor, which is imprinted cholic acid, has been developed for the assignation of cholic acid. The cholic acid selective memories have been generated on QCM electrode surface by using molecularly imprinted polymer (MIP) based on methacryloylamidohistidine-copper (II) (MAH-Cu(II)) pre-organized monomer. The cholic acid imprinted nanosensor was characterized by atomic force microscopy (AFM) and then analytical performance of the cholic acid imprinted QCM nanosensor was studied. The detection limit was found to be 0.0065 μM with linear range of 0.01–1000 μM. Moreover, the high value of Langmuir constant (b) (7.3 * 10 5 ) obtained by Langmuir graph showed that the cholic acid imprinted nanosensor had quite strong binding sites affinity. At the last step of this procedure, cholic acid levels in body fluids were determined by the prepared imprinted QCM nanosensor. - Graphical abstract: QCM responses of the cholic acid imprinted and non-imprinted nanosensors (C CA = 0.1 μM). - Highlights: • The purpose is to synthesize a new cholic acid imprinted QCM nanosensor by MIP. • Analytical applications of QCM nanosensor were investigated. • The cholic acid levels in body fluids were determined by prepared QCM nanosensor

  7. Usefulness of ultrasound examination in the evaluation of a neonate’s body fluid status

    Directory of Open Access Journals (Sweden)

    Joanna Kieliszczyk

    2016-06-01

    Full Text Available Appropriate hydration is a very important prognostic factor for the patient’s health. Ultrasonographic assessment of hydration status is rarely used in pediatric medicine and it is not used at all in neonates due to the fact that no reference values have been established for this age group. The aim of the paper was to establish reference values for neonates. Material and methods: The study included 50 neonates from two hospitals in the Lower Silesia region of Poland; 25 of them were healthy patients (full-term newborns with no perinatal complications and 25 were sick patients (newborns with heart defects such as ostium secundum atrial septal defect, ventricular septal defect, permanent foramen ovale and patent ductus arteriosus as well as newborns with neonatal jaundice or pneumonia that occurred during the first days of life. The ultrasound scans were conducted during the first days of the children’s life. For every child inferior vena cava diameter was measured in the substernal area, longitudinal plane, M-mode in two respiratory phases: inhalation and exhalation. In addition, abdominal aorta diameter was determined (substernal area, transverse plane. Results: The study demonstrated a statistically significant difference in the calculated inferior vena cava collapsibility index between both groups. Two other indices included the ratio of the inferior vena cava diameter during the expiratory phase to the diameter of the aorta and the ratio of the inferior vena cava diameter during the inspiratory phase to the diameter of the aorta; a statistically significant difference between both groups was found only for the measurements in the inspiratory phase. Conclusions: Based on the study results normal ranges for hydration indices in neonates were established. The need for the measurement of the abovementioned parameters in the inspiratory phase was determined. In addition, the usefulness of the ultrasound examination for the evaluation of body

  8. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid

    International Nuclear Information System (INIS)

    Liuyun, Jiang; Chengdong, Xiong; Lixin, Jiang; Lijuan, Xu

    2013-01-01

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n

  9. Performance of a Sequential and Parallel Computational Fluid Dynamic (CFD) Solver on a Missile Body Configuration

    National Research Council Canada - National Science Library

    Hisley, Dixie

    1999-01-01

    .... The goals of this report are: (1) to investigate the performance of message passing and loop level parallelization techniques, as they were implemented in the computational fluid dynamics (CFD...

  10. Stab Resistance of Shear Thickening Fluid (STF)-Kevlar Composites for Body Armor Applications

    National Research Council Canada - National Science Library

    Egres Jr., R. G; Decker, M. J; Halbach, C. J; Lee, Y. S; Kirkwood, J. E; Kirwood, K. M; Wagner, N. J; Wetzel, E. D

    2004-01-01

    The stab resistance of shear thickening fluid (STF)-Kevlar and STF-Nylon fabric composites are investigated and found to exhibit significant improvements over neat fabric targets of equivalent areal density...

  11. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    Science.gov (United States)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  12. Numerical investigation of incompressible fluid flow and heat transfer across a bluff body in a channel flow

    Directory of Open Access Journals (Sweden)

    Taymaz Imdat

    2015-01-01

    Full Text Available The Lattice Boltzmann Method is applied to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a two-dimensional channel with a built-in bluff body. In this study, a triangular prism is taken as the bluff body. Not only the momentum transport, but also the energy transport is modeled by the Lattice Boltzmann Method. A uniform lattice structure with a single time relaxation rule is used. For obtaining a higher flexibility on the computational grid, interpolation methods are applied, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is investigated for different Reynolds numbers, while keeping the Prandtl number at the constant value of 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an assessment of the accuracy of the developed Lattice Boltzmann code, the results are compared with those obtained by a commercial Computational Fluid Dynamics code. It is observed that the present Lattice Boltzmann code delivers results that are of similar accuracy to the well-established Computational Fluid Dynamics code, with much smaller computational time for the prediction of the unsteady phenomena.

  13. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication.

    Science.gov (United States)

    Klarica, Marijan; Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana; Orešković, Darko

    2014-01-01

    Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.

  14. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication.

    Directory of Open Access Journals (Sweden)

    Marijan Klarica

    Full Text Available Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.

  15. Utility of Cytospin and Cell block Technology in Evaluation of Body Fluids and Urine Samples: A Comparative Study.

    Science.gov (United States)

    Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A; Chauhan, Sunanda

    2018-01-01

    Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material.

  16. Dietary cation and anion difference: Effects on milk production and body fluid distribution in lactating dairy goats under tropical conditions.

    Science.gov (United States)

    Nguyen, Thiet; Chaiyabutr, Narongsak; Chanpongsang, Somchai; Thammacharoen, Sumpun

    2018-01-01

    This study aimed to determine the effect of dietary cation and anion difference (DCAD) on milk production and body fluid distribution in lactating dairy goats. Ten dairy goats were selected and divided into two groups, five animals each. Animals received either control DCAD (control, 22.81 mEq/100 g dry matter (DM)) or high DCAD (DCAD, 39.08 mEq/100 g DM). The results indicated that rectal temperature (Tr), respiration rate, milk yield and compositions did not differ between groups. But the percentage change of Tr from the DCAD group was lower than the control group between 09.00 and 13.00 hours. DM intake tended to increase in the DCAD group. Dairy goats in the DCAD group drank more water, but urinary excretion and plasma antidiuretic hormone concentration remained unchanged. Apparent water balance was higher from the DCAD group over 24 h. There was no effect of DCAD on plasma and blood volumes, but tended to increase in extracellular fluid and thereby increased total body water. The present results indicate that animals supplemented with high DCAD increase their total body water and apparent water balance. These results have contributed to the process of adaptation for evaporative cooling and would be useful in slowing down the elevation in Tr. © 2017 Japanese Society of Animal Science.

  17. DETERMINATION OF ROCURONIUM AND ITS PUTATIVE METABOLITES IN BODY-FLUIDS AND TISSUE-HOMOGENATES

    NARCIS (Netherlands)

    KLEEF, UW; PROOST, JH; ROGGEVELD, J

    1993-01-01

    A sensitive and selective HPLC method was developed for the quantification of the neuromuscular blocking agent rocuronium and its putative metabolites (the 17-desacetyl derivative and the N-desallyl derivative of rocuronium) in plasma, urine, bile, tissue homogenates and stoma fluid. Samples were

  18. The Near Wake of Bluff Bodies in Stratified Fluids and the Emergence of Late Wake Characteristics

    Science.gov (United States)

    2010-10-29

    The Physics of Fluids, 20:187-191, 1977. [39] L. Prandtl. Uber ttiissigkeitsbewegimg bei sehr kleiuer reibung. Int. Math. Kongr. Heidelberg, pages...Tij = UiUj — Ui Uj. (3) The form of equations (1) and (2) requires that the filtering and differentiation com- mute (Ghosal and Moin (1995...introduced an exponential filter which has an inverse in a form of a differential operator. The inverse allows to compute the SGS stress tensor from the

  19. Determination of methylglyoxal-bis(guanylhydrazone) in body fluids by ion-pair chromatography.

    Science.gov (United States)

    Roboz, J; Wu, K T; Hart, R D

    1980-01-01

    Methylglyoxal-bis(guanylhydrazone), Methyl-G, is a potent antineoplastic agent currently undergoing Phase l clinical trials. Serum, ascitic and pleural fluids, and urine are deproteinized with methanol, supernatant is evaporated, residue is redissolved in the eluent, lipids are removed with carbon tetrachloride, and an aliquot of the aqueous layer injected into the chromatograph. Ethylglyoxal-bis(guanylhydrazone) (Ethyl-G) is the internal standard. The mobile phase is a mixture of an aqueous buffer (containing 0.004 M heptane and pentane sulfonic acid, 90%:10%, buffered to pH 3.5) and methanol (68%:32%). The ion-pair complex is retained on a micro Bondapak C18 column, eluted with a flow of 2.0 mL/min. Absorbance is measured at 280 nm. Detectability: 30 ng/mL (0.11 micro M) in serum, ascitic and pleural fluids, 300 ng/mL (1.1 micro M) in urine. Calibration curves (peak height ratios of Methyl-G/Ethyl-G plotted against known drug concentrations) were linear in the 0.1-30 microg/mL range. Correlation coefficinets were 0.999; coefficients of variation for reproducibility were less than 5%. Residual blood levels of Methyl-G persist for several days. Methyl-G was found to pass into ascitic fluid.

  20. Fluid-structure interaction of a rolling restrained body of revolution at high angles of attack

    Science.gov (United States)

    Degani, D.; Ishay, M.; Gottlieb, O.

    2017-03-01

    The current work investigates numerically rolling instabilities of a free-to-roll slender rigid-body of revolution placed in a wind tunnel at a high angle of attack. The resistance to the roll moment is represented by a linear torsion spring and equivalent linear damping representing friction in the bearings of a simulated wind tunnel model. The body is subjected to a three-dimensional, compressible, laminar flow. The full Navier-Stokes equations are solved using the second-order implicit finite difference Beam-Warming scheme, adapted to a curvilinear coordinate system, whereas the coupled structural second order equation of motion for roll is solved by a fourth-order Runge-Kutta method. The body consists of a 3.5-diameter tangent ogive forebody with a 7.0-diameter long cylindrical afterbody extending aft of the nose-body junction to x/D = 10.5. We describe in detail the investigation of three angles of attack 20°, 40°, and 65°, at a Reynolds number of 30 000 (based on body diameter) and a Mach number of 0.2. Three distinct configurations are investigated as follows: a fixed body, a free-to-roll body with a weak torsion spring, and a free-to-roll body with a strong torsion spring. For each angle of attack the free-to-roll configuration portrays a distinct and different behavior pattern, including bi-stable limit-cycle oscillations. The bifurcation structure incorporates both large and small amplitude periodic roll oscillations where the latter lose their periodicity with increasing stiffness of the restraining spring culminating with distinct quasiperiodic oscillations. We note that removal of an applied upstream disturbance for a restrained body does not change the magnitude or complexity of the oscillations or of the flow patterns along the body. Depending on structure characteristics and flow conditions even a small rolling moment coefficient at the relatively low angle of attack of 20° may lead to large amplitude resonant roll oscillations.

  1. Fluid Redistribution and Heart Rate in Humans During Whole-Body Tilting, G(z) Centrifugation, and Lower Body Negative Pressure

    Science.gov (United States)

    Watenpaugh, D. E.; Breit, G. A.; Ballard, R. E.; Murthy, G.; Hargens, A. R.

    1994-01-01

    Gravity creates blood pressure gradients which redistribute body fluids towards the feet. Positive G(z) centrifugation and lower body negative pressure (LBNP) have been proposed to simulate these and other effects of gravity during long-term existence in microgravity. We hypothesized that the magnitude of upper-to-lower body fluid redistribution would increase according to the following order: short-arm centrifugation (SAC), long-arm centrifugation (LAC), head-up tilt (HUT), and LBNP. To test this hypothesis, we employed strain gauge plethysmography of the neck, thigh and calf during HUT and supine SAC and LAC up to lG(z) at the feet, and during supine LBNP to 100 mm Hg. Supine 100 mm Hg LBNP generates footward force and produces transmural blood pressures in the foot approximately equal to 1 G(z) (90 deg) HUT. Heart rate was measured via cardiotachometry. Control measurements were made while supine. SAC and LAC elicited similar increases in thigh volume at 1 G(z) (2.3 +/- 0.4 and 2.1 +/- 0.1%, respectively; mean +/- se, n greater than or equal to 7). At 100 mm Hg LBNP, thigh volume increased (3.4 +/- 0.3%) significantly more than during l G(z) centrifugation (p less than 0.05). Surprisingly, due to a paradoxical 0.6% reduction of thigh volume between 0.8 and 1.0 G(z) HUT, thigh volume was increased only 0.6 +/- 0.3% at 1 G(z) HUT. The calf demonstrated similar, although less definitive, responses to the various gravitational stimuli. Neck volume tended to decrease less during HUT than during the other stimuli. Heart rate increased similarly during HUT (18 +/- 2 beats/min) and LAC (12 +/- 2 beats/min), and exhibited still greater elevation during LBNP (29 +/- 4 beats/min), yet did not increase during SAC. These results suggest upright posture activates mechanisms that counteract footward fluid redistribution which are not activated during supine applications of simulated gravity. LAC more closely approximated effects of normal gravity (HUT) than LBNP. Therefore

  2. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    Science.gov (United States)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  3. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.

    Science.gov (United States)

    Jafari, Sajjad; Singh Raman, R K

    2017-09-01

    A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Flehmen response in bull: role of vaginal mucus and other body fluids of bovine with special reference to estrus.

    Science.gov (United States)

    Sankar, R; Archunan, G

    2004-07-30

    The present investigation was carried out with a view to evaluate the frequency of Flehmen behaviour in bull in response to body fluids of cows in various stages of the estrous cycle, in the context of estrus detection. The study was performed on free moving bulls under natural conditions. Samples of vaginal mucus, saliva, faeces and milk of pro-estrus, estrus and di-estrus stages collected from donor cows were rubbed individually onto the genital regions of non-estrus animals (dummy cows) and the bulls were observed for 30 min for assessment of Flehmen behaviour. The duration of Flehmen behaviour shown by bulls was maximum towards the dummy cows receiving estrus sample. Such Flehmen behaviour, however, did not occur in bulls in response to the cows receiving samples of other stages. The statistical significance was higher (P mucus may act as an additional/secondary source along with urine in eliciting copulatary behaviour and executing coitus in bulls during estrus. The results further suggest that in addition to vaginal mucus, other body fluids like saliva, faeces and milk have estrus-related odours and are probably involved in bovine bio-communication.

  5. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.

    Science.gov (United States)

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela

    2008-05-01

    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.

  6. Centre of Gravity Plethysmography--A Means of Detecting Mass Transfer of Fluid within the Body.

    Science.gov (United States)

    Buck, Michael

    1988-01-01

    Describes the monitoring of the redistribution of blood by using a technique which detects changes in the center of gravity of the body. Provides information about the principles and application, construction of apparatus, operating routines, and use of the computer as a recorder. Includes suggested investigations, demonstrations, and diagrams.…

  7. Influence of successive badminton matches on muscle strength, power, and body-fluid balance in elite players.

    Science.gov (United States)

    Abian-Vicen, Javier; Castanedo, Adrián; Abian, Pablo; Gonzalez-Millan, Cristina; Salinero, Juan José; Del Coso, Juan

    2014-07-01

    The aim was to analyze the influence of competitive round on muscle strength, body-fluid balance, and renal function in elite badminton players during a real competition. Body mass, jump height during a countermovement jump, handgrip force, and urine samples were obtained from 13 elite badminton players (6 men and 7 women) before and after the 2nd-round and quarterfinal matches of the national Spanish badminton championship. Sweat rate was determined by using prematch-to-postmatch body-mass change and by weighing individually labeled fluid bottles. Sweat rates were 1.04 ± 0.62 and 0.98 ± 0.43 L/h, while rehydration rate was 0.69 ± 0.26 and 0.91 ± 0.52 L/h for the 2nd round and quarterfinals, respectively. Thus, dehydration was 0.47% ± 1.03% after the 2nd round and 0.23% ± 0.43% after the quarterfinals. There were no differences in prematch-to-postmatch jump height, but jump height was reduced from 37.51 ± 8.83 cm after the 2nd-round game to 34.82 ± 7.37 cm after the quarterfinals (P badminton competition were effective to prevent dehydration. A badminton match did not affect jump height or handgrip force, but jump height was progressively reduced by the competitive round. Badminton players' renal responses reflected diminished renal flux due to the high-intensity nature of this racket sport.

  8. Photo-renewable electroanalytical sensor for neurotransmitters detection in body fluid mimics.

    Science.gov (United States)

    Pifferi, Valentina; Soliveri, Guido; Panzarasa, Guido; Cappelletti, Giuseppe; Meroni, Daniela; Falciola, Luigi

    2016-10-01

    A composite electrode with a sandwich structure combining the properties of silver nanoparticles and a titania photoactive layer was used for the electroanalytical detection, by differential pulse voltammetry, of three neurotransmitters: dopamine, norepinephrine, and serotonin. The three analytes were determined at low detection limits (around 0.03 μM) also in the presence of conventional interferents, such as uric and ascorbic acids. The fouling of the electrode surface was overcome by irradiating the device with UVA light, restoring the initial sensor sensitivity. Dopamine, norepinephrine, and serotonin were determined also in simulated biological matrices: liquor (artificially reproduced cerebrospinal fluid) and serum. Moreover, the contemporaneous detection of dopamine and norepinephrine in simulated human urine solutions was also demonstrated, representing the first step towards clinical applications of the proposed methodology. Graphical abstract The photo-renewable electroanalytical sensor.

  9. GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

    Science.gov (United States)

    Hubber, D. A.; Rosotti, G. P.; Booth, R. A.

    2018-01-01

    GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.

  10. The motion of the rigid body in viscous fluid including collisions. Global solvability result

    Czech Academy of Sciences Publication Activity Database

    Chemetov, N.; Nečasová, Šárka

    2017-01-01

    Roč. 34, April (2017), s. 416-445 ISSN 1468-1218 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : rigid body * global weak solution * collisions in finite time Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.659, year: 2016 http://www.sciencedirect.com/science/article/pii/S1468121816301146

  11. Fluids of Pseudo-Hard Bodies: From Simulations to Equations of State

    Czech Academy of Sciences Publication Activity Database

    Rouha, M.; Nezbeda, Ivo

    2009-01-01

    Roč. 278, 1-2 (2009), s. 15-19 ISSN 0378-3812 R&D Projects: GA AV ČR IAA400720710; GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : pseudo-hard bodies * virial coefficients * perturbed virial expansion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.857, year: 2009

  12. Modelling flow and heat transfer around a seated human body by computational fluid dynamics

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Voigt, Lars Peter Kølgaard

    2003-01-01

    A database (http://www.ie.dtu.dk/manikin) containing a detailed representation of the surface geometry of a seated female human body was created from a surface scan of a thermal manikin (minus clothing and hair). The radiative heat transfer coefficient and the natural convection flow around...... of the computational manikin has all surface features of a human being; (2) the geometry is an exact copy of an experimental thermal manikin, enabling detailed comparisons between calculations and experiments....

  13. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.

    Science.gov (United States)

    Yang, Xueyuan; Hutchinson, Christopher R

    2016-09-15

    Titanium alloys are popular metallic implant materials for use in total hip replacements. Although, α+β titanium alloys such as Ti-6Al-4V have been the most commonly used alloys, the high Young's modulus (∼110GPa) leads to an undesirable stress shielding effect. An alternative is to use β titanium alloys that exhibit a significantly lower Young's modulus (∼70GPa). Femoral stems made of a β titanium alloy known as TMZF (Ti-12Mo-6Zr-2Fe (wt.%)) have been used as part of modular hip replacements since the early 2000's but these were recalled in 2011 by the US Food & Drug Administration (FDA) due to unacceptable levels of 'wear debris'. The wear was caused by small relative movement of the stem and neck at the junction where they fit together in the modular hip replacement design. In this study, the corrosion and wear properties of the TMZF alloy were investigated in simulated body fluid to identify the reason for the wear debris generation. Ti64 was used as a control for comparison. It is shown that the interaction between the surfaces of Ti64 and TMZF with simulated body fluid is very similar, both from the point of view of the products formed and the kinetics of the reaction. The dry wear behaviour of TMZF is also close to that of Ti64 and consistent with expectations based on Archard's law for abrasive wear. However, wear of Ti64 and TMZF in simulated body fluid show contrasting behaviours. A type of time-dependent wear test is used to examine the synergy between corrosion and wear of TMZF and Ti64. It is shown that the wear of TMZF accelerated rapidly in SBF whereas that of Ti64 is reduced. The critical role of the strain hardening capacity of the two materials and its role in helping the surface resist abrasion by hydroxyapatite particles formed as a result of the reaction with the SBF is discussed and recommendations are made for modifications that could be made to the TMZF alloy to improve the corrosion-wear response. TMZF is a low modulus β-Ti alloy

  14. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yanhong, E-mail: ygu2@alaska.edu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Chen Chengfu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Bandopadhyay, Sukumar [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang Yongjun [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Guo Yuanjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-06-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  15. Structure and stability of rapidly rotating fluid bodies in general relativity. II. The structure of uniformly rotating pseudopolytropes

    International Nuclear Information System (INIS)

    Butterworth, E.M.

    1976-01-01

    A method is described for obtaining numerical solutions to the exact Einstein field equations that represent uniformly rotating perfect fluid bodies which are stationary and obey equations of state of the form (pressure) proportional (energy density) 1+1 //subn/. Sequences parametrized by the rate of rotation are generated for polytropic indices n between 0.5 and 3 and for varying strengths of relativity. All are found to terminate at surface velocities which are approximately 10 percent or more of the velocity of light. The configurations considered here are probably at least as relativistic as any stable astrophysical object in uniform rotation now thought to exist, but the phenomenon of an ergoregion appears in none of them and probably is absent in actual stars if magnetic viscosity or some other mechanism can induce rigid rotation

  16. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Gu Yanhong; Chen Chengfu; Bandopadhyay, Sukumar; Ning Chengyun; Zhang Yongjun; Guo Yuanjun

    2012-01-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  17. Investigations with a simplified method for radiometric determination of vitamin B12 in body fluids and feeding stuffs

    International Nuclear Information System (INIS)

    Menke, K.H.; Kohlberger, G.; Koenemund, A.

    1979-01-01

    A modified method for radiometrical determination of vitamin B 12 is described, which in difference to the known methods is based on measurement of free B 12 after absorption to albumin-coated charcoal instead of measurement of intrinsic factor B 12 -complex. The conditions for extraction from serum, milk, rumen-liquor and urine have been investigated and the effect of pH on IF-B 12 -binding in presence of these body fluids examined. Parallel microbiological determinations (O.m.- and L.1.-test) were in good correlation (r = 0,93-0,97) to radiometrically determined B 12 -contents in milk and rumen-liquor, but not to that in serum of dairy cows (r = 0,54-0,82). The analytical procedures are given in detail. (orig.) [de

  18. Laser irradiation of Mg-Al-Zn alloy: Reduced electrochemical kinetics and enhanced performance in simulated body fluid.

    Science.gov (United States)

    Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M

    2017-05-11

    As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.

  19. A fluid Foucault pendulum: the impossibility of achieving solid-body rotation on Earth

    Science.gov (United States)

    Blum, Robert; Zimmerman, Daniel; Triana, Santiago; Lathrop, Daniel

    2012-11-01

    Rotating fluid dynamics is key to our understanding of the Earth's atmosphere, oceans, and core, along with a plethora of astrophysical objects. Laboratory study of these natural systems often involves spinning experimental devices, which are assumed to tend to rigid rotation when unstirred. We present results showing that even at the tabletop scale, there is a measurable oscillatory flow driven by the precession of the experiment's axis as the earth rotates. We measure this flow in a rotating cylinder with an adjustable aspect ratio. The horizontal flow in the rotating frame is measured using particle tracking. The steady state is well-described by an inertial mode whose amplitude is maximum when the height to diameter ratio is 0.995, which matches theoretical predictions. We also quantify the resonant amplitude of the inertial mode in the cylinder and estimate the amplitude in other devices. We compare our results to similar studies done in spherical devices. [Triana et al., JGR, 117 (2012), B04103][Boisson et al., EPL, 98 (2012), 59002].

  20. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2010-11-27

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  1. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; El-Ameen, M. A.; Jaha, Y. A.; Gorla, Rama Subba Reddy

    2010-01-01

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  2. Removal of zearalenone toxin from synthetics gastric and body fluids using talc and diatomite: a batch kinetic study.

    Science.gov (United States)

    Sprynskyy, Myroslav; Gadzała-Kopciuch, Renata; Nowak, Karolina; Buszewski, Bogusław

    2012-06-01

    Adsorption kinetics of zearalenone (ZEA) toxin from synthetic gastric fluid (SGF) and synthetic body fluid (SBF) by talc and diatomite was studied in the batch experiments. Chemical composition, morphology and structure of the used adsorbents were examined by scanning electron microscopy, FTIR spectroscopy and low-temperature nitrogen adsorption/desorption method. High performance liquid chromatography (HPLC) method was used for ZEA determining. The study results showed that ZEA is more effectively adsorbed on the talc (73% and 54% from SGF and SBF respectively). The efficiency on the diatomite was lower (53% and 42% from SGF and SBF respectively). The first order kinetics model was applied to describe the adsorption process. Rate of the ZEA adsorption from SGF is very rapid initially with about 95% of amount of the toxin adsorbed during first 5 min, while ZEA is adsorbed from SBF in two steps. The values of determined Gibbs free energy of adsorption (from -13 to -17 kJ/mol) indicated that adsorption of ZEA toxin by the both adsorbents are spontaneous and exothermic. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Preparation and studies on surface modifications of calcium-silico-phosphate ferrimagnetic glass-ceramics in simulated body fluid

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Singh, Sher; Jagannath,; Bhattacharya, S.; Prajapat, C.L.; Sharma, P.K.; Yusuf, S.M.; Tyagi, A.K.; Kothiyal, G.P.

    2009-01-01

    The structure and magnetic behaviour of 34SiO 2 -(45 - x) CaO-16P 2 O 5 -4.5 MgO-0.5 CaF 2 - x Fe 2 O 3 (where x = 5, 10, 15, 20 wt.%) glasses have been investigated. Ferrimagnetic glass-ceramics are prepared by melt quench followed by controlled crystallization. The surface modification and dissolution behaviour of these glass-ceramics in simulated body fluid (SBF) have also been studied. Phase formation and magnetic behaviour have been studied using XRD and SQUID magnetometer. The room temperature Moessbauer study has been done to monitor the local environment around Fe cations and valence state of Fe ions. X-ray photoelectron spectroscopy (XPS) was used to study the surface modification in glass-ceramics when immersed in simulated body fluid. Formation of bioactive layer in SBF has been ascertained using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SBF solutions were analyzed using an absorption spectrophotometer. The magnetic measurements indicated that all these glasses possess paramagnetic character and the [Fe 2+ /Fe 3+ ] ions ratio depends on the composition of glass and varied with Fe 2 O 3 concentration in glass matrix. In glass-ceramics saturation magnetization increases with increase in amount of Fe 2 O 3 . The nanostructure of hematite and magnetite is formed in the glass-ceramics with 15 and 20 wt.% Fe 2 O 3 , which is responsible for the magnetic property of these glass-ceramics. Introduction of Fe 2 O 3 induces several modifications at the glass-ceramics surface when immersed in SBF solution and thereby affecting the surface dissolution and the formation of the bioactive layer.

