WorldWideScience

Sample records for body energy sensing

  1. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  2. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  3. Pacemakers charging using body energy

    Directory of Open Access Journals (Sweden)

    Dinesh Bhatia

    2010-01-01

    Full Text Available Life-saving medical implants like pacemakers and defibrillators face a big drawback that their batteries eventually run out and patients require frequent surgery to have these batteries replaced. With the advent of technology, alternatives can be provided for such surgeries. To power these devices, body energy harvesting techniques may be employed. Some of the power sources are patient′s heartbeat, blood flow inside the vessels, movement of the body parts, and the body temperature (heat. Different types of sensors are employed, such as for sensing the energy from the heartbeat the piezoelectric and semiconducting coupled nanowires are used that convert the mechanical energy into electricity. Similarly, for sensing the blood flow energy, nanogenerators driven by ultrasonic waves are used that have the ability to directly convert the hydraulic energy in human body to electrical energy. Another consideration is to use body heat employing biothermal battery to generate electricity using multiple arrays of thermoelectric generators built into an implantable chip. These generators exploit the well-known thermocouple effect. For the biothermal device to work, it needs a 2°C temperature difference across it. But there are many parts of the body where a temperature difference of 5°C exists - typically in the few millimeters just below the skin, where it is planned to place this device. This study focuses on using body heat as an alternative energy source to recharge pacemaker batteries and other medical devices and prevent the possibility of life-risk during repeated surgery.

  4. An implicit body representation underlying human position sense

    OpenAIRE

    Longo, Matthew R.; Haggard, Patrick

    2010-01-01

    Knowing the body's location in external space is a fundamental perceptual task. Perceiving the location of body parts through proprioception requires that information about the angles of each joint (i.e., body posture) be combined with information about the size and shape of the body segments between joints. Although information about body posture is specified by on-line afferent signals, no sensory signals are directly informative about body size and shape. Thus, human position sense must re...

  5. Remote Sensing for Wind Energy

    OpenAIRE

    2011-01-01

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style informati...

  6. Making Sense of Energy

    Science.gov (United States)

    Boohan, Richard

    2014-01-01

    This article describes an approach to teaching about the energy concept that aims to be accessible to students starting in early secondary school, while being scientifically rigorous and forming the foundation for later work. It discusses how exploring thermal processes is a good starting point for a more general consideration of the ways that…

  7. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  8. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete;

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy....... Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing in...

  9. Prosthetics Making Sense: Dancing the Technogenetic Body

    Directory of Open Access Journals (Sweden)

    Erin Manning

    2006-01-01

    Full Text Available Explorations of new technologies and dance often focus on the difficulty of locating gesture-as-such. For the practitioners of dance and technology the exploration of movement is intrinsically related to how to locate where a movement begins and ends in order to map its coordinates within a sensitive system. Yet, the question "What is a gesture? (and how can the computer recognize one?" may direct the techno-dance process toward establishing a kind of grammar of movement that would — paradoxically — be more likely to tie the body to some pre-established understanding of how it actualizes. "Mapping" gesture risks breaking movement into bits of assimilable data, of replicating the very conformity the computer software is seeking to get beyond. Instead of mapping gesture-as-such, this paper therefore begins somewhere else. It seeks to explore the technogenetic potential of the wholeness of movement, including its "unmappable" virtuality. The unmappable — within a computer software program — is the aspect of movement I call pre-acceleration, a virtual becoming — a tendency toward movement — through which a displacement takes form. If a vocabulary of gesture is to be reclaimed as part of what can be stimulated in the encounter between dance and new technology, it must be done through the continuum of movement, through the body's technogenetic emergence in the realm of the virtual becoming of pre-acceleration.

  10. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia;

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy....... Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to...... work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly...

  11. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it...... is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the compendium is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to...... writing of the compendium, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a...

  12. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it...... is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the compendium is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to...... our colleagues in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote...

  13. The function of AK and AMP signaling in body energy sensing and balance%腺苷酸激酶与AMP信号在感知及维持机体能量中的作用

    Institute of Scientific and Technical Information of China (English)

    张盈; 夏琳; 逢文强; 王涛; 张建法

    2011-01-01

    Adenylate kinase(AK) is a phosphotransferase en yme that catalyzes the interconversion of adenine nucleotides, and plays an important role in cellular energy homeostasis.The enzyme has seven isoforms, and plays a critical role in energy transfer and distribution between mitochondria, cytosol and nucleus.AMP levels in cellular,interstitial and blood are potential metabolic signals associated with body energy sensing, sleep, hibernation and food intake.Either low or excess AMP signaling has been linked to human disease.AK and downstream AMP signaling is an integrated metabolic monitoring system, which reads the cellular energy state in order to tune and report signals to metabolic sensors.The function of AK and AMP signaling in body energy sensing and balance is reviewed in details here.%腺苷酸激酶(AK)是催化各种腺嘌呤核苷酸相互转化的一种磷酸转移酶,其在维持细胞能量平衡中起着重要的作用.AK有七种亚型,在线粒体、胞浆、细胞核之间的能量转移和分布中起着至关重要的作用.细胞内、细胞外和血液中的AMP水平是机体能量感知、睡眠、冬眠和食物摄取的代谢信号.高于或低于正常水平的AMP信号与人类疾病相关.AK及其下游的AMP信号组成了一个完整的代谢监测系统,通过榆测细胞能量状态变化,从而调整对代谢感受器传递的信号.详细阐述了AK和AMP在感知及维持机体能量中的作用.

  14. Wearable Eating Habit Sensing System Using Internal Body Sound

    Science.gov (United States)

    Shuzo, Masaki; Komori, Shintaro; Takashima, Tomoko; Lopez, Guillaume; Tatsuta, Seiji; Yanagimoto, Shintaro; Warisawa, Shin'ichi; Delaunay, Jean-Jacques; Yamada, Ichiro

    Continuous monitoring of eating habits could be useful in preventing lifestyle diseases such as metabolic syndrome. Conventional methods consist of self-reporting and calculating mastication frequency based on the myoelectric potential of the masseter muscle. Both these methods are significant burdens for the user. We developed a non-invasive, wearable sensing system that can record eating habits over a long period of time in daily life. Our sensing system is composed of two bone conduction microphones placed in the ears that send internal body sound data to a portable IC recorder. Applying frequency spectrum analysis on the collected sound data, we could not only count the number of mastications during eating, but also accurately differentiate between eating, drinking, and speaking activities. This information can be used to evaluate the regularity of meals. Moreover, we were able to analyze sound features to classify the types of foods eaten by food texture.

  15. Estimation of many-body quantum Hamiltonians via compressive sensing

    Energy Technology Data Exchange (ETDEWEB)

    Shabani, A.; Rabitz, H. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Mohseni, M. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Lloyd, S. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Kosut, R. L. [SC Solutions, Sunnyvale, California 94085 (United States)

    2011-07-15

    We develop an efficient and robust approach for quantum measurement of nearly sparse many-body quantum Hamiltonians based on the method of compressive sensing. This work demonstrates that with only O(sln(d)) experimental configurations, consisting of random local preparations and measurements, one can estimate the Hamiltonian of a d-dimensional system, provided that the Hamiltonian is nearly s sparse in a known basis. The classical postprocessing is a convex optimization problem on the total Hilbert space which is generally not scalable. We numerically simulate the performance of this algorithm for three- and four-body interactions in spin-coupled quantum dots and atoms in optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine structure and unknown system-bath interactions.

  16. Estimation of many-body quantum Hamiltonians via compressive sensing

    International Nuclear Information System (INIS)

    We develop an efficient and robust approach for quantum measurement of nearly sparse many-body quantum Hamiltonians based on the method of compressive sensing. This work demonstrates that with only O(sln(d)) experimental configurations, consisting of random local preparations and measurements, one can estimate the Hamiltonian of a d-dimensional system, provided that the Hamiltonian is nearly s sparse in a known basis. The classical postprocessing is a convex optimization problem on the total Hilbert space which is generally not scalable. We numerically simulate the performance of this algorithm for three- and four-body interactions in spin-coupled quantum dots and atoms in optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine structure and unknown system-bath interactions.

  17. Nutrient and energy sensing in skeletal muscle

    OpenAIRE

    Deshmukh, Atul S.

    2009-01-01

    Nutrient overload and physical inactivity often leads to the development of obesity and type 2 diabetes. Acute over-nutrition can induce insulin resistance, while physical exercise enhances skeletal muscle insulin sensitivity. Like every living cell, skeletal muscle senses nutrient and energy signals and to adjust metabolic flux. This thesis focuses on some of the key nutrient and energy sensing (exercise/contraction-induced) pathways in skeletal muscle that regulate metabol...

  18. Energy Balance and Body Weight Regulation

    Institute of Scientific and Technical Information of China (English)

    Chris Melby; Matt Hickey

    2006-01-01

    @@ KEY POINTS · Thermodynamic laws dictate that an excess of food energy intake relative to energy expenditure will lead to energy storage-an accumulation of fat. Conversely, a deficit of energy intake relative to expenditure will lead to a loss of body energy stores and a reduced body weight.

  19. Force Sensing Resistor and Evaluation of Technology for Wearable Body Pressure Sensing

    Directory of Open Access Journals (Sweden)

    Davide Giovanelli

    2016-01-01

    Full Text Available Wearable technologies are gaining momentum and widespread diffusion. Thanks to devices such as activity trackers, in form of bracelets, watches, or anklets, the end-users are becoming more and more aware of their daily activity routine, posture, and training and can modify their motor-behavior. Activity trackers are prevalently based on inertial sensors such as accelerometers and gyroscopes. Loads we bear with us and the interface pressure they put on our body also affect posture. A contact interface pressure sensing wearable would be beneficial to complement inertial activity trackers. What is precluding force sensing resistors (FSR to be the next best seller wearable? In this paper, we provide elements to answer this question. We build an FSR based on resistive material (Velostat and printed conductive ink electrodes on polyethylene terephthalate (PET substrate; we test its response to pressure in the range 0–2.7 kPa. We present a state-of-the-art review, filtered by the need to identify technologies adequate for wearables. We conclude that the repeatability is the major issue yet unsolved.

  20. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul;

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  1. Energy-information trade-offs between movement and sensing.

    Directory of Open Access Journals (Sweden)

    Malcolm A MacIver

    2010-05-01

    Full Text Available While there is accumulating evidence for the importance of the metabolic cost of information in sensory systems, how these costs are traded-off with movement when sensing is closely linked to movement is poorly understood. For example, if an animal needs to search a given amount of space beyond the range of its vision system, is it better to evolve a higher acuity visual system, or evolve a body movement system that can more rapidly move the body over that space? How is this trade-off dependent upon the three-dimensional shape of the field of sensory sensitivity (hereafter, sensorium? How is it dependent upon sensorium mobility, either through rotation of the sensorium via muscles at the base of the sense organ (e.g., eye or pinna muscles or neck rotation, or by whole body movement through space? Here we show that in an aquatic model system, the electric fish, a choice to swim in a more inefficient manner during prey search results in a higher prey encounter rate due to better sensory performance. The increase in prey encounter rate more than counterbalances the additional energy expended in swimming inefficiently. The reduction of swimming efficiency for improved sensing arises because positioning the sensory receptor surface to scan more space per unit time results in an increase in the area of the body pushing through the fluid, increasing wasteful body drag forces. We show that the improvement in sensory performance that occurs with the costly repositioning of the body depends upon having an elongated sensorium shape. Finally, we show that if the fish was able to reorient their sensorium independent of body movement, as fish with movable eyes can, there would be significant energy savings. This provides insight into the ubiquity of sensory organ mobility in animal design. This study exposes important links between the morphology of the sensorium, sensorium mobility, and behavioral strategy for maximally extracting energy from the environment

  2. Sensing data centres for energy efficiency.

    Science.gov (United States)

    Liu, Jie; Terzis, Andreas

    2012-01-13

    Data centres are large energy consumers today, and their consumption is expected to increase further, driven by the growth in cloud services. The large monetary cost and the environmental impact of this consumption have motivated operators to optimize data centre management. We argue that one of the underlying reasons for the low-energy utilization is the lack of visibility into a data centre's highly dynamic operating conditions. Wireless sensor networks promise to remove this veil of uncertainty by delivering large volumes of data collected at high spatial and temporal fidelities. The paper summarizes data centre operations in order to describe the parameters that a data centre sensing network should collect and motivate the challenges that such a network faces. We present technical approaches for the problems of data collection and management and close with an overview of a data centre genome, an end-to-end data centre sensing system. PMID:22124086

  3. High G effects on optical fiber based displacement sensing for re-entry bodies

    Science.gov (United States)

    Nadler, Brett R.; Greene, Jon

    2006-08-01

    Re-entry bodies are subject to extreme conditions, among them the rigorous shock, vibration, and loading characteristics that can often induce noise or loss of measurement. Restrictions by the Department of Energy on spark sources within a sealed body require the exclusive use of fiber optics for sensing. A joint effort between Los Alamos National Laboratory and Lambda Instruments has developed and evaluated a white light interferometric fiber sensor to address these concerns while measuring displacements between high explosive components in potential flight applications. The sensor offers advantages with electro-magnetic immunity, non-contact sensing elements, and high sensitivity to movement. Gap values are calculated from the extrema of the sinusoidal wavelength pattern created by the Fabry-Perot cavity between the lens and explosive surface, collected by an optical spectrum analyzer and interpreted by an external computer. This paper focuses on the interferometric concept and experimental data received from the unit in real-time during centrifuge tests. Results from single and multimode versions are presented and reported in their effectiveness for 0-2 millimeter measurements.

  4. Senses of body image in adolescents in elementary school

    OpenAIRE

    Maria Lídia de Abreu Silva; Stella Regina Taquette; Evandro Silva Freire Coutinho

    2014-01-01

    OBJECTIVE : To comprehend the perception of body image in adolescence. METHODS : A qualitative study was conducted with eight focus groups with 96 students of both sexes attending four public elementary school institutions in the city of Rio de Janeiro, Southeastern Brazil, in 2013. An interview guide with questions about the adolescents’ feelings in relation to: their bodies, standards of idealized beauty, practice of physical exercise and sociocultural influences on self-image. In the d...

  5. The Spanish energy regulatory body: the national energy commission (CNE)

    International Nuclear Information System (INIS)

    The National Energy Commission (CNE) is the Spanish Energy Regulatory body. This paper presents its scope and purpose, organisation, resources and financing, financial and performance control, functions, and legal provisions. (author)

  6. Senses of body image in adolescents in elementary school

    Directory of Open Access Journals (Sweden)

    Maria Lídia de Abreu Silva

    2014-06-01

    Full Text Available OBJECTIVE : To comprehend the perception of body image in adolescence. METHODS : A qualitative study was conducted with eight focus groups with 96 students of both sexes attending four public elementary school institutions in the city of Rio de Janeiro, Southeastern Brazil, in 2013. An interview guide with questions about the adolescents’ feelings in relation to: their bodies, standards of idealized beauty, practice of physical exercise and sociocultural influences on self-image. In the data analysis we sought to understand and interpret the meanings and contradictions of narratives, understanding the subjects’ context and reasons and the internal logic of the group. RESULTS : Three thematic categories were identified. The influence of media on body image showed the difficulty of achieving the perfect body and is viewed with suspicion in face of standards of beauty broadcast; the importance of a healthy body was observed as standards of beauty and good looks were closely linked to good physical condition and result from having a healthy body; the relationship between the standard of beauty and prejudice, as people who are not considered attractive, having small physical imperfections, are discriminated against and can be rejected or even excluded from society. CONCLUSIONS : The standard of perfect body propagated by media influences adolescents’ self-image and, consequently, self-esteem and is considered an unattainable goal, corresponding to a standard of beauty described as artificial and unreal. However, it causes great suffering and discrimination against those who do not feel they are attractive, which can lead to health problems resulting from low self-esteem.

  7. Multislot Simultaneous Spectrum Sensing and Energy Harvesting in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available In cognitive radio (CR, the spectrum sensing of the primary user (PU may consume some electrical power from the battery capacity of the secondary user (SU, resulting in a decrease in the transmission power of the SU. In this paper, a multislot simultaneous spectrum sensing and energy harvesting model is proposed, which uses the harvested radio frequency (RF energy of the PU signal to supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple sensing slots consisting of one local-sensing subslot and one energy-harvesting subslot. If the PU is detected to be present in the local-sensing subslot, the SU will harvest RF energy of the PU signal in the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on the presence of the PU is obtained through combining local sensing results from all the sensing slots by adopting “Or-logic Rule”. A joint optimization problem of sensing time and time splitter factor is proposed to maximize the throughput of the SU under the constraints of probabilities of false alarm and detection and energy harvesting. The simulation results have shown that the proposed model can clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput tradeoff model.

  8. The human carotid body in sensing and signaling of oxygen and inflammation

    OpenAIRE

    Kåhlin, Jessica

    2014-01-01

    Oxygen is essential for cell survival and global oxygenation is closely monitored in order to protect tissues from hypoxic damage. The carotid body is an important systemic oxygen sensor responding to hypoxia and a multitude of other blood borne stimuli, including inflammatory mediators. Activation of the carotid body by depolarization of the chemosensitive type 1 cells ultimately leads to appropriate ventilatory and cardiovascular responses. While animal carotid body oxygen sensing and signa...

  9. Stimulating and Sensing Network Inside the Human Body

    Directory of Open Access Journals (Sweden)

    J. H. Schulman

    2007-05-01

    Full Text Available

    The Alfred Mann Foundation is developing a network of up to 850 injectable devices that have stimulating, sensing and communication capabilities. Each of the devices is coordinated via radio signals a hundred times a second by an external small module. All the devices are powered by lithium-ion rechargeable batteries. The stimulating, sensing, and communication circuits are designed to be highly power efficient to maximize battery life. The stimulator can be programmed to deliver pulses in the range: 5 µA to 20 mA, 7 µs to 2000 µs, and frequencies up to 4000 Hz. Bursting, ramping, and other stimulation features are included. The voltage sensor covers the range 10 µV to 1.0 V with bandpass filtering and data analysis. The implant also contains sensors for pressure, temperature, DC magnetic field, and distances between implants.

  10. Remote sensing of ephemeral water bodies in western Niger

    Science.gov (United States)

    Verdin, J.P.

    1996-01-01

    Research was undertaken to evaluate the feasibility of monitoring the small ephemeral water bodies of the Sahel with the 1.1 km resolution data of the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Twenty-one lakes of western Niger with good ground observation records were selected for examination. Thematic Mapper images from 1988 were first analysed to determine surface areas and temperature differences between water and adjacent land. Six AVHRR scenes from the 1988-89 dry season were then studied. It was found that a lake can be monitored until its surface area drops below 10 ha, in most cases. Furthermore, with prior knowledge of the location and shape of a water body, its surface area can be estimated from AVHRR band 5 data to within about 10 ha. These results are explained by the sharp temperature contrast between water and land, on the order of 13?? C.

  11. Interoception: the sense of the physiological condition of the body.

    Science.gov (United States)

    Craig, A D

    2003-08-01

    Converging evidence indicates that primates have a distinct cortical image of homeostatic afferent activity that reflects all aspects of the physiological condition of all tissues of the body. This interoceptive system, associated with autonomic motor control, is distinct from the exteroceptive system (cutaneous mechanoreception and proprioception) that guides somatic motor activity. The primary interoceptive representation in the dorsal posterior insula engenders distinct highly resolved feelings from the body that include pain, temperature, itch, sensual touch, muscular and visceral sensations, vasomotor activity, hunger, thirst, and 'air hunger'. In humans, a meta-representation of the primary interoceptive activity is engendered in the right anterior insula, which seems to provide the basis for the subjective image of the material self as a feeling (sentient) entity, that is, emotional awareness. PMID:12965300

  12. An ECG Compressed Sensing Method of Low Power Body Area Network

    Directory of Open Access Journals (Sweden)

    Jizhong Liu

    2013-07-01

    Full Text Available Aimed at low power problem in body area network, an ECG compressed sensing method of low power body area network based on the compressed sensing theory was proposed. Random binary matrices were used as the sensing matrix to measure ECG signals on the sensor nodes. After measured value is transmitted to remote monitoring center, ECG signal sparse representation under the discrete cosine transform and block sparse Bayesian learning reconstruction algorithm is used to reconstruct the ECG signals. The simulation results show that the 30% of overall signal can get reconstruction signal which’s SNR is more than 60dB, each numbers in each rank of sensing matrix can be controlled below 5, which reduces the power of sensor node sampling, calculation and transmission. The method has the advantages of low power, high accuracy of signal reconstruction and easy to hardware implementation.  

  13. C. elegans sensing of and entrainment along obstacles require different neurons at different body locations.

    Science.gov (United States)

    Nam, Seong-Won; Qian, Chen; Kim, So Hyun; van Noort, Danny; Chiam, Keng-Hwee; Park, Sungsu

    2013-01-01

    We probe C. elegans mechanosensation using a microfabricated platform where worms encounter a linear array of asymmetric funnel-like barriers. We found that sensing of and moving along barriers require different sets of neurons located at different parts of the animal. Wild-type worms sense and move along the barrier walls, leading to their accumulation in one side of the barriers due to the barriers' asymmetric shape. However, mec-4 and mec-10 mutants deficient in touch sensory neurons in the body exhibited reversal movements at the walls, leading to no accumulation in either side of the barriers. In contrast, osm-9 mutants deficient in touch sensory neurons in the nose, moved along the barrier walls. Thus, touch sensory neurons ALM and AVM in the body are required for C. elegans to sense and move along obstacles, whereas the ASH and FLP neurons in the nose are required only for sensing of but not moving along obstacles. PMID:24284409

  14. ENERGY EFFICIENT COOPERATIVE SPECTRUM SENSING IN COGNITIVE RADIO

    Directory of Open Access Journals (Sweden)

    Ramzi Saifan

    2016-03-01

    Full Text Available Sensing in cognitive radio (CR protects the primary user (PU from bad interference. Therefore, it is assumed to be a requirement. However, sensing has two main challenges; first the CR is required to sense the PU under very low signal to noise ratios which will take longer sensing time, and second, some CR nodes may suffer from deep fading and shadowing effects. Cooperative spectrum sensing (CSS is supposed to solve these challenges. However, CSS adds extra energy consumption due to CRs send the sensing result to the fusion center and receive the final decision from the fusion center. This is in addition to the sensing energy itself. Therefore, CSS may consume considerable energy out of the battery of the CR node. Therefore in this paper, we try to find jointly the sensing time required from each CR node and the number of CR nodes who should perform sensing such that the energy and energy efficiency (i.e., ratio of throughput to energy consumed are optimized. Simulation results show that the joint optimization achieves better in terms of energy efficiency than other approaches that perform separate optimization.

  15. Energy Preserved Sampling for Compressed Sensing MRI

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2014-01-01

    Full Text Available The sampling patterns, cost functions, and reconstruction algorithms play important roles in optimizing compressed sensing magnetic resonance imaging (CS-MRI. Simple random sampling patterns did not take into account the energy distribution in k-space and resulted in suboptimal reconstruction of MR images. Therefore, a variety of variable density (VD based samplings patterns had been developed. To further improve it, we propose a novel energy preserving sampling (ePRESS method. Besides, we improve the cost function by introducing phase correction and region of support matrix, and we propose iterative thresholding algorithm (ITA to solve the improved cost function. We evaluate the proposed ePRESS sampling method, improved cost function, and ITA reconstruction algorithm by 2D digital phantom and 2D in vivo MR brains of healthy volunteers. These assessments demonstrate that the proposed ePRESS method performs better than VD, POWER, and BKO; the improved cost function can achieve better reconstruction quality than conventional cost function; and the ITA is faster than SISTA and is competitive with FISTA in terms of computation time.

  16. Beyond the colour of my skin: how skin colour affects the sense of body-ownership.

    OpenAIRE

    Farmer, Harry; Tajadura-Jiménez, Ana; Tsakiris, Manos

    2012-01-01

    Multisensory stimulation has been shown to alter the sense of body-ownership. Given that perceived similarity between one’s own body and those of others is crucial for social cognition, we investigated whether multisensory stimulation can lead participants to experience ownership over a hand of different skin colour. Results from two studies using introspective, behavioural and physiological methods show that, following synchronous visuotactile (VT) stimulation, participants can experience bo...

  17. From Embodiment to Emplacement: Re-Thinking Competing Bodies, Senses and Spatialities

    Science.gov (United States)

    Pink, Sarah

    2011-01-01

    In this article I discuss how a shift from theories of embodiment to one of emplacement can inform how we understand the performing body in competitive and pedagogical contexts. I argue that recent theoretical advances concerning the senses, human perception and place offer new analytical possibilities for understanding skilled performances and…

  18. Energy Efficient Design for Body Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Yanqing Zhang

    2011-04-01

    Full Text Available This paper describes the hardware requirements and design constraints that derive from unique features of body sensor networks (BSNs. Based on the BSN requirements, we examine the tradeoff between custom hardware and commercial off the shelf (COTS designs for BSNs. The broad range of BSN applications includes situations where either custom chips or COTS design is optimal. For both types of nodes, we survey key techniques to improve energy efficiency in BSNs and identify general approaches to energy efficiency in this space.

  19. Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches

    Directory of Open Access Journals (Sweden)

    Reza Rawassizadeh

    2015-09-01

    Full Text Available As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras.

  20. Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches.

    Science.gov (United States)

    Rawassizadeh, Reza; Tomitsch, Martin; Nourizadeh, Manouchehr; Momeni, Elaheh; Peery, Aaron; Ulanova, Liudmila; Pazzani, Michael

    2015-01-01

    As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras. PMID:26370997

  1. Force Sensing Resistor and Evaluation of Technology for Wearable Body Pressure Sensing

    OpenAIRE

    Davide Giovanelli; Elisabetta Farella

    2016-01-01

    Wearable technologies are gaining momentum and widespread diffusion. Thanks to devices such as activity trackers, in form of bracelets, watches, or anklets, the end-users are becoming more and more aware of their daily activity routine, posture, and training and can modify their motor-behavior. Activity trackers are prevalently based on inertial sensors such as accelerometers and gyroscopes. Loads we bear with us and the interface pressure they put on our body also affect posture. A contact i...

  2. Three-body scattering at intermediate energies

    International Nuclear Information System (INIS)

    The Faddeev equation for three-body scattering at arbitrary energies is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial-wave decomposition. In its simplest form, the Faddeev equation for identical bosons, which we are using, is a three-dimensional integral equation in five variables, magnitudes of relative momenta and angles. This equation is solved through Pade summation. Based on a Malfliet-Tjon-type potential, the numerical feasibility and stability of the algorithm for solving the Faddeev equation is demonstrated. Special attention is given to the selection of independent variables and the treatment of three-body breakup singularities with a spline-based method. The elastic differential cross section, semiexclusive d(N,N') cross sections, and total cross sections of both elastic and breakup processes in the intermediate-energy range up to about 1 GeV are calculated and the convergence of the multiple-scattering series is investigated in every case. In general, a truncation in the first or second order in the two-body t matrix is quite insufficient

  3. Body composition and energy metabolism in elderly people.

    OpenAIRE

    Visser, M.

    1995-01-01

    This thesis describes several studies related to the three components of energy balance in elderly people: body composition, energy expenditure, and energy intake.Body composition. The applicability of the body mass index, skinfold thickness method, and multi-frequency bioelectrical impedance was tested in elderly men and women. The first two methods predicted body fat in elderly people on a group level with a mean prediction error of 5%. The impedance method predicted total body water (at 50...

  4. Energy efficiency in cognitive radio network: Study of cooperative sensing using different channel sensing methods

    Science.gov (United States)

    Cui, Chenxuan

    When cognitive radio (CR) operates, it starts by sensing spectrum and looking for idle bandwidth. There are several methods for CR to make a decision on either the channel is occupied or idle, for example, energy detection scheme, cyclostationary detection scheme and matching filtering detection scheme [1]. Among them, the most common method is energy detection scheme because of its algorithm and implementation simplicities [2]. There are two major methods for sensing, the first one is to sense single channel slot with varying bandwidth, whereas the second one is to sense multiple channels and each with same bandwidth. After sensing periods, samples are compared with a preset detection threshold and a decision is made on either the primary user (PU) is transmitting or not. Sometimes the sensing and decision results can be erroneous, for example, false alarm error and misdetection error may occur. In order to better control error probabilities and improve CR network performance (i.e. energy efficiency), we introduce cooperative sensing; in which several CR within a certain range detect and make decisions on channel availability together. The decisions are transmitted to and analyzed by a data fusion center (DFC) to make a final decision on channel availability. After the final decision is been made, DFC sends back the decision to the CRs in order to tell them to stay idle or start to transmit data to secondary receiver (SR) within a preset transmission time. After the transmission, a new cycle starts again with sensing. This thesis report is organized as followed: Chapter II review some of the papers on optimizing CR energy efficiency. In Chapter III, we study how to achieve maximal energy efficiency when CR senses single channel with changing bandwidth and with constrain on misdetection threshold in order to protect PU; furthermore, a case study is given and we calculate the energy efficiency. In Chapter IV, we study how to achieve maximal energy efficiency when CR

  5. High Energy Two-Body Deuteron Photodisintegration

    Energy Technology Data Exchange (ETDEWEB)

    Terburg, Bart

    1999-07-31

    The differential cross section for two­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles theta_cm =37deg, 53deg, 70deg, and 90deg as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90deg. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70deg and 90deg show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37deg and 53deg data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  6. Dynamic measurement of physical conditions in daily life by body area network sensing system

    Science.gov (United States)

    Takayama, S.; Tanaka, T.; Takahashi, N.; Matsuda, Y.; Kariya, K.

    2010-07-01

    This paper shows the measurement system to monitor physical conditions dynamically in dairy life. The measurement system for physical conditions in motion must be wearable and wireless connected. Body area network sensing system (BANSS) is a kind of the system to realize the conditions. BANSS is the system constructed with host system and plural sensing nodes. Sensing node is constructed with sensors, analogue/digital convertor(ADC), peripheral interface component(PIC), memory and near field communication device(NFCD). The NFCD in this system is Zigbee. Zigbee is the most suitable to construct wireless network system easily. BANSS is not only the system to measure physical parameters. BANSS informs current physical conditions and advises to keep suitable physical strength. As an application of BANSS, the system managing heart rate in walking is shown. By using this system, users can exercise in condition of a constant physical strength.

  7. Body composition and energy metabolism in elderly people.

    NARCIS (Netherlands)

    Visser, M.

    1995-01-01

    This thesis describes several studies related to the three components of energy balance in elderly people: body composition, energy expenditure, and energy intake.Body composition. The applicability of the body mass index, skinfold thickness method, and multi-frequency bioelectrical impedance was te

  8. Radio and Sensor Interfaces for Energy-autonomous Wireless Sensing

    OpenAIRE

    Mao, Jia

    2016-01-01

    Along with rapid development of sensing and communication technology, Internet of Things (IoTs) has enabled a tremendous number of applications in health care, agriculture, and industry. As the fundamental element, the wireless sensing node, such as radio tags need to be operating under micro power level for energy autonomy. The evolution of electronics towards highly energy-efficient systems requires joint efforts in developing innovative architectures and circuit techniques. In this dissert...

  9. Three-Body Scattering at Intermediate Energies

    CERN Document Server

    Liu, H; Glöckle, W; Elster, Ch.

    2004-01-01

    The Faddeev equation for three-body scattering at arbitrary energies is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. In its simplest form the Faddeev equation for identical bosons, which we are using, is a three-dimensional integral equation in five variables, magnitudes of relative momenta and angles. This equation is solved through Pade summation. Based on a Malfliet-Tjon-type potential, the numerical feasibility and stability of the algorithm for solving the Faddeev equation is demonstrated. Special attention is given to the selection of independent variables and the treatment of three-body break-up singularities with a spline based method. The elastic differential cross section, semi-exclusive d(N,N') cross sections and total cross sections of both elastic and breakup processes in the intermediate energy range up to about 1 GeV are calculated and the convergence of the multiple scattering series is investigated in every case....

  10. Flexible Integration of Alternative Energy Sources for Autonomous Sensing

    OpenAIRE

    Weddell, Alex S.; Grabham, Neil J; Harris, Nick R.; White, Neil M.

    2008-01-01

    Recent developments in energy harvesting and autonomous sensing mean that it is now possible to power sensors solely from energy harvested from the environment. Clearly this is dependent on sufficient environmental energy being present. The range of feasible environments for operation can be extended by combining multiple energy sources on a sensor node. The effective monitoring of their energy resources is also important to deliver sustained and effective operation. This paper outlines the i...

  11. Energy detection for spectrum sensing in cognitive radio

    CERN Document Server

    Atapattu, Saman; Jiang, Hai

    2014-01-01

    This Springer Brief focuses on the current state-of-the-art research on spectrum sensing by using energy detection, a low-complexity and low-cost technique. It includes a comprehensive summary of recent research, fundamental theories, possible architectures, useful performance measurements of energy detection and applications of energy detection. Concise, practical chapters explore conventional energy detectors, alternative forms of energy detectors, performance measurements, diversity techniques and cooperative networks. The careful analysis enables reader to identify the most efficient techn

  12. Energy Constrained Wireless Sensor Networks : Communication Principles and Sensing Aspects

    OpenAIRE

    Björnemo, Erik

    2009-01-01

    Wireless sensor networks are attractive largely because they need no wired infrastructure. But precisely this feature makes them energy constrained, and the consequences of this hard energy constraint are the overall topic of this thesis. We are in particular concerned with principles for energy efficient wireless communication and the energy-wise trade-off between sensing and radio communication. Radio transmission between sensors incurs both a fixed energy cost from radio circuit processing...

  13. Energy-efficient Compressed Sensing for ambulatory ECG monitoring.

    Science.gov (United States)

    Craven, Darren; McGinley, Brian; Kilmartin, Liam; Glavin, Martin; Jones, Edward

    2016-04-01

    Advances in Compressed Sensing (CS) are enabling promising low-energy implementation solutions for wireless Body Area Networks (BAN). While studies demonstrate the potential of CS in terms of overall energy efficiency compared to state-of-the-art lossy compression techniques, the performance of CS remains limited. The aim of this study is to improve the performance of CS-based compression for electrocardiogram (ECG) signals. This paper proposes a CS architecture that combines a novel redundancy removal scheme with quantization and Huffman entropy coding to effectively extend the Compression Ratio (CR). Reconstruction is performed using overcomplete sparse dictionaries created with Dictionary Learning (DL) techniques to exploit the highly structured nature of ECG signals. Performance of the proposed CS implementation is evaluated by analyzing energy-based distortion metrics and diagnostic metrics including QRS beat-detection accuracy across a range of CRs. The proposed CS approach offers superior performance to the most recent state-of-the-art CS implementations in terms of signal reconstruction quality across all CRs tested. Furthermore, QRS detection accuracy of the technique is compared with the well-known lossy Set Partitioning in Hierarchical Trees (SPIHT) compression technique. The proposed CS approach outperforms SPIHT in terms of achievable CR, using the area under the receiver operator characteristic (ROC) curve (AUC). For an application where a minimum AUC performance threshold of 0.9 is required, the proposed technique extends the CR from 64.6 to 90.45 compared with SPIHT, ensuring a 40% saving on wireless transmission costs. Therefore, the results highlight the potential of the proposed technique for ECG computer-aided diagnostic systems. PMID:26854730

  14. Force sensing using 3D displacement measurements in linear elastic bodies

    Science.gov (United States)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  15. Energy-information trade-offs between movement and sensing.

    OpenAIRE

    MacIver, Malcolm A.; Patankar, Neelesh A.; Shirgaonkar, Anup A.

    2010-01-01

    While there is accumulating evidence for the importance of the metabolic cost of information in sensory systems, how these costs are traded-off with movement when sensing is closely linked to movement is poorly understood. For example, if an animal needs to search a given amount of space beyond the range of its vision system, is it better to evolve a higher acuity visual system, or evolve a body movement system that can more rapidly move the body over that space? How is this trade-off depende...

  16. Energy-Information Trade-Offs between Movement and Sensing

    OpenAIRE

    MacIver, Malcolm A.; Patankar, Neelesh A.; Shirgaonkar, Anup A.

    2010-01-01

    While there is accumulating evidence for the importance of the metabolic cost of information in sensory systems, how these costs are traded-off with movement when sensing is closely linked to movement is poorly understood. For example, if an animal needs to search a given amount of space beyond the range of its vision system, is it better to evolve a higher acuity visual system, or evolve a body movement system that can more rapidly move the body over that space? How is this trade-off depende...

  17. A millimeter-wave reflectometer for whole-body hydration sensing

    Science.gov (United States)

    Zhang, W.-D.; Brown, E. R.

    2016-05-01

    This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy ( 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.

  18. The benefits of remote sensing for energy policy

    International Nuclear Information System (INIS)

    A strong remote sensing regime is a necessary component of any contemporary national or international energy policy. Energy is essential to the functioning of modem industrial society, and as such it is the responsibility of governments to produce sound national energy policies in order to ensure stable economic growth, ecologically responsible use of energy resources and the health and safety of citizens. Comprehensive, accurate and timely remote sensing data can aid decision making on energy matters in several areas. This paper looks at the benefits that can be realized in resource exploration, weather forecasting and environmental monitoring. Improvements in the technology of remote sensing platforms would be of great value to buyers of energy, sellers of energy and the environment. Furthermore, the utility of such information could be enhanced by efforts of government agencies to communicate it more effectively to the end-user. National energy policies should thus include investments not only in satellite system hardware to collect data, but also in the services required to interpret and distribute the data. (author)

  19. [Optical properties and remote sensing retrieval model of diffuse attenuation coefficient of Taihu Lake water body].

    Science.gov (United States)

    Le, Cheng-Feng; Li, Yun-Mei; Zha, Yong; Sun, De-Yong; Wang, Li-Zhen

    2009-02-01

    The spectral and chemical analytical data of Taihu Lake water quality in Nov. 8-22, 2007 were used to analyze the spectral characteristics of diffuse attenuation coefficient (Kd) of the water body in autumn and related affecting factors. On the basis of this analysis, the Kd at band 490 nm, Kd (490), was used as a variable to build the relationship between Kd and remote sensing reflectance. The results indicated that within the scope of visible band, the Kd of the water body at most locations of Taihu Lake presented an exponent decreasing trend with the increase of wave length. Due to the higher concentration of phytoplankton in some locations, a peak value of Kd was presented at band 675 nm. Non-organic suspended particles, because of their higher content in suspended sediment, had larger effects on Kd than organic suspended ones. There was a good correlation between Kd and remote sensing reflectance. Taking Rrs (550), Rrs (675) and Rrs (731) as independent variables and doing regression analysis with Kd (490), a good linear relationship was found between Kd (490) and Rrs (731), and multi-variate linear regression analysis using variables Rrs (550), Rrs (675) and Rrs (731) could get better effect (R2 > 0.96) than the regression analysis using variable Rrs (731). PMID:19459373

  20. Measurement of body potassium with a whole-body counter: relationship between lean body mass and resting energy expenditure

    International Nuclear Information System (INIS)

    We conducted studies to determine whether the Mayo whole-body counter could be used to measure body potassium, and thus lean body mass (LBM), and whether moderate obesity alters resting energy expenditure when corrected for LBM. Twenty-four nonobese and 18 moderately obese adults underwent body potassium (40K) counting, as well as tritiated water space measurement and indirect calorimetry. LBM values predicted from 40K counting and tritiated water space measurements were highly correlated (P = 0.001; r = 0.88). Resting energy expenditure was closely related to LBM (P less than 0.0001; r = 0.78): kcal/day = 622 kcal + (LBM.20.0 kcal/kg LBM). In this relationship, the obese subjects did not differ from nonobese subjects. In summary, the Mayo whole-body counter can accurately measure LBM, and moderate obesity has no detectable effect on corrected resting energy expenditure

  1. Generic and energy-efficient context-aware mobile sensing

    CERN Document Server

    Yurur, Ozgur

    2015-01-01

    This book proposes novel context-inferring algorithms and generic framework designs to enhance the existing tradeoffs in mobile sensing, especially between accuracy and power consumption. It integrates the significant topics of energy efficient, inhomogeneous, adaptive, optimal context-aware inferring algorithm and framework design. In addition, it includes plenty of examples to help readers understand the theory, best practices, and strategies.

  2. Our national energy future - The role of remote sensing

    Science.gov (United States)

    Schmitt, H. H.

    1975-01-01

    An overview of problems and opportunities in remote sensing of resources. The need for independence from foreign and precarious energy sources, availability of fossil fuel materials for other purposes (petrochemicals, fertilizer), environmental conservation, and new energy sources are singled out as the main topics. Phases of response include: (1) crisis, with reduced use of petroleum and tapping of on-shore and off-shore resources combined; (2) a transition phase involving a shift from petroleum to coal and oil shale; and (3) exploitation of renewable (inexhaustible and clean) energy. Opportunities for remote sensing in fuel production and energy conservation are discussed along with problems in identifying the spectral signatures of productive and unproductive regions. Mapping of water resources, waste heat, byproducts, and wastes is considered in addition to opportunities for international collaboration.

  3. Research for the Relationships between Body Acceleration and Energy Expenditure

    Institute of Scientific and Technical Information of China (English)

    ZHUYi; RUANXing-yun; SHENGYi; XUZhi-rong; GUOHai

    2004-01-01

    During our research, It has been found that body acceleration has strong relationships with the human energy expenditure. This paper discusses the methods to assess physical activity and concludes that for accurate assessment of physical activity under free living conditions the recently introduced accelerometer looks most promising. We developed a new computerized machine to assess the body activity and energy expenditure. Test datas of the treadmill experiment, respiration experiment and 5-kilometer-running experiment have been archieved,we found that body acceration integrals with time has linear relations with body energy expenture.

  4. O corpo sentido e os sentidos do corpo anoréxico Sensing and making sense of the anorexic body

    Directory of Open Access Journals (Sweden)

    Rubia Carla Formighieri Giordani

    2009-12-01

    social do sujeito. Contar sobre essa experiência é, de certa forma, desvelar os valores culturais da sociedade.OBJECTIVE: This study aims at describing the physical experience felt during anorexia nervosa and understanding the sense anorexic sufferers attribute to behaviours of dietary restriction and purgation present in this kind of eating disorder. METHODS: Ethnography and the biographic method were used to follow eight anorexia sufferers to obtain a detailed description of the content of their experience with the illness. Interviews, letters and diaries were used to reconstruct the narrative of their life stories. The field work was done in Curitiba (PR Brazil, from January to September of 2003. RESULTS: The phenomenological approach used in the study privileges the experience as told by the patient who uses the reconstruction of his or her life story to bring up what he or she experienced. In this discussion, the body assumes a central role because it is not only the foundation and condition for the individual to take part in the social world, but also the foundation for the socially built experience of anorexia nervosa. The sense attributed by the individual to his or her experience is the result of the combination of his or her life story and the knowledge gained by living, together with that which is experimented through the body in an intersubjective world. The distorted body image is directly related to one's life experiences and the behaviours are a manifestation of the desire of changing his or her own reality. CONCLUSION: This study showed that the body is an important dimension to be recognized in order to understand the process of falling ill. It also raised specific questions that need to be studied regarding the genesis of anorexia nervosa in modern Western societies. It revealed that the bodily experience in anorexia nervosa communicates a social dimension of the disease, where the meanings are always constructed and shared with people belonging to

  5. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    Science.gov (United States)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; DeAngelis, E; Desai, M.; Goldstein, R.; Lp, W.-H.; Killen, R.; Livi, S.

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper

  6. The language of the body and the senses as theophany in the theological work of Hildegard of Bingen

    OpenAIRE

    Azucena Adelina Fraboschi

    2015-01-01

    Since the creation of man in the image and likeness of God, Hildegard of Bingen (XII c.) wants to show the concept of the body as God's image within the eternal plan of the Incarnation of the divine Word, and dignity this gives the human body. In this image, the Abbess of Bingen refers to the senses, with a language that uses all the expressive richness of the senses -and their affective resonance- broadens and deepens the scope of the "World's sensory feedback", culminating in an elevation t...

  7. Systems of energy emitting bodies and their properties

    OpenAIRE

    Groppen, V. O.

    2008-01-01

    Proposed is system of consistent mathematical models describing physical laws of a system of energy emitting bodies in dynamics, relativity and nuclear physics. It is shown the use of developed models for the description of systems, consisting of stable as well as of radioactive bodies and permitting to improve the quality of predicting the binding energy of light stable nuclides using modified semi-empirical equation. Experimental verification of proposed approach with respect to some nuclei...

  8. Energy efficient scheme for cognitive radios utilizing soft sensing

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-04-06

    In this paper we propose an energy efficient cognitive radio system. Our design considers an underlaying resource allocation combined with soft sensing information to achieve a sub-optimum energy efficient system. The sub-optimality is achieved by optimizing over a channel inversion power policy instead of considering a water-filling power policy. We consider an Energy per Goodbit (EPG) metric to express the energy efficient objective function of the system and as an evaluation metric to our system performance. Since our optimization problem is not a known convex problem, we prove its convexity to guarantee its feasibility. We evaluate the proposed scheme comparing to a benchmark system through both analytical and numerical results.

  9. Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

    OpenAIRE

    Maher Kayal; François Krummenacher; Naser Khosro Pour

    2013-01-01

    This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used ...

  10. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun;

    2008-01-01

    ocean wind mapping provides the basis for detailed offshore wind farm wake studies and is highly useful for development of new wind retrieval algorithms from C-, L-, and X-band data. Satellite observations from SAR and scatterometer are used in offshore wind resource estimation. SAR has the advantage of...... winds have been used to index the potential offshore wind power production, and the results compare well with observed power production (mainly land-based) covering nearly two decades for the Danish area.......Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  11. Total energy expenditure and body composition in early infancy.

    OpenAIRE

    Wells, J. C.; Cole, T.J.; Davies, P S

    1996-01-01

    In adults greater energy expenditure, primarily on physical activity, is associated with greater leanness. Such an association has proved more difficult to demonstrate in infants, partly due to the difficulty of measuring fatness and free living energy expenditure in this age group. Stable isotope techniques now make such investigations more viable. OBJECTIVE: The relationship between body composition and energy expenditure was investigated in 12 week infants. METHODS: Total energy expenditur...

  12. Energy-Efficient Collaborative Outdoor Localization for Participatory Sensing

    Directory of Open Access Journals (Sweden)

    Wendong Wang

    2016-05-01

    Full Text Available Location information is a key element of participatory sensing. Many mobile and sensing applications require location information to provide better recommendations, object search and trip planning. However, continuous GPS positioning consumes much energy, which may drain the battery of mobile devices quickly. Although WiFi and cell tower positioning are alternatives, they provide lower accuracy compared to GPS. This paper solves the above problem by proposing a novel localization scheme through the collaboration of multiple mobile devices to reduce energy consumption and provide accurate positioning. Under our scheme, the mobile devices are divided into three groups, namely the broadcaster group, the location information receiver group and the normal participant group. Only the broadcaster group and the normal participant group use their GPS. The location information receiver group, on the other hand, makes use of the locations broadcast by the broadcaster group to estimate their locations. We formulate the broadcaster set selection problem and propose two novel algorithms to minimize the energy consumption in collaborative localization. Simulations with real traces show that our proposed solution can save up to 68% of the energy of all of the participants and provide more accurate locations than WiFi and cellular network positioning.

  13. Energy-Efficient Collaborative Outdoor Localization for Participatory Sensing.

    Science.gov (United States)

    Wang, Wendong; Xi, Teng; Ngai, Edith C-H; Song, Zheng

    2016-01-01

    Location information is a key element of participatory sensing. Many mobile and sensing applications require location information to provide better recommendations, object search and trip planning. However, continuous GPS positioning consumes much energy, which may drain the battery of mobile devices quickly. Although WiFi and cell tower positioning are alternatives, they provide lower accuracy compared to GPS. This paper solves the above problem by proposing a novel localization scheme through the collaboration of multiple mobile devices to reduce energy consumption and provide accurate positioning. Under our scheme, the mobile devices are divided into three groups, namely the broadcaster group, the location information receiver group and the normal participant group. Only the broadcaster group and the normal participant group use their GPS. The location information receiver group, on the other hand, makes use of the locations broadcast by the broadcaster group to estimate their locations. We formulate the broadcaster set selection problem and propose two novel algorithms to minimize the energy consumption in collaborative localization. Simulations with real traces show that our proposed solution can save up to 68% of the energy of all of the participants and provide more accurate locations than WiFi and cellular network positioning. PMID:27231916

  14. Remotely sensed data fusion for offshore wind energy resource mapping

    International Nuclear Information System (INIS)

    Wind energy is a component of an energy policy contributing to a sustainable development. Last years, offshore wind parks have been installed offshore. These parks benefit from higher wind speeds and lower turbulence than onshore. To sit a wind park, it is necessary to have a mapping of wind resource. These maps are needed at high spatial resolution to show wind energy resource variations at the scale of a wind park. Wind resource mapping is achieved through the description of the spatial variations of statistical parameters characterizing wind climatology. For a precise estimation of these statistical parameters, high temporal resolution wind speed and direction measurements are needed. However, presently, there is no data source allying high spatial resolution and high temporal resolution. We propose a data fusion method taking advantage of the high spatial resolution of some remote sensing instruments (synthetic aperture radars) and the high temporal resolution of other remote sensing instruments (scatterometers). The data fusion method is applied to a case study and the results quality is assessed. The results show the pertinence of data fusion for the mapping of wind energy resource offshore. (author)

  15. Energy Gain Process of a Celestial Body

    Directory of Open Access Journals (Sweden)

    Dr. Shobha Lal

    2014-03-01

    Full Text Available The article considered in this paper attempts to explain the astrophysical phenomena of „dark energy‟ and „dark matter‟ as curvature effects in a modified theory of gravity. The deviations of this theory from Einstein‟s general relativity are not expected to be observed on Solar System scales, but are relevant on galactic or higher scales. These properties allow the theory to survive Solar System tests of general relativity that currently constrain such models (for instance, [1] finds that GR holds in the Solar System to within 0.5%, but still permit it to provide an alternative explanation of dark matter and dark energy. In order to understand the proposed explanation however, one must first review what cosmologists mean by dark matter and dark energy, why they are largely required in the standard cosmological model, and what kind of observational evidence would an alternative model have to match.