  4. Adverse incidents resulting in exposure to body fluids at a UK dental teaching hospital over a 6-year period

    Directory of Open Access Journals (Sweden)

    Hughes A

    2012-10-01

    Full Text Available A Hughes,1 L Davies,1 R Hale,1 JE Gallagher21Kings College Hospital NHS Foundation Trust, 2King's College London Dental Institute, London, United KingdomBackground: The safety and protection of patients and health care workers is of paramount importance in dentistry, and this includes students in training who provide clinical care. Given the nature of dental care, adverse incidents can and do occur, exposing health care workers to body fluids and putting them at risk of infection, including contracting a blood-borne virus. The aim of this research was to analyze trends in the volume, rate, nature, management, and outcome of adverse incidents reported at one dental teaching hospital from 2005 to 2010.Methods: Descriptive analysis of trends in the volume, rate, nature, management, and outcome of adverse incidents reported at one dental teaching hospital over a six-year period was undertaken in relation to the level of outpatient and day surgery activity.Results: In total, 287 incidents were reported over a six-year period, which amounted to 0.039% of outpatient or day surgery appointments. Nearly three quarters of all the incidents (n = 208, 72% took place during treatment or whilst clearing away after the appointment. The most frequent incidents were associated with administration of local anesthetic (n = 63, 22%, followed by burs used in dental hand pieces (n = 51, 18%.Conclusion: This research confirms that adverse incidents are a feature of dental hospitals and reports the common sources. The importance of accurate and consistent reporting of data to ensure that these issues are monitored to inform action and reduce risks to staff, students, and patients are highlighted.Keywords: risk management, blood-borne virus, dental hospital, body fluids exposure, adverse event reporting

  5. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification.

    Science.gov (United States)

    Sirker, M; Fimmers, R; Schneider, P M; Gomes, I

    2017-03-01

    RNA-based body fluid and tissue identification has evolved as a promising and reliable new technique to classify type and source of biological evidence in crime cases. In particular, mRNA-based approaches are currently on the rise to replace conventional protein-based methods and are increasingly implemented into forensic casework. However, degradation of these nucleic acid molecules can cause issues on laboratory scale and need to be considered for a credible investigation. For this reason, the analysis of miRNAs using qPCR has been proposed to be a sensitive and specific approach to identify the origin of a biological trace taking advantage of their small size and resistance to degradation. Despite the straightforward workflow of this method, suitable endogenous controls are inevitable when performing real-time PCR to ensure accurate normalization of gene expression data in order to allow a meaningful interpretation. In this regard, we have validated reference genes for a set of forensically relevant body fluids and tissues (blood, saliva, semen, vaginal secretions, menstrual blood and skin) and tested 15 target genes aiming to identify abovementioned sample types. Our data showed that preselected endogenous controls (miR26b, miR92 and miR484) and miR144, initially selected as potential marker for the detection of menstrual blood, were the most stable expressed genes among our set of samples. Normalizing qPCR data with these four validated references revealed that only five miRNA markers are necessary to differentiate between the six different cell types selected in this study. Nevertheless, our observations in the present study indicate that miRNA analysis methods may not provide straightforward data interpretation strategies required for an implementation in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. LABILE IRON IN CELLS AND BODY FLUIDS . Physiology, Pathology and Pharmacology

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2014-03-01

    Full Text Available In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI composition varies with metal concentration and substances with chelating groups but also with pH and the redox potential. Although physiologically in the lower µM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (that renders iron essentially non-labile, in systemic iron overload (IO, the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma transferrin approaches iron saturation, labile plasma iron (LPI emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of iron overload, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in iv iron formulations per se as well as in plasma (LPI following parenteral iron

  7. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    DEFF Research Database (Denmark)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun

    2007-01-01

    and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http......://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic...... annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools....

  8. Comparative study of acetazolamide and spironolactone on body fluid compartments on induction to high altitude

    Science.gov (United States)

    Singh, M. V.; Jain, S. C.; Rawal, S. B.; Divekar, H. M.; Parshad, Rajinder; Tyagi, A. K.; Sinha, K. C.

    1986-03-01

    Studies were conducted on 29 male healthy subjects having no previous experience of living at high altitude. These subjects were divided into three groups, i.e., subjects treated with placebo, acetazolamide and spironolactone. These subjects were first studied in Delhi. The drug schedule was started 24 hour prior to the airlift of these subjects to an altitude of 3,500 m and was continued for 48 hour after arrival at high altitude. Total body water, extra cellular water, plasma volume, blood electrolytes, pH, pO2, pCO2 and blood viscosity were determined on 3rd and 12th day of their stay at high altitude. Total body water, extra cellular water intracellular water and plasma volume decreased on high altitude exposure. There was a further slight decrease in these compartments with acetazolamide and spironolactone. It was also observed that spironolactone drives out more water from the extracellular compartment. Loss of plasma water was also confirmed by increased plasma osmolality. Increase in arterial blood pH was noticed on hypoxic exposure but the increase was found less in acetazolamide and spironolactone cases. This decrease in pH is expected to result in better oxygen delivery to the tissues at the low oxygen tension. It was also confirmed because blood pO2 increased in both the groups. No significant change in plasma electrolytes was observed in subjects of various groups. Blood viscosity slightly increased on exposure to high altitude. The degree of rise was found less in the group treated with spironolactone. This study suggests that both the drugs are likely to be beneficial in ameliorating/prevention of AMS syndrome.

  9. Finite element approach to study the behavior of fluid distribution in the dermal regions of human body due to thermal stress

    Directory of Open Access Journals (Sweden)

    M.A. Khanday

    2015-10-01

    Full Text Available The human body is a complex structure where the balance of mass and heat transport in all tissues is necessary for its normal functioning. The stabilities of intracellular and extracellular fluids are important physiological factors responsible for homoeostasis. To estimate the effects of thermal stress on the behavior of extracellular fluid concentration in human dermal regions, a mathematical model based on diffusion equation along with appropriate boundary conditions has been formulated. Atmospheric temperature, evaporation rate, moisture concentration and other factors affecting the fluid concentration were taken into account. The variational finite element approach has been employed to solve the model and the results were interpreted graphically.

  10. Smart fast blood counting of trace volumes of body fluids from various mammalian species using a compact custom-built microscope cytometer (Conference Presentation)

    Science.gov (United States)

    Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.

  11. In vitro degradation of ZM21 magnesium alloy in simulated body fluids.

    Science.gov (United States)

    Witecka, Agnieszka; Bogucka, Aleksandra; Yamamoto, Akiko; Máthis, Kristián; Krajňák, Tomáš; Jaroszewicz, Jakub; Święszkowski, Wojciech

    2016-08-01

    In vitro degradation behavior of squeeze cast (CAST) and equal channel angular pressed (ECAP) ZM21 magnesium alloy (2.0wt% Zn-0.98wt% Mn) was studied using immersion tests up to 4w in three different biological environments. Hanks' Balanced Salt Solution (Hanks), Earle's Balanced Salt Solution (Earle) and Eagle minimum essential medium supplemented with 10% (v/v) fetal bovine serum (E-MEM+10% FBS) were used to investigate the effect of carbonate buffer system, organic compounds and material processing on the degradation behavior of the ZM21 alloy samples. Corrosion rate of the samples was evaluated by their Mg(2+) ion release, weight loss and volume loss. In the first 24h, the corrosion rate sequence of the CAST samples was as following: Hanks>E-MEM+10% FBS>Earle. However, in longer immersion periods, the corrosion rate sequence was Earle>E-MEM+10% FBS≥Hanks. Strong buffering effect provided by carbonate buffer system helped to maintain the pH avoiding drastic increase of the corrosion rate of ZM21 in the initial stage of immersion. Organic compounds also contributed to maintain the pH of the fluid. Moreover, they adsorbed on the sample surface and formed an additional barrier on the insoluble salt layer, which was effective to retard the corrosion of CAST samples. In case of ECAP, however, this effect was overcome by the occurrence of strong localized corrosion due to the lower pH of the medium. Corrosion of ECAP samples was much greater than that of CAST, especially in Hanks, due to higher sensitivity of ECAP to localized corrosion and the presence of Cl(-). The present work demonstrates the importance of using an appropriate solution for a reliable estimation of the degradation rate of Mg-base degradable implants in biological environments, and concludes that the most appropriate solution for this purpose is E-MEM+10% FBS, which has the closest chemical composition to human blood plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Structure, corrosion behavior and mechanical property of a novel poly(vinyl alcohol) composite in simulated body fluid.

    Science.gov (United States)

    Li, Juan; Suo, Jinping; Zou, Peng; Jia, Lintao; Wang, Shifang

    2010-01-01

    The data for long-term drug-delivery systems are scarce compared to the short-term systems because the required research efforts are more time-consuming. In this study, we report a novel cross-linked composite based on poly(vinyl alcohol) (PVA) containing cupric ions for long-term delivery, which is helpful for contraception and trace element balance in the human body. The composition, corrosion products, crystal structure, chemical structure and mechanical stability of the composite, after being immersed in simulated body fluid (SBF) for one year, were studied by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and mechanical testing. The results show that no other new elements, such as P, Cl and Ca, appear on the surface of the composite and no Cu(2)O was formed after immersion in SBF for one year. The effectiveness of copper can be greatly improved and the side-effects caused by these compounds might also be eliminated. Furthermore, this novel composite exhibits long-term mechanical stability in SBF. The present in vitro long-term data suggest that this novel copper-containing composite may serve as a substitute for conventional materials of copper-containing intrauterine devices (Cu-IUDs) and as a carrier for controlled-release material in a variety of other applications.

  13. Surface reactivity and hydroxyapatite formation on Ca5MgSi3O12 ceramics in simulated body fluid

    Science.gov (United States)

    Xu, Jian; Wang, Yaorong; Huang, Yanlin; Cheng, Han; Seo, Hyo Jin

    2017-11-01

    In this work, the new calcium-magnesium-silicate Ca5MgSi3O12 ceramic was made via traditional solid-state reaction. The bioactivities were investigated by immerging the as-made ceramics in simulated body fluid (SBF) for different time at body temperature (37 °C). Then the samples were taken to measure X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), X-ray energy-dispersive spectra (EDS), and Fourier transform infrared spectroscopy (FT-IR) measurements. The bone-like hydroxyapatite nanoparticles formation was observed on the ceramic surfaces after the immersion in SBF solutions. Ca5MgSi3O12 ceramics possess the Young's modulus and the bending strength and of 96.3 ± 1.2 GPa and 98.7 ± 2.3 MPa, respectively. The data suggest that Ca5MgSi3O12 ceramics can quickly induce HA new layers after soaking in SBF. Ca5MgSi3O12 ceramics are potential to be used as biomaterials for bone-tissue repair. The cell adherence and proliferation experiments are conducted confirming the reliability of the ceramics as a potential candidate.

  14. The energy supplied to a body in the theory of relativity and the impulse-energy tensor of a compressible fluid

    International Nuclear Information System (INIS)

    Ricard, J.

    1979-01-01

    In the relativity theory, the variation of a certain amount of energy supplied to a body, according to its speed, has been a matter of controversy. We study this variation either for a fluid that is submitted by a compression, or for a gas receiving heat from outward. It is shown that the problem is solved by a simple matter of definition of the energy received in the system of coordinate where the body is moving. Besides, we establish the impulse-energy tensor for a compressible fluid [fr

  15. [Forensic medical evaluation of a burn injury from combustion of flammable fluids on the human body based on morphological changes in internal organs].

    Science.gov (United States)

    Khushkadamov, Z K

    2009-01-01

    The author describes morphological features of splanchnic organs in the patients that suffered an injury from combustion of flammable fluids at the body surface. The burn injury is a specific form of trauma originating from a combination of several injurious factors including thermoinhalation and intoxication with combustion products in the absence of oxygen in the centre of the hot spot. A rather specific combination of morphological changes in internal organs along with results of laboratory studies provides the most reliable criterion for forensic medical diagnosis of burn injuries from combustion of flammable fluids on the human body.

  16. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2016-10-15

    Until the discovery of the bone-bonding activity of Bioglass by Hench et al. in the early 1970s, it had not been demonstrated that a synthetic material could bond to living bone without eliciting a foreign body reaction. Since then, various kinds of materials based on calcium phosphate, such as sintered hydroxyapatite and β-tricalcium phosphate have also been shown to bond to living bone. Until the discovery of the bone-bonding activity of Ti metal formed with a sodium titanate surface layer by the present authors in 1996, it had not been shown that a metallic material could bond to living bone. Since then, various kinds of surface-modified Ti metal and its alloys have been found to bond to living bone. Until the discovery of the osteoinduction of porous hydroxyapatite by Yamasaki in 1990, it was unknown whether a synthetic material could induce bone formation even in muscle tissue. Since then, various kinds of porous calcium phosphate ceramics have been shown to induce osteoinduction. Until the discovery of osteoinduction induced by a porous Ti metal formed with a titanium oxide surface layer by Fujibayashi et al. in 2004, it had been unclear whether porous metals would be able to induce osteoinduction. These novel bioactive materials have been developed by systematic research into the apatite formation that occurs on surface-modified Ti metal and its related materials in an acellular simulated body fluid (SBF) having ion concentrations almost equal to those of human blood plasma. Some of the novel bioactive materials based on Ti metal are already in clinical use or clinical trials, such as artificial hip joints and spinal fusion devices. In the present paper, we review how these novel bioactive materials based on Ti metal have been developed based on an evaluation of apatite formation in SBF. Without the SBF evaluation, these novel bioactive materials would most likely never have been developed. On the basis of systematic study of apatite formation on a material

  17. Role of α{sub 2}-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V. [Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP (Brazil)

    2014-01-10

    Central α{sub 2}-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α{sub 2}-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α{sub 2}-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α{sub 2}-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α{sub 2}-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α{sub 2}-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

  18. Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    International Nuclear Information System (INIS)

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V.

    2014-01-01

    Central α 2 -adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α 2 -adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α 2 -adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α 2 -adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α 2 -adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α 2 -adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion

  19. Anti-Taenia solium monoclonal antibodies for the detection of parasite antigens in body fluids from patients with neurocysticercosis.

    Science.gov (United States)

    Paredes, Adriana; Sáenz, Patricia; Marzal, Miguel W; Orrego, Miguel A; Castillo, Yesenia; Rivera, Andrea; Mahanty, Siddhartha; Guerra-Giraldez, Cristina; García, Hector H; Nash, Theodore E

    2016-07-01

    Neurocysticercosis (NCC), an infection of the brain by Taenia solium (Ts) cysts, is the most common cause of adult-onset epilepsy in developing countries. Serological testing consists primarily of varying methods to detect antibodies in body fluids and more recently antigen (Ag) detection assays to identify individuals or animals with viable parasites. Antigen assays currently in use employ monoclonal antibodies (mAbs) raised against T. saginata, which have known cross reactivity to animal cestodes but are highly specific in human samples. We produced, characterized and tested 21 mAbs raised against T. solium whole cyst antigens, vesicular fluid or excretory secretory products. Reactivity of the TsmAbs against specific cyst structures was determined using immunofluorescence and immunohistochemistry on histological sections of Ts muscle cysts. Four TsmAbs reacted to vesicular space alone, 9 to the neck and cyst wall, one to the neck and vesicular space and 7 to the neck, cyst wall and vesicular space. An in-house ELISA assay to detect circulating Ts antigen, using the TsmAbs as capture antibodies and a rabbit polyclonal anti-Ts whole cyst antibody as a detector antibody demonstrated that eight of the 21 TsmAbs detected antigens in known NCC-positive human sera and three of these also in urine samples. Reactivity was expressed as normalized ratios of optical densities (OD positive control/OD negative control). Three TsmAbs had ratios >10 and five between 2 and 10. The TsmAbs have potential utility for the diagnosis and post-treatment monitoring of patients with viable NCC infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics

    Science.gov (United States)

    Herring, A. R.; Henderson, J. R.

    2007-01-01

    Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry

  1. Body fluid identification using a targeted mRNA massively parallel sequencing approach - results of a EUROFORGEN/EDNAP collaborative exercise

    DEFF Research Database (Denmark)

    Ingold, S; Dørum, G; Hanson, E

    2018-01-01

    to specified protocols. The provided primer pools for the Illumina MiSeq/FGx and the Ion Torrent PGM/S5 platforms included 33 and 29 body fluid specific targets, respectively, to identify blood, saliva, semen, vaginal secretion, menstrual blood and skin. The results demonstrated moderate to high count values...

  2. Resource Manual for Handling Body Fluids in the School Setting To Prevent Transmission of Human Immunodeficiency Virus and Hepatitis B Virus. Revised Edition.

    Science.gov (United States)

    Maryland State Dept. of Health and Mental Hygiene, Baltimore.

    This Maryland resource manual provides local education agencies with guidelines on how to handle body fluids to prevent the transmission of diseases, especially Human Immunodeficiency Virus (HIV) and Hepatitis B Virus (HBV), in the school setting. The first section summarizes the reasons for development of the manual. The second section summarizes…

  3. Manual versus automated streaking system in clinical microbiology laboratory: Performance evaluation of Previ Isola for blood culture and body fluid samples.

    Science.gov (United States)

    Choi, Qute; Kim, Hyun Jin; Kim, Jong Wan; Kwon, Gye Cheol; Koo, Sun Hoe

    2018-01-04

    The process of plate streaking has been automated to improve routine workflow of clinical microbiology laboratories. Although there were many evaluation reports about the inoculation of various body fluid samples, few evaluations have been reported for blood. In this study, we evaluated the performance of automated inoculating system, Previ Isola for various routine clinical samples including blood. Blood culture, body fluid, and urine samples were collected. All samples were inoculated on both sheep blood agar plate (BAP) and MacConkey agar plate (MCK) using Previ Isola and manual method. We compared two methods in aspect of quality and quantity of cultures, and sample processing time. To ensure objective colony counting, an enumeration reading reference was made through a preliminary experiment. A total of 377 nonduplicate samples (102 blood culture, 203 urine, 72 body fluid) were collected and inoculated. The concordance rate of quality was 100%, 97.0%, and 98.6% in blood, urine, and other body fluids, respectively. In quantitative aspect, it was 98.0%, 97.0%, and 95.8%, respectively. The Previ Isola took a little longer to inoculate the specimen than manual method, but the hands-on time decreased dramatically. The shortened hands-on time using Previ Isola was about 6 minutes per 10 samples. We demonstrated that the Previ Isola showed high concordance with the manual method in the inoculation of various body fluids, especially in blood culture sample. The use of Previ Isola in clinical microbiology laboratories is expected to save considerable time and human resources. © 2018 Wiley Periodicals, Inc.

  4. Needlestick and other potential blood and body fluid exposures among health care workers in British Columbia, Canada.

    Science.gov (United States)

    Alamgir, Hasanat; Cvitkovich, Yuri; Astrakianakis, George; Yu, Shicheng; Yassi, Annalee

    2008-02-01

    Health care workers have high risk of exposure to human blood and body fluids (BBF) from patients in acute care and residents in nursing homes or personal homes. This analysis examined the epidemiology for BBF exposure across health care settings (acute care, nursing homes, and community care). Detailed analysis of BBF exposure among the health care workforce in 3 British Columbian health regions was conducted by Poisson regression modeling, with generalized estimating equations to determine the relative risk associated with various occupations. Acute care had the majority of needlestick, sharps, and splash events with the BBF exposure rate in acute care 2 to 3 times higher compared with nursing home and community care settings. Registered nurses had the highest frequency of needlestick, sharps, and splash events. Laboratory assistants had the highest exposure rates from needlestick injuries and splashes, whereas licensed practical nurses had the highest exposure rate from sharps. Most needlestick injuries (51.3%) occurred at the patient's bedside. Sharps incidents occurred primarily in operating rooms (26.9%) and at the patient's bedside (20.9%). Splashes occurred most frequently at the patient's bedside (46.1%) and predominantly affected the eyes or face/mouth. The majority of needlestick/sharps injuries occurred during use for registered nurses, during disposal for licensed practical nurses, and after disposal for care aides. The high risk of BBF exposure for some occupations indicates there is room for improvement to reduce BBF exposure by targeting high-risk groups for prevention strategies.

  5. Effect of Immersion in Simulated Body Fluid on the Mechanical Properties and Biocompatibility of Sintered Fe–Mn-Based Alloys

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2016-12-01

    Full Text Available Fe–Mn-based degradable biomaterials (DBMs are promising candidates for temporary implants such as cardiovascular stents and bone fixation devices. Identifying their mechanical properties and biocompatibility is essential to determine the feasibility of Fe–Mn-based alloys as DBMs. This study presents the tensile properties of two powder metallurgical processed Fe–Mn-based alloys (Fe–28Mn and Fe–28Mn-3Si, in mass percent as a function of immersion time in simulated body fluid (SBF. In addition, short-term cytotoxicity testing was performed to evaluate the in vitro biocompatibility of the sintered Fe–Mn-based alloys. The results reveal that an increase in immersion duration deteriorated the tensile properties of both the binary and ternary alloys. The tensile properties of the immersed alloys were severely degraded after being soaked in SBF for ≥45 days. The ion concentration in SBF released from the Fe–28Mn-3Si samples was higher than their Fe–28Mn counterparts after 7 days immersion. The preliminary cytotoxicity testing based on the immersed SBF medium after 7 days immersion suggested that both the Fe–28Mn-3Si and Fe–28Mn alloys presented a good biocompatibility in Murine fibroblast cells.

  6. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    Science.gov (United States)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  7. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    Science.gov (United States)

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  8. Effect of Ultrasonic Surface Impact on the Fatigue Behavior of Ti-6Al-4V Subject to Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Xiaojian Cao

    2017-10-01

    Full Text Available The effect of ultrasonic nanocrystal surface modification (UNSM on the fatigue behavior of Ti6Al4V (TC4 in simulated body fluid (SBF was investigated. UNSM with the condition of a static load of 25 N, vibration amplitude of 30 μm and 36,000 strikes per unit produced about 35 μm surface severe plastic deformation (SPD layers on the TC4 specimens. One group was treated with a hybrid surface treatment (UNSM + TiN film. UNSM technique improves the micro hardness and the compressive residual stress. The surface roughness is increased slightly, but it can be remarkably improved by the TiN film. The fatigue strength of TC4 is improved by about 7.9% after UNSM. Though the current density of corrosion is increased and the pitting corrosion is accelerated, UNSM still improved the fatigue strength of TC4 after pre-soaking in SBF by 10.8%. Interior cracks initiate at the deformed carbide and oxide inclusions due to the ultrasonic impacts of UNSM. Corrosion products are always observed at the edge of fracture surface to both interior cracks and surface cracks. Coating a TiN film on the UNSMed surface helps to improve the whole properties of TC4 further.

  9. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    Science.gov (United States)

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  10. In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids

    Directory of Open Access Journals (Sweden)

    Marcele Florencio Neves

    2013-06-01

    Full Text Available Nanobiomaterials based on superhydrophilic vertically-aligned multi-walled carbon nanotubes (VAMWCNT-O2 are promising for their properties and bone tissue biocompatibility. VAMWCNT-O2 films with nanohydroxyapatite (nHAp aim to improve mechanical properties and biocompatibility of this new nanocomposite due to its resemblance to bone matrix structure. This study aimed to produce in vitro biomineralized nHAp/VAMWCNT-O2 nanocomposites using simulated body fluid (SBF with two different pHs (6.10 and 7.40 during 7 days to obtain a new surface design with higher crystalinity and better morphology of nHAp/VAMWCANT-O2 nanocomposites. The objective is to obtain biomineralized nanobiomaterials to enable its applicability as "scaffold" to cellular support and consequent bone tissue formation, accelerating the osseointegration. Layer densification has been achieved due to polycrystalline nanoapatites deposition on surface and between the biomineralized nHAp/VAMWCNT-O2 nanocomposites, without any heat treatment. Therefore, through its characteristics and properties these nanocomposite applications can be considered extremely viable for acceleration of in vivo regenerative processes.

  11. In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids

    International Nuclear Information System (INIS)

    Neves, Marcele Florencio; Brazil, Tayra Rodrigues; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares, Luis Eduardo Silva; Corat, Evaldo Jose

    2013-01-01

    Nano biomaterials based on superhydrophilic vertically-aligned multi-walled carbon nanotubes (VAMWCNT-O 2 ) are promising for their properties and bone tissue biocompatibility. VAMWCNT-O 2 films with nanohydroxyapatite (nHAp) aim to improve mechanical properties and biocompatibility of this new nanocomposite due to its resemblance to bone matrix structure. This study aimed to produce in vitro biomineralized nHAp/VAMWCNT-O2 nanocomposites using simulated body fluid (SBF) with two different pHs (6.10 and 7.40) during 7 days to obtain a new surface design with higher crystallinity and better morphology of nHAp/VAMWCANT-O 2 nanocomposites. The objective is to obtain biomineralized nano biomaterials to enable its applicability as 'scaffold' to cellular support and consequent bone tissue formation, accelerating the osseointegration. Layer densification has been achieved due to polycrystalline nano apatites deposition on surface and between the biomineralized nHAp/VAMWCNT-O 2 nanocomposites, without any heat treatment. Therefore, through its characteristics and properties these nanocomposite applications can be considered extremely viable for acceleration of in vivo regenerative processes. (author)

  12. The electrochemical impedance spectroscopy of silver doped hydroxyapatite coating in simulated body fluid used as corrosive agent

    Directory of Open Access Journals (Sweden)

    Mišković-Stanković Vesna

    2012-01-01

    Full Text Available Titanium is a key biomedical material due its good biocompatibility, mechanical properties and corrosion stability, but infections of the implantation site still pose serious threat. One approach to prevent infection is to improve antimicrobial ability of the coating material. Silver doped hydroxyapatite (Ag/HAP nanoparticles were synthesized by new modified precipitation method. The synthesized powder was used for preparation of Ag/HAP coating on titanium by electrophoretic deposition. The coating was characterized in terms of phase composition and structure by Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and X-ray diffraction (XRD; surface morphology and chemical composition was assessed using scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. Research focused on evaluation of the corrosion behaviour of Ag/HAP coating in simulated body fluid (SBF at 37 ºC during prolonged immersion time by electrochemical impedance spectroscopy (EIS. Silver doped HAP coating provided good corrosion protection in SBF solution. [Acknowledgements. This research was financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia, contracts No. III 45019 and by National Sciences and Engineering Research Council of Canada (NSERC. Dr Ana Jankovic was financed by the FP7 Nanotech FTM Grant Agreement 245916

  13. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.

    Science.gov (United States)

    Gu, X N; Zhou, W R; Zheng, Y F; Cheng, Y; Wei, S C; Zhong, S P; Xi, T F; Chen, L J

    2010-12-01

    Magnesium alloys have been recently developed as biodegradable implant materials, yet there has been no study concerning their corrosion fatigue properties under cyclic loading. In this study the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for a fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were chosen to evaluate their fatigue and corrosion fatigue behaviors in simulated body fluid (SBF). The die-cast AZ91D alloy indicated a fatigue limit of 50MPa at 10⁷ cycles in air compared to 20MPa at 10⁶ cycles tested in SBF at 37°C. A fatigue limit of 110MPa at 10⁷ cycles in air was observed for extruded WE43 alloy compared to 40MPa at 10⁷ cycles tested in SBF at 37°C. The fatigue cracks initiated from the micropores when tested in air and from corrosion pits when tested in SBF, respectively. The overload zone of the extruded WE43 alloy exhibited a ductile fracture mode with deep dimples, in comparison to a brittle fracture mode for the die-cast AZ91D. The corrosion rate of the two experimental alloys increased under cyclic loading compared to that in the static immersion test. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, H., E-mail: Hermann.Kalb@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany); Rzany, A., E-mail: Alexander.Rzany@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany); Hensel, B., E-mail: Bernhard.Hensel@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Localized Corrosion of WE43 and pure magnesium under static exposure to SBF. Black-Right-Pointing-Pointer Vigorous hydrogen evolution at particles, which act as micro-cathodes. Black-Right-Pointing-Pointer Zr at WE43 and Fe at pure magnesium are dominant micro-cathodes. Black-Right-Pointing-Pointer Protection of surrounding bulk and volcano-shaped depositions. Black-Right-Pointing-Pointer A comprehensive corrosion model including a corrosion double-layer is proposed. - Abstract: Corrosion of magnesium alloys was studied during exposure to simulated body fluid (SBF). Microgalvanic processes dominate degradation morphology and formation of the corrosion/conversion layer. Localized corrosion with vigorous hydrogen evolution was observed at zirconium- and iron-rich precipitates that act as micro-cathodes. These are surrounded by volcano-shaped deposits of Mg(OH){sub 2}. Circular areas around cathodic centers were found to be protected from corrosion, while bulk degradation takes place in between. In SBF, conversion to a corrosion double layer was demonstrated. Differences observed for WE43 and pure magnesium (Mg) are discussed within the framework of a comprehensive model of the mechanisms of corrosion.

  15. Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses.

    Science.gov (United States)

    Massera, J; Petit, L; Cardinal, T; Videau, J J; Hupa, M; Hupa, L

    2013-06-01

    In this paper, we investigate the effect of SrO substitution for CaO in 50P₂O₅-10Na₂-(40-x)CaO-xSrO glass system (x from 0 to 40) on the thermal and structural properties and also on the glass reactivity in simulated body fluid (SBF) in order to find new glass candidates for biomedical glass fibers. The addition of SrO at the expense of CaO seems to restrain the leaching of phosphate ions in the solution limiting the reduction of the solution pH. We observed the formation of an apatite layer at the surface of the glasses when in contact with SBF. SrO and MgO were found in the apatite layer of the strontium ion-containing glasses, the concentration of which increases with an increase of SrO content. We think that it is the presence of MgO and SrO in the layer which limits the leaching of phosphate in the solution and thus the glass dissolution in SBF.

  16. Cyclic delamination behavior of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates in simulated body fluid.

    Science.gov (United States)

    Otsuka, Yuichi; Kawaguchi, Hayato; Mutoh, Yoshiharu

    2016-10-01

    This study aimed to clarify the effect of a simulated body fluid (SBF) on the cyclic delamination behavior of a plasma-sprayed hydroxapatite (HAp) coating. A HAp coating is deposited on the surfaces of surgical metallic materials in order to enhance the bond between human bone and such surfaces. However, the HAp coating is susceptible to delamination by cyclic loading from the patient's gait. Although hip joints are subjected to both positive and negative moments, only the effects of tensile bending stresses on vertical crack propagation behavior have been investigated. Thus, the cyclic delamination behavior of a HAp coating was observed at the stress ratio R=-1 in order to determine the effects of tensile/compressive loading on the delamination behavior. The delamination growth rate increased with SBF immersion, which decreased the delamination life. Raman spectroscopy analysis revealed that the selective phase dissolution in the HAp coating was promoted at interfaces. Finite element analysis revealed that the energy release rate Gmax showed a positive value even in cases with compressive loading, which is a driving force for the delamination of a HAp coating. A prediction model for the delamination growth life was developed that combines a fracture mechanics parameter with the assumed stress-dependent dissolution rate. The predicted delamination life matched the experimental data well in cases of lower stress amplitudes with SBF. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Marcele Florencio; Brazil, Tayra Rodrigues; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba(IP and D,/NANOBIO/UniVap), Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisa e Desenvolvimento. Lab. de Nanotecnologia Biomedica; Soares, Luis Eduardo Silva [Universidade do Vale do Paraiba(IP and D/LEVB/UniVap), Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisa e Desenvolvimento. Lab. de Espectroscopia Vibracional Biomdica; Corat, Evaldo Jose [Instituto Nacional de Pesquisa Espacial (LAS/INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Sensores e Materiais

    2013-11-01

    Nano biomaterials based on superhydrophilic vertically-aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2} ) are promising for their properties and bone tissue biocompatibility. VAMWCNT-O{sub 2} films with nanohydroxyapatite (nHAp) aim to improve mechanical properties and biocompatibility of this new nanocomposite due to its resemblance to bone matrix structure. This study aimed to produce in vitro biomineralized nHAp/VAMWCNT-O2 nanocomposites using simulated body fluid (SBF) with two different pHs (6.10 and 7.40) during 7 days to obtain a new surface design with higher crystallinity and better morphology of nHAp/VAMWCANT-O{sub 2} nanocomposites. The objective is to obtain biomineralized nano biomaterials to enable its applicability as 'scaffold' to cellular support and consequent bone tissue formation, accelerating the osseointegration. Layer densification has been achieved due to polycrystalline nano apatites deposition on surface and between the biomineralized nHAp/VAMWCNT-O{sub 2} nanocomposites, without any heat treatment. Therefore, through its characteristics and properties these nanocomposite applications can be considered extremely viable for acceleration of in vivo regenerative processes. (author)

  18. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  19. Contact with hospital syringes containing body fluids: implications for medical waste management regulation Jeringas en contacto con sangre y fluidos corporales utilizadas en el hospital: implicaciones para el manejo de desechos hospitalarios

    OpenAIRE

    Patricia Volkow; Bénédicte Jacquemin; Diana Vilar-Compte; José Ramón Castillo

    2003-01-01

    OBJECTIVE: To determine amount of syringes used in the hospital and extent of contact with blood and body fluids of these syringes. MATERIAL AND METHODS: Syringe use was surveyed at a tertiary care center for one week; syringes were classified into the following four categories according to use: a) contained blood; b) contained other body fluids (urine, gastric secretion, cerebrospinal fluid, wound drainage); c) used exclusively for drug dilution and application in plastic intravenous (IV) tu...

  20. Driven-dissipative Euler close-quote s equations for a rigid body: A chaotic system relevant to fluid dynamics

    International Nuclear Information System (INIS)

    Turner, L.

    1996-01-01

    Adhering to the lore that vorticity is a critical ingredient of fluid turbulence, a triad of coupled helicity (vorticity) states of the incompressible Navier-Stokes fluid are followed. Effects of the remaining states of the fluid on the triad are then modeled as a simple driving term. Numerical solution of the equations yield attractors that seem strange and chaotic. This suggests that the unpredictability of nonlinear fluid dynamics (i.e., turbulence) may be traced back to the most primordial structure of the Navier-Stokes equation; namely, the driven triadic interaction. copyright 1996 The American Physical Society

  1. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid

    International Nuclear Information System (INIS)

    Wen Zhaohui; Wu Changjun; Dai Changsong; Yang Feixia

    2009-01-01

    The corrosion behaviors of pure magnesium (Mg) and three Mg alloys with different Al contents were investigated in a modified simulated body fluid (m-SBF) through immersion tests, Tafel experiments, and electrochemical impedance spectroscopic (EIS) experiments. The immersion results show that the corrosion rates (CRs) of the four samples were in an order of AZ91D ct ) of the three magnesium alloys initially increased and then decreased while the R ct of pure Mg was kept lower within 24 h. The results of a scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that pure Mg and three alloys were heterogeneously corroded in the m-SBF. The corrosion of pure Mg, which showed a more uniform corrosion appearance, resulted from localized corrosion over the entire surface. Alloy AZ91D (of 8.5-9.5 wt.% Al) showed relatively uniform corrosion morphology and the β-Mg 12 Al 17 precipitates in alloy AZ91D were more homogeneously and continuously distributed along the grain boundaries. Obvious corrosion pits were found on the surface of alloy AZ61 and AZ31. The corrosion pits of alloy AZ61 were shallower than those of alloy AZ31. Alloy AZ61 (of 5.8-7.2 wt.% Al) possessed more Al 8 Mn 5 and a little β-Mg 12 Al 17 presented along the grain boundary heterogeneously and discontinuously. Al 8 Mn 5 was the main phase of the AZ31 alloy (of 2.5-3.5 wt.% Al) dispersed into the matrix. In conclusion, the microstructure and the Al content in the α-Mg (Al) matrix significantly affected the corrosion properties of the alloys in the m-SBF. With the increase in Al content, the corrosion resistances of the samples were improved.

  2. Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid.

    Science.gov (United States)

    Zhang, Yuan; Li, Jianxing; Li, Jingyuan

    2018-04-01

    Magnesium and its alloys have unique advantages to act as resorbable bone fixation materials, due to their moderate mechanical properties and biocompatibility, which are similar to those of human tissue. However, early resorption and insufficient mechanical strength are the main problems that hinder their application. Herein, the effects of microstructure transformation on the mechanical properties and corrosion performance of Mg-Zn-Mn-Ca were investigated with electrochemical and immersion measurements at 37 °C in a simulated body fluid (SBF). The results showed that the number density of Ca 2 Mg 6 Zn 3 /Mg 2 Ca precipitates was remarkably reduced and grain sizes were gradually increased as the temperature increased. The alloy that received the 420 °C/24 h treatment demonstrated the best mechanical properties and lowest corrosion rate (5.94 mm/a) as well as presented a compact and denser film than the others. The improvement in mechanical properties could be explained by the eutectic compounds and phases (Mg 2 Ca/Ca 2 Mg 6 Zn 3 ) gradually dissolving into a matrix, which caused severely lattice distortion and facilitated structural re-arrangement of the increased Ca solute. Moreover, the difference in potential between the precipitates and the matrix is the main essence for micro-galvanic corrosion formation as well as accelerated the dissolution activity and current exchange density at the Mg/electrolyte interface. As a result, the best Mg alloys corrosion resistance must be matched with a moderate grain size and phase volume fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2015-03-15

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO{sub 2}) and cerium oxide (CeO{sub 2}) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity.

  4. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2015-01-01

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO 2 ) and cerium oxide (CeO 2 ) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity

  5. Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid.

    Science.gov (United States)

    Saud, Safaa N; Hosseinian S, Raheleh; Bakhsheshi-Rad, H R; Yaghoubidoust, F; Iqbal, N; Hamzah, E; Ooi, C H Raymond

    2016-11-01

    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Implementation of a study to examine the persistence of Ebola virus in the body fluids of Ebola virus disease survivors in Sierra Leone: Methodology and lessons learned.

    Science.gov (United States)

    Deen, Gibrilla Fadlu; McDonald, Suzanna L R; Marrinan, Jaclyn E; Sesay, Foday R; Ervin, Elizabeth; Thorson, Anna E; Xu, Wenbo; Ströher, Ute; Ongpin, Patricia; Abad, Neetu; Ariyarajah, Archchun; Malik, Tasneem; Liu, Hongtu; Ross, Christine; Durski, Kara N; Gaillard, Philippe; Morgan, Oliver; Formenty, Pierre; Knust, Barbara; Broutet, Nathalie; Sahr, Foday

    2017-09-01

    The 2013-2016 West African Ebola virus disease epidemic was unprecedented in terms of the number of cases and survivors. Prior to this epidemic there was limited data available on the persistence of Ebola virus in survivors' body fluids and the potential risk of transmission, including sexual transmission. Given the urgent need to determine the persistence of Ebola virus in survivors' body fluids, an observational cohort study was designed and implemented during the epidemic response operation in Sierra Leone. This publication describes study implementation methodology and the key lessons learned. Challenges encountered during implementation included unforeseen duration of follow-up, complexity of interpreting and communicating laboratory results to survivors, and the urgency of translating research findings into public health practice. Strong community engagement helped rapidly implement the study during the epidemic. The study was conducted in two phases. The first phase was initiated within five months of initial protocol discussions and assessed persistence of Ebola virus in semen of 100 adult men. The second phase assessed the persistence of virus in multiple body fluids (semen or vaginal fluid, menstrual blood, breast milk, and urine, rectal fluid, sweat, saliva, tears), of 120 men and 120 women. Data from this study informed national and global guidelines in real time and demonstrated the need to implement semen testing programs among Ebola virus disease survivors. The lessons learned and study tools developed accelerated the implementation of such programs in Ebola virus disease affected countries, and also informed studies examining persistence of Zika virus. Research is a vital component of the public health response to an epidemic of a poorly characterized disease. Adequate resources should be rapidly made available to answer critical research questions, in order to better inform response efforts.

  7. Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration

    Science.gov (United States)

    Abbas, Z.; Shabbir, M. S.; Ali, N.

    2018-06-01

    In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.

  8. Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics

    International Nuclear Information System (INIS)

    Yan, Yang; Yong-Liang, Yu; Bing-Gang, Tong; Guan-Hao, Wu

    2008-01-01

    We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming

  9. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    Science.gov (United States)

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  10. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka; Wolf, J.

    2016-01-01

    Roč. 36, č. 3 (2016), s. 1539-1562 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : incompressible fluid * motion of rigid body * strong solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11589

  11. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    Science.gov (United States)

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  12. Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study.

    Science.gov (United States)

    Joguet, Guillaume; Mansuy, Jean-Michel; Matusali, Giulia; Hamdi, Safouane; Walschaerts, Marie; Pavili, Lynda; Guyomard, Stefanie; Prisant, Nadia; Lamarre, Pierre; Dejucq-Rainsford, Nathalie; Pasquier, Christophe; Bujan, Louis

    2017-11-01

    Evidence of human sexual transmission during Zika virus emergence is a matter of concern, particularly in procreation, but to date, kinetics of seminal shedding and the effects of infection on human reproductive function have not been described. To investigate the effects of Zika virus infection on semen and clearance of Zika virus from semen and body fluids, we aimed to study a cohort of Zika virus-infected men. This prospective observational study recruited men presenting with acute Zika virus infection at Pointe-à-Pitre University Hospital in Guadeloupe, French Caribbean, where a Zika virus outbreak occurred between April and November, 2016. Blood, urine, and semen were collected at days 7, 11, 20, 30, 60, 90, and 120 after symptom onset, and semen characteristics, such as total sperm count, sperm motility, vitality, and morphology, and reproductive hormone concentrations, such as testosterone, inhibin, follicle-stimulating hormone, and luteinising hormone, were assessed. At days 7, 11, and 20, semen was processed to isolate motile spermatozoa. Zika virus RNA was detected by RT-PCR using whole blood, serum, urine, seminal plasma, semen cells, and motile spermatozoa fractions. Zika virus was isolated from different sperm fractions on Vero E6 cultures. 15 male volunteers (mean age 35 years [SD 5; range 25-44) with acute Zika virus infection and positive Zika virus RNA detection in blood or urine were enrolled. Total sperm count was decreased from median 119 × 10 6 spermatozoa (IQR 22-234) at day 7 to 45·2 × 10 6 (16·5-89·6) at day 30 and 70 × 10 6 (28·5-81·4) at day 60, respectively, after Zika virus infection. Inhibin values increased from 93·5 pg/mL (IQR 55-162) at day 7 to 150 pg/mL (78-209) at day 120 when total sperm count recovered. In motile spermatozoa obtained after density gradient separation, Zika virus RNA was found in three of 14 patients at day 7, four of 15 at day 11, and four of 15 at day 20, and replication-competent virus was

  13. Whole-body fluid distribution in humans during dehydration and recovery, before and after humid-heat acclimation induced using controlled hyperthermia.

    Science.gov (United States)

    Patterson, M J; Stocks, J M; Taylor, N A S

    2014-04-01

    This experiment was designed to test the hypothesis that the plasma volume is not selectively defended during exercise- and heat-induced dehydration following humid-heat acclimation. Eight physically active males were heat acclimated (39.8 °C, relative humidity 59.2%) using 17 days of controlled hyperthermia (core temperature: 38.5 °C). Inter-compartmental fluid losses and movements were tracked (radioisotopes and Evans blue dye) during progressive dehydration (cycling) in these same conditions and also during a resting recovery without fluid replacement (28 °C), before (day 1), during (day 8) and after heat acclimation (day 22). On days 8 and 22, there were significant increases in total body water, interstitial fluid and plasma volume (P 0.05). The baseline plasma volume remained expanded throughout: 43.4 [±2.6 (day 1)], 49.1 [±2.4 (day 8); P recovery, plasma volume restoration commenced, with the intracellular fluid contribution becoming more pronounced as acclimation progressed. It is concluded that the plasma volume was not defended more vigorously following humid-heat acclimation. Indeed, a greater fluid loss may well underlie the mechanisms for enhancing plasma volume recovery when heat acclimation is induced using the controlled-hyperthermia technique. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Wen Zhaohui [Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Wu Changjun, E-mail: wucj163@126.co [Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Dai Changsong, E-mail: changsd@hit.edu.c [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yang Feixia [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-20

    The corrosion behaviors of pure magnesium (Mg) and three Mg alloys with different Al contents were investigated in a modified simulated body fluid (m-SBF) through immersion tests, Tafel experiments, and electrochemical impedance spectroscopic (EIS) experiments. The immersion results show that the corrosion rates (CRs) of the four samples were in an order of AZ91D < AZ61 < AZ31 < pure Mg after immersion for 1 day. With an increase in immersion time, their corrosion rates decreased and then a stable stage was reached after 16 days. The order of CRs of the four samples changed to AZ91D < pure Mg < AZ61 < AZ31 after immersion for 24 days. The results of EIS experiments indicate that the charge transfer resistance (R{sub ct}) of the three magnesium alloys initially increased and then decreased while the R{sub ct} of pure Mg was kept lower within 24 h. The results of a scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that pure Mg and three alloys were heterogeneously corroded in the m-SBF. The corrosion of pure Mg, which showed a more uniform corrosion appearance, resulted from localized corrosion over the entire surface. Alloy AZ91D (of 8.5-9.5 wt.% Al) showed relatively uniform corrosion morphology and the {beta}-Mg{sub 12}Al{sub 17} precipitates in alloy AZ91D were more homogeneously and continuously distributed along the grain boundaries. Obvious corrosion pits were found on the surface of alloy AZ61 and AZ31. The corrosion pits of alloy AZ61 were shallower than those of alloy AZ31. Alloy AZ61 (of 5.8-7.2 wt.% Al) possessed more Al{sub 8}Mn{sub 5} and a little {beta}-Mg{sub 12}Al{sub 17} presented along the grain boundary heterogeneously and discontinuously. Al{sub 8}Mn{sub 5} was the main phase of the AZ31 alloy (of 2.5-3.5 wt.% Al) dispersed into the matrix. In conclusion, the microstructure and the Al content in the {alpha}-Mg (Al) matrix significantly affected the corrosion properties of the alloys in the m-SBF. With the increase

  15. Corrosion and bioactivity performance of graphene oxide coating on Ti−Nb shape memory alloys in simulated body fluid

    International Nuclear Information System (INIS)

    Saud, Safaa N.; Hosseinian, Raheleh S.; Bakhsheshi-Rad, H.R.; Yaghoubidoust, F.; Iqbal, N.; Hamzah, E.; Ooi, C.H. Raymond

    2016-01-01

    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of Ti−Nb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30 at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30 at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35 μm to 45 μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated Ti−Nb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37 °C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30 at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications. - Highlights: • Ti-30 at.% Nb SMA were successfully produced by PM and microwave sintering. • GO were successfully coated on the surface of TiNb. • The corrosion resistance of TiNb have enhanced after surface modification and coating of GO. • The corrosion resistance increased from 620.7 to 1,760.7 Ω cm 2 with coating of GO. • The GO and laser/GO coating induce apatite formation and enhance the bioactivity

  16. Corrosion and bioactivity performance of graphene oxide coating on Ti−Nb shape memory alloys in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Saud, Safaa N., E-mail: safaaengineer@gmail.com [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Faculty of Information Science and Engineering, Management and Science University, 40100 Shah Alam (Malaysia); Hosseinian, Raheleh S. [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bakhsheshi-Rad, H.R. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Advanced Materials Research Center, Faculty of Materials Engineering, NajafAbad Branch, Islamic Azad University, NajafAbad (Iran, Islamic Republic of); Yaghoubidoust, F. [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor (Malaysia); Iqbal, N. [Medical Devices & Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Hamzah, E. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Ooi, C.H. Raymond [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-11-01

    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of Ti−Nb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30 at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30 at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35 μm to 45 μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated Ti−Nb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37 °C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30 at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications. - Highlights: • Ti-30 at.% Nb SMA were successfully produced by PM and microwave sintering. • GO were successfully coated on the surface of TiNb. • The corrosion resistance of TiNb have enhanced after surface modification and coating of GO. • The corrosion resistance increased from 620.7 to 1,760.7 Ω cm{sup 2} with coating of GO. • The GO and laser/GO coating induce apatite formation and enhance the bioactivity.

  17. Cerebrospinal fluid Alzheimer biomarkers can be useful for discriminating dementia with Lewy bodies from Alzheimer's disease at the prodromal stage.

    Science.gov (United States)

    Bousiges, Olivier; Bombois, Stephanie; Schraen, Susanna; Wallon, David; Quillard, Muriel Muraine; Gabelle, Audrey; Lehmann, Sylvain; Paquet, Claire; Amar-Bouaziz, Elodie; Magnin, Eloi; Miguet-Alfonsi, Carole; Delbeuck, Xavier; Lavaux, Thomas; Anthony, Pierre; Philippi, Nathalie; Blanc, Frederic

    2018-05-01

    Differential diagnosis between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) is not straightforward, especially in the early stages of disease. We compared AD biomarkers (phospho-Tau 181 , total-Tau, Aβ42 and Aβ40) in cerebrospinal fluid (CSF) of patients with DLB and AD, focusing especially on the prodromal stage. A total of 1221 CSF were collected in different memory centres (ePLM network) in France and analysed retrospectively. Samples were obtained from patients with prodromal DLB (pro-DLB; n=57), DLB dementia (DLB-d; n=154), prodromal AD (pro-AD; n=132) and AD dementia (n=783), and control subjects (CS; n=95). These centres use the same diagnostic procedure and criteria to evaluate the patients. In patients with pro-DLB, CSF Aβ42 levels appeared much less disrupted than in patients at the demented stage (DLB-d) (Ppro-DLB; PDLB-d). On average, Aβ40 levels in patients with DLB (pro-DLB and DLB-d) were much below those in patients with pro-AD (P<0.001 DLB groups

  18. Micro-topography and reactivity of implant surfaces: an in vitro study in simulated body fluid (SBF).

    Science.gov (United States)

    Gandolfi, M G; Taddei, P; Siboni, F; Perrotti, V; Iezzi, G; Piattelli, A; Prati, C

    2015-02-01

    The creation of micro-textured dental implant surfaces possessing a stimulating activity represents a challenge in implant dentistry; particularly, the formation of a thin, biologically active, calcium-phosphate layer on their surface could help to strengthen the bond to the surrounding bone. The aim of the present study was to characterize in terms of macrostructure, micro-topography and reactivity in simulated body fluid (SBF), the surface of titanium (Ti) implants blasted with TiO2 particles, acid etched with hydrofluoric acid, and activated with Ca and Mg-containing nanoparticles. Sandblasted and acid-etched implants were analyzed by ESEM-EDX (environmental scanning electron microscope with energy dispersive X-ray system) to study the micromorphology of the surface and to perform elemental X-ray microanalysis (microchemical analyses) and element mapping. ESEM-EDX analyses were performed at time 0 and after a 28-day soaking period in SBF Hank's balanced salt solution (HBSS) following ISO 23317 (implants for surgery—in vitro evaluation for apatite-forming ability of implant materials). Microchemical analyses (weight % and atomic %) and element mapping were carried out to evaluate the relative element content, element distribution, and calcium/phosphorus (Ca/P) atomic ratio. Raman spectroscopy was used to assess the possible presence of impurities due to manufacturing and to investigate the phases formed upon HBSS soaking. Micro-morphological analyses showed a micro-textured, highly rough surface with microgrooves. Microchemical analyses showed compositional differences among the apical, middle, and distal thirds. The micro-Raman analyses of the as-received implant showed the presence of amorphous Ti oxide and traces of anatase, calcite, and a carbonaceous material derived from the decomposition of an organic component of lipidic nature (presumably used as lubricant). A uniform layer of Ca-poor calcium phosphates (CaPs) (Ca/P ratio implants showed a micro

  19. Analysis and Design Tools for Fluid-Structure Interaction with Multi-Body Flexible Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this proposal (Phases I and II) is to develop a robust and accurate solver for fluid-structure interaction computations capable of...

  20. Fecal electrolyte testing for evaluation of unexplained diarrhea: Validation of body fluid test accuracy in the absence of a reference method.

    Science.gov (United States)

    Voskoboev, Nikolay V; Cambern, Sarah J; Hanley, Matthew M; Giesen, Callen D; Schilling, Jason J; Jannetto, Paul J; Lieske, John C; Block, Darci R

    2015-11-01

    Validation of tests performed on body fluids other than blood or urine can be challenging due to the lack of a reference method to confirm accuracy. The aim of this study was to evaluate alternate assessments of accuracy that laboratories can rely on to validate body fluid tests in the absence of a reference method using the example of sodium (Na(+)), potassium (K(+)), and magnesium (Mg(2+)) testing in stool fluid. Validations of fecal Na(+), K(+), and Mg(2+) were performed on the Roche cobas 6000 c501 (Roche Diagnostics) using residual stool specimens submitted for clinical testing. Spiked recovery, mixing studies, and serial dilutions were performed and % recovery of each analyte was calculated to assess accuracy. Results were confirmed by comparison to a reference method (ICP-OES, PerkinElmer). Mean recoveries for fecal electrolytes were Na(+) upon spiking=92%, mixing=104%, and dilution=105%; K(+) upon spiking=94%, mixing=96%, and dilution=100%; and Mg(2+) upon spiking=93%, mixing=98%, and dilution=100%. When autoanalyzer results were compared to reference ICP-OES results, Na(+) had a slope=0.94, intercept=4.1, and R(2)=0.99; K(+) had a slope=0.99, intercept=0.7, and R(2)=0.99; and Mg(2+) had a slope=0.91, intercept=-4.6, and R(2)=0.91. Calculated osmotic gap using both methods were highly correlated with slope=0.95, intercept=4.5, and R(2)=0.97. Acid pretreatment increased magnesium recovery from a subset of clinical specimens. A combination of mixing, spiking, and dilution recovery experiments are an acceptable surrogate for assessing accuracy in body fluid validations in the absence of a reference method. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Three-dimensional problems of the hydrodynamic interaction between bodies in a viscous fluid in the vicinity of their contact

    Czech Academy of Sciences Publication Activity Database

    Petrov, A. G.; Kharlamov, Alexander A.