  16. Students' Conceptions about Energy and the Human Body

    Science.gov (United States)

    Mann, Michael; Treagust, David F.

    2010-01-01

    Students' understanding of energy has been primarily within the domain of physics. This study sought to examine students' understanding of concepts relating to energy and the human body using pencil and paper questionnaires administered to 610 students in Years 8-12. From students' responses to the questionnaires, conceptual patterns were…

  17. Warm, warmth and internal energy of a body

    Directory of Open Access Journals (Sweden)

    Alexandrov B. L.

    2015-09-01

    Full Text Available The article discusses the question of the concepts of heat and internal energy of a body. The analysis of these concepts in the historical aspect and the views of the author, based on the new photon theory of atomic structure were presented in this study. The analysis of the historical aspect of this question tells that the concepts of heat and internal energy of the body for a long time were associated with the concept of caloric, which can flow in the substance. The next step was the identification of the concept of heat with energy linked with the movement and work. In accordance with this, Clausius proved the equivalence of heat and work as the first principle of the theory of heat and introduced the concept of internal energy, which can be increased in two ways - making work on body, and summing heat to it. Thus, energy was the main uniting factor of work and heat. Then, the kinetic theory of heat, as the energy of motion of molecules, was developed by Maxwell and caloric model turned out to be a hindrance in the development of the theory of heat. In fact, the internal energy of the body is determined photons, rotating around charged particles in atoms in their orbitals. The series of photons are combined into a single photon orbital direction of rotation of the photons, which are different from each other. Thus, the body has an internal energy or internal heat. It is due to the energy of photons, orbiting electrons in the outer shell of each atom, as well as around the charged particles - electrons and protons in the nucleus of an atom. This internal energy may be increased by mechanical action on the body, leading to an increase in resulting oscillation frequency of photons around charged particles of atoms and the internal heat contained in the body can flow of the body with a higher concentration of heat to the body with a lower concentration of heat

  18. PREDICTORS OF BODY COMPOSITION AND BODY ENERGY CHANGES IN RESPONSE TO CHRONIC OVERFEEDING

    OpenAIRE

    Bouchard, Claude; Tchernof, Andre; Tremblay, Angelo

    2013-01-01

    Objective We have previously shown that 24 young lean men (12 pairs of identical twins) subjected to a standardized 353 MJ (84 000 kcal) overfeeding protocol over 100 days exhibited individual differences in body weight and composition gains. The mean (+SD) gains in fat mass (FM) and fat-free mass (FFM) were 5.4+1.9 kg and 2.7+1.5 kg for a total body energy (BE) gain of 221+75 MJ representing 63% of the energy surplus consumed. We report here on the most important baseline correlates of these...

  19. Effect of photoperiod on body mass, and daily energy intake and energy expenditure in young rats

    OpenAIRE

    Boon, P.; Visser, H.; DAAN, S

    1997-01-01

    In this experiment we investigate the effect of photoperiod on locomotor activity, body mass, food intake, growth efficiency (relationship between body mass change and food intake), energy expenditure, and body composition in growing Wistar rats. Two groups of animals were subjected to either a long, LD 18:6 (II = 8), Or Short photoperiod, LD 6:18 (n = 7), during a period of 190 days after weaning. Activity, body mass, food intake, and energy expenditure were measured during the study, as wel...

  20. Energy Ranking Preservation in a N-Body Cosmological Simulation

    CERN Document Server

    Dantas, C C; Dantas, Christine C.; Ramos, Fernando M.

    2006-01-01

    In this paper we present a study of the cosmic flow from the point of view of how clusterings at different dynamical regimes in an expanding universe evolve according to a `coarse-grained' partitioning of their ranked energy distribution. By analysing a Lambda-CDM cosmological simulation from the Virgo Project, we find that cosmic flows evolve in an orderly sense, when tracked from their coarse-grained energy cells, even when nonlinearities are already developed. We show that it is possible to characterize scaling laws for the Pairwise Velocity Distribution in terms of the energy cells, generally valid at the linear and nonlinear clustering regimes.

  1. Energy-dependent interactions in few-body systems

    International Nuclear Information System (INIS)

    Energy-dependent interactions in few-body systems are discussed. A class of multichannel few-body scattering models which are characterized by the simultaneous presence of and communication between two different types of channels. First, usual two- and three-particle scattering channels (external ones), hamiltonians for which have ordinary spectral properties. Second, the internal channels, hamiltonians for which have only a point spectrum. Faddeev equations for external and internal channels are discussed

  2. Multichannel-Sensing Scheduling and Transmission-Energy Optimizing in Cognitive Radio Networks with Energy Harvesting.

    Science.gov (United States)

    Hoan, Tran-Nhut-Khai; Hiep, Vu-Van; Koo, In-Soo

    2016-01-01

    This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity are finite, we propose a scheme to optimize (i) the channel-sensing schedule (consisting of finding the optimal action (silent or active) and sensing order of channels) and (ii) the optimal transmission energy set corresponding to the channels in the sensing order for the operation of the CU in order to maximize the expected throughput of the CRN over multiple time slots. Frequency-switching delay, energy-switching cost, correlation in spectrum occupancy across time and frequency and errors in spectrum sensing are also considered in this work. The performance of the proposed scheme is evaluated via simulation. The simulation results show that the throughput of the proposed scheme is greatly improved, in comparison to related schemes in the literature. The collision ratio on the primary channels is also investigated. PMID:27043571

  3. Multichannel-Sensing Scheduling and Transmission-Energy Optimizing in Cognitive Radio Networks with Energy Harvesting

    Science.gov (United States)

    Hoan, Tran-Nhut-Khai; Hiep, Vu-Van; Koo, In-Soo

    2016-01-01

    This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity are finite, we propose a scheme to optimize (i) the channel-sensing schedule (consisting of finding the optimal action (silent or active) and sensing order of channels) and (ii) the optimal transmission energy set corresponding to the channels in the sensing order for the operation of the CU in order to maximize the expected throughput of the CRN over multiple time slots. Frequency-switching delay, energy-switching cost, correlation in spectrum occupancy across time and frequency and errors in spectrum sensing are also considered in this work. The performance of the proposed scheme is evaluated via simulation. The simulation results show that the throughput of the proposed scheme is greatly improved, in comparison to related schemes in the literature. The collision ratio on the primary channels is also investigated. PMID:27043571

  4. Comparision between different metal oxide nanostructures and nanocomposites for sensing, energy generation, and energy harvesting

    Science.gov (United States)

    Willander, Magnus; Alnoor, Hatim; Elhag, Sami; Ibupoto, Zafar Hussain; Nour, Eiman Satti; Nur, Omer

    2016-02-01

    Highlights from research on different nanocomposites and nanostructures for sensing and other energy related applications will be presented. The synthesized nanostructures and nanocomposites presented here were all obtained using the low temperature (innovative energy related applications. Efficient sensitive and selective sensing of dopamine, melamine, and glucose are presented as some examples of self-powered sensors utilizing the electrochemical phenomenon i.e. transferring chemical energy into electrical signal. Further the use of nanomaterials for developing selfpowered devices utilizing mechanical ambient energy is presented via piezoelectric and triboelectric effects. Here the self-powered devices and systems were relying on utilizing the electormechanical phenomenon i.e. transferring ambient mechanical energy into useful electrical energy. Finally the visibility of nanomaterials prepared by the low temperature chemical synthesis as possible low cost replacement of Pt electrodes for hydrogen production is briefly presented and discussed.

  5. Nuclear energy - a vote for good sense. 4. enlarged ed.

    International Nuclear Information System (INIS)

    What does Chernobyl mean for the current discussion in the public on nuclear energy and its utilisation in the Federal Republic of Germany - what can it mean, and what should it mean. Is it the memento showing us that we ought to abandon nuclear energy. There are many people who now are prepared to do so; for them, the accident there radically changed the situation here - a conclusion which is far from being logical if one compares the Soviet design of nuclear power stations with our German standards. Chernobyl has raised emotions, but fear must not be the only factor determining the decision about an appropriate utilisation of nuclear energy. This is why this enlarged edition of the third, 1981 edition of 'Nuclear energy - a vote for good sense' is published now, with a preface and three chapters in the annex discussing the Chernobyl accident and its consequences. Surprisingly, the answers given five years ago to queries concerning the safety of the peaceful use of nuclear energy still are the same, and still valid. (orig.)

  6. Under-Use of Body Energy and Over-Use of External Energy

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    2005-01-01

    energy, achieved by healthy extra human efforts. Also, the paper will suggest ways to integrate energy saving policies with health policies for organizing and designing cities and houses to be “healthy inconvenient”, encouraging or pushing people to use their body in their daily doings. This is an...... overeating and under-use of the body energy, due to increased use of mechanized and energy consuming assistance for transport and other daily tasks. This connects to the other problem, namely these countries’ excessive use of fossil fuels and other environmentally harmful forms of nature’s external energy....... This paper illuminates the options for integrated solutions to the two problems by making more use of body energy as a means to reduce the use of nature’s external energy. First is listed a human’s body energy used for various tasks and occupations, showing that a person’s use of external energy is and...

  7. Energy Efficiency Maximization Based on Cooperative sensing in Cognitive Relay Networks

    OpenAIRE

    Yaolian Song; Guangzeng Feng; Xuanhui Xi

    2013-01-01

    In this paper, we investigate the energy efficiency maximization problem of cognitive radio systems. We propose to study energy efficiency of cognitive relay transmission scheme based on cooperative spectrum sensing, since empirical studies have shown that optimal sensing time and transmit power are key factors for energy efficiency maximization. We design a method that simultaneously considers the parameters of spectrum sensing time and transmit power. Finally, we conduct deep experiments wh...

  8. Characterisation of a knee-joint energy harvester powering a wireless communication sensing node

    Science.gov (United States)

    Kuang, Yang; Zhu, Meiling

    2016-05-01

    Human-based energy harvesters are attractive as sustainable replacements for batteries to power wearable or implantable devices and body sensor networks. In the work presented here, a knee-joint energy harvester (KEH) was introduced to power a customer-built wireless communication sensing node (WCSN). The KEH used a mechanical plucking technique to provide sufficient frequency up-conversion—from a few Hz to the resonant frequency of the KEH—so as to generate the high power required. It was actuated by a knee-joint simulator, which reproduced the knee-joint motion of human gaits at a walking frequency of 0.9 Hz. The energy generated was first stored in a reservoir capacitor and then released to the WCSN in a burst mode with the help of an energy aware interface. The WCSN was deployed with a three-axis accelerometer, a temperature sensor, and a light detector for data sensing. A Jennic microcontroller was utilised to collect and transmit the measured data to a base station placed at a distance of 4 m. The energy generation by the KEH and the energy distribution in the system was characterised in real time by an in-house-built set-up. The results showed that the KEH generated an average power output of 1.76 mW when powering the WCSN. After charging the reservoir capacitor for 28.4 s, the KEH can power the WCSN for a 46 ms period every 1.25 s. The results also clearly illustrated how the energy generated by the KEH was distributed in the system and highlighted the importance of using a high performance power management approach to improve the performance of the whole system.

  9. Energy Efficiency Maximization Based on Cooperative sensing in Cognitive Relay Networks

    Directory of Open Access Journals (Sweden)

    Yaolian Song

    2013-08-01

    Full Text Available In this paper, we investigate the energy efficiency maximization problem of cognitive radio systems. We propose to study energy efficiency of cognitive relay transmission scheme based on cooperative spectrum sensing, since empirical studies have shown that optimal sensing time and transmit power are key factors for energy efficiency maximization. We design a method that simultaneously considers the parameters of spectrum sensing time and transmit power. Finally, we conduct deep experiments which show that our proposed approach can significantly improve the throughput and energy efficiency than the non-cooperative spectrum sensing method.

  10. Zero Energy Ground State in the Three-Body System

    OpenAIRE

    Gridnev, Dmitry K.

    2009-01-01

    We consider a 3--body system in $\\mathbb{R}^3$ with non--positive potentials and non--negative essential spectrum. Under certain requirements on the fall off of pair potentials it is proved that if at least one pair of particles has a zero energy resonance then a square integrable zero energy ground state of three particles does not exist. This complements the analysis in \\cite{1}, where it was demonstrated that square integrable zero energy ground states are possible given that in all two--b...

  11. High energy radiation effects on the human body

    International Nuclear Information System (INIS)

    High-energy radiation injuries and their risks were recognized, information on low-energy radiation injuries was also arranged, and with these backgrounds, countermeasures against prevention of radiation injuries were considered. Redintegration of DNA and mutation by radiation were described, and relationship between radiation injuries and dose was considered. Interaction of high-energy radiation and substances in the living body and injuries by the interaction were also considered. Expression method of risk was considered, and a concept of protection dose was suggested. Protection dose is dose equivalent which is worthy of value at the point where the ratio to permissible dose distributed among each part of the body is at its maximum in the distribution of dose equivalent formed within the body when standard human body is placed at a certain radiation field for a certain time. Significance and countermeasures of health examination which is under an abligation to make radiation workers receive health check were thought, and problems were proposed on compensation when radiation injuries should appear actually. (Tsunoda, M.)

  12. Body composition and net energy requirements of Brazilian Somali lambs

    Directory of Open Access Journals (Sweden)

    Elzânia S. Pereira

    2014-12-01

    Full Text Available The aim of this study was to determine the energy requirements for maintenance (NEm and growth of 48 Brazilian Somali ram lambs with an average initial body weight of 13.47±1.76 kg. Eight animals were slaughtered at the trials beginning as a reference group to estimate the initial empty body weight (EBW and body composition. The remaining animals were assigned to a randomised block design with eight replications per block and five diets with increasing metabolisable energy content (4.93, 8.65, 9.41, 10.12 and 11.24 MJ/kg dry matter. The logarithm of heat production was regressed against metabolisable energy intake (MEI, and the NEm (kJ/kg0.75 EBW/day were estimated by extrapolation, when MEI was set at zero. The NEm was 239.77 kJ/kg0.75 EBW/day. The animal’s energy and EBW fat contents increased from 11.20 MJ/kg and 208.54 g/kg to 13.54 MJ/kg and 274.95 g/kg of EBW, respectively, as the BW increased from 13 to 28.70 kg. The net energy requirements for EBW gain increased from 13.79 to 16.72 MJ/kg EBW gain for body weights of 13 and 28.70 kg. Our study indicated the net energy requirements for maintenance in Brazilian Somali lambs were similar to the values commonly recommended by the United States’ nutritional system, but lower than the values recommended by Agricultural Research Council and Commonwealth Scientific and Industrial Research Organization. Net requirements for weight gain were less compared to the values commonly recommended by nutritional system of the United States.

  13. C. elegans sensing of and entrainment along obstacles require different neurons at different body locations

    OpenAIRE

    Nam, Seong-Won; Qian, Chen; Kim, So Hyun; van Noort, Danny; Chiam, Keng-Hwee; Park, Sungsu

    2013-01-01

    We probe C. elegans mechanosensation using a microfabricated platform where worms encounter a linear array of asymmetric funnel-like barriers. We found that sensing of and moving along barriers require different sets of neurons located at different parts of the animal. Wild-type worms sense and move along the barrier walls, leading to their accumulation in one side of the barriers due to the barriers' asymmetric shape. However, mec-4 and mec-10 mutants deficient in touch sensory neurons in th...

  14. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.

  15. Energy Efficient Model For Deploying Wireless Body Area Networks Using Multi-Hop Network Topology

    Directory of Open Access Journals (Sweden)

    Robert C.Chepkwony

    2015-10-01

    Full Text Available Wireless body area networks (WBANs offers a lot of application opportunities in the area of health care. Recent developments in sensors and radio communication technologies have motivated many researchers to design WBAN systems for application in healthcare provision. Power consumption is still a limiting factor in realizing a WBAN with a very long lifetime. In order for wireless body area networks to ensure widespread use and adoption, some of the design constraints should be solved to promote uptake and meet social expectations. As a result, design of energy efficient WBANs is required to enhance battery life at the same time ensure that sensor nodes are small enough to be conveniently worn or implanted in the body. Energy consumption in WBANs happens during sensing, processing and communication. This research focused on designing an energy efficient model during communication between sensors. The parameters were simulated and implemented using MATLAB and Simulink simulation software. The sensors are randomly localized on a plane and distance between them calculated. The model uses a relay between the sensors and the coordinator to reduce power consumption by sensors during signal transmission. The relay is dedicated to retransmitting signals onl

  16. Network Coding for Energy Efficiency in Wireless Body Area Networks

    CERN Document Server

    Shi, Xiaomeng; Lucani, Daniel

    2010-01-01

    A network coding scheme for practical implementations of wireless body area networks is presented, with the objective of providing reliability under low-energy constraints. We propose a simple network layer protocol, study the mean energy to complete in-cast transmissions of given packets from the sensors to the base station (BS), and show through numerical examples that this scheme can reduce the overall energy consumption. More specifically, Time Division Multiple Access (TDMA) is used to allocate the wireless channel to individual nodes. Each node linearly combines its data packets before taking turns to send the ensuing mixtures to the BS. An acknowledgement message is broadcasted by the BS after each round of transmissions, indicating the number of coded packets to be transmitted in the next round. We parametrically study the optimal number of coded packets to send, in terms of completion energy, given the packet erasure probabilities, and the energy use for transmitting data packets as well as listening...

  17. Zero Energy Ground State in the Three--Body System

    CERN Document Server

    Gridnev, Dmitry K

    2009-01-01

    We consider a 3--body system in $\\mathbb{R}^3$ with non--positive potentials and non--negative essential spectrum. Under certain requirements on the fall off of pair potentials it is proved that if one pair has a zero energy resonance then a square integrable zero energy ground state of three particles does not exist. This complements the analysis in \\cite{1}, where it was demonstrated that zero energy ground states is possible in the absence of zero energy resonances in particle pairs. As a corollary it is proved that one can tune the coupling constants of pair potentials so that for any given $R, \\epsilon >0$: (a) the bottom of essential spectrum is at zero; (b) there is a negative energy ground state $\\psi(\\xi)$, where $\\int |\\psi(\\xi)|^2 = 1$; (c) $\\int_{|\\xi| \\leq R} |\\psi(\\xi)|^2 < \\epsilon$.

  18. Assessing the Wave Energy Resource Using Remote Sensed Data

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, M.T.; Bruck, M. [INETI/DER, Lisboa (Portugal); Lehner, S. [DLR- German Aerospace Centre, Oberpfaffenhofen, Wessling (Germany)

    2009-07-01

    The use of accurate remote sensed wave data in the coastal area (water depth up to 80m) will enable a high quality characterization of the wave energy resource. Work has been carried out with this objective for a number of years namely assessing the quality of the radar altimeter and SAR sensors data. In this paper a summary of the quality of wave period estimates from the NASA/CNES Jason radar altimeter is presented, showing that the analytical models that have been proposed in recent years provide already accurate results. This paper also includes a verification of ESA ENVISAT SAR data (height, period and direction parameters in addition to the shape of frequency spectra) against NDBC buoy data, which has shown good accuracy for wave energy resource assessment. However, the long Exact-Repeat-Period of NASA (10 days) and of ESA satellites (35 days) poses serious limitation to the usefulness of their wave measurements except for long-term wave climate assessment. These shortcomings are expected to be overcome by the new high spatial-resolution TerraSAR-X satellite that is obtaining reliable data for nearshore areas, being able to provide data at 2 - 3 day interval.

  19. Daily physical activity as determined by age, body mass and energy balance

    OpenAIRE

    Klaas R Westerterp

    2015-01-01

    Aim Insight into the determinants of physical activity, including age, body mass and energy balance, facilitates the design of intervention studies with body mass and energy balance as determinants of health and optimal performance. Methods An analysis of physical activity energy expenditure in relation to age and body mass and in relation to energy balance, where activity energy expenditure is derived from daily energy expenditure as measured with doubly labelled water and body movement is m...

  20. Body condition predicts energy stores in apex predatory sharks.

    Science.gov (United States)

    Gallagher, Austin J; Wagner, Dominique N; Irschick, Duncan J; Hammerschlag, Neil

    2014-01-01

    Animal condition typically reflects the accumulation of energy stores (e.g. fatty acids), which can influence an individual's decision to undertake challenging life-history events, such as migration and reproduction. Accordingly, researchers often use measures of animal body size and/or weight as an index of condition. However, values of condition, such as fatty acid levels, may not always reflect the physiological state of animals accurately. While the relationships between condition indices and energy stores have been explored in some species (e.g. birds), they have yet to be examined in top predatory fishes, which often undertake extensive and energetically expensive migrations. We used an apex predatory shark (Galeocerdo cuvier, the tiger shark) as a model species to evaluate the relationship between triglycerides (energy metabolite) and a metric of overall body condition. We captured, blood sampled, measured and released 28 sharks (size range 125-303 cm pre-caudal length). In the laboratory, we assayed each plasma sample for triglyceride values. We detected a positive and significant relationship between condition and triglyceride values (P fisheries, because these individuals are likely to have the highest potential for successful reproduction. Our results suggest that researchers may use either plasma triglyceride values or an appropriate measure of body condition for assessing health in large sharks. PMID:27293643

  1. Two Dimensional Materials for Sensing and Energy Applications

    Science.gov (United States)

    Kuru, Cihan

    Since the discovery of graphene in 2004, two dimensional materials (2D) have become the focus of tremendous research owing to their unprecedented properties. Atomically thin nature of 2D materials gives rise to unique physicochemical properties, which makes them attractive for flexible electronics, chemical and biological sensing, energy storage, and solar cells. In this dissertation, sensing and energy related applications of 2D materials are studied. In chapter 1, graphene based ammonia sensors are presented, in which nano-structuring graphene significantly improves the sensitivity towards ammonia due to the formation of highly reactive edge defects. It was found that sensitivity could be further enhanced by decoration of Pd nanoparticles on the nano-structured graphene. In chapter 2, hydrogen sensors based on solution processed transition metal dichalcogenides (TMDs) nanosheets-Pd nanoparticles composites are introduced. The sensors can detect hydrogen at room temperature with high sensitivities. The ease of fabrication holds a great potential for low-cost and scalable manufacturing of chemical sensors. In chapter 3, the fabrication and characterization of graphene/Si heterojunction solar cells are described and various methods to improve the power conversion efficiency (PCE) are presented. A single layer graphene is highly transparent; therefore suitable as a transparent Schottky electrode for solar cells. However, the PCEs of the pristine graphene/Si solar cells are low due to the high sheet resistance of graphene as well as the low Schottky barrier height between pristine graphene and Si. We improved the PCE by a magnitude of order (achieving 9% PCE) with Au nanoparticle decoration followed by a nitric acid treatment owing to the dramatic reduction in the series resistance of the cells and the enhanced Schottky barrier height. Furthermore, we used NiO as a transparent and stable hole doping material for graphene, in which NiO doped cell shows enhanced PCE

  2. Universal low-energy behavior in three-body systems

    International Nuclear Information System (INIS)

    We consider a pairwise interacting quantum 3-body system in 3-dimensional space with finite masses and the interaction term V12 + λ(V13 + V23), where all pair potentials are assumed to be nonpositive. The pair interaction of the particles (1, 2) is tuned to make them have a zero energy resonance and no negative energy bound states. The coupling constant λ > 0 is allowed to take the values for which the particle pairs (1, 3) and (2, 3) have no bound states with negative energy. Let λcr denote the critical value of the coupling constant such that E(λ) → −0 for λ → λcr, where E(λ) is the ground state energy of the 3-body system. We prove the theorem, which states that near λcr, one has E(λ) = C(λ − λcr)[ln(λ − λcr)]−1 + h.t., where C is a constant and h.t. stands for “higher terms.” This behavior of the ground state energy is universal (up to the value of the constant C), meaning that it is independent of the form of pair interactions

  3. Characterization of duodenal expression and localization of fatty acid-sensing receptors in humans: relationships with body mass index.

    Science.gov (United States)

    Little, Tanya J; Isaacs, Nicole J; Young, Richard L; Ott, Raffael; Nguyen, Nam Q; Rayner, Christopher K; Horowitz, Michael; Feinle-Bisset, Christine

    2014-11-15

    Fatty acids (FAs) stimulate the secretion of gastrointestinal hormones, including cholecystokinin (CCK) and glucagon like peptide-1 (GLP-1), which suppress energy intake. In obesity, gastrointestinal responses to FAs are attenuated. Recent studies have identified a key role for the FA-sensing receptors cluster of differentiation (CD)36, G protein-coupled receptor (GPR)40, GPR120, and GPR119 in mediating gastrointestinal hormone secretion. This study aimed to determine the expression and localization of these receptors in the duodenum of humans and to examine relationships with obesity. Duodenal mucosal biopsies were collected from nine lean [body mass index (BMI): 22 ± 1 kg/m2], six overweight (BMI: 28 ± 1 kg/m2), and seven obese (BMI: 49 ± 5 kg/m2) participants. Absolute levels of receptor transcripts were quantified using RT-PCR, while immunohistochemistry was used for localization. Transcripts were expressed in the duodenum of lean, overweight, and obese individuals with abundance of CD36>GPR40>GPR120>GPR119. Expression levels of GPR120 (r = 0.46, P = 0.03) and CD36 (r = 0.69, P = 0.0004) were directly correlated with BMI. There was an inverse correlation between expression of GPR119 with BMI (r2 = 0.26, P = 0.016). Immunolabeling studies localized CD36 to the brush border membrane of the duodenal mucosa and GPR40, GPR120, and GPR119 to enteroendocrine cells. The number of cells immunolabeled with CCK (r = -0.54, P = 0.03) and GLP-1 (r = -0.49, P = 0.045) was inversely correlated with BMI, such that duodenal CCK and GLP-1 cell density decreased with increasing BMI. In conclusion, CD36, GPR40, GPR120, and GPR119 are expressed in the human duodenum. Transcript levels of duodenal FA receptors and enteroendocrine cell density are altered with increasing BMI, suggesting that these changes may underlie decreased gastrointestinal hormone responses to fat and impaired energy intake regulation in obesity. PMID:25258406

  4. A Modified Energy Detection Based Spectrum Sensing Algorithm for Green Cognitive Radio Communication

    Directory of Open Access Journals (Sweden)

    Sidra Rajput

    2015-10-01

    Full Text Available Spectrum Sensing is the first and fundamental function of Cognitive Cycle which plays a vital role in the success of CRs (Cognitive Radios. Spectrum Sensing indicate the presence and absence of PUs (Primary Users in RF (Radio Frequency spectrum occupancy measurements. In order to correctly determine the presence and absence of Primary Users, the algorithms in practice include complex mathematics which increases the computational complexity of the algorithm, thus shifted the CRs to operate as ?green? communication systems. In this paper, an energy efficient and computationally less complex, energy detection based Spectrum Sensing algorithm have been proposed. The design goals of the proposed algorithm are to save the processing and sensing energies. At first, by using less MAC (Multiply and Accumulate operation, it saves the processing energy needed to determine the presence and absence of PUs. Secondly, it saves the sensing energy by providing a way to find lowest possible sensing time at which spectrum is to be sensed. Two scenarios have been defined for testing the proposed algorithm i.e. simulate detection capability of Primary Users in ideal and noisy scenarios. Detection of PUs in both of these scenarios have been compared to obtain the probability of detection. Energy Efficiency of the proposed algorithm has been proved by making performance comparison between the proposed (less complex algorithm and the legacy energy detection algorithm. With reduced complexity, the proposed spectrum sensing algorithm can be considered under the paradigm of Green Cognitive Radio Communication

  5. A modified energy detection based spectrum sensing algorithm for green cognitive radio communication

    International Nuclear Information System (INIS)

    Spectrum Sensing is the first and fundamental function of Cognitive Cycle which plays a vital role in the success of CRs (Cognitive Radios). Spectrum Sensing indicate the presence and absence of PUs (Primary Users) in RF (Radio Frequency) spectrum occupancy measurements. In order to correctly determine the presence and absence of Primary Users, the algorithms in practice include complex mathematics which increases the computational complexity of the algorithm, thus shifted the CRs to operate as ?green? communication systems. In this paper, an energy efficient and computationally less complex, energy detection based Spectrum Sensing algorithm have been proposed. The design goals of the proposed algorithm are to save the processing and sensing energies. At first, by using less MAC (Multiply and Accumulate) operation, it saves the processing energy needed to determine the presence and absence of PUs. Secondly, it saves the sensing energy by providing a way to find lowest possible sensing time at which spectrum is to be sensed. Two scenarios have been defined for testing the proposed algorithm i.e. simulate detection capability of Primary Users in ideal and noisy scenarios. Detection of PUs in both of these scenarios have been compared to obtain the probability of detection. Energy Efficiency of the proposed algorithm has been proved by making performance comparison between the proposed (less complex) algorithm and the legacy energy detection algorithm. With reduced complexity, the proposed spectrum sensing algorithm can be considered under the paradigm of Green Cognitive Radio Communication. (author)

  6. A low-rank matrix recovery approach for energy efficient EEG acquisition for a wireless body area network.

    Science.gov (United States)

    Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab

    2014-01-01

    We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques. PMID:25157551

  7. A Low-Rank Matrix Recovery Approach for Energy Efficient EEG Acquisition for a Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Angshul Majumdar

    2014-08-01

    Full Text Available We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling, processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.

  8. Interpretation of a discontinuity in the sense of verticality at large body tilt.

    NARCIS (Netherlands)

    Kaptein, R.G.; Gisbergen, J.A.M. van

    2004-01-01

    Results of earlier spatial-orientation studies focusing on the sense of verticality have emphasized an intriguing paradox. Despite evidence that nearly veridical signals for gravicentric head orientation and egocentric visual stimulus orientation are available, roll-tilted subjects err in the direct

  9. Oleic Acid and Octanoic Acid Sensing Capacity in Rainbow Trout Oncorhynchus mykiss Is Direct in Hypothalamus and Brockmann Bodies

    OpenAIRE

    Librán-Pérez, Marta; López-Patiño, Marcos A.; Míguez, Jesús M.; Soengas, José L.

    2013-01-01

    In a previous study, we provided evidence for the presence in hypothalamus and Brockmann bodies (BB) of rainbow trout Oncorhynchus mykiss of sensing systems responding to changes in levels of oleic acid (long-chain fatty acid, LCFA) or octanoic acid (medium-chain fatty acid, MCFA). Since those effects could be attributed to an indirect effect, in the present study, we evaluated in vitro if hypothalamus and BB respond to changes in FA in a way similar to that observed in vivo. In a first set o...

  10. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model

    DEFF Research Database (Denmark)

    Christensen, Louise D; Moser, Claus; Jensen, Peter Ø; Rasmussen, Thomas B; Christophersen, Lars; Kjelleberg, Staffan; Kumar, Naresh; Høiby, Niels; Givskov, Michael Christian; Bjarnsholt, Thomas

    Pseudomonas aeruginosa is an opportunistic human pathogen that causes chronic biofilm-based infections in host organisms. P. aeruginosa employs quorum sensing (QS) to control expression of its virulence, and to establish and maintain chronic infections. Under such conditions, the biofilm mode of...... growth contributes significantly to P. aeruginosa tolerance to the action of the innate and adaptive defence system and numerous antibiotics. In the present study, an in vivo foreign-body infection model was established in the peritoneal cavity of mice. Experimental data showed that QS-deficient P...

  11. Body motion and physics: How elementary school students use gesture and action to make sense of the physical world

    Science.gov (United States)

    Noble, Tracy

    This study is an exploration of the role of physical activity in making sense of the physical world. Recent work on embodied cognition has helped to break down the barrier between the body and cognition, providing the inspiration for this work. In this study, I asked ten elementary-school students to explain to me how a toy parachute works. The methods used were adapted from those used to study the role of the body in cognition in science education, child development, and psychology. This study focused on the processes of learning rather than on measuring learning outcomes. Multiple levels of analysis were pursued in a mixed-method research design. The first level was individual analyses of two students' utterances and body motions. These analyses provided initial hypotheses about the interaction of speech and body motion in students' developing understandings. The second level was group analyses of all ten students' data, in search of patterns and relationships between body motion and speech production across all the student-participants. Finally, a third level of analysis was used to explore all cases in which students produced analogies while they discussed how the parachute works. The multiple levels of analysis used in this study allowed for raising and answering some questions, and allowed for the characterization of both individual differences and group commonalities. The findings of this study show that there are several significant patterns of interaction between body motion and speech that demonstrate a role for the body in cognition. The use of sensory feedback from physical interactions with objects to create new explanations, and the use of interactions with objects to create blended spaces to support the construction of analogies are two of these patterns. Future work is needed to determine the generalizability of these patterns to other individuals and other learning contexts. However, the existence of these patterns lends concrete support to the

  12. [Energy balance, body composition and the female athlete triad syndrome].

    Science.gov (United States)

    Weinstein, Yitzhak; Weinstein, Ayelet

    2012-02-01

    With the rising participation of women in sports events, the prevalence of eating disorders and the female athlete triad (FTS), a syndrome of disordered eating, amenorrhea, and osteoporosis, have also increased in recent years. FTS is often seen in sports that emphasize thinness (e.g. gymnastics, figure skating and dancing) and also in endurance events. Elements of the FTS are pathophysiologically linked, leading to several disease risks and even to mortality. In spite of the considerable knowledge about sports nutrition, there is no consensus as to the correct nutrition regime for the female athlete. There is consensus that minimizing fluctuations in 'target-body-weight' is an indication of a long-term energy balance. Female athletes (e.g. in endurance events and gymnastics) are less likely to achieve the recommended carbohydrates (CHO) and fat consumption due to chronic or episodic constraints of total energy intake while struggling to achieve or maintain low levels of body fat. It is recommended that dietary CHO and fat content be increased to preserve fat-free mass thus enhancing health and performance. Energy balance should also be maintained during recesses. Furthermore, within-day episodes of energy deficits/surplus (measured by the frequency and/or magnitude of the episodes) should be monitored and treated closest to the time of the incidents. PMID:22741211

  13. Piezoelectric energy harvesting from transverse galloping of bluff bodies

    Science.gov (United States)

    Abdelkefi, A.; Hajj, M. R.; Nayfeh, A. H.

    2013-01-01

    The concept of harvesting energy from transverse galloping oscillations of a bluff body with different cross-section geometries is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom of the body. The power levels that can be generated from these vibrations and the variations of these levels with the load resistance, cross-section geometry, and freestream velocity are determined. A representative model that accounts for the transverse displacement of the bluff body and harvested voltage is presented. The quasi-steady approximation is used to model the aerodynamic loads. A linear analysis is performed to determine the effects of the electrical load resistance and the cross-section geometry on the onset of galloping, which is due to a Hopf bifurcation. The normal form of this bifurcation is derived to determine the type (supercritical or subcritical) of the instability and to characterize the effects of the linear and nonlinear parameters on the level of harvested power near the bifurcation. The results show that the electrical load resistance and the cross-section geometry affect the onset speed of galloping. The results also show that the maximum levels of harvested power are accompanied with minimum transverse displacement amplitudes for all considered (square, D, and triangular) cross-section geometries, which points to the need for performing a coupled analysis of the system.

  14. The IAEA hears about regional nuclear energy bodies

    International Nuclear Information System (INIS)

    Full text: During the early part of 1966, executive heads or senior officials of certain regional organizations working in atomic energy are visiting the Agency in order to give general talks on the activities of their organizations. The first to be arranged was Dr. Jules Gueron, Director General of Research and Training of Euratom, on 14 January 1966. These lectures are likely to be followed by others, given by the representatives of bodies such as the Council for Mutual Economic Aid (COMECON) the Inter-American Nuclear Energy Commission (IANEC), the European Nuclear Energy Agency (ENEA) of the Organization for Economic Cooperation and Development (OECD), and the Scientific and Technical Research Commission of the Organization of African Unity. (author)

  15. Common variants near MC4R in relation to body fat, body fat distribution, metabolic traits and energy expenditure

    DEFF Research Database (Denmark)

    Kring, Sofia Inez Iqbal; Holst, C; Toubro, Søren;

    2010-01-01

    Common variants near melanocortin receptor 4 (MC4R) have been related to fatness and type 2 diabetes. We examined the associations of rs17782313 and rs17700633 in relation to body fat, body fat distribution, metabolic traits, weight development and energy expenditure.......Common variants near melanocortin receptor 4 (MC4R) have been related to fatness and type 2 diabetes. We examined the associations of rs17782313 and rs17700633 in relation to body fat, body fat distribution, metabolic traits, weight development and energy expenditure....

  16. Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels.

    Directory of Open Access Journals (Sweden)

    Konstantinos Gkouvatsos

    Full Text Available Hemojuvelin (Hjv is a bone morphogenetic protein (BMP co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv-/- mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv-/- mice developed systemic iron overload under all regimens. Transferrin (Tf was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.

  17. Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches

    OpenAIRE

    Reza Rawassizadeh; Martin Tomitsch; Manouchehr Nourizadeh; Elaheh Momeni; Aaron Peery; Liudmila Ulanova; Michael Pazzani

    2015-01-01

    As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction mode...

  18. Predicting changes of body weight, body fat, energy expenditure and metabolic fuel selection in C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Juen Guo

    Full Text Available The mouse is an important model organism for investigating the molecular mechanisms of body weight regulation, but a quantitative understanding of mouse energy metabolism remains lacking. Therefore, we created a mathematical model of mouse energy metabolism to predict dynamic changes of body weight, body fat, energy expenditure, and metabolic fuel selection. Based on the principle of energy balance, we constructed ordinary differential equations representing the dynamics of body fat mass (FM and fat-free mass (FFM as a function of dietary intake and energy expenditure (EE. The EE model included the cost of tissue deposition, physical activity, diet-induced thermogenesis, and the influence of FM and FFM on metabolic rate. The model was calibrated using previously published data and validated by comparing its predictions to measurements in five groups of male C57/BL6 mice (N = 30 provided ad libitum access to either chow or high fat diets for varying time periods. The mathematical model accurately predicted the observed body weight and FM changes. Physical activity was predicted to decrease immediately upon switching from the chow to the high fat diet and the model coefficients relating EE to FM and FFM agreed with previous independent estimates. Metabolic fuel selection was predicted to depend on a complex interplay between diet composition, the degree of energy imbalance, and body composition. This is the first validated mathematical model of mouse energy metabolism and it provides a quantitative framework for investigating energy balance relationships in mouse models of obesity and diabetes.

  19. Exploring foodscapes through the lived body and the sense of place

    DEFF Research Database (Denmark)

    Hedegaard, Liselotte; Tange Kristensen, Søren

    The interest in this paper is to thematise the corporal experience of food consumption in the complex rhythms of modern lives. Human action and reflection is corporal, but in the dialectical movement between body and world, the perpetual movements of cultural practices influence corporal experience...

  20. Exploring foodscapes through the lived body and the sense of place

    DEFF Research Database (Denmark)

    Hedegaard, Liselotte; Tange Kristensen, Søren

    2016-01-01

    The interest in this paper is to thematise the corporal experience of food consumption in the complex rhythms of modern lives. Human action and reflection is corporal, but in the dialectical movement between body and world, the perpetual movements of cultural practices influence corporal experience...

  1. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.

    Science.gov (United States)

    Eberle, A L; Dickerson, B H; Reinhall, P G; Daniel, T L

    2015-03-01

    Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. PMID:25631565

  2. Secondary radiation dose during high-energy total body irradiation

    International Nuclear Information System (INIS)

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: 56Mn in the stainless steel and 187W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.)

  3. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  4. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score

    DEFF Research Database (Denmark)

    Thorup, Vivi Mørkøre; Edwards, David; Friggens, N C

    2012-01-01

    Precise energy balance estimates for individual cows are of great importance to health, reproduction and feed management. Energy balance is usually calculated as energy input minus output (EBalinout), requiring measurements of feed intake and energy output sources (milk, maintenance, activity......, growth and pregnancy). Except milk yield, direct measurements of these are difficult to obtain in practice, and estimates involve considerable error sources, so limiting on-farm use. Alternatively, energy balance can be estimated from body reserve changes (EBalbody) using body weight (BW) and body....... Further, the FEC profile did not suggest any systematic bias in EBalbody with stage of lactation. Moreover we successfully modeled EBalbody differences between breeds, parities and diets. For the farmer, the ability to predict energy balance for individual cows on-farm without having to measure feed...

  5. Frames, Windows, and Mirrors. Sensing Still Bodies in Films by Manoel de Oliveira

    Directory of Open Access Journals (Sweden)

    Király Hajnal

    2014-09-01

    Full Text Available In the case of Oliveira’s Doomed Love (Amor de Perdição, 1978 (an adaptation of the homonymous classic Portuguese novel, Bresson’s model theory provides an adequate theoretical model for a melodrama in which characters, ‘hit by fate,’ are following their destinies as if ‘under hypnosis.’ Besides a typically frontal, iconic representation of bodies thoroughly framed by windows, doors, and mirrors, in this and many other films by Oliveira, the intermedial figure of tableau vivant also reveals the movement-stillness mechanisms of the medium of film by turning, under our eyes, the body into a picture. His Abraham’s Valley (Vale Abraão, 1993 is also relevant for a fetishistic representation of (female feet and legs. This visual detail, somewhat reminding of Buñuel’s similar obsession, is not only subversive in terms of representation of socio-cultural taboos, but is also providing a compelling sensual experience of both the body and the medium.

  6. Flexible High Energy Lidar Transmitter for Remote Gas and Wind Sensing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes a high energy and flexible operation 1570 nm pulsed lidar transmitter for airborne and space-based remote CO2 gas and doppler wind sensing. The...

  7. Flavor vs Energy Sensing in Brain Reward Circuits

    Directory of Open Access Journals (Sweden)

    Ivan E De Araujo

    2014-07-01

    Full Text Available Sweetness functions as a potent natural reinforcer in several species, from flies to rodents to primates including humans. The appreciation of flavored stimuli is greatly enhanced when sweetness is added, the obvious example being sugar-sweetened flavored beverages (the major source of excess added calories in US diets. Different sweet substances are nevertheless attributed greater incentive value than others, with glucose-containing sugars appearing as the uppermost sweet reward. Food choices are indeed prominently determined by nutritional value, with caloric content being highly predictive of both preference and intake. Specifically, for most species studied, glucose-containing sugars are known to exert exquisitely strong effects on food choice via post-ingestive signals. Despite the relevance of the issue to public health, the identity of the physiological signals underlying glucose’s rewarding effects remains incompletely understood. Recently, however, some progress has been achieved in this front: the concept is emerging that the metabolic utilization of glucose moieties contained in sugars drives activity in brain reward circuitries (thereby presumably driving robust intake. Specifically, disruption of glucose utilization in mice was shown to produce an enduring inhibitory effect on artificial (non-nutritive sweetener intake, an effect that did not depend on sweetness perception or aversion [1]. Indeed, such an effect was not observed in mice presented with a less palatable, yet caloric, glucose solution. It is also remarkable that hungry mice shift their preferences away from artificial sweeteners in favor of glucose solutions, especially when the sugar is experienced in a food-depleted state. However, the most striking effect associated with sweet appetite appears to be the strong selectivity of certain brain circuitries to the energy content of the solutions, irrespective of sweetness per se. Indeed, it has been shown that glucose

  8. Energy-dependent many-body perturbation theory: a road towards a many-body-QED procedure

    International Nuclear Information System (INIS)

    A rigorous procedure for energy-dependent many-body perturbation theory (MBPT) is presented. This can be applied for numerical evaluation of many-body-QED effects by combining QED with electron correlation to arbitrary order. So far, it has been used only for the exchange of a single retarded photon together with an arbitrary number of instantaneous Coulomb interactions. For heliumlike neon this represents more than 99% of the nonradiative effect on the energy beyond standard MBPT. (author)

  9. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    Science.gov (United States)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  10. Evaluation of the SenseWear Mini Armband to assess energy expenditure during pole walking.

    Science.gov (United States)

    Vernillo, Gianluca; Savoldelli, Aldo; Pellegrini, Barbara; Schena, Federico

    2014-10-01

    The current study aimed to show the validity of a portable motion sensor, the SenseWear Armband (SWA), for the estimation of energy expenditure during pole walking. Twenty healthy adults (mean ± SD: age 30.1 ± 7.2 year, body mass 66.1 ± 10.6 kg, height 172.4 ± 8.0 cm, BMI 22.1 ± 2.4 kg · m(-2)) wore the armband during randomized pole walking activities at a constant speed (1.25 m · s(-1)) and at seven grades (0%, ± 5%, ± 15% and ± 25%). Estimates of total energy expenditure from the armband were compared with values derived from indirect calorimetry methodology (IC) using a 2-way mixed model ANOVA (Device × Slope), correlation analyses and Bland-Altman plots. Results revealed significant main effects for device, and slope (p improve the ability of SWA to accurately measure EE for these activities. PMID:25309985

  11. An Energy Efficient Compressed Sensing Framework for the Compression of Electroencephalogram Signals

    Directory of Open Access Journals (Sweden)

    Simon Fauvel

    2014-01-01

    Full Text Available The use of wireless body sensor networks is gaining popularity in monitoring and communicating information about a person’s health. In such applications, the amount of data transmitted by the sensor node should be minimized. This is because the energy available in these battery powered sensors is limited. In this paper, we study the wireless transmission of electroencephalogram (EEG signals. We propose the use of a compressed sensing (CS framework to efficiently compress these signals at the sensor node. Our framework exploits both the temporal correlation within EEG signals and the spatial correlations amongst the EEG channels. We show that our framework is up to eight times more energy efficient than the typical wavelet compression method in terms of compression and encoding computations and wireless transmission. We also show that for a fixed compression ratio, our method achieves a better reconstruction quality than the CS-based state-of-the art method. We finally demonstrate that our method is robust to measurement noise and to packet loss and that it is applicable to a wide range of EEG signal types.

  12. ENERGY-EFFICIENT SENSING COVERAGE AND COMMUNICATION FOR WIRELESS SENSOR NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Xi CHEN; Qianchuan ZHAO; Xiaohong GUAN

    2007-01-01

    Wireless sensor networks have a wide range of applications. Sensing coverage and communication coverage are two fundamental quality of service. In this paper, we present our work on energy efficient sensing coverage and communication. We design several schemes for sensing coverage subject to different requirements and constraints respectively. We also propose a broadcasting communication protocol with high energy efficiency and low latency for large scale sensor networks based on the Small World network theory. Simulation and experiment results show that our schemes and protocol have good performance.

  13. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model

    DEFF Research Database (Denmark)

    Christensen, Louise Dahl; Moser, Claus; Jensen, Peter Ø;

    2007-01-01

    growth contributes significantly to P. aeruginosa tolerance to the action of the innate and adaptive defence system and numerous antibiotics. In the present study, an in vivo foreign-body infection model was established in the peritoneal cavity of mice. Experimental data showed that QS-deficient P......Pseudomonas aeruginosa is an opportunistic human pathogen that causes chronic biofilm-based infections in host organisms. P. aeruginosa employs quorum sensing (QS) to control expression of its virulence, and to establish and maintain chronic infections. Under such conditions, the biofilm mode of...... the placebo-treated group. These results were obtained with both an inbred (BALB/c) and an outbred (NMRI) mouse strain. The present results support a model by which functional QS systems play a pivotal role in the ability of bacteria to resist clearing by the innate immune system and strongly suggest...

  14. Energy intake, energy dispersion and body mass index interaction in adolescents

    OpenAIRE

    Kucukkomurler, Saime; Istik, Omer

    2016-01-01

    The aim of this study was to investigate dietary energy intake and energy dispersion among adolescents and to examine its relationship with Body Mass Index (BMI). Adolescents recalled food intake in the past 24 hours and energy intakes/expenditure were calculated. For the relation between BMI and energy intake percentage, ANOVA and Tukey post-hoc test were used. This research was performed in 2010 in Istanbul, Turkey. The study was carried out with 265 adolescents, 63.4% girls, aged between 1...

  15. Nuclear stopping for heavy-ion induced reactions in the Fermi energy range : from 1-Body to 2-Body dissipation

    Directory of Open Access Journals (Sweden)

    Lopez O.

    2014-03-01

    Full Text Available We study the stopping in heavy-ion induced reactions around the Fermi energy in central collisions. The stopping is minimal around the Fermi energy and corresponds to the crossover between the Mean-Field and the nucleonic regimes. This is attributed to the change in the energy dissipation going from 1-body (Mean-Field to 2-body (nucleonnucleon collisions dissipation. For this latter, a connection to in-medium transport properties of nuclear matter is proposed and comprehensive values of the nucleon mean free path and nucleon-nucleon cross section are extracted.

  16. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing.

    Science.gov (United States)

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  17. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing

    Science.gov (United States)

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  18. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL

    Science.gov (United States)

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-01-01

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis. PMID:27468685

  19. NEW LAWS OF ENERGY MATERIAL BODY POSITION IN SOLAR (OR OTHER SYSTEM

    Directory of Open Access Journals (Sweden)

    Belashov A.N.