    2013-01-01

    Roč. 48, č. 5 (2013), s. 577-587 ISSN 0015-4628 R&D Projects: GA ČR(CZ) GA103/09/2066 Grant - others:Development of the Scientific Potential of the Higher Schoo(RU) 2.1.2/3604; Russian Foundation for Basic Research (RU) 11- 01-005355 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * vicinity of a contact * three-dimensional problems Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013

  2. Body fluids, circadian blood pressure and plasma renin during growth hormone administration: a placebo-controlled study with two growth hormone doses in healthy adults

    DEFF Research Database (Denmark)

    Møller, Jens; Jørgensen, Jens Otto Lunde; Frandsen, Erik

    1995-01-01

    Abstract Side effects that can be related to fluid retention are common during the initial phases of growth hormone (GH) administration. The aim of this study was to examine the changes in body fluid compartments, diurnal blood pressure and plasma renin concentration during GH administration......-2, 20.65 +/- 0.94; pbody water (l) increased significantly during GH administration (placebo, 50.8 +/- 2.6; 3 IU m-2, 52.6 +/- 2.3; 6 IU m-2, 53.9 +/- 1.8, p... of treatment a significant increase in renin (p = 0.03) was observed. Mean diurnal blood pressure levels remained unchanged, whereas mean diurnal heart rate (min-1) increased significantly (placebo, 75 +/- 3.6; 3 IU m-2, 79 +/- 3.2; 6 IU m-2, 79 +/- 3.7; p

  3. Thermodynamics of mixtures of patchy and spherical colloids of different sizes: A multi-body association theory with complete reference fluid information

    Science.gov (United States)

    Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.

    2017-04-01

    We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.

  4. Comparison of local and imported osteosynthetic mandibular bone plates in terms of micro hardness in modified simulated body fluid at periodic intervals

    International Nuclear Information System (INIS)

    Anwar, R.; Kaleem, M.; Baig, AM.; Jamal, M.

    2015-01-01

    To determine the micro hardness of novel Pakistani manufactured osteosynthetic titanium bone mini plates (MPP) and imported osteosynthetic titanium bone mini plates (MPG) in body like conditions. Study Design: Descriptive study. Place and Duration of Study: This study was carried out at School of Chemical and Material Engineering, NUST from March to May 2013. Material and Methods: Microvicker hardness tester was used for assessment of micro hardness of two types of plates. The hardness was checked before conditioning and after conditioning at (six different places) on interval of 1, 7,14,21,28 and 40 days in modified simulated body fluid with ph 7.4 and temperature 37 degree C. Results: Result showed that hardness of MPG was higher than MPP and after conditioning in simulated body fluid at all time periods, hardness of both types of plates was increased. Conclusion: It can be concluded from this study that micro hardness of imported plates is more than local plates so recommendations should be sent to manufacturers of local industry of Pakistan to improve the hardness of local plates so that they can meet international standards. (author)

  5. Simplified Semianalytical Approach for Investigation of Natural Vibrations of Elastic Bodies of Revolution in Contact with Quiescent Fluid

    Czech Academy of Sciences Publication Activity Database

    Mazúch, T.; Horáček, Jaromír; Veselý, Jan; Trnka, Jan

    2006-01-01

    Roč. 54, č. 1 (2006), s. 1-9 ISSN 1335-8863 R&D Projects: GA AV ČR(CZ) IAA200760613 Institutional research plan: CEZ:AV0Z20760514 Keywords : rotary fluid-filled vessel * 3D stress state * reduced eigenvalue problem Subject RIV: BI - Acoustics

  6. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, V., E-mail: V_khalili@sut.ac.ir [Department of Materials Engineering, Engineering Faculty, University of Bonab, Bonab (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Frenzel, J.; Eggeler, G. [Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany)

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20 wt% silicon, 1 wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10 days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37 °C. The results indicate that the compact structure of hydroxyapatite-20 wt% silicon and hydroxyapatite-20 wt% silicon-1 wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. - Highlights: • The composite coatings of HA, Si and MWCNTs was prepared using electrophoretic deposition. • The presence of 1 wt.% MWCNTs in the HA coating provides more nucleation cites of apatite crystallites in SBF. • The presence of Si in HA coating increases the growth rate of apatite crystallites with the Ca/P atomic ratio of 1.67. • The EIS indicate the compact HA-20%Si and HA-20%Si-1%MWCNTs coatings efficiently increase corrosion resistance of NiTi. • The porous HA and HA-1%MWCNTs do not increase significantly corrosion resistance due to the easy diffusion path.

  7. Synovial Fluid Analysis

    Science.gov (United States)

    ... Plasma Free Metanephrines Platelet Count Platelet Function Tests Pleural Fluid Analysis PML-RARA Porphyrin Tests Potassium Prealbumin ... is being tested? Synovial fluid is a thick liquid that acts as a lubricant for the body's ...

  8. Cerebrospinal fluid culture

    Science.gov (United States)

    ... Alternative Names Culture - CSF; Spinal fluid culture; CSF culture Images Pneumococci organism References Karcher DS, McPherson RA. Cerebrospinal, synovial, serous body fluids, and alternative specimens. In: McPherson RA, Pincus ...

  9. A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid

    International Nuclear Information System (INIS)

    Nikolaenko, S S

    2014-01-01

    The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body with fixed point. Bibliography: 23 titles

  10. Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases.

    Science.gov (United States)

    Johnson, Brian J; Mitchell, Sara N; Paton, Christopher J; Stevenson, Jessica; Staunton, Kyran M; Snoad, Nigel; Beebe, Nigel; White, Bradley J; Ritchie, Scott A

    2017-09-01

    Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.

  11. Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases.

    Directory of Open Access Journals (Sweden)

    Brian J Johnson

    2017-09-01

    Full Text Available Recent interest in male-based sterile insect technique (SIT and incompatible insect technique (IIT to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success during field releases.Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males.These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.

  12. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid.

    Science.gov (United States)

    Qiu, C L; Liu, L; Sun, M; Zhang, S M

    2005-12-15

    Bulk metallic glasses (BMGs) of Zr(65 - x)Nb(x)- Cu(17.5)Ni(10)Al(7.5) with Nb = 0, 2, and 5 at % were prepared by copper mold casting. Compression tests reveal that the two BMGs containing Nb exhibited superior strength and plasticity to the base alloy. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. It was found that the addition of Nb significantly enhanced the corrosion resistance of the Zr-based BMG, as indicated by a remarkable increase in corrosion potential and pitting potential. XPS analysis revealed that the passive film formed after anodic polarization was enriched in aluminum oxide and depleted in phosphate ions for the BMGs containing Nb, which accounts for the improvement of corrosion resistance. On the other hand, metal-ion release of different BMGs were determined in PPb (ng/mL) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37 degrees C for 20 days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system. This is probably attributed to the promoting effect of Nb on a rapid formation of highly protective film.

  14. The growth of hydroxyapatite on alkaline treated Ti-6Al-4V soaking in higher temperature with concentrated Ca2+/HPO42- simulated body fluid

    International Nuclear Information System (INIS)

    Lin, F.-H.; Hsu, Y.-S.; Lin, S.-H.; Chen, T.-M.

    2004-01-01

    In this study, calcium and phosphorous ions in the simulated body fluid (SBF) was be increased to increase the rate of precipitation of hydroxyapatite (HA). The soaking temperature in concentrated calcium and phosphorous ion-SBF (CP-SBF) was increased to reduce the nucleation energy of the HA, which lead to an early precipitation to shorten the treatment process. When the metallic substrates treated with 10 M NaOH aqueous solution and subsequently heated at 600 deg. C, a thin sodium titanium oxide layer was formed on the surfaces as the linking layer for HA and Ti-6Al-4V alloys. After Ti-6Al-4V alloys treated with alkali solution, it would soak into a simulated body fluid with higher concentration of calcium and phosphorous ions (CP-SBF) to increase the possibility of nucleation of HA. When Ti-6Al-4V alloys treated with alkali solution, subsequently heated at 600 deg. C, and then soaked into CP-SBF at a temperature of 80 deg. C, it could form a dense and thick (50 μm) bone-like hydroxyapatite layer on the surface. The HA layer was appeared on the surface of the Ti-alloy at the first week soaking, which was greatly shorten the coating process. In the research, the characteristics of the coating layer will be analyzed by the results of X-ray diffractometer (XRD), scanning electron microscope (SEM), and Fourier transformation infrared (FT-IR)

  15. Simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS.

    Science.gov (United States)

    Bajcsik, Nicole; Pfab, Rudolf; Pietsch, Jörg

    2017-05-01

    A selective and sensitive analytical method for the simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS was developed. After liquid-liquid extraction with dichlormethane, separation was achieved on a Phenomenex Luna Pentafluorophenyl Column (150mm×2mm, 5μm) using acetonitrile-water (90:10, v/v) as mobile phase system. Detection was performed using a 3200 Q Trap mass spectrometer (AB Sciex). For analysis Q1 Scans with negative ionisation were chosen. The method was validated for serum as the matrix of choice. Limits of detection are in the picogram range, limits of quantification are between 0.05 and 0.42ng/mL, recoveries are above 50%. The assay was linear in the calibration range from 1.0 to 50ng/mL for cucurbitacin E and from 0.10 to 50ng/mL for the cucurbitacins B, I and E-glucoside. The applicability of the method was demonstrated by the determination of cucurbitacins in zucchini plant material and body fluids from intoxication cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg–Y–RE alloy in simulated body fluid and cell culture medium

    International Nuclear Information System (INIS)

    Jamesh, Mohammed Ibrahim; Wu, Guosong; Zhao, Ying; Jin, Weihong; McKenzie, David R.; Bilek, Marcela M.M.; Chu, Paul K.

    2014-01-01

    Highlights: • Dual Zr and N plasma ion implantation are conducted on WE43Mg alloy. • Zr and N implanted WE43 (ZrN-WE43) enhanced corrosion resistance in cell culture medium. • ZrN-WE43 enhanced corrosion resistance in simulated body fluid (SBF). • ZrN-WE43 shows near capacitive impedance spectra in cell culture medium. • Calcium phosphate is formed on the corrosion product. - Abstract: The effects of dual Zr and N plasma immersion ion implantation (PIII) on the corrosion behavior of WE43Mg alloy are evaluated in simulated body fluid (SBF) and cell culture medium (cDMEM). Zr and N PIII improves the corrosion resistance of WE43 which exhibits smaller i corr , larger R 1 and R 2 , smaller CPE 2 , and larger phase angle maxima in SBF and cDMEM. The Zr and N PIII WE43 samples exhibit 12-folds decrease in i corr in SBF and 71-folds decrease in i corr with near capacitive EIS in cDMEM. Analysis of the corrosion products reveals calcium phosphate

  17. Tribological investigation of novel HDPE-HAp-Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition.

    Science.gov (United States)

    Nath, Shekhar; Bodhak, Subhadip; Basu, Bikramjit

    2007-10-01

    Among various biocompatible polymers, polyethylene based materials have received wider attention because of its excellent stability in body fluid, inertness, and easy formability. Attempts have been made to improve their physical properties (modulus/strength) to enable them to be used as load bearing hard tissue replacement applications. Among such attempts, high density polyethylene (HDPE)-hydroxyapatite (HAp) composite (HAPEX), has already been developed for total hip replacement (THR) acetabular cup and low load bearing bone tissue replacement. In the present work, alumina has been added as a partial replacement of HAp phase to improve the mechanical and tribological properties of the HAPEX composite. In an attempt to assess the suitability of the developed composite in THR application, the tribological properties against steel counterbody under both in air and simulated body fluid (SBF), have been investigated and efforts have been made to understand the wear mechanisms. The fretting wear study indicates the possibility of achieving extremely low COF (Coefficient of Friction approximately 0.09) as well as higher wear resistance (order of 10(-6) mm(3)/N m) with the newly developed composites in SBF. A low wear depth of approximately 4.6-5.3 microm is recorded, irrespective of fretting environment. The implication of the work is that optimal and combined addition of bioactive and bioinert ceramic filler to HDPE can provide a good opportunity to obtain hybrid biocomposites with better combination of physical properties (modulus, hardness) as well as low friction and high wear resistance.

  18. Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Federica Villa

    2016-05-01

    Full Text Available Bioelectrical Impedance Spectroscopy (BIS allows assessing the composition of body districts noninvasively and quickly, potentially providing important physiological/clinical information. However, neither portable commercial instruments nor more advanced wearable prototypes simultaneously satisfy the demanding needs of unobtrusively tracking body fluid shifts in different segments simultaneously, over a broad frequency range, for long periods and with high measurements rate. These needs are often required to evaluate exercise tests in sports or rehabilitation medicine, or to assess gravitational stresses in aerospace medicine. Therefore, the aim of this work is to present a new wearable prototype for monitoring multi-segment and multi-frequency BIS unobtrusively over long periods. Our prototype guarantees low weight, small size and low power consumption. An analog board with current-injecting and voltage-sensing electrodes across three body segments interfaces a digital board that generates square-wave current stimuli and computes impedance at 10 frequencies from 1 to 796 kHz. To evaluate the information derivable from our device, we monitored the BIS of three body segments in a volunteer before, during and after physical exercise and postural shift. We show that it can describe the dynamics of exercise-induced changes and the effect of a sit-to-stand maneuver in active and inactive muscular districts separately and simultaneously.

  19. Novel 125I radioimmunoassay for the analysis of Δ9-tetrahydrocannabinol and its metabolites in human body fluids

    International Nuclear Information System (INIS)

    Law, B.; Mason, P.A.; Moffat, A.C.; King, L.J.

    1984-01-01

    A cannabinoid radioimmunoassay (RIA) that detects some of the major Δ 9 -THC metabolites is developed and evaluated for use in forensic science. It incorporates a novel 125 I radiotracer, is sensitive, reliable, relatively quick, and simple to use. The RIA uses a commercially available antiserum and detects a number of cannabinoid metabolites, including Δ 9 -THC-11-oic acid and its glucuronide conjugate in biological fluids. The method was successfully applied to the analysis of blood and urine samples submitted for forensic analysis

  20. Self-powered implantable electronic-skin for in situ analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis.

    Science.gov (United States)

    Yang, Wenyan; Han, Wuxiao; Gao, Huiling; Zhang, Linlin; Wang, Shuai; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2018-01-25

    As the concentration of different biomarkers in human body fluids are an important parameter of chronic disease, wearable biosensors for in situ analysis of body fluids with high sensitivity, real-time detection, flexibility and biocompatibility have significant potential therapeutic applications. In this paper, a flexible self-powered implantable electronic-skin (e-skin) for in situ body fluids analysis (urea/uric-acid) as a real-time kidney-disease diagnoser has been proposed based on the piezo-enzymatic-reaction coupling process of ZnO nanowire arrays. It can convert the mechanical energy of body movements into a piezoelectric impulse, and the outputting piezoelectric signal contains the urea/uric-acid concentration information in body fluids. This piezoelectric-biosensing process does not need an external electricity supply or battery. The e-skin was implanted under the abdominal skin of a mouse and provided in situ analysis of the kidney-disease parameters. These results provide a new approach for developing a self-powered in situ body fluids-analysis technique for chronic-disease diagnosis.

  1. Adsorption of Fluids of Pseudo-Hard Bodies and EPM5 Water on Solid Surface: Density Functional Theory

    Czech Academy of Sciences Publication Activity Database

    Slovák, Jan

    2003-01-01

    Roč. 101, č. 8 (2003), s. 1171-1181 ISSN 0026-8976 R&D Projects: GA AV ČR IAA4072908 Institutional research plan: CEZ:AV0Z4072921 Keywords : adsorption * primitive models * pseudo-hard body Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.591, year: 2003

  2. Not Good, but Not All Bad: Dehydration Effects on Body Fluids, Organ Masses, and Water Flux through the Skin of Rhinella schneideri (Amphibia, Bufonidae).

    Science.gov (United States)

    Anderson, Rodolfo C O; Bovo, Rafael P; Eismann, Carlos E; Menegario, Amauri A; Andrade, Denis V

    Because of their permeable skin, terrestrial amphibians are constantly challenged by the potential risk of dehydration. However, some of the physiological consequences associated with dehydration may affect aspects that are themselves relevant to the regulation of water balance. Accordingly, we examined the effects of graded levels of dehydration on the rates of evaporative water loss and water absorption through the skin in the terrestrial Neotropical toad, Rhinella schneideri. Concomitantly, we monitored the effects of dehydration on the mass of visceral organs; hematocrit and hemoglobin content; plasma osmolality; and plasma concentration of urea, sodium, chloride, and potassium. We found that dehydration caused an increase in the concentration of body fluids, as indicated by virtually all the parameters examined. There was a proportional change in the relative masses of visceral organs, except for the liver and kidneys, which exhibited a decrease in their relative masses greater than the whole-body level of dehydration. Changes-or the preservation-of relative organ masses during dehydration may be explained by organ-specific physiological adjustments in response to the functional stress introduced by the dehydration itself. As dehydration progressed, evaporative water loss diminished and water reabsorption increased. In both cases, the increase in body fluid concentration associated with the dehydration provided the osmotic driver for these changes in water flux. Additionally, dehydration-induced alterations on the cutaneous barrier may also have contributed to the decrease in water flux. Dehydration, therefore, while posing a considerable challenge on the water balance regulation of anurans, paradoxically facilitates water conservation and absorption.

  3. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Seyed Rahim Kiahosseini

    2015-02-01

    Full Text Available Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion resistance of samples in Ringer's solution as a solution similar to the human body was evaluated in two ways, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. To investigate the causes of the destruction of the samples, the surface of samples was studied by scanning electron microscopy (SEM. The results showed that because of porous coatings created, the corrosion potential of the samples was about +55mV higher than the uncoated substrate that by changing the deposition time, was not observed the significant change But with increasing deposition time to 360 min, corrosion current decreased which represents an increase of corrosion resistance of magnesium alloy in body solution. However, a further increase in deposition time to 420 min, due to increase thickness and stress in the layer, the corrosion resistance of the samples was reduced. The results of the EIS confirm the corrosion behavior of the polarization method, too.   

  4. Corrosion behavior of Ti6Al4V, CoCrMo alloy, and SS316L under different simulated body fluid environment

    International Nuclear Information System (INIS)

    Norsafikah Jamli; Nursyahirah Mohd Shah; Mohammed Rafiq Abdul Kadir

    2007-01-01

    full text: The corrosion behaviors of three different biomedical grade materials-Ti-6Al-4V, CoCrMo and SS316L- were studied in simulated human body environment. Three different simulated body fluids were used-the Hanks solution, MEM+Foetal Bovine Serum (MEM+FBS), and Phosphate Buffered Saline (PBS). Corrosion rates were determined by the Tafel extrapolation method. The corrosion rates of the three metals were comparable with higher rates found with MEM+FBS solution and lowest rates with PBS. Static immersion tests were also conducted, where the samples were kept for two weeks at pH values ranging from 5 to 9. This range of pH values was chosen to simulate the actual pH changes when these materials were inserted into human body. Spot analyses were then carried out using Field Emission Scanning Electron Microscope. The metals degrade with pitting corrosion with the diameter of pitting ranges from 1.44 μm to 1.88 μm. For all three SBF, ions from the solution were found to attach on the surface of the metal. Ion release tests were also performed and metal ion release. The overall results showed that different SBF has different effect on the corrosion behaviour of the three biomedical grade metals. with MEM+FBS showing significant effect on the metals. (author)

  5. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  6. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  7. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    OpenAIRE

    Seyed Rahim Kiahosseini; Abdollah Afshar; Majid Mojtahedzadeh Larijani; Mardali Yousefpour

    2015-01-01

    Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA) coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion...

  8. Fluid Statics and Archimedes

    Indian Academy of Sciences (India)

    librium of a vertical slice fluid (Figure Id) of height H and again using the fact .... same fluid having the same shape and same volume as the body. This fluid volume .... example, can be caused by the heating of air near the ground by the sun ...

  9. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.

    Science.gov (United States)

    Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W

    2011-02-01

    Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF. Copyright © 2010 Wiley Periodicals, Inc.

  10. The correlation of matrix metalloproteinase 9-to-albumin ratio in wound fluid with postsurgical complications after body contouring.

    Science.gov (United States)

    Sexton, Kevin W; Spear, Marcia; Pollins, Alonda C; Nettey, Chenai; Greco, Joseph A; Shack, R Bruce; Hagan, Kevin F; Nanney, Lillian B

    2014-10-01

    The authors' earlier retrospective report of surgical complications after abdominal contouring surgery provided evidence that post-bariatric surgery patients are at increased risk of developing wound complications compared with a normal population. This prospective pilot study was designed as a comparative analysis of both surgical and wound healing characteristics between massive weight loss and normal patients who present for abdominal contouring surgery. Excisional wounds were created and polytetrafluoroethylene tubing was inserted during the preoperative period for later harvesting in patients undergoing abdominal contouring following Roux-en-Y gastric bypass for weight loss (n = 16) or abdominoplasty (n = 17). Wound fluids were sequentially collected from drains and subjected to matrix metalloproteinase (MMP) analysis. Standard postsurgical complications were documented. Surgical complications were more common in weight loss patients (47 percent) than in control patients (25 percent). MMP analyses showed that MMP-9 levels remained significantly elevated at postoperative day 4 in patients who subsequently experienced complications in either the weight loss group (p = 0.02) or the control group (p = 0.03). Other parameters showed no significant differences between massive weight loss patients and controls. Although many markers were examined, the ratio of MMP-9 to albumin was the only predictor of postsurgical complications in any group. This lends further support to growing evidence that MMP-9 may be a useful biomarker of postsurgical complications. This pilot work showed no causal factors that explain the higher rates of postsurgical complications in the post-bariatric surgery patient population. Risk, II.

  11. Significance of oxidized low-density lipoprotein in body fluids as a marker related to diseased conditions.

    Science.gov (United States)

    Itabe, Hiroyuki; Kato, Rina; Sasabe, Naoko; Obama, Takashi; Yamamoto, Matsuo

    2018-03-06

    Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of oxLDL and LDL rather than oxLDL concentration alone has been focused attention. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in circulatory system. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Effect of apatite formation of biphasic calcium phosphate ceramic (BCP) on osteoblastogenesis using simulated body fluid (SBF) with or without bovine serum albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li [Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning (China); Department of Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning (China); Zhou, Bo; Wu, Huayu [Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning (China); Zheng, Li, E-mail: zhengli224@163.com [Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning (China); The Medical and Scientific Research Center, Guangxi Medical University, Nanning (China); Zhao, Jinmin, E-mail: zhaojinmin@126.com [Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning (China); Department of Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning (China); Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning (China)

    2017-01-01

    Although biphasic calcium phosphate ceramic (BCP) holds promise in therapy of bone defect, surface mineralization prior to implantation may improve the bioactivity to better integrate with the host. Immersion in simulated body fluid (SBF) and bovine serum albumin-simulated body fluid (BSA-SBF) are common methods to form apatite interface layer. This study was intended to investigate the effect of SBF and BSA-SBF treatment on the bioactivity of BCP in vitro. In this study, osteoblasts were grown on BCP with or without treatment of SBF or BSA-SBF, and detected with general observation, scanning electron microscope (SEM), cell proliferation assay, morphology observation, viability assay, alkaline phosphatase (ALP) activity assay, and osteogenic specific gene expression of alkaline phosphatase (ALPL), bone gamma-carboxyglutamate (gla) protein (BGLAP), bone morphogenetic protein 2 (BMP2), bone sialoprotein (BSP), type I collagen (COLI) and runt-related transcription factor 2 (RUNX2) after culture of 2, 5 and 8 days. As the results shown, BCP pre-incubated in SBF and BSA-SBF up-regulated ALP activity and osteogenic related genes and proteins, which testified the positive effect of SBF and BSA-SBF. Especially, BSA-SBF enhanced the cell growth significantly. This study indicated that treatment by BSA-SBF is of importance for BCP before clinical application. - Highlights: • BCP pre-incubated in SBF and BSA-SBF significantly promoted osteogenic differetiation of osteoblasts. • BSA-SBF enhanced the cell growth more significantly than SBF. • SBF may be a little toxic to osteoblasts.

  13. Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application.

    Science.gov (United States)

    Wang, Jun; Wang, Liguo; Guan, Shaokang; Zhu, Shijie; Ren, Chenxing; Hou, Shusen

    2010-07-01

    Magnesium alloy stent has been employed in animal and clinical experiment in recent years. It has been verified to be biocompatible and degradable due to corrosion after being implanted into blood vessel. Mg-Y-Gd-Nd alloy is usually used to construct an absorbable magnesium alloy stent. However, the corrosion resistant of as cast Mg-Y-Gd-Nd alloy is poor relatively and the control of corrosion rate is difficult. Aiming at the requirement of endovascular stent in clinic, a new biomedical Mg-Zn-Y-Nd alloy with low Zn and Y content (Zn/Y atom ratio 6) was designed, which exists quasicrystals to improve its corrosion resistance. Additionally, sub-rapid solidification processing was applied for preparation of corrosion-resisting Mg-Zn-Y-Nd and Mg-Y-Gd-Nd alloys. Compared with the as cast sample, the corrosion behavior of alloys in dynamic simulated body fluid (SBF) (the speed of body fluid: 16 ml/800 ml min(-1)) was investigated. The results show that as sub-rapid solidification Mg-Zn-Y-Nd alloy has the better corrosion resistance in dynamic SBF due to grain refinement and fine dispersion distribution of the quasicrystals and intermetallic compounds in alpha-Mg matrix. In the as cast sample, both Mg-Zn-Y-Nd and Mg-Y-Gd-Nd alloys exhibit poor corrosion resistance. Mg-Zn-Y-Nd alloy by sub-rapid solidification processing provides excellent corrosion resistance in dynamic SBF, which open a new window for biomedical materials design, especially for vascular stent application.

  14. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium.

    Science.gov (United States)

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-05-01

    Electromembrane extraction was used for simultaneous sample cleanup and preconcentration of lithium from untreated human body fluids. The sample of a body fluid was diluted 100 times with 0.5 mM Tris solution and lithium was extracted by electromigration through a supported liquid membrane composed of 1-octanol into 100 mM acetic acid acceptor solution. Matrix compounds, such as proteins, red blood cells, and other high-molecular-weight compounds were efficiently retained on the supported liquid membrane. The liquid membrane was anchored in pores of a short segment of a polypropylene hollow fiber, which represented a low cost, single use, disposable extraction unit and was discarded after each use. Acceptor solutions were analyzed using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4) D) and baseline separation of lithium was achieved in a background electrolyte solution consisting of 18 mM L-histidine and 40 mM acetic acid at pH 4.6. Repeatability of the electromembrane extraction-CE-C(4) D method was evaluated for the determination of lithium in standard solutions and real samples and was better than 0.6 and 8.2% for migration times and peak areas, respectively. The concentration limit of detection of 9 nM was achieved. The developed method was applied to the determination of lithium in urine, blood serum, blood plasma, and whole blood at both endogenous and therapeutic concentration levels. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comprehensive examination of conventional and innovative body fluid identification approaches and DNA profiling of laundered blood- and saliva-stained pieces of cloths.