    2013-03-01

    Full Text Available The article is dedicated to the discovery of a new law of energy between two material bodies, located in the space solar (or othersystem and a new energy law of one material body in the solar space (or other systems to the central star to the Sun. Laws of energy areclosely related to the law of gravity a material body is in space, the solar (or other systems to the central star (the Sun and the law ofgravity between two material bodies are in space solar (or other system, and the new law, the acceleration of falling bodies in space. When the position of a material body is located in space relative to another material body will change not only the gravity of this material body, but also its energy. All these laws are needed to better understand the very mechanism of the rotation of the planets and galaxies of the universe in an elliptical orbit.

  20. Energy expenditure and substrate utilization during whole body vibration

    Directory of Open Access Journals (Sweden)

    Ravena Santos Raulino

    2015-04-01

    Full Text Available INTRODUCTION AND OBJECTIVE: the aim of this study was to investigate whether the addition of vibration during interval training would raise oxygen consumption VO2 to the extent necessary for weight management and to evaluate the influence of the intensity of the vibratory stimulus for prescribing the exercise program in question. METHODS: VO2, measured breath by breath, was evaluated at rest and during the four experimental conditions to determine energy expenditure, metabolic equivalent MET, respiratory exchange ratio RER, % Kcal from fat, and rate of fat oxidation. Eight young sedentary females age 22±1 years, height 163.88± 7.62 cm, body mass 58.35±10.96 kg, and VO2 max 32.75±3.55 mLO2.Kg-1.min-1 performed interval training duration = 13.3 min to the upper and lower limbs both with vibration 35 Hz and 2 mm, 40 Hz and 2 mm, 45 Hz and 2 mm and without vibration. The experimental conditions were randomized and balanced at an interval of 48 hours. RESULTS: the addition of vibration to exercise at 45 Hz and 2 mm resulted in an additional increase of 17.77±12.38% of VO2 compared with exercise without vibration. However, this increase did not change the fat oxidation rate p=0.42 because intensity of exercise 29.1±3.3 %VO2max, 2.7 MET was classified as mild to young subjects. CONCLUSION: despite the influence of vibration on VO2 during exercise, the increase was insufficient to reduce body weight and did not reach the minimum recommendation of exercise prescription for weight management for the studied population.

  1. A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method

    Institute of Scientific and Technical Information of China (English)

    齐佩汉; 李赞; 司江勃; 熊天意

    2015-01-01

    Wideband spectrum sensing has drawn much attention in recent years since it provides more opportunities to the sec-ondary users. However, wideband spectrum sensing requires a long time and a complex mechanism at the sensing terminal. A two-stage wideband spectrum sensing scheme is considered to proceed spectrum sensing with low time consumption and high performance to tackle this predicament. In this scheme, a novel multitaper spectrum sensing (MSS) method is proposed to mitigate the poor performance of energy detection (ED) in the low signal-to-noise ratio (SNR) region. The closed-form expression of the decision threshold is derived based on the Neyman–Pearson criterion and the probability of detection in the Rayleigh fading channel is analyzed. An optimization problem is formulated to maximize the probability of detection of the proposed two-stage scheme and the average sensing time of the two-stage scheme is analyzed. Numerical results validate the efficiency of MSS and show that the two-stage spectrum sensing scheme enjoys higher performance in the low SNR region and lower time cost in the high SNR region than the single-stage scheme.

  2. Many-body perturbation procedure for energy-dependent perturbation: Merging many-body perturbation theory with QED

    OpenAIRE

    Lindgren, Ingvar; Salomonson, Sten; Hedendahl, Daniel

    2006-01-01

    A formalism for energy-dependent many-body perturbation theory (MBPT), previously indicated in our recent review articles (Lindgren et al., Phys.Rep. 389,161(2004), Can.J.Phys. 83,183(2005)), is developed in more detail. The formalism allows for a mixture of energy-dependent (retarded) and energy-independent (instantaneous) interactions and hence for a merger of QED and standard (relativistic) MBPT. This combination is particularly important for light elements, such as light heliumlike ions, ...

  3. Modeling the relationship between body weight and energy intake: A molecular diffusion-based approach

    OpenAIRE

    Gong Zhejun; Gong Zhefeng

    2012-01-01

    Abstract Background Body weight is at least partly controlled by the choices made by a human in response to external stimuli. Changes in body weight are mainly caused by energy intake. By analyzing the mechanisms involved in food intake, we considered that molecular diffusion plays an important role in body weight changes. We propose a model based on Fick's second law of diffusion to simulate the relationship between energy intake and body weight. Results This model was applied to food intake...

  4. Energy Cost of Walking in Boys Who Differ in Adiposity but Are Matched For Body Mass.

    Science.gov (United States)

    Ayub, Beatriz Volpe; Bar-Or, Oded

    2003-01-01

    Compared the energy cost of treadmill walking in pairs of obese and lean adolescent boys matched for total body mass. Results found no intergroup differences in the net energy cost at the two lower speeds, but obese boys expended more energy at a higher speed. Heart rate was considerably higher in obese boys. Body mass, rather than adiposity, was…

  5. Alterations in the sense of time, space, and body in the mindfulness-trained brain: a neurophenomenologically-guided MEG study.

    Science.gov (United States)

    Berkovich-Ohana, Aviva; Dor-Ziderman, Yair; Glicksohn, Joseph; Goldstein, Abraham

    2013-01-01

    Meditation practice can lead to what have been referred to as "altered states of consciousness."One of the phenomenological characteristics of these states is a joint alteration in the sense of time, space, and body. Here, we set out to study the unique experiences of alteration in the sense of time and space by collaborating with a select group of 12 long-term mindfulness meditation (MM) practitioners in a neurophenomenological setup, utilizing first-person data to guide the neural analyses. We hypothesized that the underlying neural activity accompanying alterations in the sense of time and space would be related to alterations in bodily processing. The participants were asked to volitionally bring about distinct states of "Timelessness" (outside time) and "Spacelessness" (outside space) while their brain activity was recorded by MEG. In order to rule out the involvement of attention, memory, or imagination, we used control states of "Then" (past) and "There" (another place). MEG sensors evidencing alterations in power values were identified, and the brain regions underlying these changes were estimated via spatial filtering (beamforming). Particularly, we searched for similar neural activity hypothesized to underlie both the state of "Timelessness" and "Spacelessness." The results were mostly confined to the theta band, and showed that: (1) the "Then"/"There" overlap yielded activity in regions related to autobiographic memory and imagery (right posterior parietal lobule (PPL), right precentral/middle frontal gyrus (MFG), bilateral precuneus); (2) "Timelessness"/"Spacelessness" conditions overlapped in a different network, related to alterations in the sense of the body (posterior cingulate, right temporoparietal junction (TPJ), cerebellum); and (3) phenomenologically-guided neural analyses enabled us to dissociate different levels of alterations in the sense of the body. This study illustrates the utility of employing experienced contemplative practitioners

  6. Dollars from Sense: The Economic Benefits of Renewable Energy

    Science.gov (United States)

    1997-09-01

    This document illustrates direct economic benefits, including job creation, of renewable energy technologies. Examples of electricity generation from biomass, wind power, photovoltaics, solar thermal energy, and geothermal energy are given, with emphasis on the impact of individual projects on the state and local community. Employment numbers at existing facilities are provided, including total national employment for each renewable industry where available. Renewable energy technologies offer economic advantages because they are more labor-intensive than conventional generation technologies, and they use primarily indigenous resources.

  7. Dollars from sense: The economic benefits of renewable energy

    International Nuclear Information System (INIS)

    This document illustrates direct economic benefits, including job creation, of renewable energy technologies. Examples of electricity generation from biomass, wind power, photovoltaics, solar thermal energy, and geothermal energy are given, with emphasis on the impact of individual projects on the state and local community. Employment numbers at existing facilities are provided, including total national employment for each renewable industry where available. Renewable energy technologies offer economic advantages because they are more labor-intensive than conventional generation technologies, and they use primarily indigenous resources

  8. Characterization of on-body communication channel and energy efficient topology design for wireless body area networks.

    Science.gov (United States)

    Reusens, Elisabeth; Joseph, Wout; Latré, Benoît; Braem, Bart; Vermeeren, Günter; Tanghe, Emmeric; Martens, Luc; Moerman, Ingrid; Blondia, Chris

    2009-11-01

    Wireless body area networks (WBANs) offer many promising new applications in the area of remote health monitoring. An important element in the development of a WBAN is the characterization of the physical layer of the network, including an estimation of the delay spread and the path loss between two nodes on the body. This paper discusses the propagation channel between two half-wavelength dipoles at 2.45 GHz, placed near a human body and presents an application for cross-layer design in order to optimize the energy consumption of different topologies. Propagation measurements are performed on real humans in a multipath environment, considering different parts of the body separately. In addition, path loss has been numerically investigated with an anatomically correct model of the human body in free space using a 3-D electromagnetic solver. Path loss parameters and time-domain channel characteristics are extracted from the measurement and simulation data. A semi-empirical path loss model is presented for an antenna height above the body of 5 mm and antenna separations from 5 cm up to 40 cm. A time-domain analysis is performed and models are presented for the mean excess delay and the delay spread. As a cross-layer application, the proposed path loss models are used to evaluate the energy efficiency of single-hop and multihop network topologies. PMID:19789118

  9. Energy absorption, lean body mass, and total body fat changes during 5 weeks of continuous bed rest

    Science.gov (United States)

    Krebs, Jean M.; Evans, Harlan; Kuo, Mike C.; Schneider, Victor S.; Leblanc, Adrian D.

    1990-01-01

    The nature of the body composition changes due to inactivity was examined together with the question of whether these changes are secondary to changes in energy absorption. Volunteers were 15 healthy males who lived on a metabolic research ward under close staff supervision for 11 weeks. Subjects were ambulatory during the first six weeks and remained in continuous bed rest for the last five weeks of the study. Six male volunteers (age 24-61 years) were selected for body composition measurements. Nine different male volunteers (age 21-50 years) were selected for energy absorption measurements. The volunteers were fed weighed conventional foods on a constant 7-d rotation menu. The average daily caloric content was 2,592 kcal. Comparing the five weeks of continuous bed rest with the previous six weeks of ambulation, it was observed that there was no change in energy absorption or total body weight during bed rest, but a significant decrease in lean body mass and a significant increase in total body fat (p less than 0.05).

  10. An Energy Efficient Cognitive Radio System with Quantized Soft Sensing and Duration Analysis

    KAUST Repository

    Alabbasi, Abdulrahman

    2015-03-09

    In this paper, an energy efficient cognitive radio system is proposed. The proposed design optimizes the secondary user transmission power and the sensing duration combined with soft-sensing information to minimize the energy per goodbit. Due to the non-convex nature of the problem we prove its pseudo-convexity to guarantee the optimal solution. Furthermore, a quantization scheme, that discretize the softsensing information, is proposed and analyzed to reduce the overload of the continuously adapted power. Numerical results show that our proposed system outperforms the benchmark systems. The impact of the quantization levels and other system parameters is evaluated in the numerical results.

  11. Optimal Energy-Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2013-12-01

    Full Text Available Inspired by the green communication trend of next-generation wireless networks, we select energy-efficient throughput as optimization metric for jointly optimizing sensing time and working sensors in cooperative cognitive radio networks. Specifically, an iterative algorithm is proposed to obtain the optimal values for these two parameters. Specifically, the proposed iterative algorithm is low complexity when compares to the exhaustive search method, and very easy to be implemented. Finally, simulation results reveal that the proposed optimization improves the energy-efficient throughput significantly when the sensing time and working sensors are jointly optimized.

  12. Making sense of the U.S. energy bill

    International Nuclear Information System (INIS)

    Now that the United States has a comprehensive energy bill, what does it mean? That's the question the nuclear industry has been wrestling with since the National Energy Strategy (H.R. 776) passed Congress and was signed into law by President Bush in October. The NUKEM Market Report polled nuclear experts for their opinions of the bill's impact. Their responses should shed some light on the legislation

  13. CMOS indoor light energy harvesting system for wireless sensing applications

    CERN Document Server

    Ferreira Carvalho, Carlos Manuel

    2016-01-01

    This book discusses in detail the CMOS implementation of energy harvesting.  The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed.  The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system.  The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system.  ·         Discusses several energy sources which can be used to power energy harvesting systems and includes an overview of PV cell technologies  ·         Includes an introduction to voltage step-...

  14. Folding model analysis of Λ binding energies and three-body ΛNN force

    International Nuclear Information System (INIS)

    Working within the framework of the folding model, we analyze the Λ binding energy data of light hypernuclei with effective two-body ΛN plus three-body ΛNN interaction. The two-body density for the core nucleus required for evaluating the three-body force contribution is obtained in terms of the centre of mass pair correlation. It is found that except for Λ5He the data are fairly well explained. The three-body force seems to account for the density dependence of the effective two-body ΛN interaction proposed earlier. (author). 13 refs, 2 tabs

  15. Alterations in the sense of time, space, and body in the mindfulness-trained brain: a neurophenomenologically-guided MEG study

    OpenAIRE

    Berkovich-Ohana, Aviva; Dor-Ziderman, Yair; Glicksohn, Joseph; Goldstein, Abraham

    2013-01-01

    Meditation practice can lead to what have been referred to as “altered states of consciousness.”One of the phenomenological characteristics of these states is a joint alteration in the sense of time, space, and body. Here, we set out to study the unique experiences of alteration in the sense of time and space by collaborating with a select group of 12 long-term mindfulness meditation (MM) practitioners in a neurophenomenological setup, utilizing first-person data to guide the neural analyses....

  16. Plasmonics: metallic nanostructures for energy guiding and sensing

    Science.gov (United States)

    Maier, Stefan A.

    2004-12-01

    We investigate the optical properties of arrays of closely spaced metal nanoparticles in view of their potential to guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. Finite-difference time-domain simulations of short arrays of noble metal nanospheres show that electromagnetic pulses at optical frequencies can propagate along the arrays due to near-field interactions between plasmon-polariton modes of adjacent nanoparticles. Near-field microscopy enables the study of energy transport in these plasmon waveguides and shows experimental evidence for energy propagation over a distance of 0.5 μm for plasmon waveguides consisting of spheroidal silver particles fabricated using electron beam lithography.

  17. Comparatative Analysis of Energy Detection Spectrum Sensing of Cognitive Radio Under Wireless Environment Using SEAMCAT

    Directory of Open Access Journals (Sweden)

    A.S. Kang

    2016-01-01

    Full Text Available In the recent years, the Cognitive Radio technology imposed itself as a good solution to enhance the utilization of unused spectrum and globalized the radio environment for different band users that utilize or require different techniques for transmission. In this paper, the energy detection spectrum sensing technique that is used to detect the presence of unknown deterministic signal is studied under the non-time dispersive fading environment using the Hata propagation model for picocell communication systems. The different aspects of non-time dispersive fading regions over energy detection spectrum sensing and impact of changing a detection threshold of the secondary user Cognitive Radio on interference at primary user for non-cooperative spectrum access have been studied in the terms of probability of interference. The entire Comparatative Analysis of Spectrum Sensing in Cognitive radio has been carried out with the aid of SEAMCAT software platform.

  18. Seasonal variation in body mass and energy budget in Chinese bulbuls (pycnonotus sinensis)

    Institute of Scientific and Technical Information of China (English)

    Mengsi; Wu; Yuchao; Xiao; Fang; Yang; Limeng; Zhou; Weihong; Zheng; Jinsong; Liu

    2014-01-01

    Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake(GEI), digestible energy intake(DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls(Pycnonotus sinensis) caught in the wild at Wenzhou, China.Methods: Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried to a constant mass.Results: Body mass showed a significant seasonal variation and was higher in spring and winter than in summer and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter.The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters was positively correlated with body mass, GEI and DEI. Small passerines typically have higher daily energy expenditure in winter, necessitating increased food consumption.Conclusions: This general observation is consistent with the observed winter increase in gut volume and body mass in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body mass, body fat, GEI, DEI and digestive tract size.

  19. Seasonal variation in body mass and energy budget in Chinese bulbuls (pycnonotus sinensis)

    Institute of Scientific and Technical Information of China (English)

    Mengsi Wu; Yuchao Xiao; Fang Yang; Limeng Zhou; Weihong Zheng; Jinsong Liu

    2014-01-01

    Background:Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake (GEI), digestible energy intake (DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls (Pycnonotus sinensis) caught in the wild at Wenzhou, China. Methods:Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried to a constant mass. Results:Body mass showed a significant seasonal variation and was higher in spring and winter than in summer and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter. The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters was positively correlated with body mass, GEI and DEI. Small passerines typical y have higher daily energy expenditure in winter, necessitating increased food consumption. Conclusions:This general observation is consistent with the observed winter increase in gut volume and body mass in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body mass, body fat, GEI, DEI and digestive tract size.

  20. Macronutrient distribution over a period of 23 years in relation to energy intake and body fatness

    NARCIS (Netherlands)

    Koppes, L.L.J.; Boon, N.; Nooyens, A.C.J.; Mechelen, W. van; Saris, W.H.M.

    2009-01-01

    The distribution of the four macronutrients is associated with energy intake and body fatness according to short-term interventions. The present study involves macronutrient distribution in relation to energy intake and body fatness over a period of 23 years in individuals who have ad libitum access

  1. Energy Efficient Resource Allocation for Cognitive Radios: A Generalized Sensing Analysis

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-12-31

    In this paper, two resource allocation schemes for energy efficient cognitive radio systems are proposed. Our design considers resource allocation approaches that adopt spectrum sharing combined with soft-sensing information, adaptive sensing thresholds, and adaptive power to achieve an energy efficient system. An energy per good-bit metric is considered as an energy efficient objective function. A multi-carrier system, such as, orthogonal frequency division multiplexing, is considered in the framework. The proposed resource allocation schemes, using different approaches, are designated as sub-optimal and optimal. The sub-optimal approach is attained by optimizing over a channel inversion power policy. The optimal approach utilizes the calculus of variation theory to optimize a problem of instantaneous objective function subject to average and instantaneous constraints with respect to functional optimization variables. In addition to the analytical results, selected numerical results are provided to quantify the impact of soft-sensing information and the optimal adaptive sensing threshold on the system performance.

  2. Techniques for measuring whole body energy expenditure of working animals: A critical review

    International Nuclear Information System (INIS)

    All feasible methods for determining the whole body metabolism of draught animals are indirect and most involve measuring gaseous exchange. The relationship between gaseous exchange and energy metabolism is discussed and the open circuit system described. However, in its classic form it can be applied to draught animals only when they are resting in a respiration chamber or at work on a treadmill or circular race. Three portable devices for measuring the oxygen consumption of animals working in fields are described. All involve the use of airtight face mask so that total respiratory volume can be measured and samples of inspired and expired air taken for analysis. Although all three devices work well in a technical sense, users often experience difficulty in getting experimental animals to behave normally when wearing the face masks and the measuring systems can become inaccurate if the animals start to pant. The theory and applicability of two tracer methods are discussed. Labelled carbon methods are not very accurate and involve continuous infusion of label. The double and triple labelled water methods may find application for measurements over one or two weeks now that several of the objections to the use of these methods on large ruminants have been met. However, both types of tracer method measure only CO2 output, from which energy consumption has to be inferred, and the latter method is very expensive. Two other methods involve counting the number of heart beats and measuring the type and amount of physical activity of the animal. Both methods rely heavily on data from laboratory studies to link these parameters to energy expenditure. The validity of these methods and the techniques for collecting the relevant data from the animals are briefly discussed. 41 refs, 7 figs, 3 tabs

  3. Glutamine transport. From energy supply to sensing and beyond.

    Science.gov (United States)

    Scalise, Mariafrancesca; Pochini, Lorena; Galluccio, Michele; Indiveri, Cesare

    2016-08-01

    Glutamine is the most abundant amino acid in plasma and is actively involved in many biosynthetic and regulatory processes. It can be synthesized endogenously but becomes "conditionally essential" in physiological or pathological conditions of high proliferation rate. To accomplish its functions glutamine has to be absorbed and distributed in the whole body. This job is efficiently carried out by a network of membrane transporters that differ in transport mechanisms and energetics, belonging to families SLC1, 6, 7, 38, and possibly, 25. Some of the transporters are involved in glutamine traffic across different membranes for metabolic purposes; others are involved in specific signaling functions through mTOR. Structure/function relationships and regulatory aspects of glutamine transporters are still at infancy. In the while, insights in involvement of these transporters in cell redox control, cancer metabolism and drug interactions are arising, stimulating basic research to uncover molecular mechanisms of transport and regulation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26951943

  4. Energy efficiency and SINR maximization beamformers for cognitive radio utilizing sensing information

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-06-01

    In this paper we consider a cognitive radio multi-input multi-output environment in which we adapt our beamformer to maximize both energy efficiency and signal to interference plus noise ratio (SINR) metrics. Our design considers an underlaying communication using adaptive beamforming schemes combined with the sensing information to achieve an optimal energy efficient system. The proposed schemes maximize the energy efficiency and SINR metrics subject to cognitive radio and quality of service constraints. Since the optimization of energy efficiency problem is not a convex problem, we transform it into a standard semi-definite programming (SDP) form to guarantee a global optimal solution. Analytical solution is provided for one scheme, while the other scheme is left in a standard SDP form. Selected numerical results are used to quantify the impact of the sensing information on the proposed schemes compared to the benchmark ones.

  5. Energy Harvesting-Aided Spectrum Sensing and Data Transmission in Heterogeneous Cognitive Radio Sensor Network

    OpenAIRE

    Zhang, Deyu; Ren, Zhigang Chen Ju; Zhang, Ning; Awad, Mohamad Khattar; Zhou, Haibo; Xuemin; Shen

    2016-01-01

    The incorporation of Cognitive Radio (CR) and Energy Harvesting (EH) capabilities in wireless sensor networks enables spectrum and energy efficient heterogeneous cognitive radio sensor networks (HCRSNs). The new networking paradigm of HCRSNs consists of EH-enabled spectrum sensors and battery powered data sensors. Spectrum sensors can cooperatively scan the licensed spectrum for available channels, while data sensors monitor an area of interest and transmit sensed data to the sink over those ...

  6. Sensing Throughput Optimization in Fading Cognitive Multiple Access Channels With Energy Harvesting Secondary Transmitters

    OpenAIRE

    Biswas, Sinchan; Shirazinia, Amirpasha; Dey, Subhrakanti

    2016-01-01

    The paper investigates the problem of maximizing expected sum throughput in a fading multiple access cognitive radio network when secondary user (SU) transmitters have energy harvesting capability, and perform cooperative spectrum sensing. We formulate the problem as maximization of sum-capacity of the cognitive multiple access network over a finite time horizon subject to a time averaged interference constraint at the primary user (PU) and almost sure energy causality constraints at the SUs....

  7. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    Science.gov (United States)

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission. PMID:25751844

  8. Combat sports energy costs evaluation by remote sensing

    International Nuclear Information System (INIS)

    The foundation, evolution and related improvements of the new heat and mass transfer equation, used in the joint research of CONI-ENEA (the Italian National Agency for Energy, New Technologies and the Environment) - FILPJ are shown in this report. Emphasis is given to the experimental history and the changes that are justified in a more formal approach on the basis of theoretical thermodynamics or similarity and dimensional theory. The new form of the equation in the computer code actually utilized in the research is given in the appendix

  9. Alterations in the sense of time, space and body in the Mindfulness-trained brain: A neurophenomenologically-guided MEG study

    Directory of Open Access Journals (Sweden)

    Aviva eBerkovich-Ohana

    2013-12-01

    Full Text Available Meditation practice can lead to what have been referred to as 'altered states of consciousness'. One of the phenomenological characteristics of these states is a joint alteration in the sense of time, space and body. Here, we set out to study the unique experiences of alteration in the sense of time and space by collaborating with a select group of 12 long-term Mindfulness meditation practitioners in a neurophenomenological setup, utilizing first-person data to guide the neural analyses. We hypothesized that the underlying neural activity accompanying alterations in the sense of time and space would be related to alterations in bodily processing.The participants were asked to volitionally bring about distinct states of 'Timelessness' (outside time and 'Spacelessness' (outside space while their brain activity was recorded by MEG. In order to rule out the involvement of attention, memory or imagination, we used control states of 'Then' (past and 'There' (another place. MEG sensors evidencing alterations in power values were identified, and the brain regions underlying these changes were estimated via spatial filtering (beamforming. Particularly, we searched for similar neural activity hypothesized to underlie both the state of 'Timelessness' and 'Spacelessness'. The results were mostly confined to the theta band, and showed that: 1 the 'Then' / 'There' overlap yielded activity in regions related to autobiographic memory and imagery (right posterior parietal lobule, right precentral / middle frontal gyrus, bilateral precuneus; 2 'Timelessness' / 'Spacelessness' conditions overlapped in a different network, related to alterations in the sense of the body (posterior cingulate, right temporoparietal junction, cerebellum; and 3 phenomenologically-guided neural analyses enabled us to dissociate different levels of alterations in the sense of the body. This study illustrates the utility of employing experienced contemplative practitioners within a

  10. Energy harvesting to power sensing hardware onboard wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Clinton P [Los Alamos National Laboratory; Schichting, Alexander D [Los Alamos National Laboratory; Quellette, Scott [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  11. Web-based remote sensing of building energy performance

    Science.gov (United States)

    Martin, William; Nassiopoulos, Alexandre; Le Cam, Vincent; Kuate, Raphaël; Bourquin, Frédéric

    2013-04-01

    The present paper describes the design and the deployment of an instrumentation system enabling the energy monitoring of a building in a smart-grid context. The system is based on a network of wireless low power IPv6 sensors. Ambient temperature and electrical power for heating are measured. The management, storage, visualisation and treatment of the data is done through a web-based application that can be deployed as an online web service. The same web-based framework enables the acquisition of distant measured data such as those coming from a nearby weather station. On-site sensor and weather station data are then adequately treated based on inverse identification methods. The algorithms aim at determining the parameters of a numerical model suitable for a short-time horizon prediction of indoor climate. The model is based on standard multi-zone modelling assumptions and takes into account solar, airflow and conductive transfers. It was specially designed to render accurately inertia effects that are used in a demand-response strategy. All the hardware or software technologies that are used in the system are open and low cost so that they comply with the constraints of on-site deployment in buildings. The measured data as well as the model predictions can be accessed ubiquously through the web. This feature enables to consider a wide range of energy management applications at the disctrict, city or national level. The entire system has been deployed and tested in an experimental office building in Angers, France. It demonstrates the potential of ICT technologies to enable remotely controlled monitoring and surveillance in real time.

  12. A self-sensing approach to the energy-saving operation of electromagnetic locking devices

    International Nuclear Information System (INIS)

    This paper reports an energy-efficient operation of electromagnetic (EM) locking devices using the inductive self-sensing technique, i.e. employing the existing actuation coil as a sensing medium. EM locking devices such as EM locks and locking solenoids have been increasingly used as new security devices in industrial and commercial buildings due to their fully electronic operation. One of the drawbacks of such EM devices is that a significant amount of energy is often wasted through their continual use, especially in applications where the maximum holding power is seldom needed. The main idea of this paper is to operate an EM locking device in such a way that its full power is supplied only when needed. More specifically, we propose running the existing coil as an inductive sensor using significantly less power during normal operation. Any imminent attempt to disengage an EM lock can be instantly detected by the self-sensing coil and its full locking power can then be engaged to prevent it from unlocking. This paper presents a detailed electromagnetic analysis for the self-sensing functionality of the existing EM lock. Besides, a stochastic detection method called the generalized likelihood ratio test (GLRT) has been implemented to improve the energy-saving operation of the EM device. Proposed strategies are experimentally verified using a commercial EM lock, which demonstrated that more than 75% of the original power can be saved by the proposed method while keeping the same locking performance. (paper)

  13. Irreducible Scalar Many-Body Casimir Energies: Theorems and Numerical Studies

    CERN Document Server

    Schaden, Martin

    2011-01-01

    We define irreducible N-body spectral functions and Casimir energies and consider a massless scalar quantum field interacting locally by positive potentials with classical objects. Irreducible N-body spectral functions in this case are shown to be conditional probabilities of random walks. The corresponding irreducible contributions to scalar many-body Casimir energies are finite and positive/negative for an odd/even number of objects. The force between any two finite objects separable by a plane is always attractive in this case. Analytical and numerical world-line results for the irreducible four-body Casimir energy of a scalar with Dirichlet boundary conditions on a tic-tac-toe pattern of lines are presented. Numerical results for the irreducible three-body Casimir energy of a massless scalar satisfying Dirichlet boundary conditions on three intersecting lines forming an isosceles triangle are also reported. In both cases the symmetric configuration (square and isosceles triangle) corresponds to the minima...

  14. Reinforcement learning based sensing policy optimization for energy efficient cognitive radio networks

    CERN Document Server

    Oksanen, Jan; Koivunen, Visa

    2011-01-01

    This paper introduces a machine learning based collaborative multi band spectrum sensing policy for cognitive radios. The proposed sensing policy guides secondary users to focus the search of unused radio spectrum to those frequencies that persistently provide them high data rate. The proposed policy is based on machine learning, which makes it adaptive with the temporally and spatially varying radio spectrum. Furthermore, there is no need for dynamic modeling of the primary activity since it is implicitly learned over time. Energy efficiency is achieved by minimizing the number of assigned sensors per each subband under a constraint on miss detection probability. It is important to control the missed detections because they cause collisions with primary transmissions and lead to retransmissions at both the primary and secondary user. The minimization of the number of active sensors is formulated as a binary integer programming problem. Simulations show that the proposed machine learning based sensing policy ...

  15. Energy-minimum sub-threshold self-timed circuits using current-sensing completion detection

    DEFF Research Database (Denmark)

    Akgun, O. C.; Rodrigues, J. N.; Sparsø, Jens

    2011-01-01

    of the CSCD system are examined. The design flow and the current-sensing technique are validated by the implementation of a self-timed version of a wavelet-based event detector for cardiac pacemaker applications in a standard 65 nm CMOS process. The chip was fabricated and verified to operate down to 250 m......This study addresses the design of self-timed energy-minimum circuits, operating in the sub-VT domain and a generic implementation template using bundled-data circuitry and current sensing completion detection (CSCD). Furthermore, a fully decoupled latch controller was developed, which integrates...... with the current-sensing circuitry. Different configurations that utilise the proposed latch controller are highlighted. A contemporary synchronous electronic design automation tools-based design flow, which transforms a synchronous design into a corresponding self-timed circuit, is outlined. Different use cases...

  16. Energy and structural properties of N -boson clusters attached to three-body Efimov states: Two-body zero-range interactions and the role of the three-body regulator

    Science.gov (United States)

    Yan, Yangqian; Blume, D.

    2015-09-01

    The low-energy spectrum of N -boson clusters with pairwise zero-range interactions is believed to be governed by a three-body parameter. We study the ground state of N -boson clusters with infinite two-body s -wave scattering length by performing ab initio Monte Carlo simulations. To prevent Thomas collapse, different finite-range three-body regulators are used. The energy and structural properties for the three-body Hamiltonian with two-body zero-range interactions and three-body regulator are in much better agreement with the "ideal zero-range Efimov theory" results than those for Hamiltonian with two-body finite-range interactions. For larger clusters we find that the ground-state energy and structural properties of the Hamiltonian with two-body zero-range interactions and finite-range three-body regulators are not universally determined by the three-body parameter, i.e., dependencies on the specific form of the three-body regulator are observed. For comparison, we consider Hamiltonian with two-body van der Waals interactions and no three-body regulator. For the interactions considered, the ground-state energy of the N -body clusters is—if scaled by the three-body ground-state energy—fairly universal, i.e., the dependence on the short-range details of the two-body van der Waals potentials is small. Our results are compared with those in the literature.

  17. Biosensors and Biofuel Cells based on Vertically Aligned Carbon Nanotubes for Integrated Energy Sensing, Generation, and Storage (SGS) Systems

    Science.gov (United States)

    Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke

    2010-03-01

    Diabetes is a growing health issue in the nation. Thus in-situ glucose sensors that can monitor the glucose level in our body are in high demand. Furthermore, it will be exciting if the excessive blood sugar can be converted into usable energy, and be stored in miniature batteries for applications. This will be the basis for an integrated energy sensing, generation, and storage (SGS) system in the future. Here we report the use of functionalized carbon nanotubes arrays as the glucose sensors as well as fuel cells that can convert glucose into energy. In principle, these devices can be integrated to detect excessive blood glucose and then convert the glucose into energy. They are also inline with our efforts on miniature 3D microbatteries using CNTs [1]. All these devices will be the basis for future SGS systems. Details of these results will be discussed in the meeting. [1] Wang et al., in 206^th Meeting of the Electrochemical Society, October 3-8, Honolulu, Hawaii (2004), Symposium Q1, abstract 1492. Y. K. Yap acknowledges supports from DARPA (DAAD17-03-C-0115), USDA (2007-35603-17740), and the Multi-Scale Technologies Institute (MuSTI) at MTU.

  18. Nuclear stopping for heavy-ion induced reactions in the Fermi energy range: from 1-Body to 2-Body dissipation

    International Nuclear Information System (INIS)

    In this study, we are looking at the global energy dissipation achieved in heavy-ion induced reactions in the Fermi energy domain. We are using the large experimental dataset available in this energy range for symmetric systems recorded with the 4π array INDRA. We are looking at central collisions, i.e. collisions corresponding to the maximal overlap and thus leading to the maximal dissipation. We have extracted information concerning the stopping encountered in such collisions and have related it to the nucleon mean free path and cross section in the nuclear medium. We have found a minimal stopping around incident energy E = 30*A MeV connected to the crossover between 1-Body to 2-Body dissipation regime. For the latter, we have estimated the nucleon mean free path in the nuclear medium from the degree of stopping achieved in central collisions. The mean free path decreases from λNN ∼ 10 fm at E/A = 30 MeV to λNN = 5 fm at E/A = 100 MeV. These values are in agreement with recent theoretical findings using microscopic approaches. The large value relative to the nuclear size (λNN > R) around the Fermi energy suggests that full thermalization is not achieved in such central collisions. In-medium effects, namely Pauli blocking and high-order correlations, have also been evaluated and are found to be large in the Fermi energy range; it is clear that this energy/density dependence of the nucleon-nucleon cross section has to be properly taken into account in any microscopic transport model used in the Fermi energy range

  19. Many-body Hamiltonian with screening parameter and ionization energy

    Indian Academy of Sciences (India)

    Andrew Das Arulsamy

    2010-04-01

    We prove the existence of a Hamiltonian with ionization energy as part of the eigenvalue, which can be used to study strongly correlated matter. This eigenvalue consists of total energy at zero temperature (0) and the ionization energy (). We show that the existence of this total energy eigenvalue, 0 ± , does not violate the Coulombian atomic system. Since there is no equivalent known Hamilton operator that corresponds quantitatively to , we employ the screened Coulomb potential operator (Yukawa-type), which is a function of this ionization energy to analytically calculate the screening parameter () of a neutral helium atom in the ground state. In addition, we also show that the energy level splitting due to spin-orbit coupling is inversely proportional to eigenvalue, which is also important in the field of spintronics.

  20. Energy intake and body weight in ovo-lacto vegetarians.

    Science.gov (United States)

    Levin, N; Rattan, J; Gilat, T

    1986-08-01

    Vegetarians have a lower body weight than omnivores. In this study the relationship between the weight/height ratio and food consumption was evaluated in 92 ovo-lacto vegetarians and 113 omnivores in Israel. The average weight of the vegetarians was significantly lower than that of the omnivores (60.8 kg vs. 69.1 kg), even though the vegetarian diet supplied a significantly higher amount of calories than the nonvegetarian diet (3,030.5 cal/day vs. 2,626.8 cal/day). Consumption of fat was similar in both groups. Carbohydrate consumption was higher in the vegetarians while protein consumption was lower. The prevalence of obesity was significantly lower in the vegetarian group (5.4%) as compared to 19.5% among the omnivores. The lower body weight of vegetarians despite a higher caloric intake is of considerable interest. PMID:3760524

  1. A bibliography of high energy two-body and inclusive scattering data

    International Nuclear Information System (INIS)

    A bibliography is presented of the data on high energy two-body and quasi-two-body final state scattering processes. This updated edition also covers one and two-particle inclusive production. It contains references to those published papers whose main purpose is to provide data on high energy two-body and inclusive hadronic scattering cross-sections rather than just properties of the produced particles. It covers the leading high energy physics journals and the period up to June 1977. The entries are grouped by process in the order indicated in the Table of Contents, and an author index is also provided. (author)

  2. Body composition in hemodialysis patients measured by dual-energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Stenver, Doris Irene; Gotfredsen, Arne; Hilsted, J;

    1995-01-01

    Dual-energy X-ray absorptiometry (DXA) measures three of the principal components of the body: fat mass, lean soft-tissue mass (comprising muscle, inner organs, and the body water), and the bone mineral content. The purpose of this study was to test the estimation capacity of DXA when it is applied...... conclude that DXA is a useful tool for estimating the magnitude of body compartments in patients with end-stage renal failure....

  3. A high protein diet upregulated whole-body protein turnover during energy deficit

    Science.gov (United States)

    The effects of higher protein diets and sustained energy deficit (ED) on whole-body protein turnover (WBPTO) are not well described. This study examined whether dietary protein level influences whole-body protein breakdown (Ra), non-oxidative leucine disposal (NOLD), and oxidation (Ox) during ED. ...

  4. Body Fat Percentages by Dual-energy X-ray Absorptiometry Corresponding to Body Mass Index Cutoffs for Overweight and Obesity in Indian Children

    OpenAIRE

    Pandit, Deepa; Chiplonkar, Shashi; Khadilkar, Anuradha; Khadilkar, Vaman; Ekbote, Veena

    2009-01-01

    Background: Indians are suspected to have higher body fat percent at a given body mass index (BMI) than their western counterparts. Objective: To estimate percent body fat in apparently healthy Indian children and adolescents by dual-energy X-ray absorptiometry (DXA) and explore linkages of BMI with body fat percent for better health risk assessment. Methods: Age, weight, height of 316 boys and 250 girls (6–17 years) were recorded. Body composition was measured by dual-energy X-ray absorptiom...

  5. Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling

    OpenAIRE

    Cline, DW; Bales, RC; J. Dozier

    1998-01-01

    We present a modeling approach that couples information about snow cover duration from remote sensing with a distributed energy balance model to calculate the spatial distribution of snow water equivalence (SWE) in a 1.2 km2 mountain basin at the peak of the accumulation season. In situ measurements of incident solar radiation, incident longwave radiation, air temperature, relative humidity, and wind speed were distributed around the basin on the basis of topography. Snow surface albedo was a...

  6. The Cross-Sectional Association of Energy Intake and Dietary Energy Density with Body Composition of Children in Southwest China

    OpenAIRE

    Xue Zhou; Hongmei Xue; Ruonan Duan; Yan Liu; Lishi Zhang; Louise Harvey; Guo Cheng

    2015-01-01

    Objective: We examined whether dietary energy intake (EI) and dietary energy density (ED) were cross-sectionally associated with body composition of children living in Southwest China. Design and Methods: Multivariate regression analyses were performed on three day, 24 h dietary recall data and information on potential confounders from 1207 participants aged 8–14 years. EI was calculated from all foods and drinks and ED was classified into five categories. Body mass index (BMI) z-scores, perc...

  7. A new approach to estimating evaporation from lakes and reservoirs based on energy balance and remote sensing data

    Science.gov (United States)

    Majidi, Maysam; Sadeghi, Morteza; Shafiei, Mojtaba; Alizadeh, Amin; Farid, Alireza; Azad, Mohammadreza; Vazifedoust, Majid

    2016-04-01

    Estimating evaporation from water bodies such as lakes and reservoirs is commonly a difficult task, especially due to the lack of reliable and available ground data. Remote sensing (RS) data has shown a great potential for filling the gap. Nonetheless, interpretation of the RS data (e.g. optical reflectance, thermal emission, etc.) for estimating water evaporation has remained as a challenge. In this paper, we present a novel approach for estimating water evaporation based on satellite RS data and some readily measurable ground data. In the proposed approach, named as "Reference and Water surface Energy Balance (RWEB)", we define a reference surface and then solve the energy balance equation simultaneously for the reference surfaces and water surface. This approach was tested over the Doosti dam reservoir (north east of Iran) using whether station and RS data as well as water temperature measured biweekly along the study. Accuracy of the RWEB algorithm was examined by comparison to the standard "Bowen Ratio Energy Balance (BREB)" RS algorithm. The RMSD value of 0.047 mm/year indicated a good agreement between RWEB and BREB algorithms, while RWEB provides an easier-to-use approach regarding its required input variables.

  8. Renormalized two-body low-energy scattering

    DEFF Research Database (Denmark)

    Skibsted, Erik

    For a class of long-range potentials, including ultra-strong perturbations of the attractive Coulomb potential in dimension d≥3, we introduce a stationary scattering theory for Schrödinger operators which is regular at zero energy. In particular it is well defined at this energy, and we use it to...... establish a characterization there of the set of generalized eigenfunctions in an appropriately adapted Besov space generalizing parts of [DS1]. Principal tools include global solutions to the eikonal equation and strong radiation condition bounds....

  9. Renormalized two-body low-energy scattering

    OpenAIRE

    Skibsted, Erik

    2012-01-01

    For a class of long-range potentials, including ultra-strong perturbations of the attractive Coulomb potential in dimension $d\\geq3$, we introduce a stationary scattering theory for Schr\\"odinger operators which is regular at zero energy. In particular it is well defined at this energy, and we use it to establish a characterization there of the set of generalized eigenfunctions in an appropriately adapted Besov space generalizing parts of \\cite{DS3}. Principal tools include global solutions t...

  10. The Cross-Sectional Association of Energy Intake and Dietary Energy Density with Body Composition of Children in Southwest China

    Directory of Open Access Journals (Sweden)

    Xue Zhou

    2015-07-01

    Full Text Available Objective: We examined whether dietary energy intake (EI and dietary energy density (ED were cross-sectionally associated with body composition of children living in Southwest China. Design and Methods: Multivariate regression analyses were performed on three day, 24 h dietary recall data and information on potential confounders from 1207 participants aged 8–14 years. EI was calculated from all foods and drinks and ED was classified into five categories. Body mass index (BMI z-scores, percentage of body fat (%BF, fat mass index (FMI, fat-free mass index (FFMI and ratio of waist to hip circumference (WHR were used to describe body composition. Results: Boys with higher total EI had higher BMI z-scores, %BF, and FMI than boys with lower total EI both before and after measurements were adjusted for confounders (age, fiber intake, physical activity, the timing of adding complementary foods, paternal education level and maternal BMI (p ≤ 0.04. However, EI was not associated with body composition in girls. Dietary ED, in any category, was not associated with body composition in either gender. Conclusions: Dietary ED was not associated with body composition of children in Southwest China, while dietary EI in boys, not girls, was positively associated with body composition. Reducing dietary energy intake may help to prevent obesity and related diseases in later life among boys living in Southwest China.

  11. Improved Energy Detector for Wideband Spectrum Sensing in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Y. Eghbali

    2014-04-01

    Full Text Available In this paper, an improved energy detector for a wideband spectrum sensing is proposed. For a better detection of the spectrum holes the overall band is divided into equal non-overlapping sub-bands. The main objective is to determine the detection thresholds for each of these subbands jointly. By defining the problem as an optimization problem, we aim to find the maximum aggregated opportunistic throughput of cognitive radio networks. Introducing practical constraints to this optimization problem will change the problem into a convex and solvable one. The results of this paper show that the proposed improved energy detector will increase the aggregated throughput considerably.

  12. QCD at low energy: a many-body approach

    International Nuclear Information System (INIS)

    A review is given on recent results in the treatment of an arbitrary number of orbital levels in low energy QCD. For the pure quark part, analytic results for the dominant part of the Hamiltonian are presented. Possible extensions, including dynamic gluons, are discussed.

  13. Thermal stability and energy harvesting characteristics of Au nanorods: harsh environment chemical sensing

    Science.gov (United States)

    Karker, Nicholas; Dharmalingam, Gnanaprakash; Carpenter, Michael A.

    2015-05-01

    Monitoring the levels of polluting gases such as CO and NOx from high temperature (500°C and higher) combustion environments requires materials with high thermal stability and resilience that can withstand harsh oxidizing and reducing environments. Au nanorods (AuNRs) have shown potential in plasmonic gas sensing due to their catalytic activity, high oxidation stability, and absorbance sensitivity to changes in the surrounding environment. By using electron beam lithography, AuNR geometries can be patterned with tight control of the rod dimensions and spacings, allowing tunability of their optical properties. Methods such as NR encapsulation within an yttria-stabilized zirconia overcoat layer with subsequent annealing procedures will be shown to improve temperature stability within a simulated harsh environment. Since light sources and spectrometers are typically required to obtain optical measurements, integration is a major barrier for harsh environment sensing. Plasmonic sensing results will be presented where thermal energy is harvested by the AuNRs, which replaces the need for an external incident light source. Results from gas sensing experiments that utilize thermal energy harvesting are in good agreement with experiments which use an external incident light source. Principal component analysis results demonstrate that by selecting the most "active" wavelengths in a plasmonic band, the wavelength space can be reduced from hundreds of monitored wavelengths to just four, without loss of information about selectivity of the AuNRs. By combining thermal stability, the thermal energy harvesting capability, and the selectivity in gas detection (achieved through multivariate analysis), integration of plasmonic sensors into combustion environments can be greatly simplified.

  14. Accurate human tissue characterization for energy-efficient wireless on-body communications.

    Science.gov (United States)

    Vallejo, Mónica; Recas, Joaquín; del Valle, Pablo García; Ayala, José L

    2013-01-01

    The demand for Wireless Body Sensor Networks (WBSNs) is rapidly increasing due to the revolution in wearable systems demonstrated by the penetration of on-the-body sensors in hospitals, sports medicine and general health-care practices. In WBSN, the body acts as a communication channel for the propagation of electromagnetic (EM) waves, where losses are mainly due to absorption of power in the tissue. This paper shows the effects of the dielectric properties of biological tissues in the signal strength and, for the first time, relates these effects with the human body composition. After a careful analysis of results, this work proposes a reactive algorithm for power transmission to alleviate the effect of body movement and body type. This policy achieves up to 40.8% energy savings in a realistic scenario with no performance overhead. PMID:23752565

  15. A Novel Fiber Bragg Grating Based Sensing Methodology for Direct Measurement of Surface Strain on Body Muscles during Physical Exercises

    Science.gov (United States)

    Prasad Arudi Subbarao, Guru; Subbaramajois Narasipur, Omkar; Kalegowda, Anand; Asokan, Sundarrajan

    2012-07-01

    The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.

  16. Proceedings of the meeting on few-body problems in high and medium energy physics

    International Nuclear Information System (INIS)

    The study meeting on few-body problems in high and medium energy physics was held from October 3 to 5, 1985, at National Laboratory for High Energy Physics. Two meetings were held already concerning few body physics, but most of the participants were theorists. In this meeting, high priority was put on the attendance of experimental physicists. As a bridge between particle and nuclear physics, the few body physics in an intermediate energy region has become important recently. The topics in this meeting were meson spectroscopy, baryonium, kaon physics, muonic fusion, dibaryon, φNN system, quarks and skyrmions, NN correlation, and symmetry test in few-body system. The gists of the papers presented are collected in this book. (Kako, I.)

  17. Energy expenditure and substrate utilization during whole body vibration

    OpenAIRE

    Ravena Santos Raulino; Fernanda Meira de Aguiar; Núbia Carelli Pereira de Avelar; Isabela Gomes Costa; Jacqueline da Silva Soares; Ana Cristina Rodrigues Lacerda

    2015-01-01

    INTRODUCTION AND OBJECTIVE: the aim of this study was to investigate whether the addition of vibration during interval training would raise oxygen consumption VO2 to the extent necessary for weight management and to evaluate the influence of the intensity of the vibratory stimulus for prescribing the exercise program in question. METHODS: VO2, measured breath by breath, was evaluated at rest and during the four experimental conditions to determine energy expenditure, metabolic equivalent MET,...

  18. Contribution of anaerobic energy expenditure to whole body thermogenesis

    OpenAIRE

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic he...

  19. Contribution of anaerobic energy expenditure to whole body thermogenesis

    OpenAIRE

    Scott Christopher B

    2005-01-01

    Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and a...

  20. Wearable thermoelectric generator for harvesting human body heat energy

    Science.gov (United States)

    Kim, Min-Ki; Kim, Myoung-Soo; Lee, Seok; Kim, Chulki; Kim, Yong-Jun

    2014-10-01

    This paper presents the realization of a wearable thermoelectric generator (TEG) in fabric for use in clothing. A TEG was fabricated by dispenser printing of Bi0.5Sb1.5Te3 and Bi2Se0.3Te2.7 in a polymer-based fabric. The prototype consisted of 12 thermocouples connected by conductive thread over an area of 6 × 25 mm2. The device generated a power of 224 nW for a temperature difference of 15 K. When the TEG was used on the human body, the measured output power was 224 nW in an ambient temperature of 5 °C. The power of the TEG was affected by the movement of the wearer. A higher voltage was maintained while walking than in a stationary state. In addition, the device did not deform after it was bent and stretched several times. The prospect of using the TEG in clothing applications was confirmed under realistic conditions.