    Science.gov (United States)

    Kulstein, G; Wiegand, P

    2018-01-01

    Body fluids like blood and saliva are commonly encountered during investigations of high volume crimes like homicides. The identification of the cellular origin and the composition of the trace can link suspects or victims to a certain crime scene and provide a probative value for criminal investigations. To erase all traces from the crime scene, perpetrators often wash away their traces. Characteristically, items that show exposed stains like blood are commonly cleaned or laundered to free them from potential visible leftovers. Mostly, investigators do not delegate the DNA analysis of laundered items. However, some studies have already revealed that items can still be used for DNA analysis even after they have been laundered. Nonetheless, a systematical evaluation of laundered blood and saliva traces that provides a comparison of different established and newly developed methods for body fluid identification (BFI) is still missing. Herein, we present the results of a comprehensive study of laundered blood- and saliva-stained pieces of cloths that were applied to a broad range of methods for BFI including conventional approaches as well as molecular mRNA profiling. The study included the evaluation of cellular origin as well as DNA profiling of blood- and saliva-stained (synthetic fiber and cotton) pieces of cloths, which have been washed at various washing temperatures for one or multiple times. Our experiments demonstrate that, while STR profiling seems to be sufficiently sensitive for the individualization of laundered items, there is a lack of approaches for BFI with the same sensitivity and specificity allowing to characterize the cellular origin of challenging, particularly laundered, blood and saliva samples.

  16. Computational Fluid Dynamics (CFD) Design of a Blended Wing Body (BWB) with Boundary Layer Ingestion (BLI) Nacelles

    Science.gov (United States)

    Morehouse, Melissa B.

    2001-01-01

    A study is being conducted to improve the propulsion/airframe integration for the Blended Wing-Body (BWB) configuration with boundary layer ingestion nacelles. TWO unstructured grid flow solvers, USM3D and FUN3D, have been coupled with different design methods and are being used to redesign the aft wing region and the nacelles to reduce drag and flow separation. An initial study comparing analyses from these two flow solvers against data from a wind tunnel test as well as predictions from the OVERFLOW structured grid code for a BWB without nacelles has been completed. Results indicate that the unstructured grid codes are sufficiently accurate for use in design. Results from the BWB design study will be presented.

  17. Phase separation of a Lennard-Jones fluid interacting with a long, condensed polymer chain: implications for the nuclear body formation near chromosomes.

    Science.gov (United States)

    Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo

    2015-08-28

    Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.

  18. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  19. Body fluid osmolytes and urea and ammonia flux in the colon of two chondrichthyan fishes, the ratfish, Hydrolagus colliei, and spiny dogfish, Squalus acanthias.

    Science.gov (United States)

    Anderson, W Gary; Nawata, C Michele; Wood, Chris M; Piercey-Normore, Michele D; Weihrauch, Dirk

    2012-01-01

    The present study has examined the role of the colon in regulating ammonia and urea nitrogen balance in two species of chondrichthyans, the ratfish, Hydrolagus colliei (a holocephalan) and the spiny dogfish, Squalus acanthias (an elasmobranch). Stripped colonic tissue from both the dogfish and ratfish was mounted in an Ussing chamber and in both species bi-directional urea flux was found to be negligible. Urea uptake by the mucosa and serosa of the isolated colonic epithelium through accumulation of (14)C-urea was determined to be 2.8 and 6.2 fold greater in the mucosa of the dogfish compared to the serosa of the dogfish and the mucosa of the ratfish respectively. Furthermore, there was no difference between serosal and mucosal accumulation of (14)C-urea in the ratfish. Through the addition of 2mM NH(4)Cl to the mucosal side of each preparation the potential for ammonia flux was also examined. This was again found to be negligible in both species suggesting that the colon is an extremely tight epithelium to the movement of both urea and ammonia. Plasma, chyme and bile fluid samples were also taken from the agastric ratfish and were compared with solute concentrations of equivalent body fluids in the dogfish. Finally molecular analysis revealed expression of 3 isoforms of the urea transport protein (UT) and an ammonia transport protein (Rhbg) in the gill, intestine, kidney and colon of the ratfish. Partial nucleotide sequences of the UT-1, 2 and 3 isoforms in the ratfish had 95, 95 and 92% identity to the equivalent UT isoforms recently identified in another holocephalan, the elephantfish, Callorhinchus milii. Finally, the nucleotide sequence of the Rhbg identified in the ratfish had 73% identity to the Rhbg protein recently identified in the little skate, Leucoraja erinacea. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Procalcitonin levels in patients with positive blood culture, positive body fluid culture, sepsis, and severe sepsis: a cross-sectional study.

    Science.gov (United States)

    Yu, Ying; Li, Xia-Xi; Jiang, Ling-Xiao; Du, Meng; Liu, Zhan-Guo; Cen, Zhong-Ran; Wang, Hua; Guo, Zhen-Hui; Chang, Ping

    2016-01-01

    Numerous investigations on procalcitonin (PCT) have been carried out, although few with large sample size. To deal with the complexity of sepsis, an understanding of PCT in heterogeneous clinical conditions is required. Hospitalized patients aged 10-79 years were included in this retrospective and cross-sectional study. PCT tests were assayed within 2 days of blood culture. A total of 2952 cases (from 2538 patients) were enrolled in this study, including 440 cases in the 'positive BC' group, 123 cases in the 'positive body fluid culture' group, and 2389 cases in the 'negative all culture' group. Median PCT values were 4.53 ng/ml, 2.95 ng/ml, and 0.49 ng/ml, respectively. Median PCT values in the gram-negative BC group and gram-positive BC group, respectively, were 6.99 ng/ml and 2.96 ng/ml. Median PCT values in the 'positive hydrothorax culture' group, 'positive ascites culture' group, 'positive bile culture' group, and 'positive cerebrospinal fluid culture' group, respectively, were 1.39 ng/ml, 8.32 ng/ml, 5.98 ng/ml, and 0.46 ng/ml. In all, 357 cases were classified into the 'sepsis' group, 150 of them were classified into the 'severe sepsis' group. Median PCT values were 5.63 ng/ml and 11.06 ng/ml, respectively. PCT could be used in clinical algorithms to diagnose positive infections and sepsis. Different PCT levels could be related to different kinds of microbemia, different infection sites, and differing severity of sepsis.

  1. The interpretation of forensic biochemical expert test made in human body fluids: scientific - legal analysis in the research on sexual offenses

    International Nuclear Information System (INIS)

    Chaves Carballo, Diana

    2014-01-01

    The contributions of science and technology have covered the whole of human life, and relationships of coexistence are even found in the various disciplines of knowledge through legal forensics. Therefore, it is increasingly imperative that the law enforcement agents are interdisciplinary professionals, with knowledge beyond the legal knowledge to enable them make the most of the scientific knowledge in judicial proceedings. Among the natural sciences applied to right, forensic biochemistry has contributed an extremely relevant test for the investigation of various sexual offenses, much has been so, that the Organismo de Investigacion Judicial of Costa Rica has in its Departamento de Laboratorios de Ciencias Forenses with specialized sections in this discipline. A diversity of skills are performed of presumptive and confirmatory character for the presence of biological fluids, sexually transmitted diseases and identification of DNA by genetic markers. Updated information is given with respect to the correct interpretation of forensic biochemical expertises achievable for identification of semen, blood and human saliva in the investigation of sexual offenses. A scientific and legal language is used allowing the most of this information in the criminal process. The main objective has been to interpret, legal and scientifically, forensic biochemical expert evidence performed in human body fluids during the investigation of sexual offenses. A legal, doctrinal and scientific review is presented with compilation of related jurisprudence and criminology reports analysis of Seccion de Bioquimica of the Departamento de Laboratorios Forenses of the Organismo de Investigacion Juridica issued during the investigation of sexual offenses. Two types of attainable skills have existed for the identification of biological fluids, each with a different binding. In addition, it has been clear, due to the lexicon employed when making a forensic biochemist opinion, that to make a proper

  2. Comparison of the antimicrobial adhesion potential of human body fluid glycoconjugates using fucose-binding lectin (PA-IIL) of Pseudomonas aeruginosa and Ulex europaeus lectin (UEA-I).

    Science.gov (United States)

    Lerrer, Batia; Lesman-Movshovich, Efrat; Gilboa-Garber, Nechama

    2005-09-01

    Pseudomonas aeruginosa produces a fucose-binding lectin (PA-IIL) which strongly binds to human cells. This lectin was shown to be highly sensitive to inhibition by fucose-bearing human milk glycoproteins. Since the glycans of these glycoproteins mimic human cell receptors, they may function as decoys in blocking lectin-dependent pathogen adhesion to the host cells. Human saliva and seminal fluid also contain such compounds, and body fluids of individuals who are "secretors" express additional fucosylated (alpha 1,2) residues. The latter are selectively detected by Ulex europaeus lectin UEA-I. The aim of the present research was to compare the PA-IIL and UEA-I interactions with human salivas and seminal fluids of "secretors" and "nonsecretors" with those obtained with the respective milks. Using hemagglutination inhibition and Western blot analyses, we showed that PA-IIL interactions with the saliva and seminal fluid glycoproteins were somewhat weaker than those obtained with the milk and that "nonsecretor" body fluids were not less efficient than those of "secretors" in PA-IIL blocking. UEA-I, which interacted only with the "secretors" glycoproteins, was most sensitive to those of the seminal fluids.

  3. Comparison of the Concentrations of Lidocaine in Different Body Fluids/Tissues after Subarachnoid Space and Intravenous Administration of a Lethal Dose of Lidocaine

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2015-01-01

    Full Text Available The objective of the study was to compare the concentration of lidocaine in different body fluids/tissues after subarachnoid space and intravenous administrations of a lethal dose of lidocaine. Totally 18 dogs were used in the experiment. Six dogs were given subarachnoid anesthesia, another were given an intravenous injection of a dose of 75 mg/kg weight of lidocaine hydrochloride in 5 min and the last 6 dogs were used as the blank control dogs and given a subarachnoid space injection or a femoral artery injection of the same volume of sodium chloride. As soon as its vital signs disappeared, each dog was dissected and the specimen, such as brain, cerebrospinal fluid (CSF in lateral ventricle, CSF in subarachnoid space, spinal cord (cervical spinal cord, thoracic spinal cord, lumbar spinal cord, and waist spinal cord, heart, lung, liver, spleen, kidney, bile, urine, heart blood, peripheral blood, muscle in injection location, and muscle in no injection location, were collected for analysis of lidocaine immediately. Analysis was performed with gas chromatography-mass spectrometry (GC-MS. From the maximum to the minimum, the order of lidocaine concentration detected in the subarachnoid space-administered dogs was as follows: CSF in subarachnoid space, waist spinal cord, thoracic spinal cord, CSF in lateral ventricle, lumbar spinal cord, cervical spinal cord, lung, kidney, muscle in injection location, heart, brain, spleen, heart blood, liver, peripheral blood, bile, muscle in no injection location, and urine. The order of lidocaine concentration detected in the intravenously administered dogs was as followed: Kidney, heart, lung, spleen, brain, liver, peripheral blood, bile, heart blood, cervical spinal cord, thoracic spinal cord, muscle in injection location, lumbar spinal cord, muscle in no injection location, CSF in subarachnoid space, urine, and CSF in lateral ventricle. The maximum concentration of lidocaine was detected in the subarachnoid

  4. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM analysis [v1; ref status: indexed, http://f1000r.es/2hj

    Directory of Open Access Journals (Sweden)

    Erin K. Hanson

    2013-12-01

    Full Text Available Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE or quantitative RT-PCR (qRT-PCR platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions, IL1F7 (skin, ALAS2 (blood, MMP10 (menstrual blood, HTN3 (saliva and TGM4 (semen.  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green. Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively

  5. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid.

    Science.gov (United States)

    Gaur, Swati; Singh Raman, R K; Khanna, A S

    2014-09-01

    A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface-known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Chu, C.L.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.; Luk, K.D.K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2 O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2 O-PIII NiTi samples in simulated body fluids (SBF) at 37 deg. C as well as the mechanism. The H 2 O-PIII NiTi sample showed a higher breakdown potential (E b ) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2 O-PIII is primarily responsible for the improvement in the surface corrosion resistance

  7. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    Science.gov (United States)

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Porous silicon for photosensitized formation of singlet oxygen in water and in simulated body fluid: two methods of modification by undecylenic acid.

    Science.gov (United States)

    Pastor, Ester; Balaguer, Maria; Bychto, Leszek; Salonen, Jarno; Lehto, Vesa-Pekka; Matveeva, Eugenia; Chirvony, Vladimir

    2009-06-01

    Initially H-terminated and therefore hydrophobic surface of electrochemically prepared luminescent porous silicon (PSi) powder was transformed to the hydrophilic one by means of surface modification by undecylenic acid. Physical adsorption of undecylenic acid as a non-ionic surfactant and its chemical binding through C[triple bond]C bond opening and Si-C bond formation were applied as two different methods of PSi surface modification, physical and chemical modification, respectively. Luminescence of aqueous suspensions of the both types of modified PSi powders in merely water and in simulated body fluid physiological electrolyte was measured as a function of time. Many-fold (up to 20 times) building-up of the luminescence intensity was observed for PSi aqueous suspensions during the first few days, the growth was followed by a slower (a week and more) luminescence intensity decay. As it is evidenced by FTIR spectra and SEM images, the effect of the luminescence growth and decay of PSi suspension in water can be in part attributed to the PSi surface oxidation accompanied by its dissolution and de-aggregation of large PSi particles. It is concluded also from the experiments on PSi luminescence reversible quenching by O2 that SiO-related surface states with the excitation energy about 2.2 eV are formed during water-assisted oxidation of Si nanocrystal surface. An appearance of a large number of such surface states can be also responsible for the observed PSi luminescence building-up.

  9. Nucleation and characterization of hydroxyapatite on thioglycolic acid-capped reduced graphene oxide/silver nanoparticles in simplified simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun; Zhang, Zhaochun, E-mail: zhangzhaochun@shu.edu.cn; Yu, Zhenwei; He, Zhenni; Yang, Shanshan; Jiang, Huiyi

    2014-01-15

    Herein hydroxyapatite (HA) has been synthesized by the nucleation on the surfaces of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) chemisorbed with thioglycolic acid (TGA). The self-assembled monolayer of TGA formed on rGO/AgNPs was immersed in simplified simulated body fluid under gentle growth conditions, forming rGO/AgNPs/TGA/HA biocomposite. The phase structures and functional groups of biocomposite were analyzed by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. Enhanced Raman spectrum of TGA on prepared rGO/AgNPs was obtained with excitation at 633 nm, showing that TGA was chemisorbed on AgNPs through S atom and TGA molecular plane exhibited a tilted orientation with respect to AgNPs. The morphologies of biocomposite were investigated by means of atomic force microscope and transmission electron microscope coupled with energy dispersive spectrum. Analysis shows that the AgNPs uniformly distributed on the rGO nanosheets with the size of about 15–20 nm and HA formation initiated through Ca{sup 2+}-adsorption upon complexation with -COO{sup −} groups of TGA on AgNPs. The results obtained indicated that the rGO/AgNPs/TGA/HA biocomposite may have immense potential application in bone tissue engineering fields for its outstanding and stable activities.

  10. Nucleation and characterization of hydroxyapatite on thioglycolic acid-capped reduced graphene oxide/silver nanoparticles in simplified simulated body fluid

    Science.gov (United States)

    Zhao, Jun; Zhang, Zhaochun; Yu, Zhenwei; He, Zhenni; Yang, Shanshan; Jiang, Huiyi

    2014-01-01

    Herein hydroxyapatite (HA) has been synthesized by the nucleation on the surfaces of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) chemisorbed with thioglycolic acid (TGA). The self-assembled monolayer of TGA formed on rGO/AgNPs was immersed in simplified simulated body fluid under gentle growth conditions, forming rGO/AgNPs/TGA/HA biocomposite. The phase structures and functional groups of biocomposite were analyzed by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. Enhanced Raman spectrum of TGA on prepared rGO/AgNPs was obtained with excitation at 633 nm, showing that TGA was chemisorbed on AgNPs through S atom and TGA molecular plane exhibited a tilted orientation with respect to AgNPs. The morphologies of biocomposite were investigated by means of atomic force microscope and transmission electron microscope coupled with energy dispersive spectrum. Analysis shows that the AgNPs uniformly distributed on the rGO nanosheets with the size of about 15-20 nm and HA formation initiated through Ca2+-adsorption upon complexation with sbnd COO- groups of TGA on AgNPs. The results obtained indicated that the rGO/AgNPs/TGA/HA biocomposite may have immense potential application in bone tissue engineering fields for its outstanding and stable activities.

  11. Nucleation and characterization of hydroxyapatite on thioglycolic acid-capped reduced graphene oxide/silver nanoparticles in simplified simulated body fluid

    International Nuclear Information System (INIS)

    Zhao, Jun; Zhang, Zhaochun; Yu, Zhenwei; He, Zhenni; Yang, Shanshan; Jiang, Huiyi

    2014-01-01

    Herein hydroxyapatite (HA) has been synthesized by the nucleation on the surfaces of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) chemisorbed with thioglycolic acid (TGA). The self-assembled monolayer of TGA formed on rGO/AgNPs was immersed in simplified simulated body fluid under gentle growth conditions, forming rGO/AgNPs/TGA/HA biocomposite. The phase structures and functional groups of biocomposite were analyzed by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. Enhanced Raman spectrum of TGA on prepared rGO/AgNPs was obtained with excitation at 633 nm, showing that TGA was chemisorbed on AgNPs through S atom and TGA molecular plane exhibited a tilted orientation with respect to AgNPs. The morphologies of biocomposite were investigated by means of atomic force microscope and transmission electron microscope coupled with energy dispersive spectrum. Analysis shows that the AgNPs uniformly distributed on the rGO nanosheets with the size of about 15–20 nm and HA formation initiated through Ca 2+ -adsorption upon complexation with -COO − groups of TGA on AgNPs. The results obtained indicated that the rGO/AgNPs/TGA/HA biocomposite may have immense potential application in bone tissue engineering fields for its outstanding and stable activities.

  12. Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle's Balance Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Benjamin M. [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Zhang, Lei, E-mail: lzhang14@alaska.edu [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Li, Weiping; Ning, Chengyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Chen, Cheng-fu [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Gu, Yanhong [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China)

    2016-02-15

    Graphical abstract: - Highlights: • MAO coating is deposited on AZ31 Mg alloy by microarc oxidation. • Corrosion performance of MAO-coated AZ31 in EBSS vs. c-SBF is studied. • MAO-coated AZ31 exhibits enhanced corrosion resistance compared to bare AZ31. • Samples in EBSS show slower corrosion progression than the samples in c-SBF. • CO{sub 2} buffer and less chloride in EBSS cause corrosion rate gap in c-SBF and EBSS. - Abstract: Earle's Balance Salt Solution (EBSS) provides an alternative to the conventional simulated body fluids (c-SBF) and has been shown to better simulate the corrosion conditions in vivo. In this work, a series of tests were conducted to explore the corrosion performance of MAO-coated AZ31 samples in EBSS vs. c-SBF. Samples were produced by varying MAO process parameters and then immersed up to 21 days in both EBSS and c-SBF. The corrosion rates were evaluated by the electrochemical impedance spectroscopy and potentiodynamic scanning. Scanning electron microscope (SEM) was used to compare the progression of microcracks across the surface of the coatings. The evaluation of cross-sectional thickness showed an increase in MAO coating thickness with the process voltage. MAO samples with a thicker coating generally have higher impedance and lower current density at the initial immersion time point of 0.5 h. Samples in EBSS showed higher initial impedance and lower current density values as compared to c-SBF counterparts for all process groups. Samples in EBSS demonstrated a much slower corrosion rate than c-SBF samples because of the decreased chloride content and CO{sub 2} buffering mechanism of the EBSS.

  13. Intention to comply with post-exposure management among nurses exposed to blood and body fluids in Taiwan: application of the theory of planned behaviour.

    Science.gov (United States)

    Ko, N-Y; Yeh, S-H; Tsay, S-L; Ma, H-J; Chen, C-H; Pan, S-M; Feng, M-C; Chiang, M-C; Lee, Y-W; Chang, L-H; Jang, J-F

    2011-04-01

    Nurses are at significant risk from occupationally acquired bloodborne virus infections following a needlestick and sharps injury. This study aimed to apply the theory of planned behaviour (TPB) to predict nurses' intention to comply with occupational post-exposure management. A cross-sectional survey was applied to select registered nurses who worked in human immunodeficiency virus (HIV)-designated hospitals. An anonymous, self-administered questionnaire based on the TPB was distributed to 1630 nurses and 1134 (69.5%) questionnaires were returned. From these, a total of 802 nurses (71%) reported blood and body fluid exposure incidents during 2003-2005 and this group was used for analysis. Only 44.6% of the 121 exposed nurses who were prescribed post-exposure prophylaxis (PEP) by infectious disease doctors returned to the clinic for interim monitoring, and only 56.6% of exposed nurses confirmed their final serology status. Structural equation modelling was used to test the TPB indicating perceived behavioural control (the perception of the difficulty or ease of PEP management, β=0.58), subjective norm (the perception of social pressure to adhere to PEP, β=0.15), and attitudes (β=0.12) were significant direct effects on nurses' intention to comply with post-exposure management. The hypothesised model test indicated that the model fitted with the expected relationships and directions of theoretical constructs [χ(2) (14, N=802)=23.14, P=0.057, GFI=0.987, RMSEA=0.039]. The TPB model constructs accounted for 54% of the variance in nurses' intention to comply with post-exposure management. The TPB is an appropriate model for predicting nurses' intention to comply with post-exposure management. Healthcare facilities should have policies to decrease the inconvenience of follow-up to encourage nurses to comply with post-exposure management. Copyright © 2010 the Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2017-12-01

    Full Text Available The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF. The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction, SEM (Scanning Electron Microscopy, and TEM (Transmission Electron Microscope. The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy. The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO42 compound (precursor of hydroxyapatite deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material.

  15. Leptin expression in breast nipple aspirate fluid (NAF) and serum is influenced by body mass index (BMI) but not by the presence of breast cancer.

    Science.gov (United States)

    Sauter, E R; Garofalo, C; Hewett, J; Hewett, J E; Morelli, C; Surmacz, E

    2004-05-01

    While obesity is a known risk factor for postmenopausal breast cancer, the molecular mechanisms involved are unclear. Systemic levels of leptin, the product of the ob (obesity) gene, are increased in obese individuals (body mass index, BMI, over 25) and are higher in women than men. Leptin has been found to stimulate the growth of breast cancer cells in vitro. Our goal was to determine whether leptin was 1) present in nipple aspirate fluid (NAF), and 2) whether NAF leptin levels were associated with a) levels in serum, b) obesity, and c) breast cancer. We collected and evaluated NAF specimens from 83 subjects and serum specimens from 49 subjects. NAF leptin was detectable in 16/41 (39 %) of premenopausal and 21/42 (50 %) postmenopausal subjects. NAF leptin was significantly lower (p = 0.042) in premenopausal than postmenopausal women with a BMI < 25, but not in those with a higher BMI. NAF leptin was significantly associated with BMI in premenopausal (p = 0.011) but not in postmenopausal women. Serum leptin was associated with BMI in both premenopausal and postmenopausal women (p = 0.0001 for both). NAF and serum leptin were associated in premenopausal (p = 0.02) but not postmenopausal women. Neither NAF nor serum leptin was associated with premenopausal or postmenopausal breast cancer. Our findings include that 1) leptin is present in the breast and detectable in a subset of NAF samples, 2) NAF leptin in premenopausal but not postmenopausal women parallels serum leptin levels, and 3) neither NAF nor serum levels of leptin were associated with premenopausal or postmenopausal breast cancer.

  16. Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle's Balance Salt Solution

    International Nuclear Information System (INIS)

    Wilke, Benjamin M.; Zhang, Lei; Li, Weiping; Ning, Chengyun; Chen, Cheng-fu; Gu, Yanhong

    2016-01-01

    Graphical abstract: - Highlights: • MAO coating is deposited on AZ31 Mg alloy by microarc oxidation. • Corrosion performance of MAO-coated AZ31 in EBSS vs. c-SBF is studied. • MAO-coated AZ31 exhibits enhanced corrosion resistance compared to bare AZ31. • Samples in EBSS show slower corrosion progression than the samples in c-SBF. • CO 2 buffer and less chloride in EBSS cause corrosion rate gap in c-SBF and EBSS. - Abstract: Earle's Balance Salt Solution (EBSS) provides an alternative to the conventional simulated body fluids (c-SBF) and has been shown to better simulate the corrosion conditions in vivo. In this work, a series of tests were conducted to explore the corrosion performance of MAO-coated AZ31 samples in EBSS vs. c-SBF. Samples were produced by varying MAO process parameters and then immersed up to 21 days in both EBSS and c-SBF. The corrosion rates were evaluated by the electrochemical impedance spectroscopy and potentiodynamic scanning. Scanning electron microscope (SEM) was used to compare the progression of microcracks across the surface of the coatings. The evaluation of cross-sectional thickness showed an increase in MAO coating thickness with the process voltage. MAO samples with a thicker coating generally have higher impedance and lower current density at the initial immersion time point of 0.5 h. Samples in EBSS showed higher initial impedance and lower current density values as compared to c-SBF counterparts for all process groups. Samples in EBSS demonstrated a much slower corrosion rate than c-SBF samples because of the decreased chloride content and CO 2 buffering mechanism of the EBSS.

  17. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Swati, E-mail: gaurswat@gmail.com [IITB–Monash Research Academy, IIT Bombay, Powai, Mumbai 400076 (India); Singh Raman, R.K. [Department of Mechanical, Monash University, Clayton, VIC-3800 (Australia); Department of Aerospace Engineering, Monash University, Clayton, VIC-3800 (Australia); Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); Khanna, A.S. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India)

    2014-09-01

    A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface—known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216 h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. - Highlights: • A silane-based coating was investigated for improving corrosion resistance. • Coating was developed on Mg-6Zn-Ca alloy to delay its biodegradation in m-SBF. • Corrosion resistance was characterized, using polarization and EIS. • The coating morphology was characterized using SEM, EDAX, XRD and FTIR. • 1:4 volume ratio of DEPETES:BTESPT showed significant corrosion resistance.

  18. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Gaur, Swati; Singh Raman, R.K.; Khanna, A.S.