  1. Wearable thermoelectric generator for harvesting human body heat energy

    International Nuclear Information System (INIS)

    This paper presents the realization of a wearable thermoelectric generator (TEG) in fabric for use in clothing. A TEG was fabricated by dispenser printing of Bi0.5Sb1.5Te3 and Bi2Se0.3Te2.7 in a polymer-based fabric. The prototype consisted of 12 thermocouples connected by conductive thread over an area of 6 × 25 mm2. The device generated a power of 224 nW for a temperature difference of 15 K. When the TEG was used on the human body, the measured output power was 224 nW in an ambient temperature of 5 °C. The power of the TEG was affected by the movement of the wearer. A higher voltage was maintained while walking than in a stationary state. In addition, the device did not deform after it was bent and stretched several times. The prospect of using the TEG in clothing applications was confirmed under realistic conditions. (paper)

  2. Energy-Based Cooperative Spectrum Sensing of SC-FDMA Systems

    Directory of Open Access Journals (Sweden)

    Fucheng Yang

    2014-07-01

    Full Text Available In this paper, we propose a frequency-hopping M-ary frequency-shift keying spectrum sensing network (FH/MFSK SSN for identifying the on/off states of the users supported by a single-carrier frequency-division multiple assess (SC-FDMA primary radio (PR system. Specifically, the spectrums of an uplink interleaved frequency-division multiple access (IFDMA PR system are monitored by a number of cognitive radio sensing nodes (CRSNs. These CRSNs distributedly detect the on/off states of users based on one of the three energy detection schemes. After the local spectrum sensing, the CRSNs transmit their detected states to a fusion centre (FC with the aid of FH/MFSK techniques. At the FC, the on/off states of the users supported the IFDMA PR system are finally classified according to either the conventional equal-gain combining (EGC scheme or the novel erasure-supported EGC (ES-EGC scheme. In this way, the on/off information about the spectrums occupied by an IFDMA PR systemcan be obtained, so that they can be exploited by a cognitive radio (CR system. For local spectrum sensing, in this paper, we consider four synchronisation scenarios concerning the synchronisation between the received IFDMA signals and the CRSNs. The performance of the FH/MFSK SSN associated with various schemes is investigated by simulations. Our studies show that the FH/MFSK SSN constitutes one of the highly reliable spectrum sensing schemes, which are capable of exploiting both the space diversity provided by local CRSNs and the frequency diversity provided by the subcarriers of IFDMA system.

  3. Many-body Systems Interacting via a Two-body Random Ensemble average energy of each angular momentum

    CERN Document Server

    Zhao, Y M; Yoshinaga, N

    2002-01-01

    In this paper, we discuss the regularities of energy of each angular momentum $I$ averaged over all the states for a fixed angular momentum (denoted as $\\bar{E}_I$'s) in many-body systems interacting via a two-body random ensemble. It is found that $\\bar{E}_I$'s with $I \\sim I_{min}$ (minimum of $I$) or $I_{max}$ have large probabilities (denoted as ${\\cal P}(I)$) to be the lowest, and that ${\\cal P}(I)$ is close to zero elsewhere. A simple argument based on the randomness of the two-particle cfp's is given. A compact trajectory of the energy $\\bar{E}_I$ vs. $I(I+1)$ is found to be robust. Regular fluctuations of the $P(I)$ (the probability of finding $I$ to be the ground state) and ${\\cal P}(I)$ of even fermions in a single-$j$ shell and boson systems are found to be reverse, and argued by the dimension fluctuation of the model space. Other regularities, such as why there are 2 or 3 sizable ${\\cal P}(I)$'s with $I\\sim I_{min}$ and ${\\cal P}(I) \\ll {\\cal P}(I_{max})$'s with $I\\sim I_{max}$, why the coefficien...

  4. User Experiences While Playing Dance-Based Exergames and the Influence of Different Body Motion Sensing Technologies

    OpenAIRE

    Thin, Alasdair G.; Craig Brown; Paul Meenan

    2013-01-01

    Dance Dance Revolution is a pioneering exergame which has attracted considerable interest for its potential to promote regular exercise and its associated health benefits. The advent of a range of different consumer body motion tracking video game console peripherals raises the question whether their different technological affordances (i.e., variations in the type and number of body limbs that they can track) influence the user experience while playing dance-based exergames both in terms of ...

  5. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    Science.gov (United States)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  6. Energy scaling of cold atom-atom-ion three-body recombination

    CERN Document Server

    Krükow, Artjom; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H

    2015-01-01

    We study three-body recombination of Ba$^+$ + Rb + Rb in the mK regime where a single $^{138}$Ba$^{+}$ ion in a Paul trap is immersed into a cloud of ultracold $^{87}$Rb atoms. We measure the energy dependence of the three-body rate coefficient $k_3$ and compare the results to the theoretical prediction, $k_3 \\propto E_{\\textrm{col}}^{-3/4}$ where $E_{\\textrm{col}}$ is the collision energy. We find agreement if we assume that the non-thermal ion energy distribution is determined by at least two different micro-motion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed into an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s-wave regime.

  7. Multicriteria analysis for sources of renewable energy using data from remote sensing

    Science.gov (United States)

    Matejicek, L.

    2015-04-01

    Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from remote sensing can provide information for multicriteria analysis for sources of renewable energy. Advanced land cover quantification makes it possible to search for suitable sites. Multicriteria analysis, together with other data, is used to determine the energy potential and socially acceptability of suggested locations. The described case study is focused on an area of surface coal mines in the northwestern region of the Czech Republic, where the impacts of surface mining and reclamation constitute a dominant force in land cover changes. High resolution satellite images represent the main input datasets for identification of suitable sites. Solar mapping, wind predictions, the location of weirs in watersheds, road maps and demographic information complement the data from remote sensing for multicriteria analysis, which is implemented in a geographic information system (GIS). The input spatial datasets for multicriteria analysis in GIS are reclassified to a common scale and processed with raster algebra tools to identify suitable sites for sources of renewable energy. The selection of suitable sites is limited by the CORINE land cover database to mining and agricultural areas. The case study is focused on long term land cover changes in the 1985-2015 period. Multicriteria analysis based on CORINE data shows moderate changes in mapping of suitable sites for utilization of selected sources of renewable energy in 1990, 2000, 2006 and 2012. The results represent map layers showing the energy potential on a scale of a few preference classes (1-7), where the first class is linked to minimum preference and the last class to maximum preference. The attached histograms show the moderate variability of preference classes due to land cover changes caused by mining activities. The results also show a slight increase in the more

  8. Measurement of body composition in cats using computed tomography and dual energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Buelund, Lene E; Nielsen, Dorte H; McEvoy, Fintan;

    2011-01-01

    Dual energy X-ray absorptiometry (DEXA) is a reference method for assessing body composition but is seldom `accessible in veterinary settings. Computed tomography (CT) can provide similar body composition estimates and we propose that it can be used in body composition studies in animals. We...... compared CT and DEXA data from 73 healthy adult neutered domestic cats. Three approaches for measuring adipose tissue percentage from full-body CT scans were explored. By examining the frequency distribution of voxels by Hounsfield unit (HU) value, it is possible to calculate a fat index (Fat...... and in one of the methods, the difference between the values from the two modalities was proportional to their mean. By using CT, it is possible to obtain body composition estimates that are in close agreement with those available using DEXA. While the significance of individual Fat% measurements obtained...

  9. Water quality monitoring in a slightly-polluted inland water body through remote sensing - Case study of the Guanting Reservoir in Beijing,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This study focused on the water quality of the Guanting Reservoir,a possible auxiliary drinking water source for Beijing.Through a remote sensing (RS)approach and using Landsat 5 Thematic Mapper (TM)data,water quality retrieval models were established and analyzed for eight common water quality variables,including algae content,turbidity,and concentrations of chemical oxygen demand,total nitrogen,ammonia nitrogen,nitrate nitrogen,total phosphorus,and dissolved phosphorus.The results show that there exists a statistically significant correlation between each water quality variable and remote sensing data in a slightly-polluted inland water body with fairly weak spectral radiation.With an appropriate method of sampling pixel digital numbers and multiple regression algorithms,retrieval of the algae content,turbidity,and nitrate nitrogen concentration was achieved within 10% mean relative error,concentrations of total nitrogen and dissolved phosphorus within 20%,and concentrations of ammonia nitrogen and total phosphorus within 30%.On the other hand,no effective retrieval method for chemical oxygen demand was found.These accuracies were acceptable for the practical application of routine monitoring and early warning on water quality safety with the support of precise traditional monitoring.The results show that performing the most traditional routine monitoring of water quality by RS in relatively clean inland water bodies is possible and effective.

  10. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    Science.gov (United States)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  11. WindScanner.eu - a new Remote Sensing Research Infrastructure for On- and Offshore Wind Energy

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Siggaard Knudsen, Søren; Sjöholm, Mikael;

    2012-01-01

    disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D Wind...... and a rotor diameter of 154 meters; hence its blade tips reaches almost 200 meters into the sky. The wind speed profiles over the rotor planes are consequently no longer representatively measured by a single cup anemometer at hub height from a nearby met-mast; power curve assessment as well as turbine...... control call for multi-height multi point measurement strategies of wind speed and wind shear within the turbines entire rotor plane. The development of our new remote sensing-based WindScanner.dk facility as well as the first measurement results obtained to date are here presented, including a first wind...

  12. The Effect of Accumulation of Excess Energy of a Body in Gravitational Compression

    CERN Document Server

    Gershtein, S S; Mestvirishvili, M A

    2014-01-01

    It is shown that a gravitational compression of a spherical body results in an infinite growth of the energy of a body as its radius comes close to $GM/c^2$. This gives rise to a negative defect of mass and, due to an instability, to an expansion or to an explosion. A rigorous proof of the above statement can be obtained within the General Relativity in the harmonic coordinates.

  13. Weighted Energy-Balanced Efficient Routing Algorithm for Wireless Body Area Network

    OpenAIRE

    Zhuoming Li; Zhenyu Xu; Shengge Mao; Xing Tong; Xuejun Sha

    2016-01-01

    Wireless Body Area Network (WBAN) is a small-scaled sensor network consisting of a series of medical devices attributed to, around, or implanted in a human body, providing continuous monitoring by different sensors to collect vital signals or motion and GPS. This paper proposes an effective routing algorithm to balance the energy consumption within a WBAN in order to prolong the overall lifetime of the network, called dynamic routing algorithm (DRA) and its improved version based on a multipa...

  14. Numerical and experimental investigation of a hinged 5-body wave energy converter

    OpenAIRE

    Rogne, Øyvind Ygre

    2014-01-01

    This thesis deals with modeling and simulation of a hinged 5 body wave energy converter (WEC), including verification by comparison with experimental results. The WEC consists of a shallow draft cylindrical center floater hinged to 4 semisubmerged spherical buoys. One important design feature is that the hinges are submerged such that the buoys will move in a diagonal-like mode of motion.In the first part of the thesis, the linear theory of power absorption by oscillating bodies is reviewed, ...

  15. Energy Efficient Aggregation and Reliable Communication for Wireless Body Area Networks (WBAN)

    OpenAIRE

    Venkatasubramanian Sivaprasatham; Dr. Jothi venkateswaran; Dr. Hafidh Taher Ba Omar

    2014-01-01

    In wireless body area networks (WBAN), the data loss, security and reliability requirements are not handled in the existing literature works. This necessitates the technique that deals with slot allocation scheme, delay and other performance metrics. In order to overcome this issue, in this paper, we propose an energy efficient aggregation and reliable communication for Wireless Body Area Networks (WBAN). Initially, the aggregator nodes are chosen based on the nodes connectivity. During the d...

  16. Liquid versus solid energy intake in relation to body composition among Australian children

    DEFF Research Database (Denmark)

    Zheng, M; Allman-Farinelli, M; Heitmann, B L;

    2014-01-01

    types on changes in body mass index (BMI) Z-score from ages 8 to 11.5 years (△BMIz8-11.5y ) and percentage body fat (%BF) at age 11.5 years (%BF11.5y ). Substitution models were used to evaluate the effects of substituting other beverage types for sugar-sweetened beverages (SSB). RESULTS: Liquid energy...

  17. Energy-Based Collaborative Spectrum Sensing for Cognitive UWB Impulse Radio

    Institute of Scientific and Technical Information of China (English)

    Wei-Chiang Wu; Chun-Te Wu

    2015-01-01

    This paper focuses on the issue of collaborative spectrum sensing in cognitive ultra wideband (CUWB) impulse radio. We employ energy-based signal detection method and apply the Neyman-Pearson (NP) decision rule to determine the optimum threshold. Two cooperative spectrum sensing schemes are developed in this paper. The decision fusion scheme is based on hard decision, in which each cooperating cognitive user (CU) sends its own local decision to the fusion center (FC). The FC then makes a final decision according to the majority voting rule. Alternatively, the data fusion scheme is based on soft decision, in which each local CU sends its observed value directly to the FC. The FC combines these values, compares to a threshold and then makes the final decision. The performances of both schemes are studied by using analytical tools and computer simulations. The receiver operating characteristics (ROC), which reveal the probability of detection versus false-alarm curve, are employed to evaluate the system performance under different scenarios.Simulation results demonstrate that the data fusion scheme outperforms the decision fusion scheme and verify that the collaborative spectrum sensing has practical importance in CUWB networks.

  18. Combined diversity and improved energy detection in cooperative spectrum sensing with faded reporting channels

    Directory of Open Access Journals (Sweden)

    Srinivas Nallagonda

    2016-04-01

    Full Text Available In this paper we evaluate the performance of cooperative spectrum sensing (CSS where each cognitive radio (CR employs an improved energy detector (IED with multiple antennas and uses selection combining (SC for detecting the primary user (PU in noisy and faded sensing (S channels. We derive an expression for the probability of false alarm and expressions for probability of missed detection in non-faded (AWGN and Rayleigh faded sensing environments in terms of cumulative distribution function (CDF. Each CR transmits its decision about PU via noisy and faded reporting (R channel to fusion center (FC. In this paper we assume that S-channels are noisy and Rayleigh faded while several cases of fading are considered for R-channels such as: (i Hoyt (or Nakagami-q, (ii Rayleigh, (iii Rician (or Nakagami-n, and (iv Weibull. A Binary Symmetric channel (BSC with a fixed error probability (r in the R-channel is also considered. The impact of fading in R-channel, S-channel and several network parameters such as IED parameter, normalized detection threshold, number of CRs, and number of antennas on missed detection and total error probability is assessed. The effects of Hoyt, Rician, and Weibull fading parameters on overall performance of IED-CSS are also highlighted.

  19. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    Science.gov (United States)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  20. Mean-field dynamics versus two-body collisions at intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Nucleus-nucleus collisions in the energy range from 10 MeV/u to 150 MeV/u are investigated in the framework of the Wigner transformed von-Neumann equation on the level of the one-body density matrix. Two-body collisions permitted by the Pauli principle are included via a collision term of the Uehling-Uhlenbeck type. The time evolution of the phase-space density is studied in detail for central collisions of 40Ca + 40Ca within a time-dependent finite two-center shell model. Special emphasis is ascribed to high momentum components in beam direction which are generated by the time-dependent mean field. These high momentum components, essentially decaying by two-body collisions, are energetic enough to allow for pion production already at 20 MeV/u laboratory bombarding energies in case of heavy nuclei. The competition between one-body and two-body effects is investigated with respect to decay times for primary distorted momentum distributions. Linear momentum transfer by one-body (wall) and two-body collisions turns out to be strongly correlated with nonequilibrium light particle emission in terms of Fermi-jets as well as scattered energetic nucleons. Double differential preequilibrium neutron spectra d2N/dTHETAdE in coincidence with central collisions of 40Ca + 40Ca at 20 MeV/u are calculated for primary and secondary emission processes. (orig.)

  1. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    International Nuclear Information System (INIS)

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery

  2. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M; Suh, T [Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Han, B; Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); Jenkins, C [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); Department of Mechanical Engineering, Stanford University, Palo Alto, CA (United States)

    2015-06-15

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.

  3. Optimal Configuration of Large Arrays of Floating Bodies for Ocean Wave Energy Extraction

    Science.gov (United States)

    Tokic, Grgur; Yue, Dick K. P.

    2015-11-01

    We study the performance of large (O (100)) wave energy converter (WEC) arrays that are used for ocean energy harvesting. We developed a fast computational algorithm based on the multiple scattering framework that is capable of handling large arrays of different configurations (general finite-size arrays, periodic arrays, periodic arrays of subarrays); for axisymmetric bodies the algorithm imposes no constraints on the body-size-to-wavelength ratio or on the inter-body spacings. Using this fast algorithm, we optimize the spatial configurations of arrays of different types and with increasing number of bodies (up to 400), with the goal of maximizing energy extraction. The results show that employing non-uniform spacings between the bodies in ordered and non-ordered arrays can increase the array gain several times. This holds for body resonant and near-resonant frequencies, as well as for the full spectrum cases. The optimal configurations are analyzed from a physical standpoint and compared to other structured arrays in physics. These results give a guideline on the possible future design of WEC arrays.

  4. Body mass, energy intake, and water consumption of rats and humans during space flight

    Science.gov (United States)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  5. The energy balance of wind waves and the remote sensing problem

    Science.gov (United States)

    Hasselmann, K.

    1972-01-01

    Measurements of wave growth indicate an energy balance of the wave spectrum governed primarily by input from the atmosphere, nonlinear transfer to shorter and longer waves, and advection. The pronounced spectral peak and sharp low frequency cut-off characteristic of fetch-limited spectra are explained as a self-stabilizing feature of the nonlinear wave-wave interactions. The momentum transferred from the atmosphere to the wind waves accounts for a large part of the wind drag. These findings are relevant for remote microwave sensing of the sea surface by backscatter and passive radiometry methods.

  6. Total energy expenditure and body composition in two free-living sympatric lemurs.

    Directory of Open Access Journals (Sweden)

    Bruno Simmen

    Full Text Available BACKGROUND: Evolutionary theories that account for the unusual socio-ecological traits and life history features of group-living prosimians, compared with other primates, predict behavioral and physiological mechanisms to conserve energy. Low energy output and possible fattening mechanisms are expected, as either an adaptive response to drastic seasonal fluctuations of food supplies in Madagascar, or persisting traits from previously nocturnal hypometabolic ancestors. Free ranging ring-tailed lemurs (Lemur catta and brown lemurs (Eulemur sp. of southern Madagascar have different socio-ecological characteristics which allow a test of these theories: Both gregarious primates have a phytophagous diet but different circadian activity rhythms, degree of arboreality, social systems, and slightly different body size. METHODOLOGY AND RESULTS: Daily total energy expenditure and body composition were measured in the field with the doubly labeled water procedure. High body fat content was observed at the end of the rainy season, which supports the notion that individuals need to attain a sufficient physical condition prior to the long dry season. However, ring-tailed lemurs exhibited lower water flux rates and energy expenditure than brown lemurs after controlling for body mass differences. The difference was interpreted to reflect higher efficiency for coping with seasonally low quality foods and water scarcity. Daily energy expenditure of both species was much less than the field metabolic rates predicted by various scaling relationships found across mammals. DISCUSSION: We argue that low energy output in these species is mainly accounted for by low basal metabolic rate and reflects adaptation to harsh, unpredictable environments. The absence of observed sex differences in body weight, fat content, and daily energy expenditure converge with earlier investigations of physical activity levels in ring-tailed lemurs to suggest the absence of a relationship

  7. Proximate body composition and energy content of plaice ( Pleuronectes platessa) in relation to the condition factor

    Science.gov (United States)

    Costopoulos, C. G.; Fonds, M.

    Length, wet weight, dry weight, and the content of lipid, ash and protein of young plaice were determined. The energy content of the fish was estimated by multiplying lipid and protein content by the commonly used calorific equivalents. The data were sorted from low to high condition factor of the fish and grouped according to condition factor (K = 100·W·L -3) into 8 condition groups. Mean values of percentage body composition and energy content were calculated for each condition group. Equations giving the best fit between condition factor and the parameters of body composition and energy content are presented. From the decrease in condition factor in fasting fish the relative losses of lipid and protein energy are calculated. The accuracy of equations for the calculation of energy content of plaice from condition factor is discussed.

  8. Associations between eating frequency and energy intake, energy density, diet quality and body weight status in adults from the USA.

    Science.gov (United States)

    Zhu, Yong; Hollis, James H

    2016-06-01

    To investigate associations between eating frequency and energy intake, energy density, diet quality and body weight status in adults from the USA, combined data from the 2009-2010 and 2011-2012 National Health and Nutrition Examination Survey (NHANES) were used in this study. The first 24-h dietary recall data from eligible participants (4017 men and 3774 women) were used to calculate eating frequency, as well as energy intake, energy density and the Healthy Eating Index 2010 (HEI-2010), as a measure of diet quality. BMI and waist circumference were obtained from the NHANES body measures data. Adjusting for confounding socio-demographic characteristics and lifestyle factors, a higher eating frequency was significantly associated with higher energy intake in both men and women (both Peating frequency was also significantly associated with lower energy density in both men and women, regardless of whether beverage or water intake was included in the calculation of energy density (all Peating frequency and the HEI-2010 total score in both men and women (both PEating frequency was inversely associated with BMI in women (P=0·003), as well as waist circumference in both men (P=0·032) and women (P=0·010). Results from the present study suggested that adults with a higher eating frequency in the USA had a healthier diet with lower energy density and better diet quality, and eating frequency was inversely associated with body weight status. PMID:27109636

  9. Integration of body temperature into the analysis of energy expenditure in the mouse

    Directory of Open Access Journals (Sweden)

    Gustavo Abreu-Vieira

    2015-06-01

    Conclusions: At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  10. Soure and Transmission Control for Wireless Visual Sensor Networks with Compressive Sensing and Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Lei You

    2013-05-01

    Full Text Available The lifetime of the emerging Wireless visual sensor network (WVSN is seriously dependent on the energy shored in the battery of its sensor nodes as well as the compression and resource allocation scheme. In this paper, the energy harvesting technology was adopted to provide almost perpetual operation of the WVSN and compressed-sensing-based encoding was used to decrease the power consumption of acquiring visual information at the front-end sensors. A Dynamic Source and Transmission Control Algorithm (DSTCA was proposed to jointly determine source rate, source energy consumption, and the allocation of transmission energy and available bandwidth under energy harvesting and queue stability constraints. A virtual energy queue was introduced to control the resource allocation and the measurement rate in each time slot. The algorithm can guarantee the stability of the visual data queues in all sensors and achieve near-optimal performance. The distributed implementation of the proposed algorithm was discussed and the achievable performance theorem was also given.

  11. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children

    DEFF Research Database (Denmark)

    Tompuri, Tuomo T; Lakka, Timo A; Hakulinen, Mikko;

    2015-01-01

    We compared InBody720 segmental multifrequency bioimpedance analysis (SMF-BIA) with Lunar Prodigy Advance dual-energy X-ray absorptiometry (DXA) in assessment of body composition among 178 predominantly prepubertal children. Segmental agreement analysis of body compartments was carried out......, and inter-relationships of anthropometric and other measures of body composition were defined. Moreover, the relations of different reference criteria for excess body fat were evaluated....

  12. Modeling of a honeycomb-shaped pyroelectric energy harvester for human body heat harvesting

    Science.gov (United States)

    Kim, Myoung-Soo; Jo, Sung-Eun; Ahn, Hye-Rin; Kim, Yong-Jun

    2015-06-01

    Pyroelectric conversion can be used for thermal energy harvesting in lieu of thermoelectric conversion. In the case of human body energy harvesting, the general pyroelectric energy harvester (PEH) cannot be applied because the weak body heat can hardly penetrate the protecting layer to reach the pyroelectric material. This paper presents the realization of a honeycomb-shaped PEH (H-PEH) and a modeling method of the electrode and hole areas. The fabricated H-PEH successfully generated electrical energy using human body heat. The H-PEH with a 1:1.5 electrode-and-hole area ratio showed the best performance. To verify the human energy harvesting, we evaluated the characteristics of conventional PEH and H-PEH when body heat was used as a heat source. The maximum power of the H-PEH was 0.06 and 0.16 μW at wind velocities of 2 and 4 m s-1, respectively. These output power values of the H-PEH were 200 and 224% larger than those of the PEH, respectively, according to the wind velocity.

  13. Measurement of body composition as a surrogate evaluation of energy balance in obese patients.

    Science.gov (United States)

    Rotella, Carlo Maria; Dicembrini, Ilaria

    2015-03-26

    In clinical practice obesity is primarily diagnosed through the body mass index. In order to characterize patients affected by obesity the use of traditional anthropometric measures appears misleading. Beyond the body mass index, there are overwhelming evidences towards the relevance of a more detailed description of the individual phenotype by characterizing the main body components as free-fat mass, muscle mass, and fat mass. Among the numerous techniques actually available, bioelectrical impedance analysis seems to be the most suitable in a clinical setting because it is simple, inexpensive, noninvasive, and highly reproducible. To date, there is no consensus concerning the use of one preferred equation for the resting energy expenditure in overweight and/or obese population. Energy restriction alone is an effective strategy to achieve an early and significant weight loss, however it results in a reduction of both fat and lean mass therefore promoting or aggravating an unfavourable body composition (as sarcobesity) in terms of mortality and comorbidities. Therefore the implementation of daily levels of physical activity should be simultaneously promoted. The major role of muscle mass in the energy balance has been recently established by the rising prevalence of the combination of two condition as sarcopenia and obesity. Physical exercise stimulates energy expenditure, thereby directly improving energy balance, and also promotes adaptations such as fiber type, mitochondrial biogenesis, improvement of insulin resistance, and release of myokines, which may influence different tissues, including muscle. PMID:25825693

  14. Power Versus Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    Science.gov (United States)

    Zhang, Yanyan; Han, Weijia; Li, Di; Zhang, Ping; Cui, Shuguang

    2015-12-01

    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem.

  15. Energy Efficiency and SINR Maximization Beamformers for Spectrum Sharing With Sensing Information

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-09-01

    In this paper, we consider a cognitive radio multi-input-multi-output environment, in which we adapt our beamformer to maximize both energy efficiency (EE) and signal-to-interference-plus-noise ratio (SINR) metrics. Our design considers an underlaying communication using adaptive beamforming schemes combined with sensing information to achieve optimal energy-efficient systems. The proposed schemes maximize EE and SINR metrics subject to cognitive radio and quality-of-service constraints. The analysis of the proposed schemes is classified into two categories based on knowledge of the secondary-transmitter-to-primary-receiver channel. Since the optimizations of EE and SINR problems are not convex problems, we transform them into a standard semidefinite programming (SDP) form to guarantee that the optimal solutions are global. An analytical solution is provided for one scheme, while the second scheme is left in a standard SDP form. Selected numerical results are used to quantify the impact of the sensing information on the proposed schemes compared to the benchmark ones.

  16. Using remote sensing data for exploitation of integrated renewable energy at coastal site in South Italy

    Science.gov (United States)

    Calaudi, Rosamaria; Lo Feudo, Teresa; Calidonna, Claudia Roberta; Sempreviva, Anna Maria

    2016-04-01

    Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from Remote Sensing can provide detailed information for analysis for sources of renewable energy and to determine the potential energy and socially acceptability of suggested location. Coastal sites of Southern Italy have the advantage of favorable climatic conditions to use renewable energy, such us cloud free days and local breeze phenomena. Many ports are located where they have opportunities for exploitation of renewable energy, by using existing port area and by taking advantage of their coastal locations. Policies of European-Committee and Global-Navigation-PIANC for a better use of energy and an efficient supply from renewable sources are also focused on the construction of port facilities in zero emissions. Using data from Remote Sensing, can reduce the financial resources currently required for finding and assessing suitable areas, we defined an integrated methodology for potential wind and solar energy in harbor areas. In this study we compared the hourly solar power energy using MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared) data products DSSF (Down-welling Surface Short-wave-Flux), and PV-Plant measurements with Nominal Power Peak of 19,85 kWp. The PV Plant is situated at a coastal site in Calabrian region, located near Vibo Valentia harbor area. We estimate potential energy by using input solar radiation of Satellite data, with same characteristics of the PV-plant. The RMSE and BIAS for hourly averaged solar electrical reproducibility are estimated including clear and sky conditions. Comparison between energy reproducibility by using DSSF product and PV-plant measurements, made over the period October 2013-June 2014, showed a good agreement in our costal site and generally overestimate (RMSE(35W/m2) and BIAS(4W/m2)) electrical reproducibility from a PV-plant. For wind resource

  17. On the motion of a three-body system on hypersurface of proper energy

    International Nuclear Information System (INIS)

    Based on the fact that for a Hamiltonian system there exists equivalence between phase trajectories and geodesic trajectories on the Riemannian manifold M (the Lagrangian surface of the body system), the classical three-body problem is formulated in the framework of six ordinary differential equations (ODEs) of the second order on the energy surface of the body system. It is shown that in the case when the total interaction potential of the body system depends on the relative distances between particles, the three of six geodesic equations describing rotations of formed by three bodies triangle are solved exactly. Using this fact, it is shown that the three-body problem can be described in the limits of three nonlinear ODEs of canonical form, which in phase space is equivalent to the autonomous sixth-order system. The equations of geodesic deviations on the manifold R3 (the space of relative distances between particles) are derived in an explicit form. A system of algebraic equations for finding the homographic solutions of a restricted three-body problem is obtained. The initial and asymptotic conditions for solution of the classical scattering problem are found

  18. Neonatal anthropometrics and body composition in obese children investigated by dual energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Lausten-Thomsen, Ulrik; Nielsen, Tenna Ruest Haarmark; Thagaard, Ida Näslund;

    2014-01-01

    index (BFMI), and fat free mass index (FFMI) in obese children and the preceding in utero conditions expressed by birth weight, birth length, and birth weight for gestational age. The study cohort consisted of 776 obese Danish children (median age 11.6 years, range 3.6-17.9) with a mean Body Mass Index......UNLABELLED: Epidemiological and animal studies have suggested an effect of the intrauterine milieu upon the development of childhood obesity. This study investigates the relationship between body composition measured by dual energy X-ray absorptiometry expressed as body fat percent, body fat mass...... obesity treatment to be significantly correlated with both birth weight and birth weight for gestational age. CONCLUSION: These results indicate a prenatal influence upon childhood obesity. Although there are currently no sufficient data to suggest any recommendations to pregnant women, it is possible...

  19. Effect of local energy supply to a hypersonic flow on the drag of bodies with different nose bluntness

    International Nuclear Information System (INIS)

    Parameters of the axisymmetric flow around bodies with different bluntness are compared in the case of constant energy supply to the main hypersonic flow. Flow structures, drag coefficients, and expenditure of energy on overcoming drag are analyzed with the effect of thermal energy on the flow taken into account for different bodies with equal volume

  20. The central nervous norepinephrine network links a diminished sense of emotional well-being to an increased body weight

    Science.gov (United States)

    Melasch, J; Rullmann, M; Hilbert, A; Luthardt, J; Becker, GA; Patt, M; Villringer, A; Arelin, K; Meyer, PM; Lobsien, D; Ding, Y-S; Müller, K; Sabri, O; Hesse, S; Pleger, B

    2016-01-01

    OBJECTIVES The neurobiological mechanisms linking obesity to emotional distress remain largely undiscovered. METHODS In this pilot study, we combined positron emission tomography, using the norepinephrine transporter (NET) tracer [11C]-O-methylreboxetine, with functional connectivity magnetic resonance imaging, the Beck depression inventory (BDI), and the impact of weight on quality of life-Lite questionnaire (IWQOL–Lite), to investigate the role of norepinephrine in the severity of depression (BDI), as well as in the loss of emotional well-being with body weight (IWQOL–Lite). RESULTS In a small group of lean-to-morbidly obese individuals (n = 20), we show that an increased body mass index (BMI) is related to a lowered NET availability within the hypothalamus, known as the brain’s homeostatic control site. The hypothalamus displayed a strengthened connectivity in relation to the individual hypothalamic NET availability to the anterior insula/frontal operculum, as well as the medial orbitofrontal cortex, assumed to host the primary and secondary gustatory cortex, respectively (n = 19). The resting-state activity in these two regions was correlated positively to the BMI and IWQOL–Lite scores, but not to the BDI, suggesting that the higher the resting-state activity in these regions, and hence the higher the BMI, the stronger the negative impact of the body weight on the individual’s emotional well-being was. CONCLUSIONS This pilot study suggests that the loss in emotional well-being with weight is embedded within the central norepinephrine network. PMID:26620766

  1. Prediction-Based Data Transmission for Energy Conservation in Wireless Body Sensors

    CERN Document Server

    Xia, Feng; Yao, Lin; Sun, Weifeng; Li, Mingchu

    2009-01-01

    Wireless body sensors are becoming popular in healthcare applications. Since they are either worn or implanted into human body, these sensors must be very small in size and light in weight. The energy consequently becomes an extremely scarce resource, and energy conservation turns into a first class design issue for body sensor networks (BSNs). This paper deals with this issue by taking into account the unique characteristics of BSNs in contrast to conventional wireless sensor networks (WSNs) for e.g. environment monitoring. A prediction-based data transmission approach suitable for BSNs is presented, which combines a dual prediction framework and a low-complexity prediction algorithm that takes advantage of PID (proportional-integral-derivative) control. Both the framework and the algorithm are generic, making the proposed approach widely applicable. The effectiveness of the approach is verified through simulations using real-world health monitoring datasets.

  2. Summer declines in activity and body temperature offer polar bears limited energy savings

    Science.gov (United States)

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  3. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. PMID:26185248

  4. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    Science.gov (United States)

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree

  5. Regulation of Energy Balance and Body Weight by the Brain: A Distributed System Prone to Disruption

    OpenAIRE

    Faulconbridge, Lucy F.; Hayes, Matthew R.

    2011-01-01

    The central nervous system control of energy balance is a multi-determined process involving a distributed and redundant network of communication that exists between various brain regions and the body. The brain continuously receives, processes, and issues autonomic and behavioral output commands to respond to internal signals of energy availability. These signals are communicated to the brain either through a humoral pathway via the circulatory system, or through neuronal communication via t...

  6. RE-ATTEMPT: A New Energy-Efficient Routing Protocol for Wireless Body Area Sensor Networks

    OpenAIRE

    2014-01-01

    Modern health care system is one of the most popular Wireless Body Area Sensor Network (WBASN) applications and a hot area of research subject to present work. In this paper, we present Reliability Enhanced-Adaptive Threshold based Thermal-unaware Energy-efficient Multi-hop ProTocol (RE-ATTEMPT) for WBASNs. The proposed routing protocol uses fixed deployment of wireless sensors (nodes) such that these are placed according to energy levels. Moreover, we use direct communication for the deliver...

  7. Nuts Improve Diet Quality Compared to Other Energy-Dense Snacks While Maintaining Body Weight

    OpenAIRE

    Conor Delahunty; Andrew Gray; Alexandra Chisholm; Siew Ling Tey; Rachel Brown

    2011-01-01

    Previous studies have reported that regular nut consumption reduces cardiovascular disease (CVD) risk and does not promote weight gain despite the fact that nuts are energy-dense. However, no studies have investigated the body composition of those regularly consuming nuts compared to similar intakes of other snacks of equal energy density. This parallel study (n = 118) examined the effects of providing daily portions (~1100 kJ/d) of hazelnuts, chocolate, or potato crisps compared to a control...

  8. Coboson many-body approach to the $N$-exciton ground-state energy

    OpenAIRE

    Shiau, Shiue-yuan; Chang, Yia-Chung; Combescot, Monique

    2015-01-01

    We derive the ground-state energy of $N$ composite bosons made of fermion pairs using the recently developed composite boson many-body formalism. We concentrate on the $N$-pair energy linear in density. We show that the scattering relevant for scattering length contains not only direct and exchange interaction scatterings but also the dimensionless "Pauli scattering" for fermion exchange in the absence of fermion-fermion interaction. Numerical resolution of the resulting "ladder" integral equ...

  9. Effects of Mooring Systems on the Performance of a Wave Activated Body Energy Converter

    DEFF Research Database (Denmark)

    Zanuttigh, Barbara; Angelelli, Elisa; Kofoed, Jens Peter

    Aim of this paper is to analyse the power and hydraulic performance of a floating Wave Energy Converter with the purpose at optimising its design for installation in arrays. The paper presents new experiments carried out in 1:30 scale on a single device of the Wave Activated Body type in the deep-water...

  10. Formation Mechanism and Binding Energy for Body-Centred Regular Octahedral Structure of Li7 Cluster

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The formation mechanism for the body-centred regular octahedral structure of Lh cluster is proposed. The curve of the total energy versus the separation R between the nucleus at tie centre and nuclei at the apexes for this structure of Lh has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-52.169 73 a.u. at R= 5.06a0. When R approaches infinity, the totai energy of seven lithium atoms has the value of -51.996 21 a.u. So the binding energy of Lh with respect to seven lithium atoms is 0.173 52 a.u. Therefore the binding energy per atom for hit is 0.024 79 a.u. or 0.674 eV, which is greater than the binding energy per atom of 0.453 eV for Lii, the binding energy per atom of 0.494 eV for Liz and the binding energy per atom of 0.632 eV for Li& calculated previously by us. This means that the Lh cluster may be formed stably in a body-centred regular octahedral structure with a greater binding energy.

  11. Formation Mechanism and Binding Energy for Body-Centred Regular Tetrahedral Structure of Li5

    Institute of Scientific and Technical Information of China (English)

    LI Ping; YANG Jian-Hui; GOU Qing-Quan

    2006-01-01

    The formation mechanism for the body-centred regular tetrahedral structure of Li5 cluster is proposed.The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li5 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics(MACQM). The result shows that the curve has a minimal energy of-37.2562 a.u. at R = 14.5a0. When R approaches infinity the total energy of five lithium atoms has the value of-37.1401 a.u. So the binding energy of Li5 with respect to five lithium atoms is the difference of 0.1161 a.u. for the above two energy values. Therefore the binding energy per atom for Li5 is 0.023 22 a.u., or 0.632 eV, which is greater than the binding energy per atom of 0.453 eV for Li2 and the binding energy per atom of 0.494 eV for Li3 calculated previously by us. This means that the Li5 cluster may be formed stably in a body-centred regular tetrahedral structure with a greater binding energy.

  12. Power allocation strategies to minimize energy consumption in wireless body area networks.

    Science.gov (United States)

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency. PMID:22254777

  13. Proposal for electron beam induced remote sensing x-ray fluorescence investigation of minor bodies in the solar system

    International Nuclear Information System (INIS)

    The composition of the surface material of minor bodies in the solar system can be measured using a semiconductor soft x-ray spectrometer mounted on the space probe. The characteristic x-rays are excited by a 20 kV low current electron beam of a space-born electron gun. After the description of the main features of the technique, estimations on its sensitivity, supported by a model experiment, are given. The minimum fly-by distance to apply this method can be estimated as a few kilometers. (author)

  14. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Directory of Open Access Journals (Sweden)

    Lia Toledo Moreira Mota

    2015-07-01

    Full Text Available Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%, which leads to a linear output response.

  15. User Experiences While Playing Dance-Based Exergames and the Influence of Different Body Motion Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Alasdair G. Thin

    2013-01-01

    Full Text Available Dance Dance Revolution is a pioneering exergame which has attracted considerable interest for its potential to promote regular exercise and its associated health benefits. The advent of a range of different consumer body motion tracking video game console peripherals raises the question whether their different technological affordances (i.e., variations in the type and number of body limbs that they can track influence the user experience while playing dance-based exergames both in terms of the level of physical exertion and the nature of the play experience. To investigate these issues a group of subjects performed a total of six comparable dance routines selected from commercial dance-based exergames (two routines from each game on three different consoles. The subjects’ level of physical exertion was assessed by measuring oxygen consumption and heart rate. They also reported their perceived level of exertion, difficulty, and enjoyment ratings after completing each dance routine. No differences were found in the physiological measures of exertion between the peripherals/consoles. However, there were significant variations in the difficulty and enjoyment ratings between peripherals. The design implications of these results are discussed including the tension between helping to guide and coordinate player movement versus offering greater movement flexibility.

  16. Support for solar energy: Examining sense of place and utility-scale development in California

    Energy Technology Data Exchange (ETDEWEB)

    Juliet E. Carlisle; Stephanie L. Kane; David Solan; Jeffrey C. Joe

    2015-07-01

    As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N = 594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudes toward solar energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.

  17. Effect of the amount of dietary energy on growth and body composition of Sabi lambs

    International Nuclear Information System (INIS)

    The effects of the amount of dietary energy on growth rate, food conversion efficiency and composition of the live body and of the carcass of 60 Sabi ram lambs were examined. The tails of the lambs were docked two days after birth. Six lambs (average 17 kg) were slaughtered at the start of the study to determine the initial body composition. The remaining (54) lambs were allocated to one of the three levels of feed (1.25, 1.50 and 2.00 times maintenance). Within each level of feeding, the animals were slaughtered at either 25, 30 or 35 kg liveweight. Carcass composition was determined by dissection of the slaughtered animals and body composition was predicted using regression equations derived from the in vivo dilution technique of tritiated water (TOH) injected into the animals. The average daily liveweight gain and feed conversion efficiency increased (p 0.05). Both total body water and total body fat were estimated more accurately when TOH space and liveweight were used jointly. TOH space alone overestimated total body water. (author). 24 refs, 1 fig., 8 tabs

  18. Dark energy in the three-body problem: Wide triple galaxies

    Science.gov (United States)

    Emel'yanov, N. V.; Kovalev, M. Yu.; Chernin, A. D.

    2016-04-01

    The structure and evolution of triple galaxy systems in the presence of the cosmic dark-energy background is studied in the framework of the three-body problem. The dynamics of wide triple systems are determinedmainly by the competition between the mutual gravitational forces between the three bodies and the anti-gravity created by the dark-energy background. This problem can be solved via numerical integration of the equations of motion with initial conditions that admit various types of evolutionary behavior of the system. Such dynamical models show that the anti-gravity created by dark energy makes a triple system less tightly bound, thereby facilitating its decay, with a subsequent transition to motion of the bodies away from each other in an accelerating regime with a linear Hubble-law dependence of the velocity on distance. The coefficient of proportionality between the velocity and distance in this asymptotic relation corresponds to the universal value H Λ = 61 km s-1 Mpc-1, which depends only on the dark-energy density. The similarity of this relation to the large-scale recession of galaxies indicates that double and triple galaxies represent elementary dynamical cells realizing the overall behavior of a system dominated by dark energy on their own scale, independent of their masses and dimensions.

  19. Link between Food Energy Density and Body Weight Changes in Obese Adults.

    Science.gov (United States)

    Stelmach-Mardas, Marta; Rodacki, Tomasz; Dobrowolska-Iwanek, Justyna; Brzozowska, Anna; Walkowiak, Jarosław; Wojtanowska-Krosniak, Agnieszka; Zagrodzki, Paweł; Bechthold, Angela; Mardas, Marcin; Boeing, Heiner

    2016-01-01

    Regulating the energy density of food could be used as a novel approach for successful body weight reduction in clinical practice. The aim of this study was to conduct a systemic review of the literature on the relationship between food energy density and body weight changes in obese adults to obtain solid evidence supporting this approach. The search process was based on the selection of publications in the English language listed in public databases. A meta-analysis was performed to combine individual study results. Thirteen experimental and observational studies were identified and included in the final analysis. The analyzed populations consist of 3628 individuals aged 18 to 66 years. The studies varied greatly in terms of study populations, study design and applied dietary approaches. The meta-analysis revealed a significant association between low energy density foods and body weight reduction, i.e., -0.53 kg when low energy density foods were eaten (95% CI: -0.88, -0.19). In conclusions, this study adds evidence which supports the energy density of food as a simple but effective measure to manage weight in the obese with the aim of weight reduction. PMID:27104562

  20. Link between Food Energy Density and Body Weight Changes in Obese Adults

    Science.gov (United States)

    Stelmach-Mardas, Marta; Rodacki, Tomasz; Dobrowolska-Iwanek, Justyna; Brzozowska, Anna; Walkowiak, Jarosław; Wojtanowska-Krosniak, Agnieszka; Zagrodzki, Paweł; Bechthold, Angela; Mardas, Marcin; Boeing, Heiner

    2016-01-01

    Regulating the energy density of food could be used as a novel approach for successful body weight reduction in clinical practice. The aim of this study was to conduct a systemic review of the literature on the relationship between food energy density and body weight changes in obese adults to obtain solid evidence supporting this approach. The search process was based on the selection of publications in the English language listed in public databases. A meta-analysis was performed to combine individual study results. Thirteen experimental and observational studies were identified and included in the final analysis. The analyzed populations consist of 3628 individuals aged 18 to 66 years. The studies varied greatly in terms of study populations, study design and applied dietary approaches. The meta-analysis revealed a significant association between low energy density foods and body weight reduction, i.e., −0.53 kg when low energy density foods were eaten (95% CI: −0.88, −0.19). In conclusions, this study adds evidence which supports the energy density of food as a simple but effective measure to manage weight in the obese with the aim of weight reduction. PMID:27104562

  1. Link between Food Energy Density and Body Weight Changes in Obese Adults

    Directory of Open Access Journals (Sweden)

    Marta Stelmach-Mardas

    2016-04-01

    Full Text Available Regulating the energy density of food could be used as a novel approach for successful body weight reduction in clinical practice. The aim of this study was to conduct a systemic review of the literature on the relationship between food energy density and body weight changes in obese adults to obtain solid evidence supporting this approach. The search process was based on the selection of publications in the English language listed in public databases. A meta-analysis was performed to combine individual study results. Thirteen experimental and observational studies were identified and included in the final analysis. The analyzed populations consist of 3628 individuals aged 18 to 66 years. The studies varied greatly in terms of study populations, study design and applied dietary approaches. The meta-analysis revealed a significant association between low energy density foods and body weight reduction, i.e., −0.53 kg when low energy density foods were eaten (95% CI: −0.88, −0.19. In conclusions, this study adds evidence which supports the energy density of food as a simple but effective measure to manage weight in the obese with the aim of weight reduction.

  2. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H. L. [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Abdelkefi, A. [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Yang, Y., E-mail: cywyang@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, L. [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-02-01

    The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s)

  3. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations

    International Nuclear Information System (INIS)

    The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s)

  4. Relativistic many-body calculations of energies for n=3 states in aluminiumlike ions

    International Nuclear Information System (INIS)

    Energies of the 148 (3l3l'3l'') states for aluminiumlike ions with Z =14-100 are evaluated to second order in relativistic many-body perturbation theory. Second-order Coulomb and Breit-Coulomb interactions are included. Corrections are made to lowest order for the frequency-dependent Breit interaction and for the Lamb shift. A detailed discussion of the various contributions to the energy levels is given for aluminiumlike germanium (Z=32). Comparisons of the calculated energy levels with available experimental data are made for the entire sequence. (author)

  5. Relativistic many-body calculations of energies for n=3 states in aluminiumlike ions

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, U.I.; Namba, C. [National Inst. for Fusion Science, Toki, Gifu (Japan); Johnson, W.R.; Safronova, M.S. [Department of Physics, Univ. of Notre Dame, Notre Dame, IN (United States)

    2001-01-01

    Energies of the 148 (3l3l'3l'') states for aluminiumlike ions with Z =14-100 are evaluated to second order in relativistic many-body perturbation theory. Second-order Coulomb and Breit-Coulomb interactions are included. Corrections are made to lowest order for the frequency-dependent Breit interaction and for the Lamb shift. A detailed discussion of the various contributions to the energy levels is given for aluminiumlike germanium (Z=32). Comparisons of the calculated energy levels with available experimental data are made for the entire sequence. (author)

  6. Energy Crisis in Astrophysics (Black Holes vs. N-Body Metrics)

    CERN Document Server

    Alley, C O; Mizobuchi, Y; Yilmaz, H; Alley, Carroll O; Leiter, Darryl L; Mizobuchi, Yutaka; Yilmaz, Huseyin

    1999-01-01

    The recent observation of the gamma ray burster GRB 990123, requiring at least two solar masses of energy in gamma radiation alone, created an energy crisis in astrophysics (Schilling 1999). We discuss a theorem which states that, of all four-dimensional curved spacetime theories of gravity viable with respect to the four classical weak field tests, only one unique case, the Yilmaz theory, has interactive N-body (multiparticle) solutions and this unique case has no event horizons. The theorem provides strong theoretical support for Robertson's explanation of the large energy output of the gamma ray burster GRB 990123 (Robertson 1999b). This explanation requires a switch from black holes (a 1-body solution with horizon) to the case of horizon-free interactive N-body solutions. In addition to the good news that the long sought N-body solutions are found, this unique case enjoys further strong support from other areas of gravitational physics. This development does not rule out GRB models with beaming, which can...

  7. An Energy-Efficient Compressive Sensing Framework Incorporating Online Dictionary Learning for Long-term Wireless Health Monitoring

    OpenAIRE

    Xu, Kai; Li, Yixing; Ren, Fengbo

    2016-01-01

    Wireless body area network (WBAN) is emerging in the mobile healthcare area to replace the traditional wire-connected monitoring devices. As wireless data transmission dominates power cost of sensor nodes, it is beneficial to reduce the data size without much information loss. Compressive sensing (CS) is a perfect candidate to achieve this goal compared to existing compression techniques. In this paper, we proposed a general framework that utilize CS and online dictionary learning (ODL) toget...

  8. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    Science.gov (United States)

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults. PMID:27048946

  9. Optimal Random Access and Random Spectrum Sensing for an Energy Harvesting Cognitive Radio with and without Primary Feedback Leveraging

    Directory of Open Access Journals (Sweden)

    Ahmed El Shafie

    2014-07-01

    Full Text Available We consider a secondary user (SU with energy harvesting capability. We design access schemes for the SU which incorporate random spectrum sensing and random access, and which make use of the primary automatic repeat request (ARQ feedback. We study two problem-formulations. In the first problemformulation, we characterize the stability region of the proposed schemes. The sensing and access probabilities are obtained such that the secondary throughput is maximized under the constraints that both the primary and secondary queues are stable. Whereas in the second problem-formulation, the sensing and access probabilities are obtained such that the secondary throughput is maximized under the stability of the primary queue and that the primary queueing delay is kept lower than a specified value needed to guarantee a certain quality of service (QoS for the primary user (PU. We consider spectrum sensing errors and assume multipacket reception (MPR capabilities. Numerical results show the enhanced performance of our proposed systems.

  10. Vibration energy absorption in the whole-body system of a tractor operator.

    Science.gov (United States)

    Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek

    2014-01-01

    Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1). PMID:24959797

  11. Technology assessment of high pulse energy CO(2) lasers for remote sensing from satellites

    Science.gov (United States)

    Hess, R. V.; Brockman, P.; Schryer, D. R.; Miller, I. M.; Bair, C. H.; Sidney, B. D.; Wood, G. M.; Upchurch, B. T.; Brown, K. G.

    1985-01-01

    Developments and needs for research to extend the lifetime and optimize the configuration of CO2 laser systems for satellite based on remote sensing of atmospheric wind velocities and trace gases are reviewed. The CO2 laser systems for operational satellite application will require lifetimes which exceed 1 year. Progress in the development of efficient low temperature catalysts and gas mixture modifications for extending the lifetime of high pulse energy closed cycle common and rare isotope CO2 lasers and of sealed CW CO2 lasers is reviewed. Several CO2 laser configurations are under development to meet the requirements including: unstable resonators, master oscillator power amplifiers and telescopic stable resonators, using UV or E-beam preionization. Progress in the systems is reviewed and tradeoffs in the system parameters are discussed.

  12. Formation Mechanism and Binding Energy for Body-Centred Regular Icosahedral Structure of Li13 Cluster

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-Na; LI Ping; GOU Qing-Quan; ZHAO Yan-Ping

    2008-01-01

    The formation mechanism for the body-centred regular icosahedral structure of Li13 cluster is proposed. The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li13 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-96.951 39 a.u. at R = 5.46a0. When R approaches to infinity, the total energy of thirteen lithium atoms has the value of-96.564 38 a.u. So the binding energy of Li13 with respect to thirteen lithium atoms is 0.387 01 a.u. Therefore the binding energy per atom for Li13 is 0.029 77 a.u. or 0.810 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, 0.494 eV for Lia, 0.7878 eV for Li4, 0.632 eV for Lis, and 0.674 eV for Lit calculated by us previously. This means that the Li13 cluster may be formed stably in a body-centred regular icosahedral structure with a greater binding energy.

  13. N-body quantum scattering theory in two Hilbert spaces. VII. Real-energy limits

    International Nuclear Information System (INIS)

    A study is made of the real-energy limits of approximate solutions of the Chandler--Gibson equations, as well as the real-energy limits of the approximate equations themselves. It is proved that (1) the approximate time-independent transition operator Tπ(z) and an auxiliary operator Mπ(z), when restricted to finite energy intervals, are trace class operators and have limits in trace norm for almost all values of the real energy; (2) the basic dynamical equation that determines the operator Mπ(z), when restricted to the space of trace class operators, has a real-energy limit in trace norm for almost all values of the real energy; (3) the real-energy limit of Mπ(z) is a solution of the real-energy limit equation; (4) the diagonal (on-shell) elements of the kernels of the real-energy limit of Tπ(z) and of all solutions of the real-energy limit equation exactly equal the on-shell transition operator, implying that the real-energy limit equation uniquely determines the physical transition amplitude; and (5) a sequence of approximate on-shell transition operators converges strongly to the exact on-shell transition operator. These mathematically rigorous results are believed to be the most general of their type for nonrelativistic N-body quantum scattering theories

  14. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, Majid, E-mail: majid.taghavi@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Biorobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Pisa (Italy); Sadeghi, Ali; Mazzolai, Barbara [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Beccai, Lucia, E-mail: lucia.beccai@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Mattoli, Virgilio, E-mail: virgilio.mattoli@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy)

    2014-12-30

    Highlights: • The mechanical energy of both pure and impure gases can be harvested by the introduced system. • The blown gas vibrates a non conductive sheet between two surfaces, generating the triboelectric charges. • The system is able to measure the flow rate of the blown gas. • The existence of dust in the blown air can be detected without external powering. • A self powered smoke detector is introduced. - Abstract: In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening.

  15. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    International Nuclear Information System (INIS)

    Highlights: • The mechanical energy of both pure and impure gases can be harvested by the introduced system. • The blown gas vibrates a non conductive sheet between two surfaces, generating the triboelectric charges. • The system is able to measure the flow rate of the blown gas. • The existence of dust in the blown air can be detected without external powering. • A self powered smoke detector is introduced. - Abstract: In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening

  16. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  17. Migration energy barriers of symmetric tilt grain boundaries in body-centered cubic metal Fe

    International Nuclear Information System (INIS)

    Graphical abstract: DFT calculated migration energy barrier (left) for symmetric grain boundary in metals is an essential physical property to measure the trend of grain boundary migration, in particular, in terms of the classical homogeneous nucleation model of GB dislocation/disconnection loops (right). - Migration energy barriers of two symmetric tilt grain boundaries in body-centered cubic metal Fe are obtained via first-principles calculations in combination with the nudged elastic band methods. Although the two grain boundaries show similar grain boundary energies, the migration energy barriers are different. Based on a homogeneous nucleation theory of grain-boundary dislocation loops, the calculated energy barrier provides a measure of intrinsic grain-boundary mobility and helps to evaluate effects due to vacancy and interstitial atoms such as carbon

  18. Does the Equivalence between Gravitational Mass and Energy Survive for a Composite Quantum Body?

    CERN Document Server

    Lebed, Andrei G

    2014-01-01

    We define passive and active gravitational mass operators of the simplest composite quantum body - a hydrogen atom. Although they do not commute with its energy operator, the equivalence between the expectation values of passive and active gravitational masses and energy is shown to survive for stationary quantum states. In our calculations of passive gravitational mass operator, we take into account not only kinetic and Coulomb potential energies but also the so-called relativistic corrections to electron motion in a hydrogen atom. Inequivalence between passive and active gravitational masses and energy at a macroscopic level is demonstrated to reveal itself as time dependent oscillations of the expectation values of the gravitational masses for superpositions of stationary quantum states. Breakdown of the equivalence between passive gravitational mass and energy at a microscopic level reveals itself as unusual electromagnetic radiation, emitted by macroscopic ensemble of hydrogen atoms, moved by small space...

  19. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Tien-Kan Chung

    2016-02-01

    Full Text Available An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers, criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence. Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  20. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    Science.gov (United States)

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  1. Do home energy management systems make sense? Assessing their overall lifecycle impact

    International Nuclear Information System (INIS)

    An ever-increasing body of research explores the effectiveness of Home Energy Management Systems (HEMS) in achieving energy savings in households. To date, however, the overall life cycle impact of the HEMS itself has not been taken into account. Thus, no assessment has been made whether the amount of energy saved (esaved) outweighs the energy needed for production, use and disposal (einvested). Therefore, an eco-cost and a Cumulative Energy Demand (CED) method were used to analyze three distinct types of HEMS. Based on the literature, six scenarios were developed in order to find the break-even point, where einvested=esaved. The results show that the overall impact is dependent on the type of HEMS, and that if the duration of use is short and the achieved savings are small, the benefits do not always outweigh the environmental costs. Care should be taken not to develop HEMS with unnecessarily elaborate parts or functionalities and that their own electricity consumption is minimized. The paper concludes by discussing the implication for polices concerning the implementation of smart meters and HEMS and their design. - Highlights: • We conducted a lifecycle assessment of three Home Energy Management Systems (HEMS). • We developed six scenarios to find the breakeven point where einvested=esaved. • All three HEMS can achieve net energy savings over the course of five years. • Within the scenarios, it can take up to two years to achieve net energy savings. • No HEMS achieve a positive return on investment within five years in all scenarios

  2. Evaluation of methods for opto-electronic body surface sensing applied to patient position control in breast radiation therapy.

    Science.gov (United States)

    Baroni, G; Troia, A; Riboldi, M; Orecchia, R; Ferrigno, G; Pedotti, A

    2003-11-01

    The accuracy gap between the high levels of accuracy in radiotherapy planning and the uncertain set-up of each therapy fraction represents a crucial factor in the optimisation of radiation treatment. This occurs because the conventional means of patient alignment and immobilisation do not guarantee accurate implementation of the therapy plan in the actual irradiation treatment. A patient repositioning technique is proposed, based on opto-electronic motion capture and on methods of registration of body surfaces described by a limited dataset. The validation of the method was related to breast cancer radiotherapy and was based on simulated and experimental repositioning procedures involving a phantom and two subjects. With respect to previous work, the surface registration procedure was, in this case, implemented as a constrained non-linear least-square problem (constraints were given by the position of a couple of passive markers placed on the sternum), and three different algorithms were compared in terms of accuracy in misalignment detection and of computational cost. The simulation and experimental activities identified the best performing algorithm, which systematically limited the repositioning errors to below clinically acceptable thresholds (5 mm), with residual surface mismatches lower than 2 mm. PMID:14686594

  3. Energy efficient medium access protocol for wireless medical body area sensor networks.

    Science.gov (United States)

    Omeni, O; Wong, A; Burdett, A J; Toumazou, C

    2008-12-01

    This paper presents a novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications. Wireless body area networks consist of wireless sensor nodes attached to the human body to monitor vital signs such as body temperature, activity or heart-rate. The network adopts a master-slave architecture, where the body-worn slave node periodically sends sensor readings to a central master node. Unlike traditional peer-to-peer wireless sensor networks, the nodes in this biomedical WBASN are not deployed in an ad hoc fashion. Joining a network is centrally managed and all communications are single-hop. To reduce energy consumption, all the sensor nodes are in standby or sleep mode until the centrally assigned time slot. Once a node has joined a network, there is no possibility of collision within a cluster as all communication is initiated by the central node and is addressed uniquely to a slave node. To avoid collisions with nearby transmitters, a clear channel assessment algorithm based on standard listen-before-transmit (LBT) is used. To handle time slot overlaps, the novel concept of a wakeup fallback time is introduced. Using single-hop communication and centrally controlled sleep/wakeup times leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee. As duty cycle is reduced, the overall power consumption approaches the standby power. The protocol is implemented in hardware as part of the Sensiumtrade system-on-chip WBASN ASIC, in a 0.13- mum CMOS process. PMID:23853128

  4. Energy expenditure economy induced by decrease in lean body mass in anorexia nervosa.

    Science.gov (United States)

    Melchior, J C; Rigaud, D; Rozen, R; Malon, D; Apfelbaum, M

    1989-11-01

    In anorexia nervosa, the low energy input associated with the classic overactivity during the malnourished state needs a sparing of energy expended at rest and also during physical activity. Therefore, we measured energy expenditure, both at rest and during moderate bicycling exercise (30W, 6 min), in 11 adult anorectic patients (weight 35.15 +/- 4.30 kg, mean +/- s.d.) at the beginning of their treatment and again after a mean weight gain of about 8.4 kg. During the malnourished state, the resting energy expenditure (REE) was lower than that predicted according to Harris and Benedict (P less than 0.001). Although it was significantly increased after weight gain (P less than 0.05), the REE per kg of lean body mass remained unchanged after repletion. The total oxygen consumption related to exercise remained unchanged after refeeding (2114 +/- 487 ml/15 min, basal vs 2168 +/- 394 ml/15 min, repletion) (n.s.). Thus in anorexia nervosa, weight loss and malnutrition did not induce economy either in energy expended at rest per unit of lean body mass nor in the energy expended in moderate cycling activity. PMID:2627927

  5. An Energy Efficient MAC Protocol for Multi-Hop Swallowable Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2014-10-01

    Full Text Available Swallowable body sensor networks (BSNs are composed of sensors which are swallowed by patients and send the collected data to the outside coordinator. These sensors are energy constraint and the batteries are difficult to be replaced. The medium access control (MAC protocol plays an important role in energy management. This paper investigates an energy efficient MAC protocol design for swallowable BSNs. Multi-hop communication is analyzed and proved more energy efficient than single-hop communication within the human body when the circuitry power is low. Based on this result, a centrally controlled time slotting schedule is proposed. The major workload is shifted from the sensors to the coordinator. The coordinator collects the path-loss map and calculates the schedules, including routing, slot assignment and transmission power. Sensor nodes follow the schedules to send data in a multi-hop way. The proposed protocol is compared with the IEEE 802.15.6 protocol in terms of energy consumption. The results show that it is more energy efficient than IEEE 802.15.6 for swallowable BSN scenarios.

  6. An experimental and numerical approach to understand the effect of the IPMC composition on its sensing and energy harvesting behavior

    Science.gov (United States)

    Akle, Barbar; Khairallah, Reef; Challita, Elio

    2014-03-01

    Ionic Polymer Metal Composite (IPMC) is an Electo-Active Polymer (EAP) that is well-known for its actuation and sensing behavior. It has been shown that in charge sensing mode an IPMC generates one order of magnitude larger current as compared to piezoelectric materials. However the voltage generated is on the order of couple millivolts, making it less attractive as a sensor and energy harvester. Previous numerical work by the author, demonstrated that increasing the ionic concentration of the ionomer will increase the current and voltage generated by an IPMC. Conversely, the previous study showed that the electrode composition and architecture had minimal effects. This paper will present an experimental investigation of the effect of changing the composition of the ionomer, the membrane thickness, and electrode architecture on the sensing and energy harvesting behavior. The response of all IPMC transducers is analyzed and compared to numerical simulations.

  7. Resting energy expenditure and body composition in children with cancer: indirect calorimetry and bioimpedance analysis

    Directory of Open Access Journals (Sweden)

    M. V. Konovalova

    2014-07-01

    Full Text Available Resting energy expenditure (REE by indirect calorimetry and body composition by bioimpedance analysis are studied in three groups of children aged 5–18 years. Group 1 (n = 181 – patients in remission of cancer, group 2 (n = 55 – children with oncology diseases receiving chemotherapy or who are in the early period after hematopoietic stem cell transplantation, group 3 (n = 63 – children with non-malignant diseases of the gastrointestinal tract. To eliminate the influence of age and gender on the intergroup comparisons, body composition parameters were expressed as standardized values (z-scores relative to a reference group of healthy Russian children (n = 138,191. Group 1 was characterized by excess fat content with intact lean body mass, and groups 2 and 3 by protein depletion, more pronounced in Group 2 with a higher percentage of body fat. All used conventional formulas (WHO, Harris–Benedict and others in groups 1 and 3 underestimated REE as compared with indirect calorimetry. A new formula for REE, giving an unbiased estimate in the group 1 was proposed: REE (kcal/day = 28.7 × BCM (kg +10.5 × Height (cm – 38.6 × Age (years – 134, where BCM – body cell mass according to bioimpedance analysis (R2 = 0.67, the standard deviation of 196 kcal/day.

  8. Stability Analysis of a Rigid Body with a Flexible Attachment Using the Energy-Casimir Method

    OpenAIRE

    Posbergh, T. A.; Krishnaprasad, Perinkulam S.; Marsden, Jerrold E.

    1987-01-01

    We consider a system consisting of a rigid body to which a linear extensible shear beam is attached. For such a system the Energy-Casimir method can be used to investigate the stability of the equilibria. In the case we consider, it can be shown that a test for (formal) stability reduces to checking the positive definiteness of two matrices which depend on the parameters of the system and the particular equilibrium about which the stability is to be ascertained.

  9. Towards Deriving Renewable Energy from Aquatic Macrophytes Polluting Water Bodies in Niger Delta Region of Nigeria

    OpenAIRE

    Badmus Abdurrahman Adeleye; Asimi Adetunji; Isaac Bamgboye

    2013-01-01

    This study was performed to derive methane rich biogas from biomass of harvested water hyacinth polluting water bodies in selected rivers of the Niger delta region of Nigeria. Field visits were undertaken on selected rivers in the Niger Delta region in which aquatic macrophytes were collected and inventorized. Also different types of aquatic macrophytes were surveyed. Control by harvesting macrophytes and deriving energy (methane-rich biogas from biomass of one (water hyacinth) was successful...

  10. Eating Behavior Dimensions: Associations With Energy Intake And Body Weight: A Review

    OpenAIRE

    French, Simone A; Epstein, Leonard H.; Jeffery, Robert W.; Blundell, John E; Wardle, Jane

    2012-01-01

    The purpose of this review is to spark integrative thinking in the area of eating behaviors by critically examining research on exemplary constructs in this area. The eating behaviors food responsiveness, enjoyment of eating, satiety responsiveness, eating in the absence of hunger, reinforcing value of food, eating disinhibition and impulsivity/self-control are reviewed in relation to energy intake, body mass index and weight gain over time. Each of these constructs has been developed indepen...

  11. Body composition and deposition efficiency of protein and energy in grazing young bulls

    OpenAIRE

    Eriton Egidio Lisboa Valente; Mário Fonseca Paulino; Marcos Inácio Marcondes; Isabela Fernanda Teixeira Dias

    2014-01-01

    The effects of supplementation with different protein: carbohydrate ratios on body composition, carcass characteristics and protein and energy deposition efficiency of young were assessed. Twenty-four Nellorecalves (132.5 ± 5.5 kgand 90-150 days of age) were kept on pasture for a 430 day experimental period. The treatments were: Control = mineral mixture only; HPHC = high-protein and high-carbohydrate supplement; HPLC = high-protein and low-carbohydrate supplement; LPHC = low-protein and high...

  12. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    OpenAIRE

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Martin J Kelly

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric ac...

  13. Effects of stochastic food deprivation on energy budget, body mass and activity in Swiss mice

    Directory of Open Access Journals (Sweden)

    Zhi-Jun ZHAO, Jing CAO, Ye TIAN, Rui-Rui WANG, Gui-Ying WANG

    2009-08-01

    Full Text Available When small animals are faced with an unpredictable food supply, they can adapt by altering different components of their energy budget such as energy intake, metabolic rate, rate of non-shivering thermogenesis (NST or behaviour. The present study examined the effect of stochastic food deprivation (FD on body mass, food intake, resting metabolic rate (RMR, NST and behaviour in male Swiss mice. During a period of 4 weeks’ FD, animals were fed ad libitum for a randomly assigned 4 days each week, but were deprived of food for the other 3 days. The results showed that body mass significantly dropped on FD days compared to controls. Food intake of FD mice increased significantly on ad libitum days, ensuring cumulative food intake, final body mass, fat mass, RMR and NST did not differ significantly from controls. Moreover, gastrointestinal tract mass increased in FD mice, but digestibility decreased. In general, activity was higher on deprived days, and feeding behaviour was higher on ad libitum days suggesting that Swiss mice are able to compensate for stochastic FD primarily by increasing food intake on ad libitum days, and not by reducing energy expenditure related to RMR or NST [Current Zoology 55(4: 249–257, 2009].

  14. Evaluation of Digital Compressed Sensing for Real-Time Wireless ECG System with Bluetooth low Energy.

    Science.gov (United States)

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2016-07-01

    In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization. PMID:27240841

  15. Energy spectra of massive two-body decay products and mass measurement

    CERN Document Server

    Agashe, Kaustubh; Hong, Sungwoo; Kim, Doojin

    2016-01-01

    We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the SM particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial b...

  16. Energy spectra of massive two-body decay products and mass measurement

    Science.gov (United States)

    Agashe, Kaustubh; Franceschini, Roberto; Hong, Sungwoo; Kim, Doojin

    2016-04-01

    We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a mass less product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the standard model particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial because (in general) both the above-mentioned properties are no longer valid. Nonetheless, we propose a suitably modified parametrization of the energy distribution that was used successfully for the massless case, which can deal with the massive case as well. We test this parametrization on concrete examples of energy spectra of Z bosons from the decay of a heavier supersymmetric partner of top quark (stop) into a Z boson and a lighter stop. After establishing the accuracy of this parametrization, we study a realistic application for the same process, but now including dominant backgrounds and using foreseeable statistics at LHC14, in order to determine the performance of this method for an actual mass measurement. The upshot of our present and previous work is that, in spite of energy being a Lorentz-variant quantity, its distribution emerges as a powerful tool for mass measurement at hadron colliders.

  17. Remotely sensed thermal pollution and its relationship with energy consumption and industry in a rapidly urbanizing Chinese city

    International Nuclear Information System (INIS)

    Taking the city of Xiamen, China, as an example, we used thermal infrared remote sensing to detect thermal pollution, and examined its relationship to energy consumption and the industrial economy. Monthly changes in 2002 and dynamics throughout the period of rapid urbanization (1987–2007) are analysed. It is found that seasonal variation led to distinct shapes and sizes of thermal pollution areas, and winter thermal pollution was highly indicative of industrial and energy transformation sources. Industrial enterprises were the dominant sources of winter thermal pollution in Xiamen. The number and ratio of industrial thermal pollution sources increased stably in the earlier years, and dramatically in the later period (2002–2007), attributable to the effects of China entering the World Trade Organization. Linear regression shows that the number of thermal pollution sources was strongly correlated with several factors of the industrial economy and energy consumption, including industrial outputs, industrial enterprise numbers, LPG and electricity. Related mitigation measures are also discussed. This research builds a link between remote sensing-detected thermal pollution information and statistical energy consumption data, as well as industrial economy statistics. It thereby enhances understanding of the relationship between urbanization, industrialization, energy consumption and related environmental effects. - Highlights: ► A method was provided for detecting thermal pollution through remote sensing. ► Seasonal dynamics and dynamics with the process of urbanization were examined. ► Winter thermal pollution is quite indicative of industrial energy consumption. ► Thermal pollution has high correlations with industrial economy and energy factors. ► It builds a link between remotely sensed thermal pollution and energy-economic data

  18. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing.

    Science.gov (United States)

    Zi, Yunlong; Lin, Long; Wang, Jie; Wang, Sihong; Chen, Jun; Fan, Xing; Yang, Po-Kang; Yi, Fang; Wang, Zhong Lin

    2015-04-01

    A triboelectric-pyroelectric-piezoelectric hybrid cell, consisting of a triboelectric nanogenerator and a pyroelectric-piezoelectric nanogenerator, is developed for highly efficient mechanical energy harvesting through multiple mechanisms. The excellent performance of the hybrid cell enhances the energy-harvesting efficiency significantly (by 26.2% at 1 kΩ load resistance), and enables self-powered sensing, which will lead to a variety of advanced applications. PMID:25727070

  19. Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote-sensing based surface energy balance models

    OpenAIRE

    G. Rallo; Provenzano, G; Pumo, D.; Iovino, M.; G. D'Urso; C. Cammalleri; Ciraolo, G.; Agnese, C.; F. Blanda; M. Minacapilli

    2009-01-01

    Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB) and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS), near-infrared (NIR) and thermal (TIR) observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to det...

  20. Body size and human energy requirements: Reduced mass-specific total energy expenditure in tall adults.

    Science.gov (United States)

    Heymsfield, Steven B; Pietrobelli, Angelo

    2010-01-01

    Mammalian resting energy expenditure (REE) increases as approximately weight(0.75) while mass-specific REE scales as approximately weight(-0.25). Energy needs for replacing resting losses are thus less relative to weight (W) in large compared with small mammals, a classic observation with biological implications. Human weight scales as approximately height(2) and tall adults thus have a greater weight than their short counterparts. However, it remains unknown if mass-specific energy requirements are less in tall adults; allometric models linking total energy expenditure (TEE) and weight with height (H) are lacking. We tested the hypothesis that mass-specific energy requirements scale inversely to height in adults by evaluating TEE (doubly labeled water) data collected by the National Academy of Sciences. Activity energy expenditure (AEE) was calculated from TEE, REE (indirect calorimetry), and estimated diet-induced energy expenditure. Main analyses focused on nonmorbidly obese subjects TEE as a function of height (range H(1.5-1.7)) in both men and women. TEE/W scaled negatively to height ( approximately H(-0.7), P TEE (kcal/kg/d) at +/-2 SD for US height lower in tall compared with short men (40.3 vs. 46.5) and women (37.7 vs. 42.7). REE/W also scaled negatively to height in men (P human stature and energy requirements that have implications for modeling efforts and provide new links to mammalian biology as a whole. PMID:19856424

  1. Experience of regulatory body functioning in energy industry of Ukraine: Prospects for future development of state regulation of energy

    International Nuclear Information System (INIS)

    Materials collected (presented) in the paper introduce to (familiarise) the audience with the main forms, methods and phases of the state regulation of energy industry in Ukraine in the period of transition to market economy. Special attention was paid to the following aspects: 1. Necessity and history of establishment of special regulatory body in Ukraine - The National Electricity Regulatory Commission (NERC); 2. The main tasks and authorities of NERC according to the Ukraine Law on Energy Sector; 3. Regulation mechanisms of the main processes in the energy industry used by the Commission on the current level of energy sector development and economic results of its introduction; 4. Problems with functioning of the wholesale energy market specifically as the main component of the Ukraine energy industry and trends of future development (improvement of energy industry's financial situation, intensification of competition between energy producers and suppliers, improvement of tariff and investment policies, etc.); 5. Necessity and ways of future improvement of the standards and legal basis for regulation in Ukraine. (author)

  2. Composición corporal y metabolismo energético en mujeres con exceso de peso Body composition and energy metabolism in women with excess body weight

    Directory of Open Access Journals (Sweden)

    E. Lopes Rosado

    2010-08-01

    Full Text Available Fundamentos. El objetivo de presente trabajo es evaluar la composición corporal y el metabolismo energético en mujeres con exceso de peso corporal. Material y métodos. Estudio transversal de intervención no randomizado con 40 mujeres [26 con exceso de peso (G1 y 14 eutróficas (G2]. Fueron realizadas evaluaciones dietéticas, antropométricas y de la composición corporal (bioimpedancia eléctrica, actividad física (acelerómetro tridimensional y metabolismo energético (calorimetría indirecta. Resultados. No hubo diferencia en la ingesta energética y en la actividad física entre los grupos. Los parámetros de composición corporal fueron superiores en G1, excepto el agua corporal total. Hubo asociación entre el gasto energético y la composición corporal. La masa corporal magra fue el principal determinante del gasto energético. No hubo diferencia de los parámetros metabólicos entre los grupos, pero se sugiere menor velocidad de oxidación de los nutrientes y mayor eficiencia metabólica en G1. Conclusiones. El exceso de peso corporal se asoció con cambios en la composición corporal y en el metabolismo energético que justifican la acumulación de grasa corporal.Background. The objective of this paper is to evaluate body composition and energy expenditure in women with excess body weight. Methods. There was a non-randomized, cross-sectional study with 40 women, [26 with excess weight (G1 and 14 eutrophic (G2]. The following evaluations were made: dietetic, anthropometric and body composition (electrical bioimpedance, physical activity (three-dimensional accelerometer and energy expenditure, basal and resting (indirect calorimetry. Results. The energy intake and physical activity did not differ between groups. The parameters of body composition were higher in G1, except total body water. There was a relationship between energy expenditure and body composition. The lean mass was the biggest determinant of energy expenditure. There

  3. A study of percentage body fat in children via dual energy X-ray absorptiometry (DEXA)

    International Nuclear Information System (INIS)

    Percentage body fat was measured using dual energy X-ray absorptiometry (DEXA), bioelectrical impedance analysis (BIA) and skin fold calipers on 26 children (nine in obesity group, 12 in healthy group and 5 in steroid treated group). Mean percent body fat did not differ significantly between methods in the whole subjects as well as the healthy group and the steroid treated group. However, the mean percent body fat using skin fold caliper was higher for the obesity group than the other two. The measurements of all cases in the obesity group by DEXA were higher than those of BIA. There were high correlations among the percent body fat obtained by each technique. According to the analysis of mean regional percent fat, the percent fat of legs was the highest in the healthy and steroid treated group, while there was no regional difference in the obesity group. It should be possible to classify each case in the obesity group into upper segment and lower segment obesity by DEXA. (author)

  4. Energy spectra of small bosonic clusters having a large two-body scattering length

    CERN Document Server

    Gattobigio, M; Viviani, M

    2012-01-01

    In this work we investigate small clusters of bosons using the hyperspherical harmonic basis. We consider systems with $A=2,3,4,5,6$ particles interacting through a soft inter-particle potential. In order to make contact with a real system, we use an attractive gaussian potential that reproduces the values of the dimer binding energy and the atom-atom scattering length obtained with one of the most widely used $^4$He-$^4$He interactions, the LM2M2 potential. The intensity of the potential is varied in order to explore the clusters' spectra in different regions with large positive and large negative values of the two-body scattering length. In addition, we include a repulsive three-body force to reproduce the trimer binding energy. With this model, consisting in the sum of a two- and three-body potential, we have calculated the spectrum of the four, five and six particle systems. In all the region explored, we have found that these systems present two bound states, one deep and one shallow close to the $A-1$ t...

  5. Body mass, Thermogenesis and energy metabolism in Tupaia belangeri during cold acclimation

    Directory of Open Access Journals (Sweden)

    Wan-long Zhu

    2012-05-01

    Full Text Available In order to study the relationship between energy strategies and environmental temperature, basal metabolic rate (BMR, nonshivering thermogenesis (NST, the total protein contents, mitochondrial protein contents, state and state respiratory ability, cytochrome C oxidase activity Ⅲ Ⅳ of liver, heart, diaphragm, gastrocnemius and brown adipose tissue (BAT, serum leptin level and serum thyroid hormone levels were measured in tree shrews (Tupaia belangeri during cold exposure (5±1oC for 1 day, 7 days,14days,21 days. The results showed that body mass increased, BMR and NST increased, the change of liver mitochondrial protein content was more acutely than total protein. The mitochondrial protein content of heart and BAT were significantly increased during cold-exposed, however the skeletal muscle more moderate reaction. The state Ⅲ and state Ⅳ mitochondrial respiration of these tissues were enhanced significantly than the control. The cytochrome C oxidase activity with cold acclimation also significantly increased except the gastrocnemius. Liver, muscle, BAT, heart and other organs were concerned with thermoregulation during the thermal regulation process above cold-exposed. There is a negative correlation between leptin level and body mass. These results suggested that T. belangeri enhanced thermogenic capacity during cold acclimation, and leptin participated in the regulation of energy balance and body weight in T. belangeri.

  6. Level of satiety: In vitro energy metabolism in brain during hypophagic and hyperphagic body weight recovery

    International Nuclear Information System (INIS)

    Rates of in vitro glucose and fatty acid oxidation were examined in four brain sites during hypophagic and hyperphagic recovery of normal body weight. Rats were fed 40, 100, or 160% of normal intake, via gastric intubation, for 3 wk. Another group of rats was starved until body weight loss was equivalent to weight loss in 40%-fed rats. Groups of rats were killed at the conclusion of tube feeding or fasting and at specific periods during recovery of body weight. Brain sites examined were the ventrolateral hypothalamus (VLH), ventromedial hypothalamus (VMH), a caudal brain stem site encompassing the area postrema-nucleus of the solitary tract (AP-NTS), and cortex. During recovery, rats previously fed 160% of normal intake (anorectic) maintained low rates of VLH fatty acid oxidation and were hypophagic until most excess fat was depleted. Conversely, rats previously fed 40% of normal intake (hungry) maintained high rates of VLH fatty acid oxidation and were hyperphagic until most deficient fat was repleted. Rats previously starved maintained high rates of VLH fatty acid oxidation during hyperphagic recovery, although levels of VLH fatty acid oxidation and food intake were initially low on refeeding. Rates of glucose oxidation in the brain sites examined did not relate well to energy balance status and the needed adjustments in food intake. The results indicated that the level of glucose oxidation in the VLH and AP-NTS responded to the level of energy immediately coming into the system (food intake)

  7. Use of dual-energy X-ray absorptiometry in obese individuals: The possibility to estimate whole body composition from DXA half-body scans

    International Nuclear Information System (INIS)

    Background: Because of its high accuracy, dual-energy X-ray absorptiometry (DXA) has become one of the most frequently used methods for estimating human body composition. One limiting factor concerning measuring obese people with the DXA technique is the size of the scanning area. Objective: To explore the possibility of estimating whole body composition from half-body scans before and after weight reduction, and compare the results with densitometry measurements. Design: Intervention study of 15 obese adults (age 47.2 ± 13.4; BMI 35.9 ± 3.1) who were measured with full- and half-body DXA scans before and after a 7-week weight loss program. On both occasions, body composition was also assessed with air-displacement plethysmography (ADP). Results: The mean weight loss at follow-up was 14.9 ± 4.1 kg (5.0 kg/m2), corresponding to a 14% decrease in body weight. When comparing the results from full- and half-body DXA, between 96% and 98% of the variance was explained. At baseline, %Body Fat (%BF) did not differ significantly between full and half-body measurements (0.6, -0.1-1.3), but the half-body method overestimated it by 1.0% (0.2-1.8) at follow-up. On the contrary, the difference between DXA and ADP in the assessment of %BF was both significant and of large magnitude (5.2; 2.4-8.0) at baseline, while non-significant and near zero (0.4; -1.3-2.2) at follow-up when the subjects had lost a significant amount of weight. Conclusion: The results obtained from half-body DXA scans can accurately predict whole body composition, as measured by full-body DXA, before and after significant weight reduction, in obese patients who barely fit into the scanning area. However, increasing discordance between DXA and ADP with increasing adiposity was seen, indicating that the measurements might not be as reliable on extreme obese subjects as on normal and overweight ditto

  8. Use of dual-energy X-ray absorptiometry in obese individuals: The possibility to estimate whole body composition from DXA half-body scans

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)], E-mail: kent.lundqvist@karolinska.se; Neovius, M. [Obesity Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm (Sweden); Grigorenko, A. [Research and Development Unit, YLab Wellcare Institute, SE-113 60 Stockholm (Sweden); Nordenstroem, J. [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Roessner, S. [Obesity Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm (Sweden)

    2009-02-15

    Background: Because of its high accuracy, dual-energy X-ray absorptiometry (DXA) has become one of the most frequently used methods for estimating human body composition. One limiting factor concerning measuring obese people with the DXA technique is the size of the scanning area. Objective: To explore the possibility of estimating whole body composition from half-body scans before and after weight reduction, and compare the results with densitometry measurements. Design: Intervention study of 15 obese adults (age 47.2 {+-} 13.4; BMI 35.9 {+-} 3.1) who were measured with full- and half-body DXA scans before and after a 7-week weight loss program. On both occasions, body composition was also assessed with air-displacement plethysmography (ADP). Results: The mean weight loss at follow-up was 14.9 {+-} 4.1 kg (5.0 kg/m{sup 2}), corresponding to a 14% decrease in body weight. When comparing the results from full- and half-body DXA, between 96% and 98% of the variance was explained. At baseline, %Body Fat (%BF) did not differ significantly between full and half-body measurements (0.6, -0.1-1.3), but the half-body method overestimated it by 1.0% (0.2-1.8) at follow-up. On the contrary, the difference between DXA and ADP in the assessment of %BF was both significant and of large magnitude (5.2; 2.4-8.0) at baseline, while non-significant and near zero (0.4; -1.3-2.2) at follow-up when the subjects had lost a significant amount of weight. Conclusion: The results obtained from half-body DXA scans can accurately predict whole body composition, as measured by full-body DXA, before and after significant weight reduction, in obese patients who barely fit into the scanning area. However, increasing discordance between DXA and ADP with increasing adiposity was seen, indicating that the measurements might not be as reliable on extreme obese subjects as on normal and overweight ditto.

  9. Characterizing Open Water Bodies and Their Color Properties Through Optical Remote Sensing to Identify Areas of Vector-Borne Disease Risk

    Science.gov (United States)

    Podest, E.; De La Torre Juarez, M.; McDonald, K. C.; Jensen, K.; Ceccato, P.

    2014-12-01

    Predicting the risk of vector-borne disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions with respect to deployment of preventative measures and control resources. The coverage and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. This is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. Here we develop a methodology for monitoring these conditions through optical remote sensing images from Landsat. We pansharpen the images and apply a decision tree classification approach using Random Forests to generate 15 meter resolution maps of open water. In addition, since some mosquitos breed in clear water while others in turbid water, we classify water bodies according to their water color properties and we validate the results using field knowledge. We focus in East Africa where we assses the usefulness of these products to improve prediction of malaria outbreaks. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks

    OpenAIRE

    Akram, S.; Javaid, N.; Tauqir, A.; Rao, A; Mohammad, S. N.

    2013-01-01

    Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for patient health monitoring. New research is being done to take the technology to the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is the main cause of player's performance degradation. This type of fatigue can be measured by sensing the accumulation of lactic acid in muscles. Excess of lactic acid makes muscles feel lethargic. Keeping this in mind we propose a protocol \\underline{TH}reshold b...

  11. Few-body nuclear reactions at low energies – an investigation on observed anomalies

    International Nuclear Information System (INIS)

    Few-body aspects of nuclear interaction are expected to be best studied at sufficiently lower energies where various pair-wise interactions overlap effectively with one another in the allowed phase space in kinematically complete configuration. In this direction, next to nucleon-deuteron systems, a very powerful testing ground has been the alpha-deuteron system where the alpha particle could be treated as a structureless boson due to its very high binding energy. The aim of the present work is to examine the strong anomalies observed in explaining the kinematically complete experimental observables in the light of Faddeev theoretical calculations (FT) due to Koike, involving alpha-induced break-up of deuterons at comparatively lower energies, ranging from Eα(inc)=11 to 18 MeV

  12. Breakdown of the equivalence between gravitational mass and energy for a composite quantum body

    CERN Document Server

    Lebed, Andrei G

    2014-01-01

    The simplest quantum composite body, a hydrogen atom, is considered in the presence of a weak external gravitational field. We define an operator for the passive gravitational mass of the atom in the post-Newtonian approximation of the general relativity and show that it does not commute with its energy operator. Nevertheless, the equivalence between the expectation values of the mass and energy is shown to survive at a macroscopic level for stationary quantum states. Breakdown of the equivalence between passive gravitational mass and energy at a microscopic level for stationary quantum states can be experimentally detected by studying unusual electromagnetic radiation, emitted by the atoms, supported by and moving in the Earth's gravitational field with constant velocity, using spacecraft or satellite

  13. Body composition and bone mineral density measurements by using a multi-energy method

    International Nuclear Information System (INIS)

    Dual-energy X-ray absorptiometry is a major technique to evaluate bone mineral density, thus allowing diagnosis of bone decalcification ( osteoporosis). Recently, this method has proved useful to quantify body composition (fat ratio). However, these measurements suffer from artefacts which can lead to diagnosis errors in a number of cases. This work has aimed to improve both the reproducibility and the accuracy of bone mineral density and body composition measurements. To this avail, the acquisition conditions were optimised in order to ameliorate the results reproducibility and we have proposed a new method to correct inaccuracies in the determination of bone mineral density. Experimental validations yield encouraging results on both synthetic phantoms and biological samples. (author)

  14. Summary of the first meeting of ASEAN Network of Regulatory Bodies on Atomic Energy (ASEANTOM)

    International Nuclear Information System (INIS)

    The 1st Meeting of ASEAN Network of Regulatory Bodies on Atomic Energy (ASEANTOM) was organized in Phuket, Thailand on 3 - 4 September, 2013. The meeting was held on annually basis following the Meeting to Finalize the Term of Reference (TOR) in Bangkok, Thailand on 29 August, 2012. The objective of the meeting is to review and finalize TOR, and to set up the action plan of ASEANTOM. The action plan is an expected outcome of the meeting. The Meeting consisted of 41 participants from IAEA and ASEAN Member States (AMS), namely, Cambodia, Laos, Singapore, Indonesia, Malaysia, Myanmar, Philippines, Vietnam and Thailand. Only Brunei Darussalam could not attend the Meeting. Participant's organizations were regulatory body or relevant authorities, and Ministry of Foreign Affairs.

  15. Energy Efficient Aggregation and Reliable Communication for Wireless Body Area Networks (WBAN

    Directory of Open Access Journals (Sweden)

    Venkatasubramanian Sivaprasatham

    2014-01-01

    Full Text Available In wireless body area networks (WBAN, the data loss, security and reliability requirements are not handled in the existing literature works. This necessitates the technique that deals with slot allocation scheme, delay and other performance metrics. In order to overcome this issue, in this paper, we propose an energy efficient aggregation and reliable communication for Wireless Body Area Networks (WBAN. Initially, the aggregator nodes are chosen based on the nodes connectivity. During the data aggregation, the encryption key and the verification key is assigned to the nodes while transmitting data to the data aggregator. In order to enhance the reliability of data during transmission, the network coding methodology is considered. By simulation results, we show that the proposed technique enhances the network performance.

  16. Energy Centroids of Spin $I$ States by Random Two-body Interactions

    CERN Document Server

    Zhao, Y M; Ogawa, K

    2005-01-01

    In this paper we study the behavior of energy centroids (denoted as $\\bar{E_I}$) of spin $I$ states in the presence of random two-body interactions, for systems ranging from very simple systems (e.g. single-$j$ shell for very small $j$) to very complicated systems (e.g., many-$j$ shells with different parities and with isospin degree of freedom). Regularities of $\\bar{E_I}$'s discussed in terms of the so-called geometric chaoticity (or quasi-randomness of two-body coefficients of fractional parentage) in earlier works are found to hold even for very simple systems in which one cannot assume the geometric chaoticity. It is shown that the inclusion of isospin and parity does not "break" the regularities of $\\bar{E_I}$'s.

  17. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting

    Science.gov (United States)

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of 0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.

  18. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  19. Sensing for directed energy deposition and powder bed fusion additive manufacturing at Penn State University

    Science.gov (United States)

    Nassar, Abdalla R.; Reutzel, Edward W.; Brown, Stephen W.; Morgan, John P.; Morgan, Jacob P.; Natale, Donald J.; Tutwiler, Rick L.; Feck, David P.; Banks, Jeffery C.

    2016-04-01

    Additive manufacturing of metal components through directed energy deposition or powder bed fusion is a complex undertaking, often involving hundreds or thousands of individual laser deposits. During processing, conditions may fluctuate, e.g. material feed rate, beam power, surrounding gas composition, local and global temperature, build geometry, etc., leading to unintended variations in final part geometry, microstructure and properties. To assess or control as-deposited quality, researchers have used a variety of methods, including those based on sensing of melt pool and plume emission characteristics, characteristics of powder application, and layer-wise imaging. Here, a summary of ongoing process monitoring activities at Penn State is provided, along with a discussion of recent advancements in the area of layer-wise image acquisition and analysis during powder bed fusion processing. Specifically, methods that enable direct comparisons of CAD model, build images, and 3D micro-tomographic scan data will be covered, along with thoughts on how such analyses can be related to overall process quality.

  20. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.

    Science.gov (United States)

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of 0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized. PMID:27587151

  1. Ultra-high energy physics and standard basic principles. Do Planck units really make sense?

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2014-04-01

    It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV) associated to a privileged local reference frame (the "vacuum rest frame", VRF). If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST) we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological relevance of UHECR

  2. Study on Energy Detection-based Cooperative Sensing in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Rania Mokhtar

    2013-06-01

    Full Text Available Cognitive radio (CR technology aims to achieve efficient radio spectrum utilization based on overlay spectrum sharing. Therefore, one of the main requirements of CR systems is the capability to detect and sense the presence of primary transmissions. However, sensing is affected by the behavior of the wireless channel, i.e., hidden node, interference, shadowing, and fading, which may result in wrong detection decisions. Consequently, CRs may introduce harmful interference to primary radios. Cooperative spectrum sensing can improve detection decisions by obtaining sensing information from different sources, which has been recently proposed to overcome this problem. This paper reviews cooperative sensing aspects, approaches, architecture, as well as problematic aspect and drawbacks of the control channel and associated fusion methods.

  3. Estimation of Free-Living Energy Expenditure by Heart Rate and Movement Sensing: A Doubly-Labelled Water Study.

    Directory of Open Access Journals (Sweden)

    Søren Brage

    Full Text Available Accurate assessment of energy expenditure (EE is important for the study of energy balance and metabolic disorders. Combined heart rate (HR and acceleration (ACC sensing may increase precision of physical activity EE (PAEE which is the most variable component of total EE (TEE.To evaluate estimates of EE using ACC and HR data with or without individual calibration against doubly-labelled water (DLW estimates of EE.23 women and 23 men (22-55 yrs, 48-104 kg, 8-46%body fat underwent 45-min resting EE (REE measurement and completed a 20-min treadmill test, an 8-min step test, and a 3-min walk test for individual calibration. ACC and HR were monitored and TEE measured over 14 days using DLW. Diet-induced thermogenesis (DIT was calculated from food-frequency questionnaire. PAEE (TEE ÷ REE ÷ DIT and TEE were compared to estimates from ACC and HR using bias, root mean square error (RMSE, and correlation statistics.Mean(SD measured PAEE and TEE were 66(25 kJ·day(-1·kg(-1, and 12(2.6 MJ·day(-1, respectively. Estimated PAEE from ACC was 54(15 kJ·day(-1·kg(-1 (p<0.001, with RMSE 24 kJ·day(-1·kg(-1 and correlation r = 0.52. PAEE estimated from HR and ACC+HR with treadmill calibration were 67(42 and 69(25 kJ·day(-1·kg(-1 (bias non-significant, with RMSE 34 and 20 kJ·day(-1·kg(-1 and correlations r = 0.58 and r = 0.67, respectively. Similar results were obtained with step-calibrated and walk-calibrated models, whereas non-calibrated models were less precise (RMSE: 37 and 24 kJ·day(-1·kg(-1, r = 0.40 and r = 0.55. TEE models also had high validity, with biases <5%, and correlations r = 0.71 (ACC, r = 0.66-0.76 (HR, and r = 0.76-0.83 (ACC+HR.Both accelerometry and heart rate may be used to estimate EE in adult European men and women, with improved precision if combined and if heart rate is individually calibrated.

  4. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on a one-dimensional eddy diffusion model,a model to study the water mass and energy exchange between the water body(such as lake and wetland) and the atmosphere is developed,which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of energy caused by temperature stratification into consideration. The model uses enthalpy instead of temperature as predictive variable,which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model presented here is capable of describing the physical process of water mass and energy between the water body(lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing conditions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  5. A remote sensing surface energy balance algorithm for land (SEBAL).. Part 2: Validation

    Science.gov (United States)

    Bastiaanssen, W. G. M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J. F.; Roerink, G. J.; van der Wal, T.

    1998-12-01

    The surface fluxes obtained with the Surface Energy Balance Algorithm for Land (SEBAL), using remote sensing information and limited input data from the field were validated with data available from the large-scale field experiments EFEDA (Spain), HAPEX-Sahel (Niger) and HEIFE (China). In 85% of the cases where field scale surface flux ratios were compared with SEBAL-based surface flux ratios, the differences were within the range of instrumental inaccuracies. Without any calibration procedure, the root mean square error of the evaporative fraction Λ (latent heat flux/net available radiation) for footprints of a few hundred metres varied from Λ RMSE=0.10 to 0.20. Aggregation of several footprints to a length scale of a few kilometres reduced the overall error to five percent. Fluxes measured by aircraft during EFEDA were used to study the correctness of remote sensed watershed fluxes (1 000 000 ha): The overall difference in evaporative fraction was negligible. For the Sahelian landscape in Niger, observed differences were larger (15%), which could be attributed to the rapid moisture depletion of the coarse textured soils between the moment of image acquisition (18 September 1992) and the moment of in situ flux analysis (17 September 1992). For HEIFE, the average difference in SEBAL estimated and ground verified surface fluxes was 23 W m -2, which, considering that surface fluxes were not used for calibration, is encouraging. SEBAL estimates of evaporation from the subsealevel Qattara Depression in Egypt (2 000 000 ha) were consistent with the numerically predicted discharge from the groundwater system. In Egypt's Nile Delta, the evaporation from a distributed field scale water balance model at a 700 000 ha irrigated agricultural region led to difference of 5% with daily evaporative fluxes obtained from SEBAL. It is concluded that, for all study areas in arid zones, the errors average out if a larger number of pixels is considered. Part 1 of this paper

  6. A conserved role for syndecan family members in the regulation of whole-body energy metabolism.

    Directory of Open Access Journals (Sweden)

    Maria De Luca

    Full Text Available Syndecans are a family of type-I transmembrane proteins that are involved in cell-matrix adhesion, migration, neuronal development, and inflammation. Previous quantitative genetic studies pinpointed Drosophila Syndecan (dSdc as a positional candidate gene affecting variation in fat storage between two Drosophila melanogaster strains. Here, we first used quantitative complementation tests with dSdc mutants to confirm that natural variation in this gene affects variability in Drosophila fat storage. Next, we examined the effects of a viable dSdc mutant on Drosophila whole-body energy metabolism and associated traits. We observed that young flies homozygous for the dSdc mutation had reduced fat storage and slept longer than homozygous wild-type flies. They also displayed significantly reduced metabolic rate, lower expression of spargel (the Drosophila homologue of PGC-1, and reduced mitochondrial respiration. Compared to control flies, dSdc mutants had lower expression of brain insulin-like peptides, were less fecund, more sensitive to starvation, and had reduced life span. Finally, we tested for association between single nucleotide polymorphisms (SNPs in the human SDC4 gene and variation in body composition, metabolism, glucose homeostasis, and sleep traits in a cohort of healthy early pubertal children. We found that SNP rs4599 was significantly associated with resting energy expenditure (P = 0.001 after Bonferroni correction and nominally associated with fasting glucose levels (P = 0.01 and sleep duration (P = 0.044. On average, children homozygous for the minor allele had lower levels of glucose, higher resting energy expenditure, and slept shorter than children homozygous for the common allele. We also observed that SNP rs1981429 was nominally associated with lean tissue mass (P = 0.035 and intra-abdominal fat (P = 0.049, and SNP rs2267871 with insulin sensitivity (P = 0.037. Collectively, our results in Drosophila and humans argue that

  7. Methane output of tortoises: its contribution to energy loss related to herbivore body mass.

    Directory of Open Access Journals (Sweden)

    Ragna Franz

    Full Text Available An increase in body mass (M is traditionally considered advantageous for herbivores in terms of digestive efficiency. However, recently increasing methane losses with increasing M were described in mammals. To test this pattern in non-mammal herbivores, we conducted feeding trails with 24 tortoises of various species (M range 0.52-180 kg fed a diet of grass hay ad libitum and salad. Mean daily dry matter and gross energy intake measured over 30 consecutive days scaled to M(0.75 (95%CI 0.64-0.87 and M(0.77 (95%CI 0.66-0.88, respectively. Methane production was measured over two consecutive days in respiration chambers and scaled to M(1.03 (95%CI 0.84-1.22. When expressed as energy loss per gross energy intake, methane losses scaled to 0.70 (95%CI 0.47-1.05 M(0.29 (95%CI 0.14-0.45. This scaling overlaps in its confidence intervals to that calculated for nonruminant mammals 0.79 (95%CI 0.63-0.99 M(0.15 (95%CI 0.09-0.20, but is lower than that for ruminants. The similarity between nonruminant mammals and tortoises suggest a common evolution of the gut fauna in ectotherms and endotherms, and that the increase in energetic losses due to methane production with increasing body mass is a general allometric principle in herbivores. These findings add evidence to the view that large body size itself does not necessarily convey a digestive advantage.