    2014-01-01

    A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface—known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216 h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. - Highlights: • A silane-based coating was investigated for improving corrosion resistance. • Coating was developed on Mg-6Zn-Ca alloy to delay its biodegradation in m-SBF. • Corrosion resistance was characterized, using polarization and EIS. • The coating morphology was characterized using SEM, EDAX, XRD and FTIR. • 1:4 volume ratio of DEPETES:BTESPT showed significant corrosion resistance

  19. Development of a new multi-analyte assay for the simultaneous detection of opioids in serum and other body fluids using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Eckart, K; Röhrich, J; Breitmeier, D; Ferner, M; Laufenberg-Feldmann, R; Urban, R

    2015-09-15

    A liquid chromatography-tandem mass spectrometry method using electrospray ionization in positive ionization mode was developed for the simultaneous detection of multiple opioid-type drugs in plasma. The presented assay allows the quantitative determination of alfentanil, buprenorphine, codeine, desomorphine, dextromethorphan, dextrorphan, dihydrocodeine, dihydromorphine, ethylmorphine, fentanyl, hydrocodone, hydromorphone, methadone, morphine, naloxone, naltrexone, oxycodone, oxymorphone, pentazocine, pethidine, pholcodine, piritramide, remifentanil, sufentanil, and tramadol as well as the metabolites 6-monoacetylmorphine, bisnortilidine, morphine-3-glucuronide, morphine-6-glucuronide, naltrexol, norbuprenorphine, norfentanyl, norpethidine, nortilidine, and O-desmethyltramadol. Serum and blood samples were purified by solid-phase extraction. The analytes were separated on a phenyl-hexyl (100mm) column by formic acid/acetonitrile gradient elution using an UPLC 1290 Infinity coupled with a 6490 Triple Quadrupole mass spectrometer. The limits of detection ranged from 0.02 to 0.6ng/mL and the lower limits of quantification ranged from 0.1 to 2.0ng/mL. The calibration curves were linear between Calibration Levels 1-6 for all 35 substances. Recovery rates ranged between 51 and 88% for all compounds except alfentanil, bisnortilidine, pethidine, and morphine-3-glucuronide. The matrix effect ranged from 86% for ethylmorphine to 105% for desomorphine. Using the validation procedure proposed by the German Society of Toxicological and Forensic Chemistry, acceptable precision and accuracy data for almost all analytes were obtained. The method was successfully applied to 206 authentic serum samples provided by the palliative and intensive care units of the University Medical Center and the police authorities. Furthermore, a suspected fatal intoxication is demonstrated by an analysis of the sufentanil in post mortem body fluids and tissues. Copyright © 2015 Elsevier B.V. All

  20. Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications

    International Nuclear Information System (INIS)

    Khalil-Allafi, Jafar; Amin-Ahmadi, Behnam; Zare, Mehrnoush

    2010-01-01

    Due to unique properties of NiTi shape memory alloys such as high corrosion resistance, biocompatibility, super elasticity and shape memory behavior, NiTi shape memory alloys are suitable materials for medical applications. Although TiO 2 passive layer in these alloys can prevent releasing of nickel to the environment, high nickel content and stability of passive layer in these alloys are very debatable subjects. In this study a NiTi shape memory alloy with nominal composition of 50.7 atom% Ni was investigated by corrosion tests. Electrochemical tests were performed in two physiological environments of Ringer solution and NaCl 0.9% solution. Results indicate that the breakdown potential of the NiTi alloy in NaCl 0.9% solution is higher than that in Ringer solution. The results of Scanning Electron Microscope (SEM) reveal that low pitting corrosion occurred in Ringer solution compared with NaCl solution at potentiostatic tests. The pH value of the solutions increases after the electrochemical tests. The existence of hydride products in the X-ray diffraction analysis confirms the decrease of the concentration of hydrogen ion in solutions. Topographical evaluations show that corrosion products are nearly same in all samples. The biocompatibility tests were performed by reaction of mouse fibroblast cells (L929). The growth and development of cells for different times were measured by numbering the cells or statistics investigations. The figures of cells for different times showed natural growth of cells. The different of the cell numbers between the test specimen and control specimen was negligible; therefore it may be concluded that the NiTi shape memory alloy is not toxic in the physiological environments simulated with body fluids.

  1. A simple evaluation of numbers of asbestos bodies in bronchoalveolar lavage fluid under light microscopy. Analysis of 35 pulmonary nodular lesions

    International Nuclear Information System (INIS)

    Kawahara, Kunimitsu; Kawasumi, Hiromi; Nagano, Teruaki; Sasada, Shinji; Okamoto, Norio

    2008-01-01

    More than 1 asbestos body (AB) per ml of bronchoalveolar lavage fluid (BALF) under light microscopy was defined as AB positive (ABP) and suggests an occupational asbestos exposure. We microscopically evaluated the AB number per one ml of BALF, which we defined as the AB concentration (ABC), using bronchoalveolar lavage (BAL) cytocentrifuge slides obtained from 35 patients having pulmonary nodular lesions (20 carcinoma and 15 nonneoplastic disease) and examined the correlation between ABC and clinicopathological data including findings on Helical computed tomography scan (HCTS) and occupational history of asbestos exposure (OHAE). BAL was performed by the standard technique without removing mucous with a gauze filter. AB was microscopically defined as a structure consisting of a core of transparent asbestos surrounded by an iron-protein coat. Twenty of 35 patients were ABP (ABP rate; 57%) and ABC ranged from 0 to 207.98/ml (mean ABC; 11.33/ml). Mean ABC was significantly higher in patients with OHAE (15.04/ml) compared to that in patients without OHAE (3.23/ml). Twenty-two of 35 patients (63%) lacked abnormality on HCTS and among these, 12 patients (55%) were ABP. In 20 pulmonary carcinoma patients, the ABP rate was 85% and ABC ranged from 0 to 31.1/ml (Mean ABC; 2.99/ml). The ABP rate of pulmonary carcinoma patients was 40% (8 patients) and among these, 5 patients (63%) did not show any abnormality on HCTS. In conclusion, our method was simple and useful and should be applied to patients with pulmonary nodular lesions and OHAE, even if there are no abnormalities on HCTS. (author)

  2. Lumbar Drains Decrease the Risk of Postoperative Cerebrospinal Fluid Leak Following Endonasal Endoscopic Surgery for Suprasellar Meningiomas in Patients With High Body Mass Index.

    Science.gov (United States)

    Cohen, Salomon; Jones, Samuel H; Dhandapani, Sivashanmugam; Negm, Hazem M; Anand, Vijay K; Schwartz, Theodore H

    2018-01-01

    Postoperative cerebrospinal fluid (CSF) leak is a persistent, albeit much less prominent, complication following endonasal endoscopic surgery. The pathology with highest risk is suprasellar meningiomas. A postoperative lumbar drain (LD) is used to decrease the risk of CSF leak but is not universally accepted. To compare the rates of postoperative CSF leak between patients with and without LD who underwent endonasal endoscopic surgical resection of suprasellar meningiomas. A consecutive series of newly diagnosed suprasellar meningiomas was drawn from a prospectively acquired database of endonasal endoscopic surgeries at our institution. An intraoperative, preresection LD was placed and left open at 5 cc/h for ∼48 h. In a subset of patients, the LD could not be placed. Rates of postoperative CSF leak were compared between patients with and without an LD. Twenty-five patients underwent endonasal endoscopic surgical resection of suprasellar meningiomas. An LD could not be placed in 2 patients. There were 2 postoperative CSF leaks (8%), both of which occurred in the patients who did not have an LD (P = .0033). The average body mass index (BMI) of the patients in whom the LD could not be placed was 39.1 kg/m2, compared with 27.6 kg/m2 for those in whom the LD could be placed (P = .009). In the subgroup of obese patients (BMI > 30 kg/m2), LD placement was protective against postoperative CSF leak (P = .022). The inability to place an LD in patients with obesity is a risk factor for postoperative CSF leak. An LD may be useful to prevent postoperative CSF leak, particularly in patients with elevated BMI. Copyright © 2017 by the Congress of Neurological Surgeons

  3. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.

    Science.gov (United States)

    Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Velez, Mariano

    2012-09-01

    The effect of particle size distribution, binder content, processing parameters, and sintering schedule on the microstructure and mechanical properties of porous constructs was investigated. The porous constructs were produced by indirect selective laser sintering (SLS) of 13-93 bioactive glass using stearic acid as a polymeric binder. The binder content and d(50) particle size in the feedstock powders were simultaneously reduced from 22 to 12 wt% and from 20 to 11 μm, respectively, to identify the minimum binder content required for the SLS fabrication. An average particle size of ∼16 μm with a binder content of 15 wt% significantly reduced post-processing time and improved mechanical properties. Increasing the laser power and scan speed at the energy density of 1 cal/cm² maintained the feature sharpness of the parts during the fabrication of green parts and could almost double the mechanical properties of the sintered parts. Changes in the heating rates, ranging from 0.1 to 2 °C/min, during the post-processing of the fabricated "green" scaffolds showed that the heating rate significantly affects the densification and mechanical properties of the sintered scaffolds. The compressive strength of the scaffolds manufactured with the optimized parameters varied from 41 MPa, for a scaffold with a porosity of ∼50%, to 157 MPa, for a dense part. The bioactive scaffolds soaked in simulated body fluids for durations up to 6 weeks were used to evaluate the change in mechanical properties in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Unresolved issues in the analysis of F2-isoprostanes, F4-neuroprostanes, isofurans, neurofurans, and F2-dihomo-isoprostanes in body fluids and tissue using gas chromatography/negative-ion chemical-ionization mass spectrometry.

    Science.gov (United States)

    Yen, H-C; Wei, H-J; Lin, C-L

    2015-01-01

    F2-isoprostanes (F2-IsoPs) generated from arachidonic acid (AA) have been recognized as the most reliable marker of nonenzymatic lipid peroxidation in vivo. F2-IsoPs are initially produced in esterified form on phospholipids, and then released into body fluids in free form. The same mechanism can lead to generation of F4-neuroprostanes (F4-NPs) and F2-dihomo-IsoPs from docosahexaenoic acid (DHA) and adrenic acid, respectively. In addition, isofurans (IsoFs) and neurofurans (NFs) may be preferentially produced from AA and DHA, respectively, under high oxygen tension. The detection of F2-IsoPs using gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) has been widely employed, which is important for human body fluids containing low quantity of free-form F2-IsoPs. F4-NPs have also been detected using GC/NICI-MS, but multiple peaks need to be quantified. In this paper, we summarize the basic workflow of the GC/NICI-MS method for analyzing F2-IsoPs and F4-NPs, and various formats of assays conducted by different groups. We then discuss the feasibility of simultaneous analysis of IsoFs, NFs, and F2-dihomo-IsoPs with F2-IsoPs or F4-NPs. Representative GC chromatograms for analyzing these markers in human body fluids and rat brain tissue are demonstrated. Furthermore, we discuss several factors that may affect the performance of the analysis, such as those related to the sample processing steps, interference from specimens, types of GC liners used, and the addition of electron multiplier voltage in the method setting for the MS detector. Finally, we question the appropriateness of measuring total (free plus esterified) levels of these markers in body fluids.

  5. Risk factors affecting occupational exposure to blood and body fluids among dental students: a cross-sectional study in a brazilian federal university

    Directory of Open Access Journals (Sweden)

    Fábio Fernandes Dantas Filho

    2017-04-01

    Full Text Available Introduction: Dental students are often exposed to bloodborne pathogens during dental training. Several factors are involved in increased risk of human deficiency, hepatitis B and hepatitis C virus (HIV, HBV, and HCV infection. However, there are few studies that address the risks and forms of prevention among dental students in Brazil. Methods: A cross-sectional study of occupational exposure to blood or body fluids among dental students of Universidade Federal do Rio Grande do Sul, Brazil, was performed. These students were referred to the Occupational Medicine Department of Hospital de Clínicas de Porto Alegre from January 2007 to April 2015. Analyzed data included type of exposure (needlestick injury, mucosal exposure, and exposure to non-intact skin; source patient status for HBV, HIV and HCV infection, accident during dental training, procedure performed, biological material involved, type of accident, and hepatitis B vaccination and serological protection status. The objective was to know the incidence rate and others characteristics of accidents in order to prevent them. Results: There were 312 accidents during the study period of 8 years and 4 months, an estimated incidence rate of Incidence rate was 87,42 exposures per 1000 students-year. Source patient was known in 297 of the cases (95.2%, of which 3 were HBsAg reagent, 12 were HIV reagent, and 17 were HCV reagent. The majority of accidents occurred during procedure, but nearly as high as 40% occurred after procedure, of which 63% occurred during instrument cleaning, disinfecting or sterilizing. Most involved sharp instruments were anesthetic syringe needle and curette. Only 48% of dental students knew their anti-HBs was > 10 mIU/mL. Conclusions: Dental students should be tested for hepatitis B immune status at the beginning of training, and vaccination should be available to all dental students before they start clinical practice. Work practice controls on sharp devices should

  6. Evaluation of MALDI-TOF mass spectrometry and Sepsityper Kit™ for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital

    OpenAIRE

    Tadros, Manal; Petrich, Astrid

    2013-01-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) can be used to identify bacteria directly from positive blood and sterile fluid cultures. The authors evaluated a commercially available kit – the Sepsityper Kit (Bruker Daltonik, Germany) – and MALDI-TOF MS for the rapid identification of organisms from 80 flagged positive blood culture broths, of which 73 (91.2%) were blood culture specimens and seven (8.7%) were cerebrospinal fluid specimens, in com...

  7. Hydrodynamics of the interaction between bodies in a viscous fluid in the vicinity of their contact at low and high Reynolds numbers

    Czech Academy of Sciences Publication Activity Database

    Petrov, A. G.; Kharlamov, Alexander

    2013-01-01

    Roč. 48, č. 2 (2013), s. 179-191 ISSN 0015-4628 R&D Projects: GA ČR GA103/09/2066 Grant - others:Russian Foundation for Basic Research (RU) 11-01-00535; Russian Foundation for Basic Research (RU) 11-01-00857; Target Analytical Program; Development of the Scientific Potential of the Higher School(RU) 2.1.2/3604 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * contact vicinity Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013

  8. Incidence of occupational exposure to blood and body fluids and measures taken by health care workers before and after exposure in regional hospitals of a developing country: a multicenter study.

    Science.gov (United States)

    Sabermoghaddam, Mohsen; Sarbaz, Masoumeh; Lashkardoost, Hossein; Kaviani, Amine; Eslami, Saeid; Rezazadeh, Javad

    2015-10-01

    This cross-sectional study was conducted on 371 health care workers working in government hospitals in the Northern Khorasan province of Iran. Exposure to sharp objects was 44% and 31% of participants had a history of being in contact with blood or body fluids of patients. Among health care workers who had needlestick injuries, 82 had a positive hepatitis B surface antibody titer measured after injury. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of MALDI-TOF Mass Spectrometry and Sepsityper Kit™ for the Direct Identification of Organisms from Sterile Body Fluids in a Canadian Pediatric Hospital

    Directory of Open Access Journals (Sweden)

    Manal Tadros

    2013-01-01

    Full Text Available Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS can be used to identify bacteria directly from positive blood and sterile fluid cultures. The authors evaluated a commercially available kit – the Sepsityper Kit (Bruker Daltonik, Germany – and MALDI-TOF MS for the rapid identification of organisms from 80 flagged positive blood culture broths, of which 73 (91.2% were blood culture specimens and seven (8.7% were cerebrospinal fluid specimens, in comparison with conventional identification methods. Correct identification to the genus and species levels was obtained in 75 of 80 (93.8% and 39 of 50 (78% blood culture broths, respectively. Applying the blood culture analysis module, a newly developed software tool, improved the species identification of Gram-negative organisms from 94.7% to 100% and of Gram-positive organisms from 66.7% to 70%.

  10. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  11. Evaluation of MALDI-TOF mass spectrometry and Sepsityper Kit™ for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital.

    Science.gov (United States)

    Tadros, Manal; Petrich, Astrid

    2013-01-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) can be used to identify bacteria directly from positive blood and sterile fluid cultures. The authors evaluated a commercially available kit - the Sepsityper Kit (Bruker Daltonik, Germany) - and MALDI-TOF MS for the rapid identification of organisms from 80 flagged positive blood culture broths, of which 73 (91.2%) were blood culture specimens and seven (8.7%) were cerebrospinal fluid specimens, in comparison with conventional identification methods. Correct identification to the genus and species levels was obtained in 75 of 80 (93.8%) and 39 of 50 (78%) blood culture broths, respectively. Applying the blood culture analysis module, a newly developed software tool, improved the species identification of Gram-negative organisms from 94.7% to 100% and of Gram-positive organisms from 66.7% to 70%. MALDI-TOF MS is a promising tool for the direct identification of organisms cultured from sterile sites.

  12. A study on magnetic relaxation times of various organs and body fluids using superconducting magnetic resonance imaging system part I: measurement of relative signal intensity and T2 relaxation time in various portions of brain and cerebrospinal fluid

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Lee, Ghi Jai; Han, Moon Hee; Kim, Jae Ho; Han, Man Chang; Kim, Chu Wan

    1988-01-01

    This study was undertake to determine if routine clinical magnetic resonance imaging sequences using only two different repetition times (TRs) and with only two sequential echo times (TEs) can be used to measure reproducible relative signal intensity and T2 relaxation time for normal brain tissues and cerebrospinal fluid using a 2.0T superconducting system. In 47 patients 6 different anatomic sites were measured. For each anatomic location, the mean and standard deviation of these values were determined. On T1-weighted (SE 500msec/30msec) images, in globus pallidus and thalamus, of the CSF, cortical gray matter and retrobulbar fat tissue varied more, with a standard deviation of 11-14% on T1-weighted images. On T2-weighted (SE 3000msec/30msec and 3000msec/80msec) images, the relative signal intensity of all anatomic regions varied more than on T1-weighted images. The standard deviation of T2 relaxation times also varied from 10% (fat tissue) to 18% (CSF). These variations might be due to partial volume averaging, signal alteration of CSF secondary to CSF pulsatile motion, etc. Knowing that relative signal intensity and T2 relaxation times calculated from routine imaging sequences are reproducible in only limited area, these normal ranges can be used to investigate changes occurring in disease states of the limited regions.

  13. Analysis of anabolic steroids in body fluids by capillary gas chromatography with a two-channel detection system and a computer.

    Science.gov (United States)

    Uralets, V P; Semenova, V A; Yakushin, M A; Semenov, V A

    1983-11-25

    A method is described for analysis of multi-component mixtures of steroid metabolites in biological fluids by means of capillary gas chromatography with glass and fused-silica columns and simultaneous detection of methoxylamine-trimethylsilyl derivatives with universal flame-ionization and selective nitrogen alkali flameionization detectors. A data system was applied to the on-line treatment of the results. Computer programs were designed for precise calculation of Kováts retention indices from the known values for selected natural urinary steroids. The programs allow the selection of nitrogen-containing components, normalized chromatogram plotting for both detection channels and qualitative and quantitative analysis. Results are presented on the detection of metabolites of methandrostenolone, 17 alpha-methyltestosterone, 19-nortestosterone and fluoxymesterone.

  14. Use of sodC versus ctrA for real-time polymerase chain reaction-based detection of Neisseria meningitidis in sterile body fluids

    Directory of Open Access Journals (Sweden)

    Fábio Takenori Higa

    2013-04-01

    Full Text Available We evaluated the use of a newly described sodC-based real-time-polymerase chain reaction (RT-PCR assay for detecting Neisseria meningitidis in normally sterile sites, such as cerebrospinal fluid and serum. The sodC-based RT-PCR assay has an advantage over ctrA for detecting nongroupable N. meningitidis isolates, which are commonly present in asymptomatic pharyngeal carriage. However, in our study, sodC-based RT-PCR was 7.5% less sensitive than ctrA. Given the public health impact of possible false-negative results due to the use of the sodC target gene alone, sodC-based RT-PCR for the diagnosis of meningococcal meningitis should be used with caution.

  15. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  16. Buffer fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Dedusanko, G Ya; Dinaburg, L S; Markov, Yu M; Rasizade, Ya N; Rozov, V N; Sherstnev, N M

    1979-08-30

    A drilling fluid is suggested for separating the drilling and plugging fluids which contains as the base increased solution of polyacrylamide and additive. In order to increase the viscoelastic properties of the liquid with simultaneous decrease in the periods of its fabrication, the solution contains as an additive dry bentonite clay. In cases of the use of a buffer fluid under conditions of negative temperatures, it is necessary to add to it table salt or ethylene glycol.

  17. Structure and thermodynamics of a mixture of patchy and spherical colloids: A multi-body association theory with complete reference fluid information

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G., E-mail: wgchap@rice.edu [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251 (United States)

    2016-08-21

    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium. The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.

  18. Evaluation of cell count and classification capabilities in body fluids using a fully automated Sysmex XN equipped with high-sensitive Analysis (hsA) mode and DI-60 hematology analyzer system.

    Science.gov (United States)

    Takemura, Hiroyuki; Ai, Tomohiko; Kimura, Konobu; Nagasaka, Kaori; Takahashi, Toshihiro; Tsuchiya, Koji; Yang, Haeun; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Tabe, Yoko; Ohsaka, Akimichi

    2018-01-01

    The XN series automated hematology analyzer has been equipped with a body fluid (BF) mode to count and differentiate leukocytes in BF samples including cerebrospinal fluid (CSF). However, its diagnostic accuracy is not reliable for CSF samples with low cell concentration at the border between normal and pathologic level. To overcome this limitation, a new flow cytometry-based technology, termed "high sensitive analysis (hsA) mode," has been developed. In addition, the XN series analyzer has been equipped with the automated digital cell imaging analyzer DI-60 to classify cell morphology including normal leukocytes differential and abnormal malignant cells detection. Using various BF samples, we evaluated the performance of the XN-hsA mode and DI-60 compared to manual microscopic examination. The reproducibility of the XN-hsA mode showed good results in samples with low cell densities (coefficient of variation; % CV: 7.8% for 6 cells/μL). The linearity of the XN-hsA mode was established up to 938 cells/μL. The cell number obtained using the XN-hsA mode correlated highly with the corresponding microscopic examination. Good correlation was also observed between the DI-60 analyses and manual microscopic classification for all leukocyte types, except monocytes. In conclusion, the combined use of cell counting with the XN-hsA mode and automated morphological analyses using the DI-60 mode is potentially useful for the automated analysis of BF cells.

  19. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... ray technique that makes it possible to see internal organs in motion. When used with an oral ... the body. As the sound waves bounce off internal organs, fluids and tissues, the sensitive receiver in ...

  20. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... Anesthesia Safety X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Videos related to Foreign Body Retrieval ...

  1. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ...

  2. Inferior vena cava/aorta diameter index in the assessment of the body fluid status – a comparative study of measurements performed by experienced and inexperienced examiners in a group of young adults

    Directory of Open Access Journals (Sweden)

    Kaja Durajska

    2014-09-01

    Full Text Available The assessment of the body fluid status is one the most challenging tasks in clinical practice. Although there are many methods to assess the body fluid status of patients, none of them is fully satisfactory in contemporary medical sciences. In the article below, we compare the results of measurements performed by experienced and inexperienced examiners based on the inferior vena cava/aorta diameter index in a sonographic hydration assessment. The study enrolled 50 young students at the age of 19–26 (the median age was 22.95 including 27 women and 23 men. The volunteers were examined in the supine position with GE Logiq 7 system and a convex transducer with the frequency of 2–5 MHz. The measurements were performed in the longitudinal and transverse planes by two inexperienced examiners – the authors of this paper, following a four-hour training conducted by an experienced sonographer. The longitudinal values of the inferior vena cava/aorta diameter index obtained in this study were similar to those found in the literature. The reference value for the inferior vena cava/aorta index determined by Kosiak et al., which constituted 1.2 ± 2 SD, for SD = 0.17, was similar to the values obtained by the authors of this paper which equaled 1.2286 ± 2 SD, for SD = 0.2. The article presented below proves that measuring the inferior vena cava/aorta diameter index is not a complex examination and it may be performed by physicians with no sonographic experience. Furthermore, the paper demonstrates that the inferior vena cava/aorta diameter index measured in the transverse plane is similar to the inferior vena cava/aorta diameter index determined in the longitudinal plane. Thus, both measurements may be used interchangeably to assess the hydration status of patients.

  3. Schroedinger fluid

    International Nuclear Information System (INIS)

    Kan, K.K.

    1983-01-01

    The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)

  4. Contact with hospital syringes containing body fluids: implications for medical waste management regulation Jeringas en contacto con sangre y fluidos corporales utilizadas en el hospital: implicaciones para el manejo de desechos hospitalarios

    Directory of Open Access Journals (Sweden)

    Patricia Volkow

    2003-04-01

    Full Text Available OBJECTIVE: To determine amount of syringes used in the hospital and extent of contact with blood and body fluids of these syringes. MATERIAL AND METHODS: Syringe use was surveyed at a tertiary care center for one week; syringes were classified into the following four categories according to use: a contained blood; b contained other body fluids (urine, gastric secretion, cerebrospinal fluid, wound drainage; c used exclusively for drug dilution and application in plastic intravenous (IV tubes, and d for intramuscular (IM, subcutaneous (SC, or intradermic (ID injections. RESULTS: A total of 7 157 plastic disposable syringes was used; 1 227 (17% contained blood during use, 346 (4.8%, other body fluids, 5 257 (73% were used exclusively for drug dilution and application in plastic IV lines, and 327 (4.5% were utilized for IM, SC, or ID injections. An estimated 369 140 syringes used annually, or eight syringes per patient per in-hospital day. All syringes were disposed of as regulated medical waste, in observance of the law. CONCLUSIONS: There is an urgent need to review recommendations for medical waste management by both international agencies and local governments, based on scientific data and a cost-benefit analysis, to prevent resource waste and further environmental damage.OBJETIVO: Cuantificar el número de jeringas que se utilizan en el hospital y calcular cuántas de éstas entran en contacto con sangre o fluidos corporales. MATERIAL Y MÉTODOS: Se hizo una encuesta del uso de jeringas en un hospital de tercer nivel de atención durante toda una semana. Se clasificaron, de acuerdo con el uso que se les dio, en cuatro categorías: a aspiración de sangre, b otros fluidos corporales (orina, secreción gástrica, líquido cefalorraquídeo, drenaje de herida, etcétera, c uso exclusivo para diluir medicamentos y administrarlos a través de tubos de terapia intravenosa, d para aplicación de inyecciones intramusculares (IM, subcutáneas (SC o

  5. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    Science.gov (United States)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  6. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  7. Solving problems in fluid mechanics. Vol. 1

    International Nuclear Information System (INIS)

    Douglas, J.F.

    1986-01-01

    Fluid mechanics is that part of applied mechanics concerned with the statics and dynamics of liquids and gases. The presentation is in a pedagogically sound question-and-answer format, which includes many worked examples preceding the exercises. This book which assumes only an elementary knowledge of mathematics and mechanics, offers a clear exposition of topics including hydrostatics, fluid pressure and the stability of floating bodies, fluid motion, flow measurement, pipelines, open channel flow, and fluid friction

  8. Fluid mechanics

    International Nuclear Information System (INIS)

    Granger, R.A.

    1985-01-01

    This text offers the most comprehensive approach available to fluid mechanics. The author takes great care to insure a physical understanding of concepts grounded in applied mathematics. The presentation of theory is followed by engineering applications, helping students develop problem-solving skills from the perspective of a professional engineer. Extensive use of detailed examples reinforces the understanding of theoretical concepts

  9. Fundamental trends in fluid-structure interaction

    CERN Document Server

    Galdi, Giovanni P

    2010-01-01

    The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. ""Fundamental Trends in Fluid-Structure Interaction"" is a unique collection of important papers wr

  10. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: investigating the role of fluids in early-stage continental rifting

    Science.gov (United States)

    Roecker, S.; Ebinger, C.; Tiberi, C.; Mulibo, G.; Ferdinand-Wambura, R.; Mtelela, K.; Kianji, G.; Muzuka, A.; Gautier, S.; Albaric, J.; Peyrat, S.