  8. Assessing Body Composition of Children and Adolescents Using Dual-Energy X-Ray Absorptiometry, Skinfolds, and Electrical Impedance

    Science.gov (United States)

    Mooney, Angela; Kelsey, Laurel; Fellingham, Gilbert W.; George, James D.; Hager, Ron L.; Myrer, J. William; Vehrs, Pat R.

    2011-01-01

    To determine the validity and reliability of percent body fat estimates in 177 boys and 154 girls between 12-17 years of age, percent body fat was assessed once using dual-energy X-ray absorptiometry and twice using the sum of two skinfolds and three bioelectrical impedance analysis devices. The assessments were repeated on 79 participants on a…

  9. Low-energy three-body recombination near a Feshbach resonance

    CERN Document Server

    Kartavtsev, O I

    2002-01-01

    Ultralow-energy three-body recombination of identical particles with internal degrees of freedom is considered. The study reveals two different mechanisms for recombination enhancement below and above resonance, namely, production of loosely bound dimers for positive scattering length a(B) -> infinity and diminishing of the potential barrier in the entrance channel for negative a(B) -> -infinity. The recombination rate on both sides of the Feshbach resonance is found to diverge as a power of the resonance detuning. The results are in agreement with experimental data. Refs. 19 (author)

  10. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  11. Energy-aware Supply Voltage and Body Biasing Voltage Scheduling Algorithm for Real-time Distributed Systems

    Institute of Scientific and Technical Information of China (English)

    SUYajuan; WEIShaojun

    2005-01-01

    Technique of energy minimization by combining Dynamic voltage scheduling (DVS) and Adaptive body biasing voltage (ABB) method for distributed realtime system at design level is proposed. First, a simplified energy optimizing model is illustrated where the supply voltage or body biasing voltage is kept as constant according to each separated frequency region, thus calculation of exceeding equation is avoided. Divergence of simplified and analytic model within 5% indicates the accuracy of this model. Based on it, the proposed approach named LEVVS (Low energy supply voltage and body biasing voltage scheduling algorithm) explores space of minimizing energy consumption by finding optimal trade-off between dynamic and static energy. The corresponding optimal supply voltage and body biasing voltage are determined by an iterative method in which the supply voltage and body biasing voltage of tasks are adjusted according to the value of energy latency differential coefficient of each task and slack time distribution of the system. Experiments show that using LEVVS approach, 51% more average energy reduction can be obtained than employing DVS method alone. Furthermore the effects of switch capacitance and global slack on the energy saving efficiency of LEVVS are investigated. The smaller the global slack or average switch capacitance is, the more the energy saving of LEVVS compared with DVS is.

  12. Dual energy X-Ray absorptiometry body composition reference values from NHANES.

    Directory of Open Access Journals (Sweden)

    Thomas L Kelly

    Full Text Available In 2008 the National Center for Health Statistics released a dual energy x-ray absorptiometry (DXA whole body dataset from the NHANES population-based sample acquired with modern fan beam scanners in 15 counties across the United States from 1999 through 2004. The NHANES dataset was partitioned by gender and ethnicity and DXA whole body measures of %fat, fat mass/height(2, lean mass/height(2, appendicular lean mass/height(2, %fat trunk/%fat legs ratio, trunk/limb fat mass ratio of fat, bone mineral content (BMC and bone mineral density (BMD were analyzed to provide reference values for subjects 8 to 85 years old. DXA reference values for adults were normalized to age; reference values for children included total and sub-total whole body results and were normalized to age, height, or lean mass. We developed an obesity classification scheme by using estabbody mass index (BMI classification thresholds and prevalences in young adults to generate matching classification thresholds for Fat Mass Index (FMI; fat mass/height(2. These reference values should be helpful in the evaluation of a variety of adult and childhood abnormalities involving fat, lean, and bone, for establishing entry criteria into clinical trials, and for other medical, research, and epidemiological uses.

  13. Energy Absorption and Dynamic Deformation of Backing Material for Ballistic Evaluation of Body Armour

    Directory of Open Access Journals (Sweden)

    Debarati Bhattacharjee

    2013-09-01

    Full Text Available The measurement of back face signature (BFS or behind armour blunt trauma (BABT is a critical aspect of ballistic evaluation of body armour. BFS is the impact experienced by the armour wearing body, when subjected to a non-penetrating projectile. Mineral or polymeric clay is used to measure the BFS. In addition to stopping the projectile, the body armour can be used only when the BFS also falls within permissible limits. The extent of the BFS depends upon the behavior of the backing material in different loading conditions and prior history. This paper explains some of the studies carried out on the backing material used for ballistic evaluation in Terminal Ballistics Research Laboratory, Chandigarh. It has been observed that the backing material is highly non-linear viscoelastic in nature. The depth of deformation is also linearly proportional to the impact energy and temperature. The effect of time on the depth of deformation is gradual and does not influence the BFS values during a standard ballistic evaluation comprising of 6-8 shots.Defence Science Journal, 2013, 63(5, pp.462-466, DOI:http://dx.doi.org/10.14429/dsj.63.3821

  14. Energy expenditure and body composition in children with Crohn's disease: effect of enteral nutrition and treatment with prednisolone

    OpenAIRE

    Azcue, M.; Rashid, M; Griffiths, A.; Pencharz, P

    1997-01-01

    Background—Malnutrition and growth retardation are common complications of Crohn's disease in children. The contribution of resting energy expenditure (REE) to malnutrition is unclear. 
Aims—To characterise the REE and body composition in children with Crohn's disease and compare them with normal controls and patients with anorexia nervosa; to compare the effects of prednisolone and enteral nutrition on energy expenditure and body composition. 
Subjects—Twenty four children wit...

  15. Nuclear three-body problem in the complex energy plane: Complex-Scaling-Slater method

    CERN Document Server

    Kruppa, A T; Nazarewicz, W; Michel, N

    2013-01-01

    The physics of open quantum systems is an interdisciplinary area of research. The nuclear "openness" manifests itself through the presence of the many-body continuum representing various decay, scattering, and reaction channels. As the radioactive nuclear beam experimentation extends the known nuclear landscape towards the particle drip lines, the coupling to the continuum space becomes exceedingly more important. Of particular interest are weakly bound and unbound nuclear states appearing around particle thresholds. Theories of such nuclei must take into account their open quantum nature. To describe open quantum systems, we introduce a Complex Scaling (CS) approach in the Slater basis. We benchmark it with the complex-energy Gamow Shell Model (GSM) by studying energies and wave functions of the bound and unbound states of the two-neutron halo nucleus 6He viewed as an $\\alpha$+ n + n cluster system. In the CS approach, we use the Slater basis, which exhibits the correct asymptotic behavior at large distances...

  16. On potential energies and constraints in the dynamics of rigid bodies and particles

    Directory of Open Access Journals (Sweden)

    O'reilly Oliver M.

    2002-01-01

    Full Text Available A new treatment of kinematical constraints and potential energies arising in the dynamics of systems of rigid bodies and particles is presented which is suited to Newtonian and Lagrangian formulations. Its novel feature is the imposing of invariance requirements on the constraint functions and potential energy functions. These requirements are extensively used in continuum mechanics and, in the present context, one finds certain generalizations of Newton's third law of motion and an elucidation of the nature of constraint forces and moments. One motivation for such a treatment can be found by considering approaches where invariance requirements are ignored. In contrast to the treatment presented in this paper, it is shown that this may lead to a difficulty in formulating the equations governing the motion of the system.

  17. Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting

    Science.gov (United States)

    Bhattacharjee, Mitradip; Pasumarthi, Viswanath; Chaudhuri, Joydip; Singh, Amit Kumar; Nemade, Harshal; Bandyopadhyay, Dipankar

    2016-03-01

    Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol, diethyl ether, toluene, and chloroform stimulated motions of different magnitudes could easily be correlated to the surface tension gradient on the drop surface. Interestingly, when the nanoparticle laden droplet of aqueous salt solution was connected to an external electric circuit through a pair of electrodes, an ~85-95% reduction in the electrical resistance was observed across the spinning droplet. The extent of reduction in the resistance was found to have a correlation with the difference in the surface tension of the vapour source and the water droplet, which could be employed to distinguish the vapour sources. Remarkably, the power density of the same prototype was estimated to be around 7 μW cm-2, which indicated the potential of the phenomenon in converting surface energy into electrical in a non-destructive manner and under ambient conditions. Theoretical analysis uncovered that the difference in the ζ-potential near the electrodes was the major reason for the voltage generation. The prototype could also detect the repeated exposure and withdrawal of vapour sources, which helped in the development of a proof-of-concept detector to sense alcohol issuing out of the human breathing system.Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol

  18. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  19. Evaluation of an extreme-condition-inverse calibration remote sensing model for mapping energy balance fluxes in arid riparian areas

    OpenAIRE

    Hong, S.-H.; Hendrickx, J. M. H.; Kleissl, J.; Allen, R.G.; W. G. M. Bastiaanssen; R. L. Scott; A. L. Steinwand

    2014-01-01

    Accurate information on the distribution of the surface energy balance components in arid riparian areas is needed for sustainable management of water resources as well as for a better understanding of water and heat exchange processes between the land surface and the atmosphere. Since the spatial and temporal distributions of these fluxes over large areas are difficult to determine from ground measurements alone, their prediction from remote sensing data is ...

  20. The formation mechanism and the binding energy of the body-centred regular tetrahedral structure of He+5

    Institute of Scientific and Technical Information of China (English)

    李萍; 熊勇; 芶清泉; 张建平

    2002-01-01

    We propose the formation mechanism of the body-centred regular tetrahedral structure of the He+5 cluster. The total energy curve for this structure has been calculated by using a modified arrangement channel quantum mechanics method. The result shows that a minimal energy of -13.9106 a.u. occurs at a separation of 1.14a0 between the nucleus at the centre and nuclei at the apexes. Therefore we obtain the binding energy of 0.5202 a.u. for this structure. This means that the He+5 cluster may be stable with a high binding energy in a body-centred regular tetrahedral structure.

  1. Maximizing kinetic energy transfer in one-dimensional many-body collisions

    International Nuclear Information System (INIS)

    The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions. (paper)

  2. Analytical solution for the ground state energy of the extensive many-body problem

    International Nuclear Information System (INIS)

    A closed form expression for the ground state energy density of the general extensive many-body problem is given in terms of the Lanczos tri-diagonal form of the Hamiltonian. Given the general expansion of the diagonal and off-diagonal elements of the Hamiltonian Lanczos matrix, αn(V) and βn(V), we introduce a new parameter z ≡ n/V where n is the Lanczos iteration andV ls' the volume of the system. In the large n and large V regime the Lanczos matrix elements attain asymptotic forms α(z) and β(z). This scaling behaviour is expected to occur in general for extensive many-body systems and is manifest in the 1/V expansion (or plaquette expansion) ofαn(V) and βn(V). This property of extensive systems facilitates the direct application of Van Doorn's theorems on the zeros of orthogonal polynomials, a process which yields the ground state energy density in the bulk limit given by ε0 = inf [α(z) - 2β(z)]. Illustrative examples of the application of this expression are given. 7 refs., 3 figs

  3. Direct and third-body mediated resonance energy transfer in dimensionally constrained nanostructures

    Science.gov (United States)

    Weeraddana, Dilusha; Premaratne, Malin; Andrews, David L.

    2015-07-01

    The process of resonance energy transfer (RET) in a nanostructure influenced by a vicinal, nonabsorbing third body is studied within the framework of molecular quantum electrodynamics. Direct RET and the influence of neighboring matter have been studied previously, mainly for molecules. However, a complete study or unified understanding of direct and indirect RET in nanostructures with different dimensionalities is still lacking. Therefore, there is a strong need for a complete theory that models RET for the cases of quantum wells, nanowires, and quantum dots. We construct a detailed picture of excitation energy transfer in nanostructures and how it is affected by another quantum object, which includes the derivation of quantum amplitudes based on second- and fourth-order time-dependent perturbation theories, and the derivation of transfer rates and distance dependencies, providing a complete picture and understanding of RET in nanostructures. The results of the derivations indicate that the dimensionality of the nanostructure determines the controllability of the RET rate. Furthermore, third-body mediation leads to a nonvanishing RET in the coupling of nanowire to nanowire and quantum dot to quantum dot.

  4. CellSense: An Accurate Energy-Efficient GSM Positioning System

    OpenAIRE

    Ibrahim, Mohamed; Youssef, Moustafa

    2011-01-01

    Context-aware applications have been gaining huge interest in the last few years. With cell phones becoming ubiquitous computing devices, cell phone localization has become an important research problem. In this paper, we present CellSense, a prob- abilistic RSSI-based fingerprinting location determi- nation system for GSM phones. We discuss the chal- lenges of implementing a probabilistic fingerprinting localization technique in GSM networks and present the details of the CellSense systemand...

  5. Gut fat sensing in the negative feedback control of energy balance - recent advances

    OpenAIRE

    Schwartz, Gary J.

    2011-01-01

    Infusions of lipids into the small intestine potently suppress ongoing feeding. Prior work has identified potential roles for gut extrinsic vagal and non -vagal sensory innervation in mediating the ability of gut lipid infusions to reduce food intake, but the local biochemical processes underlying gut lipid sensing at the level of the small intestine remain unclear. This manuscript will summarize recent progress in the identification and characterization of several candidate gut lipid sensing...

  6. Transfer of energy between a pair of molecules near a plasmonic core-shell nanoparticle: Tunability and sensing

    Science.gov (United States)

    Daneshfar, Nader; Yavari, Asghar

    2016-05-01

    Our model is applied to the calculation of interaction energy between a pair of dipolar molecules (point dipoles) in the vicinity of a nanoshell monomer with core-shell structure, based on the dipole quasi-electrostatic theory of classical electrodynamics and using the Drude and Maxwell-Garnett model. In other words, this work discusses the intermolecular energy transfer from a donor molecule to an acceptor molecule near a spherical nanoparticle that is important for practical applications like sensing. It is shown that the proximity of plasmonic nanoparticles can have a strong effect on the energy transfer between molecules. In addition to the influence of the size, composition, embedding medium, and the filling fraction of doped particles on the interaction energy, the contribution of the dipolar, quadrupolar, octupolar, hexadecapolar, triakontadipolar, and higher order multipole interactions is presented and analyzed. Briefly, we will show that it is possible to achieve enhanced energy transfer by manipulation of different parameters as mentioned above.

  7. Design of an Energy Efficient and Delay Tolerant Routing Protocol for Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Ms.Venkateswari.R

    2012-05-01

    Full Text Available The Wireless Body Area Network provide continuous health monitoring and real-time feedback to the medical personnel. The devices used for WBAN have limited energy resources. For most devices it is impossible to recharge or change the batteries. Low power is needed to provide long lifetime to the devices. All devices are equally important and devices are only added when they are needed for an application. The data mostly consists of medical information. Hence, high reliability and low delay is required. Cluster topology and Dynamic Source Routing Protocol provides high packet delivery ratio, low delay and low energy consumption. In this paper, a modification in the DSR routing protocol has been proposed. The modified DSR named as EDSR (Efficient Dynamic Source Routing, reduces the delay by reducing the average end to end delay for the node and reduces the number of packets dropped thereby increasing packet delivery ratio. Energy consumption in EDSR is decreased by 16.73% when compared to DSR. This protocol reduces the energy consumption and delay by reducing the time needed for route discovery process. EDSR achieves high residual battery capacity which eliminates the need for recharging the batteries thereby ensuring long lifetime of the devices.

  8. A lightweight security scheme for wireless body area networks: design, energy evaluation and proposed microprocessor design.

    Science.gov (United States)

    Selimis, Georgios; Huang, Li; Massé, Fabien; Tsekoura, Ioanna; Ashouei, Maryam; Catthoor, Francky; Huisken, Jos; Stuyt, Jan; Dolmans, Guido; Penders, Julien; De Groot, Harmke

    2011-10-01

    In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given. PMID:21373804

  9. Energy Gap in the Aetiology of Body Weight Gain and Obesity: A Challenging Concept with a Complex Evaluation and Pitfalls

    Directory of Open Access Journals (Sweden)

    Yves Schutz

    2014-01-01

    Full Text Available The concept of energy gap(s is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity is not constant, may fade out with time if the initial conditions are maintained, and depends on the ‘efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s can be estimated by at least two methods, i.e. i assessment by longitudinal overfeeding studies, imposing (by design an initial positive energy imbalance gap; ii retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both is clouded by a high level of uncertainty.

  10. Interplay between one-body and two-body dynamics in the subthreshold pion production at intermediate energies

    International Nuclear Information System (INIS)

    The role of the time-dependent mean field in subthreshold pion production by first chance nucleon-nucleon collisions is studied for heavy-ion reactions at intermediate energies in a finite two-center shell model. It is found that the energy distribution of the nucleons for overlapping ions can roughly be approximated by shifted groundstate momentum distributions using a quasi-free dispersion relation. The absolute cross sections for the production of neutron pions can be reproduced from 35 MeV/u to 150 MeV/u. (orig.)

  11. Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies

    International Nuclear Information System (INIS)

    We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we find that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ8, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to a

  12. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    Science.gov (United States)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  13. Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss)

    Science.gov (United States)

    Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss) The cost and scarcity of key ingredients for aquaculture feed formulation call for a wise use of resources, especially dietary proteins and energy. For years t...

  14. Postprandial Energy Metabolism in the Regulation of Body Weight: Is there a Mechanistic Role for Dietary Calcium?

    Directory of Open Access Journals (Sweden)

    Mario J. Soares

    2010-05-01

    Full Text Available There has been much interest in the mechanisms by which calcium may attenuate weight gain or accelerate body fat loss. This review focuses on postprandial energy metabolism and indicates that dietary calcium increases whole body fat oxidation after single and multiple meals. There is, as yet, no conclusive evidence for a greater diet induced thermogenesis, an increased lipolysis or suppression of key lipogenic enzyme systems. There is however convincing evidence that higher calcium intakes promote a modest energy loss through increased fecal fat excretion. Overall, there is a role for dietary calcium in human energy metabolism. Future studies need to define threshold intakes for metabolic and gastrointestinal outcomes.

  15. CellSense: An Accurate Energy-Efficient GSM Positioning System

    CERN Document Server

    Ibrahim, Mohamed

    2011-01-01

    Context-aware applications have been gaining huge interest in the last few years. With cell phones becoming ubiquitous computing devices, cell phone localization has become an important research problem. In this paper, we present CellSense, a prob- abilistic RSSI-based fingerprinting location determi- nation system for GSM phones. We discuss the chal- lenges of implementing a probabilistic fingerprinting localization technique in GSM networks and present the details of the CellSense systemand how it addresses these challenges. We then extend the proposed system using a hybrid technique that combines probabilistic and deterministic estimation to achieve both high ac- curacy and low computational overhead.Moreover, the accuracy of the hybrid technique is robust to changes in its parameter values. To evaluate our proposed system, we implemented CellSense on Android-based phones. Results from two different testbeds, represent- ing urban and rural environments, for three differ- ent cellular providers show that Ce...

  16. Evaluation of Surface Energy Balance models for mapping evapotranspiration using very high resolution airborne remote sensing data

    Science.gov (United States)

    Paul, George

    Agriculture is the largest (90%) consumer of all fresh water in the world. The consumptive use of water by vegetation represented by the process evapotranspiration (ET) has a vital role in the dynamics of water, carbon and energy fluxes of the biosphere. Consequently, mapping ET is essential for making water a sustainable resource and also for monitoring ecosystem response to water stress and changing climate. Over the past three decades, numerous thermal remote sensing based ET mapping algorithms were developed and these have brought a significant theoretical and technical advancement in the spatial modeling of ET. Though these algorithms provided a robust, economical, and efficient tool for ET estimations at field and regional scales, yet the uncertainties in flux estimations were large, making evaluation a difficult task. The main objective of this study was to evaluate and improve the performance of widely used remote sensing based energy balance models, namely: the Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration at high Resolution and with Internalized Calibration (METRIC), and Surface Energy Balance System (SEBS). Data used in this study was collected as part of a multi-disciplinary and multi-institutional field campaign BEAREX (Bushland Evapotranspiration and Agricultural Remote Sensing Experiment) that was conducted during 2007 and 2008 summer cropping seasons at the USDA-ARS Conservation and Production Research Laboratory (CPRL) in Bushland, Texas. Seventeen high resolution remote sensing images taken from multispectral sensors onboard aircraft and field measurements of the agro-meteorological variables from the campaign were used for model evaluation and improvement. Overall relative error measured in terms of mean absolute percent difference (MAPD) for instantaneous ET (mm h -1) were 22.7%, 23.2%, and 12.6% for SEBAL, METRIC, and SEBS, respectively. SEBAL and METRIC performances for irrigated fields representing higher ET

  17. Many-body Expanded Analytical Potential Energy Function for Ground State PuOH Molecule

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Xun; GAO Tao; ZHU Zheng-He

    2006-01-01

    Using the density functional method B3LYP with relativistic effective core potential (RECP) for Pu atom, the low-lying excited states (4∑+, 6∑+, 8∑+) for three structures of PuOH molecule were optimized. The results show that the ground state is X6∑+of the linear Pu-O-H (C∞v), its corresponding equilibrium geometry and dissociation energy are RPu-O=0.20595 nm, RO-H=0.09581 nm and -8.68 eV, respectively. At the same time, two other metastable structures [PuOH (Cs) and H-Pu-O (C∞v)] were found. The analytical potential energy function has also been derived for whole range using the many-body expansion method. This potential energy function represents the considerable topographical features of PuOH molecule in detail, which is adequately accurate in the whole potential surface and can be used for the molecular reaction dynamics research.

  18. Body composition and deposition efficiency of protein and energy in grazing young bulls

    Directory of Open Access Journals (Sweden)

    Eriton Egidio Lisboa Valente

    2014-05-01

    Full Text Available The effects of supplementation with different protein: carbohydrate ratios on body composition, carcass characteristics and protein and energy deposition efficiency of young were assessed. Twenty-four Nellorecalves (132.5 ± 5.5 kgand 90-150 days of age were kept on pasture for a 430 day experimental period. The treatments were: Control = mineral mixture only; HPHC = high-protein and high-carbohydrate supplement; HPLC = high-protein and low-carbohydrate supplement; LPHC = low-protein and high-carbohydrate supplement; LPLC = low-protein and low-carbohydrate supplement. Four animals at begning and 20 animal at end of experiment were slaughtered to evaluate the carcass composition. Control bulls had the lowest (p 0.05 between supplemented bulls (13 Mcal day-1. Although non-supplemented bulls had less (p 0.05 between supplemented bulls. High-carbohydrate supplements were associated with more (p 0.05 in the energy efficiency between the groups. Therefore, supplementation increases the intake and retention of protein and energy without changing the retention efficiency.

  19. An Energy-Efficient MAC Protocol for Medical Emergency Monitoring Body Sensor Networks.

    Science.gov (United States)

    Zhang, Chongqing; Wang, Yinglong; Liang, Yongquan; Shu, Minglei; Chen, Changfang

    2016-01-01

    Medical emergency monitoring body sensor networks (BSNs) monitor the occurrence of medical emergencies and are helpful for the daily care of the elderly and chronically ill people. Such BSNs are characterized by rare traffic when there is no emergency occurring, high real-time and reliable requirements of emergency data and demand for a fast wake-up mechanism for waking up all nodes when an emergency happens. A beacon-enabled MAC protocol is specially designed to meet the demands of medical emergency monitoring BSNs. The rarity of traffic is exploited to improve energy efficiency. By adopting a long superframe structure to avoid unnecessary beacons and allocating most of the superframe to be inactive periods, the duty cycle is reduced to an extremely low level to save energy. Short active time slots are interposed into the superframe and shared by all of the nodes to deliver the emergency data in a low-delay and reliable way to meet the real-time and reliable requirements. The interposition slots can also be used by the coordinator to broadcast network demands to wake-up all nodes in a low-delay and energy-efficient way. Experiments display that the proposed MAC protocol works well in BSNs with low emergency data traffic. PMID:26999145

  20. An Energy-Efficient MAC Protocol for Medical Emergency Monitoring Body Sensor Networks

    Science.gov (United States)

    Zhang, Chongqing; Wang, Yinglong; Liang, Yongquan; Shu, Minglei; Chen, Changfang

    2016-01-01

    Medical emergency monitoring body sensor networks (BSNs) monitor the occurrence of medical emergencies and are helpful for the daily care of the elderly and chronically ill people. Such BSNs are characterized by rare traffic when there is no emergency occurring, high real-time and reliable requirements of emergency data and demand for a fast wake-up mechanism for waking up all nodes when an emergency happens. A beacon-enabled MAC protocol is specially designed to meet the demands of medical emergency monitoring BSNs. The rarity of traffic is exploited to improve energy efficiency. By adopting a long superframe structure to avoid unnecessary beacons and allocating most of the superframe to be inactive periods, the duty cycle is reduced to an extremely low level to save energy. Short active time slots are interposed into the superframe and shared by all of the nodes to deliver the emergency data in a low-delay and reliable way to meet the real-time and reliable requirements. The interposition slots can also be used by the coordinator to broadcast network demands to wake-up all nodes in a low-delay and energy-efficient way. Experiments display that the proposed MAC protocol works well in BSNs with low emergency data traffic. PMID:26999145

  1. Template-assisted electrodeposition of one-dimensional nanostructures for sensing and solar energy applications

    Science.gov (United States)

    Hernandez-Pagan, Emil A.

    One-dimensional nanowires and nanotubes offer unique properties that cannot be achieved with bulk materials. High surface area, strain relaxation, quantum confinement, and orthogonal light absorption and charge separation are examples. In this work, conducting polymer nanowires were synthesized by template-assisted electrodeposition. The dimensions of the nanowires could be easily controlled, and arrays or individual nanowires could be obtained. The conducting polymers synthesized were polypyrrole and poly(3,4-ethylendioxythiophene), as well as palladium-polymer and platinum-polymer composites. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) / energy-dispersive X-ray spectroscopy (EDS) were employed for structural characterization. Integration of the nanowires onto test structures was carried through electrofluidic assembly. Once assembled, the electrical properties of individual nanowires were investigated and studied for sensing of various gases. Template-assisted electrodeposition was also employed to synthesize cadmium selenide (CdSe) and copper indium diselenide (CuInSe2) nanowires. The crystal structure and crystallite domain size of the CdSe nanowires was controlled by either direct electrodeposition from an electrolyte that contained both elements or by topochemical cation exchange starting from crystalline t-Se nanowires. This was confirmed by TEM, X-ray Diffraction (XRD), and electron diffraction. CdSe nanowire photoanodes were used to study the effects of crystallite domain size on the photoelectrochemical properties. CuInSe2 nanowires were characterized by SEM, TEM/EDS, XRD, inductively coupled plasma mass spectrometry, Mott-Schottky analysis, and single wire electrical measurements. It was demonstrated that single phase p- and n-type CuInSe2 nanowires could be fabricated by this method. Since micro and nanowire arrays coupled to inexpensive catalysts are promising materials for unassisted-overall water splitting, the

  2. Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue.

    Science.gov (United States)

    Matsushita, Mami; Yoneshiro, Takeshi; Aita, Sayuri; Kamiya, Tomoyasu; Kusaba, Nobutaka; Yamaguchi, Kazuya; Takagaki, Kinya; Kameya, Toshimitsu; Sugie, Hiroki; Saito, Masayuki

    2015-01-01

    Kaempferia parviflora extract (KP) has been reported to have a preventive effect on obesity in mice, probably by increasing energy expenditure (EE). The aims of the current study were to examine the acute effects of KP ingestion on whole-body EE in humans and to analyze its relation to the activity of brown adipose tissue (BAT), a site of non-shivering thermogenesis. After an oral ingestion of an ethanol extract of KP, EE increased significantly, showing a maximal increase of 229±69 kJ/d at 60 min, while it did not change after placebo ingestion. To evaluate BAT activity, the subjects underwent fluorodeoxyglucose-positron emission tomography, and divided into two groups with high- and low-BAT activities. A similar and greater response of EE to KP ingestion was observed in the high-BAT group (351±50 kJ/d at 60 min), but not in the low activity group. Placebo ingestion did not cause any significant EE change in either group. These results indicate that a single oral ingestion of the KP extract can potentially increase whole-body EE probably through the activation of BAT in healthy men, and may be useful as an anti-obesity regimen. PMID:25994142

  3. Variable Scheduling to Mitigate Channel Losses in Energy-Efficient Body Area Networks

    Directory of Open Access Journals (Sweden)

    Lavy Libman

    2012-11-01

    Full Text Available We consider a typical body area network (BAN setting in which sensor nodes send data to a common hub regularly on a TDMA basis, as defined by the emerging IEEE 802.15.6 BAN standard. To reduce transmission losses caused by the highly dynamic nature of the wireless channel around the human body, we explore variable TDMA scheduling techniques that allow the order of transmissions within each TDMA round to be decided on the fly, rather than being fixed in advance. Using a simple Markov model of the wireless links, we devise a number of scheduling algorithms that can be performed by the hub, which aim to maximize the expected number of successful transmissions in a TDMA round, and thereby significantly reduce transmission losses as compared with a static TDMA schedule. Importantly, these algorithms do not require a priori knowledge of the statistical properties of the wireless channels, and the reliability improvement is achieved entirely via shuffling the order of transmissions among devices, and does not involve any additional energy consumption (e.g., retransmissions. We evaluate these algorithms directly on an experimental set of traces obtained from devices strapped to human subjects performing regular daily activities, and confirm that the benefits of the proposed variable scheduling algorithms extend to this practical setup as well.

  4. Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure.

    Science.gov (United States)

    Liakath-Ali, Kifayathullah; Vancollie, Valerie E; Lelliott, Christopher J; Speak, Anneliese O; Lafont, David; Protheroe, Hayley J; Ingvorsen, Camilla; Galli, Antonella; Green, Angela; Gleeson, Diane; Ryder, Ed; Glover, Leanne; Vizcay-Barrena, Gema; Karp, Natasha A; Arends, Mark J; Brenn, Thomas; Spiegel, Sarah; Adams, David J; Watt, Fiona M; van der Weyden, Louise

    2016-07-01

    The epidermis is the outermost layer of skin that acts as a barrier to protect the body from the external environment and to control water and heat loss. This barrier function is established through the multistage differentiation of keratinocytes and the presence of bioactive sphingolipids such as ceramides, the levels of which are tightly regulated by a balance of ceramide synthase and ceramidase activities. Here we reveal the essential role of alkaline ceramidase 1 (Acer1) in the skin. Acer1-deficient (Acer1(-/-) ) mice showed elevated levels of ceramide in the skin, aberrant hair shaft cuticle formation and cyclic alopecia. We demonstrate that Acer1 is specifically expressed in differentiated interfollicular epidermis, infundibulum and sebaceous glands and consequently Acer1(-/-) mice have significant alterations in infundibulum and sebaceous gland architecture. Acer1(-/-) skin also shows perturbed hair follicle stem cell compartments. These alterations result in Acer1(-/-) mice showing increased transepidermal water loss and a hypermetabolism phenotype with associated reduction of fat content with age. We conclude that Acer1 is indispensable for mammalian skin homeostasis and whole-body energy homeostasis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:27126290

  5. Dual energy X ray absorptiometry for bone mineral density and body composition assessment

    International Nuclear Information System (INIS)

    The IAEA assists Member States in their efforts to develop effective evidence based interventions to combat malnutrition in all its forms using nuclear techniques. The unique characteristics of nuclear techniques in nutrition, in particular stable isotope techniques and dual energy X ray absorptiometry (DXA), make these methods highly suitable for development and evaluation of interventions to address the double burden of malnutrition, i.e. 'undernutrition' and 'overnutrition', globally. This publication provides information on the theoretical background and practical application of state of the art methodology for bone mineral density (BMD) measurements and body composition assessment by DXA. The IAEA has contributed to the development and transfer of technical expertise in the use of DXA in Member States through support to national and regional nutrition projects via the technical cooperation programme and coordinated research projects addressing priority areas in nutrition. This book will be an important part of the IAEA's efforts to transfer technology and to contribute to capacity building in this field. The publication was developed by an international group of experts and is intended for nutritionists, radiation technologists, researchers and health professionals using DXA for BMD measurements and body composition assessment

  6. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting

    Science.gov (United States)

    Proto, Antonino; Penhaker, Marek; Bibbo, Daniele; Vala, David; Conforto, Silvia; Schmid, Maurizio

    2016-01-01

    In this paper, two different piezoelectric transducers—a ceramic piezoelectric, lead zirconate titanate (PZT), and a polymeric piezoelectric, polyvinylidene fluoride (PVDF)—were compared in terms of energy that could be harvested during locomotion activities. The transducers were placed into a tight suit in proximity of the main body joints. Initial testing was performed by placing the transducers on the neck, shoulder, elbow, wrist, hip, knee and ankle; then, five locomotion activities—walking, walking up and down stairs, jogging and running—were chosen for the tests. The values of the power output measured during the five activities were in the range 6 µW–74 µW using both transducers for each joint. PMID:27077867

  7. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting.

    Science.gov (United States)

    Proto, Antonino; Penhaker, Marek; Bibbo, Daniele; Vala, David; Conforto, Silvia; Schmid, Maurizio

    2016-01-01

    In this paper, two different piezoelectric transducers-a ceramic piezoelectric, lead zirconate titanate (PZT), and a polymeric piezoelectric, polyvinylidene fluoride (PVDF)-were compared in terms of energy that could be harvested during locomotion activities. The transducers were placed into a tight suit in proximity of the main body joints. Initial testing was performed by placing the transducers on the neck, shoulder, elbow, wrist, hip, knee and ankle; then, five locomotion activities-walking, walking up and down stairs, jogging and running-were chosen for the tests. The values of the power output measured during the five activities were in the range 6 µW-74 µW using both transducers for each joint. PMID:27077867

  8. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Antonino Proto

    2016-04-01

    Full Text Available In this paper, two different piezoelectric transducers—a ceramic piezoelectric, lead zirconate titanate (PZT, and a polymeric piezoelectric, polyvinylidene fluoride (PVDF—were compared in terms of energy that could be harvested during locomotion activities. The transducers were placed into a tight suit in proximity of the main body joints. Initial testing was performed by placing the transducers on the neck, shoulder, elbow, wrist, hip, knee and ankle; then, five locomotion activities—walking, walking up and down stairs, jogging and running—were chosen for the tests. The values of the power output measured during the five activities were in the range 6 µW–74 µW using both transducers for each joint.

  9. Pediatric body composition analysis with dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Pediatric applications of body composition analysis (BCA) have become of increased interest to pediatricians and other specialists. With the increasing prevalence of morbid obesity and with an increased awareness of anorexia nervosa, pediatric specialists are utilizing BCA data to help identify, treat, and prevent these conditions. Dual-energy X-ray absorptiometry (DXA) can be used to determine the fat mass (FM) and lean tissue mass (LTM), as well as bone mineral content (BMC). Among the readily available BCA techniques, DXA is the most widely used and it has the additional benefit of precisely quantifying regional FM and LTM. This review evaluates the strengths and limitations of DXA as a pediatric BCA method and considers the utilization of DXA to identify trends and variations in FM and LTM measurements in obese and anorexic children. (orig.)

  10. Dissecting Jets and Missing Energy Searches Using $n$-body Extended Simplified Models

    CERN Document Server

    Cohen, Timothy; Hedri, Sonia El; Hirschauer, James; Tran, Nhan; Whitbeck, Andrew

    2016-01-01

    Simplified Models are a useful way to characterize new physics scenarios for the LHC. Particle decays are often represented using non-renormalizable operators that involve the minimal number of fields required by symmetries. Generalizing to a wider class of decay operators allows one to model a variety of final states. This approach, which we dub the $n$-body extension of Simplified Models, provides a unifying treatment of the signal phase space resulting from a variety of signals. In this paper, we present the first application of this framework in the context of multijet plus missing energy searches. The main result of this work is a global performance study with the goal of identifying which set of observables yields the best discriminating power against the largest Standard Model backgrounds for a wide range of signal jet multiplicities. Our analysis compares combinations of one, two and three variables, placing emphasis on the enhanced sensitivity gain resulting from non-trivial correlations. Utilizing b...

  11. Singular path-independent energy integrals for elastic bodies with thin elastic inclusions

    Science.gov (United States)

    Shcherbakov, V. V.

    2016-06-01

    An equilibrium problem for a two-dimensional homogeneous linear elastic body containing a thin elastic inclusion and an interfacial crack is considered. The thin inclusion is modeled within the framework of Euler-Bernoulli beam theory. An explicit formula for the first derivative of the energy functional with respect to the crack perturbation along the interface is presented. It is shown that the formulas for the derivative associated with translation and self-similar expansion of the crack are represented as path-independent integrals along smooth contour surrounding one or both crack tips. These path-independent integrals consist of regular and singular terms and are analogs of the well-known Eshelby-Cherepanov-Rice J-integral and Knowles-Sternberg M-integral.

  12. Thermoelastic waves without energy dissipation in an unbounded body with a spherical cavity

    Directory of Open Access Journals (Sweden)

    K. S. Srinath

    2000-04-01

    Full Text Available The linear theory of thermoelasticity without energy dissipation is employed to study waves emanating from the boundary of a spherical cavity in a homogeneous and isotropic unbounded thermoelastic body. The waves are supposed to be spherically symmetric and caused by a constant step in temperature applied to the stress-free boundary of the cavity. Small-time solutions for the displacement, temperature, and stress fields are obtained by using the Laplace transform technique. It is found that there exist two coupled waves, of which one is predominantly elastic and the other is predominantly thermal, both propagating with finite speeds but with no exponential attenuation. Exact expressions for discontinuities in the field functions that occur at the wavefronts are computed and analysed. The results are compared with those obtained earlier in the contexts of some other models of thermoelasticity.

  13. Pediatric body composition analysis with dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Helba, Maura; Binkovitz, Larry A. [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States)

    2009-07-15

    Pediatric applications of body composition analysis (BCA) have become of increased interest to pediatricians and other specialists. With the increasing prevalence of morbid obesity and with an increased awareness of anorexia nervosa, pediatric specialists are utilizing BCA data to help identify, treat, and prevent these conditions. Dual-energy X-ray absorptiometry (DXA) can be used to determine the fat mass (FM) and lean tissue mass (LTM), as well as bone mineral content (BMC). Among the readily available BCA techniques, DXA is the most widely used and it has the additional benefit of precisely quantifying regional FM and LTM. This review evaluates the strengths and limitations of DXA as a pediatric BCA method and considers the utilization of DXA to identify trends and variations in FM and LTM measurements in obese and anorexic children. (orig.)

  14. Contribution to the phenomenological study of two-body reactions at high energy

    International Nuclear Information System (INIS)

    A phenomenological model suited for the description of arbitrary two-body reactions at high energies is presented and applied to the analysis of π - nucleon, K - nucleon, et K-bar - nucleon scattering.The idea is that the Regge-pole model does not take into account the whole content of the unitarity relation and has to be modified, as is currently done in one-particle exchange models, so that it may include absorptive corrections.In terms of a rather economical set of free parameters,we obtain a satisfactory agreement with all available data, including the recent evidence for a nonvanishing polarization in π- p π0 n reaction. We then reinterpret our parametrization of the amplitudes in terms of poles and branch points in the complex angular-momentum plane for the crossed channel. (author)

  15. Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment

    International Nuclear Information System (INIS)

    The IAEA assists Member States in their efforts to develop effective evidence based interventions to combat malnutrition in all its forms using nuclear techniques. The unique characteristics of nuclear techniques in nutrition, in particular stable isotope techniques and dual energy X ray absorptiometry (DXA), make these methods highly suitable for development and evaluation of interventions to address the double burden of malnutrition, i.e. 'undernutrition' and 'overnutrition', globally. This publication provides information on the theoretical background and practical application of state of the art methodology for bone mineral density (BMD) measurements and body composition assessment by DXA. The IAEA has contributed to the development and transfer of technical expertise in the use of DXA in Member States through support to national and regional nutrition projects via the technical cooperation programme and coordinated research projects addressing priority areas in nutrition. This book will be an important part of the IAEA's efforts to transfer technology and to contribute to capacity building in this field

  16. Energy fluctuation of a finite number of interacting bosons: A correlated many-body approach

    Science.gov (United States)

    Bhattacharyya, Satadal; Lekala, M. L.; Chakrabarti, Barnali; Rampho, G. J.

    2016-03-01

    We calculate the energy fluctuation of a truly finite number of interacting bosons and study the role of interaction. Although the ideal Bose gas in thermodynamic limit is an exactly solvable problem and analytic expression of various fluctuation measures exists, the experimental Bose-Einstein condensation (BEC) is a nontrivial many-body problem. We employ a two-body correlated basis function and utilize the realistic van der Waals interaction. We calculate the energy fluctuation (△E2) of the interacting trapped bosons and plot △E/2 kB2T2 as a function of T/Tc. In the classical limit △E2 is related to the specific heat per particle cv through the relation △E2=kBT2cv . We have obtained a distinct hump in △E/2 kB2T2 around the condensation point for three-dimesional harmonically trapped Bose gas when the particle number N ≃5000 and above which corresponds to the second-order phase transition. However for finite-size interacting bosons (N ≃ a few hundred) the hump is not sharp, and the maximum in △E/2 kB2T2 can be interpreted as a smooth increase in the scaled fluctuation below Tc and then a decrease above Tc. To illustrate the justification we also calculate cv, which exhibits the same feature, which leads to the conjecture that for finite-sized interacting bosons phase transition is ruled out.

  17. Validity of SenseWear® Armband v5.2 and v2.2 for estimating energy expenditure.

    Science.gov (United States)

    Bhammar, Dharini M; Sawyer, Brandon J; Tucker, Wesley J; Lee, Jung-Min; Gaesser, Glenn A

    2016-10-01

    We compared SenseWear Armband versions (v) 2.2 and 5.2 for estimating energy expenditure in healthy adults. Thirty-four adults (26 women), 30.1 ± 8.7 years old, performed two trials that included light-, moderate- and vigorous-intensity activities: (1) structured routine: seven activities performed for 8-min each, with 4-min of rest between activities; (2) semi-structured routine: 12 activities performed for 5-min each, with no rest between activities. Energy expenditure was measured by indirect calorimetry and predicted using SenseWear v2.2 and v5.2. Compared to indirect calorimetry (297.8 ± 54.2 kcal), the total energy expenditure was overestimated (P rowing). Although both algorithms overestimated energy expenditure as well as time spent in moderate-intensity physical activity (P < 0.05), v5.2 offered better estimates than v2.2. PMID:26854829

  18. Post-growth thermal oxidation of wurtzite InN thin films into body-center cubic In2O3 for chemical/gas sensing applications

    International Nuclear Information System (INIS)

    Post-growth thermal oxidations of InN have been studied using high-resolution x-ray diffraction (HRXRD) and secondary ion-mass spectroscopy (SIMS). The InN thin films, having relative high crystal quality, were grown by metal–organic chemical vapor deposition (MOCVD) on c-sapphire substrates using InGaN/GaN buffer layers. HRXRD reveals that oxidation of wurtzite InN into body-center cubic In2O3 occurred at elevated temperatures. A Si3N4 encapsulation improves the crystal quality of In2O3 oxidized by using conventional rapid thermal annealing (RTA) but it results in the presence of undesired metallic indium. Cycle-RTA not only improves the crystal quality but also avoids the byproduct of metallic indium. SIMS depth profile, using contaminate elements as the ‘interface markers,’ provide evidence that the oxidation of InN is dominated by oxygen inward diffusion mechanism. Together with the HRXRD results, we conclude that the crystal quality of the resultant In2O3/InN heterostructure is mainly controlled by the balance between the speeds of oxygen diffusion and InN thermal dissociation, which can be effectively tuned by cycle-RTA. The obtained In2O3/InN heterostructures can be fundamental materials for studying high speed chemical/gas sensing devices. - Graphical abstract: Oxidation of h-InN into bcc-In2O3 has been realized at elevated temperatures. A Si3N4 cap improves the crystal quality of In2O3 oxidized by conventional RTA but it results in the presence of undesired metallic indium. Cycle-RTA not only improves the crystal quality but also avoids the byproduct of metallic indium. SIMS depth profiles provide evidence that the oxidation of InN is dominated by oxygen inward diffusion mechanism. The crystal quality of the resultant In2O3/InN heterostructure is mainly controlled by the balance between the speeds of oxygen diffusion and InN thermal dissociation, which can be effectively tuned by cycle-RTA. - Highlights: • Oxidation of h-InN into bcc-In2O3 has been

  19. Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Jordan Katherine W

    2010-05-01

    Full Text Available Abstract Background Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations. Results We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content

  20. Towards Reliable and Energy-Efficient Incremental Cooperative Communication for Wireless Body Area Networks

    Science.gov (United States)

    Yousaf, Sidrah; Javaid, Nadeem; Qasim, Umar; Alrajeh, Nabil; Khan, Zahoor Ali; Ahmed, Mansoor

    2016-01-01

    In this study, we analyse incremental cooperative communication for wireless body area networks (WBANs) with different numbers of relays. Energy efficiency (EE) and the packet error rate (PER) are investigated for different schemes. We propose a new cooperative communication scheme with three-stage relaying and compare it to existing schemes. Our proposed scheme provides reliable communication with less PER at the cost of surplus energy consumption. Analytical expressions for the EE of the proposed three-stage cooperative communication scheme are also derived, taking into account the effect of PER. Later on, the proposed three-stage incremental cooperation is implemented in a network layer protocol; enhanced incremental cooperative critical data transmission in emergencies for static WBANs (EInCo-CEStat). Extensive simulations are conducted to validate the proposed scheme. Results of incremental relay-based cooperative communication protocols are compared to two existing cooperative routing protocols: cooperative critical data transmission in emergencies for static WBANs (Co-CEStat) and InCo-CEStat. It is observed from the simulation results that incremental relay-based cooperation is more energy efficient than the existing conventional cooperation protocol, Co-CEStat. The results also reveal that EInCo-CEStat proves to be more reliable with less PER and higher throughput than both of the counterpart protocols. However, InCo-CEStat has less throughput with a greater stability period and network lifetime. Due to the availability of more redundant links, EInCo-CEStat achieves a reduced packet drop rate at the cost of increased energy consumption. PMID:26927104

  1. Towards Reliable and Energy-Efficient Incremental Cooperative Communication for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Sidrah Yousaf

    2016-02-01

    Full Text Available In this study, we analyse incremental cooperative communication for wireless body area networks (WBANs with different numbers of relays. Energy efficiency (EE and the packet error rate (PER are investigated for different schemes. We propose a new cooperative communication scheme with three-stage relaying and compare it to existing schemes. Our proposed scheme provides reliable communication with less PER at the cost of surplus energy consumption. Analytical expressions for the EE of the proposed three-stage cooperative communication scheme are also derived, taking into account the effect of PER. Later on, the proposed three-stage incremental cooperation is implemented in a network layer protocol; enhanced incremental cooperative critical data transmission in emergencies for static WBANs (EInCo-CEStat. Extensive simulations are conducted to validate the proposed scheme. Results of incremental relay-based cooperative communication protocols are compared to two existing cooperative routing protocols: cooperative critical data transmission in emergencies for static WBANs (Co-CEStat and InCo-CEStat. It is observed from the simulation results that incremental relay-based cooperation is more energy efficient than the existing conventional cooperation protocol, Co-CEStat. The results also reveal that EInCo-CEStat proves to be more reliable with less PER and higher throughput than both of the counterpart protocols. However, InCo-CEStat has less throughput with a greater stability period and network lifetime. Due to the availability of more redundant links, EInCo-CEStat achieves a reduced packet drop rate at the cost of increased energy consumption.

  2. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans

    OpenAIRE

    Stephens, Francis B; Wall, Benjamin T.; Marimuthu, Kanagaraj; Shannon, Chris E; Constantin-Teodosiu, Dumitru; Macdonald, Ian A.; Greenhaff, Paul L

    2013-01-01

    Twelve weeks of daily L-carnitine and carbohydrate feeding in humans increases skeletal muscle total carnitine content, and prevents body mass accrual associated with carbohydrate feeding alone. Here we determined the influence of L-carnitine and carbohydrate feeding on energy metabolism, body fat mass andmuscle expression of fuel metabolism genes. Twelve males exercised at 50% maximal oxygen consumption for 30 min once before and once after 12 weeks of twice daily feeding of 80 g carbohyd...