    2017-08-01

    The Eastern Rift System (ERS) of northern Tanzania and southern Kenya, where a cratonic lithosphere is in the early stages of rifting, offers an ideal venue for investigating the roles of magma and other fluids in such an environment. To illuminate these roles, we jointly invert arrival times of locally recorded P and S body waves, phase delays of ambient noise generated Rayleigh waves and Bouguer anomalies from gravity observations to generate a 3-D image of P and S wave speeds in the upper 25 km of the crust. While joint inversion of gravity and arrival times requires a relationship between density and wave speeds, the improvement in resolution obtained by the combination of these disparate data sets serves to further constrain models, and reduce uncertainties. The most significant features in the 3-D model are (1) P and S wave speeds that are 10-15 per cent lower beneath the rift zone than in the surrounding regions, (2) a relatively high wave speed tabular feature located along the western edge of the Natron and Manyara rifts, and (3) low (∼1.71) values of Vp/Vs throughout the upper crust, with the lowest ratios along the boundaries of the rift zones. The low P and S wave speeds at mid-crustal levels beneath the rift valley are an expected consequence of active volcanism, and the tabular, high-wave speed feature is interpreted to be an uplifted footwall at the western edge of the rift. Given the high levels of CO2 outgassing observed at the surface along border fault zones, and the sensitivity of Vp/Vs to pore-fluid compressibility, we infer that the low Vp/Vs values in and around the rift zone are caused by the volcanic plumbing in the upper crust being suffused by a gaseous CO2 froth on top of a deeper, crystalline mush. The repository for molten rock is likely located in the lower crust and upper mantle, where the Vp/Vs ratios are significantly higher.

  11. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...

  12. Euler's fluid equations: Optimal control vs optimization

    International Nuclear Information System (INIS)

    Holm, Darryl D.

    2009-01-01

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  13. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  14. Human second trimester amniotic fluid cells are able to create embryoid body-like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells.

    Science.gov (United States)

    Antonucci, Ivana; Di Pietro, Roberta; Alfonsi, Melissa; Centurione, Maria Antonietta; Centurione, Lucia; Sancilio, Silvia; Pelagatti, Francesca; D'Amico, Maria Angela; Di Baldassarre, Angela; Piattelli, Adriano; Tetè, Stefano; Palka, Giandomenico; Borlongan, Cesar V; Stuppia, Liborio

    2014-01-01

    Human amniotic fluid-derived stem cells (AFSCs) represent a novel class of broadly multipotent stem cells sharing characteristics of both embryonic and adult stem cells. However, both the origin of these cells and their actual properties in terms of pluripotent differentiation potential are still debated. In order to verify the presence of features of pluripotency in human second trimester AFSCs, we have investigated the ability of these cells to form in vitro three-dimensional aggregates, known as embryoid bodies (EBs), and to express specific genes of embryonic stem cells (ESCs) and primordial germ cells (PGCs). EBs were obtained after 5 days of AFSC culture in suspension and showed positivity for alkaline phosphatase (AP) staining and for specific markers of pluripotency (OCT4 and SOX2). Moreover, EB-derived cells showed the expression of specific transcripts of the three germ layers. RT-PCR analysis, carried out at different culture times (second, third, fourth, fifth, and eighth passages), revealed the presence of specific markers of ESCs (such as FGF4 and DAPPA4), as well as of markers typical of PGCs and, in particular, genes involved in early stages of germ cell development (Fragilis, Stella, Vasa, c-Kit, Rnf17). Finally, the expression of genes related to the control of DNA methylation (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD1, MBD2, MBD3, MDB4, MeCP2), as well as the lack of inactivation of the X-chromosome in female samples, was also demonstrated. Taken together, these data provide further evidence for the presence of common features among human AFSCs, PGCs, and ESCs.

  15. Anthropometric changes and fluid shifts

    Science.gov (United States)

    Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.

    1974-01-01

    Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad.

  16. Fluid mechanics

    International Nuclear Information System (INIS)

    Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.

    2003-01-01

    This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows

  17. Thanatochemistry: Study of synovial fluid potassium

    African Journals Online (AJOL)

    Nilesh Keshav Tumram

    2014-03-28

    Mar 28, 2014 ... Medical College & Hospital, Nagpur, Maharashtra 440003, India b Dean, Govt. ... interval and postmortem biochemical changes in various body fluids such .... likely to have technical errors than other methods adopted till date.

  18. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  19. Disappearing fluid?

    International Nuclear Information System (INIS)

    Graney, K.; Chu, J.; Lin, P.C.

    2002-01-01

    Full text: A 78-year old male in end stage renal failure (ESRF) with a background of NIDDM retinopathy, nephropathy, and undergoing continuous ambulatory peritoneal dialysis (CAPD) presented with anorexia, clinically unwell, decreased mobility and right scrotal swelling. There was no difficulty during CAPD exchange except there was a positive fluid balance Peritoneal dialysates remained clear A CAPD peritoneal study was requested. 100Mbq 99mTc Sulphur Colloid was injected into a standard dialysate bag containing dialysate. Anterior dynamic images were acquired over the abdomen pelvis while the dialysate was infused Static images with anatomical markers were performed 20 mins post infusion, before and after patient ambulation and then after drainage. The study demonstrated communication between the peritoneal cavity and the right scrotal sac. Patient underwent right inguinal herniaplasty with a marlex mesh. A repeat CAPD flow study was performed as follow up and no abnormal connection between the peritoneal cavity and the right scrotal sac was demonstrated post operatively. This case study shows that CAPD flow studies can be undertaken as a simple, minimally invasive method to evaluate abnormal peritoneal fluid flow dynamics in patients undergoing CAPD, and have an impact on dialysis management. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  20. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid ...

  1. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  2. Optimal composition of fluid-replacement beverages.

    Science.gov (United States)

    Baker, Lindsay B; Jeukendrup, Asker E

    2014-04-01

    The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences.

  3. Gyroelastic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kerbel, G.D.

    1981-01-20

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  4. Gyroelastic fluids

    International Nuclear Information System (INIS)

    Kerbel, G.D.

    1981-01-01

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch

  5. Editorial: Body Movements

    Directory of Open Access Journals (Sweden)

    Carina Assuncao

    2018-01-01

    Full Text Available Today, the juxtaposition between physical bodies and the gameworld is ever more fluid. Virtual Reality headsets are available at game stores with more AAA games being created for the format. The release of the Nintendo Switch and its dynamic JoyCon controllers reintroduce haptic movement based controls.  Pokémon GO’s augmented reality took gamers outdoors and has encouraged the Harry Potter franchise to follow in its mobile footsteps. Each development encourages a step further into the digital world. At the same time, the movement of bodies always has political dimensions. We live in a world where walls seem like solutions to the movement of bodies, while the mere meeting of bodies elsewhere – for sex, marriage and other reasons – is still forbidden by many states’ rules. Games and game-like interfaces have shown the ability to bend those rules, and to sometimes project other worlds and rule systems over our world in order to make bodies move and meet. For this special issue on ‘Body Movements’, Press Start invited authors to focus on embodiment, body movements, political bodies, community bodies, virtual bodies, physical bodies, feminine, masculine, trans- bodies, agency or its lack, and anything else in between. The response to this invitation was variegated, and provocative, as outlined here.

  6. Stirring by swimming bodies

    International Nuclear Information System (INIS)

    Thiffeault, Jean-Luc; Childress, Stephen

    2010-01-01

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  7. Avaliação da maturidade pulmonar fetal pela contagem dos corpos lamelares no líquido amniótico Evaluation of fetal lung maturity by lamellar bodies counting in amniotic fluid

    Directory of Open Access Journals (Sweden)

    Beatriz Maykot Kuerten Gil

    2010-03-01

    Full Text Available OBJETIVO: comparar o teste de contagem de corpos lamelares (CCL no líquido amniótico com o teste da polarização fluorescente (PF como parâmetro diagnóstico para avaliação da maturidade pulmonar fetal. MÉTODO: estudo transversal, analítico e controlado realizado com 60 gestantes atendidas no período de março de 2002 a dezembro de 2007. Foram colhidas amostras de líquido amniótico e realizados os testes de CCL e PF (TDxFLM II, considerados de referência, e comparados à presença ou ausência da Síndrome do Desconforto Respiratório (SDR. Foram estabelecidos valores de corte para maturidade de 30 mil corpos lamelares/µL para o teste da CCL e 55 mg/g de albumina para o PF. Foram avaliadas as características maternas e perinatais, a evolução neonatal e o desempenho dos testes diagnósticos para predição da maturidade pulmonar fetal. Na análise estatística, foram utilizadas medidas descritivas e calculados os valores referentes à sensibilidade, especificidade, valor preditivo positivo e negativo dos testes, considerando-se significativos valores de pPURPOSE: to compare the lamellar body number density (LBND count in amniotic fluid using the fluorescent polarization (FP test as a diagnostic parameter for the assessment of fetal pulmonary maturity. METHOD: this was an analytical, controlled cross-sectional study conducted on 60 pregnant women from March 2002 to December 2007. Amniotic fluid specimens were obtained by amniocentesis or at the time of caesarean section, and submitted to the LBND and FP tests (TDxFLM®, Abbott Laboratories, the latter considered to be a reference test, and compared in terms of the presence or absence of respiratory distress syndrome (RDS. Cut-off values for maturity were established at 30,000 lamellar bodies/µL for the LBND test and 55 mg/g albumin for the FP test. Maternal and perinatal characteristics and neonatal evolution were evaluated, and the performance of the diagnostic tests regarding

  8. On the atmosphere of a moving body

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    We explore whether a rigid body moving freely with no circulation around it in a two-dimensional ideal fluid can carry a fluid "atmosphere" with it in its motion. Somewhat surprisingly, the answer appears to be "yes." When the body is elongated and the motion is dominated by rotation, we demonstr...

  9. On the atmosphere of a moving body

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    We have explored whether a rigid body moving freely with no circulation around it in a two-dimensional ideal fluid can carry a fluid ``atmosphere'' with it in its motion. Somewhat surprisingly, the answer appears to be ``yes''. When the body is elongated and the motion is dominated by rotation, w...

  10. Body Hair

    Science.gov (United States)

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  11. Synovial fluid analysis

    Science.gov (United States)

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  12. Self lubricating fluid bearings

    International Nuclear Information System (INIS)

    Kapich, D.D.

    1980-01-01

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid [fr

  13. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  14. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  15. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  16. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  17. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  18. Foreign Body

    Science.gov (United States)

    ... SearchingPediatrics.com Pediatrics Common Questions, Quick Answers Foreign Body Donna D'Alessandro, M.D. Lindsay Huth, B. ... I call the doctor? What is a foreign body? A foreign body is when an object is ...

  19. Single-particle Schroedinger fluid. I. Formulation

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1976-01-01

    The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth

  20. FOREWORD Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    This section of the Special Issue carries selected articles from the Fluid Mechanics and Fluid. Power Conference held during 12–14 December 2013 at the National Institute of Technology,. Hamirpur (HP). The section includes three review articles and nine original research articles. These were selected on the basis of their ...

  1. Effect of pre-donation fluid intake on fluid shift from interstitial to intravascular compartment in blood donors.

    Science.gov (United States)

    Deepika, Chenna; Murugesan, Mohandoss; Shastry, Shamee

    2018-02-01

    Fluid shifts from interstitial to intravascular space during blood donation helps in compensating the lost blood volume. We aimed to determine the volume of fluid shift following donation in donors with and without pre-donation fluid intake. We studied the fluid shift in 325 blood donors prospectively. Donors were divided in groups- with no fluid intake (GI) and either water (GII) or oral rehydrating fluids (GIII) before donation. Fluid shift following donation was calculated based on the difference between the pre and post donation blood volume. The influence of oral fluid intake, age, gender and body mass index (BMI) on volume of fluid shift was analyzed. The fluid shift was significant between donors without fluids (GI: 127 ± 81 ml) and donors with fluid intake (GII & III: 96 ± 45 ml) (p donation. As per our observation, the oral fluids before donation might not contribute to increase in fluid shift in blood donors after donation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin

    2012-01-01

    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  3. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  4. Cerebrospinal fluid leak (image)

    Science.gov (United States)

    ... brain and spinal cord by acting like a liquid cushion. The fluid allows the organs to be buoyant protecting them from blows or other trauma. Inside the skull the cerebrospinal fluid is contained by the dura which covers ...

  5. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  6. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-01-01

    ®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding

  7. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  8. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  9. Fluid inclusion geothermometry

    Science.gov (United States)

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  10. Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    Amitabh Bhattacharya

    of renewable energy (e.g., via wind, hydrokinetic generators), creating low-cost healthcare ... multiphase flow, turbulence, bio-fluid dynamics, atmospheric flows, microfluidic flows, and ... study the challenging problem of entry of solids in water.

  11. Body Lice

    Science.gov (United States)

    What are body lice? Body lice (also called clothes lice) are tiny insects which live and lay nits (lice eggs) on clothing. They are parasites, ... usually only move to the skin to feed. Body lice are one of the three types of ...

  12. Cerebrospinal Fluid and Interstitial Fluid Motion via the Glymphatic Pathway Modelled by Optimal Mass Transport

    OpenAIRE

    Benveniste, Helene; Nedergaard, Maikan; Lee, Hedok; Gao, Yi; Tannenbaum, Allen; Ratner, Vadim

    2016-01-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs [1,2]. It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly throu...

  13. QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS

    Directory of Open Access Journals (Sweden)

    J.K.Percus

    2003-01-01

    Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.

  14. Numerical Modeling of Porous Structure of Biomaterial and Fluid Flowing Through Biomaterial

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A Cellular Automata model of simulating body fluid flowing into porous bioceramic implants generated with stochastic methods is described, of which main parameters and evolvement rule are determined in terms of flow behavior of body fluid in porous biomaterials. The model is implemented by GUI( Graphical User Interface) program in MATLAB, and the results of numerical modeling show that the body fluid percolation is related to the size of pores and porosity.

  15. Pancreatitis-associated fluid collections involving the spleen

    International Nuclear Information System (INIS)

    Vick, C.W.; Simeone, J.F.; Ferrucci, J.T. Jr.; Wittenberg, J.; Mueller, P.R.; Harvard Medical School, Boston, MA

    1981-01-01

    The clinical and radiographic features of 2 patients with dissecting pancreatitis-associated fluid collections involving the spleen are described. A typical appearance of left upper quadrant fluid collection lateral to the splenic pulp was observed by ultrasonography (US) or computed body tomography (CBT). Although these findings are nonspecific, a left upper quadrant fluid collection may be characterized definitively by US/CBT-guided needle aspiration. (orig.)

  16. Topology optimization of fluid mechanics problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan

    While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...... processing tool. Prior to design manufacturing this allows the engineer to quantify the performance of the computed topology design using standard, credible analysis tools with a body-fitted mesh. [1] Borrvall and Petersson (2003) "Topology optimization of fluids in Stokes flow", Int. J. Num. Meth. Fluids...

  17. Organosilicon fluid for cooling coal combine motors

    Energy Technology Data Exchange (ETDEWEB)

    Donets, I K; Dmitrenko, Yu N; Kovalev, Ye B; Sukhanov, V V; Tsingarelli, Ye P

    1983-01-01

    Results are presented of toxicological evaluation of the polymer organosilicon fluid FM-5.6AP which should be used as the cooling agent of the electric motors of coal combines. It was established that fluid FM-5.6AP belongs to the low-toxic substances that do not have skinresorptive, skin-damaging and cumulative effect, do not have a significant influence on phagocytosis of the coal dust, in depositing in the lungs and elimination. During experimental industrial tests of the motor using the fluid FM-5.6AP, no toxic effect of it on the body was revealed. The possibility is shown of using organosilicon fluid FM-5.6AP for cooling electric motors of coal combines.

  18. Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.

    Science.gov (United States)

    Saraghi, Mana

    2015-01-01

    Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.

  19. Recognition of Odontogenic Cyst-Fluid Cholesterol Concentration ...

    African Journals Online (AJOL)

    Background: Hypercholesterolaemia is a risk factor for cardiovascular diseases. Serum cholesterol is usually determined to know if a subject is at a risk of heart diseases. This lipid is found in most fluids in the body including the odontogenic cyst-fluid. We investigated the concentration of cholesterol in the odontogenic ...

  20. Regulation of extracellular fluid volume and renal function

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    2011-01-01

    Normal fluid homoeostasis includes dynamic shifts in water, crystalloids, and proteins between the various compartments of the body (1–3). The fluid dynamics are controlled by refined mechanisms that include water and solute intake, renal handling, haemodynamic/oncotic forces, and neurohumoral...

  1. Dynamic analysis of multibody system immersed in a fluid medium

    International Nuclear Information System (INIS)

    Wu, R.W.; Liu, L.K.; Levy, S.

    1977-01-01

    This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)

  2. Introduction to the concept of added mass in fluid mechanics

    International Nuclear Information System (INIS)

    Pham Dan Tam.

    1977-07-01

    The physical phenomenum which leads to the concept of added mass for an inviscid fluid is recalled. The added-mass tensor for a solid body moving through an unbounded fluid is defined and some of its properties are presented. The Taylor theorem is exposed, which enables some of the tensor components to be analytically derived in particular cases. Added-mass values are provided for bodies of particular shape. Applications of the added-mass concept to different problems are given [fr

  3. Multiple Sclerosis Cerebrospinal Fluid Biomarkers

    Directory of Open Access Journals (Sweden)

    Gavin Giovannoni

    2006-01-01

    Full Text Available Cerebrospinal fluid (CSF is the body fluid closest to the pathology of multiple sclerosis (MS. For many candidate biomarkers CSF is the only fluid that can be investigated. Several factors need to be standardized when sampling CSF for biomarker research: time/volume of CSF collection, sample processing/storage, and the temporal relationship of sampling to clinical or MRI markers of disease activity. Assays used for biomarker detection must be validated so as to optimize the power of the studies. A formal method for establishing whether or not a particular biomarker can be used as a surrogate end-point needs to be adopted. This process is similar to that used in clinical trials, where the reporting of studies has to be done in a standardized way with sufficient detail to permit a critical review of the study and to enable others to reproduce the study design. A commitment must be made to report negative studies so as to prevent publication bias. Pre-defined consensus criteria need to be developed for MS-related prognostic biomarkers. Currently no candidate biomarker is suitable as a surrogate end-point. Bulk biomarkers of the neurodegenerative process such as glial fibrillary acidic protein (GFAP and neurofilaments (NF have advantages over intermittent inflammatory markers.

  4. Fullerol ionic fluids

    Science.gov (United States)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  5. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  6. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  7. Chaos in body-vortex interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...... rocking and tumbling motion of the body known in this case. In both instances, the chaos may be detected both in the body motion and in the vortex motion. The effect of increasing body mass at a fixed body shape is to damp the chaos....

  8. Dissipative fluid mechanics of nuclei

    International Nuclear Information System (INIS)

    Morgenstern, B.

    1987-11-01

    With the aim to describe nucleus-nucleus collisions at low energies in the present thesis for the first time dissipative fluid dynamics for large-amplitude nuclear motion have been formulated. Thereby the collective dynamics are described in a scaling approximation in which the wave function of the system is distorted by a vortex-free velocity field. For infintely extended nuclear matter this scaling of the wave functions leads to a deformation of the Fermi sphere. Two-body collisions destroy the collective deformation of the Fermi sphere and yield so the dissipative contribution of the motion. Equations of motion for a finite set of collective variables and a field equation for the collective velocity potential in the limit of infinitely many degrees of freedom were developed. In the elastic limit oscillations around the equilibrium position are described. For small collective amplitudes and vortex-free velocity fields the integrodifferential equation for the velocity potential in the elastic limit could be transformed to the divergence of the field equation of fluid dynamics. In the dissipative limit an equation results which is similar to the Navier-Stokes equation and transforms to the divergence of the Navier-Stokes equation for vortex-free fields. It was shown that generally the dynamics of the many-body system is described by non-Markovian equations. (orig./HSI) [de

  9. Leaks, Lumps, and Lines: Stigma and Women's Bodies

    Science.gov (United States)

    Chrisler, Joan C.

    2011-01-01

    Women's bodies have often been positioned in art and popular culture as monstrous or defiled and women's bodily products (e.g., menstrual fluid, breast milk) as disgusting. This framing has led to the stigmatization of aspects of women's bodies (e.g., leaking fluids, lumps of fat, and lines in the skin that indicate aging), especially those…

  10. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  11. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  12. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  13. Electrorheological fluids and methods

    Science.gov (United States)

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  14. Plasmas and fluids

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Plasma and fluid physics includes the fields of fusion research and space investigation. This book discusses the most important advances in these areas over the past decade and recommends a stronger commitment to basic research in plasma and fluid physics. The book recommends that plasma and fluid physics be included in physics curriculums because of their increasing importance in energy and defense. The book also lists recent accomplishments in the fields of general plasma physics, fusion plasma confinement and heating, space and astrophysical plasmas, and fluid physics and lists research opportunities in these areas. A funding summary explains how research monies are allocated and suggests ways to improve their effectiveness

  15. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  16. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle

    2008-01-01

    and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the ques­tion is whether conscious and experimental work with body contact and body language in move......­ment psychology and education provide potential for intense personal develop­ment as well as for social and cultural learning processes. This performative research project originates from the research project entitled, Movement Psy­chol­ogy: The Language of the Body and the Psy­chol­ogy of Movement based......Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experi­ence of themselves...

  17. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  18. Body punk

    DEFF Research Database (Denmark)

    Mogensen, Kevin

    BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along...

  19. Managing Fluid and Electrolyte Disorders in Kidney Disease.

    Science.gov (United States)

    Langston, Cathy

    2017-03-01

    Because of the role of the kidneys in maintaining homeostasis in the body, kidney disease leads to derangements of fluid, electrolyte, and acid-base balance. The most effective therapy of a uremic crisis is careful management of fluid balance, which involves thoughtful assessment of hydration, a fluid treatment plan personalized for the specific patient, and repeated and frequent reassessment of fluid and electrolyte balance. Disorders of sodium, chloride, potassium, calcium, and phosphorus are commonly encountered in kidney disease and some may be life-threatening. Treatment of metabolic acidosis and nutritional support is frequently needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Annual review of fluid mechanics. Volume 22

    International Nuclear Information System (INIS)

    Lumley, J.L.; Van Dyke, M.; Reed, H.L.

    1990-01-01

    Topics presented include rapid granular flows, issues in viscoelastic fluid mechanics, wave loads on offshore structures, boundary layers in the general ocean circulation, parametrically forced surface waves, wave-mean flow interactions in the equatorial ocean, and local and global instabilities in spatially developing flows. Also presented are aerodynamics of human-powered flight, aerothermodynamics and transition in high-speed wind tunnels at NASA-Langley, wakes behind blunt bodies, and mixing, chaotic advection, and turbulence. Also addressed are the history of the Reynolds number, panel methods in computational fluid dynamics, numerical multipole and boundary integral equation techniques in Stokes flow, plasma turbulence, optical rheometry, and viscous-flow paradoxes

  1. Compressible generalized Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Málek, Josef; Rajagopal, K.R.

    2010-01-01

    Roč. 61, č. 6 (2010), s. 1097-1110 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z20760514 Keywords : power law fluid * uniform temperature * compressible fluid Subject RIV: BJ - Thermodynamics Impact factor: 1.290, year: 2010

  2. Pleural fluid smear

    Science.gov (United States)

    ... into the space around the lungs, called the pleural space. As fluid drains into a collection bottle, you may cough a bit. This is because your lung re-expands to fill the space where fluid had been. This sensation lasts for a few hours after the test.

  3. Peritoneal fluid culture

    Science.gov (United States)

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... The peritoneal fluid culture may be negative, even if you have ... diagnosis of peritonitis is based on other factors, in addition ...

  4. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...

  5. Fluid control valves

    International Nuclear Information System (INIS)

    Rankin, J.

    1980-01-01

    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  6. Time Independent Fluids

    Science.gov (United States)

    Collyer, A. A.

    1973-01-01

    Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)

  7. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  8. Bioimpedance-Guided Fluid Management in Hemodialysis Patients

    Science.gov (United States)

    Arias-Guillén, Marta; Wabel, Peter; Fontseré, Néstor; Carrera, Montserrat; Campistol, José Maria; Maduell, Francisco

    2013-01-01

    Summary Background and objectives Achieving and maintaining optimal fluid status remains a major challenge in hemodialysis therapy. The aim of this interventional study was to assess the feasibility and clinical consequences of active fluid management guided by bioimpedance spectroscopy in chronic hemodialysis patients. Design, setting, participants, & measurements Fluid status was optimized prospectively in 55 chronic hemodialysis patients over 3 months (November 2011 to February 2012). Predialysis fluid overload was measured weekly using the Fresenius Body Composition Monitor. Time-averaged fluid overload was calculated as the average between pre- and postdialysis fluid overload. The study aimed to bring the time-averaged fluid overload of all patients into a target range of 0.5±0.75 L within the first month and maintain optimal fluid status until study end. Postweight was adjusted weekly according to a predefined protocol. Results Time-averaged fluid overload in the complete study cohort was 0.9±1.6 L at baseline and 0.6±1.1 L at study end. Time-averaged fluid overload decreased by −1.20±1.32 L (P<0.01) in the fluid-overloaded group (n=17), remained unchanged in the normovolemic group (n=26, P=0.59), and increased by 0.59±0.76 L (P=0.02) in the dehydrated group (n=12). Every 1 L change in fluid overload was accompanied by a 9.9 mmHg/L change in predialysis systolic BP (r=0.55, P<0.001). At study end, 76% of all patients were either on time-averaged fluid overload target or at least closer to target than at study start. The number of intradialytic symptoms did not change significantly in any of the subgroups. Conclusions Active fluid management guided by bioimpedance spectroscopy was associated with an improvement in overall fluid status and BP. PMID:23949235

  9. Signifying Bodies

    DEFF Research Database (Denmark)

    of biosemiosis connect signifying bodies with their natural surroundings, cultural activities and subjective experiences. Health stretches all the way from the ecosocial surroundings, through the skin and into the self-organizing processes of every living cell. Signifying Bodies lays out a new approach to health...... and health care. Eschewing all forms of dualism, the authors emphasise the interdependency of how we act, think, feel and function. They advocate a relational turn in health care, in which bodies live and learn from suffering and care. In this view, health is inseparable from both living beings...

  10. Leaback of Pulsatile Flow of Particle Fluid Suspension Model of ...

    African Journals Online (AJOL)

    Leaback of Pulsatile Flow of Particle Fluid Suspension Model of Blood Under Periodic Body Acceleration. ... The variation in body acceleration amplitude though affects the velocity profile in the capillary tubes, it has no effect on the leakback in the tubes. Leakback is mainly determined by the balance of the viscous drag and ...

  11. A NUT-like solution with fluid matter

    International Nuclear Information System (INIS)

    Lukacs, B.; Newman, E.T.; Sparling, G.; Winicour, J.

    1982-08-01

    Stationary solutions of the Einstein equation are investigated when the source is a rigidly rotating fluid. Using the three-dimensional spin coefficient method the angular dependence of the metric tensor can be analytically calculated if the eigenray congruence is geodesic and shearfree. The nonstatic solutions of this class do not describe physically realistic bodies, but instead, bodies with NUT-type geometry. (author)

  12. Fluid sampling tool

    Science.gov (United States)

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  13. Fluid mechanics. Vol. 2

    International Nuclear Information System (INIS)

    Truckenbrodt, E.

    1980-01-01

    The second volume contains the chapter 4 to 6. Whereas chapter 1 deals with the introduction into the mechanics of fluids and chapter 2 with the fundamental laws of fluid and thermal fluid dynamics, in chapter 3 elementary flow phenomena in fluids with constant density are treated. Chapter 4 directly continues chapter 3 and describes elementary flow phenomena in fluids with varying density. Fluid statics again is treated as a special case. If compared with the first edition the treatment of unsteady laminar flow and of pipe flow for a fluid with varying density were subject to a substantial extension. In chapter 5 rotation-free and rotating potential flows are presented together. By this means it is achieved to explain the behaviour of the multidimensional fictionless flow in closed form. A subchapter describes some related problems of potential theory like the flow along a free streamline and seepage flow through a porous medium. The boundary layer flows in chapter 6 are concerned with the flow and temperature boundary layer in laminar and turbulent flows at a fired wall. In it differential and integral methods are applied of subchapter reports on boundary layer flows without a fixed boundary, occurring e.g. in an open jet and in a wake flow. The problems of intermittence and of the Coanda effect are briefly mentioned. (orig./MH)

  14. Fluid sampling tool

    Science.gov (United States)

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  15. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  16. Bog bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2015-01-01

    In northern Europe during the Iron Age, many corpses were deposited in bogs. The cold, wet and anaerobic environment leads in many cases to the preservation of soft tissues, so that the bodies, when found and excavated several thousand years later, are remarkably intact. Since the 19th century...... the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma....... Conversely, the preservation of bones is less good, as the mineral component has been leached out by the acidic bog. Together with water-logging of collagenous tissue, this means that if the bog body is simply left to dry out when found, as was the case pre-19th century, the bones may literally warp...

  17. BODY CONDITION

    African Journals Online (AJOL)

    Andrew Taylor

    African antelope have both advantages and disadvantages in terms of meat production when compared with domestic .... Because juveniles can be differentiated from adults using BW, age differences in body ..... Meat and carcass by-products.

  18. Thermodynamics of Fluid Polyamorphism

    Directory of Open Access Journals (Sweden)

    Mikhail A. Anisimov

    2018-01-01

    Full Text Available Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

  19. Towards a smart non-invasive fluid loss measurement system.

    Science.gov (United States)

    Suryadevara, N K; Mukhopadhyay, S C; Barrack, L

    2015-04-01

    In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist.

  20. Physics of the Human Body

    CERN Document Server

    Herman, Irving P

    2007-01-01

    Physics of the Human Body comprehensively addresses the physical and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the materials properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to understand physical issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the necessary physical principles. There are problems at the end of each chapter; solutions to selected problems are also provided. This text is geared t...

  1. Fluid Dynamics for Physicists

    Science.gov (United States)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  2. Thermal Fluid Engineering

    International Nuclear Information System (INIS)

    Jang, Byeong Ju

    1984-01-01

    This book is made up of 5 chapters. They are fluid mechanics, fluid machines, Industrial thermodynamics, steam boiler and steam turbine. It introduces hydrostatics, basic theory of fluid movement and law of momentum. It also deals with centrifugal pump, axial flow pump, general hydraulic turbine, and all phenomena happening in the pump. It covers the law of thermodynamics, perfect gas, properties of steam, and flow of gas and steam and water tube boiler. Lastly it explains basic format, theory, loss and performance as well as principle part of steam turbine.

  3. Additional file 6: Figure S1. of Pancreatic cyst fluid harbors a unique microbiome

    OpenAIRE

    Li, Shan; Fuhler, Gwenny; BN, Nahush; Jose, Tony; Bruno, Marco; Peppelenbosch, Maikel; Konstantinov, Sergey

    2017-01-01

    PCA of pancreatic cyst fluid (PCF) and 13 body site microbiome comparisons. PCA showing the difference between pancreatic cyst fluid and 13 different body site microbiome selected from Human Microbiome Project database. When compared 136 bacterial genus with p 

  4. Windshield washer fluid

    Science.gov (United States)

    ... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...

  5. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-01-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic

  6. Phoresis in fluids.

    Science.gov (United States)

    Brenner, Howard

    2011-12-01

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.

  7. Peritoneal Fluid Analysis

    Science.gov (United States)

    ... Get Tested? To help diagnose the cause of peritonitis, an inflammation of the membrane lining the abdomen, ... fever and your healthcare practitioner suspects you have peritonitis or ascites Sample Required? A peritoneal fluid sample ...

  8. Annual review of fluid mechanics. Volume 15

    International Nuclear Information System (INIS)

    Van Dyke, M.; Wehausen, J.V.; Lumley, J.L.

    1983-01-01

    A survey of experimental results and analytical techniques for modelling various flows and the behavior of flows around flown-driven machinery is presented. Attention is given to analytical models for wind flows and power extraction by horizontal axis wind turbines. The phenomena occurring in the impact of compressible fluids with a solid body are described, as are the instabilities, pattern formation, and turbulence in flames. Homogeneous turbulence is explored, theories for autorotation by falling bodies are discussed, and attention is devoted to theoretical models for magneto-atmospheric waves and their presence in solar activity. The design characteristics of low Reynolds number airfoils are explored, and numerical and fluid mechanics formulations for integrable, chaotic, and turbulent vortex motion in two-dimensional flows are reviewed. Finally, measurements and models of turbulent wall jets for engineering purposes are examined

  9. Mechanics of solids and fluids

    International Nuclear Information System (INIS)

    Ziegler, F.

    1991-01-01

    This book is a comprehensive treatise on the mechanics of solids and fluids, with a significant application to structural mechanics. In reading through the text, I can not help being impressed with Dr. Ziegler's command of both historical and contemporary developments of theoretical and applied mechanics. The book is a unique volume which contains information not easily found throughout the related literature. The book opens with a fundamental consideration of the kinematics of particle motion, followed by those of rigid body and deformable medium .In the latter case, both small and finite deformation have been presented concisely, paving the way for the constitutive description given later in the book. In both chapters one and two, the author has provided sufficient applications of the theoretical principles introduced. Such a connection between theory and appication is a common theme throughout every chapter, and is quite an attractive feature of the book

  10. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  11. Amniotic fluid inflammatory cytokines

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna; Grove, Jakob

    2013-01-01

    The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy.......The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy....

  12. [Diagnosis: synovial fluid analysis].

    Science.gov (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Synovial fluid analysis in rheumatological diseases allows a more accurate diagnosis in some entities, mainly infectious and microcrystalline arthritis. Examination of synovial fluid in patients with osteoarthritis is useful if a differential diagnosis will be performed with other processes and to distinguish between inflammatory and non-inflammatory forms. Joint aspiration is a diagnostic and sometimes therapeutic procedure that is available to primary care physicians. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  13. Immunotherapy With Magentorheologic Fluids

    Science.gov (United States)

    2011-08-01

    anti-tumor effects are weakened by removal of the tumor antigen pool (i.e. surgery) or use of cytoreductive and immunosuppressive therapies (i.e...particles were injected as magneto -rheological fluid (MRF) into an orthotopic primary breast cancer and followed by application of a magnetic field to...SUBJECT TERMS MRF: Magneto -rehological fluid iron particles, IT: immunotherapy, necrotic death, DCs: dendritic cells, cytokines, chemokines

  14. Supercritical fluid chromatography

    Science.gov (United States)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  15. Fluid structure interaction with sloshing

    International Nuclear Information System (INIS)

    Belytschko, T.B.; Liu, W.K.

    1983-01-01

    In this paper, three different formulations for fluid-structure interaction with sloshing are discussed. When the surface displacements are large, the problems are nonlinear, and Arbitrary Lagrangian Eulerian (ALE) methods and direct time integration are most appropriate. Explicit direct time integration has the disadvantage of a limited time-step whereas implicit method has the disadvantage of nonconvergence and high computational cost. A mixed time method which employs E-mE (explicit-multiple explicit) integration for obtaining the velocity and free surface displacement and I-mI (implicit-multiple implicit) integration for obtaining the pressure is described. An iterative solution procedure is used to enhance the efficiency of the implicit solution procedure as well as to reduce the computer storage. For linear problems, the surface wave effects can be approximated by a perturbation method on the body force term if the surface displacements are small. Furthermore, if the fluid can be idealized as inviscid, incompressible and irrotational, the pressure, velocity, and free surface displacement variables can be eliminated via a velocity potential formulation. (orig.)

  16. Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function

    Science.gov (United States)

    Marunaka, Yoshinori

    2015-01-01

    The pH of body fluids is one the most important key factors regulating various cell function such as enzyme activity and protein-protein interaction via modification of its binding affinity. Therefore, to keep cell function normal, the pH of body fluids is maintained constant by various systems. Insulin resistance is one of the most important, serious factors making the body condition worse in diabetes mellitus. I have recently found that the pH of body (interstitial) fluids is lower in diabetes mellitus than that in non-diabetic control, and that the lowered pH is one of the causes producing insulin resistance. In this review article, I introduce importance of body (interstitial) fluid pH in regulation of body function, evidence on abnormal regulation of body fluid pH in diabetes mellitus, and relationship between the body fluid pH and insulin resistance. Further, this review proposes perspective therapies on the basis of regulation of body fluid pH including propolis (honeybee product) diet. PMID:25685283

  17. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  18. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  19. Fluid therapy in small ruminants and camelids.

    Science.gov (United States)

    Jones, Meredyth; Navarre, Christine

    2014-07-01

    Body water, electrolytes, and acid-base balance are important considerations in the evaluation and treatment of small ruminants and camelids with any disease process, with restoration of these a priority as adjunctive therapy. The goals of fluid therapy should be to maintain cardiac output and tissue perfusion, and to correct acid-base and electrolyte abnormalities. Hypoglycemia, hyperkalemia, and acidosis are the most life-threatening abnormalities, and require most immediate correction. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Sacralising Bodies

    DEFF Research Database (Denmark)

    Kaur, Ravinder

    2010-01-01

    of sacralisation is realised through co-production within a social setting when the object of sacralisation is recognised as such by others. In contemporary Iran, however, the moment of sacralising bodies by the state is also the moment of its own subversion as the political-theological field of martyrdom......-sacrifice became central to the mass mobilisation against the monarchy. Once the revolutionary government came into existence, this sacred tradition was regulated to create ‘martyrs’ as a fixed category, in order to consolidate the legacy of the revolution. In this political theatre, the dead body is a site...

  1. Physics of the human body

    CERN Document Server

    Herman, Irving P

    2016-01-01

    This book comprehensively addresses the physics and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the mechanical properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to clearly explain the physics issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the underlying physics. There are problems at the end of each chapter; solutions to selected problems are also provided. This second edition enhances the treat...

  2. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy.

    Science.gov (United States)

    Malbrain, Manu L N G; Van Regenmortel, Niels; Saugel, Bernd; De Tavernier, Brecht; Van Gaal, Pieter-Jan; Joannes-Boyau, Olivier; Teboul, Jean-Louis; Rice, Todd W; Mythen, Monty; Monnet, Xavier

    2018-05-22

    In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, intravenous fluids have many other uses including maintenance and replacement of total body water and electrolytes, as carriers for medications and for parenteral nutrition. In this paradigm-shifting review, we discuss different fluid management strategies including early adequate goal-directed fluid management, late conservative fluid management and late goal-directed fluid removal. In addition, we expand on the concept of the "four D's" of fluid therapy, namely drug, dosing, duration and de-escalation. During the treatment of patients with septic shock, four phases of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions are "When to start intravenous fluids?", "When to stop intravenous fluids?", "When to start de-resuscitation or active fluid removal?" and finally "When to stop de-resuscitation?" In analogy to the way we handle antibiotics in critically ill patients, it is time for fluid stewardship.

  3. Body Basics

    Science.gov (United States)

    ... learn more about how the body works, what basic human anatomy is, and what happens when parts of ... consult your doctor. © 1995- The Nemours Foundation. All rights reserved. Images provided by The Nemours Foundation, iStock, Getty Images, Veer, Shutterstock, and Clipart.com.

  4. Body / Antibody

    Directory of Open Access Journals (Sweden)

    Lawrence R. Schehr

    1996-06-01

    Full Text Available Unique object in the exchange-system, the gay body occupies a locus where a phantom identity and an imagined reciprocity define the poles of the subject-object relation. Made of the right stuff, it is an object circulating in a system that tends to reproduce the concept of identity in its search for mirror images of itself. Often rejected by the world, it has recently become a cynosure equated with sickness, pestilence, and death in the age of AIDS. The representations of that object change: no longer perceived as a part of libidinal economy, it has become a mass of symptoms, having changed from being an index of sexuality into being the visible dissipation of the flesh. The gay body in the age of AIDS is the mark of a pariah with the abject nature of the outcast. The body with AIDS takes the form of a text made of many signs and with many ways of reading the checkerboard pattern of the flesh. And the AIDS-narrative turns the body into the limit of the representable.

  5. Body Language.

    Science.gov (United States)

    Pollard, David E.

    1993-01-01

    Discusses how the use of body language in Chinese fiction strikes most Westerners as unusual, if not strange. Considers that, although this may be the result of differences in gestures or different conventions in fiction, it is a problem for translators, who handle the differences by various strategies, e.g., omission or expansion. (NKA)

  6. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....

  7. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  8. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  9. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Kiranpreet Kaur

    2016-01-01

    Full Text Available Amniotic fluid embolism (AFE is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%.

  10. Simultaneous determination of aconitum alkaloids in rat body fluids ...

    African Journals Online (AJOL)

    performance liquid chromatography. ... were in the range of 85.63 - 90.94% for all analysis of the three aconitum alkaloids with relative standard deviations (RSD) below 14%. Positive linear relationships were observed in correlation coefficients that ...

  11. Theoretical treatment of fluid flow for accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-02-01

    Full Text Available speed or the local flow velocities, in, for example, stellar cores or galactic formation. The inviscid equations are derived using a transformation into a non-inertial rotating frame with scaling factors in time, space, and density for this purpose... was initiated with the derivation of the properties of general linear transforms between arbitrarily moving frames, with relative motion defined by functions of continuous differentiability of class C 2 , in Rn+1 spaces with n spatial dimensions...

  12. Portable Programmable Multifunction Body Fluids Analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Liquid Logic proposes to develop a very capable analyzer based on its digital microfluidic technology. Such an analyzer would be:  Capable of both simple...

  13. Levels of lipocalin-2 in crevicular fluid and tear fluid in chronic periodontitis and obesity subjects.

    Science.gov (United States)

    Pradeep, Avani Raju; Nagpal, Kanika; Karvekar, Shruti; Patnaik, Kaushik

    2016-11-01

    Lipocalin-2, a 25 kDa secretory glycoprotein, was first found in the neutrophilic granules of humans and in mouse kidney cells. It has been shown to have an important role in inflammation. The aim of this study was to determine the levels of lipocalin-2 in gingival crevicular fluid and tear fluid in patients with obesity and chronic periodontitis. A total of 40 subjects in the age group 25-40 years were divided into four groups based on probing depth, gingival index, clinical attachment level, body mass index, and radiographic evidence of bone loss. The groups were: nonobese healthy group; obese healthy group; nonobese chronic periodontitis group; obese chronic periodontitis group Gingival crevicular fluid and tear fluid samples were collected on the subsequent day. There was an increase in lipocalin-2 levels from group 1 to group 4 (with the nonobese healthy group showing the least levels and obese chronic periodontitis group showing the highest levels) in both gingival crevicular fluid and tear fluid. Lipocalin-2 may be an important inflammatory marker that may help link obesity and chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  14. Biochemical Analysis of Synovial Fluid, Cerebrospinal Fluid and Vitreous Humor at Early Postmortem Intervals in Donkeys

    Directory of Open Access Journals (Sweden)

    Doha Yahia

    2014-01-01

    Full Text Available Biochemical analysis of body fluids after death is a helpful tool in veterinary forensic medicine. Synovial fluid, cerebrospinal fluid (CSF and vitreous humor are easily accessible and well preserved from contamination. Five donkeys (Equus africanus asinus aged 1 - 2 years old were subjected to the study. Samples (Synovial fluid, CSF and vitreous humor were collected before death (antimortem and then at 2, 4, 6, 8, 10 and 12 hours postmortem. Samples were analyzed for glucose, chloride, sodium, magnesium, potassium, enzymes and total protein. Synovial fluid analysis showed that glucose concentration started to decrease at 6 hours postmortem, while magnesium level increased with time. Other parameters were more stable. CSF analysis showed several changes related to time after death as the decrease in glucose and sodium levels, and the increased levels of potassium, magnesium, calcium and total protein. Vitreous analysis revealed a reduction in glucose level and increased potassium and magnesium concentrations. The present study concluded that biochemical analysis of synovial fluid, vitreous humor and CSF can help in determination of time since death in donkeys. This study recommend using CSF for determination of early post-mortem intervals.

  15. Fluid structure coupling algorithm

    International Nuclear Information System (INIS)

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.

    1980-01-01

    A fluid-structure-interaction algorithm has been developed and incorporated into the two-dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed have been extended to three dimensions and implemented in the computer code PELE-3D

  16. Rheology of Active Fluids

    Science.gov (United States)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  17. Hazardous fluid leak detector

    Science.gov (United States)

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  18. Pediatric Acute Respiratory Distress Syndrome: Fluid Management in the PICU.

    Science.gov (United States)

    Ingelse, Sarah A; Wösten-van Asperen, Roelie M; Lemson, Joris; Daams, Joost G; Bem, Reinout A; van Woensel, Job B

    2016-01-01

    The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS). Patients with ARDS have widespread damage of the alveolar-capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes.

  19. Pediatric acute respiratory distress syndrome: fluid management in the PICU

    Directory of Open Access Journals (Sweden)

    Sarah A Ingelse

    2016-03-01

    Full Text Available The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS. Patients with ARDS have widespread damage of the alveolar capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes.

  20. Clinical Assessment of Fluid Balance is Incomplete for Colorectal Surgical Patients

    DEFF Research Database (Denmark)

    Tolstrup, J; Brandstrup, B

    2015-01-01

    BACKGROUND AND AIMS: Fluid balance for the surgical patient has been proven very important for the postoperative outcome and development of complications. The aim of this study was to evaluate, for the first time in modern times, the accordance between nurse-based fluid charting (cumulated fluid...... surgery were included. Cumulated fluid balance and body weight change were charted preoperatively and daily at the same time during a postoperative period of 6 days. Differences were calculated by subtracting cumulated fluid balance from body weight change (1 g = 1 mL), and agreement was assessed...... by making Bland-Altman plots as well as Pearson correlations. RESULTS: From day 1 to 4, the mean difference between cumulated fluid balance and body weight change was below 0.4 kg/L. On day 5 and 6, the discrepancies increased with mean differences of, respectively, 1.2 kg/L (p 

  1. Clusters in simple fluids

    International Nuclear Information System (INIS)

    Sator, N.

    2003-01-01

    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids

  2. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0

    2012-01-01

    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  3. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  4. Existence of time-periodic weak solutions to the stochastic Navier-Stokes equations around a moving body

    International Nuclear Information System (INIS)

    Chen, Feng; Han, Yuecai

    2013-01-01

    The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid

  5. Existence of time-periodic weak solutions to the stochastic Navier-Stokes equations around a moving body

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn; Han, Yuecai, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn [School of Mathematics, Jilin University, Changchun 130012 (China)

    2013-12-15

    The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid.

  6. Euler's fluid equations: Optimal control vs optimization

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)

    2009-11-23

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  7. Forced fluid removal in intensive care patients with acute kidney injury

    DEFF Research Database (Denmark)

    Berthelsen, R E; Perner, A; Jensen, A K

    2018-01-01

    /or continuous renal replacement therapy aiming at net negative fluid balance > 1 mL/kg ideal body weight/hour until cumulative fluid balance calculated from ICU admission reached less than 1000 mL. RESULTS: After 20 months, we stopped the trial prematurely due to a low inclusion rate with 23 (2%) included...... patients out of the 1144 screened. Despite the reduced sample size, we observed a marked reduction in cumulative fluid balance 5 days after randomisation (mean difference -5814 mL, 95% CI -2063 to -9565, P = .003) with forced fluid removal compared to standard care. While the trial was underpowered...... for clinical endpoints, no point estimates suggested harm from forced fluid removal. CONCLUSIONS: Forced fluid removal aiming at 1 mL/kg ideal body weight/hour may be an effective treatment of fluid accumulation in ICU patients with acute kidney injury. A definitive trial using our inclusion criteria seems...

  8. Cardiovascular and fluid volume control in humans in space

    DEFF Research Database (Denmark)

    Norsk, Peter

    2005-01-01

    on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations...... by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control...

  9. Fluid resuscitation for major burn patients with the TMMU protocol.

    Science.gov (United States)

    Luo, Gaoxing; Peng, Yizhi; Yuan, Zhiqiang; Cheng, Wenguang; Wu, Jun; Tang, Jin; Huang, Yuesheng; Fitzgerald, Mark

    2009-12-01

    Fluid resuscitation is one of the critical treatments for the major burn patient in the early phases after injury. We evaluated the practice of fluid resuscitation for severely burned patients with the Third Military Medical University (TMMU) protocol, which is most widely used in many regions of China. Patients with major burns (>30% total body surface area (TBSA)) presenting to Southwest Hospital, Third Military Medical University, between January 2005 and October 2007, were included in this study. Fluid resuscitation was initiated by the TMMU protocol. A total of 71 patients were (46 adults and 25 children) included in this study. All patients survived the first 48 h after injury smoothly and none developed abdominal compartment syndrome or other recognised complications associated with fluid resuscitation. The average quantity of fluid infused was 3.3-61.33% more than that calculated based on the TMMU protocol in both adult and paediatric groups. The average urine output during the first 24h after injury was about 1.2 ml per kg body weight per hour in the two groups, but reached 1.2 ml and 1.7 ml during the second 24h in adult and pediatric groups, respectively. This study indicates that the TMMU protocol for fluid resuscitation is a feasible option for burn patients. Individualised resuscitation - guided by the physiological response to fluid administration - is still important as in other protocols.

  10. Does intra-abdominal fluid increase the resting energy expenditure?

    Science.gov (United States)

    Zarling, E J; Grande, A; Hano, J

    1997-10-01

    In patients with intra-abdominal fluid collection, caloric needs are based on an estimated dry weight. This is done because intra-abdominal fluid has been assumed to be metabolically inactive. One recent study of patients with slowly resolving ascites suggested otherwise. In our study, the effect of intra-abdominal fluid on the resting energy expenditure (REE) and apparent lean body mass was determined in 10 stable patients requiring peritoneal dialysis. For each subject, in both the empty and full state, we measured REE by indirect calorimetry, and body composition by the bioelectric impedance method. In the full state, the VCO2 was significantly increased (210 +/- 11 versus 197 +/- 9 mL/min, P empty state. This caused an increase in the calculated resting energy expenditure (1531 +/- 88 kcal/d empty versus 1593 +/- 94 kcal/d full, P calories derived from glucose absorbed out of the dialysate. Estimates of body fat, lean body mass, and total water also were not affected by the intra-abdominal fluid. We conclude that intra-abdominal fluid will not affect the measured REE and hence may be considered to be metabolically inactive.

  11. Incompressible ionized fluid mixtures

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš

    2006-01-01

    Roč. 17, č. 7 (2006), s. 493-509 ISSN 0935-1175 Institutional research plan: CEZ:AV0Z10750506 Keywords : chemically reacting fluids * Navier-Stokes * Nernst-Planck * Possion equation s * heat equation s Subject RIV: BA - General Mathematics Impact factor: 0.954, year: 2006

  12. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  13. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  14. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  15. Fluids in metamorphic rocks

    NARCIS (Netherlands)

    Touret, J.L.R.

    2001-01-01

    Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of P-T conditions, having also suffered, in most cases, extensive changes after initial trapping. The

  16. Removal of unwanted fluid

    Science.gov (United States)

    Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.

    2013-01-01

    This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.

  17. Continuous feedback fluid queues

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.; van Foreest, N.D.; Mandjes, M.R.H.

    2003-01-01

    We investigate a fluid buffer which is modulated by a stochastic background process, while the momentary behavior of the background process depends on the current buffer level in a continuous way. Loosely speaking the feedback is such that the background process behaves `as a Markov process' with

  18. Cardiovascular regulation during body unweighting by lower body positive pressure.

    Science.gov (United States)

    Evans, Joyce M; Mohney, Lindsay; Wang, Siqi; Moore, Rachel K; Elayi, Samy-Claude; Stenger, Michael B; Moore, Fritz B; Knapp, Charles F

    2013-11-01

    We hypothesized that human cardiovascular responses to standing in reduced gravity environments, as on the Moon or Mars, could be modeled using a lower body positive pressure (LBPP) chamber. Heart rate, blood pressure, body segment fluid shifts, ECG, indexes of sympathetic, parasympathetic balance, and baroreflex control of the heart and periphery plus echocardiographic measures of cardiac function were recorded from seven men and seven women supine and standing at 100% (Earth), 40% (-Mars), and 20% (-Moon) bodyweights (BW). The fluid shifted from the chest was greater when standing at 100% BW than at 20% and 40% BW, while fluid pooled in the abdomen was similar at all BWs. Compared to moving from supine to standing at 100% BW, moving to 20% and 40% BW resulted in smaller decreases in stroke volume and pulse pressure, smaller increases in heart rate and smaller decreases in parasympathetic control of heart rate, baroreflex slope, numbers of blood pressure ramps, and much reduced indexes of sympathetic drive to the heart and periphery. However, peripheral vascular resistance, systolic pressure, and baroreflex effectiveness were elevated during 20% and 40% BW, compared to supine and standing at 100% BW. Standing at reduced bodyweight suppressed indexes of sympathetic control of heart rate and peripheral vasomotion. Regulatory responses indicated a combination of arterial and cardiopulmonary baroreflex control: mean heart rate, vasomotion, and baroreflex sensitivity appeared to be more under cardiopulmonary control while baroreflex effectiveness appeared to be driven more by the arterial baroreflex.

  19. Impossible body.

    Science.gov (United States)

    Lusero, L

    1999-01-01

    SUMMARY This play tells the story of one woman coming to terms with her "poly" identity through a journey into the multiple layers of love, race, sex, appearance and Otherness. The one-woman show Impossible Body was first performed for a reading series sponsored by "Onstage" at the University of Colorado, Boulder, in February 1997. A revised version was developed and staged at the University of Puget Sound in Tacoma, Washington in April 1997. The current script, from which these excerpts are taken, was first presented at the Queer Studies Conference in Boulder, Colorado.

  20. Body counter

    International Nuclear Information System (INIS)

    Koeppe, P.

    1975-01-01

    The paper gives a survey on some applications of the whole body counter in clinical practice and a critical study of its application as a routine testing method. Remarks on the necessary precautions are followed by a more detailed discussion of the determination of the natural potassium content, the iron metabolism, the vitamin B12 test, investigations of the metabolism of the bone using 47 Ca and 85 Sr, investigations with iodine and iodine-labelled substances, clearance investigations (in particular the 51 Cr EDTA clearance test), as well as the possibilities of neutron activation in vivo. (ORU/AK) [de