  3. A whole body counter for an emergency and occupational monitoring of an internal contamination with low energy photon emitters

    Science.gov (United States)

    Fantínová, K.; Fojtík, P.; Pfeiferová, V.

    2015-11-01

    A whole-body counter in SÚRO (NRPI) Prague, Czech Republic has been upgraded recently with the goal to enhance its capability of a safe, smooth, accurate and reproducible positioning of detectors for whole- and partial-body counting. The counter is intended especially for counting of low energy gamma emitters in various organs and tissues of the human body. Counting efficiency calibration of a four-detector system installed in the shielded room has been performed by means of physical and voxel phantoms. The consistency of in vivo bioassay data of three internal contamination cases long-term monitored in the Institute is shown.

  4. Towards Deriving Renewable Energy from Aquatic Macrophytes Polluting Water Bodies in Niger Delta Region of Nigeria

    Directory of Open Access Journals (Sweden)

    Badmus Abdurrahman Adeleye

    2013-01-01

    Full Text Available This study was performed to derive methane rich biogas from biomass of harvested water hyacinth polluting water bodies in selected rivers of the Niger delta region of Nigeria. Field visits were undertaken on selected rivers in the Niger Delta region in which aquatic macrophytes were collected and inventorized. Also different types of aquatic macrophytes were surveyed. Control by harvesting macrophytes and deriving energy (methane-rich biogas from biomass of one (water hyacinth was successfully carried out in this study. An initial test was conducted to evaluate methane rich biogas production from water hyacinth collected from the wild. After a successful production of combustible biogas, laboratory experiments aimed at generating biogas from harvested biomass of aquatic mycrophyte (water hyacinth cultivated under eutrophic and oligotrophic conditions were undertaken in the laboratory. The result of the study showed highest biogas yield of 22 L over a 40 day retention time for water hyacinth raised under eutrophic conditions. Biogas yield for water hyacinth raised under oligotrophic conditions recorded the highest yield of 53L over an 11 day retention time. The conversion of the biomass of harvested aquatic macrophyte (water hyacinth from the Niger Delta into renewable energy, that is combustible biogas, demonstrated an inevitable option for the control and management of environmental pollution associated with aquatic macrophytes and their usability for poverty alleviation in the Niger Delta region of Nigeria.

  5. Children's body mass index, participation in school meals, and observed energy intake at school meals

    Directory of Open Access Journals (Sweden)

    Mackelprang Alyssa J

    2010-03-01

    Full Text Available Abstract Background Data from a dietary-reporting validation study with fourth-grade children were analyzed to investigate a possible relationship of body mass index (BMI with daily participation in school meals and observed energy intake at school meals, and whether the relationships differed by breakfast location (classroom; cafeteria. Methods Data were collected in 17, 17, and 8 schools during three school years. For the three years, six, six, and seven of the schools had breakfast in the classroom; all other schools had breakfast in the cafeteria. Information about 180 days of school breakfast and school lunch participation during fourth grade for each of 1,571 children (90% Black; 53% girls was available in electronic administrative records from the school district. Children were weighed and measured, and BMI was calculated. Each of a subset of 465 children (95% Black; 49% girls was observed eating school breakfast and school lunch on the same day. Mixed-effects regression was conducted with BMI as the dependent variable and school as the random effect; independent variables were breakfast participation, lunch participation, combined participation (breakfast and lunch on the same day, average observed energy intake for breakfast, average observed energy intake for lunch, sex, age, breakfast location, and school year. Analyses were repeated for BMI category (underweight/healthy weight; overweight; obese; severely obese using pooled ordered logistic regression models that excluded sex and age. Results Breakfast participation, lunch participation, and combined participation were not significantly associated with BMI or BMI category irrespective of whether the model included observed energy intake at school meals. Observed energy intake at school meals was significantly and positively associated with BMI and BMI category. For the total sample and subset, breakfast location was significantly associated with BMI; average BMI was larger for

  6. How to pass information and deliver energy to a network of implantable devices within the human body.

    Science.gov (United States)

    Sun, Mingui; Hackworth, Steven A; Tang, Zhide; Gilbert, Gary; Cardin, Sylvain; Sclabassi, Robert J

    2007-01-01

    It has been envisioned that a body network can be built to collect data from, and transport information to, implanted miniature devices at multiple sites within the human body. Currently, two problems of utmost importance remain unsolved: 1) how to link information between a pair of implants at a distance? and 2) how to provide electric power to these implants allowing them to function and communicate? In this paper, we present new solutions to these problems by minimizing the intra-body communication distances. We show that, based on a study of human anatomy, the maximum distance from the body surface to the deepest point inside the body is approximately 15 cm. This finding provides an upper bound for the lengths of communication pathways required to reach the body's interior. We also show that these pathways do not have to cross any joins within the body. In order to implement the envisioned body network, we present the design of a new device, called an energy pad. This small-size, light-weight device can easily interface with the skin to perform data communication with, and supply power to, miniature implants. PMID:18003200

  7. Total body bone mineral density changes in healthy Japanese children as assessed by dual energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    For 68 healthy children (38 male and 30 female) ranging in age from 1 to 16 years, we measured the bone mineral density (BMD) of different regions (skull, upper extremities, ribs, thoracic spine, lumbar spine, pelvis and lower extremities) and the total body BMD using a dual energy X-ray absorptiometry (DEXA; QDR-1000/W, Hologic Co.). The total body BMD increased linearly with age for both sexes (male: r=0.9501, female: r=0.9715; p<0.0001). The increase was more prominent in boys compared to girls. There was also a positive correlation between the ratio of total body bone mineral content to lean body mass and age, although total body BMD showed a stronger correlation with age. Furthermore, the total body BMD correlated highly with body height and weight. There were positive correlations between the BMD of different regions and age. Specifically, the BMD of the lower extremities correlated strongly with age. In addition, the BMD of the skull increased at the highest rate. Considering convenience, accuracy and precision, measurement time, radiation exposure dose and the strong correlation with age, measurement of the total body BMD by DEXA is thought to be an effective method of quantifying bone mineral, useful in the evaluation of bone metabolism kinetics in children. (author)

  8. The study of dual energy X-ray absorptiometry on body composition components in obesity

    International Nuclear Information System (INIS)

    Objective: To study the correlation of the bone mineral density (BMD) and the body composition components of body mass index (BMI), FAT and LEAN in Chinese obesity. Methods: There were 150 cases in obesity group diagnosed by BMI, including 75 males [ median age 46 years, mean weight (89.64 ± 8.33) kg] and 75 females [median age 45 years, mean weight (77.23 ± 6.85) kg]. There were 150 persons with normal BMI in the control group, including 75 males [(median age 47 years, mean weight (62.34 ± 5.72) kg] and 75 females [ median age 45 years, mean weight (50.16 ± 5.06) kg]. The body height and weight of 300 persons in two groups were measured respectively and ,simultaneously calculated the BMI. These data and the body composition parameters measured by the dual energy X-ray absorptiometry (DEXA) in these two groups were compared and analyzed. The data obtained used two-sample t-test analysis, bi-variable correlation used Pearson linear correlation analysis and multi-variable correlation used multiple linear regression analysis. Results: FAT of arms, legs trunk and total body of male cases in obesity group was (2.90 ± 0.57), (7.48 ± 1.46), (15.67 ± 3.05), (30.92 ± 5.94) kg respectively, FAT% was (30.9 ± 5.1)%, (30.6 ± 5.8)%, (37.3 ± 4.7)%, (35.1 ± 4.4)% respectively, it was significantly higher than that in control group [FAT was (1.12 ± 0.64), (3.27 ± 1.22), (6.71 ± 3.29), (11.61 ± 5.16) kg respectively, FAT% was (15.4 ± 4.8)%, (16.5 ± 5.0)%, (21.8 ± 5.8)%, (18.6 ± 5.3)% respectively], P 2 respectively, it was significantly higher than that in control group [ LEAN was (22.89 ± 1.68), (48.89 ± 3.72) kg respectively, BMD was (0.89 ± 0.07), (1.15 ± 0.06) g/cm2 respectively], P 2 respectively, and there were no statistical significance compared with those in control group [LEAN was (5.99 ± 0.72), (16.83 ± 1.67) kg respectively, BMD was (0.90 ± 0.08), (1.29 ± 0.09) g/cm2 respectively]. FAT of arms, legs, trunk and total body of females in obesity

  9. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  10. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  11. In-medium T matrix for nuclear matter with three-body forces: Binding energy and single-particle properties

    International Nuclear Information System (INIS)

    We present spectral calculations of nuclear matter properties including three-body forces. Within the in-medium T-matrix approach, implemented with the CD-Bonn and Nijmegen potentials plus the three-nucleon Urbana interaction, we compute the energy per particle in symmetric and neutron matter. The three-body forces are included via an effective density dependent two-body force in the in-medium T-matrix equations. After fine tuning the parameters of the three-body force to reproduce the phenomenological saturation point in symmetric nuclear matter, we calculate the incompressibility and the energy per particle in neutron matter. We find a soft equation of state in symmetric nuclear matter but a relatively large value of the symmetry energy. We study the the influence of the three-body forces on the single-particle properties. For symmetric matter the spectral function is broadened at all momenta and all densities, while an opposite effect is found for the case of neutrons only. Noticeable modification of the spectral functions are realized only for densities above the saturation density. The modifications of the self-energy and the effective mass are not very large and appear to be strongly suppressed above the Fermi momentum

  12. Precise measurement of internal sense-wire locations in high energy physics detectors

    International Nuclear Information System (INIS)

    The central tracking region of the Solenoidal Detector Collaboration detector being designed to operate at the Superconducting Super Collider will utilize gas-filled straw tubes for particle tracking; the straws, each containing a thin central wire for charge collection, will be collected into modules of a few hundred straws each. It is crucial for proper interpretation of the data that the positions of the sense wires be known to very high precision. A pattern-deviation scanning system is being investigated for determining if the sense wires in constructed modules are within 35 μm of their intended locations. The system involves moving a module in steps through a broad x-ray beam and comparing a response matrix of transmission measurements to a template which is characteristic of a ''perfectly'' aligned module. The pattern-deviation scanner approach is described and simulation results are presented. (author)

  13. Recent Technology of Sensing, Monitoring, Diagnosis, and Maintenance for Aged Electric Power and Energy System

    Science.gov (United States)

    Matsumoto, Satoshi

    This paper deals with the recent topics related to sensing, monitoring, and diagnosis for electric power equipment. Moreover the risk management for such equipments has been an object of study in many terms such as economical, technical aspects, safety and rest, CSR (Corporate Social Responsibility) etc. The relationship between the function of the economic engineering and the maintenance strategy for electric power system are reviewed.

  14. Remote sensing parameterization of the processes of energy and water cycle over desertification areas

    Institute of Scientific and Technical Information of China (English)

    MA; Yaoming(马耀明); Tsukamoto; Osamu; Ishikawa; Hirohiko

    2002-01-01

    In order to understand the processes of land surface-atmosphere interaction over de-sertification area, it is indispensable to utilize of satellite remote sensing. Two scenes of LandsatTM were used to produce a set of maps of surface reflectance, MSAVI, vegetation coverage, sur-face temperature, net radiation, soil heat flux, sensible heat flux and latent heat flux. Statisticalanalysis based on these maps revealed some quantitative significant land surface characteristics.Future developments of the method are also discussed.

  15. Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing

    Science.gov (United States)

    Singh, Upendra N.

    2010-01-01

    Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their

  16. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition

    Science.gov (United States)

    Wang, ZiMian; Heymsfield, Steven B.; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N.

    2010-05-01

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated RST value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the RST concept depends on the mass of each major element in the human body. The DXA RST values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA RST value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body 40K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the RST values. The DXA RST values were strongly associated with the RST values predicted from elemental content (r = 0.976, P fat was strongly associated with 5C %fat (24.4 ± 12.0% versus 24.9 ± 11.1%, r = 0.983, P fat.

  17. The contribution of body composition, substrates, and hormones to the variability in energy expenditure and substrate utilization in premenopausal women

    DEFF Research Database (Denmark)

    Astrup, A; Buemann, B; Christensen, N J;

    1992-01-01

    variance in sleeping energy expenditure was accounted for by plasma androstenedione concentration (4%, P = 0.0005) and by free T3 index (2%, P = 0.03). Thus physiological variation among individuals in plasma androstenedione concentration may result in a difference in energy expenditure of 908 kJ/day and...... (n = 16), but the entire group difference in energy expenditure was explained by differences in body composition. We conclude that physiological variations in plasma androstenedione and T3 concentrations contribute to the interindividual variance in energy expenditure of women, and their role is not...

  18. The effect that energy storage and return feet have on the propulsion of the body: a pilot study.

    Science.gov (United States)

    Crimin, Anthony; McGarry, Anthony; Harris, Elena Jane; Solomonidis, Stephan Emanuel

    2014-09-01

    A variety of energy storage and return prosthetic feet are currently available for use within lower limb prostheses. Designs claim to provide a beneficial energy return during push-off, but the extent to which this occurs remains disputed. Techniques currently used to measure energy storage, dissipation and return within the structure of the prosthetic foot are debatable, with limited evidence to support substantial elastic energy storage and return from existing designs. The aim of this study was to evaluate the performance of energy storage and return foot designs through considering the ankle power during push-off and the effect on body centre of mass propulsion. To achieve this aim, the gait patterns of six trans-tibial prosthetic users wearing different designs of energy storage and return feet were analysed while ascending a ramp. Three examples of energy storage and return feet (suitable for moderate activity) were selected and randomly evaluated: the Blatchford's Epirus, Össur Assure and College Park Tribute feet. The power at the anatomical and mechanical ankle joints was integrated to evaluate the work done over the gait cycle. The direction of the inertial force, and therefore propulsion of the body centre of mass, was used to indicate the effect of the energy return by the energy storage and return feet. Results indicate that although energy storage and return feet may provide energy return, the work done around the prosthetic ankle indicates net power absorption. Therefore, the prosthetic limb is unable to contribute to the body centre of mass propulsion to the same extent as the biological limb. PMID:25172179

  19. A new Energy-Efficient TDMA-based MAC Protocol for Periodic Sensing Applications in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shams Ur Rahman

    2012-07-01

    Full Text Available Energy efficiency is a major requirement in wireless sensor networks. Media Access Control is one of the key areas where energy efficiency can be achieved by designing such MAC protocol that is tuned to the requirements of the sensor networks. Different applications have different requirements and a single MAC protocol cannot be optimal for all types of applications. In this paper we present a TDMA-based MAC (TDMAC protocol which is specially designed for such applications that require periodic sensing of the sensor field. TDMAC organizes nodes into clusters. Nodes send their data to their cluster head (CH and CHs forward it to the base station. CHs away from the base station use multi-hop communication by forwarding their data to CHs nearer than themselves to the base station. Both inter-cluster and intra-cluster communication is purely TDMA-based which effectively eliminates both inter-cluster as well as intra-cluster interference.

  20. N-body simulations with a cosmic vector for dark energy

    CERN Document Server

    Carlesi, Edoardo; Yepes, Gustavo; Gottloeber, Stefan; Jimenez, Jose Beltran; Maroto, Antonio L

    2012-01-01

    We present the results of a series of cosmological $N$-body simulations of a Vector Dark Energy (VDE) model, performed using a suitably modified version of the publicly available \\texttt{GADGET}-2 code. The setups of our simulations were calibrated pursuing a twofold aim: 1) to analyze the large scale distribution of massive objects and 2) to determine the properties of halo structure in this different ramework.We observe that structure formation is enhanced in VDE, since the mass function at high redshift is boosted up to a factor of ten with respect to \\LCDM, possibly alleviating tensions with the observations of massive clusters at high redshifts and early reionization epoch. Significant differences can also be found for the value of the growth factor, that in VDE shows a completely different behaviour, and in the distribution of voids, which in this cosmology are on average smaller and less abundant. We further studied the structure of dark matter haloes more massive than $5\\times10^{13}$\\hMsun, finding t...

  1. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    Science.gov (United States)

    Pillatsch, P.; Yeatman, E. M.; Holmes, A. S.

    2012-11-01

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s-2 a maximal power output of 2.1 mW was achieved.

  2. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    International Nuclear Information System (INIS)

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s−2 a maximal power output of 2.1 mW was achieved. (paper)

  3. Redistribution of whole-body energy metabolism by exercise. A positron emission tomography study

    International Nuclear Information System (INIS)

    Our aim was to evaluate changes in glucose metabolism of skeletal muscles and viscera induced by different workloads using 18F-2-fluoro-2-deoxyglucose ([18F]FDG) and three-dimensional positron emission tomography (3-D PET). Five male volunteers performed ergometer bicycle exercise for 40 min at 40% and 70% of the maximal O2 consumption (VO2max). [18]FDG was injected 10 min later following the exercise task. Whole-body 3-D PET was performed. Five other male volunteers were studied as a control to compare with the exercise group. The PET image data were analyzed using manually defined regions of interest to quantify the regional metabolic rate of glucose (rMRGlc). Group comparisons were made using analysis of variance, and significant differences (P18F]FDG-PET can be used as an index of organ energy metabolism for moderate exercise workloads (70% VO2max). The results of this investigation may contribute to sports medicine and rehabilitation science. (author)

  4. Precision of dual energy X-ray absorptiometry for body composition measurements in cats

    International Nuclear Information System (INIS)

    A short-term precision error of the individual subject and the DEXA technique, such as the effect of the repositioning of the cat on the examination table, were established. Four neutered adult cats (BW=4342 g) and three females (BW=3459 g) were submitted to five repeated scans with and without repositioning between them. Precision was estimated from the mean of the five measurements and expressed by the individual coefficient of variation (CV). The precision error of the technique was estimated by the variance of scan pool (n=35) and expressed in CV for the technique (CVt). The degrees of freedom and confidence intervals were determined to avoid underestimation of precision errors. Bone mineral content (BMC), lean mass (LM), and fat mass (FM) averages were higher (P<0.05) when animals were repositioned. The CVt was significantly higher (P<0.05) for bone mineral density (BMD), LM, and FM when the animals were repositioned. For short-term precision measurements, the repositioning of the animal was important to establish the precision of the technique. The dual energy xray absorptiometry method provided precision for body composition measurements in adult cats. (author)

  5. Dairy Consumption and Insulin Resistance: The Role of Body Fat, Physical Activity, and Energy Intake

    Directory of Open Access Journals (Sweden)

    Larry A. Tucker

    2015-01-01

    Full Text Available The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA. The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53 than those in the middle-two quartiles (0.22 ± 0.55 or the lowest quartile (0.19 ± 0.58 (F = 6.90, P = 0.0091. The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women.

  6. Use of metabolic profiles and body condition scoring for the assessment of energy status of dairy cows

    OpenAIRE

    Prodanović R.; Sladojević Ž.; Kirovski D.; Vujanac I.; Ivetić V.; Savić B.; Kureljušić B.; Stevančević M.

    2012-01-01

    The aim of this study was to assess the significance of body condition scoring and metabolic profile test for estimation of energy status of healthy high-yielding dairy cows. Twenty one healthy cows (primiparous and secundiparous) were divided into three groups: dry cows, early puerperal cows and early lactating cows. Cow’s energy status was estimated by the analysis of blood samples for beta-hydroxybutirate (BHBA) and glucose. Additionally, urea, total bil...

  7. Effect of nutritional recovery with soybean flour diet on body composition, energy balance and serum leptin concentration in adult rats

    Directory of Open Access Journals (Sweden)

    Boschero Antonio C

    2009-08-01

    Full Text Available Abstract Background Malnutrition in early life is associated with obesity in adulthood and soybean products may have a beneficial effect on its prevention and treatment. This study evaluated body composition, serum leptin and energy balance in adult rats subjected to protein restriction during the intrauterine stage and lactation and recovering on a soybean flour diet. Methods Five groups of the Wistar strain of albino rats were used: CC, offspring born to and suckled by mothers fed a control diet and fed the same diet after weaning; CS, offspring born to and suckled by mothers fed a control diet and fed a soybean diet with 17% protein after weaning; LL, offspring of mothers fed a low protein diet and fed the same diet after weaning; LC, offspring of mothers fed a low protein diet, but fed a control diet after weaning; LS, offspring of mothers fed a low protein diet, but fed a soybean diet with 17% protein after weaning. Food intake, body, perirenal and retroperitoneal adipose tissue were measured in grams. Leptin was quantified using the Enzyme Linked Immuno Sorbent Assay (ELISA and insulin by radioimmunoassay (RIA. Carcass composition was determined by chemical methods and energy expenditure was calculated by the difference between energy intake and carcass energy gain. Data were tested by analysis of variance (ANOVA. Results The LC and LS groups had higher energetic intake concerning body weight, lower energy expenditure, proportion of fat carcass and fat pads than CC and CS groups. The LS group showed reduced body weight gain and lower energy efficiency, which was reflected in less energy gain as protein and the proportion of carcass protein, and lower energy gain as lipid than in the LC groups, although both groups had eaten the same amount of diet and showed equal energy expenditure. Serum leptin did not differ among groups and was unrelated to food or energy intake and energy expenditure. Serum insulin was higher in the LS than in the LC

  8. Quantifying the dynamics of water bodies, wetlands and biomass in the Poyang Lake region: A multi-polarization SAR remote sensing approach

    Science.gov (United States)

    Sang, Huiyong

    Field measurements were combined with synthetic aperture radar (SAR) images to evaluate the use of C-band multi-polarized radar remote sensing for estimating plant parameters (plant height, fresh biomass, dry biomass and vegetation water content) of wetland vegetation, and mapping the dynamics of water bodies, wetlands (natural wetlands and rice paddies) and flooding extents in the Poyang Lake region. The capacity of L-band SAR in land cover mapping was also investigated by integrating with optical imagery. Hydrological patterns in Poyang Lake are the dominant factor controlling the spatial and temporal variations of wetland species in Poyang Lake. Water levels in this region are primarily governed by five rivers (Ganjiang river, Xiushui river, Raohe river, Fuhe river, and Xinjiang river). Its northern region is also influenced by the backflow from Yangtze River. The above-ground total biomass increased steadily from March following the hydrological cycle. Wetland species colonizing at different altitudes were gradually flooded from late spring to summer. Carex spp. died during flooding periods and started another growth cycle in autumn after flooding receded. Canopy volume dominates the radar backscattering mechanism in Carex spp. wetlands during their growth period, but the temporal variation of radar backscatter from these wetlands is mainly influenced by flooding. Tall wetland species (Miscanthus sacchariflorus, Phragmites communis Trin., and others) still emerged above water surfaces during flooding peaks and started to senesce in autumn. Surface backscattering mechanism is dominant during the early growing stage and the senescent period of tall vegetation. Plant canopy variation controlled the temporal dynamics of radar backscatters from Phragmites communis Min. Radar backscattering mechanisms from Miscanthus sacchariflorus wetlands were more complicated during the flooding periods. The variations of ground water depth and plant structure of Miscanthus

  9. Energy-efficient key distribution using electrocardiograph biometric set for secure communications in wireless body healthcare networks.

    Science.gov (United States)

    Shi, Jinyang; Lam, Kwok-Yan; Gu, Ming; Li, Mingze; Chung, Siu-Leung

    2011-10-01

    Wireless body sensor network (WBSN) has gained significant interests as an important infrastructure for real-time biomedical healthcare systems, while the security of the sensitive health information becomes one of the main challenges. Due to the constraints of limited power, traditional cryptographic key distribution schemes are not suitable for WBSN. This paper proposes a novel energy-efficient approach, BodyKey, which can distribute the keys using the electrocardiograph biometrics. BodyKey represents the biometric features as ordered set, and deals with the biometric variations using set reconciliation. In this way, only limited necessary information needs to be communicated for key agreement, and the total energy consumption for key distribution can thus be reduced. Experiments on the PhysioBank Database show that BodyKey can perform an energy consumption rate of 0.01 mJ/bit with an equal accuracy rate of 97.28%, allowing the system to be used as an energy-efficient key distribution scheme for secure communications in WBSN. PMID:20703727

  10. Aerobic fitness level does not modulate changes in whole-body protein turnover produced by unaccustomed increases in energy expenditure

    Science.gov (United States)

    The effects of a sudden increase in energy expenditure (EE) on whole-body protein turnover vary between studies, and the possibility that fitness level modulates those responses has not been fully investigated. We hypothesized that aerobically trained individuals may exhibit adaptations that protec...

  11. Body Composition Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray Absorptiometry in Adult Athletes

    Science.gov (United States)

    Company, Joe; Ball, Stephen

    2010-01-01

    The primary purpose of this study was to investigate the accuracy of the DF50 (ImpediMed Ltd, Eight Mile Plains, Queensland, Australia) bioelectrical impedance analysis device using dual-energy x-ray absorptiometry as the criterion in two groups: endurance athletes and power athletes. The secondary purpose was to develop accurate body fat…

  12. Effects of Lower Limb Length and Body Proportions on the Energy Cost of Overground Walking in Older Persons

    Directory of Open Access Journals (Sweden)

    Federica Vannetti

    2014-01-01

    Full Text Available Background. Although walking has been extensively investigated in its biomechanical and physiological aspects, little is known on whether lower limb length and body proportions affect the energy cost of overground walking in older persons. Methods. We enrolled 50 men and 12 women aged 65 years and over, mean 69.1 ± SD 5.4, who at the end of their cardiac rehabilitation program performed the six-minute walk test while wearing a portable device for direct calorimetry and who walked a distance comparable to that of nondisabled community-dwelling older persons. Results. In the multivariable regression model (F = 12.75, P<0.001, adjusted R2=0.278 the energy cost of overground walking, expressed as the net energy expenditure, in kg−1 sec−1, needed to provide own body mass with 1 joule kinetic energy, was inversely related to lower limb length and directly related to lower limb length to height ratio (β±SEβ = -3.72*10-3±0.74*10-3, P<0.001, and 6.61*10-3±2.14*10-3, P=0.003, resp.. Ancillary analyses also showed that, altogether, 1 cm increase in lower limb length reduced the energy cost of overground walking by 2.57% (95%CI 2.35–2.79. Conclusions. Lower limb length and body proportions actually affect the energy cost of overground walking in older persons.

  13. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model

    DEFF Research Database (Denmark)

    Christensen, Louise; van Gennip, Maria; Jakobsen, Tim H;

    2012-01-01

    Quorum sensing (QS)-deficient Pseudomonas aeruginosa biofilms formed in vitro are more susceptible to tobramycin than QS-proficient P. aeruginosa biofilms, and combination treatment with a QS inhibitor (QSI) and tobramycin shows synergistic effects on the killing of in vitro biofilms. We extended...

  14. Reliable and Energy Efficient Network Protocols for Wireless Body Area Networks

    OpenAIRE

    Latré, B.

    2008-01-01

    In a wireless Body Area Network (WBAN) various sensors are attached on clothing, on the body or are even implanted under the skin. The wireless nature of the network and the wide variety of sensors offers numerous new, practical and innovative applications. A motivating example can be found in the world of health monitoring. The sensors of the WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater p...

  15. Hubbard model for ultracold bosonic atoms interacting via zero-point-energy-induced three-body interactions

    Science.gov (United States)

    Paul, Saurabh; Johnson, P. R.; Tiesinga, Eite

    2016-04-01

    We show that, for ultracold neutral bosonic atoms held in a three-dimensional periodic potential or optical lattice, a Hubbard model with dominant, attractive three-body interactions can be generated. In fact, we derive that the effect of pairwise interactions can be made small or zero starting from the realization that collisions occur at the zero-point energy of an optical lattice site and the strength of the interactions is energy dependent from effective-range contributions. We determine the strength of the two- and three-body interactions for scattering from van der Waals potentials and near Fano-Feshbach resonances. For van der Waals potentials, which for example describe scattering of alkaline-earth atoms, we find that the pairwise interaction can only be turned off for species with a small negative scattering length, leaving the 88Sr isotope a possible candidate. Interestingly, for collisional magnetic Feshbach resonances this restriction does not apply and there often exist magnetic fields where the two-body interaction is small. We illustrate this result for several known narrow resonances between alkali-metal atoms as well as chromium atoms. Finally, we compare the size of the three-body interaction with hopping rates and describe limits due to three-body recombination.

  16. The effect of three-body cluster energy on LOCV calculation for hot nuclear and neutron matter

    International Nuclear Information System (INIS)

    The two-body correlation functions, obtained in a lowest-order constrained variational calculation for hot nuclear and neutron matter, with the Reid potential and the explicit inclusion of Δ(1234), are state averaged and used to calculate the three-body cluster energy. The three-body cluster energy is found to vary between about 1 and 2 MeV through and beyond twice the nuclear-matter saturation density for temperatures between 5 and 20 MeV. However, the inclusion of a three-body cluster reduces the nuclear-matter flashing and critical temperatures. A critical temperature of 15.8 MeV and a critical exponent of 0.35 is found. The results of entropy calculations are in good agreement with experimental prediction and other theoretical results. Finally it is shown that by allowing an explicit Δ(1234) degree of freedom through the Reid potential up to and including the three-body clusters, the lowest-constrained variational calculation yields other nuclear- and neutron-matter properties close to the available semi-empirical and experimental data at zero and finite temperatures. (author)

  17. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration under complex terrain

    Science.gov (United States)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N. B.

    2010-07-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  18. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

    Science.gov (United States)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N.-B.

    2011-01-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  19. Body composition analysis of inter-county Gaelic athletic association players measured by dual energy X-ray absorptiometry.

    Science.gov (United States)

    Davies, Robert W; Toomey, Clodagh; McCormack, William; Hughes, Katie; Cremona, Alexandra; Jakeman, Philip

    2016-06-01

    Gaelic Football and Hurling are two sporting codes within the Gaelic Athletic Association. The purpose of this study was to report the body composition phenotype of inter-county Gaelic athletic association players, comparing groups by code and field position. 190 senior, male, outfield inter-county players (144 hurlers and 46 Gaelic footballers) were recruited. Stature and body mass was measured, estimates of three components of body composition, i.e. lean mass, fat mass and bone mineral content was obtained by dual energy X-ray absorptiometry (DXA), and normative data for Gaelic athletic association athletes by code and position was compared. Other than in the midfield, there was limited difference in body composition between codes or playing position. Stature-corrected indices nullified any existing group differences between midfielders for both codes. Further comparisons with a non-athletic control group (n = 431) showed no difference for body mass index (BMI); however, the athletic group has a lower fat mass index, with a greater lean mass in accounting for the matched BMI between groups. In addition to providing previously unknown normative data for the Gaelic athletic association athlete, a proportional and independent tissue evaluation of body composition is given. PMID:26343788

  20. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies

    OpenAIRE

    Rogers, Peter J.; Pleunie S Hogenkamp; de Graaf, Kees; Higgs, Suzanne; Lluch, Anne; Ness, Andy R.; Penfold, Christopher; Perry, Rachel; Putz, Peter; Yeomans, Martin; Mela, David J

    2015-01-01

    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporti...

  1. Composite plate low energy impact localization system based on FBG sensing network and hybrid algorithm

    Science.gov (United States)

    Sai, Yaozhang; Jiang, Mingshun; Sui, Qingmei; Lu, Shizeng; Jia, Lei

    2015-08-01

    This paper proposed an impact localization system using fiber Bragg grating (FBG) network which is based on quasi-Newton algorithm and particle swarm optimization (PSO) algorithm. The FBG sensing network, formed by eight FBGs, was used to detect impact signals. And Shannon wavelet transform was employed to extract time differences. According to time differences and the coordinates of FBGs, nonlinear equations model of impact localization was established. Based on quasi-Newton algorithm and PSO algorithm, the nonlinear equations can be solved to obtain the coordinate of impact source. Testing experiments were carried out on a composite plate within 400 mm × 400 mm monitoring area. The experimental results showed that the maximum and average errors are 3.2 mm and 1.73 mm, respectively. The computational time is less than 2 s.

  2. Assessment of body composition in Indian adults: comparison between dual-energy X-ray absorptiometry and isotope dilution technique.

    OpenAIRE

    Kulkarni, B.; Kuper, H; Taylor, A.; Wells, JC; Radhakrishna, KV; Kinra, S; BEN-SHLOMO, Y.; Smith, GD; Ebrahim, S; Kurpad, AV; Byrne, NM; Hills, AP

    2014-01-01

    Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19–70 years, n 152, 48 % men) with a wide range of BMI (14–40 kg/m2). Isotopic enrichment was assessed by isotope ratio...

  3. Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote-sensing based surface energy balance models

    Directory of Open Access Journals (Sweden)

    G. Rallo

    2009-07-01

    Full Text Available Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS, near-infrared (NIR and thermal (TIR observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to detect the spatial variability of crop parameters. Considering that the study area is characterized by typical spatially sparse Mediterranean vegetation, i.e. olive, citrus and vineyards, alternating bare soil and canopy, we focused the attention on the main conceptual differences between one-source and two-sources energy balance models. Two different models have been tested: the widely used one-source SEBAL model, where soil and vegetation are considered as the sole source (mostly appropriate in the case of uniform vegetation coverage and the two-sources TSEB model, where soil and vegetation components of the surface energy balance are treated separately. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared vs. the outputs of the agro-hydrological SWAP model, which was applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. Remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to set up the upper boundary condition of SWAP. Actual evapotranspiration values obtained from the application of the soil water balance model SWAP have been considered as the reference to be used for energy balance models accuracy assessment.

    Airborne hyperspectral data acquired during a NERC (Natural Environment Research Council, UK campaign in 2005 have been used. The results of this

  4. N-body simulations with a cosmic vector for dark energy

    Science.gov (United States)

    Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.

    2012-07-01

    We present the results of a series of cosmological N-body simulations of a vector dark energy (VDE) model, performed using a suitably modified version of the publicly available GADGET-2 code. The set-ups of our simulations were calibrated pursuing a twofold aim: (1) to analyse the large-scale distribution of massive objects and (2) to determine the properties of halo structure in this different framework. We observe that structure formation is enhanced in VDE, since the mass function at high redshift is boosted up to a factor of 10 with respect to Λ cold dark matter (ΛCDM), possibly alleviating tensions with the observations of massive clusters at high redshifts and early reionization epoch. Significant differences can also be found for the value of the growth factor, which in VDE shows a completely different behaviour, and in the distribution of voids, which in this cosmology are on average smaller and less abundant. We further studied the structure of dark matter haloes more massive than 5 × 1013 h-1 M⊙, finding that no substantial difference emerges when comparing spin parameter, shape, triaxiality and profiles of structures evolved under different cosmological pictures. Nevertheless, minor differences can be found in the concentration-mass relation and the two-point correlation function, both showing different amplitudes and steeper slopes. Using an additional series of simulations of a ΛCDM scenario with the same ? and σ8 used in the VDE cosmology, we have been able to establish whether the modifications induced in the new cosmological picture were due to the particular nature of the dynamical dark energy or a straightforward consequence of the cosmological parameters. On large scales, the dynamical effects of the cosmic vector field can be seen in the peculiar evolution of the cluster number density function with redshift, in the shape of the mass function, in the distribution of voids and on the characteristic form of the growth index γ(z). On

  5. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  6. Parental education associations with children’s body composition: mediation effects of energy balance-related behaviors within the ENERGY-project

    OpenAIRE

    Fernandez-Alvira, Juan M.; te Velde, Saskia J.; De Bourdeaudhuij, Ilse; Bere, Elling; Manios, Yannis; Kovacs, Eva; Jan, Nataša; Brug, Johannes; Luis A. Moreno

    2013-01-01

    Background: It is well known that the prevalence of overweight and obesity is considerably higher among youth from lower socio-economic families, but there is little information about the role of some energy balance-related behaviors in the association between socio-economic status and childhood overweight and obesity. The objective of this paper was to assess the possible mediation role of energy balance-related behaviors in the association between parental education and children's body comp...

  7. Partitioning energy flux using climate record and remote sensing data across the Yukon River Basin, Alaska

    Science.gov (United States)

    Huang, S.; Dahal, D.; Singh, R. K.; Young, C. J.; Tieszen, L. L.; Liu, S.

    2011-12-01

    The Yukon River Basin (YRB) in Alaska is located in high latitudes and underlain by intermittent permafrost, but it is experiencing rapid warming and creating feedback to the climate system. Fire, ecological succession, and climate are interactively affecting YRB ecosystem functions (e.g., primary production, microbial activities, and greenhouse gas emissions) where solar energy transfer processes are critical. Energy flux at some specific locations was investigated; however, variations over landscape level are not well understood. To fully understand the ecosystem dynamics associated with disturbance and climate change, it is important to divide the landscape net radiation (Rn) into three components: latent energy required for evapotranspiration (LE), soil heat flux conducted into the ground (G), and sensible heat flux convected to the air (H). MODerate Resolution Imaging Spectroradiometer (MODIS) products (NDVI, surface temperature, albedo, and emissivity) and hourly weather measurements from 2002-2004 were collected. We developed an energy balance partitioning model that considers the impacts of terrain, vegetation, and climate. A spatial analysis tool was also developed for satellite-based energy balance computation based on the algorithm of "Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC)." We computed time series intra- and inter-annual products of LE, G, and H. We have been validating the products using flux tower measurements. Landscape-level products of Rn, LE, G, and H allow us to analyze the spatio-temporal variation of energy flux in the land-atmosphere system. Initial results show that i) landscape heterogeneity in terms of vegetation, elevation, and climate has great effect on the pattern of solar energy partitioning, ii) fire disturbance significantly affects energy flux partitioning. Key words: energy flux, evapotranspiration, flux tower, METRIC, MODIS

  8. Energy Absorption and Dynamic Deformation of Backing Material for Ballistic Evaluation of Body Armour

    OpenAIRE

    Debarati Bhattacharjee; Ajay Kumar; Ipsita Biswas

    2014-01-01

    The measurement of back face signature (BFS) or behind armour blunt trauma (BABT) is a critical aspect of ballistic evaluation of body armour. BFS is the impact experienced by the armour wearing body, when subjected to a non-penetrating projectile. Mineral or polymeric clay is used to measure the BFS. In addition to stopping the projectile, the body armour can be used only when the BFS also falls within permissible limits. The extent of the BFS depends upon the behavior of the backing materia...

  9. Ultra-high energy physics and standard basic principles : Do Planck units really make sense ?

    OpenAIRE

    Gonzalez-Mestres, Luis

    2013-01-01

    International audience It has not yet been elucidated whether the observed flux suppression for ultrahigh energy cosmic rays (UHECR) at energies above 4 x 10E19 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a...

  10. Advancements in Modelling of Land Surface Energy Fluxes with Remote Sensing at Different Spatial Scales

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw

    Evaporation of water from soil and its transpiration by vegetation together form a ux between the land and the atmosphere called evapotranspiration (ET). ET is a key factor in many natural and anthropogenic processes. It forms the basis of the hydrological cycle and has a strong inuence on local...... climate, weather and numerous biophysical processes, such as plant productivity. As energy is required for ET to occur, it also forms a link between the land-surface energy uxes and water uxes. Therefore, to be able to obtain reliable estimates of ET, reliable estimates of the other land-surface energy...

  11. The Effect of Breakfast Type on Total Daily Energy Intake and Body Mass Index Among Thai School Children.

    Science.gov (United States)

    Purttiponthanee, Sasiumphai; Rojroongwasinkul, Nipa; Wimonpeerapattana, Wanphen; Thasanasuwan, Wiyada; Senaprom, Sayamon; Khouw, Ilse; Deurenberg, Paul

    2016-07-01

    The study investigated the association between breakfast types consumed, daily energy intake, and body mass index for age Z-score (BAZ). Cross-sectional data from 1258 children aged 7 to 12.9 years were analyzed for breakfast type, nutrient intakes, BAZ, and proportion of overweight or obesity. Analysis of covariance was used to compare energy and nutrient intakes, BAZ, and proportion of overweight/obese children between breakfast groups. Only 19% of children had adequate energy intake from breakfast. Those consuming snacks had a significantly lower BAZ (Z = -0.73), with 5% of them being overweight/obese. Those consuming beverages and desserts had the lowest total daily energy intake (1314 kcal) and lowest protein intake (8.4 g). The results suggest that breakfast type is associated with daily energy intake and BAZ. Most breakfasts are not adequate. School-based nutrition education programs involving families, teachers, and health professionals can contribute to improve this situation. PMID:27183975

  12. Body weight gain in free-living Pima Indians: effect of energy intake vs expenditure

    DEFF Research Database (Denmark)

    Tataranni, P A; Harper, I T; Snitker, S;

    2003-01-01

    Obesity results from a chronic imbalance between energy intake and energy expenditure. However, experimental evidence of the relative contribution of interindividual differences in energy intake and expenditure (resting or due to physical activity) to weight gain is limited....

  13. Construction of a controllable Förster resonance energy transfer system based on G-quadruplex for DNA sensing.

    Science.gov (United States)

    Yue, Qiaoli; Shen, Tongfei; Wang, Changna; Wang, Lei; Li, Haibo; Xu, Shuling; Wang, Huaisheng; Liu, Jifeng

    2013-02-15

    Conjugations of oligonucleotides, chromophores, and gold nanoparticles (GNPs) can be used for energy transfer assays to detect DNA. Herein, a homogenous Förster resonance energy transfer (FRET) system employing two-step modification of oligonucleotide on GNPs was reported. The distance between the donor (fluorescein attached onto DNA) and the acceptor (GNPs) was controlled by using the G-rich DNA. In the presence of porphyrin or berberine, which can act as ligands of G-quadruplexes, the G-rich DNA spacer can result into G-quadruplex structure. Therefore, the intimate contact between the fluorophore and the GNP results in efficient energy transfer and fluorescence quenching. After hybridization with target DNA, the G-quadruplex stretched and resulted in an enhancement of fluorescence. So the present FRET system can be used for target DNA sensing with detection limit as low as 40 pM (S/N=3). In this study, a relation between the fluorescence quenching efficiency and GNP sizes was found and bigger GNPs had higher fluorescence enhancement after hybridization with target DNA. PMID:22794935

  14. Evaluation of an extreme-condition-inverse calibration remote sensing model for mapping energy balance fluxes in arid riparian areas

    Directory of Open Access Journals (Sweden)

    S.-H. Hong

    2014-12-01

    Full Text Available Accurate information on the distribution of the surface energy balance components in arid riparian areas is needed for sustainable management of water resources as well as for a better understanding of water and heat exchange processes between the land surface and the atmosphere. Since the spatial and temporal distributions of these fluxes over large areas are difficult to determine from ground measurements alone, their prediction from remote sensing data is very attractive as it enables large area coverage and a high repetition rate. In this study the Surface Energy Balance Algorithm for Land (SEBAL was used to estimate all the energy balance components in the arid riparian areas of the Middle Rio Grande Basin (New Mexico, San Pedro Basin (Arizona, and Owens Valley (California. We compare instantaneous and daily SEBAL fluxes derived from Landsat TM images to surface-based measurements with eddy covariance flux towers. This study presents evidence that SEBAL yields reliable estimates for actual evapotranspiration rates in riparian areas of the southwestern United States. The great strength of the SEBAL method is its internal calibration procedure that eliminates most of the bias in latent heat flux at the expense of increased bias in sensible heat flux.

  15. Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications

    Science.gov (United States)

    O'Connor, S. M.; Lynch, J. P.; Gilbert, A. C.

    2014-08-01

    Compressed sensing (CS) is a powerful new data acquisition paradigm that seeks to accurately reconstruct unknown sparse signals from very few (relative to the target signal dimension) random projections. The specific objective of this study is to save wireless sensor energy by using CS to simultaneously reduce data sampling rates, on-board storage requirements, and communication data payloads. For field-deployed low power wireless sensors that are often operated with limited energy sources, reduced communication translates directly into reduced power consumption and improved operational reliability. In this study, acceleration data from a multi-girder steel-concrete deck composite bridge are processed for the extraction of mode shapes. A wireless sensor node previously designed to perform traditional uniform, Nyquist rate sampling is modified to perform asynchronous, effectively sub-Nyquist rate sampling. The sub-Nyquist data are transmitted off-site to a computational server for reconstruction using the CoSaMP matching pursuit recovery algorithm and further processed for extraction of the structure’s mode shapes. The mode shape metric used for reconstruction quality is the modal assurance criterion (MAC), an indicator of the consistency between CS and traditional Nyquist acquired mode shapes. A comprehensive investigation of modal accuracy from a dense set of acceleration response data reveals that MAC values above 0.90 are obtained for the first four modes of a bridge structure when at least 20% of the original signal is sampled using the CS framework. Reduced data collection, storage and communication requirements are found to lead to substantial reductions in the energy requirements of wireless sensor networks at the expense of modal accuracy. Specifically, total energy reductions of 10-60% can be obtained for a sensor network with 10-100 sensor nodes, respectively. The reduced energy requirements of the CS sensor nodes are shown to directly result in

  16. Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications

    International Nuclear Information System (INIS)

    Compressed sensing (CS) is a powerful new data acquisition paradigm that seeks to accurately reconstruct unknown sparse signals from very few (relative to the target signal dimension) random projections. The specific objective of this study is to save wireless sensor energy by using CS to simultaneously reduce data sampling rates, on-board storage requirements, and communication data payloads. For field-deployed low power wireless sensors that are often operated with limited energy sources, reduced communication translates directly into reduced power consumption and improved operational reliability. In this study, acceleration data from a multi-girder steel-concrete deck composite bridge are processed for the extraction of mode shapes. A wireless sensor node previously designed to perform traditional uniform, Nyquist rate sampling is modified to perform asynchronous, effectively sub-Nyquist rate sampling. The sub-Nyquist data are transmitted off-site to a computational server for reconstruction using the CoSaMP matching pursuit recovery algorithm and further processed for extraction of the structure’s mode shapes. The mode shape metric used for reconstruction quality is the modal assurance criterion (MAC), an indicator of the consistency between CS and traditional Nyquist acquired mode shapes. A comprehensive investigation of modal accuracy from a dense set of acceleration response data reveals that MAC values above 0.90 are obtained for the first four modes of a bridge structure when at least 20% of the original signal is sampled using the CS framework. Reduced data collection, storage and communication requirements are found to lead to substantial reductions in the energy requirements of wireless sensor networks at the expense of modal accuracy. Specifically, total energy reductions of 10–60% can be obtained for a sensor network with 10–100 sensor nodes, respectively. The reduced energy requirements of the CS sensor nodes are shown to directly result in

  17. Energy expenditure evaluation in humans and non-human primates by SenseWear Armband. Validation of energy expenditure evaluation by SenseWear Armband by direct comparison with indirect calorimetry.

    Directory of Open Access Journals (Sweden)

    Francesca Casiraghi

    Full Text Available INTRODUCTION: The purpose of this study was to compare and validate the use of SenseWear Armband (SWA placed on the arm (SWA ARM and on the back (SWA BACK in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA to estimate Resting Energy Expenditure (REE and Total Energy Expenditure (TEE in healthy baboons. METHODS: We studied 26 (15F/11M human subjects wearing SWA in two different anatomical sites (arm and back during resting and a cycle-ergometer test and directly compared these results with indirect calorimetry evaluation (IC, performed at the same time. We then inserted the SWA in a metabolic jacket for baboons and evaluated the TEE and REE in free living condition for 6 days in 21 (8F/13M non-human primates. RESULTS: In humans we found a good correlation between SWA place on the ARM and on the BACK with IC during the resting experiment (1.1±0.3 SWAs, 1±0.2 IC kcal/min and a slight underestimation in the SWAs data compared with IC during the cycle-ergometer exercise (5±1.9 SWA ARM, 4.5±1.5 SWA BACK and 5.4±2.1 IC kcal/min. In the non-human primate (baboons experiment SWA estimated a TEE of 0.54±0.009 kcal/min during free living and a REE of 0.82±0.06 kcal/min. CONCLUSION: SWA, an extremely simple and inexpensive apparatus, provides quite accurate measurements of energy expenditure in humans and in baboons. Energy expenditure data obtained with SWA are highly correlated with the data obtained with "gold standard", IC, in humans.

  18. QED radiative corrections and many-body effects in atoms: vacuum polarization and binding energy shifts in alkali metals

    Science.gov (United States)

    Ginges, J. S. M.; Berengut, J. C.

    2016-05-01

    We calculate vacuum polarization corrections to the binding energies in neutral alkali atoms Na through to the superheavy element E119. We employ the relativistic Hartree–Fock method to demonstrate the importance of relaxation of the electronic core and the correlation potential method to study the effects of second and higher orders of perturbation theory. These many-body effects are sizeable for all orbitals, though particularly important for orbitals with angular momentum quantum number l\\gt 0. The orders of magnitude enhancement for d waves produces shifts that, for Rb and the heavier elements, are larger than those for p waves and only an order of magnitude smaller than the s-wave shifts. The many-body enhancement mechanisms that operate for vacuum polarization apply also to the larger self-energy corrections.

  19. Challenges and solutions of remote sensing at offshore wind energy developments.

    Science.gov (United States)

    Kelly, T A; West, T E; Davenport, J K

    2009-11-01

    Radar is becoming an important tool used to gather data on bird and bat activity at proposed and existing land-based wind energy sites. Radar will likely play an even more important role at the increasing development of wind energy offshore, given both the lack of knowledge about bird and bat activity offshore and the increased difficulty in obtaining offshore information. Most radar studies to date have used off-the-shelf or modified marine radars. However, there are several issues that continue to hinder the potential usefulness of radar at wind energy sites, with offshore sites providing a particular suite of challenges. We identify these challenges along with current or developing solutions. PMID:19828157

  20. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency

    OpenAIRE

    Gondret, Florence; Louveau, Isabelle; Mourot, Jacques; Duclos, Michel; Lagarrigue, Sandrine; Gilbert, Hélène; Van Milgen, Jacob

    2014-01-01

    The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were o...

  1. Brightening Gold Nanoparticles: New Sensing Approach Based on Plasmon Resonance Energy Transfer

    OpenAIRE

    Lei Shi; Chao Jing; Zhen Gu; Yi-Tao Long

    2015-01-01

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F− ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET p...

  2. Energy Efficient Location and Activity-aware On-Demand Mobile Distributed Sensing Platform for Sensing as a Service in IoT Clouds

    OpenAIRE

    Perera, Charith; Talagala, Dumidu; Liu, Chi Harold; Estrella, Julio C.

    2016-01-01

    The Internet of Things (IoT) envisions billions of sensors deployed around us and connected to the Internet, where the mobile crowd sensing technologies are widely used to collect data in different contexts of the IoT paradigm. Due to the popularity of Big Data technologies, processing and storing large volumes of data has become easier than ever. However, large scale data management tasks still require significant amounts of resources that can be expensive regardless of whether they are purc...

  3. Effects of Δ-isobar degrees of freedom on low-energy electroweak transitions in few-body nuclei

    International Nuclear Information System (INIS)

    Variational wave functions with Δ-isobar components are used to study trinucleon magnetic moments, the Gamow-Teller matrix element of tritium β decay, thermal neutron radiative capture on 3He, and low-energy proton weak capture on 3He. The Δ-isobar components are generated by transition correlation operators acting on realistic nuclear wave functions. These correlations are obtained from a fit to exact two-body ground-state and low-energy scattering solutions for the Argonne v28 and v28Q interaction models, which include Δ-isobar degrees of freedom. Contributions of Δ isobars to electroweak current operators appear at the one-body level in this formalism. Their effect on low-energy electroweak transitions is significantly smaller than that obtained in perturbation theory analyses, where Δ-isobar effects are commonly subsumed into effective two-body current operators. The resulting theoretical cross section for thermal neutron radiative capture on 3He is ∼86 μb, compared to an experimental value of 55±3 μb; the astrophysical S factor for proton weak capture on 3He is predicted to be in the range (1.4--3.2)x10-23 MeV b

  4. A Hubbard model for ultracold bosonic atoms interacting via zero-point-energy induced three-body interactions

    OpenAIRE

    Paul, Saurabh; Johnson, P R; Tiesinga, Eite

    2016-01-01

    We show that for ultra-cold neutral bosonic atoms held in a three-dimensional periodic potential or optical lattice, a Hubbard model with dominant, attractive three-body interactions can be generated. In fact, we derive that the effect of pair-wise interactions can be made small or zero starting from the realization that collisions occur at the zero-point energy of an optical lattice site and the strength of the interactions is energy dependent from effective-range contributions. We determine...

  5. Synchrophasor Sensing and Processing based Smart Grid Security Assessment for Renewable Energy Integration

    Science.gov (United States)

    Jiang, Huaiguang

    With the evolution of energy and power systems, the emerging Smart Grid (SG) is mainly featured by distributed renewable energy generations, demand-response control and huge amount of heterogeneous data sources. Widely distributed synchrophasor sensors, such as phasor measurement units (PMUs) and fault disturbance recorders (FDRs), can record multi-modal signals, for power system situational awareness and renewable energy integration. An effective and economical approach is proposed for wide-area security assessment. This approach is based on wavelet analysis for detecting and locating the short-term and long-term faults in SG, using voltage signals collected by distributed synchrophasor sensors. A data-driven approach for fault detection, identification and location is proposed and studied. This approach is based on matching pursuit decomposition (MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time frequency and voltage variation features, and fault contour maps generated by machine learning algorithms in SG systems. In addition, considering the economic issues, the placement optimization of distributed synchrophasor sensors is studied to reduce the number of the sensors without affecting the accuracy and effectiveness of the proposed approach. Furthermore, because the natural hazards is a critical issue for power system security, this approach is studied under different types of faults caused by natural hazards. A fast steady-state approach is proposed for voltage security of power systems with a wind power plant connected. The impedance matrix can be calculated by the voltage and current information collected by the PMUs. Based on the impedance matrix, locations in SG can be identified, where cause the greatest impact on the voltage at the wind power plants point of interconnection. Furthermore, because this dynamic voltage security assessment method relies on time-domain simulations of faults at different locations, the proposed approach

  6. Breakdown of the Equivalence between Gravitational Mass and Energy for a Quantum Body: Theory and Suggested Experiments

    CERN Document Server

    Lebed, Andrei G

    2016-01-01

    We review recent theoretical results, obtained for the equivalence between gravitational mass and energy of a composite quantum body as well as for its breakdown at macroscopic and microscopic levels. In particular, we discuss that the expectation values of passive and active gravitational masses operators are equivalent to the expectation value of energy for electron stationary quantum states in a hydrogen atom. On the other hand, for superpositions of the stationary quantum states, inequivalence between the gravitational masses and energy appears at a macroscopic level. It reveals itself as time-dependent oscillations of the expectation values of passive and active gravitational masses, which can be, in principle, experimentally measured. Inequivalence between passive gravitational mass and energy at a microscopic level can be experimentally observed as unusual electromagnetic radiation, emitted by a macroscopic ensemble of the atoms. We propose the corresponding experiment, which can be done on the Earth's...

  7. Anthropometrics and body composition by dual energy X-ray in children of obese women

    DEFF Research Database (Denmark)

    Tanvig, Mette; Vinter, Christina A; Jørgensen, Jan S;

    2014-01-01

    OBJECTIVE: In obese women, 1) to assess whether lower gestational weight gain (GWG) during pregnancy in the lifestyle intervention group of a randomized controlled trial (RCT) resulted in differences in offspring anthropometrics and body composition, and 2) to compare offspring outcomes to a...... reference group of children born to women with a normal Body Mass Index (BMI). RESEARCH DESIGN AND METHODS: The LiPO (Lifestyle in Pregnancy and Offspring) study was an offspring follow-up of a RCT with 360 obese pregnant women with a lifestyle intervention during pregnancy including dietary advice......-score (intervention group 0.06 [-0.17; 0.29] vs. controls -0.18 [-0.43; 0.05]), in the percentage of overweight or obese children (10.9% vs. 6.7%), in other anthropometrics, or in body composition values by DEXA. Outcomes between children from the RCT and the reference group children were not significantly different...

  8. Teaching Bodies in Place

    Science.gov (United States)

    Jones, Stephanie; Woglom, James F.

    2013-01-01

    Background/Context: This piece draws on literature in justice-oriented teacher education, feminist pedagogy, and postmodern notions of bodies and place to make sense of data generated from a three-year study of an undergraduate teacher education course. A feminist lens was used to engage a body- and place-focused pedagogy that aimed to engage…

  9. Energy-efficient hybrid system for Wireless Body Area Network Applications

    OpenAIRE

    Ghamari, Mohammad; Janko, Balazs; Sherratt, Simon; Harwin, William

    2014-01-01

    Wireless Body Area Networks (WBANs) consist of a number of miniaturized wearable or implanted sensor nodes that are employed to monitor vital parameters of a patient over long duration of time. These sensors capture physiological data and wirelessly transfer the collected data to a local base station in order to be further processed. Almost all of these body sensors are expected to have low data-rate and to run on a battery. Since recharging or replacing the battery is not a simple task speci...

  10. Energy Efficient MAC for QoS Traffic in Wireless Body Area Network

    OpenAIRE

    Anil K. Jacob; Lillykutty Jacob

    2015-01-01

    Lifetimes and latencies of devices in wireless body area networks (WBANs) that monitor the health conditions of patients largely determine their utility under such a setup. It is seen that the medium access method used in the body area network can play a significant role in determining the quality of service such medical devices can provide. IEEE 802.15.6 standard for WBAN includes different types of medium access, namely, CSMA/CA, scheduled, and polling access schemes, or a combination of th...

  11. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Trainham, R., E-mail: trainhcp@nv.doe.gov; Tinsley, J. [Special Technologies Laboratory of National Security Technologies, LLC, 5520 Ekwill Street, Santa Barbara, California 93111 (United States)

    2014-06-15

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware.

  12. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries

    Science.gov (United States)

    Trainham, R.; Tinsley, J.

    2014-06-01

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware.

  13. Practical applications of the remote sensing-based two-source algorithm for mapping surface energy fluxes without in-situ air temperature observations

    Science.gov (United States)

    The two-source energy balance (TSEB) model uses remotely sensed maps of land-surface temperature (LST) along with local air temperature estimates at a nominal blending height to model heat and water fluxes across a landscape, partitioned between dual sources of canopy and soil. For operational imple...

  14. Infrastructure sensing.

    Science.gov (United States)

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  15. Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans

    OpenAIRE

    Maqueda, Ana Elda; Valle, Marta; Addy, Peter H; Antonijoan, Rosa Maria; Puntes, Montserrat; Coimbra, Jimena; Ballester, Maria Rosa; Garrido, Maite; González, Mireia; Claramunt, Judit; Barker, Steven; Johnson, Matthew W.; Griffiths, Roland R.; Riba, Jordi

    2015-01-01

    Background: Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehe...

  16. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  17. Relativistic Many-body Moller-Plesset Perturbation Theory Calculations of the Energy Levels and Transition Probabilities in Na- to P-like Xe Ions

    Energy Technology Data Exchange (ETDEWEB)

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2007-03-27

    Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  18. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity.

    Science.gov (United States)

    Hopkins, Mark; Blundell, John E

    2016-09-01

    Energy balance is not a simple algebraic sum of energy expenditure and energy intake as often depicted in communications. Energy balance is a dynamic process and there exist reciprocal effects between food intake and energy expenditure. An important distinction is that of metabolic and behavioural components of energy expenditure. These components not only contribute to the energy budget directly, but also by influencing the energy intake side of the equation. It has recently been demonstrated that resting metabolic rate (RMR) is a potential driver of energy intake, and evidence is accumulating on the influence of physical activity (behavioural energy expenditure) on mechanisms of satiety and appetite control. These effects are associated with changes in leptin and insulin sensitivity, and in the plasma levels of gastrointestinal (GI) peptides such as glucagon-like peptide-1 (GLP-1), ghrelin and cholecystokinin (CCK). The influence of fat-free mass on energy expenditure and as a driver of energy intake directs attention to molecules emanating from skeletal tissue as potential appetite signals. Sedentariness (physical inactivity) is positively associated with adiposity and is proposed to be a source of overconsumption and appetite dysregulation. The molecular signals underlying these effects are not known but represent a target for research. PMID:27503946

  19. A lightweight security scheme for wireless body area networks: design, energy evaluation and proposed microprocessor design

    NARCIS (Netherlands)

    Selimis, G.; Huang, L.; Massé, F.; Tsekoura, I.; Ashouei, M.; Catthoor, F.; Huisken, J.; Stuyt, J.; Dolmans, G.; Penders, J.; Groot, H. de

    2011-01-01

    In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating

  20. Accurate double many-body expansion potential energy surface of HS2A2A‧) by scaling the external correlation

    Science.gov (United States)

    Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng

    2016-05-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol‑1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).

  1. Improving Photovoltaic Energy Production with Fiber-Optic Distributed Temperature Sensing

    Science.gov (United States)

    Hausner, M. B.; Berli, M.

    2014-12-01

    The efficiency of solar photovoltaic (PV) generators declines sharply with increased temperatures. Peak solar exposure often occurs at the same time as peak temperatures, but solar PV installations are typically designed based on solar angle. In temperate areas, the peak temperatures may not be high enough to induce significant efficiency losses. In some of the areas with the greatest potential for solar development, however, summer air temperatures regularly reach 45 °C and PV panel temperatures exceed the air temperatures. Here we present a preliminary model of a PV array intended to optimize solar production in a hot and arid environment. The model begins with the diurnal and seasonal cycles in the angle and elevation of the sun, but also includes a meteorology-driven energy balance to project the temperatures of the PV panels and supporting structure. The model will be calibrated and parameterized using a solar array at the Desert Research Institute's (DRI) Renewable Energy Deployment and Display (REDD) facility in Reno, Nevada, and validated with a similar array at DRI's Las Vegas campus. Optical fibers will be installed on the PV panels and structural supports and interrogated by a distributed temperature sensor (DTS) to record the spatial and temporal variations in temperature. Combining the simulated panel temperatures, the efficiency-temperature relationship for the panels, and the known solar cycles at a site will allow us to optimize the design of future PV collectors (i.e., the aspect and angle of panels) for given production goals.

  2. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method

    International Nuclear Information System (INIS)

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in SN2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented

  3. Body composition in aquatic organisms — A global data bank of relationships between mass, elemental composition and energy content

    Science.gov (United States)

    Brey, Thomas; Müller-Wiegmann, Corinna; Zittier, Zora M. C.; Hagen, Wilhelm

    2010-10-01

    We introduce a global data bank on body composition of aquatic organisms that is available at http://www.thomas-brey.de/science/virtualhandbook. It covers ratios between body mass (wet, dry, ash free dry mass), body composition (protein, lipid, carbohydrate), macro-elements (C, N, P) and energy content (J). Sofar, data for 3158 different taxa (animals, plants, bacteria) were collected from 725 different sources. The principal purpose of the data bank is mining for conversion factors, as necessary in ecological studies that require a common energetic currency. The data bank can be used to explore general ecological principles, too: among all animals, carnivorous swimmers have the highest energy density, presumably an across-taxon selection for propulsion power and handling force. Plants and animals do not only differ in their C/N and C/P ratios, but these ratios change with temperature in opposite directions. In plants, C/N and C/P increase with temperature, most likely a response to the higher levels of N and P in polar waters. In animals C/N and C/P decrease with temperature, an indicator for selection towards lower activity and larger lipid stores in polar animals.

  4. Low-energy 9 Be + 208 Pb scattering, breakup and fusion within a four-body model

    Science.gov (United States)

    Hussein, Mahir; Descouvemont, Pierre; Druet, T.; Canto, L. Felipe

    2015-04-01

    We investigate the 9 Be elastic scattering, breakup and fusion at energies around the Coulomb barrier. The three processes are described simultaneously, with identical conditions of calculations. The 9 Be nucleus is defined in an α + α + n three-body model, using the hyperspherical coordinate method. We first analyze spectroscopic properties of 9 Be, and show that the model provides a fairly good description of the low-lying states. The scattering with 208 Pb is then studied with the Continuum Discretized Coupled Channel (CDCC) method, where the α + α + n continuum is approximated by a discrete number of pseudostates. The use of a three-body model for 9 Be improves previous theoretical works, where 9 Be is assumed to have a two-body structure (9 Be +n or α + 5 He), although neither 8 Be nor 5 He are bound. Optical potentials for the α+208 Pb and n+208 Pb systems are taken from the literature. Scattering, breakup and fusion cross sections are calculated. In general, a good agreement with experiment is obtained, considering that there is no parameter fitting. We show that continuum effects increase at low energies, and confirm that breakup channels enhance the fusion cross Supported by CNPq, FAPESP, FAPERJ, CAPES/ITA.

  5. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method.

    Science.gov (United States)

    Nakata, Hiroya; Fedorov, Dmitri G; Zahariev, Federico; Schmidt, Michael W; Kitaura, Kazuo; Gordon, Mark S; Nakamura, Shinichiro

    2015-03-28

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in SN2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented. PMID:25833559

  6. A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model.

    Directory of Open Access Journals (Sweden)

    Michael Oster

    Full Text Available In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP or an adequate protein diet (AP, 12% CP throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc and postnatal stages (1, 28, 188 dpn. Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages.

  7. Gonadal transcriptome alterations in response to dietary energy intake: sensing the reproductive environment.

    Directory of Open Access Journals (Sweden)

    Bronwen Martin

    Full Text Available Reproductive capacity and nutritional input are tightly linked and animals' specific responses to alterations in their physical environment and food availability are crucial to ensuring sustainability of that species. We have assessed how alterations in dietary energy intake (both reductions and excess, as well as in food availability, via intermittent fasting (IF, affect the gonadal transcriptome of both male and female rats. Starting at four months of age, male and female rats were subjected to a 20% or 40% caloric restriction (CR dietary regime, every other day feeding (IF or a high fat-high glucose (HFG diet for six months. The transcriptional activity of the gonadal response to these variations in dietary energy intake was assessed at the individual gene level as well as at the parametric functional level. At the individual gene level, the females showed a higher degree of coherency in gonadal gene alterations to CR than the males. The gonadal transcriptional and hormonal response to IF was also significantly different between the male and female rats. The number of genes significantly regulated by IF in male animals was almost 5 times greater than in the females. These IF males also showed the highest testosterone to estrogen ratio in their plasma. Our data show that at the level of gonadal gene responses, the male rats on the IF regime adapt to their environment in a manner that is expected to increase the probability of eventual fertilization of females that the males predict are likely to be sub-fertile due to their perception of a food deficient environment.

  8. Validation of a Body Condition Scoring System in Rhesus Macaques (Macaca mulatta): Assessment of Body Composition by using Dual-Energy X-ray Absorptiometry

    OpenAIRE

    Summers, Laura; Clingerman, Karen J; Yang, Xiaowei

    2012-01-01

    Body condition scoring (BCS) is a subjective semiquantitative method of assessing body fat and muscle by palpation of key anatomic features. A previously published BCS system for rhesus macaques (Macaca mulatta) uses a scale comprising both whole and half units, in which the midrange represents optimal body condition (3.0), lower values represent emaciated to lean conditions (1.0 to 2.0), and higher values (4.0 to 5.0) indicate excessive body fat. A valid BCS system is well described, relevan...

  9. Review of radioactive waste management in the context of the work of the TUC's nuclear energy review body

    International Nuclear Information System (INIS)

    The Nuclear Energy Review Body (NERB) has for several years been involved with all aspects of nuclear energy both within the UK and internationally and is responsible for formulating the TUC's nuclear power and energy related policies for debate by Congress. Nuclear waste has come more into the public eye over recent years and as a result waste management strategy development has now to address social acceptability as well as meeting scientific and technical objectives. It is NERB's view that radioactive waste should be included in discussion on all types of hazardous waste and, in order to gain the public's confidence, strategy development needs to take place within an international framework. Above all, the assessment of the social impact on local communities must involve the people concerned and not rely merely on their acceptance of purely scientific arguments. (author)

  10. Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Kullberg, J; Brandberg, J; Angelhed, J-E;

    2009-01-01

    The aim of this study was to validate a recently proposed MRI-based T(1)-mapping method for analysis of whole-body adipose tissue (AT) using an established CT protocol as reference and to include results from dual energy X-ray absorptiometry (DEXA). 10 subjects, drawn from the Swedish Obese...... from weights measured using scales. In conclusion, strong correlations were found between whole-body AT results from CT, MRI-based T(1) mapping and DEXA. If the differences between the results from T(1)-mapping and CT-based analysis are accepted, the T(1)-mapping method allows fully automated post...... Subjects Sibling-pairs study, were examined using CT, MRI and DEXA. The CT analysis was based on 28 imaged slices. T(1) maps were calculated using contiguous MRI data from two different gradient echo sequences acquired using different flip angles. CT and MRI comparison was performed slice-wise and for the...

  11. Ultralow Power Energy Harvesting Body Area Network Design: A Case Study

    OpenAIRE

    Chenyu Zheng; Kuhn, William B.; Balasubramaniam Natarajan

    2015-01-01

    This paper presents an energy harvesting wireless sensor network (EHWSN) architecture designed for use within an astronaut’s space suit. The contribution of this work spans both physical (PHY) layer energy harvesting transceiver design and low power medium access control (MAC) solutions. The architecture consists of a star topology with two types of transceiver nodes: a powered gateway radio (GR) node and multiple energy harvesting biosensor radio (BSR) nodes. To demonstrate the feasibility o...

  12. AID: An Energy Efficient Decoding Scheme for LDPC Codes in Wireless Body Area Sensor Networks

    OpenAIRE

    Javaid, N.; Rehman, O.; Alrajeh, N.; Khan, Z A; Manzoor, B.; Ahmed, S.

    2013-01-01

    One of the major challenges in Wireless Body Area Networks (WBANs) is to prolong the lifetime of network. Traditional research work focuses on minimizing transmit power, however, in the case of short range communication the consumption power in decoding is significantly larger than transmit power. This paper investigates the minimization of total power consumption by reducing the decoding power consumption. For achieving a desired Bit Error Rate (BER), we introduce some fundamental results on...

  13. Energy Harvesting-Aware Resource Management for Wireless Body Area Networks

    OpenAIRE

    Ibarra Ramirez, Ernesto Antonio

    2014-01-01

    The rationale for a telemedicine system is the use of Information and Communications Technology (ICT) for the remote transmission of biomedical data and the remote control of biomedical equipment, in order to improve the provided health service. The integration of Wireless Body Area Networks (WBANs) in telemedicine systems does not only achieve significant improvements in the patient’s healthcare, but also enhances their quality of life. However, the potential benefits provided by these netwo...

  14. Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole body energy expenditure

    OpenAIRE

    Liakath-Ali, Kifayathullah; Vancollie, Valerie E.; Christopher J Lelliott; Speak, Anneliese O; Lafont, David; Protheroe, Hayley J; Ingvorsen, Camilla; Galli, Antonella; Green, Angela; Gleeson, Diane; Ryder, Ed; Glover, Leanne; Vizcay-Barrena, Gema; Karp, Natasha A.; Arends, Mark J

    2016-01-01

    Abstract The epidermis is the outermost layer of skin that acts as a barrier to protect the body from the external environment and to control water and heat loss. This barrier function is established through the multistage differentiation of keratinocytes and the presence of bioactive sphingolipids such as ceramides, the levels of which are tightly regulated by a balance of ceramide synthase and ceramidase activities. Here we reveal the essential role of alkaline ceramidase 1 (Acer1) in the s...

  15. Energy Absorption and Dynamic Deformation of Backing Material for Ballistic Evaluation of Body Armour

    Directory of Open Access Journals (Sweden)

    Debarati\tBhattacharjee

    2014-09-01

    Full Text Available The\tmeasurement\tof back face signature\t(BFS or\tbehind armour\tblunt trauma (BABT is\ta critical\taspect of ballistic evaluation of body\tarmour. BFS is the impact experienced by the\tarmour wearing body,\twhen subjected to\ta non-penetrating\tprojectile. Mineral\tor polymeric\tclay\tis used to measure the\tBFS. In addition to stopping the\tprojectile,\tthe body armour can be used only when the BFS also falls within\tpermissible limits.\tThe\textent of\tthe BFS depends upon the\tbehavior\tof the backing material\tin different loading conditions and prior history.\tThis\tpaper explains some of the\tstudies carried out on the backing\tmaterial used for ballistic evaluation\tin Terminal Ballistics Research\tLaboratory, Chandigarh. It has been observed\tthat\tthe backing material is highly non-linear\tviscoelastic in nature. The depth\tof\tdeformation is also linearly\tproportional to the\timpact\tenergy\tand\ttemperature. The\teffect of time\ton the depth of deformation\tis gradual and does\tnot influence the BFS values during a\tstandard\tballistic evaluation comprising of 6-8\tshots.

  16. Sensing and energy harvesting of fluidic flow by InAs nanowires.

    Science.gov (United States)

    Chen, Ying; Liang, Dong; Gao, Xuan P A; Alexander, J Iwan D

    2013-08-14

    Indium arsenide (InAs) nanowire (NW) field effect transistors (FETs) were incorporated into a microfluidic channel to detect the flow rate change as well as to harvest fluid flow energy for electric power generation. Discrete changes in the electric current through InAs NW FETs were observed upon flow rate changes at steps of 1 mL/h (equivalent to ~3 mm/s change in average linear velocity). The current also showed a sign change upon reversing flow direction. By comparing the response of the device with and without a driving voltage between source-drain electrodes, we conclude that the dominant contribution in the response is the streaming potential tuned conductance of NW. In the absence of source-drain voltage, we further demonstrate that the ionic flow could enable generation of an ~mV electrical potential (or ~nA electrical current) inside the InAs NW per mL/h increase of flow rate, most likely due to the charge dragging effect. PMID:23899249

  17. Remote sensing of the nocturnal boundary layer for wind energy applications

    International Nuclear Information System (INIS)

    The fine temporal and spatial resolution of Doppler lidar observations has been highly effective in the study of wind and turbulence dynamic in the nocturnal boundary layer during Lamar Low-Level Project in 2003. The High-Resolution Doppler Lidar (HRDL), designed and developed at the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL), measures range-resolved profiles of line-of sight (LOS) Doppler velocity and aerosol backscatter with a pulse repetition frequency of 200 Hz, velocity precision about 10 cm s-1, and a very narrow beam width. The majority of the lidar-measured wind speed and variance profiles were derived using a vertical-scan mode and the application of a vertical binning technique. The profile data were used to calculate quantities important for wind energy applications, including turbulence intensity, wind and directional shear through the layer of the turbine rotor. Profiles of all quantities show a strong variation with height. The mean wind fields, the turbulence, and turbulence intensities show a good agreement with sonic anemometer sodar high confidence (high SNR) measurements. The ability of HRDL to provide continuous information about wind and turbulence conditions at the turbine height and above the range of the tower measurements made HRDL as a powerful instrument for studies of the nighttime boundary layer features. Such information is needed as turbine rotors continue to rise higher into the boundary layer

  18. Low temperature dependence of triboelectric effect for energy harvesting and self-powered active sensing

    Science.gov (United States)

    Su, Yuanjie; Chen, Jun; Wu, Zhiming; Jiang, Yadong

    2015-01-01

    The triboelectric nanogenerator (TENG) has been proved as a simple, reliable, cost-effective, and efficient means to harvest ambient mechanical energy in a normal environment, although its performance evaluation under the room temperature is still lacking. Here, we systematically looked into the reliance of triboelectric nanogenerators output on the ambient temperature spanning from 77 K to 320 K. Employed the most commonly used Polytetrafluoroethylene (PTFE) and aluminum as two contact materials, both the output voltage and current show a tendency of increase with decreasing temperature. Applicability of triboelectric nanogenerator over a wide range of temperature was confirmed from 77 K to 320 K. And, an output enhancement of 79.3% was experimentally obtained at the temperature of 77 K compared to that at a temperature of 300 K. However, a reverse tendency was observed for the TiO2 nanotubes/PTFE and Al coated TiO2 nanotubes/PTFE based triboelectric nanogenerators. This work can contribute not only to the design and packaging of triboelectric devices to operate at extreme environmental temperatures but also to the fundamental understanding of the mechanism of triboelectric effect.

  19. Evaluering af overensstemmelsen af body condition score og feline body mass index sammenlignet med dual energy X-ray absorptiometry hos katte

    DEFF Research Database (Denmark)

    Falkenberg, Michael; Hølmkjær, Kirsten Madsen; Cronin, Anna;

    2016-01-01

    Formål: Obesitet er et stigende problem blandt katte, og der er derfor brug for nemme, billige og hurtige metoder til vurdering af kattes kropssammensætning i praksis. Indeværende studie sammenligner to klinisk applicerbare metoder: Body condition score (BCS) og feline body mass index (FBMI) mod...

  20. Energy-Delay Tradeoff and Dynamic Sleep Switching for Bluetooth-Like Body-Area Sensor Networks

    CERN Document Server

    Rebeiz, Eric; Molisch, Andreas F

    2012-01-01

    Wireless technology enables novel approaches to healthcare, in particular the remote monitoring of vital signs and other parameters indicative of people's health. This paper considers a system scenario relevant to such applications, where a smart-phone acts as a data-collecting hub, gathering data from a number of wireless-capable body sensors, and relaying them to a healthcare provider host through standard existing cellular networks. Delay of critical data and sensors' energy efficiency are both relevant and conflicting issues. Therefore, it is important to operate the wireless body-area sensor network at some desired point close to the optimal energy-delay tradeoff curve. This tradeoff curve is a function of the employed physical-layer protocol: in particular, it depends on the multiple-access scheme and on the coding and modulation schemes available. In this work, we consider a protocol closely inspired by the widely-used Bluetooth standard. First, we consider the calculation of the minimum energy functio...

  1. Signal-transduction protein P(II) from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro.

    Science.gov (United States)

    Fokina, Oleksandra; Herrmann, Christina; Forchhammer, Karl

    2011-11-15

    P(II) proteins belong to a family of highly conserved signal-transduction proteins that occurs widely in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-OG (2-oxoglutarate), and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. In the present study, we examined the effect of ADP on in vitro P(II)-signalling properties for the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different ADP/ATP ratios strongly affected the properties of P(II) signalling. Increasing ADP antagonized the binding of 2-OG and directly affected the interactions of P(II) with its target proteins. The resulting P(II)-signalling properties indicate that, in mixtures of ADP and ATP, P(II) trimers are occupied by mixtures of adenylate nucleotides. Binding and kinetic activation of NAGK (N-acetyl-L-glutamate kinase), the controlling enzyme of arginine biosynthesis, by P(II) was weakened by ADP, but relief from arginine inhibition remained unaffected. On the other hand, ADP enhanced the binding of P(II) to PipX, a co-activator of the transcription factor NtcA and, furthermore, antagonized the inhibitory effect of 2-OG on P(II)-PipX interaction. These results indicate that S. elongatus P(II) directly senses the adenylate energy charge, resulting in target-dependent differential modification of the P(II)-signalling properties. PMID:21774788

  2. Remote Sensing Applications in Water Resources and the Global Energy and Water Exchanges Project

    Science.gov (United States)

    van Oevelen, P. J.

    2015-12-01

    The Global Water and Energy Exchanges project (GEWEX) as part of the World Climate Research Programme has developed in 2013 a new set of science questions and imperatives with one set focusing in particular on the human component in the global water cycle and water resources management. In the past GEWEX primarily focused solely on the geophysical aspects of the water cycle and ignored to a great extent the human influences on it. The increased human interactions with the environment as well as the water cycle at both a local and global scale cannot be ignored any longer, in particular to analyse and interpret observations, improve models and process descriptions and to make more accurate predictions with less uncertainty. The model development has currently progressed to a stage where human interactions and processes can be better described and incorporated though much still remains to be done. One of the biggest challenges in incorporating human interactions into hydrological models and tools is to obtain the required observations, data and information. Water resource management decisions are based upon both geophysical conditions as well as socio-economic circumstances and in many cases also the individual decision makers state of being. To observe and model such processes requires expertise from a multitude of disciplines that are only now are beginning to collaborate more intensely. Another example of where obtaining the required information is tedious and often suspect is in transboundary water systems where this type of information can have direct geopolitical and socio-economical consequences. Earth observation in particular new or more advanced systems can help alleviate some of these issues. For GEWEX the challenge comes with an upside in that the models that incorporate the human component will also have more and better applicability. In this presentation several examples of application of new earth observing systems will be explored with an emphasis on

  3. Two-week stimulation or blockade of the sympathetic nervous system in man: influence on body weight, body composition, and twenty four-hour energy expenditure.

    Science.gov (United States)

    Acheson, K J; Ravussin, E; Schoeller, D A; Christin, L; Bourquin, L; Baertschi, P; Danforth, E; Jéquier, E

    1988-01-01

    Seven lean healthy young men were studied for 6 weeks during exposure to pharmacologic inhibition or stimulation of the sympathetic nervous system. For a period of 2 weeks their beta-adrenergic receptors were either blocked with propranolol hydrochloride (160 mg/d) or stimulated with terbutaline sulphate (15 mg/d). After a further 2 weeks of placebo administration (500 mg lactose/d), the subjects crossed over to the drug they had not been taking at the beginning of the experiment for another 14 days. During the last five days of each 2-week period, the subjects consumed a weight-maintaining diet, composed of 12% protein, 48% carbohydrate, and 40% fat. They consumed exactly the same menus on the same days during the subsequent study periods. Body weight and physical activity were measured every day for 6 weeks. Daily heart rate and nitrogen excretion were measured continuously for days at the end of each 2-week period, the last two days of which were spent in a respiration chamber where energy expenditure and a variety of metabolic parameters were measured. In the respiration chamber on the propranolol, placebo, and terbutaline treatments, respectively, significant differences were observed in mean daily heart rate (65 +/- 3, 75 +/- 4, and 84 +/- 4 beats/min), mean sleeping heart rate (51 +/- 2, 56 +/- 3, and 62 +/- 3 beats/min), nitrogen excretion (13.6 +/- 0.7, 12.6 +/- 0.6, and 11.9 +/- 0.6 g/d), fat oxidation (+1,045 +/- 95, +1,243 +/- 148, and +1,278 +/- 84 kcal/d) and thyroid hormones (12.0 +/- 0.7, 15.7 +/- 0.9, and 17.2 +/- 1.0 T3/T4 ratio).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3275861

  4. An advanced scheme of compressed sensing of acceleration data for telemonintoring of human gait

    OpenAIRE

    Wu, Jianning; Xu, Haidong

    2016-01-01

    Background The compressed sensing (CS) of acceleration data has been drawing increasing attention in gait telemonitoring application. In such application, there still exist some challenging issues including high energy consumption of body-worn device for acceleration data acquisition and the poor reconstruction performance due to nonsparsity of acceleration data. Thus, the novel scheme of compressive sensing of acceleration data is needed urgently for solutions that are found to these issues....

  5. The effects of dimensional parameters on sensing and energy harvesting of an embedded PZT in a total knee replacement

    Science.gov (United States)

    Safaei, Mohsen; Anton, Steven R.

    2016-04-01

    Total Knee Replacement (TKR), one of the most common surgeries in the United States, is performed when the patient is experiencing significant amounts of pain or when knee functionality has become substantially degraded. Despite impressive recent developments, only about 85% of patients are satisfied with the pain reduction after one year. Therefore, structural health and performance monitoring are integral for intraoperative and postoperative feedback. In extension of the author's previous work, a new configuration for implementation of piezoelectric transducers in total knee replacement bearings is proposed and FEA modeling is performed to attain appropriate sensing and energy harvesting ability. The predicted force transmission ratio to the PZT (ratio of force applied to the bearing to force transferred to the embedded piezoelectric transducer) is about 6.2% compared to about 5% found for the previous encapsulated design. Dimensional parameters of the polyethylene bearing including the diameter and depth of the PZT pocket as well as the placement geometry of the PZT transducer within the bearing are hypothesized as the most influential parameters on the performance of the designed system. The results show a small change of 1% and 2.3% in the output of the system as a result of variation in the PZT location and pocket diameter, respectively. Whereas, the output of the system is significantly sensitive to the pocket depth; a pocket 0.01 mm deeper than the PZT transducer leads to no force transmission, and a pocket 0.15 mm shallower leads to full load transmission to the PZT. In order to develop a self-powered sensor, the amount of energy harvested from tibial forces for the proposed geometry is investigated.

  6. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    Science.gov (United States)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  7. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    appropriately. The Horizon Sensor program began development in 1998 and experienced three major design phases. The final version, termed HS-3, was commissioned in 2000 with the assistance of the DOE-Mining Industry of the Future program, commercialized in 2002, and has been used 14 times in 12 different mines within the United States. The Horizon Sensor has applications in both underground and surface mining operations. This technology is primarily used in the coal industry, but is also used to mine trona and potash. All horizon sensor components have Mine Safety and Health Administration (MSHA) (United States) and IEC (International) certification. Horizon Sensing saves energy by maximizing cutting efficiency, cutting only desired material. This desired material is cleaner fuel, therefore reducing pollutants to the atmosphere when burned and burning more efficiently. Extracting only desired material increases productivity by reducing or eliminating the cleaning step after extraction. Additionally, this technology allows for deeper mining, resulting in more material gained from one location. The remote sensing tool allows workers to operate the machinery away from the hazards of cutting coal, including noise, breathing dust and gases, and coal and rock splintering and outbursts. The HS program has primarily revolved around the development of the technology. However, the end goal of the program has always been the commercialization of the technology and only within the last 2 years of the program has this goal been realized. Real-time horizon sensing on mining machines is becoming an industry tool. Detailed monitoring of system function, user experience, and mining benefits is ongoing.

  8. Excited state interactions in graphene oxide-semiconductor/metal nanoparticle architectures for sensing and energy conversion

    Science.gov (United States)

    Lightcap, Ian V.

    The recent emergence of graphene, along with its unique and impressive set of properties, has resulted in a concerted effort to incorporate the material into electronic devices and composite materials. Graphene oxide, a chemically modified form of graphene which can be produced economically and in large scale, is one of the most common starting materials for making graphene composite materials with improved conductivity, photovoltaic performance, and photocatalytic activity, to name a few examples. This dissertation describes progress made in understanding and quantifying the electronic properties of graphene oxide as they relate to electron storage and shuttling in composite materials. A more complete understanding of the nature of electronic interactions in graphene composites was achieved through two processes: 1) A dual electron-titration showing storage and shuttling of electrons in reduced graphene oxide. 2) A method developed to isolate the energy and electron transfer pathways involved in the deactivation of excited CdSe quantum dots by RGO. The results obtained from these two processes provide insight into the electronic interactions between graphene, semiconductors, and metals. Additionally, composite films were constructed to demonstrate the electron transfer properties of reduced graphene oxide. TiO2-reduced graphene oxide films were made via a simple drop-cast technique. The films show enhanced photovoltaic and photocatalytic characteristics when compared to TiO2-only films. A stacked architecture incorporating single-layer reduced graphene oxide on thin TiO2 nanoparticle films was developed as a method for illumination-controlled deposition of metal nanoparticles. Films of metal nanoparticles made using this technique were employed as Surface Enhanced Resonance Raman (SERRS) sensors and show nano-molar sensitivity. Finally, quantum dot-reduced graphene oxide composites were made via an electrophoretic deposition process. The resulting films were used

  9. Black-body radiation shift of atomic energy-levels:The $ (Z \\alpha)^2\\alpha T^2/m $ correction

    OpenAIRE

    Zhou, Wanping; Mei, Xuesong; Lu, Jingjun; Qiao, Haoxue

    2016-01-01

    The next-to-leading order black-body radiation(BBR) shift to atomic energy-levels, namely $ (Z\\alpha)^2\\alpha T^2/m $ correction, was studied by using the nonrelativistic quantum electrodynamics(NRQED). We also estimate the one-loop contribution of quadrupole and the two-loop contributions of BBR-shift of the thermal(real) photon. These corrections have not been investigated before. The order of magnitude BBR-shift indicates the one-loop contribution of quadrupole is stronger than the previou...

  10. The Arrestin Domain Containing 3 (ARRDC3) Protein Regulates Body Mass and Energy Expenditure

    OpenAIRE

    Patwari, Parth; Emilsson, Valur; Schadt, Eric E.; Chutkow, William A.; Lee, Samuel; Marsili, Alessandro; Zhang, Yongzhao; Dobrin, Radu; Cohen, David E.; Larsen, P. Reed; Zavacki, Ann Marie; Fong, Loren G; Young, Stephen G.; Lee, Richard T.

    2011-01-01

    A human genome-wide linkage scan for obesity identified a linkage peak on chromosome 5q13–15. Positional cloning revealed an association of a rare haplotype to high body-mass index (BMI) in males but not females. The risk locus contains a single gene, “arrestin domain containing 3” (ARRDC3), an uncharacterized α-arrestin. Inactivating Arrdc3 in mice led to a striking resistance to obesity, with greater impact on male mice. Mice with decreased ARRDC3 levels were protected from obesity due to i...

  11. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David;

    2014-01-01

    evaporation measurements and key environmental controls were used to compare the results of the two techniques. Reasonable agreement was shown between the sensible heat flux measurements from eddy covariance and scintillometry, while scintillometer-derived estimates of latent heat flux were approximately 21......Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy...... scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...

  12. Low Energy Wireless Body-Area Networks for Fetal ECG Telemonitoring via the Framework of Block Sparse Bayesian Learning

    CERN Document Server

    Zhang, Zhilin; Makeig, Scott; Rao, Bhaskar D

    2012-01-01

    Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a low-power wireless body-area network for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing data with low power consumption. However, due to some specific characteristics of FECG recordings such as non-sparsity and strong noise contamination, current CS algorithms generally fail in this application. In this work we utilize the block sparse Bayesian learning (bSBL) framework, a recently developed framework solving the CS problems. To illustrate the ability of the bSBL methods, we apply it to two representative FECG datasets. In one dataset the fetal heartbeat signals are visible, while in the other dataset are barely visible. The experiment results show that the bSBL framework is capable of compressing FECG raw recordings and successfully reconstructing them. These successes rely on two unique features of the bSBL framework; on...

  13. Expression of metabolic sensing receptors in adipose tissues of periparturient dairy cows with differing extent of negative energy balance.

    Science.gov (United States)

    Friedrichs, P; Sauerwein, H; Huber, K; Locher, L F; Rehage, J; Meyer, U; Dänicke, S; Kuhla, B; Mielenz, M

    2016-04-01

    We recently showed that the mRNA expression of genes encoding for specific nutrient sensing receptors, namely the free fatty acid receptors (FFAR) 1, 2, 3, and the hydroxycarboxylic acid receptor (HCAR) 2, undergo characteristic changes during the transition from late pregnancy to lactation in certain adipose tissues (AT) of dairy cows. We hypothesised that divergent energy intake achieved by feeding diets with either high or low portions of concentrate (60% v. 30% concentrate on a dry matter basis) will alter the mRNA expression of FFAR 1, 2, 3, as well as HCAR2 in subcutaneous (SCAT) and retroperitoneal AT (RPAT) of dairy cows in the first 3 weeks postpartum (p.p.). For this purpose, 20 multiparous German Holstein cows were allocated to either the high concentrate ration (HC, n=10) or the low concentrate ration (LC, n=10) from day 1 to 21 p.p. Serum samples and biopsies of SCAT (tail head) and RPAT (above the peritoneum) were obtained at day -21, 1 and 21 relative to parturition. The mRNA abundances were measured by quantitative PCR. The concentrations of short-chain fatty acid (SCFA) in serum were measured by gas chromatography-flame ionisation detector. The FFAR1 and FFAR2 mRNA abundance in RPAT was higher at day -21 compared to day 1. At day 21 p.p. the FFAR2 mRNA abundance was 2.5-fold higher in RPAT of the LC animals compared to the HC cows. The FFAR3 mRNA abundance tended to lower values in SCAT of the LC group at day 21. The HCAR2 mRNA abundance was neither affected by time nor by feeding in both AT. On day 21 p.p. the HC group had 1.7-fold greater serum concentrations of propionic acid and lower concentrations of acetic acid (trend: 1.2-fold lower) compared with the LC group. Positive correlations between the mRNA abundance of HCAR2 and peroxisome proliferator-activated receptor γ-2 (PPARG2) indicate a link between HCAR2 and PPARG2 in both AT. We observed an inverse regulation of FFAR2 and FFAR3 expression over time and both receptors also showed an

  14. High-energy two-electron photoabsorption as a three-body problem

    International Nuclear Information System (INIS)

    We study the high-energy behaviour of double photoionization and of the ionization accompanied by excitation of the states n1S and n3S of the H-ion, helium atom, and light helium-like ions. We show that the high-energy nonrelativistic limit of the ionization+excitation to the single-ionization cross section ratio is still valid for the photon energies, corresponding to the relativistic energies of the outgoing electron. The same applies to the double photoionization of the triplet states. The situation for the double photoionization of singlet states differs due to the quasifree mechanism. All these ionization ratios are calculated by using the high-precision locally correct wave functions for the bound electrons. The importance of using locally correct functions is emphasized. (author)

  15. Is gravitational mass of a quantum body equivalent to its energy?

    CERN Document Server

    Lebed, Andrei G

    2013-01-01

    We define passive gravitational mass operator of a hydrogen atom in the post-Newtonian approximation of general relativity and show that it does not commute with energy operator, taken in the absence of gravitational field. Nevertheless, the equivalence between the expectation values of passive gravitational mass and energy is shown to survive for stationary quantum states. Inequivalence between passive gravitational mass and energy at a macroscopic level results in time dependent oscillations of the expectation values of passive gravitational mass for superpositions of stationary quantum states, where the equivalence restores after averaging over time. Inequivalence between gravitational mass and energy at a microscopic level reveals itself as unusual electromagnetic radiation, emitted by the atoms, supported and moved in the Earth gravitational field with constant velocity using spacecraft or satellite, which can be experimentally measured.

  16. Effects of metal implants on whole-body dual-energy x-ray absorptiometry measurements of bone mineral content and body composition

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the influence of metal implants on measurements of bone mineral content and body composition by x-ray-based dual-photon absorptiometry. Four whole-body dual-photon absorptiometry scans were performed on 13 participants with metal rods either present or absent during the scans. The influence of the amount of metal (50 g, 100 g and 150 g), the proximity of the metal rod to the x-ray source and the reproducibility of any metal-induced effects were evaluated by altering the position or the size of the metal rod used, or both. The presence of metal rods weighing 100 g or 150 g significantly increased reported total body mass and bone mineral content (p < 0.034). Soft-tissue mass was increased when the scan included the 100-g rod (p < 0.003). The proximity of the metal to the x-ray source did not have a significant influence on the body composition changes induced by the metal. The effects of the metal rods on body composition variables were reproducible. The presence of metal rods inflated body composition variables measured by dual-photon absorptiometry; however, the effects are reproducible during repeat scans of an individual patient. Metal had the largest impact on whole-body bone mineral content, causing errors of 1.5%-3%. (author)

  17. Effects of metal implants on whole-body dual-energy x-ray absorptiometry measurements of bone mineral content and body composition

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, L.M. [McMaster Univ., Dept. of Kinesiology, Hamilton, Ontario (Canada); Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca

    2003-12-01

    The purpose of this study was to evaluate the influence of metal implants on measurements of bone mineral content and body composition by x-ray-based dual-photon absorptiometry. Four whole-body dual-photon absorptiometry scans were performed on 13 participants with metal rods either present or absent during the scans. The influence of the amount of metal (50 g, 100 g and 150 g), the proximity of the metal rod to the x-ray source and the reproducibility of any metal-induced effects were evaluated by altering the position or the size of the metal rod used, or both. The presence of metal rods weighing 100 g or 150 g significantly increased reported total body mass and bone mineral content (p < 0.034). Soft-tissue mass was increased when the scan included the 100-g rod (p < 0.003). The proximity of the metal to the x-ray source did not have a significant influence on the body composition changes induced by the metal. The effects of the metal rods on body composition variables were reproducible. The presence of metal rods inflated body composition variables measured by dual-photon absorptiometry; however, the effects are reproducible during repeat scans of an individual patient. Metal had the largest impact on whole-body bone mineral content, causing errors of 1.5%-3%. (author)

  18. Hypothalamic AMPK: a canonical regulator of whole-body energy balance.

    Science.gov (United States)

    López, Miguel; Nogueiras, Rubén; Tena-Sempere, Manuel; Diéguez, Carlos

    2016-07-01

    AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism. PMID:27199291

  19. Thermoelectric generator placed on the human body: system modeling and energy conversion improvements

    Science.gov (United States)

    Lossec, M.; Multon, B.; Ben Ahmed, H.; Goupil, C.

    2010-10-01

    This paper focuses on the production of electricity using a thermoelectric generator placed on the human body connected to a dc-dc converter. The small difference in temperature between the hot heat source (e.g. the human body, Tb = 37 °C) and the cold heat source (e.g. ambient air, Ta = 22 °C), associated with a poor quality thermal coupling (mainly with the cold source), leads to a very low temperature gradient at the thermoelectric generator terminals and hence low productivity. Under these use conditions, the present article proposes an analysis of various ways to improve productivity given a surface capture system. Furthermore, we demonstrated, in this particular context, that maximizing the recovered electric power proves to be a different problem from that of maximizing efficiency, e.g. the figure of merit Z. We therefore define a new factor ZE, depending on the physical characteristics of thermoelectric materials, that maximizes electric power in the particular case where the thermal coupling is poor. Finally, this study highlights the benefit of sub-optimization of the power extracted from the thermoelectric generator to further improve efficiency of the overall system. We show that, given the conversion efficiency of the dc-dc converter, the maximum power point of the overall system is no more reached when the output voltage of the thermoelectric generator is equal to half of its electromotive force.

  20. Effectiveness of prediction equations in estimating energy expenditure sample of Brazilian and Spanish women with excess body weight

    Directory of Open Access Journals (Sweden)

    Eliane Lopes Rosado

    2014-03-01

    Full Text Available Objective: To assess the adequacy of predictive equations for estimation of energy expenditure (EE, compared with the EE using indirect calorimetry in a sample of Brazilian and Spanish women with excess body weight Methods: It is a cross-sectional study with 92 obese adult women [26 Brazilian -G1- and 66 Spanish - G2- (aged 20-50]. Weight and height were evaluated during fasting for the calculation of body mass index and predictive equations. EE was evaluated using the open-circuit indirect calorimetry with respiratory hood. Results: In G1 and G2, it was found that the estimates obtained by Harris-Benedict, Shofield, FAO/WHO/ ONU and Henry & Rees did not differ from EE using indirect calorimetry, which presented higher values than the equations proposed by Owen, Mifflin-St Jeor and Oxford. For G1 and G2 the predictive equation closest to the value obtained by the indirect calorimetry was the FAO/WHO/ONU (7.9% and 0.46% underestimation, respectively, followed by Harris-Benedict (8.6% and 1.5% underestimation, respectively. Conclusion: The equations proposed by FAO/WHO/ ONU, Harris-Benedict, Shofield and Henry & Rees were adequate to estimate the EE in a sample of Brazilian and Spanish women with excess body weight. The other equations underestimated the EE.